+

WO2018105526A1 - Fan motor - Google Patents

Fan motor Download PDF

Info

Publication number
WO2018105526A1
WO2018105526A1 PCT/JP2017/043320 JP2017043320W WO2018105526A1 WO 2018105526 A1 WO2018105526 A1 WO 2018105526A1 JP 2017043320 W JP2017043320 W JP 2017043320W WO 2018105526 A1 WO2018105526 A1 WO 2018105526A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
rib
fan motor
ribs
motor
Prior art date
Application number
PCT/JP2017/043320
Other languages
French (fr)
Japanese (ja)
Inventor
有希雄 北邑
成勝 松田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US16/461,129 priority Critical patent/US20200072241A1/en
Priority to JP2018554972A priority patent/JPWO2018105526A1/en
Priority to CN201780064802.0A priority patent/CN109863312B/en
Publication of WO2018105526A1 publication Critical patent/WO2018105526A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps

Definitions

  • the present invention relates to a fan motor.
  • an axial-flow fan motor that rotates an impeller using a driving force of a motor to generate an airflow in an axial direction.
  • An axial-flow fan motor is mounted on, for example, home appliances, OA equipment, transportation equipment, and the like, and is used for the purpose of cooling electronic components or circulating gas in the equipment housing.
  • a fan motor may be used for gas circulation in a server room where a large number of electronic devices are installed.
  • FIG. 18 is a perspective view showing a result of analyzing a horizontal vibration mode in a housing 5X used in a conventional fan motor.
  • FIG. 19 is a perspective view showing the result of analyzing the axial vibration mode in the housing 5Y used in the conventional fan motor.
  • the housing 5X is formed as a single member by resin injection molding or the like, and the housing 5Y is formed from two upper and lower members.
  • An object of the present invention is to provide a fan motor capable of suppressing the occurrence of sink marks, increasing the rigidity of the housing, and suppressing unpleasant vibration and noise during driving.
  • the exemplary invention of the present application is a fan motor, which includes a motor, an impeller, and a housing.
  • the motor has a stationary part having a stator and a rotating part that rotates around a central axis extending vertically.
  • the impeller has a plurality of blades and rotates together with the rotating unit.
  • the housing accommodates at least a part of the motor and the impeller inside.
  • the housing has a tubular portion, a flange portion, and one or a plurality of ribs.
  • the tubular portion is tubular, extends in the axial direction, and accommodates at least a part of the motor and the impeller inside.
  • a flange part protrudes toward the radial direction outer side from the upper end part or lower end part of a cylindrical part.
  • the rib is columnar and extends from the flange portion on the outer peripheral surface of the cylindrical portion. The rib is inclined with respect to the axial direction.
  • the rigidity of the housing is increased by forming one or more columnar ribs extending from the flange portion and inclined with respect to the axial direction on the outer peripheral surface of the cylindrical portion. Unpleasant vibration and noise at the time can be suppressed. Moreover, since the thickness of the housing in parts other than the rib can be suppressed, the occurrence of sink marks can be suppressed.
  • FIG. 1 is a longitudinal sectional view of the fan motor according to the first embodiment.
  • FIG. 2 is a partial longitudinal sectional view of the fan motor according to the first embodiment.
  • FIG. 3 is a perspective view of the housing according to the first embodiment.
  • FIG. 4 is a side view of the housing according to the first embodiment.
  • FIG. 5 is a diagram illustrating a result of analyzing the relationship between the inclination of the rib according to the first embodiment and the natural frequency of the housing.
  • FIG. 6A is a side view of the housing according to the first embodiment.
  • FIG. 6B is a side view of the housing according to the first embodiment.
  • FIG. 6C is a side view of the housing according to the first embodiment.
  • FIG. 6D is a side view of the housing according to the first embodiment.
  • FIG. 6A is a side view of the housing according to the first embodiment.
  • FIG. 6B is a side view of the housing according to the first embodiment.
  • FIG. 6C is a side view of
  • FIG. 7 is a diagram illustrating a result of analyzing the relationship between the thickness of the rib according to the first embodiment and the natural frequency of the housing.
  • FIG. 8A is a side view of the housing according to the first embodiment.
  • FIG. 8C is a side view of the housing according to the first embodiment.
  • FIG. 8E is a side view of the housing according to the first embodiment.
  • FIG. 8F is a side view of the housing according to the first embodiment.
  • FIG. 9 is a diagram illustrating a result of analyzing the relationship between the position of the rib according to the first embodiment and the natural frequency of the housing.
  • FIG. 10A is a top view of the housing according to the first embodiment.
  • FIG. 10G is a top view of the housing according to the first embodiment.
  • FIG. 10H is a top view of the housing according to the first embodiment.
  • FIG. 10I is a top view of the housing according to the first embodiment.
  • FIG. 10C is a top view of the housing according to the first embodiment.
  • FIG. 11 is a diagram illustrating a result of analyzing the relationship between the position of the rib according to the first embodiment and the natural frequency of the housing.
  • FIG. 12A is a top view of the housing according to the first embodiment.
  • FIG. 12J is a top view of the housing according to the first embodiment.
  • FIG. 12K is a top view of the housing according to the first embodiment.
  • FIG. 12L is a top view of the housing according to the first embodiment.
  • FIG. 12C is a top view of the housing according to the first embodiment.
  • FIG. 12A is a top view of the housing according to the first embodiment.
  • FIG. 12J is a top view of the housing according to the first embodiment.
  • FIG. 12K is a top view of the housing according to the
  • FIG. 13 is a longitudinal sectional view of the fan motor according to the second embodiment.
  • FIG. 14 is a perspective view of a housing according to the second embodiment.
  • FIG. 15 is a side view of the housing according to the second embodiment.
  • FIG. 16 is a diagram illustrating a result of analyzing the relationship between the position of the rib according to the second embodiment and the natural frequency of the housing.
  • FIG. 17A is a top view of the housing according to the second embodiment.
  • FIG. 17B is a top view of the housing according to the second embodiment.
  • FIG. 17C is a top view of the housing according to the second embodiment.
  • FIG. 17D is a top view of the housing according to the second embodiment.
  • FIG. 17E is a top view of the housing according to the second embodiment.
  • FIG. 17A is a top view of the housing according to the second embodiment.
  • FIG. 17B is a top view of the housing according to the second embodiment.
  • FIG. 17C is a top view of the housing according to
  • FIG. 17F is a top view of the housing according to the second embodiment.
  • FIG. 18 is a perspective view showing a result of analyzing a vibration mode in a conventional fan motor housing.
  • FIG. 19 is a perspective view showing a result of analyzing a vibration mode in a conventional fan motor housing.
  • a direction parallel to the motor central axis which will be described later, is referred to as an “axial direction”, a direction orthogonal to the motor central axis is referred to as a “radial direction”, and a direction along an arc centered on the motor central axis is referred to as “circumference”.
  • the axial direction is the vertical direction, the side from which air is taken in is referred to as “intake side” or simply “upper side”, and the side from which air is discharged is referred to as “exhaust side” or simply “lower side”.
  • intake side or simply “upper side”
  • exhaust side exhaust side from which air is discharged
  • the “upper side” and “lower side” are expressions for convenience of explanation, and are not related to the direction of gravity.
  • the fan motor according to the present invention may be used in any direction.
  • the “parallel direction” includes a substantially parallel direction.
  • the “perpendicular direction” includes a substantially orthogonal direction.
  • FIG. 1 is a longitudinal sectional view of a fan motor 10 according to the first embodiment.
  • the fan motor 10 is used, for example, as a device for supplying a cooling airflow into a room such as a home appliance such as a refrigerator or a server room in which a plurality of electronic devices are arranged.
  • the fan motor 10 may be used alone, or a plurality of fan motors 10 may be used in combination.
  • a plurality of fan motors 10 may be installed in one server room and driven simultaneously.
  • the fan motor 10 includes a motor 1, an impeller 4, and a housing 5.
  • the fan motor 10 is an axial fan that generates an airflow downward along the central axis 9.
  • air is taken in from the upper side of the fan motor 10 that is the intake side, and is sent out through the wind tunnel 50 in the housing 5 to the lower side of the fan motor 10 that is the exhaust side. .
  • FIG. 2 is a partial longitudinal sectional view of the fan motor 10 according to the first embodiment.
  • FIG. 1 will be referred to as appropriate together with FIG.
  • the motor 1 has a stationary part 2 and a rotating part 3.
  • the stationary part 2 is relatively stationary with respect to the device where the fan motor 10 is disposed.
  • the rotating part 3 is supported so as to be rotatable with respect to the stationary part 2 around a central axis 9 extending vertically.
  • the stationary portion 2 includes a stator 22, a circuit board 23, and a bearing holder 24.
  • the stator 22 is fixed to the outer peripheral surface of the bearing holder 24.
  • the stator 22 has a stator core 221 and a plurality of coils 222.
  • Stator core 221 has a plurality of teeth. Each tooth extends in the radial direction.
  • Each of the plurality of coils 222 is formed by a conductive wire wound around the teeth. The end of the conducting wire is connected to the circuit board 23.
  • the bearing holder 24 is a cylindrical member extending along the central axis 9. A lower portion of the bearing holder 24 is fixed to an inner peripheral surface of the base portion 21 described later with an adhesive, for example.
  • a bearing portion 25 is disposed on the radially inner side of the bearing holder 24.
  • a ball bearing is used for the bearing portion 25.
  • the outer ring of the bearing portion 25 is fixed to the inner peripheral surface of the bearing holder 24.
  • the inner ring of the bearing portion 25 is fixed to a shaft 31 described later. Thereby, the shaft 31 is supported rotatably with respect to the stationary part 2.
  • the motor 1 may have other types of bearings such as a slide bearing and a fluid bearing instead of the ball bearing.
  • the rotating unit 3 includes a shaft 31, a rotor holder 32, an annular member 33, and a magnet 34.
  • the shaft 31 is a columnar member disposed along the central axis 9.
  • the shaft 31 is rotatably supported by the bearing portion 25.
  • the upper end portion of the shaft 31 projects upward from the bearing holder 24.
  • the rotor holder 32 is a covered cylindrical member having a rotor lid 321 and a rotor cylinder 322.
  • the rotor lid 321 extends in a disk shape substantially perpendicular to the central axis 9.
  • the rotor cylinder portion 322 extends in the axial direction from the rotor lid portion 321 to the exhaust side.
  • metal or resin is used as the material of the rotor holder 32.
  • a central portion of the rotor lid portion 321 is fixed to the upper end portion of the shaft 31 via an annular member 33. Thereby, the rotor holder 32 rotates together with the shaft 31.
  • the rotor lid 321 is disposed on the intake side of the stationary part 2.
  • the rotor cylinder portion 322 is disposed on the radially outer side of the stator 22.
  • the magnet 34 is fixed to the inner peripheral surface of the rotor cylinder portion 322.
  • the motor 1 further has a lead wire (not shown) electrically connected to the stator 22.
  • One end of the lead wire (not shown) is connected to the circuit board 23.
  • the other end is drawn radially outward from a cylindrical portion 51 to be described later, and is connected to a power source provided outside the fan motor 10, for example.
  • the impeller 4 has a cup portion 41 and a plurality of blades 42.
  • the cup portion 41 covers the rotor lid portion 321 and the rotor cylinder portion 322 of the rotor holder 32.
  • Each blade 42 extends radially outward from the outer peripheral surface of the cup portion 41.
  • the plurality of blades 42 are arranged at substantially equal intervals in the circumferential direction. The number of blades 42 is not particularly limited.
  • the impeller 4 rotates together with the rotating unit 3.
  • FIG. 3 is a perspective view of the housing 5 according to the first embodiment.
  • FIG. 4 is a side view of the housing 5 according to the first embodiment.
  • the housing 5 is a housing that houses at least a part of the motor 1 and the impeller 4 therein. As shown in FIGS. 3 and 4, the housing 5 includes a base portion 21, a cylindrical portion 51, a flange portion 52, one or more base connection portions 53, and one or more ribs 54. The housing 5 has a rectangular solid shape that opens up and down.
  • the base portion 21 is a disk-shaped portion that is disposed below the stator 22 of the motor 1 and extends from the periphery of the bearing holder 24 toward the radially outer side. As described above, the lower portion of the bearing holder 24 is fixed to the inner peripheral surface of the base portion 21 with, for example, an adhesive.
  • the motor 1 is disposed on the upper portion of the base portion 21. The motor 1 is supported by the base portion 21.
  • the cylindrical portion 51 is a cylindrical portion that extends in the axial direction from the intake side (upper side) to the exhaust side (lower side) along the central axis 9.
  • the cylindrical portion 51 extends in a substantially cylindrical shape on the radially outer side of the impeller 4.
  • the cylindrical part 51 accommodates at least a part of the motor 1 and the impeller 4 inside.
  • the flange portion 52 is a portion that protrudes outward in the radial direction at four locations in the circumferential direction of the tubular portion 51.
  • the flange portion 52 includes an upper flange portion 521 and a lower flange portion 522.
  • the upper flange portion 521 protrudes radially outward from the upper end portion of the tubular portion 51.
  • the lower flange portion 522 protrudes radially outward from the lower end portion of the tubular portion 51.
  • the housing 5 has a rectangular shape when viewed from above.
  • the housing 5 has a rectangular shape when viewed from below. That is, the housing 5 has a rectangular solid shape that opens up and down.
  • the axial thickness of the upper flange portion 521 and the axial thickness of the lower flange portion 522 are equal to each other.
  • the rigidity of each part of the housing 5 decreases as the distance from the central axis 9 increases in the radial direction, and resonance easily occurs when the fan motor 10 is driven.
  • the radially outer end of the upper flange portion 521 has the lowest rigidity in the housing 5.
  • the end portion on the radially outer side of the lower flange portion 522 is similarly low in rigidity.
  • the base connection portion 53 is provided at the lower portion of the housing 5 as described later, the radially outer side of the lower flange portion 522 is provided.
  • the end portion of the upper flange portion 521 has higher rigidity than the end portion on the radially outer side of the upper flange portion 521.
  • the upper flange portion 521 or the lower flange portion 522 is attached to a frame body such as a device in which the fan motor 10 is installed by, for example, screwing.
  • the flange part 52 may be comprised only from the upper side flange part 521 or the lower side flange part 522.
  • the base connection portion 53 is a columnar portion that extends radially outward from at least a portion of the outer peripheral surface of the base portion 21 and is connected to at least a portion of the inner peripheral surface of the tubular portion 51. Thereby, the position of the stationary part 2 of the motor 1 with respect to the housing 5 is fixed. Further, by providing the base connecting portion 53, the lower portion and the lower flange portion 522 of the tubular portion 51 are more rigid than the upper portion and the upper flange portion 521 of the tubular portion 51.
  • One or a plurality of base connection portions 53 are provided in the lower portion of the housing 5. However, the number of the base connection parts 53 is not limited.
  • the base portion 21, the cylindrical portion 51, the flange portion 52, the one or more base connecting portions 53, and the one or more ribs 54 are formed by a single injection molding of resin. It is formed as a member. However, these may be separate members.
  • one or more ribs 54 are located on the outer peripheral surface of the tubular portion 51 and connect the upper flange portion 521 and the lower flange portion 522. This increases the rigidity of the housing 5 and increases the natural frequency of the housing 5 with respect to horizontal vibration. As a result, when the fan motor 10 is driven, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
  • FIG. 5 is a diagram showing a result of analyzing the relationship between the inclination of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction.
  • the vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A.
  • A is a result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the ribs 54 are not provided on the housing 5.
  • B is the result of the same analysis when the housing 5 is provided with ribs 54 parallel to the axial direction.
  • FIGS. 6A, 6B, 6C, and 6D show side views of housings 5 for A, B, C, and D, respectively.
  • the BD housing 5 has two ribs 54 on each of the four side surfaces of the rectangular parallelepiped solid shape.
  • C has the highest natural frequency of the housing 5 with respect to the horizontal vibration.
  • the radially inner portion of the lower flange portion 522 has higher rigidity than the radially outer portion of the upper flange portion 521.
  • the radially outer portion of the upper flange portion 521 is connected to the radially inner portion of the lower flange portion 522.
  • the rigidity of the entire housing 5 is increased, and the natural frequency is increased.
  • the thickness of the rib 54 is preferably equal to or less than the thickness of the upper flange portion 521 or the lower flange portion 522 in the axial direction. Moreover, it is desirable that the thicknesses of the plurality of ribs 54 be approximately the same.
  • FIG. 7 is a diagram illustrating a result of analyzing the relationship between the thickness of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction. The vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A. In FIG. 7, A is the result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the rib 54 is not provided on the housing 5.
  • FIGS. 8A, 8C, 8E, and 8F show side views of housings 5 for A, C, E, and F, respectively.
  • C has the highest natural frequency of the housing 5 with respect to the horizontal vibration.
  • the thickness of the rib 54 of C is equal to the axial thickness of the upper flange portion 521 and the lower flange portion 522 and has a sufficient size, so that the rigidity of the housing 5 as a whole is increased and the natural vibration is increased. The number is high.
  • E and F when the thickness of the rib 54 is smaller than C, the overall rigidity of the housing 5 is lower than C, and the natural frequency is lower than C.
  • the thickness of the rib 54 is further larger than the thickness of the upper flange portion 521 and the lower flange portion 522 in the axial direction, so-called sinking occurs, in which the surface of the housing 5 including the rib 54 is depressed during resin molding. There is a risk of doing. Therefore, it is desirable not to make the thickness of the rib 54 too large, but to be about the same as the axial thickness of the upper flange portion 521 and the lower flange portion 522.
  • FIG. 9 is a diagram showing a result of analyzing the relationship between the position of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction.
  • the vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A.
  • A is the result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the rib 54 is not provided on the housing 5.
  • G is the result of the same analysis in the case where two ribs 54 are provided on one of the four side surfaces in the rectangular solid shape of the housing 5.
  • FIGS. 10A, 10G, 10H, 10I, and 10C show top views of the respective housings 5 of A, G, H, I, and C.
  • FIG. Ribs 54 are provided at the positions of the black circles in each top view.
  • C has the highest natural frequency of the housing 5 with respect to the horizontal vibration.
  • the rigidity of the entire housing 5 is increased and the natural frequency is increased.
  • FIG. 10A, FIG. 10G, FIG. 10H, FIG. 10I, and FIG. As shown in the top view of the housing 5, two of the four side surfaces of the rectangular solid shape of the housing 5 are parallel to the X axis, and the remaining two side surfaces are parallel to the Y axis. It will be described as being arranged in (1).
  • two ribs 54 are provided on two side surfaces parallel to the X-axis direction among the four side surfaces in the rectangular solid shape of the housing 5. Therefore, in H, the natural frequency of the housing 5 with respect to the vibration in the X-axis direction in the horizontal direction (XY direction) is high.
  • two ribs 54 are provided on one side surface parallel to the X-axis direction and one side surface parallel to the Y-axis direction among the four side surfaces in the rectangular solid shape of the housing 5. Is provided. Therefore, in I, the natural frequency of the housing 5 with respect to vibrations in the X-axis direction and the Y-axis direction in the horizontal direction (XY direction) is high. As a result, I has a higher natural frequency of the housing 5 with respect to the horizontal vibration than H as a whole. That is, when two or more ribs 54 are provided on each of the two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape, the ribs 54 are provided on the two side surfaces adjacent to each other, thereby preventing horizontal vibration. The natural frequency of the housing 5 can be further increased.
  • FIG. 11 is a diagram showing the result of analyzing the relationship between the position of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction, as in FIG.
  • the vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A.
  • A is the result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the ribs 54 are not provided on the housing 5.
  • J is a result of the same analysis in the case where one rib 54 is provided on each of the four side surfaces in the three-dimensional shape of the rectangular parallelepiped of the housing 5 and the side surface adjacent to the one side surface. is there.
  • K is the result of the same analysis when one rib 54 is provided on each of all four side surfaces of the rectangular solid shape of the housing 5.
  • L is provided with two ribs 54 on one side surface parallel to the Y-axis among the four side surfaces in the rectangular solid shape of the housing 5, and on each of the two side surfaces adjacent to the one side surface, It is the result of analyzing similarly when one rib 54 is provided.
  • C is the result of the same analysis in the case where two ribs 54 are provided on all four side surfaces of the rectangular solid shape of the housing 5.
  • FIGS. 12A, 12J, 12K, 12L, and 12C show top views of the housings A, J, K, L, and C, respectively. Ribs 54 are provided at the positions of the black circles in each top view.
  • C has the highest natural frequency of the housing 5 with respect to the horizontal vibration.
  • the rigidity of the housing 5 as a whole is increased and the natural frequency is increased.
  • H, I, K, and L are provided with a total of four ribs 54 on the four side surfaces of the rectangular solid shape of the housing 5.
  • the horizontal plane orthogonal to the axial direction is the XY plane, and as shown in the top view of the housing 5, K and L are the X-axis directions of the four side surfaces in the three-dimensional shape of the rectangular parallelepiped of the housing 5.
  • two ribs 54 are provided on the side surface parallel to the Y axis and the side surface parallel to the Y-axis direction. Therefore, the natural frequency of the housing 5 with respect to the horizontal vibration as a whole increases.
  • FIG. 13 is a longitudinal sectional view of a fan motor 10B according to the second embodiment.
  • FIG. 14 is a perspective view of a housing 5B according to the second embodiment.
  • FIG. 15 is a side view of the housing 5B according to the second embodiment.
  • the fan motor 10B has a motor 1B, an impeller 4B, and a housing 5B.
  • the motor 1B includes a stationary portion 2B having a stator 22B and a rotating portion 3B that rotates about a central axis 9B that extends vertically.
  • the stationary part 2B is relatively stationary with respect to the device or the like where the fan motor 10B is disposed.
  • the rotating part 3B is supported so as to be rotatable with respect to the stationary part 2B around a central axis 9B extending vertically.
  • the impeller 4B has a plurality of blades 42B and rotates together with the rotating portion 3B of the motor 1B.
  • the housing 5B is a housing that houses at least a part of the motor 1B and the impeller 4B. Details of the housing 5B will be described later.
  • the housing 5B has a first housing 55B and a second housing 56B.
  • the second housing 56B is fixed directly or indirectly below the first housing 55B.
  • the first housing 55B has a rectangular parallelepiped solid shape that opens up and down.
  • the first housing 55B includes a first tubular portion 511B and an upper flange portion 521B.
  • the first cylindrical portion 511B is a cylindrical portion that extends in the axial direction from the intake side (upper side) to the exhaust side (lower side) along the central axis 9B.
  • the first cylindrical portion 511B accommodates at least a part of the motor 1B and the impeller 4B inside, and surrounds the radially outer side of the impeller 4B in an annular shape.
  • the upper flange portion 521B protrudes radially outward from the upper end portion of the first tubular portion 511B at four locations in the circumferential direction of the first tubular portion 511B.
  • the second housing 56B has a rectangular parallelepiped solid shape that opens up and down.
  • the second housing 56B includes a base portion 21B, a second cylindrical portion 512B, a lower flange portion 522B, and one or a plurality of base connection portions 53B.
  • the housing 5B may have only the upper flange portion 521B or the lower flange portion 522B of the first housing 55B.
  • the base portion 21B is a disk-shaped portion that is disposed below the stator 22B of the motor 1B and expands in the radial direction.
  • a motor 1B is disposed on the upper portion of the base portion 21B.
  • the motor 1B is supported by the base portion 21B.
  • the second cylindrical portion 512B is a cylindrical portion that is disposed below the first cylindrical portion 511B and extends in the axial direction from the intake side (upper side) to the exhaust side (lower side) along the central axis 9B. .
  • the second cylindrical portion 512B accommodates at least a part of the motor 1B and the impeller 4B inside, and surrounds the radially outer side of the impeller 4B in an annular shape.
  • the second tubular portion 512B is continuously arranged below the first tubular portion 511B via a contact surface 513B with the first tubular portion 511B.
  • the lower flange portion 522B protrudes radially outward from the lower end portion of the second tubular portion 512B at four locations in the circumferential direction of the second tubular portion 512B.
  • the upper surface and outer peripheral surface of the upper flange portion 521B of the first housing 55B and the lower surface and outer peripheral surface of the lower flange portion 522B form the outer shape of the housing 5 having a rectangular parallelepiped shape that opens up and down.
  • the axial thickness of the upper flange portion 521B and the axial thickness of the lower flange portion 522B are equal to each other.
  • the base connection portion 53B is a columnar portion that extends radially outward from at least a portion of the outer peripheral surface of the base portion 21B and is connected to at least a portion of the inner peripheral surface of the second cylindrical portion 512B. Thereby, the position of the stationary part 2B of the motor 1B with respect to the housing 5B is fixed. Further, by providing the base connection portion 53B, the lower portion of the second tubular portion 512B and the lower flange portion 522B are more rigid than the upper portion of the first tubular portion 511B and the upper flange portion 521B. One or a plurality of base connection portions 53B are provided in the lower portion of the housing 5B. However, the number of base connection parts 53B is not limited.
  • the housing 5B has a columnar first rib 541B and a columnar second rib 542B.
  • the first rib 541B extends downward from the upper flange portion 521B on the outer peripheral surface of the first tubular portion 511B.
  • the second rib 542B extends upward from the lower flange portion 522B on the outer peripheral surface of the second cylindrical portion 512B.
  • One or a plurality of first ribs 541B and second ribs 542B are provided. Details of the first rib 541B and the second rib 542B will be described later.
  • the housing 5B may have a structure having only at least one of the first rib 541B and the second rib 542B.
  • the first tubular portion 511B, the upper flange portion 521B, and the one or more first ribs 541B are formed as a single member by resin injection molding. However, these may be separate members.
  • the base portion 21B, the second cylindrical portion 512B, the lower flange portion 522B, the one or more base connection portions 53B, and the one or more second ribs 542B are made of resin. It is formed as a single member by injection molding. However, these may be separate members.
  • Each of the one or more columnar first ribs 541B is located on the outer peripheral surface of the first tubular portion 511B, and extends downward from the upper flange portion 521B in a direction inclined with respect to the axial direction.
  • the one or more columnar second ribs 542B are located on the outer peripheral surface of the second tubular portion 512B, respectively, and extend upward from the lower flange portion 522B in a direction inclined with respect to the axial direction.
  • the first rib 541B is inclined in a direction away from the central axis 9B as it goes to the upper surface of the housing 5B.
  • the second rib 542B is inclined in a direction away from the central axis 9B as it goes to the lower surface of the housing 5B.
  • the rigidity of each part of the housing 5B decreases as the distance from the central axis 9B increases outward in the radial direction.
  • the radially outer end of the upper flange portion 521B and the radially outer end of the lower flange portion 522B have particularly low rigidity in the housing 5B.
  • first rib 541B and the second rib 542B are connected to a portion having a high radial inner rigidity in the housing 5B.
  • the rigidity of the housing 5B as a whole increases, and the natural frequency increases.
  • the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
  • the thicknesses of the first rib 541B and the second rib 542B are preferably equal to or less than the axial thickness of the upper flange portion 521B or the lower flange portion 522B. Further, it is desirable that the thicknesses of the plurality of first ribs 541B and the plurality of second ribs 542B are approximately the same.
  • the rigidity of the housing 5B is enhanced while suppressing the occurrence of sink marks, and the fan motor 10B is driven. Noise can be suppressed.
  • each lower end part of 1 or several 1st rib 541B and each upper end part of 1 or several 2nd rib 542B are contact surfaces of 1st cylindrical part 511B and 2nd cylindrical part 512B. In 513B, it is desirable to arrange them consecutively. Thereby, the rigidity of the 1st rib 541B and the 2nd rib 542B becomes high, and the rigidity as the whole of the housing 5B can further be improved.
  • first ribs 541B are provided on each of two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B, they are adjacent to each other. It is desirable to provide the first rib 541B on one side surface. Thereby, the natural frequency of the 1st housing 55B with respect to the vibration of a horizontal direction can be raised more. Further, when two or more second ribs 542B are provided on each of the two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape of the second housing 56B, the second ribs 542B are provided on the two adjacent side surfaces. It is desirable to provide it. Thereby, the natural frequency of the 2nd housing 56B with respect to the vibration of a horizontal direction can be raised more.
  • FIG. 16 is a diagram illustrating a result of analyzing the relationship between the positions of the first rib 541B and the second rib 542B and the natural frequency of the housing 5B with respect to the vibration in the horizontal direction.
  • the vertical axis represents the analysis result of the natural frequency of each housing 5B based on the analysis result of the natural frequency of the A housing 5B.
  • A analyzes the natural frequency of the housing 5B with respect to the horizontal vibration in the case where the first rib 541B is not provided in the first housing 55B and the second rib 542B is not provided in the second housing 56B. It is the result.
  • B is the result of the same analysis in the case where two first ribs 541B are provided on each of the four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B.
  • the second ribs 542B are not provided in the second housing 56B.
  • C is the result of the same analysis in the case where two second ribs 542B are provided on each of the four side surfaces of the rectangular solid shape of the second housing 56B.
  • the first housing 55B is not provided with the first rib 541B.
  • D and E are each provided with one first rib 541B on each of the four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B, and one on each of the four side surfaces of the solid rectangular solid shape of the second housing 56B.
  • 17A, 17B, 17C, 17D, 17E, and 17F show top views of housings 5B of A, B, C, D, E, and F, respectively.
  • a first rib 541B is provided at a black circle in the top view of each first housing 55B.
  • a second rib 542B is provided at a position indicated by a black circle in the top view of each second housing 56B.
  • the natural frequency of the housing 5 with respect to the vibration in the horizontal direction is the highest in F.
  • two first ribs 541B are provided on all four side surfaces in the rectangular solid shape of the first housing 55B, respectively, and on all four side surfaces in the rectangular solid shape of the second housing 56B, Since each of the two second ribs 542B is provided, the rigidity of the entire housing 5B is increased and the natural frequency is increased. As a result, when driving the fan motor 10B, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
  • first ribs 541B are provided on each of the four side surfaces of the rectangular solid shape of the first housing 55B
  • the second ribs 542B are four shapes of the rectangular solid shape of the second housing 56B. It is desirable that two or more are provided on each side surface.
  • B When comparing the analysis results of B and C in FIG. 16, B has a higher natural frequency of the housing 5B with respect to vibration in the horizontal direction than C.
  • B since the portion on the radially outer side of the upper flange portion 521B having particularly low rigidity in the housing 5B is connected to the portion on the radially inner side of the contact surface 513B having high rigidity by the first rib 541B, the entire housing 5B is formed. The rigidity is increased and the natural frequency is increased.
  • the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
  • first rib 541B or second rib 542B is provided on one of the first housing 55B and the second housing 56B, on each of the four side surfaces of the rectangular solid shape of the first housing 55B, It is desirable to have only the first rib 541B.
  • each rib does not necessarily have to be constant.
  • the thickness of the rib may change depending on the position in the axial direction.
  • two or more ribs may be provided on each of the four side surfaces of the solid rectangular solid shape of the housing.
  • each rib does not necessarily need to be linear.
  • each part may be different from the shape shown in each drawing of the present application. Moreover, you may combine suitably each element which appeared in said embodiment and modification in the range which does not produce inconsistency.
  • the present invention can be used for a fan motor, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

This fan motor has a motor, an impeller, and a housing. The motor has: a stationary section having a stator; and a rotating section rotating about a vertically extending center axis. The impeller has a plurality of blades and rotates with the rotating section. The housing contains therein the motor and at least a part of the impeller. The housing has a cylindrical section, a flange section, and one or more ribs. The cylindrical section extends axially and contains therein the motor and at least a part of the impeller. The flange section protrudes radially outward from the upper end or lower end of the cylindrical section. The ribs are column shaped and extend on the outer peripheral surface of the cylindrical section from the flange section. The ribs are tilted relative to the axial direction.

Description

ファンモータFan motor
 本発明は、ファンモータに関する。 The present invention relates to a fan motor.
 従来、モータの駆動力を利用してインペラを回転させ、軸方向に気流を発生させる軸流式のファンモータが知られている。軸流式のファンモータは、例えば、家電製品、OA機器、輸送機器等に搭載され、電子部品の冷却、または機器筐体内の気体の循環等の目的で使用される。また、電子機器が多数設置されるサーバルーム内の気体の循環に、ファンモータが用いられる場合もある。 Conventionally, an axial-flow fan motor that rotates an impeller using a driving force of a motor to generate an airflow in an axial direction is known. An axial-flow fan motor is mounted on, for example, home appliances, OA equipment, transportation equipment, and the like, and is used for the purpose of cooling electronic components or circulating gas in the equipment housing. A fan motor may be used for gas circulation in a server room where a large number of electronic devices are installed.
 ファンモータの風量を増大するために、インペラの寸法を大きくする等の工夫がなされている。しかし、ファンモータが大型化してしまう。ファンモータを大型化せずに、インペラの寸法を大きくすると、ファンモータのハウジングの厚みが薄くなる。これにより、ハウジングの剛性が低下し、不快な振動や騒音が発生する虞がある。また、ハウジングの剛性低下により固有振動数が低下する。その結果、ファンモータの駆動時に磁気励振との共振が発生し、不快な振動や騒音が発生する虞がある。図18は、従来のファンモータに用いられるハウジング5Xにおける、水平方向の振動モードを解析した結果を示す斜視図である。また、図19は、従来のファンモータに用いられるハウジング5Yにおける、軸方向の振動モードを解析した結果を示す斜視図である。なお、ハウジング5Xは、樹脂の射出成形等により単一の部材として形成されたものであり、ハウジング5Yは、上下2つの部材から形成されたものである。 Measures such as increasing the size of the impeller have been made to increase the air volume of the fan motor. However, the fan motor becomes large. When the size of the impeller is increased without increasing the size of the fan motor, the thickness of the fan motor housing is reduced. Thereby, the rigidity of the housing is lowered, and there is a risk that unpleasant vibrations and noises may occur. Further, the natural frequency decreases due to a decrease in the rigidity of the housing. As a result, resonance with magnetic excitation occurs when the fan motor is driven, and unpleasant vibration and noise may occur. FIG. 18 is a perspective view showing a result of analyzing a horizontal vibration mode in a housing 5X used in a conventional fan motor. FIG. 19 is a perspective view showing the result of analyzing the axial vibration mode in the housing 5Y used in the conventional fan motor. The housing 5X is formed as a single member by resin injection molding or the like, and the housing 5Y is formed from two upper and lower members.
 例えば、特開2016-125394号公報の軸流ファンにおいては、ファンフレームの互いに対向する2つの側面にそれぞれ矩形状の凹部が形成される。これにより、当該凹部の寸法および位置が特定の条件を満たす場合に、駆動時に共振が発生した際のファンフレームの変位量を小さく抑えることができる。
特開2016-125394号公報
For example, in the axial fan disclosed in Japanese Patent Application Laid-Open No. 2016-125394, rectangular recesses are formed on two opposite side surfaces of the fan frame. Thereby, when the dimension and position of the said recessed part satisfy | fill a specific condition, the displacement amount of the fan frame when resonance generate | occur | produces at the time of a drive can be restrained small.
JP 2016-125394 A
 しかし、特開2016-125394号公報の構造では、凹部を形成するにあたり、ファンフレームの角部分の樹脂の厚みが大きくなり、樹脂成形時に表面に陥没が生じる、いわゆるヒケが発生する虞がある。 However, in the structure disclosed in Japanese Patent Application Laid-Open No. 2016-125394, the resin thickness at the corners of the fan frame increases when the recesses are formed, and there is a risk of so-called sinks that cause depression on the surface during resin molding.
 本発明の目的は、ヒケの発生を抑制しつつ、ハウジングの剛性を高め、駆動時の不快な振動や騒音を抑制することができるファンモータを提供することを目的とする。 An object of the present invention is to provide a fan motor capable of suppressing the occurrence of sink marks, increasing the rigidity of the housing, and suppressing unpleasant vibration and noise during driving.
 本願の例示的な発明は、ファンモータであって、モータと、インペラと、ハウジングと、を有する。モータは、ステータを有する静止部と、上下に延びる中心軸を中心に回転する回転部とを有する。インペラは、複数の羽根を有し、回転部とともに回転する。ハウジングは、モータおよびインペラの少なくとも一部を内部に収容する。ハウジングは、筒状部と、フランジ部と、1または複数のリブと、を有する。筒状部は、筒状であり、軸方向に延び、モータおよびインペラの少なくとも一部を内部に収容する。フランジ部は、筒状部の上端部または下端部から径方向外側へ向けて突出する。リブは、柱状であり、筒状部の外周面において、フランジ部から延びる。リブは、軸方向に対して傾斜している。 The exemplary invention of the present application is a fan motor, which includes a motor, an impeller, and a housing. The motor has a stationary part having a stator and a rotating part that rotates around a central axis extending vertically. The impeller has a plurality of blades and rotates together with the rotating unit. The housing accommodates at least a part of the motor and the impeller inside. The housing has a tubular portion, a flange portion, and one or a plurality of ribs. The tubular portion is tubular, extends in the axial direction, and accommodates at least a part of the motor and the impeller inside. A flange part protrudes toward the radial direction outer side from the upper end part or lower end part of a cylindrical part. The rib is columnar and extends from the flange portion on the outer peripheral surface of the cylindrical portion. The rib is inclined with respect to the axial direction.
 本願の例示的な発明によれば、筒状部の外周面において、フランジ部から延び、軸方向に対して傾斜する1または複数の柱状のリブを形成することによって、ハウジングの剛性を高め、駆動時の不快な振動や騒音を抑制することができる。また、リブ以外の部分におけるハウジングの厚みを抑制できるため、ヒケの発生を抑制できる。 According to the exemplary invention of the present application, the rigidity of the housing is increased by forming one or more columnar ribs extending from the flange portion and inclined with respect to the axial direction on the outer peripheral surface of the cylindrical portion. Unpleasant vibration and noise at the time can be suppressed. Moreover, since the thickness of the housing in parts other than the rib can be suppressed, the occurrence of sink marks can be suppressed.
図1は、第1実施形態に係るファンモータの縦断面図である。FIG. 1 is a longitudinal sectional view of the fan motor according to the first embodiment. 図2は、第1実施形態に係るファンモータの部分縦断面図である。FIG. 2 is a partial longitudinal sectional view of the fan motor according to the first embodiment. 図3は、第1実施形態に係るハウジングの斜視図である。FIG. 3 is a perspective view of the housing according to the first embodiment. 図4は、第1実施形態に係るハウジングの側面図である。FIG. 4 is a side view of the housing according to the first embodiment. 図5は、第1実施形態に係るリブの傾斜と、ハウジングの固有振動数との関係を解析した結果を示す図である。FIG. 5 is a diagram illustrating a result of analyzing the relationship between the inclination of the rib according to the first embodiment and the natural frequency of the housing. 図6Aは、第1実施形態に係るハウジングの側面図である。FIG. 6A is a side view of the housing according to the first embodiment. 図6Bは、第1実施形態に係るハウジングの側面図である。FIG. 6B is a side view of the housing according to the first embodiment. 図6Cは、第1実施形態に係るハウジングの側面図である。FIG. 6C is a side view of the housing according to the first embodiment. 図6Dは、第1実施形態に係るハウジングの側面図である。FIG. 6D is a side view of the housing according to the first embodiment. 図7は、第1実施形態に係るリブの厚みと、ハウジングの固有振動数との関係を解析した結果を示す図である。FIG. 7 is a diagram illustrating a result of analyzing the relationship between the thickness of the rib according to the first embodiment and the natural frequency of the housing. 図8Aは、第1実施形態に係るハウジングの側面図である。FIG. 8A is a side view of the housing according to the first embodiment. 図8Cは、第1実施形態に係るハウジングの側面図である。FIG. 8C is a side view of the housing according to the first embodiment. 図8Eは、第1実施形態に係るハウジングの側面図である。FIG. 8E is a side view of the housing according to the first embodiment. 図8Fは、第1実施形態に係るハウジングの側面図である。FIG. 8F is a side view of the housing according to the first embodiment. 図9は、第1実施形態に係るリブの位置と、ハウジングの固有振動数との関係を解析した結果を示す図である。FIG. 9 is a diagram illustrating a result of analyzing the relationship between the position of the rib according to the first embodiment and the natural frequency of the housing. 図10Aは、第1実施形態に係るハウジングの上面図である。FIG. 10A is a top view of the housing according to the first embodiment. 図10Gは、第1実施形態に係るハウジングの上面図である。FIG. 10G is a top view of the housing according to the first embodiment. 図10Hは、第1実施形態に係るハウジングの上面図である。FIG. 10H is a top view of the housing according to the first embodiment. 図10Iは、第1実施形態に係るハウジングの上面図である。FIG. 10I is a top view of the housing according to the first embodiment. 図10Cは、第1実施形態に係るハウジングの上面図である。FIG. 10C is a top view of the housing according to the first embodiment. 図11は、第1実施形態に係るリブの位置と、ハウジングの固有振動数との関係を解析した結果を示す図である。FIG. 11 is a diagram illustrating a result of analyzing the relationship between the position of the rib according to the first embodiment and the natural frequency of the housing. 図12Aは、第1実施形態に係るハウジングの上面図である。FIG. 12A is a top view of the housing according to the first embodiment. 図12Jは、第1実施形態に係るハウジングの上面図である。FIG. 12J is a top view of the housing according to the first embodiment. 図12Kは、第1実施形態に係るハウジングの上面図である。FIG. 12K is a top view of the housing according to the first embodiment. 図12Lは、第1実施形態に係るハウジングの上面図である。FIG. 12L is a top view of the housing according to the first embodiment. 図12Cは、第1実施形態に係るハウジングの上面図である。FIG. 12C is a top view of the housing according to the first embodiment. 図13は、第2実施形態に係るファンモータの縦断面図である。FIG. 13 is a longitudinal sectional view of the fan motor according to the second embodiment. 図14は、第2実施形態に係るハウジングの斜視図である。FIG. 14 is a perspective view of a housing according to the second embodiment. 図15は、第2実施形態に係るハウジングの側面図である。FIG. 15 is a side view of the housing according to the second embodiment. 図16は、第2実施形態に係るリブの位置と、ハウジングの固有振動数との関係を解析した結果を示す図である。FIG. 16 is a diagram illustrating a result of analyzing the relationship between the position of the rib according to the second embodiment and the natural frequency of the housing. 図17Aは、第2実施形態に係るハウジングの上面図である。FIG. 17A is a top view of the housing according to the second embodiment. 図17Bは、第2実施形態に係るハウジングの上面図である。FIG. 17B is a top view of the housing according to the second embodiment. 図17Cは、第2実施形態に係るハウジングの上面図である。FIG. 17C is a top view of the housing according to the second embodiment. 図17Dは、第2実施形態に係るハウジングの上面図である。FIG. 17D is a top view of the housing according to the second embodiment. 図17Eは、第2実施形態に係るハウジングの上面図である。FIG. 17E is a top view of the housing according to the second embodiment. 図17Fは、第2実施形態に係るハウジングの上面図である。FIG. 17F is a top view of the housing according to the second embodiment. 図18は、従来のファンモータのハウジングにおける、振動モードを解析した結果を示す斜視図である。FIG. 18 is a perspective view showing a result of analyzing a vibration mode in a conventional fan motor housing. 図19は、従来のファンモータのハウジングにおける、振動モードを解析した結果を示す斜視図である。FIG. 19 is a perspective view showing a result of analyzing a vibration mode in a conventional fan motor housing.
 以下、本発明の例示的な実施形態について、図面を参照しながら説明する。なお、本願では、後述するモータの中心軸と平行な方向を「軸方向」、モータの中心軸に直交する方向を「径方向」、モータの中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、本願では、軸方向を上下方向とし、空気が取り込まれる側を「吸気側」または単に「上側」と呼び、空気が排出される側を「排気側」または単に「下側」と呼ぶ。ただし、この「上側」および「下側」は、あくまで説明の便宜のための表現であって、重力方向とは無関係である。本発明に係るファンモータは、どのような向きで使用されてもよい。 Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In the present application, a direction parallel to the motor central axis, which will be described later, is referred to as an “axial direction”, a direction orthogonal to the motor central axis is referred to as a “radial direction”, and a direction along an arc centered on the motor central axis is referred to as “circumference”. Direction ". Further, in the present application, the axial direction is the vertical direction, the side from which air is taken in is referred to as “intake side” or simply “upper side”, and the side from which air is discharged is referred to as “exhaust side” or simply “lower side”. However, the “upper side” and “lower side” are expressions for convenience of explanation, and are not related to the direction of gravity. The fan motor according to the present invention may be used in any direction.
 また、本願において「平行な方向」とは、略平行な方向も含む。また、本願において「直交する方向」とは、略直交する方向も含む。 In the present application, the “parallel direction” includes a substantially parallel direction. Further, in the present application, the “perpendicular direction” includes a substantially orthogonal direction.
 <1.第1実施形態> 
<1-1.ファンモータの全体構成>
 図1は、第1実施形態に係るファンモータ10の縦断面図である。
<1. First Embodiment>
<1-1. Overall configuration of fan motor>
FIG. 1 is a longitudinal sectional view of a fan motor 10 according to the first embodiment.
 このファンモータ10は、例えば、冷蔵庫などの家電製品、または複数の電子機器が配置されたサーバルームなどの室内に、冷却用の空気流を供給する装置として用いられる。このファンモータ10は、単独で使用されてもよく、あるいは、複数台のファンモータ10を組み合わせて同時に使用してもよい。例えば、1つのサーバルームに対して、複数台のファンモータ10を設置して、それらを同時に駆動させてもよい。 The fan motor 10 is used, for example, as a device for supplying a cooling airflow into a room such as a home appliance such as a refrigerator or a server room in which a plurality of electronic devices are arranged. The fan motor 10 may be used alone, or a plurality of fan motors 10 may be used in combination. For example, a plurality of fan motors 10 may be installed in one server room and driven simultaneously.
 図1に示すように、ファンモータ10は、モータ1と、インペラ4と、ハウジング5と、を有する。ファンモータ10は、中心軸9に沿って下向きに気流を発生させる軸流ファンである。ファンモータ10を駆動させると、吸気側であるファンモータ10の上側から空気が取り込まれ、ハウジング5内の風洞50を通って、排気側であるファンモータ10の下側へ向けて空気が送り出される。 As shown in FIG. 1, the fan motor 10 includes a motor 1, an impeller 4, and a housing 5. The fan motor 10 is an axial fan that generates an airflow downward along the central axis 9. When the fan motor 10 is driven, air is taken in from the upper side of the fan motor 10 that is the intake side, and is sent out through the wind tunnel 50 in the housing 5 to the lower side of the fan motor 10 that is the exhaust side. .
 <1-2.モータおよびインペラの構成>
 まず、モータ1およびインペラ4の構成について説明する。図2は、第1実施形態に係るファンモータ10の部分縦断面図である。以下では、図2とともに、図1も適宜に参照する。
<1-2. Configuration of motor and impeller>
First, the configuration of the motor 1 and the impeller 4 will be described. FIG. 2 is a partial longitudinal sectional view of the fan motor 10 according to the first embodiment. In the following, FIG. 1 will be referred to as appropriate together with FIG.
 モータ1は、静止部2と回転部3とを有する。静止部2は、ファンモータ10が配置される装置等に対して、相対的に静止している。回転部3は、静止部2に対して、上下に延びる中心軸9を中心として、回転可能に支持されている。 The motor 1 has a stationary part 2 and a rotating part 3. The stationary part 2 is relatively stationary with respect to the device where the fan motor 10 is disposed. The rotating part 3 is supported so as to be rotatable with respect to the stationary part 2 around a central axis 9 extending vertically.
 図2に示すとおり、静止部2は、ステータ22と、回路基板23と、軸受ホルダ24と、を有する。ステータ22は、軸受ホルダ24の外周面に固定される。ステータ22は、ステータコア221と、複数のコイル222とを有する。ステータコア221は、複数のティースを有する。各ティースは径方向に延びる。複数のコイル222は、それぞれ、ティースの周囲に巻かれた導線により形成される。導線の端部は、回路基板23に接続される。 2, the stationary portion 2 includes a stator 22, a circuit board 23, and a bearing holder 24. The stator 22 is fixed to the outer peripheral surface of the bearing holder 24. The stator 22 has a stator core 221 and a plurality of coils 222. Stator core 221 has a plurality of teeth. Each tooth extends in the radial direction. Each of the plurality of coils 222 is formed by a conductive wire wound around the teeth. The end of the conducting wire is connected to the circuit board 23.
 軸受ホルダ24は、中心軸9に沿って延びる円筒状の部材である。軸受ホルダ24の下部は、後述するベース部21の内周面に、例えば接着剤で固定される。軸受ホルダ24の径方向内側には、軸受部25が配置される。軸受部25には、例えば、ボールベアリングが用いられる。軸受部25の外輪は、軸受ホルダ24の内周面に固定される。軸受部25の内輪は、後述するシャフト31と互いに固定される。これにより、シャフト31が、静止部2に対して回転可能に支持される。ただし、モータ1は、ボールベアリングに代えて、すべり軸受、流体軸受等の他の方式の軸受部を有していてもよい。 The bearing holder 24 is a cylindrical member extending along the central axis 9. A lower portion of the bearing holder 24 is fixed to an inner peripheral surface of the base portion 21 described later with an adhesive, for example. A bearing portion 25 is disposed on the radially inner side of the bearing holder 24. For example, a ball bearing is used for the bearing portion 25. The outer ring of the bearing portion 25 is fixed to the inner peripheral surface of the bearing holder 24. The inner ring of the bearing portion 25 is fixed to a shaft 31 described later. Thereby, the shaft 31 is supported rotatably with respect to the stationary part 2. However, the motor 1 may have other types of bearings such as a slide bearing and a fluid bearing instead of the ball bearing.
 回転部3は、シャフト31と、ロータホルダ32と、環状部材33と、マグネット34と、を有する。シャフト31は、中心軸9に沿って配置される柱状の部材である。シャフト31は、軸受部25によって回転可能に支持される。シャフト31の上端部は、軸受ホルダ24よりも上方へ突出する。モータ1の駆動時には、シャフト31は、中心軸9を中心として回転する。 The rotating unit 3 includes a shaft 31, a rotor holder 32, an annular member 33, and a magnet 34. The shaft 31 is a columnar member disposed along the central axis 9. The shaft 31 is rotatably supported by the bearing portion 25. The upper end portion of the shaft 31 projects upward from the bearing holder 24. When the motor 1 is driven, the shaft 31 rotates around the central axis 9.
 ロータホルダ32は、ロータ蓋部321とロータ筒部322とを有する有蓋円筒状の部材である。ロータ蓋部321は、中心軸9に対して略垂直に円板状に拡がる。ロータ筒部322は、ロータ蓋部321から排気側へ軸方向に延びる。ロータホルダ32の材料には、例えば、金属または樹脂が用いられる。ロータ蓋部321の中央部は、シャフト31の上端部に、環状部材33を介して固定される。これにより、ロータホルダ32は、シャフト31とともに回転する。ロータ蓋部321は、静止部2の吸気側に配置される。ロータ筒部322は、ステータ22の径方向外側に配置される。マグネット34は、ロータ筒部322の内周面に固定される。 The rotor holder 32 is a covered cylindrical member having a rotor lid 321 and a rotor cylinder 322. The rotor lid 321 extends in a disk shape substantially perpendicular to the central axis 9. The rotor cylinder portion 322 extends in the axial direction from the rotor lid portion 321 to the exhaust side. For example, metal or resin is used as the material of the rotor holder 32. A central portion of the rotor lid portion 321 is fixed to the upper end portion of the shaft 31 via an annular member 33. Thereby, the rotor holder 32 rotates together with the shaft 31. The rotor lid 321 is disposed on the intake side of the stationary part 2. The rotor cylinder portion 322 is disposed on the radially outer side of the stator 22. The magnet 34 is fixed to the inner peripheral surface of the rotor cylinder portion 322.
 モータ1は、さらにステータ22と電気的に接続されたリード線(図示省略)を有する。リード線(図示省略)は、一方の端部が、回路基板23に接続される。また、他方の端部は、後述する筒状部51から径方向外側に引き出され、例えば、ファンモータ10の外部に設けられた電源に接続される。 The motor 1 further has a lead wire (not shown) electrically connected to the stator 22. One end of the lead wire (not shown) is connected to the circuit board 23. The other end is drawn radially outward from a cylindrical portion 51 to be described later, and is connected to a power source provided outside the fan motor 10, for example.
 リード線(図示省略)および回路基板23を介して、ステータ22のコイル222に駆動電流を供給すると、複数のティースに磁束が生じる。そして、ティースと、マグネット34との間の磁束の作用により、静止部2と回転部3との間に周方向のトルクが発生する。その結果、静止部2に対して回転部3が、中心軸9を中心として回転する。これにより、回転部3に直接または間接的に固定される後述するインペラ4が、回転部3とともに、中心軸9を中心として回転する。 When a drive current is supplied to the coil 222 of the stator 22 via the lead wire (not shown) and the circuit board 23, magnetic flux is generated in the plurality of teeth. A circumferential torque is generated between the stationary part 2 and the rotating part 3 by the action of the magnetic flux between the teeth and the magnet 34. As a result, the rotating unit 3 rotates about the central axis 9 with respect to the stationary unit 2. Thereby, an impeller 4 to be described later that is directly or indirectly fixed to the rotating unit 3 rotates around the central axis 9 together with the rotating unit 3.
 インペラ4は、カップ部41と複数の羽根42とを有する。カップ部41は、ロータホルダ32のロータ蓋部321およびロータ筒部322を覆う。各羽根42は、カップ部41の外周面から径方向外側へ拡がる。複数の羽根42は、周方向に略等間隔に配列される。なお、羽根42の数は、特に制限されない。インペラ4は、回転部3とともに回転する。 The impeller 4 has a cup portion 41 and a plurality of blades 42. The cup portion 41 covers the rotor lid portion 321 and the rotor cylinder portion 322 of the rotor holder 32. Each blade 42 extends radially outward from the outer peripheral surface of the cup portion 41. The plurality of blades 42 are arranged at substantially equal intervals in the circumferential direction. The number of blades 42 is not particularly limited. The impeller 4 rotates together with the rotating unit 3.
 <1-3.ハウジングの構成>
 次に、ハウジング5の構成について説明する。図3は、第1実施形態に係るハウジング5の斜視図である。図4は、第1実施形態に係るハウジング5の側面図である。
<1-3. Housing configuration>
Next, the configuration of the housing 5 will be described. FIG. 3 is a perspective view of the housing 5 according to the first embodiment. FIG. 4 is a side view of the housing 5 according to the first embodiment.
 ハウジング5は、モータ1およびインペラ4の少なくとも一部を内部に収容する筐体である。図3および図4に示すとおり、ハウジング5は、ベース部21と、筒状部51と、フランジ部52と、1または複数のベース接続部53と、1または複数のリブ54と、を有する。また、ハウジング5は、上下に開口する直方体形の立体形状を有する。 The housing 5 is a housing that houses at least a part of the motor 1 and the impeller 4 therein. As shown in FIGS. 3 and 4, the housing 5 includes a base portion 21, a cylindrical portion 51, a flange portion 52, one or more base connection portions 53, and one or more ribs 54. The housing 5 has a rectangular solid shape that opens up and down.
 ベース部21は、モータ1のステータ22よりも下側に配置され、軸受ホルダ24の周囲から径方向外側に向かって拡がる円板状の部位である。上述のとおり、ベース部21の内周面には、軸受ホルダ24の下部が、例えば接着剤で固定される。ベース部21の上部には、モータ1が配置される。モータ1は、ベース部21に支持される。 The base portion 21 is a disk-shaped portion that is disposed below the stator 22 of the motor 1 and extends from the periphery of the bearing holder 24 toward the radially outer side. As described above, the lower portion of the bearing holder 24 is fixed to the inner peripheral surface of the base portion 21 with, for example, an adhesive. The motor 1 is disposed on the upper portion of the base portion 21. The motor 1 is supported by the base portion 21.
 筒状部51は、中心軸9に沿って吸気側(上側)から排気側(下側)へと軸方向に延びる筒状の部位である。筒状部51は、インペラ4の径方向外側において、略円筒状に延びる。筒状部51は、モータ1およびインペラ4の少なくとも一部を内部に収容する。 The cylindrical portion 51 is a cylindrical portion that extends in the axial direction from the intake side (upper side) to the exhaust side (lower side) along the central axis 9. The cylindrical portion 51 extends in a substantially cylindrical shape on the radially outer side of the impeller 4. The cylindrical part 51 accommodates at least a part of the motor 1 and the impeller 4 inside.
 フランジ部52は、筒状部51における周方向の4箇所において、径方向外側へ向けて突出する部位である。フランジ部52は、上側フランジ部521と下側フランジ部522とを有する。上側フランジ部521は、筒状部51の上端部から径方向外側へ向けて突出する。下側フランジ部522は、筒状部51の下端部から径方向外側へ向けて突出する。ハウジング5は、上側から見て、矩形形状を有する。ハウジング5は、下側から見て、矩形形状を有する。すなわち、ハウジング5は、上下に開口する直方体形の立体形状を有する。本実施形態では、上側フランジ部521の軸方向の厚みと下側フランジ部522の軸方向の厚みとは、互いに等しい。なお、中心軸9から径方向外側に離れるにしたがって、ハウジング5の各部位の剛性は低くなり、ファンモータ10の駆動時に共振が発生しやすくなる。例えば、上側フランジ部521の径方向外側の端部は、ハウジング5の中で最も剛性が低い。また、下側フランジ部522の径方向外側の端部も、同様に剛性が低いが、後述のとおりハウジング5の下部にはベース接続部53が設けられるため、下側フランジ部522の径方向外側の端部は、上側フランジ部521の径方向外側の端部よりも剛性が高い。上側フランジ部521または下側フランジ部522は、ファンモータ10が設置される装置等の枠体に、例えば、ねじ止めによって取り付けられる。なお、フランジ部52は、上側フランジ部521または下側フランジ部522のみから構成されてもよい。 The flange portion 52 is a portion that protrudes outward in the radial direction at four locations in the circumferential direction of the tubular portion 51. The flange portion 52 includes an upper flange portion 521 and a lower flange portion 522. The upper flange portion 521 protrudes radially outward from the upper end portion of the tubular portion 51. The lower flange portion 522 protrudes radially outward from the lower end portion of the tubular portion 51. The housing 5 has a rectangular shape when viewed from above. The housing 5 has a rectangular shape when viewed from below. That is, the housing 5 has a rectangular solid shape that opens up and down. In the present embodiment, the axial thickness of the upper flange portion 521 and the axial thickness of the lower flange portion 522 are equal to each other. Note that the rigidity of each part of the housing 5 decreases as the distance from the central axis 9 increases in the radial direction, and resonance easily occurs when the fan motor 10 is driven. For example, the radially outer end of the upper flange portion 521 has the lowest rigidity in the housing 5. Further, the end portion on the radially outer side of the lower flange portion 522 is similarly low in rigidity. However, since the base connection portion 53 is provided at the lower portion of the housing 5 as described later, the radially outer side of the lower flange portion 522 is provided. The end portion of the upper flange portion 521 has higher rigidity than the end portion on the radially outer side of the upper flange portion 521. The upper flange portion 521 or the lower flange portion 522 is attached to a frame body such as a device in which the fan motor 10 is installed by, for example, screwing. In addition, the flange part 52 may be comprised only from the upper side flange part 521 or the lower side flange part 522. FIG.
 ベース接続部53は、それぞれベース部21の外周面の少なくとも一部から径方向外側へ延び、筒状部51の内周面の少なくとも一部と連結される、柱状の部位である。これにより、モータ1の静止部2の、ハウジング5に対する位置が固定される。また、ベース接続部53が設けられることにより、筒状部51の下部および下側フランジ部522は、筒状部51の上部および上側フランジ部521よりも剛性が高くなる。なお、ベース接続部53は、ハウジング5の下部において、1または複数設けられる。ただし、ベース接続部53の数は、限定されない。 The base connection portion 53 is a columnar portion that extends radially outward from at least a portion of the outer peripheral surface of the base portion 21 and is connected to at least a portion of the inner peripheral surface of the tubular portion 51. Thereby, the position of the stationary part 2 of the motor 1 with respect to the housing 5 is fixed. Further, by providing the base connecting portion 53, the lower portion and the lower flange portion 522 of the tubular portion 51 are more rigid than the upper portion and the upper flange portion 521 of the tubular portion 51. One or a plurality of base connection portions 53 are provided in the lower portion of the housing 5. However, the number of the base connection parts 53 is not limited.
 筒状部51の外周面には、さらにフランジ部52から延びる柱状のリブ54が、1または複数設けられている。リブ54については、詳細を後述する。なお、本実施形態では、ベース部21と、筒状部51と、フランジ部52と、1または複数のベース接続部53と、1または複数のリブ54とは、樹脂の射出成形により単一の部材として形成される。ただし、これらは別部材であってもよい。 On the outer peripheral surface of the cylindrical portion 51, one or more columnar ribs 54 extending from the flange portion 52 are further provided. Details of the rib 54 will be described later. In the present embodiment, the base portion 21, the cylindrical portion 51, the flange portion 52, the one or more base connecting portions 53, and the one or more ribs 54 are formed by a single injection molding of resin. It is formed as a member. However, these may be separate members.
 <1-4.リブの構成>
 続いて、リブ54の構成について説明する。
<1-4. Structure of rib>
Next, the configuration of the rib 54 will be described.
 上述のとおり、1または複数設けられたリブ54は、それぞれ筒状部51の外周面に位置し、上側フランジ部521と下側フランジ部522とを繋ぐ。これにより、ハウジング5の剛性が高くなり、水平方向の振動に対するハウジング5の固有振動数が高くなる。その結果、ファンモータ10を駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。 As described above, one or more ribs 54 are located on the outer peripheral surface of the tubular portion 51 and connect the upper flange portion 521 and the lower flange portion 522. This increases the rigidity of the housing 5 and increases the natural frequency of the housing 5 with respect to horizontal vibration. As a result, when the fan motor 10 is driven, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
 なお、リブ54は、それぞれハウジング5の下部から上部へ向かうにつれて中心軸9から離れる方向に、軸方向に対して傾斜することが望ましい。図5は、リブ54の傾斜と、水平方向の振動に対するハウジング5の固有振動数との関係を解析した結果を示す図である。縦軸は、Aのハウジング5の固有振動数の解析結果を基準にした、それぞれのハウジング5の固有振動数の解析結果を表している。Aは、ハウジング5にリブ54が設けられない場合の、水平方向の振動に対するハウジング5の固有振動数を解析した結果である。Bは、ハウジング5に軸方向に平行なリブ54が設けられる場合の、同様に解析した結果である。Cは、ハウジング5の下部から上部へ向かうにつれて中心軸9から離れる方向に傾斜するリブ54が設けられる場合の、同様に解析した結果である。Dは、ハウジング5の上部から下部へ向かうにつれて中心軸9から離れる方向に傾斜するリブ54が設けられる場合の、同様に解析した結果である。参照として図6A、図6B、図6C、および図6Dに、A、B、C、およびDのそれぞれのハウジング5の側面図を示す。なお、B~Dのハウジング5は、直方体形の立体形状における4つの側面のそれぞれにおいて、2つのリブ54を有する。 In addition, it is desirable that the ribs 54 be inclined with respect to the axial direction in a direction away from the central axis 9 from the lower part to the upper part of the housing 5. FIG. 5 is a diagram showing a result of analyzing the relationship between the inclination of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction. The vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A. A is a result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the ribs 54 are not provided on the housing 5. B is the result of the same analysis when the housing 5 is provided with ribs 54 parallel to the axial direction. C is the result of the same analysis in the case where a rib 54 that is inclined in a direction away from the central axis 9 as it goes from the lower part to the upper part of the housing 5 is provided. D is the result of the same analysis in the case where a rib 54 that is inclined away from the central axis 9 as it goes from the upper part to the lower part of the housing 5 is provided. For reference, FIGS. 6A, 6B, 6C, and 6D show side views of housings 5 for A, B, C, and D, respectively. The BD housing 5 has two ribs 54 on each of the four side surfaces of the rectangular parallelepiped solid shape.
 図5に示すとおり、A~Dの解析結果を比較すると、Cが最も水平方向の振動に対するハウジング5の固有振動数が高くなっている。下側フランジ部522の径方向内側の部位は、上側フランジ部521の径方向外側の部位よりも剛性が高い。Cでは、上側フランジ部521の径方向外側の部位が、下側フランジ部522の径方向内側の部位に接続される。このため、ハウジング5の全体としての剛性が高まり、固有振動数が高くなっている。その結果、ファンモータ10を駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。 As shown in FIG. 5, when the analysis results A to D are compared, C has the highest natural frequency of the housing 5 with respect to the horizontal vibration. The radially inner portion of the lower flange portion 522 has higher rigidity than the radially outer portion of the upper flange portion 521. In C, the radially outer portion of the upper flange portion 521 is connected to the radially inner portion of the lower flange portion 522. For this reason, the rigidity of the entire housing 5 is increased, and the natural frequency is increased. As a result, when the fan motor 10 is driven, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
 リブ54の厚みは、上側フランジ部521または下側フランジ部522の軸方向の厚み以下であることが好ましい。また、複数のリブ54の厚みは、同じ程度であることが望ましい。図7は、リブ54の厚みと、水平方向の振動に対するハウジング5の固有振動数との関係を解析した結果を示す図である。縦軸は、Aのハウジング5の固有振動数の解析結果を基準にした、それぞれのハウジング5の固有振動数の解析結果を表している。図7において、Aは、ハウジング5にリブ54が設けられない場合の、水平方向の振動に対するハウジング5の固有振動数を解析した結果である。C、E、およびFは、ハウジング5の下部から上部へ向かうにつれて中心軸9から離れる方向に傾斜するリブ54が設けられる場合の、同様に解析した結果である。また、C、E、およびFのハウジング5は、直方体形の立体形状における4つの側面のそれぞれにおいて、2つのリブ54を有する。ただし、Cのリブ54の厚みは、上側フランジ部521および下側フランジ部522の軸方向の厚みと等しいのに対し、Eのリブ54の厚みは、Cのリブ54の厚みよりも小さい。また、Fのリブ54の厚みは、Eのリブ54の厚みよりもさらに小さい。参照として図8A、図8C、図8E、および図8Fに、A、C、E、およびFのそれぞれのハウジング5の側面図を示す。 The thickness of the rib 54 is preferably equal to or less than the thickness of the upper flange portion 521 or the lower flange portion 522 in the axial direction. Moreover, it is desirable that the thicknesses of the plurality of ribs 54 be approximately the same. FIG. 7 is a diagram illustrating a result of analyzing the relationship between the thickness of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction. The vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A. In FIG. 7, A is the result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the rib 54 is not provided on the housing 5. C, E, and F are the same analysis results in the case where the rib 54 that is inclined in the direction away from the central axis 9 as it goes from the lower part to the upper part of the housing 5 is provided. The C, E, and F housings 5 have two ribs 54 on each of the four side surfaces of the rectangular parallelepiped solid shape. However, while the thickness of the C rib 54 is equal to the thickness of the upper flange portion 521 and the lower flange portion 522 in the axial direction, the thickness of the E rib 54 is smaller than the thickness of the C rib 54. The thickness of the F rib 54 is smaller than the thickness of the E rib 54. For reference, FIGS. 8A, 8C, 8E, and 8F show side views of housings 5 for A, C, E, and F, respectively.
 図7に示すとおり、A、C、E、およびFの解析結果を比較すると、Cが最も水平方向の振動に対するハウジング5の固有振動数が高くなっている。Cのリブ54の厚みは、上側フランジ部521および下側フランジ部522の軸方向の厚みと等しく、十分な大きさを有しているため、ハウジング5の全体としての剛性が高くなり、固有振動数が高くなっている。これに対し、EおよびFでは、リブ54の厚みがCよりも小さくなることにより、ハウジング5の全体としての剛性が、Cに比べて低くなり、Cよりも固有振動数が低くなっている。なお、リブ54の厚みを、上側フランジ部521および下側フランジ部522の軸方向の厚みよりもさらに大きくすると、リブ54を含むハウジング5の樹脂成形時に、表面に陥没が生じる、いわゆるヒケが発生する虞がある。そのため、リブ54の厚みを大きくし過ぎず、上側フランジ部521および下側フランジ部522の軸方向の厚みと同じ程度にすることが望ましい。 As shown in FIG. 7, when the analysis results of A, C, E, and F are compared, C has the highest natural frequency of the housing 5 with respect to the horizontal vibration. The thickness of the rib 54 of C is equal to the axial thickness of the upper flange portion 521 and the lower flange portion 522 and has a sufficient size, so that the rigidity of the housing 5 as a whole is increased and the natural vibration is increased. The number is high. On the other hand, in E and F, when the thickness of the rib 54 is smaller than C, the overall rigidity of the housing 5 is lower than C, and the natural frequency is lower than C. If the thickness of the rib 54 is further larger than the thickness of the upper flange portion 521 and the lower flange portion 522 in the axial direction, so-called sinking occurs, in which the surface of the housing 5 including the rib 54 is depressed during resin molding. There is a risk of doing. Therefore, it is desirable not to make the thickness of the rib 54 too large, but to be about the same as the axial thickness of the upper flange portion 521 and the lower flange portion 522.
 リブ54は、ハウジング5の直方体形の立体形状における4つの側面のそれぞれにおいて2つ以上設けられることが望ましい。図9は、リブ54の位置と、水平方向の振動に対するハウジング5の固有振動数との関係を解析した結果を示す図である。縦軸は、Aのハウジング5の固有振動数の解析結果を基準にした、それぞれのハウジング5の固有振動数の解析結果を表している。図9において、Aは、ハウジング5にリブ54が設けられない場合の、水平方向の振動に対するハウジング5の固有振動数を解析した結果である。Gは、ハウジング5の直方体形の立体形状における4つの側面のうちの1つの側面に2つのリブ54が設けられる場合の、同様に解析した結果である。Hは、ハウジング5の直方体形の立体形状における4つの側面のうちの1つの側面と、当該1つの側面と向かい合う側面に、それぞれ2つのリブ54が設けられる場合の、同様に解析した結果である。Iは、ハウジング5の直方体形の立体形状における4つの側面のうちの1つの側面と、当該1つの側面と隣り合う側面に、それぞれ2つのリブ54が設けられる場合の、同様に解析した結果である。Cは、ハウジング5の直方体形の立体形状における4つのすべての側面に、それぞれ2つのリブ54が設けられる場合の、同様に解析した結果である。参照として図10A、図10G、図10H、図10I、および図10Cに、A、G、H、I、およびCのそれぞれのハウジング5の上面図を示す。各上面図における黒い丸印の位置にリブ54が設けられる。 It is desirable that two or more ribs 54 are provided on each of the four side surfaces of the rectangular solid shape of the housing 5. FIG. 9 is a diagram showing a result of analyzing the relationship between the position of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction. The vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A. In FIG. 9, A is the result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the rib 54 is not provided on the housing 5. G is the result of the same analysis in the case where two ribs 54 are provided on one of the four side surfaces in the rectangular solid shape of the housing 5. H is a result of the same analysis in the case where two ribs 54 are provided on each of the four side surfaces in the three-dimensional shape of the rectangular parallelepiped of the housing 5 and the side surface facing the one side surface. . I is the result of the same analysis in the case where two ribs 54 are provided on each of the four side surfaces in the three-dimensional shape of the rectangular parallelepiped of the housing 5 and the side surface adjacent to the one side surface. is there. C is the result of the same analysis in the case where two ribs 54 are provided on all four side surfaces of the rectangular solid shape of the housing 5. For reference, FIGS. 10A, 10G, 10H, 10I, and 10C show top views of the respective housings 5 of A, G, H, I, and C. FIG. Ribs 54 are provided at the positions of the black circles in each top view.
 図9に示すとおり、A、G、H、I、およびCの解析結果を比較すると、Cが最も水平方向の振動に対するハウジング5の固有振動数が高くなっている。Cでは、ハウジング5の直方体形の立体形状における4つのすべての側面に、それぞれ2つのリブ54が設けられるため、ハウジング5の全体としての剛性が高まり、固有振動数が高くなった。その結果、ファンモータ10を駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。 As shown in FIG. 9, when the analysis results of A, G, H, I, and C are compared, C has the highest natural frequency of the housing 5 with respect to the horizontal vibration. In C, since two ribs 54 are provided on all four side surfaces of the rectangular solid shape of the housing 5, the rigidity of the entire housing 5 is increased and the natural frequency is increased. As a result, when the fan motor 10 is driven, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
 なお、図9において、HおよびIの解析結果を比較すると、Iの方が水平方向の振動に対するハウジング5の固有振動数が高くなっている。HとIでは、ともにハウジング5の直方体形の立体形状における4つの側面のうちの2つの側面に、それぞれ2つのリブ54が設けられている。ただし、Hでは、当該2つの側面が互いに向かい合うのに対し、Iでは、当該2つの側面が互いに隣接している。 In FIG. 9, when the analysis results of H and I are compared, the natural frequency of the housing 5 with respect to the horizontal vibration is higher in I. In both H and I, two ribs 54 are provided on each of two of the four side surfaces of the rectangular solid shape of the housing 5. However, in H, the two side surfaces face each other, whereas in I, the two side surfaces are adjacent to each other.
 以下、図10A、図10G、図10H、図10I、および図10Cに示すとおり、軸方向に直交する水平面をXY平面とする。また、ハウジング5の上面図に示すとおり、ハウジング5の直方体形の立体形状における4つの側面のうちの2つの側面がX軸に対して平行に、残りの2つの側面がY軸に対して平行に配置されているものとして、説明する。Hでは、ハウジング5の直方体形の立体形状における4つの側面のうちのX軸方向に平行な2つの側面に、それぞれ2つのリブ54が設けられている。そのため、Hでは、水平方向(XY方向)のうちのX軸方向の振動に対するハウジング5の固有振動数が高い。これに対し、Iでは、ハウジング5の直方体形の立体形状における4つの側面のうちのX軸方向に平行な1つの側面と、Y軸方向に平行な1つの側面に、それぞれ2つのリブ54が設けられている。そのため、Iでは、水平方向(XY方向)のうちのX軸方向およびY軸方向の振動に対するハウジング5の固有振動数が高い。結果として、IはHよりも全体として水平方向の振動に対するハウジング5の固有振動数が高くなる。すなわち、リブ54を、直方体形の立体形状における4つの側面のうち2つの側面のそれぞれにおいて2つ以上設ける場合、互いに隣接している2つの側面にリブ54を設けることで、水平方向の振動に対するハウジング5の固有振動数をより高めることができる。 Hereinafter, as shown in FIG. 10A, FIG. 10G, FIG. 10H, FIG. 10I, and FIG. Further, as shown in the top view of the housing 5, two of the four side surfaces of the rectangular solid shape of the housing 5 are parallel to the X axis, and the remaining two side surfaces are parallel to the Y axis. It will be described as being arranged in (1). In H, two ribs 54 are provided on two side surfaces parallel to the X-axis direction among the four side surfaces in the rectangular solid shape of the housing 5. Therefore, in H, the natural frequency of the housing 5 with respect to the vibration in the X-axis direction in the horizontal direction (XY direction) is high. On the other hand, in I, two ribs 54 are provided on one side surface parallel to the X-axis direction and one side surface parallel to the Y-axis direction among the four side surfaces in the rectangular solid shape of the housing 5. Is provided. Therefore, in I, the natural frequency of the housing 5 with respect to vibrations in the X-axis direction and the Y-axis direction in the horizontal direction (XY direction) is high. As a result, I has a higher natural frequency of the housing 5 with respect to the horizontal vibration than H as a whole. That is, when two or more ribs 54 are provided on each of the two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape, the ribs 54 are provided on the two side surfaces adjacent to each other, thereby preventing horizontal vibration. The natural frequency of the housing 5 can be further increased.
 図11は、図9と同様に、リブ54の位置と、水平方向の振動に対するハウジング5の固有振動数との関係を解析した結果を示す図である。縦軸は、Aのハウジング5の固有振動数の解析結果を基準にした、それぞれのハウジング5の固有振動数の解析結果を表している。図11において、Aは、ハウジング5にリブ54が設けられない場合の、水平方向の振動に対するハウジング5の固有振動数を解析した結果である。Jは、ハウジング5の直方体形の立体形状における4つの側面のうちの1つの側面と、当該1つの側面と隣接する側面に、それぞれ1つのリブ54が設けられる場合の、同様に解析した結果である。Kは、ハウジング5の直方体形の立体形状における4つのすべての側面に、それぞれ1つのリブ54が設けられる場合の、同様に解析した結果である。Lは、ハウジング5の直方体形の立体形状における4つの側面のうちのY軸に対して平行な1つの側面に2つのリブ54が設けられ、当該1つの側面と隣接する2つの側面に、それぞれ1つのリブ54が設けられる場合の、同様に解析した結果である。Cは、ハウジング5の直方体形の立体形状における4つのすべての側面に、それぞれ2つのリブ54が設けられる場合の、同様に解析した結果である。参照として図12A、図12J、図12K、図12L、および図12Cに、A、J、K、L、およびCのそれぞれのハウジング5の上面図を示す。各上面図における黒い丸印の位置にリブ54が設けられる。 FIG. 11 is a diagram showing the result of analyzing the relationship between the position of the rib 54 and the natural frequency of the housing 5 with respect to the vibration in the horizontal direction, as in FIG. The vertical axis represents the analysis result of the natural frequency of each housing 5 based on the analysis result of the natural frequency of the housing 5 of A. In FIG. 11, A is the result of analyzing the natural frequency of the housing 5 with respect to the vibration in the horizontal direction when the ribs 54 are not provided on the housing 5. J is a result of the same analysis in the case where one rib 54 is provided on each of the four side surfaces in the three-dimensional shape of the rectangular parallelepiped of the housing 5 and the side surface adjacent to the one side surface. is there. K is the result of the same analysis when one rib 54 is provided on each of all four side surfaces of the rectangular solid shape of the housing 5. L is provided with two ribs 54 on one side surface parallel to the Y-axis among the four side surfaces in the rectangular solid shape of the housing 5, and on each of the two side surfaces adjacent to the one side surface, It is the result of analyzing similarly when one rib 54 is provided. C is the result of the same analysis in the case where two ribs 54 are provided on all four side surfaces of the rectangular solid shape of the housing 5. For reference, FIGS. 12A, 12J, 12K, 12L, and 12C show top views of the housings A, J, K, L, and C, respectively. Ribs 54 are provided at the positions of the black circles in each top view.
 図9の解析結果と同様に、図11に示すとおり、A、J、K、L、およびCの解析結果を比較すると、Cが最も水平方向の振動に対するハウジング5の固有振動数が高い。Cでは、ハウジング5の直方体形の立体形状における4つのすべての側面に、それぞれ2つのリブ54が設けられるため、ハウジング5の全体としての剛性が高まり、固有振動数が高くなっている。その結果、ファンモータ10を駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。 As in the analysis result of FIG. 9, when comparing the analysis results of A, J, K, L, and C as shown in FIG. 11, C has the highest natural frequency of the housing 5 with respect to the horizontal vibration. In C, since two ribs 54 are provided on all four side surfaces of the rectangular solid shape of the housing 5, the rigidity of the housing 5 as a whole is increased and the natural frequency is increased. As a result, when the fan motor 10 is driven, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
 なお、図11におけるKおよびLの解析結果を、図9におけるHおよびIと比較すると、KおよびLの解析結果は、Iと同じ程度で、Hよりも水平方向の振動に対するハウジング5の固有振動数が高くなる。H、I、K、およびLのいずれも、ハウジング5の直方体形の立体形状における4つの側面において、合計4つのリブ54が設けられている。ただし、同じく軸方向に直交する水平面をXY平面とし、ハウジング5の上面図に示すとおり、KおよびLは、Iと同じく、ハウジング5の直方体形の立体形状における4つの側面のうちのX軸方向に平行な側面と、Y軸方向に平行な側面に、それぞれ合計2つのリブ54が設けられている。そのため、全体として水平方向の振動に対するハウジング5の固有振動数が高くなる。 When the analysis results of K and L in FIG. 11 are compared with H and I in FIG. The number gets higher. All of H, I, K, and L are provided with a total of four ribs 54 on the four side surfaces of the rectangular solid shape of the housing 5. However, the horizontal plane orthogonal to the axial direction is the XY plane, and as shown in the top view of the housing 5, K and L are the X-axis directions of the four side surfaces in the three-dimensional shape of the rectangular parallelepiped of the housing 5. In total, two ribs 54 are provided on the side surface parallel to the Y axis and the side surface parallel to the Y-axis direction. Therefore, the natural frequency of the housing 5 with respect to the horizontal vibration as a whole increases.
 <2.第2実施形態>
 <2-1.ファンモータの構成>
 続いて、本発明の第2実施形態について説明する。図13は、第2実施形態に係るファンモータ10Bの縦断面図である。図14は、第2実施形態に係るハウジング5Bの斜視図である。図15は、第2実施形態に係るハウジング5Bの側面図である。なお、以下では、第1実施形態との相違点を中心に説明し、第1実施形態と同等の部分については、重複説明を省略する。
<2. Second Embodiment>
<2-1. Fan motor configuration>
Subsequently, a second embodiment of the present invention will be described. FIG. 13 is a longitudinal sectional view of a fan motor 10B according to the second embodiment. FIG. 14 is a perspective view of a housing 5B according to the second embodiment. FIG. 15 is a side view of the housing 5B according to the second embodiment. In the following description, differences from the first embodiment will be mainly described, and redundant description of parts equivalent to those of the first embodiment will be omitted.
 図13に示すように、ファンモータ10Bは、モータ1Bと、インペラ4Bと、ハウジング5Bと、を有する。モータ1Bは、ステータ22Bを有する静止部2Bと、上下に延びる中心軸9Bを中心に回転する回転部3Bと、を有する。静止部2Bは、ファンモータ10Bが配置される装置等に対して、相対的に静止している。回転部3Bは、静止部2Bに対して、上下に延びる中心軸9Bを中心として、回転可能に支持されている。インペラ4Bは、複数の羽根42Bを有し、モータ1Bの回転部3Bとともに回転する。ハウジング5Bは、モータ1Bおよびインペラ4Bの少なくとも一部を内部に収容する筐体である。ハウジング5Bについては、詳細を後述する。 As shown in FIG. 13, the fan motor 10B has a motor 1B, an impeller 4B, and a housing 5B. The motor 1B includes a stationary portion 2B having a stator 22B and a rotating portion 3B that rotates about a central axis 9B that extends vertically. The stationary part 2B is relatively stationary with respect to the device or the like where the fan motor 10B is disposed. The rotating part 3B is supported so as to be rotatable with respect to the stationary part 2B around a central axis 9B extending vertically. The impeller 4B has a plurality of blades 42B and rotates together with the rotating portion 3B of the motor 1B. The housing 5B is a housing that houses at least a part of the motor 1B and the impeller 4B. Details of the housing 5B will be described later.
 <2-2.ハウジングの構成>
 次に、ハウジング5Bの構成について説明する。
<2-2. Housing configuration>
Next, the configuration of the housing 5B will be described.
 図14および図15に示すように、ハウジング5Bは、第1ハウジング55Bと第2ハウジング56Bとを有する。第2ハウジング56Bは、第1ハウジング55Bの下方に、直接または間接的に固定される。 As shown in FIGS. 14 and 15, the housing 5B has a first housing 55B and a second housing 56B. The second housing 56B is fixed directly or indirectly below the first housing 55B.
 第1ハウジング55Bは、上下に開口する直方体形の立体形状を有する。第1ハウジング55Bは、第1筒状部511Bと、上側フランジ部521Bと、を有する。 The first housing 55B has a rectangular parallelepiped solid shape that opens up and down. The first housing 55B includes a first tubular portion 511B and an upper flange portion 521B.
 第1筒状部511Bは、中心軸9Bに沿って吸気側(上側)から排気側(下側)へと軸方向に延びる筒状の部位である。第1筒状部511Bは、モータ1Bおよびインペラ4Bの少なくとも一部を内部に収容し、インペラ4Bの径方向外側を、円環状に取り囲む。上側フランジ部521Bは、第1筒状部511Bの周方向の4箇所において第1筒状部511Bの上端部から径方向外側へ向けて突出する。 The first cylindrical portion 511B is a cylindrical portion that extends in the axial direction from the intake side (upper side) to the exhaust side (lower side) along the central axis 9B. The first cylindrical portion 511B accommodates at least a part of the motor 1B and the impeller 4B inside, and surrounds the radially outer side of the impeller 4B in an annular shape. The upper flange portion 521B protrudes radially outward from the upper end portion of the first tubular portion 511B at four locations in the circumferential direction of the first tubular portion 511B.
 第2ハウジング56Bは、上下に開口する直方体形の立体形状を有する。第2ハウジング56Bは、ベース部21Bと、第2筒状部512Bと、下側フランジ部522Bと、1または複数のベース接続部53Bと、を有する。なお、ハウジング5Bは、第1ハウジング55Bの上側フランジ部521Bまたは当該下側フランジ部522Bのみを有していてもよい。 The second housing 56B has a rectangular parallelepiped solid shape that opens up and down. The second housing 56B includes a base portion 21B, a second cylindrical portion 512B, a lower flange portion 522B, and one or a plurality of base connection portions 53B. The housing 5B may have only the upper flange portion 521B or the lower flange portion 522B of the first housing 55B.
 ベース部21Bは、モータ1Bのステータ22Bよりも下側に配置され、径方向に拡がる円板状の部位である。ベース部21Bの上部には、モータ1Bが配置される。モータ1Bは、ベース部21Bに支持される。第2筒状部512Bは、第1筒状部511Bの下方に配置され、中心軸9Bに沿って吸気側(上側)から排気側(下側)へと軸方向に延びる筒状の部位である。第2筒状部512Bは、モータ1Bおよびインペラ4Bの少なくとも一部を内部に収容し、インペラ4Bの径方向外側を、円環状に取り囲む。第2筒状部512Bは、第1筒状部511Bとの接触面513Bを介して、第1筒状部511Bの下方に連続して配置される。下側フランジ部522Bは、第2筒状部512Bの周方向の4箇所において第2筒状部512Bの下端部から径方向外側へ向けて突出する。 The base portion 21B is a disk-shaped portion that is disposed below the stator 22B of the motor 1B and expands in the radial direction. A motor 1B is disposed on the upper portion of the base portion 21B. The motor 1B is supported by the base portion 21B. The second cylindrical portion 512B is a cylindrical portion that is disposed below the first cylindrical portion 511B and extends in the axial direction from the intake side (upper side) to the exhaust side (lower side) along the central axis 9B. . The second cylindrical portion 512B accommodates at least a part of the motor 1B and the impeller 4B inside, and surrounds the radially outer side of the impeller 4B in an annular shape. The second tubular portion 512B is continuously arranged below the first tubular portion 511B via a contact surface 513B with the first tubular portion 511B. The lower flange portion 522B protrudes radially outward from the lower end portion of the second tubular portion 512B at four locations in the circumferential direction of the second tubular portion 512B.
 なお、第1ハウジング55Bの上側フランジ部521Bの上面および外周面と、当該下側フランジ部522Bの下面および外周面とによって、上下に開口する直方体形の立体形状を有するハウジング5の外形が形成される。また、本実施形態では、上側フランジ部521Bの軸方向の厚みと下側フランジ部522Bの軸方向の厚みとは、互いに等しい。 Note that the upper surface and outer peripheral surface of the upper flange portion 521B of the first housing 55B and the lower surface and outer peripheral surface of the lower flange portion 522B form the outer shape of the housing 5 having a rectangular parallelepiped shape that opens up and down. The In the present embodiment, the axial thickness of the upper flange portion 521B and the axial thickness of the lower flange portion 522B are equal to each other.
 ベース接続部53Bは、それぞれベース部21Bの外周面の少なくとも一部から径方向外側へ延び、第2筒状部512Bの内周面の少なくとも一部と連結される、柱状の部位である。これにより、モータ1Bの静止部2Bの、ハウジング5Bに対する位置が固定される。また、ベース接続部53Bが設けられることにより、第2筒状部512Bの下部および下側フランジ部522Bは、第1筒状部511Bの上部および上側フランジ部521Bよりも剛性が高くなる。なお、ベース接続部53Bは、ハウジング5Bの下部において、1または複数設けられる。ただし、ベース接続部53Bの数は、限定されない。 The base connection portion 53B is a columnar portion that extends radially outward from at least a portion of the outer peripheral surface of the base portion 21B and is connected to at least a portion of the inner peripheral surface of the second cylindrical portion 512B. Thereby, the position of the stationary part 2B of the motor 1B with respect to the housing 5B is fixed. Further, by providing the base connection portion 53B, the lower portion of the second tubular portion 512B and the lower flange portion 522B are more rigid than the upper portion of the first tubular portion 511B and the upper flange portion 521B. One or a plurality of base connection portions 53B are provided in the lower portion of the housing 5B. However, the number of base connection parts 53B is not limited.
 さらに、ハウジング5Bは、柱状の第1リブ541Bと、柱状の第2リブ542Bとを有する。第1リブ541Bは、第1筒状部511Bの外周面において、上側フランジ部521Bから下方へ向けて延びる。第2リブ542Bは、第2筒状部512Bの外周面において、下側フランジ部522Bから上方へ向けて延びる。第1リブ541Bおよび第2リブ542Bは、それぞれ1または複数設けられている。第1リブ541Bおよび第2リブ542Bについては、詳細を後述する。なお、ハウジング5Bは、第1リブ541Bおよび第2リブ542Bの少なくとも一方のみを有する構造であってもよい。また、本実施形態において、第1筒状部511Bと、上側フランジ部521Bと、1または複数の第1リブ541Bとは、樹脂の射出成形により単一の部材として形成される。ただし、これらは別部材であってもよい。また、本実施形態において、ベース部21Bと、第2筒状部512Bと、下側フランジ部522Bと、1または複数のベース接続部53Bと、1または複数の第2リブ542Bとは、樹脂の射出成形により単一の部材として形成される。ただし、これらは別部材であってもよい。 Furthermore, the housing 5B has a columnar first rib 541B and a columnar second rib 542B. The first rib 541B extends downward from the upper flange portion 521B on the outer peripheral surface of the first tubular portion 511B. The second rib 542B extends upward from the lower flange portion 522B on the outer peripheral surface of the second cylindrical portion 512B. One or a plurality of first ribs 541B and second ribs 542B are provided. Details of the first rib 541B and the second rib 542B will be described later. The housing 5B may have a structure having only at least one of the first rib 541B and the second rib 542B. In the present embodiment, the first tubular portion 511B, the upper flange portion 521B, and the one or more first ribs 541B are formed as a single member by resin injection molding. However, these may be separate members. In the present embodiment, the base portion 21B, the second cylindrical portion 512B, the lower flange portion 522B, the one or more base connection portions 53B, and the one or more second ribs 542B are made of resin. It is formed as a single member by injection molding. However, these may be separate members.
 <2-3.第1リブおよび第2リブの構成>
 続いて、第1リブ541Bおよび第2リブ542Bの構成について説明する。
<2-3. Configuration of first rib and second rib>
Next, the configuration of the first rib 541B and the second rib 542B will be described.
 1または複数の柱状の第1リブ541Bは、それぞれ第1筒状部511Bの外周面に位置し、上側フランジ部521Bから下方へ向けて、軸方向に対して傾斜する方向に延びる。また、1または複数の柱状の第2リブ542Bは、それぞれ第2筒状部512Bの外周面に位置し、下側フランジ部522Bから上方へ向けて、軸方向に対して傾斜する方向に延びる。第1リブ541Bおよび第2リブ542Bを有することにより、ハウジング5Bの剛性が高くなり、水平方向の振動に対するハウジング5Bの固有振動数が高くなる。その結果、ファンモータ10Bを駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。 Each of the one or more columnar first ribs 541B is located on the outer peripheral surface of the first tubular portion 511B, and extends downward from the upper flange portion 521B in a direction inclined with respect to the axial direction. The one or more columnar second ribs 542B are located on the outer peripheral surface of the second tubular portion 512B, respectively, and extend upward from the lower flange portion 522B in a direction inclined with respect to the axial direction. By having the first rib 541B and the second rib 542B, the rigidity of the housing 5B is increased, and the natural frequency of the housing 5B with respect to the vibration in the horizontal direction is increased. As a result, when driving the fan motor 10B, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
 なお、本実施形態では、第1リブ541Bは、ハウジング5Bの上面へ向かうにつれて中心軸9Bから離れる方向に傾斜する。第2リブ542Bは、ハウジング5Bの下面へ向かうにつれて中心軸9Bから離れる方向に傾斜する。第1実施形態と同様に、中心軸9Bから径方向外側に離れるにしたがって、ハウジング5Bの各部位の剛性は低くなる。例えば、上側フランジ部521Bの径方向外側の端部、および下側フランジ部522Bの径方向外側の端部は、ハウジング5Bの中でも特に剛性が低い。第1リブ541Bおよび第2リブ542Bを設けることで、これらの部位が、ハウジング5Bにおける径方向内側の剛性が高い部位に繋がれる。これにより、ハウジング5Bの全体としての剛性が高まり、固有振動数が高くなる。その結果、ファンモータ10Bを駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。 In the present embodiment, the first rib 541B is inclined in a direction away from the central axis 9B as it goes to the upper surface of the housing 5B. The second rib 542B is inclined in a direction away from the central axis 9B as it goes to the lower surface of the housing 5B. As in the first embodiment, the rigidity of each part of the housing 5B decreases as the distance from the central axis 9B increases outward in the radial direction. For example, the radially outer end of the upper flange portion 521B and the radially outer end of the lower flange portion 522B have particularly low rigidity in the housing 5B. By providing the first rib 541B and the second rib 542B, these portions are connected to a portion having a high radial inner rigidity in the housing 5B. As a result, the rigidity of the housing 5B as a whole increases, and the natural frequency increases. As a result, when driving the fan motor 10B, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced.
 また、第1リブ541Bおよび第2リブ542Bの厚みは、上側フランジ部521Bまたは下側フランジ部522Bの軸方向の厚み以下であることが好ましい。また、複数の第1リブ541Bおよび複数の第2リブ542Bの厚みは、同じ程度であることが望ましい。これにより、第1実施形態と同様に、第1リブ541Bおよび第2リブ542Bを含むハウジング5Bの樹脂成形時に、ヒケの発生を抑制しつつ、ハウジング5Bの剛性を高め、ファンモータ10Bの駆動時の騒音を抑制することができる。 Also, the thicknesses of the first rib 541B and the second rib 542B are preferably equal to or less than the axial thickness of the upper flange portion 521B or the lower flange portion 522B. Further, it is desirable that the thicknesses of the plurality of first ribs 541B and the plurality of second ribs 542B are approximately the same. Thus, as in the first embodiment, during resin molding of the housing 5B including the first rib 541B and the second rib 542B, the rigidity of the housing 5B is enhanced while suppressing the occurrence of sink marks, and the fan motor 10B is driven. Noise can be suppressed.
 なお、1または複数の第1リブ541Bのそれぞれの下端部と、1または複数の第2リブ542Bのそれぞれの上端部とが、第1筒状部511Bと第2筒状部512Bとの接触面513Bにおいて、互いに連続して配置されることが望ましい。これにより、第1リブ541Bと第2リブ542Bの剛性が高くなり、ハウジング5Bの全体としての剛性をさらに高めることができる。 In addition, each lower end part of 1 or several 1st rib 541B and each upper end part of 1 or several 2nd rib 542B are contact surfaces of 1st cylindrical part 511B and 2nd cylindrical part 512B. In 513B, it is desirable to arrange them consecutively. Thereby, the rigidity of the 1st rib 541B and the 2nd rib 542B becomes high, and the rigidity as the whole of the housing 5B can further be improved.
 さらに、第1実施形態と同様に、第1リブ541Bを、第1ハウジング55Bの直方体形の立体形状における4つの側面のうち2つの側面のそれぞれにおいて2つ以上設ける場合、互いに隣接している2つの側面に第1リブ541Bを設けることが望ましい。これにより、水平方向の振動に対する第1ハウジング55Bの固有振動数をより高めることができる。また、第2リブ542Bを、第2ハウジング56Bの直方体形の立体形状における4つの側面のうち2つの側面のそれぞれにおいて2つ以上設ける場合、互いに隣接している2つの側面に第2リブ542Bを設けることが望ましい。これにより、水平方向の振動に対する第2ハウジング56Bの固有振動数をより高めることができる。 Further, similarly to the first embodiment, when two or more first ribs 541B are provided on each of two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B, they are adjacent to each other. It is desirable to provide the first rib 541B on one side surface. Thereby, the natural frequency of the 1st housing 55B with respect to the vibration of a horizontal direction can be raised more. Further, when two or more second ribs 542B are provided on each of the two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape of the second housing 56B, the second ribs 542B are provided on the two adjacent side surfaces. It is desirable to provide it. Thereby, the natural frequency of the 2nd housing 56B with respect to the vibration of a horizontal direction can be raised more.
 図16は、第1リブ541Bおよび第2リブ542Bの位置と、水平方向の振動に対するハウジング5Bの固有振動数との関係を解析した結果を示す図である。縦軸は、Aのハウジング5Bの固有振動数の解析結果を基準にした、それぞれのハウジング5Bの固有振動数の解析結果を表している。図16において、Aは、第1ハウジング55Bに第1リブ541Bが設けられず、第2ハウジング56Bに第2リブ542Bが設けられない場合の、水平方向の振動に対するハウジング5Bの固有振動数を解析した結果である。Bは、第1ハウジング55Bの直方体形の立体形状における4つの側面のそれぞれに2つの第1リブ541Bが設けられる場合の、同様に解析した結果である。第2ハウジング56Bには、第2リブ542Bは設けられていない。Cは、第2ハウジング56Bの直方体形の立体形状における4つの側面のそれぞれに2つの第2リブ542Bが設けられる場合の、同様に解析した結果である。第1ハウジング55Bには、第1リブ541Bは設けられていない。DおよびEは、第1ハウジング55Bの直方体形の立体形状における4つの側面のそれぞれに1つの第1リブ541Bが設けられ、第2ハウジング56Bの直方体形の立体形状における4つの側面のそれぞれに1つの第2リブ542Bが設けられる場合の、同様に解析した結果である。ただし、Dは、第1リブ541Bの下端部と第2リブ542Bの上端部とが接触面513Bにおいて連続している。Eは、第1リブ541Bと第2リブ542Bとが接触面513Bにおいて連続しない位置に設けられている。Fは、第1ハウジング55Bの直方体形の立体形状における4つのすべての側面に、それぞれ2つの第1リブ541Bが設けられ、第2ハウジング56Bの直方体形の立体形状における4つのすべての側面に、それぞれ2つの第2リブ542Bが設けられる場合の、同様に解析した結果である。参照として図17A、図17B、図17C、図17D、図17E、および図17Fに、A、B、C、D、E、およびFのそれぞれのハウジング5Bの上面図を示す。各第1ハウジング55Bの上面図における黒い丸印の位置に第1リブ541Bが設けられる。また、各第2ハウジング56Bの上面図における黒い丸印の位置に第2リブ542Bが設けられる。 FIG. 16 is a diagram illustrating a result of analyzing the relationship between the positions of the first rib 541B and the second rib 542B and the natural frequency of the housing 5B with respect to the vibration in the horizontal direction. The vertical axis represents the analysis result of the natural frequency of each housing 5B based on the analysis result of the natural frequency of the A housing 5B. In FIG. 16, A analyzes the natural frequency of the housing 5B with respect to the horizontal vibration in the case where the first rib 541B is not provided in the first housing 55B and the second rib 542B is not provided in the second housing 56B. It is the result. B is the result of the same analysis in the case where two first ribs 541B are provided on each of the four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B. The second ribs 542B are not provided in the second housing 56B. C is the result of the same analysis in the case where two second ribs 542B are provided on each of the four side surfaces of the rectangular solid shape of the second housing 56B. The first housing 55B is not provided with the first rib 541B. D and E are each provided with one first rib 541B on each of the four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B, and one on each of the four side surfaces of the solid rectangular solid shape of the second housing 56B. It is the result of analyzing similarly when two second ribs 542B are provided. However, as for D, the lower end part of the 1st rib 541B and the upper end part of the 2nd rib 542B are continuing in the contact surface 513B. E is provided at a position where the first rib 541B and the second rib 542B are not continuous on the contact surface 513B. F is provided with two first ribs 541B on all four side surfaces of the rectangular parallelepiped solid shape of the first housing 55B, and on all four side surfaces of the rectangular solid shape of the second housing 56B, It is the result of the same analysis when two second ribs 542B are provided. For reference, FIGS. 17A, 17B, 17C, 17D, 17E, and 17F show top views of housings 5B of A, B, C, D, E, and F, respectively. A first rib 541B is provided at a black circle in the top view of each first housing 55B. Further, a second rib 542B is provided at a position indicated by a black circle in the top view of each second housing 56B.
 図16に示すとおり、A、B、C、D、E、およびFの解析結果を比較すると、Fが最も水平方向の振動に対するハウジング5の固有振動数が高くなっている。Fでは、第1ハウジング55Bの直方体形の立体形状における4つのすべての側面に、それぞれ2つの第1リブ541Bが設けられ、第2ハウジング56Bの直方体形の立体形状における4つのすべての側面に、それぞれ2つの第2リブ542Bが設けられるため、ハウジング5Bの全体としての剛性が高まり、固有振動数が高くなっている。その結果、ファンモータ10Bを駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。すなわち、第1リブ541Bは、第1ハウジング55Bの直方体形の立体形状における4つの側面のそれぞれにおいて2つ以上設けられ、第2リブ542Bは、第2ハウジング56Bの直方体形の立体形状における4つの側面のそれぞれにおいて2つ以上設けられることが望ましい。 16, when the analysis results of A, B, C, D, E, and F are compared, the natural frequency of the housing 5 with respect to the vibration in the horizontal direction is the highest in F. In F, two first ribs 541B are provided on all four side surfaces in the rectangular solid shape of the first housing 55B, respectively, and on all four side surfaces in the rectangular solid shape of the second housing 56B, Since each of the two second ribs 542B is provided, the rigidity of the entire housing 5B is increased and the natural frequency is increased. As a result, when driving the fan motor 10B, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced. That is, two or more first ribs 541B are provided on each of the four side surfaces of the rectangular solid shape of the first housing 55B, and the second ribs 542B are four shapes of the rectangular solid shape of the second housing 56B. It is desirable that two or more are provided on each side surface.
 図16におけるBおよびCの解析結果を比較すると、Bは、Cよりも水平方向の振動に対するハウジング5Bの固有振動数が高くなっている。Bでは、ハウジング5Bにおいて特に剛性が低い上側フランジ部521Bの径方向外側の部位が、剛性が高い接触面513Bの径方向内側の部位に、第1リブ541Bによって繋がれるため、ハウジング5Bの全体としての剛性が高まり、固有振動数が高くなっている。その結果、ファンモータ10Bを駆動する際、磁気励振との共振時における共振振幅を小さくすることができ、騒音を低減することができる。すなわち、第1ハウジング55Bおよび第2ハウジング56Bのいずれか一方にリブ(第1リブ541Bまたは第2リブ542B)を設ける場合、第1ハウジング55Bの直方体形の立体形状における4つの側面のそれぞれにおいて、第1リブ541Bのみを有することが望ましい。 When comparing the analysis results of B and C in FIG. 16, B has a higher natural frequency of the housing 5B with respect to vibration in the horizontal direction than C. In B, since the portion on the radially outer side of the upper flange portion 521B having particularly low rigidity in the housing 5B is connected to the portion on the radially inner side of the contact surface 513B having high rigidity by the first rib 541B, the entire housing 5B is formed. The rigidity is increased and the natural frequency is increased. As a result, when driving the fan motor 10B, the resonance amplitude at the time of resonance with the magnetic excitation can be reduced, and noise can be reduced. That is, in the case where a rib (first rib 541B or second rib 542B) is provided on one of the first housing 55B and the second housing 56B, on each of the four side surfaces of the rectangular solid shape of the first housing 55B, It is desirable to have only the first rib 541B.
 <3.変形例>
 以上、本発明の例示的な実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。
<3. Modification>
As mentioned above, although exemplary embodiment of this invention was described, this invention is not limited to said embodiment.
 各リブの厚みは、必ずしも一定でなくてもよい。例えば、軸方向の位置によって、リブの厚みが変化してもよい。また、ハウジングの直方体形の立体形状における4つの側面のそれぞれにおいて、リブは2つ以上設けられてもよい。また、各リブは、必ずしも直線状でなくてもよい。 The thickness of each rib does not necessarily have to be constant. For example, the thickness of the rib may change depending on the position in the axial direction. Further, two or more ribs may be provided on each of the four side surfaces of the solid rectangular solid shape of the housing. Moreover, each rib does not necessarily need to be linear.
 また、各部品の細部の形状については、本願の各図に示された形状と、相違していてもよい。また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。 Also, the detailed shape of each part may be different from the shape shown in each drawing of the present application. Moreover, you may combine suitably each element which appeared in said embodiment and modification in the range which does not produce inconsistency.
 本発明は、例えば、ファンモータに利用できる。 The present invention can be used for a fan motor, for example.
 1,1B モータ、2,2B 静止部、3,3B 回転部、4,4B インペラ、5,5B,5X,5Y ハウジング、9,9B 中心軸、10,10B ファンモータ、21,21B ベース部、22,22B ステータ、23 回路基板、24 軸受ホルダ、25 軸受部、31 シャフト、 32 ロータホルダ、33 環状部材、34 マグネット、41 カップ部、42,42B 羽根、50 風洞、51 筒状部、52 フランジ部、53,53B ベース接続部、54 リブ、55B 第1ハウジング、56B 第2ハウジング、221 ステータコア、222 コイル、321 ロータ蓋部、322 ロータ筒部、511B 第1筒状部、512B 第2筒状部、513B 接触面、521,521B 上側フランジ部、522,522B 下側フランジ部、541B 第1リブ、542B 第2リブ 1, 1B motor, 2, 2B stationary part, 3, 3B rotating part, 4, 4B impeller, 5, 5B, 5X, 5Y housing, 9, 9B central axis, 10, 10B fan motor, 21, 21B base part, 22 , 22B stator, 23 circuit board, 24 bearing holder, 25 bearing part, 31 shaft, 32 rotor holder, 33 annular member, 34 magnet, 41 cup part, 42, 42B blade, 50 wind tunnel, 51 cylindrical part, 52 flange part, 53, 53B base connection, 54 rib, 55B first housing, 56B second housing, 221 stator core, 222 coil, 321 rotor lid, 322 rotor cylinder, 511B first cylinder, 512B second cylinder, 513B contact surface, 521, 521B upper flange, 22,522B lower flange portion, 541B first rib, 542B second rib

Claims (12)

  1.  ファンモータであって、
     ステータを有する静止部と、上下に延びる中心軸を中心に回転する回転部とを有するモータと、
     複数の羽根を有し、前記回転部とともに回転するインペラと、
     前記モータおよび前記インペラの少なくとも一部を内部に収容するハウジングと、
    を有し、
     前記ハウジングは、
      軸方向に延び、前記モータおよび前記インペラの少なくとも一部を内部に収容する筒状の筒状部と、
      前記筒状部の上端部または下端部から径方向外側へ向けて突出するフランジ部と、
      前記筒状部の外周面において、前記フランジ部から延びる1または複数の柱状のリブと、
    を有し、
     前記リブは、軸方向に対して傾斜している、ファンモータ。
    A fan motor,
    A motor having a stationary part having a stator and a rotating part rotating around a central axis extending vertically;
    An impeller having a plurality of blades and rotating together with the rotating part;
    A housing that houses at least a part of the motor and the impeller;
    Have
    The housing is
    A cylindrical tubular portion extending in the axial direction and accommodating at least a part of the motor and the impeller inside;
    A flange portion projecting radially outward from an upper end portion or a lower end portion of the tubular portion;
    On the outer peripheral surface of the cylindrical portion, one or more columnar ribs extending from the flange portion;
    Have
    The fan motor is inclined with respect to the axial direction.
  2.  請求項1に記載のファンモータであって、
     前記ハウジングは、さらに
      前記モータを支持するベース部と、
      前記ハウジングの下部において、前記ベース部の外周面と、前記筒状部の内周面とを連結する1または複数の柱状のベース接続部と、
    を有し、
     前記リブは、前記ハウジングの下部から上部へ向かうにつれて前記中心軸から離れる方向に傾斜する、ファンモータ。
    The fan motor according to claim 1,
    The housing further includes a base portion that supports the motor;
    In the lower part of the housing, one or a plurality of columnar base connecting portions that connect the outer peripheral surface of the base portion and the inner peripheral surface of the cylindrical portion;
    Have
    The fan motor, wherein the rib is inclined in a direction away from the central axis from the lower part to the upper part of the housing.
  3.  請求項1または請求項2に記載のファンモータであって、
     前記ハウジングは、上下に開口する直方体形の立体形状を有し、
     前記リブは、前記直方体形の立体形状における4つの側面の各々において2つ以上設けられている、ファンモータ。
    The fan motor according to claim 1 or 2,
    The housing has a cuboid solid shape that opens up and down,
    Two or more ribs are provided on each of the four side surfaces of the rectangular parallelepiped solid shape.
  4.  請求項1または請求項2に記載のファンモータであって、
     前記ハウジングは、上下に開口する直方体形の立体形状を有し、
     前記リブは、前記直方体形の立体形状における4つの側面のうち2つの側面の各々において2つ以上設けられ、
     前記直方体形の立体形状における前記リブが設けられている側面は互いに隣接している、ファンモータ。
    The fan motor according to claim 1 or 2,
    The housing has a cuboid solid shape that opens up and down,
    Two or more ribs are provided on each of two side surfaces of the four side surfaces of the rectangular parallelepiped solid shape,
    The fan motor in which the side surface in which the said rib in the three-dimensional shape of the said rectangular parallelepiped shape is provided is adjacent to each other.
  5.  請求項1から請求項4までのいずれか1項に記載のファンモータであって、
     前記フランジ部は、
      前記筒状部の上端部から径方向外側へ向けて突出する上側フランジ部と、
      前記筒状部の下端部から径方向外側へ向けて突出する下側フランジ部と、
    を有し、
     前記リブの厚みは、前記上側フランジ部または前記下側フランジ部の軸方向の厚み以下である、ファンモータ。
    The fan motor according to any one of claims 1 to 4, wherein
    The flange portion is
    An upper flange portion projecting radially outward from the upper end portion of the tubular portion;
    A lower flange portion projecting radially outward from a lower end portion of the cylindrical portion;
    Have
    The thickness of the said rib is a fan motor which is below the axial thickness of the said upper side flange part or the said lower side flange part.
  6.  ファンモータであって、
     ステータを有する静止部と、上下に延びる中心軸を中心に回転する回転部とを有するモータと、
     複数の羽根を有し、前記回転部とともに回転するインペラと、
     前記モータおよび前記インペラの少なくとも一部を内部に収容するハウジングと、
    を有し、
     前記ハウジングは、
      第1ハウジングと、
      前記第1ハウジングの下方に直接または間接的に固定される第2ハウジングと、
    を有し、
     前記第1ハウジングは、
      軸方向に延び、前記モータおよび前記インペラの少なくとも一部を内部に収容する筒状の第1筒状部と、
      前記第1筒状部の上端部から径方向外側へ向けて突出する上側フランジ部と、
    を有し、
     前記第2ハウジングは、
      前記第1筒状部の下方に配置され、軸方向に延び、前記モータおよび前記インペラの少なくとも一部を内部に収容する筒状の第2筒状部と、
      前記第2筒状部の下端部から径方向外側へ向けて突出する下側フランジ部と、
    を有し、
     前記ハウジングは、さらに
      前記第1筒状部の外周面において、前記上側フランジ部から下方へ向けて、軸方向に対して傾斜する方向に延びる1または複数の柱状の第1リブ、
    および、
      前記第2筒状部の外周面において、前記下側フランジ部から上方へ向けて、軸方向に対して傾斜する方向に延びる1または複数の柱状の第2リブ、
    の少なくとも一方を有する、ファンモータ。
    A fan motor,
    A motor having a stationary part having a stator and a rotating part rotating around a central axis extending vertically;
    An impeller having a plurality of blades and rotating together with the rotating part;
    A housing that houses at least a part of the motor and the impeller;
    Have
    The housing is
    A first housing;
    A second housing fixed directly or indirectly below the first housing;
    Have
    The first housing is
    A cylindrical first cylindrical portion extending in the axial direction and accommodating at least a part of the motor and the impeller inside;
    An upper flange portion projecting radially outward from an upper end portion of the first tubular portion;
    Have
    The second housing is
    A cylindrical second cylindrical portion disposed below the first cylindrical portion, extending in the axial direction, and accommodating at least a part of the motor and the impeller;
    A lower flange portion projecting radially outward from a lower end portion of the second tubular portion;
    Have
    The housing further includes one or more columnar first ribs extending in a direction inclined with respect to the axial direction downward from the upper flange portion on the outer peripheral surface of the first cylindrical portion,
    and,
    One or more columnar second ribs extending in a direction inclined with respect to the axial direction upward from the lower flange portion on the outer peripheral surface of the second cylindrical portion;
    A fan motor having at least one of the following.
  7.  請求項6に記載のファンモータであって、
     前記第2ハウジングは、さらに
      前記モータを支持するベース部と、
      前記ベース部の外周面と、前記第2筒状部の内周面とを連結する1または複数の柱状のベース接続部と、
    を有し、
     前記第1リブは、前記ハウジングの上部へ向かうにつれて前記中心軸から離れる方向に傾斜する、ファンモータ。
    The fan motor according to claim 6,
    The second housing further includes a base portion that supports the motor;
    One or more columnar base connecting portions that connect the outer peripheral surface of the base portion and the inner peripheral surface of the second tubular portion;
    Have
    The first rib is a fan motor that inclines in a direction away from the central axis toward the top of the housing.
  8.  請求項6または請求項7に記載のファンモータであって、
     前記ハウジングは、前記第1リブおよび前記第2リブのうち、前記第1リブのみを有する、ファンモータ。
    The fan motor according to claim 6 or 7,
    The housing is a fan motor having only the first rib of the first rib and the second rib.
  9.  請求項6から請求項8までのいずれか1項に記載のファンモータであって、
     前記第1ハウジングおよび前記第2ハウジングは、それぞれ上下に開口する直方体形の立体形状を有し、
     前記第1リブまたは前記第2リブは、それぞれ前記直方体形の立体形状における4つの側面の各々において2つ以上設けられている、ファンモータ。
    The fan motor according to any one of claims 6 to 8,
    Each of the first housing and the second housing has a rectangular parallelepiped solid shape that opens up and down,
    Two or more said 1st ribs or said 2nd ribs are each provided in each of the four side surfaces in the said rectangular parallelepiped solid shape.
  10.  請求項6から請求項8までのいずれか1項に記載のファンモータであって、
     前記第1ハウジングおよび前記第2ハウジングは、それぞれ上下に開口する直方体形の立体形状を有し、
     前記第1リブまたは前記第2リブは、前記直方体形の立体形状における4つの側面のうち2つの側面の各々において2つ以上設けられ、
     前記直方体形の立体形状における前記第1リブまたは前記第2リブが設けられている側面は互いに隣接している、ファンモータ。
    The fan motor according to any one of claims 6 to 8,
    Each of the first housing and the second housing has a rectangular parallelepiped solid shape that opens up and down,
    Two or more of the first ribs or the second ribs are provided on each of two side surfaces of the four side surfaces in the rectangular solid shape.
    The fan motor in which the side surface in which the said 1st rib or the said 2nd rib is provided in the three-dimensional shape of the said rectangular parallelepiped is adjacent to each other.
  11.  請求項6から請求項10までのいずれか1項に記載のファンモータであって、
     前記第1リブおよび前記第2リブの厚みは、前記上側フランジ部または前記下側フランジ部の軸方向の厚み以下である、ファンモータ。
    The fan motor according to any one of claims 6 to 10, wherein
    The fan motor, wherein a thickness of the first rib and the second rib is equal to or less than an axial thickness of the upper flange portion or the lower flange portion.
  12.  請求項6または請求項8から請求項11までのいずれか1項に記載のファンモータであって、
     前記第2ハウジングは、さらに
      前記モータを支持するベース部と、
      前記ベース部の外周面と、前記第2筒状部の内周面とを連結する1または複数の柱状のベース接続部と、
    を有し、
     前記第1リブは、前記ハウジングの上部へ向かうにつれて前記中心軸から離れる方向に傾斜し、
     前記第2リブは、前記ハウジングの下部へ向かうにつれて前記中心軸から離れる方向に傾斜し、
     前記第1リブの下端部と、前記第2リブの上端部とは、互いに接して配置される、ファンモータ。
    A fan motor according to claim 6 or any one of claims 8 to 11,
    The second housing further includes a base portion that supports the motor;
    One or more columnar base connecting portions that connect the outer peripheral surface of the base portion and the inner peripheral surface of the second tubular portion;
    Have
    The first rib is inclined in a direction away from the central axis toward the upper portion of the housing,
    The second rib is inclined in a direction away from the central axis toward the lower portion of the housing,
    The fan motor, wherein a lower end portion of the first rib and an upper end portion of the second rib are disposed in contact with each other.
PCT/JP2017/043320 2016-12-09 2017-12-01 Fan motor WO2018105526A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/461,129 US20200072241A1 (en) 2016-12-09 2017-12-01 Fan motor
JP2018554972A JPWO2018105526A1 (en) 2016-12-09 2017-12-01 Fan motor
CN201780064802.0A CN109863312B (en) 2016-12-09 2017-12-01 Fan motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239868 2016-12-09
JP2016-239868 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105526A1 true WO2018105526A1 (en) 2018-06-14

Family

ID=62491555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043320 WO2018105526A1 (en) 2016-12-09 2017-12-01 Fan motor

Country Status (4)

Country Link
US (1) US20200072241A1 (en)
JP (1) JPWO2018105526A1 (en)
CN (1) CN109863312B (en)
WO (1) WO2018105526A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569191U (en) * 1978-11-07 1980-05-13
JPS61200496U (en) * 1985-06-05 1986-12-15
JPH06640Y2 (en) * 1987-07-30 1994-01-05 三菱電機株式会社 Axial fan mounting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339297A (en) * 1997-06-05 1998-12-22 Japan Servo Co Ltd Axial fan venturi
CN2345755Y (en) * 1998-08-17 1999-10-27 刘友文 Blower fan motor improved assembly device
CN100380000C (en) * 2004-06-24 2008-04-09 建准电机工业股份有限公司 Casing base of axial flow radiating fan
CN1779276A (en) * 2004-11-19 2006-05-31 台达电子工业股份有限公司 Fan and its frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569191U (en) * 1978-11-07 1980-05-13
JPS61200496U (en) * 1985-06-05 1986-12-15
JPH06640Y2 (en) * 1987-07-30 1994-01-05 三菱電機株式会社 Axial fan mounting device

Also Published As

Publication number Publication date
CN109863312A (en) 2019-06-07
US20200072241A1 (en) 2020-03-05
CN109863312B (en) 2021-11-09
JPWO2018105526A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US9605682B2 (en) Blower fan
US9077230B2 (en) Electric motor with heat dissipating device
JP4539659B2 (en) Fan motor device and electronic device
JP6323146B2 (en) Motor and blower
JP7080621B2 (en) Outer rotor motor and vacuum cleaner equipped with it
US9140268B2 (en) Bearing apparatus and blower fan
JP6728948B2 (en) Fan motor
US20190103783A1 (en) Motor, blowing device, and cleaner
US9473001B2 (en) Brushless motor fan with stator insulator having ventilation recesses and grooves
US10447100B2 (en) Motor
JP2009044941A (en) Axial motor core, stator and axial motor
US8896190B2 (en) Electric apparatus with stator core
JP2017225337A (en) motor
JP2013187922A (en) Fan motor
JP2014073030A (en) Armature and motor
JP2016208790A (en) Motor and centrifugal blower
JP2024144650A (en) Rotating Equipment
WO2018105526A1 (en) Fan motor
JP2018201302A (en) motor
JP2016205336A (en) Centrifugal blower and cleaning machine
US11005333B2 (en) Electric motor having a stator with a radially outside rotor with the rotor having a fan mounting portion comprising a noncontact region and a contract region configured to contact a mouting surface of a fan
JP2012231564A (en) Motor
JP2018035795A (en) Axial fan
KR102489301B1 (en) ROTOR AND Motor HAVING THE SAME
JP2016125405A (en) fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878619

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载