WO2018105005A1 - Lead storage battery - Google Patents
Lead storage battery Download PDFInfo
- Publication number
- WO2018105005A1 WO2018105005A1 PCT/JP2016/086066 JP2016086066W WO2018105005A1 WO 2018105005 A1 WO2018105005 A1 WO 2018105005A1 JP 2016086066 W JP2016086066 W JP 2016086066W WO 2018105005 A1 WO2018105005 A1 WO 2018105005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- component
- acid
- mass
- group
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lead storage battery.
- Lead-acid batteries are inexpensive and highly reliable, so they are widely used as power sources for starting automobiles, power sources for electric vehicles (golf carts, etc.), power supplies for industrial equipment (uninterruptible power supplies, etc.), etc. in use.
- micro-hybrid vehicles are being studied as vehicles that have taken measures to improve fuel efficiency.
- ISS vehicle an idling stop vehicle
- power generation control vehicle that reduces the power generation of an alternator (generator) by the power of the engine are considered.
- lead acid batteries installed in ISS cars the usage method is basically different from conventional lead acid batteries.
- Conventional lead-acid batteries have been used in a fully charged state by charging from an alternator after passing a large current only at the start.
- ISS cars In ISS cars, the number of engine starts increases, so the large current discharge of the lead storage battery is repeated.
- micro hybrid vehicles such as ISS vehicles and power generation control vehicles, the amount of power generated by the alternator is reduced, and lead storage batteries are charged intermittently, so that charging is insufficient.
- the lead-acid battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge).
- a lead storage battery required for an ISS vehicle needs to have the following characteristics. 1) High-speed charging performance that can immediately charge the power consumed by the lead-acid battery and maintain the specified PSOC state, and the charge acceptance required to receive the brake regenerative energy from the output current from the alternator and store it in the battery 2) High durability with sufficient life under PSOC usage environment
- the output current of the alternator of the ISS car has performance exceeding the charge acceptability of the conventional lead-acid battery.
- the lead-acid battery mounted on the ISS vehicle has a characteristic that the output current of the alternator can be sufficiently received by the battery.
- the concentration of dilute sulfuric acid in the lower part of the electrode is increased, and a lead sulfate coarsening phenomenon called sulfation occurs in the negative electrode (eg, negative electrode plate) during discharge.
- Sulfation is a phenomenon in which lead sulfate, which is a discharge product, is unlikely to return to a charged state (metal lead, which is a charge product). Therefore, when sulfation occurs, the reactivity of the lower part of the electrode decreases, and only the upper part of the electrode reacts intensively. As a result, deterioration such as weakening of the connection between the active materials progresses in the upper part of the electrode, and the active material is peeled off from the current collector, leading to an early life.
- Patent Documents 1 and 2 below disclose the use of a negative electrode active material and a condensate of bisphenols, aminobenzenesulfonic acid and formaldehyde. .
- lead-acid batteries it is required to further improve the charge acceptability.
- lead-acid batteries were used under PSOC for automobile lead-acid batteries. There is a need to further improve the charge acceptability.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a lead special battery capable of obtaining excellent charge acceptability.
- the present inventors have found that the above problem can be solved when the resistivity of the negative electrode material is 0% when the state of charge is 0%.
- the lead storage battery according to the present invention includes a positive electrode and a negative electrode, and the negative electrode includes a current collector and a negative electrode material held by the current collector, and the state of charge is 0%.
- the resistivity of the negative electrode material is 1.02 ⁇ / cm or less.
- the lead storage battery of the present invention it is possible to obtain excellent charge acceptability, and in particular, it is possible to obtain excellent charge acceptability under PSOC.
- cycle characteristics sufficient cycle life characteristics under PSOC (hereinafter referred to as “cycle characteristics”) cannot be obtained when the negative electrode for a lead storage battery described in Patent Document 1 is used. It became clear.
- the lead storage battery according to the present invention it is possible to obtain excellent charge acceptability and cycle characteristics, and in particular, it is possible to obtain excellent charge acceptability and cycle characteristics under PSOC.
- the lead storage battery according to the present invention it is possible to achieve both excellent charge acceptability and cycle characteristics and other excellent battery characteristics (such as discharge characteristics).
- the negative electrode material preferably contains carbon black.
- the average primary particle size of the carbon black is preferably 50 nm or less.
- the carbon black content is preferably 0.05 to 2% by mass based on the total mass of the negative electrode material.
- the negative electrode material preferably contains a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group.
- the resin is selected from the group consisting of bisphenol compounds, at least one selected from the group consisting of aminoalkyl sulfonic acids, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acids and aminoaryl sulfonic acid derivatives, and formaldehyde and formaldehyde derivatives.
- excellent charge acceptability can be obtained.
- excellent charge acceptability under PSOC can be obtained.
- a lead storage battery that can be satisfactorily satisfied can be provided as a lead storage battery used in an ISS vehicle used in a harsh environment.
- ADVANTAGE OF THE INVENTION According to this invention, the fuel consumption improvement effect can be acquired by improving charge acceptance in the lead acid battery of an ISS car.
- FIG. 1 It is a perspective view which shows an example of a lead acid battery. It is a perspective view which shows a part of internal structure of the lead acid battery shown in FIG. It is a perspective view which shows an example of an electrode group. It is drawing for demonstrating the measuring method of the resistance value of the negative electrode material in an Example.
- a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
- the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
- “A or B” only needs to include either A or B, and may include both.
- the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
- the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
- the lead storage battery according to the present embodiment includes an electrode, an electrolytic solution (such as sulfuric acid), and a separator.
- Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable.
- the electrode has a current collector and an electrode material held by the current collector.
- the electrode includes, for example, an electrode material (electrode layer, active material layer) containing a raw material for the electrode active material, and a current collector that holds the electrode material.
- the electrode after the formation includes, for example, an electrode material (electrode layer, active material layer) containing an electrode active material and the like, and a current collector that holds the electrode material.
- the lead storage battery according to the present embodiment includes a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like) as electrodes.
- the positive electrode includes a current collector and a positive electrode material held by the current collector.
- the negative electrode includes a current collector and a negative electrode material held by the current collector.
- the lead storage battery according to the present embodiment includes, for example, an electrode after chemical conversion.
- FIG. 1 is a perspective view showing an example of a lead storage battery.
- a lead storage battery 1 shown in FIG. 1 is a liquid lead storage battery.
- FIG. 2 is a perspective view showing a part of the internal structure of the lead storage battery 1.
- the lead storage battery 1 includes a battery case 2 in which an upper surface is opened and a plurality of electrode plate groups 11 are stored, and a lid 3 that closes the opening of the battery case 2.
- the lid 3 includes, for example, a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.
- the battery case 2 contains an electrolyte (not shown).
- the electrode plate group includes a separator and a positive electrode plate and a negative electrode plate that are alternately stacked via the separator.
- FIG. 3 is a perspective view showing an example of the electrode plate group. 2 and 3, the electrode plate group 11 includes, for example, a positive electrode plate 12, a negative electrode plate 13, a bag-like separator 14, a positive electrode side strap 15, a negative electrode side strap 16, and an inter-cell connection. A portion 17 and a pole column 18 are provided. On the upper peripheral edge of the positive electrode plate 12 and the negative electrode plate 13, a current collector 22 and a current collector 32 called ears are provided.
- the resistivity of the negative electrode material when the state of charge (SOC: State of charge) is 0% (when the rated capacity is discharged) is 1.02 ⁇ / cm or less.
- SOC State of charge
- the negative electrode of the lead storage battery contains spongy lead during charging, and discharge causes lead sulfate, which is a crystalline nonconductor, to be generated at the negative electrode.
- lead sulfate which is a crystalline nonconductor
- the resistivity of the negative electrode material increases and it becomes difficult to be charged.
- the state of charge is 0% (during complete discharge)
- the negative electrode material has a resistivity equal to or lower than the specific value, so that charging becomes easy and excellent battery characteristics can be obtained.
- the resistivity of the negative electrode material when the state of charge is 0% is preferably 1.01 ⁇ / cm or less, more preferably 1.00 ⁇ / cm or less, from the viewpoint of improving charge acceptance, discharge characteristics, and cycle characteristics in a well-balanced manner.
- the resistivity of the negative electrode material can be adjusted by the content of the constituent components of the negative electrode material, the particle diameter, and the like.
- the resistivity ( ⁇ / cm) of the negative electrode material can be calculated as follows, for example. First, the rated capacity is discharged at a rate of 5 hours to obtain a negative electrode material having a charged state of 0%. Next, the terminal of a two-terminal measurement method digital multimeter (for example, product name: TY720, manufactured by Yokogawa Meter & Instruments Co., Ltd.) is measured at the measurement position A at the corner on the ear side of the negative electrode and at the negative electrode. A resistance value R ( ⁇ ) between the measurement position A and the measurement position B is measured as a resistance value of the negative electrode, installed at the measurement position B located at the corner of the diagonal position of the position A.
- a two-terminal measurement method digital multimeter for example, product name: TY720, manufactured by Yokogawa Meter & Instruments Co., Ltd.
- the measurement positions A and B for example, positions at a distance of 10% from both ends of the longest diameter (diagonal line or the like) of the negative electrode material can be mentioned. Subsequently, a value obtained by dividing the resistance value R by the distance (cm) between the measurement position A and the measurement position B is obtained as the negative electrode resistivity R1 ( ⁇ / cm). Next, after removing the negative electrode material from the negative electrode, the resistance value of the negative electrode current collector is measured in the same manner as described above to obtain the resistivity R2 ( ⁇ / cm) of the negative electrode current collector.
- a value (R1-R2) obtained by subtracting the resistivity R2 ( ⁇ / cm) of the negative electrode current collector from the resistivity R1 ( ⁇ / cm) of the negative electrode is obtained as the resistivity ( ⁇ / cm) of the negative electrode material.
- the negative electrode material contains, for example, (A) a negative electrode active material or a raw material thereof (hereinafter sometimes referred to as “component (A)”).
- component (A) examples include spongy lead.
- the raw material for the negative electrode active material is composed of, for example, basic lead sulfate, metal lead, and a lower oxide.
- the negative electrode material can contain an additive.
- an additive a resin having at least one selected from the group consisting of barium sulfate, carbon materials (excluding carbon fibers), reinforcing short fibers, sulfone groups (sulfonic acid groups, sulfo groups) and sulfonate groups (hereinafter referred to as “additives”)
- additive a resin having at least one selected from the group consisting of barium sulfate, carbon materials (excluding carbon fibers), reinforcing short fibers, sulfone groups (sulfonic acid groups, sulfo groups) and sulfonate groups (hereinafter referred to as “additives”)
- the carbon material include carbon black and graphite.
- carbon black include furnace black (oil furnace black, etc.), channel black, acetylene black, thermal black, ketjen black and the like
- the negative electrode material preferably contains (B) carbon black (hereinafter, sometimes referred to as “component (B)”) from the viewpoint of obtaining further excellent charge acceptability, cycle characteristics, and discharge characteristics. Since the negative electrode material contains conductive carbon black, it becomes easier to charge by reducing the electrical resistance of the active material when lead sulfate generated at the time of complete discharge is returned to metallic lead at the time of charging, so even better charging It is assumed that acceptability, cycle characteristics and discharge characteristics are obtained.
- component (B) carbon black
- the average primary particle size of the component (B) (the average primary particle size of the component (B) contained in the negative electrode material) is preferably 50 nm or less from the viewpoint of further improving cycle characteristics, discharge characteristics, and charge acceptability. 40 nm or less is more preferable, and 30 nm or less is still more preferable.
- the average primary particle diameter of the component (B) is preferably 20 nm or more from the viewpoint of easy handling during production and excellent dispersibility in the negative electrode material.
- the average primary particle diameter of the component (B) is, for example, in the image of the scanning electron micrograph in the range of 100 ⁇ m in length ⁇ 100 ⁇ m in the center of the substrate after depositing the particles of the component (B) on the substrate.
- the value of the long side length (maximum primary particle diameter) of all particles can be obtained as a numerical value obtained by arithmetic averaging.
- all the particles in the scanning electron micrograph image in the range of 1 ⁇ m in length ⁇ 1 ⁇ m in width. can be obtained as a numerical value obtained by arithmetically averaging the long side length values of.
- image analysis software for two-dimensional images manufactured by Sumitomo Metal Technology Co., Ltd., particle analysis Ver3.5
- the content of the component (B) is 0.01% by mass or more based on the total mass of the negative electrode material from the viewpoint of improving charge acceptance, discharge characteristics, and cycle characteristics in a balanced manner.
- 0.05 mass% or more is more preferable, 0.1 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable.
- the content of the component (B) is preferably 2% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of securing sufficient strength of the electrode material and further excellent in charge acceptance. More preferably, it is more preferably 1% by mass or less, and particularly preferably 0.6% by mass or less.
- the content of the component (B) is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of further improving discharge characteristics. From these viewpoints, the content of the component (B) is preferably 0.01 to 2% by mass, more preferably 0.05 to 2% by mass, based on the total mass of the negative electrode material, and 0.1 to 1%. 9% by mass is more preferable, 0.1-1% by mass is particularly preferable, 0.1-0.6% by mass is very preferable, 0.1-0.5% by mass is very preferable, and 0.2-0 4% by mass is even more preferable.
- the negative electrode material is made of (C) a resin having a sulfone group (—SO 3 H) and / or a sulfonate group (hereinafter, “(C) It is preferable to contain “component”. Component (C) can be used as a surfactant. The reason why the negative electrode material contains the component (C) can improve the charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner is not clear, but the metal lead forming the negative electrode active material has the component (C). The present inventors presume that by strongly adsorbing, the aggregation of metallic lead is suppressed and the negative electrode material is maintained in a state with a high specific surface area.
- Examples of the component (C) include bisphenol resins, naphthalenesulfonic acid resins (excluding resins corresponding to bisphenol resins), lignin sulfonic acids, lignin sulfonates, and the like.
- Examples of lignin sulfonate include alkali metal salts of lignin sulfonic acid.
- Examples of the alkali metal salt include sodium salt and potassium salt.
- the component (C) preferably contains a bisphenol-based resin from the viewpoint of further improving the charge acceptance, and (c1) a bisphenol-based compound (hereinafter referred to as “(c1) component” in some cases) and (c2) amino At least one compound selected from the group consisting of alkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative (hereinafter sometimes referred to as “component (c2)”), (c3) formaldehyde and It is more preferable to include a bisphenol-based resin having a structural unit derived from the reaction of at least one compound selected from the group consisting of formaldehyde derivatives (hereinafter sometimes referred to as “component (c3)”).
- the bisphenol resin having a structural unit derived from the reaction of the component (c1), the component (c2) and the component (c3) can be obtained as a condensate of the component (c1), the component (c2) and the component (c
- component (c1) is a compound having two hydroxyphenyl groups.
- Component (c1) includes 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane.
- Bisphenol S 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4- Hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter, "Bisphenol S").
- (C1) A component can be used individually by 1 type or in combination of 2 or more types.
- bisphenol A is preferable from the viewpoint of further excellent charge acceptance
- bisphenol S is preferable from the viewpoint of further excellent discharge characteristics.
- the proportion of bisphenol A in the component (c1) is preferably 50 mol% or more, preferably 70 mol% or more, based on the total amount of the component (c1), from the viewpoint that the cycle characteristics, discharge characteristics, and charge acceptance are easily improved in a balanced manner. Is more preferable, 90 mol% or more is further preferable, and 95 mol% or more is particularly preferable.
- the component (c1) may be an embodiment composed of bisphenol A (an embodiment in which 100 mol% of the component (c1) is substantially bisphenol A).
- aminoalkylsulfonic acid aminoalkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative
- aminoalkylsulfonic acid examples include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
- aminoalkyl sulfonic acid derivatives include compounds in which at least some of the hydrogen atoms of aminoalkyl sulfonic acid are substituted with alkyl groups (for example, alkyl groups having 1 to 5 carbon atoms), and the like.
- alkyl groups for example, alkyl groups having 1 to 5 carbon atoms
- alkali metals for example, sodium and potassium
- alkali metal salts such as sodium salt and potassium salt
- aminoarylsulfonic acid examples include aminobenzenesulfonic acid and aminonaphthalenesulfonic acid.
- aminobenzene sulfonic acid examples include 2-aminobenzene sulfonic acid (alias: alteranilic acid), 3-aminobenzene sulfonic acid (alias: metanilic acid), 4-aminobenzene sulfonic acid (alias: sulfanilic acid), and the like.
- aminonaphthalenesulfonic acid examples include 4-amino-1-naphthalenesulfonic acid (p-form), 5-amino-1-naphthalenesulfonic acid (ana-form), 1-amino-6-naphthalenesulfonic acid ( ⁇ -form) 5-amino-2-naphthalenesulfonic acid), 6-amino-1-naphthalenesulfonic acid ( ⁇ -form), 6-amino-2-naphthalenesulfonic acid (amphi-form), 7-amino-2-naphthalenesulfone Acid, aminonaphthalene monosulfonic acid such as 8-amino-1-naphthalenesulfonic acid (peri-form), 1-amino-7-naphthalenesulfonic acid (kata-form, 8-amino-2-naphthalenesulfonic acid); 1 -Amino-3,8-naphthalenedisulfonic acid, 3-amin
- aminoarylsulfonic acid derivatives examples include aminobenzenesulfonic acid derivatives and aminonaphthalenesulfonic acid derivatives.
- the aminobenzenesulfonic acid derivative includes a compound in which at least a part of hydrogen atoms of aminobenzenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, hydrogen of a sulfone group of aminobenzenesulfonic acid Examples include compounds in which atoms are substituted with alkali metals (for example, sodium and potassium) (for example, alkali metal salts such as sodium salt and potassium salt).
- alkali metals for example, sodium and potassium
- Examples of the compound in which at least a part of hydrogen atoms of aminobenzenesulfonic acid are substituted with alkyl groups include 4- (methylamino) benzenesulfonic acid, 3-methyl-4-aminobenzenesulfonic acid, and 3-amino-4-methyl. Examples thereof include benzenesulfonic acid, 4- (ethylamino) benzenesulfonic acid, 3- (ethylamino) -4-methylbenzenesulfonic acid and the like.
- Examples of the compound in which the hydrogen atom of the sulfone group of aminobenzenesulfonic acid is replaced with an alkali metal include sodium 2-aminobenzenesulfonate, sodium 3-aminobenzenesulfonate, sodium 4-aminobenzenesulfonate, 2-aminobenzenesulfone.
- Examples include potassium acid, potassium 3-aminobenzenesulfonate, and potassium 4-aminobenzenesulfonate.
- aminonaphthalenesulfonic acid derivative examples include compounds in which at least a part of hydrogen atoms of aminonaphthalenesulfonic acid are substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, hydrogen of the sulfone group of aminonaphthalenesulfonic acid
- alkyl group for example, an alkyl group having 1 to 5 carbon atoms
- alkali metals for example, sodium and potassium
- alkali metal salts such as sodium salt and potassium salt
- the component (c2) is preferably at least one selected from the group consisting of aminobenzene sulfonic acid and aminobenzene sulfonic acid derivatives from the viewpoint of improving charge acceptance, discharge characteristics, and cycle characteristics in a well-balanced manner. That is, the bisphenol-based resin is derived from a reaction between a bisphenol-based compound, at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and at least one selected from the group consisting of formaldehyde and formaldehyde derivatives. It is preferable to include a bisphenol-based resin having a structural unit.
- a component can be used individually by 1 type or in combination of 2 or more types.
- As the component (c2) 4-aminobenzenesulfonic acid is preferable from the viewpoint of further improving cycle characteristics and charge acceptability.
- the amount of the component (c2) for obtaining the bisphenol-based resin is preferably 0.5 mol or more, more preferably 0.6 mol or more with respect to 1 mol of the component (c1).
- 0.8 mol or more is more preferable, and 0.9 mol or more is particularly preferable.
- the amount of component (c2) is preferably 1.3 mol or less, more preferably 1.2 mol or less, and more preferably 1.2 mol or less, with respect to 1 mol of component (c1), from the viewpoint that the cycle characteristics and discharge characteristics can be further improved. More preferably, it is 1 mol or less.
- (C3) component formaldehyde and formaldehyde derivatives
- formaldehyde formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used.
- formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane.
- C3 A component can be used individually by 1 type or in combination of 2 or more types. You may use formaldehyde and a formaldehyde derivative together.
- paraformaldehyde has the following structure. HO (CH 2 O) n1 H (I) [In the formula (I), n1 represents an integer of 2 to 100. ]
- the amount of the component (c3) in order to obtain the bisphenol-based resin is preferably 2 mols or more with respect to 1 mol of the component (c1). 2 mol or more is more preferable, 2.4 mol or more is further preferable, 2.6 mol or more is especially preferable, and 2.8 mol or more is very preferable.
- the amount of component (c3) in terms of formaldehyde is preferably 3.5 mol or less with respect to 1 mol of component (c1), and 3.2 mol. The following is more preferable, and 3 mol or less is still more preferable.
- the bisphenol-based resin preferably has at least one of a structural unit represented by the following general formula (II) and a structural unit represented by the following general formula (III).
- X 2 represents a divalent group
- a 2 represents an alkylene group having 1 to 4 carbon atoms or an arylene group
- R 21 , R 23 and R 24 are each independently Represents an alkali metal or hydrogen atom
- R 22 represents a methylol group (—CH 2 OH)
- n21 represents an integer of 1 to 150
- n22 represents an integer of 1 to 3
- n23 represents 0 Or 1 is shown.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
- X 3 represents a divalent group
- a 3 represents an alkylene group having 1 to 4 carbon atoms or an arylene group
- R 31 , R 33 and R 34 are each independently selected.
- R 32 represents a methylol group (—CH 2 OH)
- n31 represents an integer of 1 to 150
- n32 represents an integer of 1 to 3
- n33 represents 0 Or 1 is shown.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
- the ratio of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) is not particularly limited, and may vary depending on synthesis conditions and the like.
- a resin having only one of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) may be used.
- the bisphenol-based resin preferably has, for example, at least one of a structural unit represented by the following general formula (IIa) and a structural unit represented by the following general formula (IIIa).
- X 2 represents a divalent group
- R 21 , R 23 and R 24 each independently represents an alkali metal or a hydrogen atom
- R 22 represents a methylol group (—CH 2 OH N21 represents an integer of 1 to 150
- n22 represents an integer of 1 to 3
- n23 represents 0 or 1.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
- X 3 represents a divalent group
- R 31 , R 33 and R 34 each independently represents an alkali metal or a hydrogen atom
- R 32 represents a methylol group (—CH 2 OH N31 represents an integer of 1 to 150
- n32 represents an integer of 1 to 3
- n33 represents 0 or 1.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
- the ratio of the structural unit represented by the formula (IIa) and the structural unit represented by the formula (IIIa) is not particularly limited, and may vary depending on synthesis conditions and the like.
- a resin having only one of the structural unit represented by the formula (IIa) and the structural unit represented by the formula (IIIa) may be used.
- Examples of X 2 and X 3 include alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group).
- An organic group such as a phenylethylidene group; a sulfonyl group.
- X 2 and X 3 are preferably an isopropylidene group (—C (CH 3 ) 2 —) group from the viewpoint of further excellent charge acceptance, and a sulfonyl group (—SO 2 —) from the viewpoint of further excellent discharge characteristics. ) Is preferred.
- X 2 and X 3 may be substituted with a halogen atom such as a fluorine atom.
- the hydrocarbon ring may be substituted with an alkyl group or the like.
- Examples of A 2 and A 3 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group.
- the arylene group may be substituted with an alkyl group or the like.
- n21 and n31 are preferably 1 to 150, and more preferably 10 to 150, from the viewpoint of further excellent cycle characteristics and the solubility of the bisphenol-based resin in a solvent.
- n22 and n32 are preferably 1 or 2, and more preferably 1, from the viewpoint that the cycle characteristics, the discharge characteristics, and the charge acceptability are easily improved in a balanced manner.
- n23 and n33 vary depending on the production conditions, but 0 is preferable from the viewpoint of excellent cycle characteristics and storage stability of the bisphenol-based resin.
- the method for producing a bisphenol-based resin includes a resin production step of obtaining a bisphenol-based resin by reacting the component (c1), the component (c2) and the component (c3).
- the bisphenol-based resin can be obtained, for example, by reacting the component (c1), the component (c2) and the component (c3) in a reaction solvent.
- the reaction solvent is preferably water (for example, ion exchange water).
- an organic solvent, a catalyst, an additive, or the like may be used.
- the blending amount of the component (c2) is 0.5 to 1.3 mol with respect to 1 mol of the component (c1), and (c3)
- An embodiment in which the amount of the component is 2 to 3.5 mol in terms of formaldehyde with respect to 1 mol of the component (c1) is preferable.
- Preferred blending amounts of the component (c2) and the component (c3) are the ranges described above for the blending amounts of the component (c2) and the component (c3).
- the bisphenol-based resin is preferably obtained by reacting the component (c1), the component (c2) and the component (c3) under basic conditions (alkaline conditions) from the viewpoint that a sufficient amount of bisphenol-based resin can be easily obtained.
- basic conditions alkaline conditions
- the basic compound include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate and the like.
- a basic compound can be used individually by 1 type or in combination of 2 or more types.
- the basic compounds at least one selected from the group consisting of sodium hydroxide and potassium hydroxide is preferable from the viewpoint of excellent reactivity.
- the pH of the reaction solution at the start of the reaction is preferably greater than 7 (alkaline) from the viewpoint of suppressing the side reaction from proceeding while the bisphenol-based resin formation reaction proceeds, and is 7.1 or more Is more preferable, and 7.2 or more is still more preferable.
- the pH of the reaction solution is preferably 12 or less, more preferably 10 or less, and still more preferably 9 or less, from the viewpoint of suppressing the hydrolysis of the group derived from the component (c2) in the bisphenol-based resin.
- the pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
- the compounding amount of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more, relative to 1 mol of the component (c2).
- 03 mol or more is more preferable.
- the compounding amount of the strongly basic compound is preferably 1.1 mol or less, more preferably 1.08 mol or less, and further preferably 1.07 mol or less with respect to 1 mol of the component (c2).
- the strongly basic compound include sodium hydroxide and potassium hydroxide.
- the (c1) component, the (c2) component, and the (c3) component may react to obtain a bisphenol resin.
- the component (c1), the component (c2), and the component (c3) may be reacted at the same time. After reacting two of the components (c1), (c2), and (c3), The reaction product obtained may be reacted with the remaining one component.
- the synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows.
- an aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid for example, an aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid, a solvent (such as water) and a basic compound are mixed and stirred, and then the aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid is mixed.
- An alkali metal salt or the like is obtained by replacing the hydrogen atom of the sulfone group in the acid with an alkali metal or the like. Thereby, it becomes easy to suppress a side reaction in the below-mentioned condensation reaction.
- the temperature of the reaction system is preferably 0 ° C. or higher, more preferably 25 ° C.
- the temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of suppressing side reactions.
- the reaction time is, for example, 5 to 30 minutes.
- the components (c1) and (c3) are added to the reaction product obtained in the first stage and subjected to a condensation reaction to obtain a bisphenol-based resin.
- the temperature of the reaction system is preferably 75 ° C. or higher, more preferably 85 ° C. or higher, and still more preferably 87 ° C. or higher, from the viewpoint of excellent reactivity of the components (c1), (c2) and (c3).
- the temperature of the reaction system is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and still more preferably 93 ° C. or lower, from the viewpoint of suppressing side reactions.
- the reaction time is, for example, 5 to 20 hours.
- a reaction product for example, a reaction solution obtained by the method for producing the bisphenol-based resin may be used as it is for production of an electrode to be described later, or obtained by drying the reaction product by a spray drying method or the like.
- the resulting powder may be used for the production of electrodes.
- the weight average molecular weight of the bisphenol-based resin is preferably 20000 or more, more preferably 30000 or more, and 40000 from the viewpoint that the cycle characteristics are easily improved by suppressing the bisphenol-based resin from eluting from the electrode to the electrolyte in the lead storage battery.
- the above is more preferable, 50000 or more is particularly preferable, 55000 or more is very preferable, and 58000 or more is very preferable.
- the weight average molecular weight of the bisphenol-based resin is preferably 70,000 or less, preferably 65,000 or less, from the viewpoint of easily improving cycle characteristics by suppressing the decrease in the dispersibility due to the decrease in the adsorptivity of the bisphenol-based resin with respect to the electrode active material. Is more preferably 62,000 or less, particularly preferably 60000 or less.
- the weight average molecular weight of the bisphenol-based resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
- GPC conditions Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation) Pump: PU-2080 Differential refractometer: RI-2031 Detector: UV-visible spectrophotometer UV-2075 ( ⁇ : 254 nm)
- Eluent methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min
- Molecular weight standard sample Polyethylene glycol (molecular weight: 1.10 ⁇ 10 6 , 5.80 ⁇ 10 5 ,
- the naphthalene sulfonic acid resin is a resin having a structural unit derived from naphthalene sulfonic acid (excluding a resin corresponding to a bisphenol resin), for example, a resin having a sulfonic acid group-containing naphthylene structure.
- the naphthalene sulfonic acid resin can be obtained by reacting naphthalene sulfonic acid and a compound that can be polymerized with naphthalene sulfonic acid.
- the naphthalene sulfonic acid resin can be obtained from the group consisting of a naphthalene sulfonic acid compound, formaldehyde, and a formaldehyde derivative. It can be obtained by reacting with at least one selected.
- the naphthalene sulfonic acid resin preferably has a structural unit represented by the following formula (IV).
- R 41 represents an alkali metal or a hydrogen atom
- n 41 represents an integer of 1 to 100
- n 42 represents an integer of 1 to 3.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms.
- R 41 examples include sodium and potassium. When a plurality of R 41 are present, R 41 may be the same as or different from each other.
- naphthalene sulfonic acid resin a commercially available resin can also be used.
- examples of commercially available naphthalene sulfonic acid resins include vanillol HDL-100 (trade name, manufactured by Nippon Paper Industries Co., Ltd.), Demol N, Demol RN, Demol NL, Demol RNL, Demol T, Demol T-45 (above, trade names, And Kao Corporation).
- the naphthalene sulfonic acid compound is a compound having a naphthalene sulfonic acid group.
- the naphthalene sulfonic acid compound include at least one selected from the group consisting of naphthalene sulfonic acid and naphthalene sulfonic acid derivatives.
- naphthalene sulfonic acid include 1-naphthalene sulfonic acid and 2-naphthalene sulfonic acid.
- naphthalene sulfonic acid derivatives include compounds in which some of the hydrogen atoms of naphthalene sulfonic acid are substituted with alkali metals (sodium, potassium, etc.), such as sodium 1-naphthalene sulfonate, sodium 2-naphthalene sulfonate, -Potassium naphthalene sulfonate, potassium 2-naphthalene sulfonate, etc.
- alkali metals sodium 1-naphthalene sulfonate, sodium 2-naphthalene sulfonate, -Potassium naphthalene sulfonate, potassium 2-naphthalene sulfonate, etc.
- a naphthalenesulfonic acid type compound can be used individually by 1 type or in combination of 2 or more types.
- formaldehyde and formaldehyde derivatives include the same compounds as the component (c3).
- the blending amount (total amount) of formaldehyde and formaldehyde derivative for obtaining naphthalenesulfonic acid resin is, for example, about 1 to 2 mol in terms of formaldehyde with respect to 1 mol of naphthalenesulfonic acid compound.
- the naphthalene sulfonic acid resin can be obtained under the same synthesis conditions as the bisphenol resin.
- the weight average molecular weight of the naphthalene sulfonic acid resin is preferably 1000 or more, more preferably 3000 or more, still more preferably 4000 or more, and particularly preferably 5000 or more, from the viewpoint of easy improvement of the cycle characteristics of the lead storage battery.
- the weight average molecular weight of the naphthalene sulfonic acid resin is preferably 20000 or less, more preferably 15000 or less, and still more preferably 10,000 or less, from the viewpoint of easy improvement of cycle characteristics.
- the weight average molecular weight of the naphthalene sulfonic acid resin can be measured in the same manner as the weight average molecular weight of the bisphenol resin, for example.
- the weight average molecular weight of lignin sulfonic acid or lignin sulfonate is 3000 from the viewpoint that the lignin sulfonic acid or lignin sulfonate is prevented from eluting from the electrode to the electrolyte in lead-acid batteries and further excellent cycle characteristics are obtained.
- the above is preferable, 7000 or more is more preferable, and 8000 or more is still more preferable.
- the weight average molecular weight of lignin sulfonic acid or lignin sulfonate is preferably 70000 or less, more preferably 50000 or less, further preferably 40000 or less, particularly preferably 30000 or less, and 20000 or less. Is very preferred. From these viewpoints, the weight average molecular weight of lignin sulfonic acid or lignin sulfonate is preferably 3000 to 70000, more preferably 3000 to 50000, still more preferably 3000 to 40000, particularly preferably 7000 to 30000, and 8000 to 20000. Highly preferred. The weight average molecular weight of lignin sulfonic acid or lignin sulfonate can be measured by the same method as the weight average molecular weight of bisphenol-based resin.
- the content of the component (C) is 0.01% by mass or more in terms of resin solid content, based on the total mass of the negative electrode material, from the viewpoint of further excellent cycle characteristics and discharge characteristics.
- 0.05 mass% or more is more preferable, 0.07 mass% or more is further preferable, and 0.1 mass% or more is particularly preferable.
- the content of the component (C) is 2% by mass or less in terms of resin solids, based on the total mass of the negative electrode material, from the viewpoint of securing sufficient strength of the electrode material and the viewpoint of further excellent charge acceptance.
- the content of the component (C) is preferably 0.01 to 2% by mass, more preferably 0.05 to 1% by mass in terms of resin solid content, based on the total mass of the negative electrode material. 0.05 to 0.6% by mass is further preferred, 0.07 to 0.5% by mass is particularly preferred, 0.07 to 0.3% by mass is very particularly preferred, and 0.1 to 0.3% by mass is extremely preferred. Is preferable.
- a resin composition containing the component (C) (for example, a liquid resin solution at 25 ° C.) may be used.
- the resin composition may further contain a solvent.
- the resin composition may be a reaction product obtained in the resin production process, and is a composition obtained by mixing the component (C) and other components after the resin production process (for example, using the component (C) as a solvent.
- a resin solution obtained by dissolution, and a composition obtained by mixing the component (C) with the component (A) and the component (B) may be used. Aggregation of component (C) is suppressed in a mixture containing component (C) and other components by dissolving component (C) in a solvent (water, etc.) and then mixing with other components before the electrode is manufactured.
- the effect of the component (C) can be easily obtained.
- a solvent water (for example, ion-exchange water) and an organic solvent are mentioned, for example.
- the solvent contained in the resin composition may be a reaction solvent used to obtain the component (C) (such as a bisphenol-based resin).
- the pH of the resin composition (for example, a resin solution that is liquid at 25 ° C.) is greater than 7 (alkaline) from the viewpoint of excellent solubility of the component (C) (bisphenol resin, etc.) in a solvent (water, etc.). Is preferably 7.1 or more.
- the pH of the resin composition is preferably 10 or less, more preferably 9 or less, and even more preferably 8.5 or less, from the viewpoint of excellent workability during electrode material paste preparation.
- the pH of the resin composition is preferably in the above range.
- the pH of the resin composition can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
- the non-volatile content (Nonvolatile Matter content) in the resin composition containing the component (C) is preferably 10% by mass or more, more preferably 15% by mass or more from the viewpoint of further excellent solubility and battery characteristics of the component (C). 20% by mass or more is more preferable. From the same viewpoint, the non-volatile content in the resin composition containing the component (C) is preferably 50% by mass or less, more preferably 45% by mass or less, and further preferably 40% by mass or less.
- the nonvolatile content can be measured, for example, by the following procedure. First, after putting a predetermined amount (for example, 2 g) of a resin composition into a container (for example, a metal petri dish such as a stainless steel petri dish), the resin composition is dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returns to room temperature (for example, 25 ° C.), the residual mass is measured. Then, the nonvolatile content is calculated from the following formula.
- Nonvolatile content (mass%) [(residual mass after drying) / (mass of resin composition before drying)] ⁇ 100
- the positive electrode material contains, for example, a positive electrode active material or a raw material thereof.
- the positive electrode active material preferably contains ⁇ -lead dioxide ( ⁇ -PbO 2 ), and may further contain ⁇ -lead dioxide ( ⁇ -PbO 2 ).
- the raw material for the positive electrode active material preferably contains tribasic lead sulfate.
- the positive electrode material may further contain an additive. Examples of the additive include barium sulfate, carbon material, reinforcing short fiber, and the like, and the same additive as the negative electrode material can be used.
- the method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
- an electrode material paste (a positive electrode material paste and a negative electrode material paste) into a current collector (for example, a cast lattice body and an expanded lattice body), aging and drying are performed to thereby form an unformed electrode.
- a current collector for example, a cast lattice body and an expanded lattice body
- aging and drying are performed to thereby form an unformed electrode.
- an electrode plate is obtained.
- the positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives.
- the negative electrode material paste contains a raw material (lead powder or the like) of the negative electrode active material, and may further contain other additives.
- the negative electrode material paste may contain the component (B) and may contain the component (C) as a dispersant.
- the negative electrode material paste can be obtained, for example, by the following method. First, an additive is added to the raw material (lead powder etc.) of a negative electrode active material, and a mixture is obtained by dry-mixing. Then, dilute sulfuric acid and water are added and kneaded to obtain a negative electrode material paste.
- the component (B) is used as an additive, the component (B) is immersed in water, kneaded and then kneaded, and then mixed with the raw material of the negative electrode active material, thereby suppressing aggregation of the component (B). Since the wettability in the mixture is improved and the resistance component is reduced, the effect of the component (B) is easily obtained.
- An unformed negative electrode plate can be obtained by filling the negative electrode material paste into a current collector (casting grid, expanded grid, etc.) and then aging and drying.
- the negative electrode material contains the following blending amount of barium sulfate, the component (B) and / or the component (C). It is preferable that the negative electrode material obtained by using (for example, the negative electrode material obtained by chemical conversion after aging and drying the negative electrode material paste).
- the compounding amount of barium sulfate is preferably 0.3 to 2% by mass based on the total mass of the negative electrode active material (lead powder, etc.).
- the blending amount of the component (B) is 0.01% by mass or more based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of improving the charge acceptance, discharge characteristics and cycle characteristics in a balanced manner.
- 0.05 mass% or more is more preferable, 0.1 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable.
- the blending amount of the component (B) is 2 masses based on the total mass of the raw materials (lead powder, etc.) of the negative electrode active material from the viewpoint of ensuring sufficient strength of the electrode material and the viewpoint of further excellent charge acceptance.
- the blending amount of the component (B) is preferably 0.5% by mass or less, preferably 0.4% by mass or less, based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further excellent discharge characteristics. More preferred. From these viewpoints, the blending amount of component (B) is preferably 0.01 to 2% by mass, more preferably 0.05 to 2% by mass, based on the total mass of the negative electrode active material (lead powder, etc.).
- 0.1 to 1.9% by mass is more preferable, 0.1 to 1% by mass is particularly preferable, 0.1 to 0.6% by mass is extremely preferable, and 0.1 to 0.5% by mass is very preferable. 0.2 to 0.4 mass% is even more preferable.
- the blending amount of the carbon material (total amount of the carbon material including the component (B)) in the negative electrode material paste is 0.05 to 1.9 mass based on the total mass of the negative electrode active material (lead powder, etc.). % Is preferred.
- Component (C) is blended in an amount of 0.01% by mass or more in terms of resin solids based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of further improving cycle characteristics and discharge characteristics.
- 0.05 mass% or more is more preferable, 0.1 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable.
- the blending amount of the component (C) is a resin solid based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of ensuring sufficient strength of the electrode material and the viewpoint of further excellent charge acceptance.
- the blending amount of the component (C) is preferably 0.01 to 2% by mass in terms of resin solids based on the total mass of the negative electrode active material (lead powder, etc.), 0.05 To 1% by mass is more preferable, 0.05 to 0.6% by mass is further preferable, 0.1 to 0.5% by mass is particularly preferable, 0.1 to 0.3% by mass is extremely preferable, 0.2% Highly preferred is .about.0.3% by weight. Since component (C) tends to be decomposed by chemical conversion, the relative amounts of component (C) and other components may differ before and after chemical conversion.
- the positive electrode material paste can be obtained, for example, by the following method. First, after adding a reinforcing short fiber to a raw material (lead powder or the like) of the positive electrode active material, a positive electrode material paste is obtained by adding dilute sulfuric acid and water and kneading. In producing the positive electrode material paste, red lead (Pb 3 O 4 ) may be added. An unformed positive electrode plate can be obtained by filling the positive electrode material paste into a current collector (casting grid, expanded grid, etc.) and then aging and drying. In the positive electrode material paste, the amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass based on the total mass of the raw material of the positive electrode active material (lead powder or the like). The type of collector, aging conditions or drying conditions are almost the same as in the case of the negative electrode.
- the current collector material examples include a lead-calcium-tin alloy, a lead-calcium alloy, and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these.
- the manufacturing method or material of the current collector for the positive electrode and the negative electrode may be the same as or different from each other.
- aging conditions 15 to 30 hours are preferable in an atmosphere of a temperature of 45 to 65 ° C. and a humidity of 70 to 98 RH%.
- the drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
- the unformed negative electrode and the positive electrode prepared as described above are alternately stacked via separators, and the current collecting portions of the electrodes having the same polarity are connected by a strap (welding or the like) to form an electrode group.
- This electrode group is arranged in a battery case to produce an unformed battery.
- the separator include a microporous polyethylene sheet; a nonwoven fabric made of glass fiber and synthetic resin.
- the lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity.
- the specific gravity (converted to 20 ° C.) of the electrolytic solution (sulfuric acid or the like) before chemical conversion is preferably 1.20 to 1.26.
- the specific gravity (converted to 20 ° C.) of the electrolytic solution (sulfuric acid, etc.) after chemical conversion is preferably 1.26 to 1.30.
- Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material.
- the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after the aging and drying of the electrode manufacturing process (tank chemical conversion).
- ⁇ Bisphenol resin> (Production of bisphenol resin) The following components were charged into a reaction vessel equipped with a stirrer, a reflux device and a temperature controller to obtain a first mixed solution.
- the bisphenol resin contained in the resin solution was isolated by low temperature drying (60 ° C., 6 hours).
- the nonvolatile content of the resin solution was measured by the following procedure. First, 2 g of the resin solution was placed in a 50 ⁇ ⁇ 15 mm container (stainless steel petri dish) and dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returned to room temperature (25 ° C.), the non-volatile content was measured by measuring the residual mass. The measurement result of the nonvolatile content was 30% by mass.
- naphthalenesulfonic acid-based resin naphthalenesulfonic acid polymer
- vanillol HDL-100 Naphthalene sulfonic acid resin, trade name, manufactured by Nippon Paper Industries Co., Ltd., weight average molecular weight: 8000
- lignin sulfonate polymer As lignin sulfonate, sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd., weight average molecular weight: 12000) was prepared.
- Example 1 [Production of negative electrode plate] Based on the total mass of lead powder, the resin solution of the bisphenol-based resin is 0.2% by mass in terms of solid content, oil furnace black (carbon black, manufactured by Lion Corporation, trade name: carbon ECP600JD, average primary particle size) : 20 nm) in terms of solid content and 0.6% by weight of barium sulfate were added to lead powder (average primary particle size: 1 ⁇ m) and then dry mixed. In the above operation, the oil furnace black was immersed in water and mixed with water, and then kneaded, and then the liquid containing the oil furnace black was mixed with the lead powder.
- oil furnace black carbon black, manufactured by Lion Corporation, trade name: carbon ECP600JD, average primary particle size
- barium sulfate barium sulfate
- dilute sulfuric acid (specific gravity 1.26 (converted at 20 ° C.)) and water were added and kneaded to prepare a negative electrode material paste.
- a negative electrode current collector (expanded grid, lead-calcium-tin alloy, thickness: 1.0 mm) was filled with a negative electrode material paste to obtain a negative electrode plate.
- the negative electrode plate was aged in an atmosphere at a temperature of 50 ° C. and a humidity of 95% for 20 hours, and then dried in an atmosphere at a temperature of 50 ° C. to obtain an unformed negative electrode plate.
- the lead acid battery of Example 1 was obtained by adjusting the diluted sulfuric acid to have a specific gravity of 1.28 (converted to 20 ° C.). As shown in Table 1, the content of carbon black is 0.6% by mass and the content of bisphenol-based resin (in terms of solid content) is 0.1% by mass, based on the total mass of the negative electrode material after chemical conversion. Met.
- the resistivity ( ⁇ / cm) of the negative electrode material was calculated as follows. First, the rated capacity was discharged at a rate of 5 hours to obtain a negative electrode material having a charged state of 0%. Next, the terminal of the two-terminal measurement method digital multimeter (product name: TY720, manufactured by Yokogawa Meter & Instruments Co., Ltd.) is measured at the measurement position A at the corner of the negative electrode plate on the ear side, and the measurement at the negative electrode plate Installed at the measurement position B located at the corner of the diagonal position of the position A (installed at the two corners shown in FIG. 4), the resistance between the measurement position A and the measurement position B as the resistance value of the negative electrode plate The value R ( ⁇ ) was measured.
- Examples 2 to 6, Comparative Examples 1 to 5 Lead storage batteries of Examples 2 to 6 and Comparative Examples 1 to 5 were obtained in the same manner as in Example 1 except that the constituent components of the negative electrode material were changed to those shown in Table 1.
- the contents of carbon black, bisphenol-based resin, naphthalenesulfonic acid-based resin, and lignin sulfonate (based on solid content) based on the total mass of the negative electrode material after conversion were the contents shown in Table 1.
- carbon black having a primary particle size of 30 nm trade name: Vulcan XC72 manufactured by Cabot Corporation was used.
- As the carbon black having a primary particle size of 40 nm powdery carbon black having a trade name: Denka Black manufactured by Denka Co., Ltd. was used.
- discharge characteristics As discharge characteristics, a constant current discharge was performed at ⁇ 15 ° C. at 5 C, and the discharge duration until the battery voltage reached 1.0 V was measured. The longer the discharge duration, the better the battery.
- the C is a relative representation of the magnitude of current when the rated capacity is discharged at a constant current from a fully charged state. For example, a current that can discharge the rated capacity in 1 hour is expressed as 1 C, and a current that can be discharged in 2 hours is expressed as 0.5 C.
- SYMBOLS 1 Lead acid battery, 2 ... Battery case, 3 ... Lid, 4 ... Positive electrode terminal, 5 ... Negative electrode terminal, 6 ... Liquid port stopper, 11 ... Electrode plate group, 12 ... Positive electrode plate, 13 ... Negative electrode plate, 14 ... Separator, DESCRIPTION OF SYMBOLS 15 ... Positive electrode side strap, 16 ... Negative electrode side strap, 17 ... Inter-cell connection part, 18 ... Polar pole, 22, 32 ... Current collection part.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
This lead storage battery is provided with a positive plate 12 and a negative plate 13, the negative plate 13 has a current collector, and a negative electrode material held by the current collector, and when the charging status is 0 %, the resistivity of the negative electrode material is 1.02 Ω/cm or lower.
Description
本発明は、鉛蓄電池に関する。
The present invention relates to a lead storage battery.
鉛蓄電池は、安価で信頼性が高いという特徴を有するため、自動車始動用の動力源又は電動車両(ゴルフカート等)の動力源の電源、産業機器(無停電電源装置等)の電源などとして広く使用されている。
Lead-acid batteries are inexpensive and highly reliable, so they are widely used as power sources for starting automobiles, power sources for electric vehicles (golf carts, etc.), power supplies for industrial equipment (uninterruptible power supplies, etc.), etc. in use.
近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えばマイクロハイブリッド車(マイクロハイブリッドシステム車)が検討されている。マイクロハイブリッド車としては、例えば、エンジンの動作時間を少なくするアイドリングストップ車(以下、「ISS車」という)、及び、エンジンの動力によるオルタネータ(発電機)の発電を低減する発電制御車が検討されている。
In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution or global warming. For example, micro-hybrid vehicles (micro-hybrid system vehicles) are being studied as vehicles that have taken measures to improve fuel efficiency. As the micro hybrid vehicle, for example, an idling stop vehicle (hereinafter referred to as “ISS vehicle”) that reduces the operating time of the engine, and a power generation control vehicle that reduces the power generation of an alternator (generator) by the power of the engine are considered. ing.
ISS車に搭載される鉛蓄電池では、従来の鉛蓄電池とは基本的に使用方法が異なる。従来の鉛蓄電池は、始動時のみ大電流を流し、その後はオルタネータからの充電により満充電状態で使用されてきた。
In lead acid batteries installed in ISS cars, the usage method is basically different from conventional lead acid batteries. Conventional lead-acid batteries have been used in a fully charged state by charging from an alternator after passing a large current only at the start.
ISS車では、エンジンの始動回数が多くなるため、鉛蓄電池の大電流放電が繰り返される。また、ISS車、発電制御車等のマイクロハイブリッド車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるため充電が不充分となる。前記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。
In ISS cars, the number of engine starts increases, so the large current discharge of the lead storage battery is repeated. In addition, in micro hybrid vehicles such as ISS vehicles and power generation control vehicles, the amount of power generated by the alternator is reduced, and lead storage batteries are charged intermittently, so that charging is insufficient. The lead-acid battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge).
また、近年、欧州では、マイクロハイブリッド車の制御に則した充電性として、充放電サイクル中における鉛蓄電池の充電性が重要視されており、このような形態のDCA(Dynamic Charge Acceptance)評価が規格化されつつある。
In recent years, in Europe, the chargeability of lead-acid batteries during charge / discharge cycles is regarded as important as the chargeability according to the control of micro hybrid vehicles, and this form of DCA (Dynamic Charge Acceptance) evaluation is the standard. It is becoming.
ISS車に必要とされる鉛蓄電池は、以下の特性を有している必要がある。
1)鉛蓄電池が消費した電力を直ちに充電して所定のPSOC状態を維持できる高速充電性能、及び、ブレーキ回生エネルギーをオルタネータからの出力電流から受け入れて電池に蓄えるために必要な充電受け入れ性
2)PSOCの使用環境下で充分な寿命を有する高耐久性 A lead storage battery required for an ISS vehicle needs to have the following characteristics.
1) High-speed charging performance that can immediately charge the power consumed by the lead-acid battery and maintain the specified PSOC state, and the charge acceptance required to receive the brake regenerative energy from the output current from the alternator and store it in the battery 2) High durability with sufficient life under PSOC usage environment
1)鉛蓄電池が消費した電力を直ちに充電して所定のPSOC状態を維持できる高速充電性能、及び、ブレーキ回生エネルギーをオルタネータからの出力電流から受け入れて電池に蓄えるために必要な充電受け入れ性
2)PSOCの使用環境下で充分な寿命を有する高耐久性 A lead storage battery required for an ISS vehicle needs to have the following characteristics.
1) High-speed charging performance that can immediately charge the power consumed by the lead-acid battery and maintain the specified PSOC state, and the charge acceptance required to receive the brake regenerative energy from the output current from the alternator and store it in the battery 2) High durability with sufficient life under PSOC usage environment
前記1)について、ISS車のオルタネータの出力電流は、従来の鉛蓄電池の充電受け入れ性を超える性能を有する。ISS車に搭載される鉛蓄電池は、オルタネータの出力電流を電池に充分受け入れきれる特性を有することが理想的である。
Regarding 1) above, the output current of the alternator of the ISS car has performance exceeding the charge acceptability of the conventional lead-acid battery. Ideally, the lead-acid battery mounted on the ISS vehicle has a characteristic that the output current of the alternator can be sufficiently received by the battery.
前記2)について、鉛蓄電池は、PSOC下で使用されると、満充電状態で使用される場合よりも早期寿命に陥りやすくなる傾向がある。PSOC下で使われると寿命が短くなる理由として、下記の理由が推測される。
Regarding the above 2), when the lead storage battery is used under PSOC, it tends to fall into an early life more easily than when it is used in a fully charged state. The following reason is presumed as the reason why the life is shortened when used under PSOC.
完全な充電が行われず充電が不足した状態で鉛蓄電池が使用される場合には、電池内の電極(極板等)における上部と下部との間で、希硫酸(電解液)の濃淡差が生じる成層化現象が起こる。これは、充電反応の際に極板上部から生じる硫酸イオンが下部に落ちることから生じる。また、完全な充電が行われる場合には、その充電末期のガス発生(ガッシング)により電解液の撹拌が行われる。しかし、部分充電ではそのようなガッシングが起こらないので、電解液の上部と下部の撹拌が不充分になることから濃度が不均一になり、成層化が更に進行する。この場合、電極下部の希硫酸の濃度が高くなり、サルフェーションと呼ばれる硫酸鉛の粗大化現象が放電の際に負極(負極板等)で起こる。サルフェーションは、放電生成物である硫酸鉛が充電状態(充電生成物である金属鉛)に戻りにくい現象である。そのため、サルフェーションが起きると、電極下部の反応性が低下し、電極上部のみが集中的に反応するようになる。その結果、電極上部において、活物質間の結びつきが弱くなる等の劣化が進み、集電体から活物質が剥離して早期寿命に至る。
When lead-acid batteries are used without being fully charged and insufficiently charged, there is a difference in the concentration of dilute sulfuric acid (electrolyte) between the top and bottom of the electrodes (electrode plates, etc.) in the battery. The resulting stratification phenomenon occurs. This occurs because sulfate ions generated from the upper part of the electrode plate during the charging reaction fall to the lower part. Moreover, when complete charge is performed, the electrolyte solution is stirred by gas generation (gassing) at the end of the charge. However, since such gassing does not occur in partial charging, the upper and lower portions of the electrolytic solution are not sufficiently stirred, resulting in uneven concentration and further stratification. In this case, the concentration of dilute sulfuric acid in the lower part of the electrode is increased, and a lead sulfate coarsening phenomenon called sulfation occurs in the negative electrode (eg, negative electrode plate) during discharge. Sulfation is a phenomenon in which lead sulfate, which is a discharge product, is unlikely to return to a charged state (metal lead, which is a charge product). Therefore, when sulfation occurs, the reactivity of the lower part of the electrode decreases, and only the upper part of the electrode reacts intensively. As a result, deterioration such as weakening of the connection between the active materials progresses in the upper part of the electrode, and the active material is peeled off from the current collector, leading to an early life.
この場合、鉛蓄電池の寿命を延ばすためにも、充電受け入れ性を向上させて、充電が過度に不足している状態で充放電が繰り返されることを防ぎ、充放電の繰り返しにより硫酸鉛が粗大化することを抑制する必要がある。これに対し、鉛蓄電池の充電受け入れ性を向上させるため、下記特許文献1及び2には、負極活物質と、ビスフェノール類、アミノベンゼンスルホン酸及びホルムアルデヒドの縮合物とを用いることが開示されている。
In this case, in order to extend the life of the lead-acid battery, the charge acceptability is improved to prevent repeated charging / discharging in a state where charging is excessively insufficient, and lead sulfate becomes coarse due to repeated charging / discharging. It is necessary to suppress that. On the other hand, in order to improve the charge acceptability of the lead storage battery, Patent Documents 1 and 2 below disclose the use of a negative electrode active material and a condensate of bisphenols, aminobenzenesulfonic acid and formaldehyde. .
鉛蓄電池に対しては、充電受け入れ性を更に向上させることが求められており、例えば、自動車システムの進歩に伴う更なる燃費向上のため、自動車用鉛蓄電池に対して、PSOC下で使用された場合の充電受け入れ性を更に向上させることが求められている。
For lead-acid batteries, it is required to further improve the charge acceptability. For example, in order to further improve fuel efficiency accompanying the advancement of automobile systems, lead-acid batteries were used under PSOC for automobile lead-acid batteries. There is a need to further improve the charge acceptability.
本発明は、前記事情を鑑みてなされたものであり、優れた充電受け入れ性を得ることが可能な鉛特電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a lead special battery capable of obtaining excellent charge acceptability.
本発明者らは、鋭意検討の結果、充電状態が0%であるときの負極材の抵抗率が特定範囲である場合に前記課題を解決し得ることを見出した。
As a result of intensive studies, the present inventors have found that the above problem can be solved when the resistivity of the negative electrode material is 0% when the state of charge is 0%.
すなわち、本発明に係る鉛蓄電池は、正極及び負極を備え、前記負極が、集電体と、当該集電体に保持された負極材と、を有し、充電状態が0%であるときの前記負極材の抵抗率が1.02Ω/cm以下である。
That is, the lead storage battery according to the present invention includes a positive electrode and a negative electrode, and the negative electrode includes a current collector and a negative electrode material held by the current collector, and the state of charge is 0%. The resistivity of the negative electrode material is 1.02 Ω / cm or less.
本発明に係る鉛蓄電池によれば、優れた充電受け入れ性を得ることが可能であり、特に、PSOC下での優れた充電受け入れ性を得ることができる。
According to the lead storage battery of the present invention, it is possible to obtain excellent charge acceptability, and in particular, it is possible to obtain excellent charge acceptability under PSOC.
また、本発明者らの鋭意検討の結果、前記特許文献1に記載の鉛蓄電池用負極を用いた場合にPSOC下での充分なサイクル寿命特性(以下、「サイクル特性」という)が得られないことが明らかとなった。これに対し、本発明に係る鉛蓄電池によれば、優れた充電受け入れ性及びサイクル特性を得ることが可能であり、特に、PSOC下での優れた充電受け入れ性及びサイクル特性を得ることができる。さらに、本発明に係る鉛蓄電池によれば、優れた充電受け入れ性及びサイクル特性と、他の優れた電池特性(放電特性等)とを両立することができる。
Further, as a result of intensive studies by the present inventors, sufficient cycle life characteristics under PSOC (hereinafter referred to as “cycle characteristics”) cannot be obtained when the negative electrode for a lead storage battery described in Patent Document 1 is used. It became clear. On the other hand, according to the lead storage battery according to the present invention, it is possible to obtain excellent charge acceptability and cycle characteristics, and in particular, it is possible to obtain excellent charge acceptability and cycle characteristics under PSOC. Furthermore, according to the lead storage battery according to the present invention, it is possible to achieve both excellent charge acceptability and cycle characteristics and other excellent battery characteristics (such as discharge characteristics).
前記負極材は、カーボンブラックを含有することが好ましい。前記カーボンブラックの平均一次粒子径は、50nm以下であることが好ましい。前記カーボンブラックの含有量は、前記負極材の全質量を基準として0.05~2質量%であることが好ましい。
The negative electrode material preferably contains carbon black. The average primary particle size of the carbon black is preferably 50 nm or less. The carbon black content is preferably 0.05 to 2% by mass based on the total mass of the negative electrode material.
前記負極材は、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を含有することが好ましい。前記樹脂は、ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応に由来する構造単位を有するビスフェノール系樹脂を含むことが好ましく、ビスフェノール系化合物と、アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応に由来する構造単位を有するビスフェノール系樹脂を含むことがより好ましい。
The negative electrode material preferably contains a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group. The resin is selected from the group consisting of bisphenol compounds, at least one selected from the group consisting of aminoalkyl sulfonic acids, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acids and aminoaryl sulfonic acid derivatives, and formaldehyde and formaldehyde derivatives. It is preferable to include a bisphenol-based resin having a structural unit derived from the reaction of at least one, and at least one selected from the group consisting of a bisphenol-based compound, aminobenzenesulfonic acid and an aminobenzenesulfonic acid derivative, formaldehyde and formaldehyde It is more preferable to include a bisphenol-based resin having a structural unit derived from the reaction with at least one selected from the group consisting of derivatives.
本発明によれば、優れた充電受け入れ性を得ることができる。特に、本発明によれば、PSOC下での優れた充電受け入れ性を得ることができる。また、本発明によれば、優れた充電受け入れ性及びサイクル特性と、他の優れた電池特性(放電特性等)とを両立することができる。
According to the present invention, excellent charge acceptability can be obtained. In particular, according to the present invention, excellent charge acceptability under PSOC can be obtained. In addition, according to the present invention, it is possible to achieve both excellent charge acceptability and cycle characteristics and other excellent battery characteristics (such as discharge characteristics).
本発明によれば、過酷な環境で使用されるISS車に用いられる鉛蓄電池として、充分満足し得る鉛蓄電池を提供することができる。本発明によれば、ISS車の鉛蓄電池において充電受け入れ性を向上させることで燃費向上効果を得ることができる。
According to the present invention, a lead storage battery that can be satisfactorily satisfied can be provided as a lead storage battery used in an ISS vehicle used in a harsh environment. ADVANTAGE OF THE INVENTION According to this invention, the fuel consumption improvement effect can be acquired by improving charge acceptance in the lead acid battery of an ISS car.
以下、本発明の実施形態について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail.
本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” only needs to include either A or B, and may include both. The materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
<鉛蓄電池>
本実施形態に係る鉛蓄電池は、電極、電解液(硫酸等)及びセパレータを備えている。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。 <Lead battery>
The lead storage battery according to the present embodiment includes an electrode, an electrolytic solution (such as sulfuric acid), and a separator. Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable.
本実施形態に係る鉛蓄電池は、電極、電解液(硫酸等)及びセパレータを備えている。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。 <Lead battery>
The lead storage battery according to the present embodiment includes an electrode, an electrolytic solution (such as sulfuric acid), and a separator. Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable.
電極は、集電体と、当該集電体に保持された電極材と、を有する。電極が未化成である場合、電極は、例えば、電極活物質の原料等を含む電極材(電極層、活物質層)と、当該電極材を保持する集電体と、を有している。化成後の電極は、例えば、電極活物質等を含む電極材(電極層、活物質層)と、当該電極材を保持する集電体と、を有している。
The electrode has a current collector and an electrode material held by the current collector. When the electrode is not formed, the electrode includes, for example, an electrode material (electrode layer, active material layer) containing a raw material for the electrode active material, and a current collector that holds the electrode material. The electrode after the formation includes, for example, an electrode material (electrode layer, active material layer) containing an electrode active material and the like, and a current collector that holds the electrode material.
本実施形態に係る鉛蓄電池は、電極として正極(正極板等)及び負極(負極板等)を備える。正極は、集電体と、当該集電体に保持された正極材と、を有する。負極は、集電体と、当該集電体に保持された負極材と、を有する。本実施形態に係る鉛蓄電池は、例えば、化成後の電極を備えている。
The lead storage battery according to the present embodiment includes a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like) as electrodes. The positive electrode includes a current collector and a positive electrode material held by the current collector. The negative electrode includes a current collector and a negative electrode material held by the current collector. The lead storage battery according to the present embodiment includes, for example, an electrode after chemical conversion.
図1は、鉛蓄電池の一例を示す斜視図である。図1に示す鉛蓄電池1は、液式鉛蓄電池である。図2は、鉛蓄電池1の内部構造の一部を示す斜視図である。鉛蓄電池1は、上面が開口して複数の極板群11が格納される電槽2と、電槽2の開口を閉じる蓋3とを備えている。蓋3は、例えば、正極端子4と、負極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とを備えている。電槽2には、電解液(不図示)が収容されている。
FIG. 1 is a perspective view showing an example of a lead storage battery. A lead storage battery 1 shown in FIG. 1 is a liquid lead storage battery. FIG. 2 is a perspective view showing a part of the internal structure of the lead storage battery 1. The lead storage battery 1 includes a battery case 2 in which an upper surface is opened and a plurality of electrode plate groups 11 are stored, and a lid 3 that closes the opening of the battery case 2. The lid 3 includes, for example, a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3. The battery case 2 contains an electrolyte (not shown).
極板群は、セパレータと、セパレータを介して交互に積層された正極板及び負極板とを有する。図3は、極板群の一例を示す斜視図である。図2及び図3に示すように、極板群11は、例えば、正極板12と、負極板13と、袋状のセパレータ14と、正極側ストラップ15と、負極側ストラップ16と、セル間接続部17と、極柱18とを備えている。正極板12及び負極板13の上側周縁部には、耳部と呼ばれる集電部22及び集電部32が設けられている。
The electrode plate group includes a separator and a positive electrode plate and a negative electrode plate that are alternately stacked via the separator. FIG. 3 is a perspective view showing an example of the electrode plate group. 2 and 3, the electrode plate group 11 includes, for example, a positive electrode plate 12, a negative electrode plate 13, a bag-like separator 14, a positive electrode side strap 15, a negative electrode side strap 16, and an inter-cell connection. A portion 17 and a pole column 18 are provided. On the upper peripheral edge of the positive electrode plate 12 and the negative electrode plate 13, a current collector 22 and a current collector 32 called ears are provided.
本実施形態に係る鉛蓄電池において、充電状態(SOC:State of charge)が0%であるとき(定格容量を放電したとき)の負極材の抵抗率は、1.02Ω/cm以下である。これにより、優れた充電受け入れ性、サイクル特性及び放電特性を得ることができる。このような効果が得られる原因は明らかではないが、本発明者らは次のように推測する。すなわち、鉛蓄電池の負極は充電時に海綿状鉛を含み、放電することで、結晶性の不導体である硫酸鉛が負極で生成する。海綿状鉛に対して硫酸鉛の割合が増えていくことで負極の電極電位が上がり、電池電圧が低下する。完全放電時では、活物質における硫酸鉛の割合が増えるため、負極材の抵抗率が高くなり、充電されにくい状態となる。この場合、充電状態が0%であるとき(完全放電時)の負極材の抵抗率が前記特定値以下であることによって充電しやすくなり、優れた電池特性が得られると推測される。
In the lead-acid battery according to the present embodiment, the resistivity of the negative electrode material when the state of charge (SOC: State of charge) is 0% (when the rated capacity is discharged) is 1.02 Ω / cm or less. Thereby, it is possible to obtain excellent charge acceptability, cycle characteristics, and discharge characteristics. The reason why such an effect is obtained is not clear, but the present inventors presume as follows. That is, the negative electrode of the lead storage battery contains spongy lead during charging, and discharge causes lead sulfate, which is a crystalline nonconductor, to be generated at the negative electrode. As the ratio of lead sulfate to spongy lead increases, the electrode potential of the negative electrode increases and the battery voltage decreases. At the time of complete discharge, since the ratio of lead sulfate in the active material increases, the resistivity of the negative electrode material increases and it becomes difficult to be charged. In this case, it is presumed that when the state of charge is 0% (during complete discharge), the negative electrode material has a resistivity equal to or lower than the specific value, so that charging becomes easy and excellent battery characteristics can be obtained.
充電状態が0%であるときの負極材の抵抗率は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、1.01Ω/cm以下が好ましく、1.00Ω/cm以下がより好ましく、1.00Ω/cm未満が更に好ましく、0.95Ω/cm以下が特に好ましく、0.85Ω/cm以下が極めて好ましく、0.70Ω/cm以下が非常に好ましく、0.60Ω/cm以下がより一層好ましい。負極材の抵抗率は、負極材の構成成分の含有量及び粒子径等により調整することができる。
The resistivity of the negative electrode material when the state of charge is 0% is preferably 1.01 Ω / cm or less, more preferably 1.00 Ω / cm or less, from the viewpoint of improving charge acceptance, discharge characteristics, and cycle characteristics in a well-balanced manner. Preferably, less than 1.00 Ω / cm is more preferable, 0.95 Ω / cm or less is particularly preferable, 0.85 Ω / cm or less is very preferable, 0.70 Ω / cm or less is very preferable, and 0.60 Ω / cm or less is preferable. Even more preferred. The resistivity of the negative electrode material can be adjusted by the content of the constituent components of the negative electrode material, the particle diameter, and the like.
負極材の抵抗率(Ω/cm)は、例えば、次のように算出できる。まず、定格容量を5時間率で放電し、充電状態が0%である負極材を得る。次に、二端子測定法デジタルマルチメータ(例えば、横河メータ&インスツルメンツ株式会社製、商品名:TY720)の端子を、負極における耳部側の角部に位置する測定位置Aと、負極における測定位置Aの対角位置の角部に位置する測定位置Bとに設置し、負極の抵抗値として測定位置Aと測定位置Bとの間の抵抗値R(Ω)を測定する。測定位置A及びBとしては、例えば、負極材の最長径(対角線等)における両端からそれぞれ10%の距離の位置が挙げられる。続いて、抵抗値Rを測定位置Aと測定位置Bとの間の距離(cm)で割った値を負極の抵抗率R1(Ω/cm)として得る。次に、負極から負極材を除去した後、前記と同様に負極集電体の抵抗値を測定し、負極集電体の抵抗率R2(Ω/cm)を得る。その後、負極の抵抗率R1(Ω/cm)から負極集電体の抵抗率R2(Ω/cm)を差し引いた値(R1-R2)を負極材の抵抗率(Ω/cm)として得る。
The resistivity (Ω / cm) of the negative electrode material can be calculated as follows, for example. First, the rated capacity is discharged at a rate of 5 hours to obtain a negative electrode material having a charged state of 0%. Next, the terminal of a two-terminal measurement method digital multimeter (for example, product name: TY720, manufactured by Yokogawa Meter & Instruments Co., Ltd.) is measured at the measurement position A at the corner on the ear side of the negative electrode and at the negative electrode. A resistance value R (Ω) between the measurement position A and the measurement position B is measured as a resistance value of the negative electrode, installed at the measurement position B located at the corner of the diagonal position of the position A. As the measurement positions A and B, for example, positions at a distance of 10% from both ends of the longest diameter (diagonal line or the like) of the negative electrode material can be mentioned. Subsequently, a value obtained by dividing the resistance value R by the distance (cm) between the measurement position A and the measurement position B is obtained as the negative electrode resistivity R1 (Ω / cm). Next, after removing the negative electrode material from the negative electrode, the resistance value of the negative electrode current collector is measured in the same manner as described above to obtain the resistivity R2 (Ω / cm) of the negative electrode current collector. Thereafter, a value (R1-R2) obtained by subtracting the resistivity R2 (Ω / cm) of the negative electrode current collector from the resistivity R1 (Ω / cm) of the negative electrode is obtained as the resistivity (Ω / cm) of the negative electrode material.
(負極材)
負極材は、例えば、(A)負極活物質又はその原料(以下、場合により「(A)成分」という)を含有する。負極活物質としては、海綿状鉛(spongy lead)等が挙げられる。負極活物質の原料は、例えば、塩基性硫酸鉛、金属鉛及び低級酸化物から構成される。 (Negative electrode material)
The negative electrode material contains, for example, (A) a negative electrode active material or a raw material thereof (hereinafter sometimes referred to as “component (A)”). Examples of the negative electrode active material include spongy lead. The raw material for the negative electrode active material is composed of, for example, basic lead sulfate, metal lead, and a lower oxide.
負極材は、例えば、(A)負極活物質又はその原料(以下、場合により「(A)成分」という)を含有する。負極活物質としては、海綿状鉛(spongy lead)等が挙げられる。負極活物質の原料は、例えば、塩基性硫酸鉛、金属鉛及び低級酸化物から構成される。 (Negative electrode material)
The negative electrode material contains, for example, (A) a negative electrode active material or a raw material thereof (hereinafter sometimes referred to as “component (A)”). Examples of the negative electrode active material include spongy lead. The raw material for the negative electrode active material is composed of, for example, basic lead sulfate, metal lead, and a lower oxide.
負極材は、添加剤を含有することができる。添加剤としては、硫酸バリウム、炭素材料(炭素繊維を除く)、補強用短繊維、スルホン基(スルホン酸基、スルホ基)及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂(以下、「スルホン基及び/又はスルホン酸塩基を有する樹脂」という)等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(オイルファーネスブラック等)、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック等が挙げられる。カーボンブラックとしては、非晶質のカーボンブラックを用いることができる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
The negative electrode material can contain an additive. As an additive, a resin having at least one selected from the group consisting of barium sulfate, carbon materials (excluding carbon fibers), reinforcing short fibers, sulfone groups (sulfonic acid groups, sulfo groups) and sulfonate groups (hereinafter referred to as “additives”) For example, “resin having a sulfone group and / or a sulfonate group”). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black (oil furnace black, etc.), channel black, acetylene black, thermal black, ketjen black and the like. As carbon black, amorphous carbon black can be used. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
負極材は、更に優れた充電受け入れ性、サイクル特性及び放電特性が得られる観点から、(B)カーボンブラック(以下、場合により「(B)成分」という)を含有することが好ましい。負極材が導電性のカーボンブラックを含有することで、完全放電時に生成する硫酸鉛を充電時に金属鉛に戻す際に活物質の電気抵抗が下がることにより充電しやすくなることから、更に優れた充電受け入れ性、サイクル特性及び放電特性が得られると推測される。
The negative electrode material preferably contains (B) carbon black (hereinafter, sometimes referred to as “component (B)”) from the viewpoint of obtaining further excellent charge acceptability, cycle characteristics, and discharge characteristics. Since the negative electrode material contains conductive carbon black, it becomes easier to charge by reducing the electrical resistance of the active material when lead sulfate generated at the time of complete discharge is returned to metallic lead at the time of charging, so even better charging It is assumed that acceptability, cycle characteristics and discharge characteristics are obtained.
(B)成分の平均一次粒子径(負極材に含まれている(B)成分の平均一次粒子径)は、サイクル特性、放電特性及び充電受け入れ性が更に向上する観点から、50nm以下が好ましく、40nm以下がより好ましく、30nm以下が更に好ましい。(B)成分の平均一次粒子径は、製造時に取り扱いやすい観点、及び、負極材中における分散性に優れる観点から、20nm以上が好ましい。
The average primary particle size of the component (B) (the average primary particle size of the component (B) contained in the negative electrode material) is preferably 50 nm or less from the viewpoint of further improving cycle characteristics, discharge characteristics, and charge acceptability. 40 nm or less is more preferable, and 30 nm or less is still more preferable. The average primary particle diameter of the component (B) is preferably 20 nm or more from the viewpoint of easy handling during production and excellent dispersibility in the negative electrode material.
(B)成分の平均一次粒子径は、例えば、(B)成分の粒子を基板に蒸着させた後、前記基板の中央部の縦100μm×横100μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さ(最大一次粒子径)の値を算術平均化した数値として得ることができる。なお、平均一次粒子径が小さい場合(例えば、平均一次粒子径が0.1μm以下であると予想できる場合)は、縦1μm×横1μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さの値を算術平均化した数値として得ることができる。また、平均一次粒子径を自動的に求める方法として、二次元画像の画像解析ソフト(住友金属テクノロジー株式会社製、粒子解析Ver3.5)を用いることもできる。
The average primary particle diameter of the component (B) is, for example, in the image of the scanning electron micrograph in the range of 100 μm in length × 100 μm in the center of the substrate after depositing the particles of the component (B) on the substrate. The value of the long side length (maximum primary particle diameter) of all particles can be obtained as a numerical value obtained by arithmetic averaging. When the average primary particle size is small (for example, when the average primary particle size can be expected to be 0.1 μm or less), all the particles in the scanning electron micrograph image in the range of 1 μm in length × 1 μm in width. Can be obtained as a numerical value obtained by arithmetically averaging the long side length values of. In addition, as a method for automatically obtaining the average primary particle size, image analysis software for two-dimensional images (manufactured by Sumitomo Metal Technology Co., Ltd., particle analysis Ver3.5) can be used.
(B)成分を用いる場合、(B)成分の含有量は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、負極材の全質量を基準として、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましい。(B)成分の含有量は、電極材の充分な強度を確保する観点、及び、充電受け入れ性に更に優れる観点から、負極材の全質量を基準として、2質量%以下が好ましく、1.9質量%以下がより好ましく、1質量%以下が更に好ましく、0.6質量%以下が特に好ましい。(B)成分の含有量は、放電特性に更に優れる観点から、負極材の全質量を基準として、0.5質量%以下が好ましく、0.4質量%以下がより好ましい。これらの観点から、(B)成分の含有量は、負極材の全質量を基準として、0.01~2質量%が好ましく、0.05~2質量%がより好ましく、0.1~1.9質量%が更に好ましく、0.1~1質量%が特に好ましく、0.1~0.6質量%が極めて好ましく、0.1~0.5質量%が非常に好ましく、0.2~0.4質量%がより一層好ましい。
In the case of using the component (B), the content of the component (B) is 0.01% by mass or more based on the total mass of the negative electrode material from the viewpoint of improving charge acceptance, discharge characteristics, and cycle characteristics in a balanced manner. Preferably, 0.05 mass% or more is more preferable, 0.1 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable. The content of the component (B) is preferably 2% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of securing sufficient strength of the electrode material and further excellent in charge acceptance. More preferably, it is more preferably 1% by mass or less, and particularly preferably 0.6% by mass or less. The content of the component (B) is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of further improving discharge characteristics. From these viewpoints, the content of the component (B) is preferably 0.01 to 2% by mass, more preferably 0.05 to 2% by mass, based on the total mass of the negative electrode material, and 0.1 to 1%. 9% by mass is more preferable, 0.1-1% by mass is particularly preferable, 0.1-0.6% by mass is very preferable, 0.1-0.5% by mass is very preferable, and 0.2-0 4% by mass is even more preferable.
負極材は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、(C)スルホン基(-SO3H)及び/又はスルホン酸塩基を有する樹脂(以下、場合により「(C)成分」という)を含有することが好ましい。(C)成分は、界面活性剤として用いることができる。負極材が(C)成分を含有することにより充電受け入れ性、放電特性及びサイクル特性をバランス良く向上させることができる理由は、明らかではないが、負極活物質を形成する金属鉛に(C)成分が強く吸着することで、金属鉛の凝集が抑制され、負極材が高比表面積な状態で維持されるためと本発明者らは推測している。
The negative electrode material is made of (C) a resin having a sulfone group (—SO 3 H) and / or a sulfonate group (hereinafter, “(C) It is preferable to contain “component”. Component (C) can be used as a surfactant. The reason why the negative electrode material contains the component (C) can improve the charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner is not clear, but the metal lead forming the negative electrode active material has the component (C). The present inventors presume that by strongly adsorbing, the aggregation of metallic lead is suppressed and the negative electrode material is maintained in a state with a high specific surface area.
(C)成分としては、ビスフェノール系樹脂、ナフタレンスルホン酸系樹脂(ビスフェノール系樹脂に該当する樹脂を除く)、リグニンスルホン酸、リグニンスルホン酸塩等が挙げられる。リグニンスルホン酸塩としては、リグニンスルホン酸のアルカリ金属塩等が挙げられる。アルカリ金属塩としては、ナトリウム塩、カリウム塩等が挙げられる。
Examples of the component (C) include bisphenol resins, naphthalenesulfonic acid resins (excluding resins corresponding to bisphenol resins), lignin sulfonic acids, lignin sulfonates, and the like. Examples of lignin sulfonate include alkali metal salts of lignin sulfonic acid. Examples of the alkali metal salt include sodium salt and potassium salt.
(C)成分は、充電受け入れ性が更に向上する観点から、ビスフェノール系樹脂を含むことが好ましく、(c1)ビスフェノール系化合物(以下、場合により「(c1)成分」という)と、(c2)アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種の化合物(以下、場合により「(c2)成分」という)と、(c3)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種の化合物(以下、場合により「(c3)成分」という)と、の反応に由来する構造単位を有するビスフェノール系樹脂を含むことがより好ましい。(c1)成分、(c2)成分及び(c3)成分の反応に由来する構造単位を有するビスフェノール系樹脂は、(c1)成分、(c2)成分及び(c3)成分の縮合物として得ることができる。
The component (C) preferably contains a bisphenol-based resin from the viewpoint of further improving the charge acceptance, and (c1) a bisphenol-based compound (hereinafter referred to as “(c1) component” in some cases) and (c2) amino At least one compound selected from the group consisting of alkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative (hereinafter sometimes referred to as “component (c2)”), (c3) formaldehyde and It is more preferable to include a bisphenol-based resin having a structural unit derived from the reaction of at least one compound selected from the group consisting of formaldehyde derivatives (hereinafter sometimes referred to as “component (c3)”). The bisphenol resin having a structural unit derived from the reaction of the component (c1), the component (c2) and the component (c3) can be obtained as a condensate of the component (c1), the component (c2) and the component (c3). .
[(c1)成分:ビスフェノール系化合物]
(c1)成分は、2個のヒドロキシフェニル基を有する化合物である。(c1)成分としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)等が挙げられる。(c1)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c1)成分としては、充電受け入れ性に更に優れる観点からはビスフェノールAが好ましく、放電特性に更に優れる観点からはビスフェノールSが好ましい。 [(C1) component: bisphenol compound]
The component (c1) is a compound having two hydroxyphenyl groups. Component (c1) includes 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane. 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4- Hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter, "Bisphenol S"). (C1) A component can be used individually by 1 type or in combination of 2 or more types. As the component (c1), bisphenol A is preferable from the viewpoint of further excellent charge acceptance, and bisphenol S is preferable from the viewpoint of further excellent discharge characteristics.
(c1)成分は、2個のヒドロキシフェニル基を有する化合物である。(c1)成分としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)等が挙げられる。(c1)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c1)成分としては、充電受け入れ性に更に優れる観点からはビスフェノールAが好ましく、放電特性に更に優れる観点からはビスフェノールSが好ましい。 [(C1) component: bisphenol compound]
The component (c1) is a compound having two hydroxyphenyl groups. Component (c1) includes 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane. 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4- Hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter, "Bisphenol S"). (C1) A component can be used individually by 1 type or in combination of 2 or more types. As the component (c1), bisphenol A is preferable from the viewpoint of further excellent charge acceptance, and bisphenol S is preferable from the viewpoint of further excellent discharge characteristics.
(c1)成分におけるビスフェノールAの割合は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、(c1)成分の全量を基準として、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましく、95モル%以上が特に好ましい。(c1)成分は、ビスフェノールAからなる態様(実質的に(c1)成分の100モル%がビスフェノールAである態様)であってもよい。
The proportion of bisphenol A in the component (c1) is preferably 50 mol% or more, preferably 70 mol% or more, based on the total amount of the component (c1), from the viewpoint that the cycle characteristics, discharge characteristics, and charge acceptance are easily improved in a balanced manner. Is more preferable, 90 mol% or more is further preferable, and 95 mol% or more is particularly preferable. The component (c1) may be an embodiment composed of bisphenol A (an embodiment in which 100 mol% of the component (c1) is substantially bisphenol A).
((c2)成分:アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体)
アミノアルキルスルホン酸としては、アミノメタンスルホン酸、2-アミノエタンスルホン酸、3-アミノプロパンスルホン酸、2-メチルアミノエタンスルホン酸等が挙げられる。 ((C2) component: aminoalkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative)
Examples of the aminoalkylsulfonic acid include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
アミノアルキルスルホン酸としては、アミノメタンスルホン酸、2-アミノエタンスルホン酸、3-アミノプロパンスルホン酸、2-メチルアミノエタンスルホン酸等が挙げられる。 ((C2) component: aminoalkylsulfonic acid, aminoalkylsulfonic acid derivative, aminoarylsulfonic acid and aminoarylsulfonic acid derivative)
Examples of the aminoalkylsulfonic acid include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
アミノアルキルスルホン酸誘導体としては、アミノアルキルスルホン酸の少なくとも一部の水素原子がアルキル基(例えば、炭素数1~5のアルキル基)等で置換された化合物、アミノアルキルスルホン酸のスルホン基の水素原子がアルカリ金属(例えば、ナトリウム及びカリウム)で置換された化合物(例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩)などが挙げられる。
Examples of aminoalkyl sulfonic acid derivatives include compounds in which at least some of the hydrogen atoms of aminoalkyl sulfonic acid are substituted with alkyl groups (for example, alkyl groups having 1 to 5 carbon atoms), and the like. Examples include compounds in which atoms are substituted with alkali metals (for example, sodium and potassium) (for example, alkali metal salts such as sodium salt and potassium salt).
アミノアリールスルホン酸としては、アミノベンゼンスルホン酸、アミノナフタレンスルホン酸等が挙げられる。
Examples of aminoarylsulfonic acid include aminobenzenesulfonic acid and aminonaphthalenesulfonic acid.
アミノベンゼンスルホン酸としては、2-アミノベンゼンスルホン酸(別名:オルタニル酸)、3-アミノベンゼンスルホン酸(別名:メタニル酸)、4-アミノベンゼンスルホン酸(別名:スルファニル酸)等が挙げられる。
Examples of the aminobenzene sulfonic acid include 2-aminobenzene sulfonic acid (alias: alteranilic acid), 3-aminobenzene sulfonic acid (alias: metanilic acid), 4-aminobenzene sulfonic acid (alias: sulfanilic acid), and the like.
アミノナフタレンスルホン酸としては、4-アミノ-1-ナフタレンスルホン酸(p-体)、5-アミノ-1-ナフタレンスルホン酸(ana-体)、1-アミノ-6-ナフタレンスルホン酸(ε-体、5-アミノ-2-ナフタレンスルホン酸)、6-アミノ-1-ナフタレンスルホン酸(ε-体)、6-アミノ-2-ナフタレンスルホン酸(amphi-体)、7-アミノ-2-ナフタレンスルホン酸、8-アミノ-1-ナフタレンスルホン酸(peri-体)、1-アミノ-7-ナフタレンスルホン酸(kata-体、8-アミノ-2-ナフタレンスルホン酸)等のアミノナフタレンモノスルホン酸;1-アミノ-3,8-ナフタレンジスルホン酸、3-アミノ-2,7-ナフタレンジスルホン酸、7-アミノ-1,5-ナフタレンジスルホン酸、6-アミノ-1,3-ナフタレンジスルホン酸、7-アミノ-1,3-ナフタレンジスルホン酸等のアミノナフタレンジスルホン酸;7-アミノ-1,3,6-ナフタレントリスルホン酸、8-アミノ-1,3,6-ナフタレントリスルホン酸等のアミノナフタレントリスルホン酸などが挙げられる。
Examples of aminonaphthalenesulfonic acid include 4-amino-1-naphthalenesulfonic acid (p-form), 5-amino-1-naphthalenesulfonic acid (ana-form), 1-amino-6-naphthalenesulfonic acid (ε-form) 5-amino-2-naphthalenesulfonic acid), 6-amino-1-naphthalenesulfonic acid (ε-form), 6-amino-2-naphthalenesulfonic acid (amphi-form), 7-amino-2-naphthalenesulfone Acid, aminonaphthalene monosulfonic acid such as 8-amino-1-naphthalenesulfonic acid (peri-form), 1-amino-7-naphthalenesulfonic acid (kata-form, 8-amino-2-naphthalenesulfonic acid); 1 -Amino-3,8-naphthalenedisulfonic acid, 3-amino-2,7-naphthalenedisulfonic acid, 7-amino-1,5-naphthalenedisulfonic acid Aminonaphthalenedisulfonic acid such as sulfonic acid, 6-amino-1,3-naphthalenedisulfonic acid, 7-amino-1,3-naphthalenedisulfonic acid; 7-amino-1,3,6-naphthalenetrisulfonic acid, 8- And aminonaphthalene trisulfonic acid such as amino-1,3,6-naphthalene trisulfonic acid.
アミノアリールスルホン酸誘導体としては、アミノベンゼンスルホン酸誘導体、アミノナフタレンスルホン酸誘導体等が挙げられる。
Examples of aminoarylsulfonic acid derivatives include aminobenzenesulfonic acid derivatives and aminonaphthalenesulfonic acid derivatives.
アミノベンゼンスルホン酸誘導体としては、アミノベンゼンスルホン酸の少なくとも一部の水素原子がアルキル基(例えば、炭素数1~5のアルキル基)等で置換された化合物、アミノベンゼンスルホン酸のスルホン基の水素原子がアルカリ金属(例えば、ナトリウム及びカリウム)で置換された化合物(例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩)などが挙げられる。アミノベンゼンスルホン酸の少なくとも一部の水素原子がアルキル基で置換された化合物としては、4-(メチルアミノ)ベンゼンスルホン酸、3-メチル-4-アミノベンゼンスルホン酸、3-アミノ-4-メチルベンゼンスルホン酸、4-(エチルアミノ)ベンゼンスルホン酸、3-(エチルアミノ)-4-メチルベンゼンスルホン酸等が挙げられる。アミノベンゼンスルホン酸のスルホン基の水素原子がアルカリ金属で置換された化合物としては、2-アミノベンゼンスルホン酸ナトリウム、3-アミノベンゼンスルホン酸ナトリウム、4-アミノベンゼンスルホン酸ナトリウム、2-アミノベンゼンスルホン酸カリウム、3-アミノベンゼンスルホン酸カリウム、4-アミノベンゼンスルホン酸カリウム等が挙げられる。
The aminobenzenesulfonic acid derivative includes a compound in which at least a part of hydrogen atoms of aminobenzenesulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, hydrogen of a sulfone group of aminobenzenesulfonic acid Examples include compounds in which atoms are substituted with alkali metals (for example, sodium and potassium) (for example, alkali metal salts such as sodium salt and potassium salt). Examples of the compound in which at least a part of hydrogen atoms of aminobenzenesulfonic acid are substituted with alkyl groups include 4- (methylamino) benzenesulfonic acid, 3-methyl-4-aminobenzenesulfonic acid, and 3-amino-4-methyl. Examples thereof include benzenesulfonic acid, 4- (ethylamino) benzenesulfonic acid, 3- (ethylamino) -4-methylbenzenesulfonic acid and the like. Examples of the compound in which the hydrogen atom of the sulfone group of aminobenzenesulfonic acid is replaced with an alkali metal include sodium 2-aminobenzenesulfonate, sodium 3-aminobenzenesulfonate, sodium 4-aminobenzenesulfonate, 2-aminobenzenesulfone. Examples include potassium acid, potassium 3-aminobenzenesulfonate, and potassium 4-aminobenzenesulfonate.
アミノナフタレンスルホン酸誘導体としては、アミノナフタレンスルホン酸の少なくとも一部の水素原子がアルキル基(例えば、炭素数1~5のアルキル基)等で置換された化合物、アミノナフタレンスルホン酸のスルホン基の水素原子がアルカリ金属(例えば、ナトリウム及びカリウム)で置換された化合物(例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩)などが挙げられる。
Examples of the aminonaphthalenesulfonic acid derivative include compounds in which at least a part of hydrogen atoms of aminonaphthalenesulfonic acid are substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, hydrogen of the sulfone group of aminonaphthalenesulfonic acid Examples include compounds in which atoms are substituted with alkali metals (for example, sodium and potassium) (for example, alkali metal salts such as sodium salt and potassium salt).
(c2)成分としては、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種が好ましい。すなわち、ビスフェノール系樹脂は、ビスフェノール系化合物と、アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応に由来する構造単位を有するビスフェノール系樹脂を含むことが好ましい。
The component (c2) is preferably at least one selected from the group consisting of aminobenzene sulfonic acid and aminobenzene sulfonic acid derivatives from the viewpoint of improving charge acceptance, discharge characteristics, and cycle characteristics in a well-balanced manner. That is, the bisphenol-based resin is derived from a reaction between a bisphenol-based compound, at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and at least one selected from the group consisting of formaldehyde and formaldehyde derivatives. It is preferable to include a bisphenol-based resin having a structural unit.
(c2)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c2)成分としては、サイクル特性及び充電受け入れ性が更に向上する観点から、4-アミノベンゼンスルホン酸が好ましい。
(C2) A component can be used individually by 1 type or in combination of 2 or more types. As the component (c2), 4-aminobenzenesulfonic acid is preferable from the viewpoint of further improving cycle characteristics and charge acceptability.
ビスフェノール系樹脂を得るための(c2)成分の配合量は、放電特性が更に向上する観点から、(c1)成分1モルに対して、0.5モル以上が好ましく、0.6モル以上がより好ましく、0.8モル以上が更に好ましく、0.9モル以上が特に好ましい。(c2)成分の配合量は、サイクル特性及び放電特性が更に向上しやすい観点から、(c1)成分1モルに対して、1.3モル以下が好ましく、1.2モル以下がより好ましく、1.1モル以下が更に好ましい。
From the viewpoint of further improving the discharge characteristics, the amount of the component (c2) for obtaining the bisphenol-based resin is preferably 0.5 mol or more, more preferably 0.6 mol or more with respect to 1 mol of the component (c1). Preferably, 0.8 mol or more is more preferable, and 0.9 mol or more is particularly preferable. The amount of component (c2) is preferably 1.3 mol or less, more preferably 1.2 mol or less, and more preferably 1.2 mol or less, with respect to 1 mol of component (c1), from the viewpoint that the cycle characteristics and discharge characteristics can be further improved. More preferably, it is 1 mol or less.
((c3)成分:ホルムアルデヒド及びホルムアルデヒド誘導体)
ホルムアルデヒドとしては、ホルマリン(例えば、ホルムアルデヒド37質量%の水溶液)中のホルムアルデヒドを用いてもよい。ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。(c3)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。ホルムアルデヒドとホルムアルデヒド誘導体とを併用してもよい。 ((C3) component: formaldehyde and formaldehyde derivatives)
As formaldehyde, formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used. Examples of formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane. (C3) A component can be used individually by 1 type or in combination of 2 or more types. You may use formaldehyde and a formaldehyde derivative together.
ホルムアルデヒドとしては、ホルマリン(例えば、ホルムアルデヒド37質量%の水溶液)中のホルムアルデヒドを用いてもよい。ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。(c3)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。ホルムアルデヒドとホルムアルデヒド誘導体とを併用してもよい。 ((C3) component: formaldehyde and formaldehyde derivatives)
As formaldehyde, formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used. Examples of formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane. (C3) A component can be used individually by 1 type or in combination of 2 or more types. You may use formaldehyde and a formaldehyde derivative together.
(c3)成分としては、優れたサイクル特性が得られやすい観点から、ホルムアルデヒド誘導体が好ましく、パラホルムアルデヒドがより好ましい。パラホルムアルデヒドは、例えば下記のような構造を有する。
HO(CH2O)n1H …(I)
[式(I)中、n1は2~100の整数を示す。] As the component (c3), a formaldehyde derivative is preferable and paraformaldehyde is more preferable from the viewpoint of easily obtaining excellent cycle characteristics. For example, paraformaldehyde has the following structure.
HO (CH 2 O) n1 H (I)
[In the formula (I), n1 represents an integer of 2 to 100. ]
HO(CH2O)n1H …(I)
[式(I)中、n1は2~100の整数を示す。] As the component (c3), a formaldehyde derivative is preferable and paraformaldehyde is more preferable from the viewpoint of easily obtaining excellent cycle characteristics. For example, paraformaldehyde has the following structure.
HO (CH 2 O) n1 H (I)
[In the formula (I), n1 represents an integer of 2 to 100. ]
ビスフェノール系樹脂を得るための(c3)成分のホルムアルデヒド換算の配合量は、(c2)成分の反応性が向上する観点から、(c1)成分1モルに対して、2モル以上が好ましく、2.2モル以上がより好ましく、2.4モル以上が更に好ましく、2.6モル以上が特に好ましく、2.8モル以上が極めて好ましい。(c3)成分のホルムアルデヒド換算の配合量は、得られるビスフェノール系樹脂の溶媒への溶解性に優れる観点から、(c1)成分1モルに対して、3.5モル以下が好ましく、3.2モル以下がより好ましく、3モル以下が更に好ましい。
From the viewpoint of improving the reactivity of the component (c2), the amount of the component (c3) in order to obtain the bisphenol-based resin is preferably 2 mols or more with respect to 1 mol of the component (c1). 2 mol or more is more preferable, 2.4 mol or more is further preferable, 2.6 mol or more is especially preferable, and 2.8 mol or more is very preferable. From the viewpoint of excellent solubility of the obtained bisphenol-based resin in a solvent, the amount of component (c3) in terms of formaldehyde is preferably 3.5 mol or less with respect to 1 mol of component (c1), and 3.2 mol. The following is more preferable, and 3 mol or less is still more preferable.
ビスフェノール系樹脂は、例えば、下記一般式(II)で表される構造単位、及び、下記一般式(III)で表される構造単位の少なくとも一方を有することが好ましい。
For example, the bisphenol-based resin preferably has at least one of a structural unit represented by the following general formula (II) and a structural unit represented by the following general formula (III).
式(II)で表される構造単位、及び、式(III)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(II)で表される構造単位、及び、式(III)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。
The ratio of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) is not particularly limited, and may vary depending on synthesis conditions and the like. As the bisphenol-based resin, a resin having only one of the structural unit represented by the formula (II) and the structural unit represented by the formula (III) may be used.
ビスフェノール系樹脂は、例えば、下記一般式(IIa)で表される構造単位、及び、下記一般式(IIIa)で表される構造単位の少なくとも一方を有することが好ましい。
The bisphenol-based resin preferably has, for example, at least one of a structural unit represented by the following general formula (IIa) and a structural unit represented by the following general formula (IIIa).
式(IIa)で表される構造単位、及び、式(IIIa)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(IIa)で表される構造単位、及び、式(IIIa)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。
The ratio of the structural unit represented by the formula (IIa) and the structural unit represented by the formula (IIIa) is not particularly limited, and may vary depending on synthesis conditions and the like. As the bisphenol-based resin, a resin having only one of the structural unit represented by the formula (IIa) and the structural unit represented by the formula (IIIa) may be used.
前記X2及びX3としては、例えば、アルキリデン基(メチリデン基、エチリデン基、イソプロピリデン基、sec-ブチリデン基等)、シクロアルキリデン基(シクロヘキシリデン基等)、フェニルアルキリデン基(ジフェニルメチリデン基、フェニルエチリデン基等)などの有機基;スルホニル基が挙げられる。前記X2及びX3としては、充電受け入れ性に更に優れる観点からはイソプロピリデン基(-C(CH3)2-)基が好ましく、放電特性に更に優れる観点からはスルホニル基(-SO2-)が好ましい。前記X2及びX3は、フッ素原子等のハロゲン原子により置換されていてもよい。前記X2及びX3がシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。
Examples of X 2 and X 3 include alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group). An organic group such as a phenylethylidene group; a sulfonyl group. X 2 and X 3 are preferably an isopropylidene group (—C (CH 3 ) 2 —) group from the viewpoint of further excellent charge acceptance, and a sulfonyl group (—SO 2 —) from the viewpoint of further excellent discharge characteristics. ) Is preferred. X 2 and X 3 may be substituted with a halogen atom such as a fluorine atom. When X 2 and X 3 are cycloalkylidene groups, the hydrocarbon ring may be substituted with an alkyl group or the like.
A2及びA3としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素数1~4のアルキレン基;フェニレン基、ナフチレン基等の2価のアリーレン基が挙げられる。前記アリーレン基は、アルキル基等により置換されていてもよい。
Examples of A 2 and A 3 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group. The arylene group may be substituted with an alkyl group or the like.
R21、R23、R24、R31、R33及びR34のアルカリ金属としては、ナトリウム、カリウム等が挙げられる。n21及びn31は、サイクル特性に更に優れる観点、及び、ビスフェノール系樹脂の溶媒への溶解性に優れる観点から、1~150が好ましく、10~150がより好ましい。n22及びn32は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、1又は2が好ましく、1がより好ましい。n23及びn33は、製造条件により変化するが、サイクル特性に優れる観点、及び、ビスフェノール系樹脂の保存安定性に優れる観点から、0が好ましい。
Examples of the alkali metal for R 21 , R 23 , R 24 , R 31 , R 33 and R 34 include sodium and potassium. n21 and n31 are preferably 1 to 150, and more preferably 10 to 150, from the viewpoint of further excellent cycle characteristics and the solubility of the bisphenol-based resin in a solvent. n22 and n32 are preferably 1 or 2, and more preferably 1, from the viewpoint that the cycle characteristics, the discharge characteristics, and the charge acceptability are easily improved in a balanced manner. n23 and n33 vary depending on the production conditions, but 0 is preferable from the viewpoint of excellent cycle characteristics and storage stability of the bisphenol-based resin.
ビスフェノール系樹脂の製造方法は、(c1)成分、(c2)成分及び(c3)成分を反応させてビスフェノール系樹脂を得る樹脂製造工程を備えている。
The method for producing a bisphenol-based resin includes a resin production step of obtaining a bisphenol-based resin by reacting the component (c1), the component (c2) and the component (c3).
ビスフェノール系樹脂は、例えば、(c1)成分、(c2)成分及び(c3)成分を反応溶媒中で反応させることにより得ることができる。反応溶媒は、水(例えばイオン交換水)であることが好ましい。反応を促進させるために、有機溶媒、触媒、添加剤等を用いてもよい。
The bisphenol-based resin can be obtained, for example, by reacting the component (c1), the component (c2) and the component (c3) in a reaction solvent. The reaction solvent is preferably water (for example, ion exchange water). In order to promote the reaction, an organic solvent, a catalyst, an additive, or the like may be used.
樹脂製造工程は、鉛蓄電池のサイクル特性が更に向上する観点から、(c2)成分の配合量が(c1)成分1モルに対して0.5~1.3モルであり、且つ、(c3)成分の配合量が(c1)成分1モルに対してホルムアルデヒド換算で2~3.5モルである態様が好ましい。(c2)成分及び(c3)成分の好ましい配合量は、(c2)成分及び(c3)成分の配合量のそれぞれについて上述した範囲である。
In the resin production process, from the viewpoint of further improving the cycle characteristics of the lead storage battery, the blending amount of the component (c2) is 0.5 to 1.3 mol with respect to 1 mol of the component (c1), and (c3) An embodiment in which the amount of the component is 2 to 3.5 mol in terms of formaldehyde with respect to 1 mol of the component (c1) is preferable. Preferred blending amounts of the component (c2) and the component (c3) are the ranges described above for the blending amounts of the component (c2) and the component (c3).
ビスフェノール系樹脂は、充分量のビスフェノール系樹脂が得られやすい観点から、(c1)成分、(c2)成分及び(c3)成分を塩基性条件(アルカリ性条件)で反応させることにより得ることが好ましい。塩基性条件に調整するためには、塩基性化合物を用いてもよい。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム等が挙げられる。塩基性化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。塩基性化合物の中でも、反応性に優れる観点から、水酸化ナトリウム及び水酸化カリウムからなる群より選ばれる少なくとも一種が好ましい。
The bisphenol-based resin is preferably obtained by reacting the component (c1), the component (c2) and the component (c3) under basic conditions (alkaline conditions) from the viewpoint that a sufficient amount of bisphenol-based resin can be easily obtained. In order to adjust to basic conditions, you may use a basic compound. Examples of the basic compound include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate and the like. A basic compound can be used individually by 1 type or in combination of 2 or more types. Among the basic compounds, at least one selected from the group consisting of sodium hydroxide and potassium hydroxide is preferable from the viewpoint of excellent reactivity.
(c1)成分、(c2)成分及び(c3)成分を含有する反応溶液が反応開始時において中性(pH=7)である場合、ビスフェノール系樹脂の生成反応が進行しにくい場合があり、反応溶液が酸性(pH<7)である場合、副反応が進行する場合がある。そのため、反応開始時の反応溶液のpHは、ビスフェノール系樹脂の生成反応を進行させつつ副反応が進行することを抑制する観点から、7より大きい(アルカリ性である)ことが好ましく、7.1以上がより好ましく、7.2以上が更に好ましい。反応溶液のpHは、ビスフェノール系樹脂における(c2)成分に由来する基の加水分解が進行することを抑制する観点から、12以下が好ましく、10以下がより好ましく、9以下が更に好ましい。反応溶液のpHは、例えば株式会社堀場製作所製のツインpHメーター AS-212で測定することができる。pHは25℃におけるpHと定義する。
When the reaction solution containing the component (c1), the component (c2) and the component (c3) is neutral (pH = 7) at the start of the reaction, the formation reaction of the bisphenol-based resin may not easily proceed. If the solution is acidic (pH <7), side reactions may proceed. Therefore, the pH of the reaction solution at the start of the reaction is preferably greater than 7 (alkaline) from the viewpoint of suppressing the side reaction from proceeding while the bisphenol-based resin formation reaction proceeds, and is 7.1 or more Is more preferable, and 7.2 or more is still more preferable. The pH of the reaction solution is preferably 12 or less, more preferably 10 or less, and still more preferably 9 or less, from the viewpoint of suppressing the hydrolysis of the group derived from the component (c2) in the bisphenol-based resin. The pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
前記のようなpHに調整しやすいことから、強塩基性化合物の配合量は、(c2)成分1モルに対して、1.01モル以上が好ましく、1.02モル以上がより好ましく、1.03モル以上が更に好ましい。同様の観点から、強塩基性化合物の配合量は、(c2)成分1モルに対して、1.1モル以下が好ましく、1.08モル以下がより好ましく、1.07モル以下が更に好ましい。強塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
Since it is easy to adjust the pH as described above, the compounding amount of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more, relative to 1 mol of the component (c2). 03 mol or more is more preferable. From the same viewpoint, the compounding amount of the strongly basic compound is preferably 1.1 mol or less, more preferably 1.08 mol or less, and further preferably 1.07 mol or less with respect to 1 mol of the component (c2). Examples of the strongly basic compound include sodium hydroxide and potassium hydroxide.
ビスフェノール系樹脂の合成反応では、(c1)成分、(c2)成分及び(c3)成分が反応してビスフェノール系樹脂が得られればよい。例えば、(c1)成分、(c2)成分及び(c3)成分を同時に反応させてもよく、(c1)成分、(c2)成分及び(c3)成分のうちの2成分を反応させた後、得られた反応物と残りの1成分とを反応させてもよい。
In the synthesis reaction of the bisphenol resin, the (c1) component, the (c2) component, and the (c3) component may react to obtain a bisphenol resin. For example, the component (c1), the component (c2), and the component (c3) may be reacted at the same time. After reacting two of the components (c1), (c2), and (c3), The reaction product obtained may be reacted with the remaining one component.
ビスフェノール系樹脂の合成反応は、次のように二段階で行うことが好ましい。
The synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows.
第一段階の反応では、例えば、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸と、溶媒(水等)と、塩基性化合物とを混合した後に撹拌し、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸におけるスルホン基の水素原子をアルカリ金属等で置換してアルカリ金属塩等を得る。これにより、後述の縮合反応において副反応を抑制しやすくなる。反応系の温度は、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸の溶媒(水等)への溶解性に優れる観点から、0℃以上が好ましく、25℃以上がより好ましい。反応系の温度は、副反応を抑制する観点から、80℃以下が好ましく、70℃以下がより好ましく、65℃以下が更に好ましい。反応時間は、例えば5~30分である。
In the first stage reaction, for example, an aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid, a solvent (such as water) and a basic compound are mixed and stirred, and then the aminoalkyl sulfonic acid and / or aminoaryl sulfonic acid is mixed. An alkali metal salt or the like is obtained by replacing the hydrogen atom of the sulfone group in the acid with an alkali metal or the like. Thereby, it becomes easy to suppress a side reaction in the below-mentioned condensation reaction. The temperature of the reaction system is preferably 0 ° C. or higher, more preferably 25 ° C. or higher, from the viewpoint of excellent solubility of aminoalkylsulfonic acid and / or aminoarylsulfonic acid in a solvent (such as water). The temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of suppressing side reactions. The reaction time is, for example, 5 to 30 minutes.
第二段階の反応では、例えば、第一段階で得られた反応物に(c1)成分及び(c3)成分を加えて縮合反応させることによりビスフェノール系樹脂を得る。反応系の温度は、(c1)成分、(c2)成分及び(c3)成分の反応性に優れる観点から、75℃以上が好ましく、85℃以上がより好ましく、87℃以上が更に好ましい。反応系の温度は、副反応を抑制する観点から、100℃以下が好ましく、95℃以下がより好ましく、93℃以下が更に好ましい。反応時間は、例えば5~20時間である。
In the second stage reaction, for example, the components (c1) and (c3) are added to the reaction product obtained in the first stage and subjected to a condensation reaction to obtain a bisphenol-based resin. The temperature of the reaction system is preferably 75 ° C. or higher, more preferably 85 ° C. or higher, and still more preferably 87 ° C. or higher, from the viewpoint of excellent reactivity of the components (c1), (c2) and (c3). The temperature of the reaction system is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and still more preferably 93 ° C. or lower, from the viewpoint of suppressing side reactions. The reaction time is, for example, 5 to 20 hours.
本実施形態では、前記ビスフェノール系樹脂の製造方法により得られる反応物(例えば反応溶液)をそのまま、後述する電極の製造に用いてもよいし、当該反応物をスプレードライ法等により乾燥して得られる粉体を電極の製造に用いてもよい。
In the present embodiment, a reaction product (for example, a reaction solution) obtained by the method for producing the bisphenol-based resin may be used as it is for production of an electrode to be described later, or obtained by drying the reaction product by a spray drying method or the like. The resulting powder may be used for the production of electrodes.
ビスフェノール系樹脂の重量平均分子量は、鉛蓄電池において電極からビスフェノール系樹脂が電解液に溶出することを抑制することによりサイクル特性が向上しやすい観点から、20000以上が好ましく、30000以上がより好ましく、40000以上が更に好ましく、50000以上が特に好ましく、55000以上が極めて好ましく、58000以上が非常に好ましい。ビスフェノール系樹脂の重量平均分子量は、電極活物質に対するビスフェノール系樹脂の吸着性が低下して分散性が低下することを抑制することによりサイクル特性が向上しやすい観点から、70000以下が好ましく、65000以下がより好ましく、62000以下が更に好ましく、60000以下が特に好ましい。
The weight average molecular weight of the bisphenol-based resin is preferably 20000 or more, more preferably 30000 or more, and 40000 from the viewpoint that the cycle characteristics are easily improved by suppressing the bisphenol-based resin from eluting from the electrode to the electrolyte in the lead storage battery. The above is more preferable, 50000 or more is particularly preferable, 55000 or more is very preferable, and 58000 or more is very preferable. The weight average molecular weight of the bisphenol-based resin is preferably 70,000 or less, preferably 65,000 or less, from the viewpoint of easily improving cycle characteristics by suppressing the decrease in the dispersibility due to the decrease in the adsorptivity of the bisphenol-based resin with respect to the electrode active material. Is more preferably 62,000 or less, particularly preferably 60000 or less.
ビスフェノール系樹脂の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。
(GPC条件)
装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
ポンプ:PU-2080
示差屈折率計:RI-2031
検出器:紫外可視吸光光度計UV-2075(λ:254nm)
カラムオーブン:CO-2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製) The weight average molecular weight of the bisphenol-based resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
(GPC conditions)
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
(GPC条件)
装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
ポンプ:PU-2080
示差屈折率計:RI-2031
検出器:紫外可視吸光光度計UV-2075(λ:254nm)
カラムオーブン:CO-2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製) The weight average molecular weight of the bisphenol-based resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
(GPC conditions)
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
ナフタレンスルホン酸系樹脂は、ナフタレンスルホン酸由来の構造単位を有する樹脂(ビスフェノール系樹脂に該当する樹脂を除く)であり、例えばスルホン酸基含有ナフチレン構造を有する樹脂である。
The naphthalene sulfonic acid resin is a resin having a structural unit derived from naphthalene sulfonic acid (excluding a resin corresponding to a bisphenol resin), for example, a resin having a sulfonic acid group-containing naphthylene structure.
ナフタレンスルホン酸系樹脂は、ナフタレンスルホン酸、及び、ナフタレンスルホン酸と重合可能な化合物を反応させることにより得ることが可能であり、例えば、ナフタレンスルホン酸系化合物と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種とを反応させて得ることができる。ナフタレンスルホン酸系樹脂は、下記式(IV)で表される構造単位を有することが好ましい。
[式(IV)中、R41は、アルカリ金属又は水素原子を示し、n41は、1~100の整数を示し、n42は、1~3の整数を示す。また、ベンゼン環を構成する炭素原子に直接結合している水素原子は、炭素数1~5のアルキル基で置換されていてもよい。]
The naphthalene sulfonic acid resin can be obtained by reacting naphthalene sulfonic acid and a compound that can be polymerized with naphthalene sulfonic acid. For example, the naphthalene sulfonic acid resin can be obtained from the group consisting of a naphthalene sulfonic acid compound, formaldehyde, and a formaldehyde derivative. It can be obtained by reacting with at least one selected. The naphthalene sulfonic acid resin preferably has a structural unit represented by the following formula (IV).
[In the formula (IV), R 41 represents an alkali metal or a hydrogen atom, n 41 represents an integer of 1 to 100, and n 42 represents an integer of 1 to 3. Further, the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted with an alkyl group having 1 to 5 carbon atoms. ]
R41のアルカリ金属としては、ナトリウム、カリウム等が挙げられる。R41が複数存在する場合、R41は、互いに同一であってもよく、互いに異なっていてもよい。
Examples of the alkali metal for R 41 include sodium and potassium. When a plurality of R 41 are present, R 41 may be the same as or different from each other.
また、ナフタレンスルホン酸系樹脂としては、市販の樹脂を用いることもできる。市販のナフタレンスルホン酸系樹脂としては、バニオールHDL-100(商品名、日本製紙株式会社製)、デモールN、デモールRN、デモールNL、デモールRNL、デモールT、デモールT-45(以上、商品名、花王株式会社製)等が挙げられる。
Further, as the naphthalene sulfonic acid resin, a commercially available resin can also be used. Examples of commercially available naphthalene sulfonic acid resins include vanillol HDL-100 (trade name, manufactured by Nippon Paper Industries Co., Ltd.), Demol N, Demol RN, Demol NL, Demol RNL, Demol T, Demol T-45 (above, trade names, And Kao Corporation).
ナフタレンスルホン酸系化合物は、ナフタレンスルホン酸基を有する化合物である。ナフタレンスルホン酸系化合物としては、例えば、ナフタレンスルホン酸及びナフタレンスルホン酸誘導体からなる群より選ばれる少なくとも一種が挙げられる。ナフタレンスルホン酸としては、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸等が挙げられる。ナフタレンスルホン酸誘導体としては、ナフタレンスルホン酸の一部の水素原子がアルカリ金属(ナトリウム、カリウム等)で置換された化合物などが挙げられ、1-ナフタレンスルホン酸ナトリウム、2-ナフタレンスルホン酸ナトリウム、1-ナフタレンスルホン酸カリウム、2-ナフタレンスルホン酸カリウム等が挙げられる。ナフタレンスルホン酸系化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
The naphthalene sulfonic acid compound is a compound having a naphthalene sulfonic acid group. Examples of the naphthalene sulfonic acid compound include at least one selected from the group consisting of naphthalene sulfonic acid and naphthalene sulfonic acid derivatives. Examples of naphthalene sulfonic acid include 1-naphthalene sulfonic acid and 2-naphthalene sulfonic acid. Examples of naphthalene sulfonic acid derivatives include compounds in which some of the hydrogen atoms of naphthalene sulfonic acid are substituted with alkali metals (sodium, potassium, etc.), such as sodium 1-naphthalene sulfonate, sodium 2-naphthalene sulfonate, -Potassium naphthalene sulfonate, potassium 2-naphthalene sulfonate, etc. A naphthalenesulfonic acid type compound can be used individually by 1 type or in combination of 2 or more types.
ホルムアルデヒド及びホルムアルデヒド誘導体としては、前記(c3)成分と同様の化合物が挙げられる。
Examples of formaldehyde and formaldehyde derivatives include the same compounds as the component (c3).
ナフタレンスルホン酸系樹脂を得るためのホルムアルデヒド及びホルムアルデヒド誘導体の配合量(合計量)は、例えば、ナフタレンスルホン酸系化合物1モルに対してホルムアルデヒド換算で1~2モル程度である。ナフタレンスルホン酸系樹脂は、ビスフェノール系樹脂と同様の合成条件で得ることができる。
The blending amount (total amount) of formaldehyde and formaldehyde derivative for obtaining naphthalenesulfonic acid resin is, for example, about 1 to 2 mol in terms of formaldehyde with respect to 1 mol of naphthalenesulfonic acid compound. The naphthalene sulfonic acid resin can be obtained under the same synthesis conditions as the bisphenol resin.
ナフタレンスルホン酸系樹脂の重量平均分子量は、鉛蓄電池のサイクル特性が向上しやすい観点から、1000以上が好ましく、3000以上がより好ましく、4000以上が更に好ましく、5000以上が特に好ましい。ナフタレンスルホン酸系樹脂の重量平均分子量は、サイクル特性が向上しやすい観点から、20000以下が好ましく、15000以下がより好ましく、10000以下が更に好ましい。ナフタレンスルホン酸系樹脂の重量平均分子量は、例えば、ビスフェノール系樹脂の重量平均分子量と同様に測定することができる。
The weight average molecular weight of the naphthalene sulfonic acid resin is preferably 1000 or more, more preferably 3000 or more, still more preferably 4000 or more, and particularly preferably 5000 or more, from the viewpoint of easy improvement of the cycle characteristics of the lead storage battery. The weight average molecular weight of the naphthalene sulfonic acid resin is preferably 20000 or less, more preferably 15000 or less, and still more preferably 10,000 or less, from the viewpoint of easy improvement of cycle characteristics. The weight average molecular weight of the naphthalene sulfonic acid resin can be measured in the same manner as the weight average molecular weight of the bisphenol resin, for example.
リグニンスルホン酸又はリグニンスルホン酸塩の重量平均分子量は、鉛蓄電池において電極からリグニンスルホン酸又はリグニンスルホン酸塩が電解液に溶出することが抑制されて更に優れたサイクル特性が得られる観点から、3000以上が好ましく、7000以上がより好ましく、8000以上が更に好ましい。リグニンスルホン酸又はリグニンスルホン酸塩の重量平均分子量は、電極活物質の分散性に優れる観点から、70000以下が好ましく、50000以下がより好ましく、40000以下が更に好ましく、30000以下が特に好ましく、20000以下が極めて好ましい。これらの観点から、リグニンスルホン酸又はリグニンスルホン酸塩の重量平均分子量は、3000~70000が好ましく、3000~50000がより好ましく、3000~40000が更に好ましく、7000~30000が特に好ましく、8000~20000が極めて好ましい。リグニンスルホン酸又はリグニンスルホン酸塩の重量平均分子量は、ビスフェノール系樹脂の重量平均分子量と同様の方法により測定することができる。
The weight average molecular weight of lignin sulfonic acid or lignin sulfonate is 3000 from the viewpoint that the lignin sulfonic acid or lignin sulfonate is prevented from eluting from the electrode to the electrolyte in lead-acid batteries and further excellent cycle characteristics are obtained. The above is preferable, 7000 or more is more preferable, and 8000 or more is still more preferable. From the viewpoint of excellent dispersibility of the electrode active material, the weight average molecular weight of lignin sulfonic acid or lignin sulfonate is preferably 70000 or less, more preferably 50000 or less, further preferably 40000 or less, particularly preferably 30000 or less, and 20000 or less. Is very preferred. From these viewpoints, the weight average molecular weight of lignin sulfonic acid or lignin sulfonate is preferably 3000 to 70000, more preferably 3000 to 50000, still more preferably 3000 to 40000, particularly preferably 7000 to 30000, and 8000 to 20000. Highly preferred. The weight average molecular weight of lignin sulfonic acid or lignin sulfonate can be measured by the same method as the weight average molecular weight of bisphenol-based resin.
(C)成分を用いる場合、(C)成分の含有量は、サイクル特性及び放電特性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.07質量%以上が更に好ましく、0.1質量%以上が特に好ましい。(C)成分の含有量は、電極材の充分な強度を確保する観点、及び、充電受け入れ性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で、2質量%以下が好ましく、1質量%以下がより好ましく、0.6質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましい。これらの観点から、(C)成分の含有量は、負極材の全質量を基準として、樹脂固形分換算で、0.01~2質量%が好ましく、0.05~1質量%がより好ましく、0.05~0.6質量%が更に好ましく、0.07~0.5質量%が特に好ましく、0.07~0.3質量%が極めて好ましく、0.1~0.3質量%が非常に好ましい。
When the component (C) is used, the content of the component (C) is 0.01% by mass or more in terms of resin solid content, based on the total mass of the negative electrode material, from the viewpoint of further excellent cycle characteristics and discharge characteristics. Preferably, 0.05 mass% or more is more preferable, 0.07 mass% or more is further preferable, and 0.1 mass% or more is particularly preferable. The content of the component (C) is 2% by mass or less in terms of resin solids, based on the total mass of the negative electrode material, from the viewpoint of securing sufficient strength of the electrode material and the viewpoint of further excellent charge acceptance. 1 mass% or less is more preferable, 0.6 mass% or less is further more preferable, 0.5 mass% or less is especially preferable, and 0.3 mass% or less is very preferable. From these viewpoints, the content of the component (C) is preferably 0.01 to 2% by mass, more preferably 0.05 to 1% by mass in terms of resin solid content, based on the total mass of the negative electrode material. 0.05 to 0.6% by mass is further preferred, 0.07 to 0.5% by mass is particularly preferred, 0.07 to 0.3% by mass is very particularly preferred, and 0.1 to 0.3% by mass is extremely preferred. Is preferable.
電極の製造に際しては、(C)成分を含む樹脂組成物(例えば25℃において液状の樹脂溶液)を用いてもよい。樹脂組成物は、溶媒を更に含んでいてもよい。樹脂組成物は、樹脂製造工程において得られる反応物であってもよく、樹脂製造工程後に(C)成分と他の成分とを混合して得られる組成物(例えば、(C)成分を溶媒に溶解させて得られる樹脂溶液、並びに、(C)成分を(A)成分及び(B)成分と混合した組成物)であってもよい。電極の製造前に(C)成分を溶媒(水等)に溶解させた後に他の成分と混合することで、(C)成分及び他の成分を含む混合物中において(C)成分の凝集が抑制され、(C)成分の効果が得られやすい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。樹脂組成物に含まれる溶媒は、(C)成分(ビスフェノール系樹脂等)を得るために用いた反応溶媒であってもよい。
In producing the electrode, a resin composition containing the component (C) (for example, a liquid resin solution at 25 ° C.) may be used. The resin composition may further contain a solvent. The resin composition may be a reaction product obtained in the resin production process, and is a composition obtained by mixing the component (C) and other components after the resin production process (for example, using the component (C) as a solvent. A resin solution obtained by dissolution, and a composition obtained by mixing the component (C) with the component (A) and the component (B) may be used. Aggregation of component (C) is suppressed in a mixture containing component (C) and other components by dissolving component (C) in a solvent (water, etc.) and then mixing with other components before the electrode is manufactured. Thus, the effect of the component (C) can be easily obtained. As a solvent, water (for example, ion-exchange water) and an organic solvent are mentioned, for example. The solvent contained in the resin composition may be a reaction solvent used to obtain the component (C) (such as a bisphenol-based resin).
樹脂組成物(例えば25℃において液状の樹脂溶液)のpHは、(C)成分(ビスフェノール系樹脂等)の溶媒(水等)への溶解性に優れる観点から、7より大きい(アルカリ性である)ことが好ましく、7.1以上がより好ましい。樹脂組成物のpHは、電極材ペースト作製時の作業性に優れる観点から、10以下が好ましく、9以下がより好ましく、8.5以下が更に好ましい。特に、樹脂製造工程において得られる組成物を樹脂組成物として用いる場合、樹脂組成物のpHは、前記範囲であることが好ましい。樹脂組成物のpHは、例えば株式会社堀場製作所製のツインpHメーター AS-212で測定することができる。pHは25℃におけるpHと定義する。
The pH of the resin composition (for example, a resin solution that is liquid at 25 ° C.) is greater than 7 (alkaline) from the viewpoint of excellent solubility of the component (C) (bisphenol resin, etc.) in a solvent (water, etc.). Is preferably 7.1 or more. The pH of the resin composition is preferably 10 or less, more preferably 9 or less, and even more preferably 8.5 or less, from the viewpoint of excellent workability during electrode material paste preparation. In particular, when the composition obtained in the resin production process is used as a resin composition, the pH of the resin composition is preferably in the above range. The pH of the resin composition can be measured, for example, with a twin pH meter AS-212 manufactured by Horiba, Ltd. The pH is defined as the pH at 25 ° C.
(C)成分を含む樹脂組成物における不揮発分含量(Nonvolatile Matter content)は、(C)成分の溶解性及び電池特性に更に優れる観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましい。同様の観点から、(C)成分を含む樹脂組成物における不揮発分含量は、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下が更に好ましい。
The non-volatile content (Nonvolatile Matter content) in the resin composition containing the component (C) is preferably 10% by mass or more, more preferably 15% by mass or more from the viewpoint of further excellent solubility and battery characteristics of the component (C). 20% by mass or more is more preferable. From the same viewpoint, the non-volatile content in the resin composition containing the component (C) is preferably 50% by mass or less, more preferably 45% by mass or less, and further preferably 40% by mass or less.
不揮発分含量の測定は、例えば、下記の手順により測定することができる。まず、所定量(例えば2g)の樹脂組成物を容器(例えばステンレスシャーレ等の金属シャーレ)に入れた後、熱風乾燥機を用いて樹脂組成物を150℃、60分間乾燥させる。次に、容器の温度が室温(例えば25℃)に戻った後、残分質量を測定する。そして、下記の式から不揮発分含量を算出する。
不揮発分含量(質量%)=[(乾燥後の残分質量)/(乾燥前の樹脂組成物の質量)]×100 The nonvolatile content can be measured, for example, by the following procedure. First, after putting a predetermined amount (for example, 2 g) of a resin composition into a container (for example, a metal petri dish such as a stainless steel petri dish), the resin composition is dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returns to room temperature (for example, 25 ° C.), the residual mass is measured. Then, the nonvolatile content is calculated from the following formula.
Nonvolatile content (mass%) = [(residual mass after drying) / (mass of resin composition before drying)] × 100
不揮発分含量(質量%)=[(乾燥後の残分質量)/(乾燥前の樹脂組成物の質量)]×100 The nonvolatile content can be measured, for example, by the following procedure. First, after putting a predetermined amount (for example, 2 g) of a resin composition into a container (for example, a metal petri dish such as a stainless steel petri dish), the resin composition is dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returns to room temperature (for example, 25 ° C.), the residual mass is measured. Then, the nonvolatile content is calculated from the following formula.
Nonvolatile content (mass%) = [(residual mass after drying) / (mass of resin composition before drying)] × 100
(正極材)
正極材は、例えば、正極活物質又はその原料を含有する。正極活物質は、β-二酸化鉛(β-PbO2)を含むことが好ましく、α-二酸化鉛(α-PbO2)を更に含んでいてもよい。正極活物質の原料は、三塩基性硫酸鉛を含むことが好ましい。正極材は、添加剤を更に含有していてもよい。添加剤としては、硫酸バリウム、炭素材料、補強用短繊維等が挙げられ、負極材と同様の添加剤を用いることができる。 (Positive electrode material)
The positive electrode material contains, for example, a positive electrode active material or a raw material thereof. The positive electrode active material preferably contains β-lead dioxide (β-PbO 2 ), and may further contain α-lead dioxide (α-PbO 2 ). The raw material for the positive electrode active material preferably contains tribasic lead sulfate. The positive electrode material may further contain an additive. Examples of the additive include barium sulfate, carbon material, reinforcing short fiber, and the like, and the same additive as the negative electrode material can be used.
正極材は、例えば、正極活物質又はその原料を含有する。正極活物質は、β-二酸化鉛(β-PbO2)を含むことが好ましく、α-二酸化鉛(α-PbO2)を更に含んでいてもよい。正極活物質の原料は、三塩基性硫酸鉛を含むことが好ましい。正極材は、添加剤を更に含有していてもよい。添加剤としては、硫酸バリウム、炭素材料、補強用短繊維等が挙げられ、負極材と同様の添加剤を用いることができる。 (Positive electrode material)
The positive electrode material contains, for example, a positive electrode active material or a raw material thereof. The positive electrode active material preferably contains β-lead dioxide (β-PbO 2 ), and may further contain α-lead dioxide (α-PbO 2 ). The raw material for the positive electrode active material preferably contains tribasic lead sulfate. The positive electrode material may further contain an additive. Examples of the additive include barium sulfate, carbon material, reinforcing short fiber, and the like, and the same additive as the negative electrode material can be used.
<鉛蓄電池の製造方法>
本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。 <Method for producing lead-acid battery>
The method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。 <Method for producing lead-acid battery>
The method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
電極製造工程では、例えば、電極材ペースト(正極材ペースト及び負極材ペースト)を集電体(例えば、鋳造格子体及びエキスパンド格子体)に充填した後に、熟成及び乾燥を行うことにより未化成の電極(例えば極板)を得る。正極材ペーストは、例えば、正極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、負極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、(B)成分を含有してもよく、分散剤として(C)成分を含有してもよい。
In the electrode manufacturing process, for example, after filling an electrode material paste (a positive electrode material paste and a negative electrode material paste) into a current collector (for example, a cast lattice body and an expanded lattice body), aging and drying are performed to thereby form an unformed electrode. (For example, an electrode plate) is obtained. The positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives. The negative electrode material paste contains a raw material (lead powder or the like) of the negative electrode active material, and may further contain other additives. The negative electrode material paste may contain the component (B) and may contain the component (C) as a dispersant.
負極材ペーストは、例えば、下記の方法により得ることができる。まず、負極活物質の原料(鉛粉等)に添加剤を添加して乾式混合することにより混合物を得る。その後、希硫酸及び水を加えて混練することにより負極材ペーストが得られる。添加剤として(B)成分を用いる場合、(B)成分を水に浸漬させて水に馴染ませた後に混練してから負極活物質の原料と混合することで、(B)成分の凝集が抑制され、前記混合物における濡れ性が向上して抵抗成分が低減することから、(B)成分の効果が得られやすい。負極材ペーストを集電体(鋳造格子体、エキスパンド格子体等)に充填した後に熟成及び乾燥を行うことにより未化成の負極板を得ることができる。
The negative electrode material paste can be obtained, for example, by the following method. First, an additive is added to the raw material (lead powder etc.) of a negative electrode active material, and a mixture is obtained by dry-mixing. Then, dilute sulfuric acid and water are added and kneaded to obtain a negative electrode material paste. When the component (B) is used as an additive, the component (B) is immersed in water, kneaded and then kneaded, and then mixed with the raw material of the negative electrode active material, thereby suppressing aggregation of the component (B). Since the wettability in the mixture is improved and the resistance component is reduced, the effect of the component (B) is easily obtained. An unformed negative electrode plate can be obtained by filling the negative electrode material paste into a current collector (casting grid, expanded grid, etc.) and then aging and drying.
負極材ペーストにおいて硫酸バリウム、(B)成分及び/又は(C)成分を用いる場合、負極材は、下記の配合量の硫酸バリウム、(B)成分及び/又は(C)成分を含む負極材ペーストを用いて得られた負極材(例えば、前記負極材ペーストを熟成及び乾燥させた後に化成して得られる負極材)であることが好ましい。
In the case of using barium sulfate, the component (B) and / or the component (C) in the negative electrode material paste, the negative electrode material contains the following blending amount of barium sulfate, the component (B) and / or the component (C). It is preferable that the negative electrode material obtained by using (for example, the negative electrode material obtained by chemical conversion after aging and drying the negative electrode material paste).
硫酸バリウムの配合量は、負極活物質の原料(鉛粉等)の全質量を基準として0.3~2質量%が好ましい。
The compounding amount of barium sulfate is preferably 0.3 to 2% by mass based on the total mass of the negative electrode active material (lead powder, etc.).
(B)成分の配合量は、充電受け入れ性、放電特性及びサイクル特性がバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましい。(B)成分の配合量は、電極材の充分な強度を確保する観点、及び、充電受け入れ性に更に優れる観点から、負極活物質の原料(鉛粉等)の全質量を基準として、2質量%以下が好ましく、1.9質量%以下がより好ましく、1質量%以下が更に好ましく、0.6質量%以下が特に好ましい。(B)成分の配合量は、放電特性に更に優れる観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.5質量%以下が好ましく、0.4質量%以下がより好ましい。これらの観点から、(B)成分の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.01~2質量%が好ましく、0.05~2質量%がより好ましく、0.1~1.9質量%が更に好ましく、0.1~1質量%が特に好ましく、0.1~0.6質量%が極めて好ましく、0.1~0.5質量%が非常に好ましく、0.2~0.4質量%がより一層好ましい。また、負極材ペーストにおいて炭素材料((B)成分を含む炭素材料の合計量)の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として0.05~1.9質量%が好ましい。
The blending amount of the component (B) is 0.01% by mass or more based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of improving the charge acceptance, discharge characteristics and cycle characteristics in a balanced manner. Preferably, 0.05 mass% or more is more preferable, 0.1 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable. The blending amount of the component (B) is 2 masses based on the total mass of the raw materials (lead powder, etc.) of the negative electrode active material from the viewpoint of ensuring sufficient strength of the electrode material and the viewpoint of further excellent charge acceptance. % Or less is preferable, 1.9% by mass or less is more preferable, 1% by mass or less is further preferable, and 0.6% by mass or less is particularly preferable. The blending amount of the component (B) is preferably 0.5% by mass or less, preferably 0.4% by mass or less, based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further excellent discharge characteristics. More preferred. From these viewpoints, the blending amount of component (B) is preferably 0.01 to 2% by mass, more preferably 0.05 to 2% by mass, based on the total mass of the negative electrode active material (lead powder, etc.). Preferably, 0.1 to 1.9% by mass is more preferable, 0.1 to 1% by mass is particularly preferable, 0.1 to 0.6% by mass is extremely preferable, and 0.1 to 0.5% by mass is very preferable. 0.2 to 0.4 mass% is even more preferable. In addition, the blending amount of the carbon material (total amount of the carbon material including the component (B)) in the negative electrode material paste is 0.05 to 1.9 mass based on the total mass of the negative electrode active material (lead powder, etc.). % Is preferred.
(C)成分の配合量は、サイクル特性及び放電特性に更に優れる観点から、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましい。(C)成分の配合量は、電極材の充分な強度を確保する観点、及び、充電受け入れ性に更に優れる観点から、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、2質量%以下が好ましく、1質量%以下がより好ましく、0.6質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましい。これらの観点から、(C)成分の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、0.01~2質量%が好ましく、0.05~1質量%がより好ましく、0.05~0.6質量%が更に好ましく、0.1~0.5質量%が特に好ましく、0.1~0.3質量%が極めて好ましく、0.2~0.3質量%が非常に好ましい。(C)成分は化成によって分解する傾向があることから、(C)成分と他成分との相対量は化成前後において異なる場合がある。
Component (C) is blended in an amount of 0.01% by mass or more in terms of resin solids based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of further improving cycle characteristics and discharge characteristics. Preferably, 0.05 mass% or more is more preferable, 0.1 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable. The blending amount of the component (C) is a resin solid based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of ensuring sufficient strength of the electrode material and the viewpoint of further excellent charge acceptance. In terms of minutes, it is preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.6% by mass or less, particularly preferably 0.5% by mass or less, and extremely preferably 0.3% by mass or less. From these viewpoints, the blending amount of the component (C) is preferably 0.01 to 2% by mass in terms of resin solids based on the total mass of the negative electrode active material (lead powder, etc.), 0.05 To 1% by mass is more preferable, 0.05 to 0.6% by mass is further preferable, 0.1 to 0.5% by mass is particularly preferable, 0.1 to 0.3% by mass is extremely preferable, 0.2% Highly preferred is .about.0.3% by weight. Since component (C) tends to be decomposed by chemical conversion, the relative amounts of component (C) and other components may differ before and after chemical conversion.
正極材ペーストは、例えば、下記の方法により得ることができる。まず、正極活物質の原料(鉛粉等)に補強用短繊維を加えた後、希硫酸及び水を加えて混練することにより正極材ペーストが得られる。正極材ペーストを作製するに際しては、鉛丹(Pb3O4)を加えてもよい。正極材ペーストを集電体(鋳造格子体、エキスパンド格子体等)に充填した後に熟成及び乾燥を行うことにより未化成の正極板を得ることができる。正極材ペーストにおいて、補強用短繊維の配合量は、正極活物質の原料(鉛粉等)の全質量を基準として0.05~0.3質量%が好ましい。集電体の種類、熟成条件又は乾燥条件は、負極の場合とほぼ同様である。
The positive electrode material paste can be obtained, for example, by the following method. First, after adding a reinforcing short fiber to a raw material (lead powder or the like) of the positive electrode active material, a positive electrode material paste is obtained by adding dilute sulfuric acid and water and kneading. In producing the positive electrode material paste, red lead (Pb 3 O 4 ) may be added. An unformed positive electrode plate can be obtained by filling the positive electrode material paste into a current collector (casting grid, expanded grid, etc.) and then aging and drying. In the positive electrode material paste, the amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass based on the total mass of the raw material of the positive electrode active material (lead powder or the like). The type of collector, aging conditions or drying conditions are almost the same as in the case of the negative electrode.
集電体の材料としては、例えば、鉛-カルシウム-錫合金、鉛-カルシウム合金及び鉛-アンチモン合金が挙げられる。これらにセレン、銀、ビスマス等を微量添加することができる。正極及び負極の集電体の製造法又は材料は、互いに同一であってもよく、互いに異なっていてもよい。
Examples of the current collector material include a lead-calcium-tin alloy, a lead-calcium alloy, and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these. The manufacturing method or material of the current collector for the positive electrode and the negative electrode may be the same as or different from each other.
熟成条件としては、温度45~65℃、湿度70~98RH%の雰囲気で15~30時間が好ましい。乾燥条件としては、温度45~60℃で15~30時間が好ましい。
As aging conditions, 15 to 30 hours are preferable in an atmosphere of a temperature of 45 to 65 ° C. and a humidity of 70 to 98 RH%. The drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
組み立て工程では、例えば、前記のように作製した未化成の負極及び正極を、セパレータを介して交互に積層し、同極性の電極の集電部をストラップで連結(溶接等)させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。セパレータとしては、微多孔性ポリエチレンシート;ガラス繊維と合成樹脂からなる不織布等が挙げられる。
In the assembly process, for example, the unformed negative electrode and the positive electrode prepared as described above are alternately stacked via separators, and the current collecting portions of the electrodes having the same polarity are connected by a strap (welding or the like) to form an electrode group. obtain. This electrode group is arranged in a battery case to produce an unformed battery. Examples of the separator include a microporous polyethylene sheet; a nonwoven fabric made of glass fiber and synthetic resin.
次に、未化成の電池に電解液(希硫酸等)を入れた後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池が得られる。化成前における電解液(硫酸等)の比重(20℃換算)は1.20~1.26が好ましい。化成後における電解液(硫酸等)の比重(20℃換算)は1.26~1.30が好ましい。
Next, after putting an electrolytic solution (dilute sulfuric acid, etc.) into an unformed battery, a direct current is applied to form a battery case. The lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity. The specific gravity (converted to 20 ° C.) of the electrolytic solution (sulfuric acid or the like) before chemical conversion is preferably 1.20 to 1.26. The specific gravity (converted to 20 ° C.) of the electrolytic solution (sulfuric acid, etc.) after chemical conversion is preferably 1.26 to 1.30.
化成条件及び硫酸の比重は、電極活物質の性状に応じて調整することができる。化成処理は、組み立て工程後に実施されることに限られず、電極製造工程の熟成及び乾燥後において実施されてもよい(タンク化成)。
Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. The chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after the aging and drying of the electrode manufacturing process (tank chemical conversion).
以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
<ビスフェノール系樹脂>
(ビスフェノール系樹脂の作製)
撹拌装置、還流装置及び温度調節装置を備えた反応容器に下記の各成分を仕込み第1の混合液を得た。
水酸化ナトリウム:1.05モル[42.0質量部]
イオン交換水:44.00モル[792.6質量部]
4-アミノベンゼンスルホン酸:1.00モル[173.2質量部] <Bisphenol resin>
(Production of bisphenol resin)
The following components were charged into a reaction vessel equipped with a stirrer, a reflux device and a temperature controller to obtain a first mixed solution.
Sodium hydroxide: 1.05 mol [42.0 parts by mass]
Ion-exchanged water: 44.00 mol [792.6 parts by mass]
4-aminobenzenesulfonic acid: 1.00 mol [173.2 parts by mass]
(ビスフェノール系樹脂の作製)
撹拌装置、還流装置及び温度調節装置を備えた反応容器に下記の各成分を仕込み第1の混合液を得た。
水酸化ナトリウム:1.05モル[42.0質量部]
イオン交換水:44.00モル[792.6質量部]
4-アミノベンゼンスルホン酸:1.00モル[173.2質量部] <Bisphenol resin>
(Production of bisphenol resin)
The following components were charged into a reaction vessel equipped with a stirrer, a reflux device and a temperature controller to obtain a first mixed solution.
Sodium hydroxide: 1.05 mol [42.0 parts by mass]
Ion-exchanged water: 44.00 mol [792.6 parts by mass]
4-aminobenzenesulfonic acid: 1.00 mol [173.2 parts by mass]
第1の混合液を25℃にて30分混和及び撹拌した。続いて、第1の混合液に下記の各成分を仕込み第2の混合液を得た。
ビスフェノールA:1.00モル[228.3質量部]
パラホルムアルデヒド(三井化学株式会社製):3.00モル[90.9質量部](ホルムアルデヒド換算) The first mixture was mixed and stirred at 25 ° C. for 30 minutes. Subsequently, the following components were charged into the first mixed liquid to obtain a second mixed liquid.
Bisphenol A: 1.00 mol [228.3 parts by mass]
Paraformaldehyde (manufactured by Mitsui Chemicals): 3.00 mol [90.9 parts by mass] (formaldehyde conversion)
ビスフェノールA:1.00モル[228.3質量部]
パラホルムアルデヒド(三井化学株式会社製):3.00モル[90.9質量部](ホルムアルデヒド換算) The first mixture was mixed and stirred at 25 ° C. for 30 minutes. Subsequently, the following components were charged into the first mixed liquid to obtain a second mixed liquid.
Bisphenol A: 1.00 mol [228.3 parts by mass]
Paraformaldehyde (manufactured by Mitsui Chemicals): 3.00 mol [90.9 parts by mass] (formaldehyde conversion)
第2の混合液(pH=8.6)を90℃にて10時間反応させることにより樹脂溶液を得た。樹脂溶液中に含まれるビスフェノール系樹脂を低温乾燥(60℃、6時間)で単離した。
A resin solution was obtained by reacting the second mixed solution (pH = 8.6) at 90 ° C. for 10 hours. The bisphenol resin contained in the resin solution was isolated by low temperature drying (60 ° C., 6 hours).
(樹脂溶液及びビスフェノール系樹脂の評価)
[不揮発分含量の測定]
樹脂溶液の不揮発分含量を下記の手順により測定した。まず、50φ×15mmの容器(ステンレスシャーレ)に樹脂溶液2gを入れ、150℃で60分間熱風乾燥機を用いて乾燥させた。次に、容器の温度が室温(25℃)に戻った後、残分質量を測定することにより不揮発分含量を測定した。不揮発分含量の測定結果は30質量%であった。 (Evaluation of resin solution and bisphenol resin)
[Measurement of nonvolatile content]
The nonvolatile content of the resin solution was measured by the following procedure. First, 2 g of the resin solution was placed in a 50φ × 15 mm container (stainless steel petri dish) and dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returned to room temperature (25 ° C.), the non-volatile content was measured by measuring the residual mass. The measurement result of the nonvolatile content was 30% by mass.
[不揮発分含量の測定]
樹脂溶液の不揮発分含量を下記の手順により測定した。まず、50φ×15mmの容器(ステンレスシャーレ)に樹脂溶液2gを入れ、150℃で60分間熱風乾燥機を用いて乾燥させた。次に、容器の温度が室温(25℃)に戻った後、残分質量を測定することにより不揮発分含量を測定した。不揮発分含量の測定結果は30質量%であった。 (Evaluation of resin solution and bisphenol resin)
[Measurement of nonvolatile content]
The nonvolatile content of the resin solution was measured by the following procedure. First, 2 g of the resin solution was placed in a 50φ × 15 mm container (stainless steel petri dish) and dried at 150 ° C. for 60 minutes using a hot air dryer. Next, after the temperature of the container returned to room temperature (25 ° C.), the non-volatile content was measured by measuring the residual mass. The measurement result of the nonvolatile content was 30% by mass.
[pHの測定]
反応終了後に樹脂溶液を下記のpH測定装置のセンサー部に500mL注入して樹脂溶液のpHを測定した。pHの測定結果は7.8であった。
{pH測定の条件}
pH測定装置:株式会社堀場製作所製 ツインpHメーター AS-212
校正液:株式会社堀場製作所製 pH校正液(pH4.01、pH6.86)
測定温度:25℃ [Measurement of pH]
After completion of the reaction, 500 mL of the resin solution was injected into the sensor unit of the following pH measurement device, and the pH of the resin solution was measured. The measurement result of pH was 7.8.
{Conditions for pH measurement}
pH measurement device: HORIBA, Ltd. Twin pH meter AS-212
Calibration solution: pH calibration solution manufactured by HORIBA, Ltd. (pH 4.01, pH 6.86)
Measurement temperature: 25 ° C
反応終了後に樹脂溶液を下記のpH測定装置のセンサー部に500mL注入して樹脂溶液のpHを測定した。pHの測定結果は7.8であった。
{pH測定の条件}
pH測定装置:株式会社堀場製作所製 ツインpHメーター AS-212
校正液:株式会社堀場製作所製 pH校正液(pH4.01、pH6.86)
測定温度:25℃ [Measurement of pH]
After completion of the reaction, 500 mL of the resin solution was injected into the sensor unit of the following pH measurement device, and the pH of the resin solution was measured. The measurement result of pH was 7.8.
{Conditions for pH measurement}
pH measurement device: HORIBA, Ltd. Twin pH meter AS-212
Calibration solution: pH calibration solution manufactured by HORIBA, Ltd. (pH 4.01, pH 6.86)
Measurement temperature: 25 ° C
[重量平均分子量の測定]
1H-NMRスペクトル測定用に単離されたビスフェノール系樹脂の重量平均分子量を下記条件のGPCにより測定した。ビスフェノール系樹脂の重量平均分子量は58100であった。
{GPC条件}
装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
ポンプ:PU-2080
示差屈折率計:RI-2031
検出器:紫外可視吸光光度計UV-2075(λ:254nm)
カラムオーブン:CO-2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製) [Measurement of weight average molecular weight]
The weight average molecular weight of the bisphenol-based resin isolated for 1 H-NMR spectrum measurement was measured by GPC under the following conditions. The weight average molecular weight of the bisphenol-based resin was 58100.
{GPC condition}
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
1H-NMRスペクトル測定用に単離されたビスフェノール系樹脂の重量平均分子量を下記条件のGPCにより測定した。ビスフェノール系樹脂の重量平均分子量は58100であった。
{GPC条件}
装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
ポンプ:PU-2080
示差屈折率計:RI-2031
検出器:紫外可視吸光光度計UV-2075(λ:254nm)
カラムオーブン:CO-2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製) [Measurement of weight average molecular weight]
The weight average molecular weight of the bisphenol-based resin isolated for 1 H-NMR spectrum measurement was measured by GPC under the following conditions. The weight average molecular weight of the bisphenol-based resin was 58100.
{GPC condition}
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
<ナフタレンスルホン酸系樹脂(ナフタレンスルホン酸ポリマ)>
ナフタレンスルホン酸系樹脂として、バニオールHDL-100(ナフタレンスルホン酸系樹脂、商品名、日本製紙株式会社製、重量平均分子量:8000)を準備した。 <Naphthalenesulfonic acid-based resin (naphthalenesulfonic acid polymer)>
As the naphthalene sulfonic acid resin, vanillol HDL-100 (Naphthalene sulfonic acid resin, trade name, manufactured by Nippon Paper Industries Co., Ltd., weight average molecular weight: 8000) was prepared.
ナフタレンスルホン酸系樹脂として、バニオールHDL-100(ナフタレンスルホン酸系樹脂、商品名、日本製紙株式会社製、重量平均分子量:8000)を準備した。 <Naphthalenesulfonic acid-based resin (naphthalenesulfonic acid polymer)>
As the naphthalene sulfonic acid resin, vanillol HDL-100 (Naphthalene sulfonic acid resin, trade name, manufactured by Nippon Paper Industries Co., Ltd., weight average molecular weight: 8000) was prepared.
<リグニンスルホン酸塩(リグニンスルホン酸ポリマ)>
リグニンスルホン酸塩として、リグニンスルホン酸ナトリウム(商品名:バニレックスN、日本製紙株式会社製、重量平均分子量:12000)を準備した。 <Lignin sulfonate (lignin sulfonate polymer)>
As lignin sulfonate, sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd., weight average molecular weight: 12000) was prepared.
リグニンスルホン酸塩として、リグニンスルホン酸ナトリウム(商品名:バニレックスN、日本製紙株式会社製、重量平均分子量:12000)を準備した。 <Lignin sulfonate (lignin sulfonate polymer)>
As lignin sulfonate, sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd., weight average molecular weight: 12000) was prepared.
<鉛蓄電池の作製>
(実施例1)
[負極板の作製]
鉛粉の全質量を基準として、前記ビスフェノール系樹脂の樹脂溶液を固形分換算で0.2質量%と、オイルファーネスブラック(カーボンブラック、ライオン株式会社製、商品名:カーボンECP600JD、平均一次粒子径:20nm)を固形分換算で0.6質量%と、硫酸バリウム1.0質量%と、を鉛粉(平均一次粒子径:1μm)に対して添加した後に乾式混合した。前記操作において、オイルファーネスブラックを水に浸漬させて水に馴染ませた後に混練してから、オイルファーネスブラックを含む液を鉛粉と混合した。 <Production of lead acid battery>
Example 1
[Production of negative electrode plate]
Based on the total mass of lead powder, the resin solution of the bisphenol-based resin is 0.2% by mass in terms of solid content, oil furnace black (carbon black, manufactured by Lion Corporation, trade name: carbon ECP600JD, average primary particle size) : 20 nm) in terms of solid content and 0.6% by weight of barium sulfate were added to lead powder (average primary particle size: 1 μm) and then dry mixed. In the above operation, the oil furnace black was immersed in water and mixed with water, and then kneaded, and then the liquid containing the oil furnace black was mixed with the lead powder.
(実施例1)
[負極板の作製]
鉛粉の全質量を基準として、前記ビスフェノール系樹脂の樹脂溶液を固形分換算で0.2質量%と、オイルファーネスブラック(カーボンブラック、ライオン株式会社製、商品名:カーボンECP600JD、平均一次粒子径:20nm)を固形分換算で0.6質量%と、硫酸バリウム1.0質量%と、を鉛粉(平均一次粒子径:1μm)に対して添加した後に乾式混合した。前記操作において、オイルファーネスブラックを水に浸漬させて水に馴染ませた後に混練してから、オイルファーネスブラックを含む液を鉛粉と混合した。 <Production of lead acid battery>
Example 1
[Production of negative electrode plate]
Based on the total mass of lead powder, the resin solution of the bisphenol-based resin is 0.2% by mass in terms of solid content, oil furnace black (carbon black, manufactured by Lion Corporation, trade name: carbon ECP600JD, average primary particle size) : 20 nm) in terms of solid content and 0.6% by weight of barium sulfate were added to lead powder (average primary particle size: 1 μm) and then dry mixed. In the above operation, the oil furnace black was immersed in water and mixed with water, and then kneaded, and then the liquid containing the oil furnace black was mixed with the lead powder.
次に、希硫酸(比重1.26(20℃換算))及び水を加えながら混練して負極材ペーストを作製した。負極集電体(エキスパンド格子体、鉛-カルシウム-錫系合金、厚さ:1.0mm)に負極材ペーストを充填して負極板を得た。前記負極板を、温度50℃、湿度95%の雰囲気下で20時間熟成した後、温度50℃の雰囲気下で乾燥して未化成の負極板を得た。
Next, dilute sulfuric acid (specific gravity 1.26 (converted at 20 ° C.)) and water were added and kneaded to prepare a negative electrode material paste. A negative electrode current collector (expanded grid, lead-calcium-tin alloy, thickness: 1.0 mm) was filled with a negative electrode material paste to obtain a negative electrode plate. The negative electrode plate was aged in an atmosphere at a temperature of 50 ° C. and a humidity of 95% for 20 hours, and then dried in an atmosphere at a temperature of 50 ° C. to obtain an unformed negative electrode plate.
[正極板の作製]
鉛粉の全質量を基準として、0.1質量%の補強用短繊維(アクリル繊維)を鉛粉(平均粒子径:2μm)に対して添加した後に乾式混合した。次に、希硫酸(比重1.28(20℃換算))及び水を加えて混練して正極材ペーストを作製した。正極集電体(エキスパンド格子体、鉛-カルシウム-錫系合金)に正極材ペーストを充填して正極板を得た。前記正極板を、温度50℃、湿度95%の雰囲気下で20時間熟成した後、温度50℃の雰囲気下で乾燥して未化成の正極板を得た。 [Production of positive electrode plate]
Based on the total mass of the lead powder, 0.1% by mass of reinforcing short fibers (acrylic fibers) was added to the lead powder (average particle diameter: 2 μm) and then dry mixed. Next, dilute sulfuric acid (specific gravity 1.28 (converted at 20 ° C.)) and water were added and kneaded to prepare a positive electrode material paste. A positive electrode current collector (expanded grid, lead-calcium-tin alloy) was filled with a positive electrode material paste to obtain a positive electrode plate. The positive electrode plate was aged in an atmosphere at a temperature of 50 ° C. and a humidity of 95% for 20 hours, and then dried in an atmosphere at a temperature of 50 ° C. to obtain an unformed positive electrode plate.
鉛粉の全質量を基準として、0.1質量%の補強用短繊維(アクリル繊維)を鉛粉(平均粒子径:2μm)に対して添加した後に乾式混合した。次に、希硫酸(比重1.28(20℃換算))及び水を加えて混練して正極材ペーストを作製した。正極集電体(エキスパンド格子体、鉛-カルシウム-錫系合金)に正極材ペーストを充填して正極板を得た。前記正極板を、温度50℃、湿度95%の雰囲気下で20時間熟成した後、温度50℃の雰囲気下で乾燥して未化成の正極板を得た。 [Production of positive electrode plate]
Based on the total mass of the lead powder, 0.1% by mass of reinforcing short fibers (acrylic fibers) was added to the lead powder (average particle diameter: 2 μm) and then dry mixed. Next, dilute sulfuric acid (specific gravity 1.28 (converted at 20 ° C.)) and water were added and kneaded to prepare a positive electrode material paste. A positive electrode current collector (expanded grid, lead-calcium-tin alloy) was filled with a positive electrode material paste to obtain a positive electrode plate. The positive electrode plate was aged in an atmosphere at a temperature of 50 ° C. and a humidity of 95% for 20 hours, and then dried in an atmosphere at a temperature of 50 ° C. to obtain an unformed positive electrode plate.
[電池の組み立て]
未化成の負極板及び未化成の正極板が交互に積層されるように、ポリエチレン製のセパレータを介して6枚の未化成の負極板及び5枚の未化成の正極板を積層した後に、同極性の集電部同士をストラップで溶接させて極板群を作製した。極板群を電槽に挿入して2V単セル電池(JIS D 5301のB20サイズ相当)を組み立てた。この電池に希硫酸(比重1.26(20℃換算))を注液した後に、40℃の水槽中、通電電流10.0Aで15時間の条件で化成した。化成終了後、比重1.28(20℃換算)の希硫酸となるように調整して実施例1の鉛蓄電池を得た。表1に示すように、化成後の負極材の全質量を基準として、カーボンブラックの含有量は0.6質量%であり、ビスフェノール系樹脂の含有量(固形分換算)は0.1質量%であった。 [Battery assembly]
After laminating 6 unformed negative plates and 5 unformed positive plates through a polyethylene separator so that unformed negative plates and unformed positive plates are alternately laminated, the same The polar current collectors were welded together with a strap to produce an electrode plate group. A 2V single cell battery (equivalent to B20 size of JIS D 5301) was assembled by inserting the electrode plate group into the battery case. After dilute sulfuric acid (specific gravity 1.26 (converted to 20 ° C.)) was poured into this battery, it was formed in a 40 ° C. water bath at an energization current of 10.0 A for 15 hours. After the chemical conversion, the lead acid battery of Example 1 was obtained by adjusting the diluted sulfuric acid to have a specific gravity of 1.28 (converted to 20 ° C.). As shown in Table 1, the content of carbon black is 0.6% by mass and the content of bisphenol-based resin (in terms of solid content) is 0.1% by mass, based on the total mass of the negative electrode material after chemical conversion. Met.
未化成の負極板及び未化成の正極板が交互に積層されるように、ポリエチレン製のセパレータを介して6枚の未化成の負極板及び5枚の未化成の正極板を積層した後に、同極性の集電部同士をストラップで溶接させて極板群を作製した。極板群を電槽に挿入して2V単セル電池(JIS D 5301のB20サイズ相当)を組み立てた。この電池に希硫酸(比重1.26(20℃換算))を注液した後に、40℃の水槽中、通電電流10.0Aで15時間の条件で化成した。化成終了後、比重1.28(20℃換算)の希硫酸となるように調整して実施例1の鉛蓄電池を得た。表1に示すように、化成後の負極材の全質量を基準として、カーボンブラックの含有量は0.6質量%であり、ビスフェノール系樹脂の含有量(固形分換算)は0.1質量%であった。 [Battery assembly]
After laminating 6 unformed negative plates and 5 unformed positive plates through a polyethylene separator so that unformed negative plates and unformed positive plates are alternately laminated, the same The polar current collectors were welded together with a strap to produce an electrode plate group. A 2V single cell battery (equivalent to B20 size of JIS D 5301) was assembled by inserting the electrode plate group into the battery case. After dilute sulfuric acid (specific gravity 1.26 (converted to 20 ° C.)) was poured into this battery, it was formed in a 40 ° C. water bath at an energization current of 10.0 A for 15 hours. After the chemical conversion, the lead acid battery of Example 1 was obtained by adjusting the diluted sulfuric acid to have a specific gravity of 1.28 (converted to 20 ° C.). As shown in Table 1, the content of carbon black is 0.6% by mass and the content of bisphenol-based resin (in terms of solid content) is 0.1% by mass, based on the total mass of the negative electrode material after chemical conversion. Met.
負極材の抵抗率(Ω/cm)は、次のように算出した。まず、定格容量を5時間率で放電し、充電状態が0%である負極材を得た。次に、二端子測定法デジタルマルチメータ(横河メータ&インスツルメンツ株式会社製、商品名:TY720)の端子を、負極板における耳部側の角部に位置する測定位置Aと、負極板における測定位置Aの対角位置の角部に位置する測定位置Bとに設置(図4に示す二つの角部に設置)し、負極板の抵抗値として測定位置Aと測定位置Bとの間の抵抗値R(Ω)を測定した。測定位置A及びBとしては、負極材の最長径(対角線)における両端からそれぞれ10%の距離の位置を用いた。続いて、抵抗値Rを測定位置Aと測定位置Bとの間の距離(cm)で割った値を負極板の抵抗率R1(Ω/cm)として得た。次に、負極板から負極材を除去した後、前記と同様に負極集電体(格子体)の抵抗値を測定し、負極集電体の抵抗率R2(Ω/cm)を得た。その後、負極板の抵抗率R1(Ω/cm)から負極集電体の抵抗率R2(Ω/cm)を差し引いた値(R1-R2)を負極材の抵抗率(Ω/cm)として得た。
The resistivity (Ω / cm) of the negative electrode material was calculated as follows. First, the rated capacity was discharged at a rate of 5 hours to obtain a negative electrode material having a charged state of 0%. Next, the terminal of the two-terminal measurement method digital multimeter (product name: TY720, manufactured by Yokogawa Meter & Instruments Co., Ltd.) is measured at the measurement position A at the corner of the negative electrode plate on the ear side, and the measurement at the negative electrode plate Installed at the measurement position B located at the corner of the diagonal position of the position A (installed at the two corners shown in FIG. 4), the resistance between the measurement position A and the measurement position B as the resistance value of the negative electrode plate The value R (Ω) was measured. As measurement positions A and B, positions at a distance of 10% from both ends of the longest diameter (diagonal line) of the negative electrode material were used. Subsequently, a value obtained by dividing the resistance value R by the distance (cm) between the measurement position A and the measurement position B was obtained as the resistivity R1 (Ω / cm) of the negative electrode plate. Next, after removing the negative electrode material from the negative electrode plate, the resistance value of the negative electrode current collector (lattice body) was measured in the same manner as described above to obtain the resistivity R2 (Ω / cm) of the negative electrode current collector. Thereafter, a value (R1-R2) obtained by subtracting the resistivity R2 (Ω / cm) of the negative electrode current collector from the resistivity R1 (Ω / cm) of the negative electrode plate was obtained as the resistivity (Ω / cm) of the negative electrode material. .
(実施例2~6、比較例1~5)
負極材の構成成分を表1の成分へ変更したこと以外は実施例1と同様の方法により、実施例2~6及び比較例1~5の鉛蓄電池を得た。化成後の負極材の全質量を基準としたカーボンブラック、ビスフェノール系樹脂、ナフタレンスルホン酸系樹脂及びリグニンスルホン酸塩の含有量(固形分換算)は、表1に示す含有量であった。一次粒子径が30nmのカーボンブラックとしては、キャボット社製の商品名:バルカンXC72を用いた。一次粒子径が40nmのカーボンブラックとしては、Denka株式会社製の商品名:デンカブラックである粉状のカーボンブラックを用いた。 (Examples 2 to 6, Comparative Examples 1 to 5)
Lead storage batteries of Examples 2 to 6 and Comparative Examples 1 to 5 were obtained in the same manner as in Example 1 except that the constituent components of the negative electrode material were changed to those shown in Table 1. The contents of carbon black, bisphenol-based resin, naphthalenesulfonic acid-based resin, and lignin sulfonate (based on solid content) based on the total mass of the negative electrode material after conversion were the contents shown in Table 1. As carbon black having a primary particle size of 30 nm, trade name: Vulcan XC72 manufactured by Cabot Corporation was used. As the carbon black having a primary particle size of 40 nm, powdery carbon black having a trade name: Denka Black manufactured by Denka Co., Ltd. was used.
負極材の構成成分を表1の成分へ変更したこと以外は実施例1と同様の方法により、実施例2~6及び比較例1~5の鉛蓄電池を得た。化成後の負極材の全質量を基準としたカーボンブラック、ビスフェノール系樹脂、ナフタレンスルホン酸系樹脂及びリグニンスルホン酸塩の含有量(固形分換算)は、表1に示す含有量であった。一次粒子径が30nmのカーボンブラックとしては、キャボット社製の商品名:バルカンXC72を用いた。一次粒子径が40nmのカーボンブラックとしては、Denka株式会社製の商品名:デンカブラックである粉状のカーボンブラックを用いた。 (Examples 2 to 6, Comparative Examples 1 to 5)
Lead storage batteries of Examples 2 to 6 and Comparative Examples 1 to 5 were obtained in the same manner as in Example 1 except that the constituent components of the negative electrode material were changed to those shown in Table 1. The contents of carbon black, bisphenol-based resin, naphthalenesulfonic acid-based resin, and lignin sulfonate (based on solid content) based on the total mass of the negative electrode material after conversion were the contents shown in Table 1. As carbon black having a primary particle size of 30 nm, trade name: Vulcan XC72 manufactured by Cabot Corporation was used. As the carbon black having a primary particle size of 40 nm, powdery carbon black having a trade name: Denka Black manufactured by Denka Co., Ltd. was used.
<電池特性の評価>
前記の2V単セル電池について、充電受け入れ性、放電特性及びサイクル特性を下記のとおり測定した。比較例1の充電受け入れ性、放電特性及びサイクル特性の測定結果をそれぞれ100とし、実施例及び比較例の各特性を相対評価した。結果を表1に示す。 <Evaluation of battery characteristics>
About the said 2V single cell battery, charge acceptance, discharge characteristics, and cycling characteristics were measured as follows. The measurement results of charge acceptability, discharge characteristics, and cycle characteristics of Comparative Example 1 were set to 100, and the characteristics of Examples and Comparative Examples were relatively evaluated. The results are shown in Table 1.
前記の2V単セル電池について、充電受け入れ性、放電特性及びサイクル特性を下記のとおり測定した。比較例1の充電受け入れ性、放電特性及びサイクル特性の測定結果をそれぞれ100とし、実施例及び比較例の各特性を相対評価した。結果を表1に示す。 <Evaluation of battery characteristics>
About the said 2V single cell battery, charge acceptance, discharge characteristics, and cycling characteristics were measured as follows. The measurement results of charge acceptability, discharge characteristics, and cycle characteristics of Comparative Example 1 were set to 100, and the characteristics of Examples and Comparative Examples were relatively evaluated. The results are shown in Table 1.
(充電受け入れ性)
充電受け入れ性として、電池の充電状態が90%である状態(つまり、満充電状態から電池容量の10%を放電し、2.33Vで定電圧充電した状態)の充電開始5秒後の充電容量を測定した。5秒後の充電容量が大きいほど、充電受け入れ性が良い電池であると評価される。 (Charge acceptance)
Charge capacity 5 seconds after the start of charging in a state where the state of charge of the battery is 90% (that is, a state in which 10% of the battery capacity is discharged from the fully charged state and charged at a constant voltage of 2.33 V) Was measured. The larger the charge capacity after 5 seconds, the better is the battery with better charge acceptance.
充電受け入れ性として、電池の充電状態が90%である状態(つまり、満充電状態から電池容量の10%を放電し、2.33Vで定電圧充電した状態)の充電開始5秒後の充電容量を測定した。5秒後の充電容量が大きいほど、充電受け入れ性が良い電池であると評価される。 (Charge acceptance)
(放電特性)
放電特性として、-15℃において5Cで定電流放電し、電池電圧が1.0Vに達するまでの放電持続時間を測定した。放電持続時間が長いほど放電特性に優れる電池であると評価される。なお、前記Cとは、満充電状態から定格容量を定電流放電するときの電流の大きさを相対的に表したものである。例えば、定格容量を1時間で放電させることができる電流を1C、2時間で放電させることができる電流を0.5Cと表現する。 (Discharge characteristics)
As discharge characteristics, a constant current discharge was performed at −15 ° C. at 5 C, and the discharge duration until the battery voltage reached 1.0 V was measured. The longer the discharge duration, the better the battery. The C is a relative representation of the magnitude of current when the rated capacity is discharged at a constant current from a fully charged state. For example, a current that can discharge the rated capacity in 1 hour is expressed as 1 C, and a current that can be discharged in 2 hours is expressed as 0.5 C.
放電特性として、-15℃において5Cで定電流放電し、電池電圧が1.0Vに達するまでの放電持続時間を測定した。放電持続時間が長いほど放電特性に優れる電池であると評価される。なお、前記Cとは、満充電状態から定格容量を定電流放電するときの電流の大きさを相対的に表したものである。例えば、定格容量を1時間で放電させることができる電流を1C、2時間で放電させることができる電流を0.5Cと表現する。 (Discharge characteristics)
As discharge characteristics, a constant current discharge was performed at −15 ° C. at 5 C, and the discharge duration until the battery voltage reached 1.0 V was measured. The longer the discharge duration, the better the battery. The C is a relative representation of the magnitude of current when the rated capacity is discharged at a constant current from a fully charged state. For example, a current that can discharge the rated capacity in 1 hour is expressed as 1 C, and a current that can be discharged in 2 hours is expressed as 0.5 C.
(サイクル特性)
サイクル特性は、日本工業規格の軽負荷寿命試験(JIS D 5301)に準じた方法で評価した。サイクル数が大きいほど耐久性が高い電池であると評価される。 (Cycle characteristics)
The cycle characteristics were evaluated by a method according to a Japanese Industrial Standard light load life test (JIS D 5301). The larger the number of cycles, the higher the durability.
サイクル特性は、日本工業規格の軽負荷寿命試験(JIS D 5301)に準じた方法で評価した。サイクル数が大きいほど耐久性が高い電池であると評価される。 (Cycle characteristics)
The cycle characteristics were evaluated by a method according to a Japanese Industrial Standard light load life test (JIS D 5301). The larger the number of cycles, the higher the durability.
1…鉛蓄電池、2…電槽、3…蓋、4…正極端子、5…負極端子、6…液口栓、11…極板群、12…正極板、13…負極板、14…セパレータ、15…正極側ストラップ、16…負極側ストラップ、17…セル間接続部、18…極柱、22,32…集電部。
DESCRIPTION OF SYMBOLS 1 ... Lead acid battery, 2 ... Battery case, 3 ... Lid, 4 ... Positive electrode terminal, 5 ... Negative electrode terminal, 6 ... Liquid port stopper, 11 ... Electrode plate group, 12 ... Positive electrode plate, 13 ... Negative electrode plate, 14 ... Separator, DESCRIPTION OF SYMBOLS 15 ... Positive electrode side strap, 16 ... Negative electrode side strap, 17 ... Inter-cell connection part, 18 ... Polar pole, 22, 32 ... Current collection part.
Claims (7)
- 正極及び負極を備え、
前記負極が、集電体と、当該集電体に保持された負極材と、を有し、
充電状態が0%であるときの前記負極材の抵抗率が1.02Ω/cm以下である、鉛蓄電池。 A positive electrode and a negative electrode;
The negative electrode has a current collector and a negative electrode material held by the current collector;
The lead acid battery in which the resistivity of the negative electrode material when the state of charge is 0% is 1.02 Ω / cm or less. - 前記負極材がカーボンブラックを含有する、請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the negative electrode material contains carbon black.
- 前記カーボンブラックの平均一次粒子径が50nm以下である、請求項2に記載の鉛蓄電池。 The lead acid battery according to claim 2, wherein the average primary particle diameter of the carbon black is 50 nm or less.
- 前記カーボンブラックの含有量が前記負極材の全質量を基準として0.05~2質量%である、請求項2又は3に記載の鉛蓄電池。 4. The lead acid battery according to claim 2, wherein the content of the carbon black is 0.05 to 2% by mass based on the total mass of the negative electrode material.
- 前記負極材が、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を含有する、請求項1~4のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 4, wherein the negative electrode material contains a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group.
- 前記樹脂が、ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応に由来する構造単位を有するビスフェノール系樹脂を含む、請求項5に記載の鉛蓄電池。 The resin is selected from the group consisting of bisphenol compounds and at least one selected from the group consisting of aminoalkyl sulfonic acids, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acids and aminoaryl sulfonic acid derivatives, and formaldehyde and formaldehyde derivatives. The lead acid battery of Claim 5 containing the bisphenol-type resin which has a structural unit derived from reaction with at least 1 type.
- 前記樹脂が、ビスフェノール系化合物と、アミノベンゼンスルホン酸及びアミノベンゼンスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応に由来する構造単位を有するビスフェノール系樹脂を含む、請求項5又は6に記載の鉛蓄電池。 The resin is a structural unit derived from the reaction of a bisphenol compound, at least one selected from the group consisting of aminobenzenesulfonic acid and aminobenzenesulfonic acid derivatives, and at least one selected from the group consisting of formaldehyde and formaldehyde derivatives. The lead acid battery of Claim 5 or 6 containing the bisphenol-type resin which has this.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018555338A JPWO2018105005A1 (en) | 2016-12-05 | 2016-12-05 | Lead acid battery |
PCT/JP2016/086066 WO2018105005A1 (en) | 2016-12-05 | 2016-12-05 | Lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/086066 WO2018105005A1 (en) | 2016-12-05 | 2016-12-05 | Lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105005A1 true WO2018105005A1 (en) | 2018-06-14 |
Family
ID=62492281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/086066 WO2018105005A1 (en) | 2016-12-05 | 2016-12-05 | Lead storage battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018105005A1 (en) |
WO (1) | WO2018105005A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011090113A1 (en) * | 2010-01-21 | 2011-07-28 | 株式会社Gsユアサ | Negative electrode plate for lead storage battery, process for producing same, and lead storage battery |
JP2013161606A (en) * | 2012-02-03 | 2013-08-19 | Gs Yuasa Corp | Liquid type lead acid battery |
JP2014216115A (en) * | 2013-04-24 | 2014-11-17 | 株式会社Gsユアサ | Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery |
WO2016121510A1 (en) * | 2015-01-28 | 2016-08-04 | 日立化成株式会社 | Lead storage cell and automobile provided with same |
-
2016
- 2016-12-05 JP JP2018555338A patent/JPWO2018105005A1/en active Pending
- 2016-12-05 WO PCT/JP2016/086066 patent/WO2018105005A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011090113A1 (en) * | 2010-01-21 | 2011-07-28 | 株式会社Gsユアサ | Negative electrode plate for lead storage battery, process for producing same, and lead storage battery |
JP2013161606A (en) * | 2012-02-03 | 2013-08-19 | Gs Yuasa Corp | Liquid type lead acid battery |
JP2014216115A (en) * | 2013-04-24 | 2014-11-17 | 株式会社Gsユアサ | Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery |
WO2016121510A1 (en) * | 2015-01-28 | 2016-08-04 | 日立化成株式会社 | Lead storage cell and automobile provided with same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018105005A1 (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6677324B2 (en) | Lead storage battery, micro hybrid vehicle and idling stop system vehicle | |
JP6635189B2 (en) | Lead storage battery, micro hybrid vehicle and idling stop system vehicle | |
JP6432609B2 (en) | Lead acid battery, micro hybrid vehicle and idling stop system vehicle | |
KR20140021663A (en) | Lead acid battery | |
JP6202197B2 (en) | Bisphenol resin, resin composition, electrode layer, electrode and lead acid battery | |
WO2017149871A1 (en) | Resin for lead storage battery, electrode, lead storage battery, and motor vehicle | |
JP6724781B2 (en) | Lead acid battery | |
JP6468163B2 (en) | Lead acid battery | |
JP6582637B2 (en) | Lead acid battery | |
JP6354855B2 (en) | Electrode, lead-acid battery, and method for manufacturing the same | |
JP6597994B2 (en) | Liquid lead-acid battery for idling stop vehicles | |
JP6638241B2 (en) | Lead storage battery | |
JP2018116843A (en) | Electrode and lead acid storage battery | |
JP6870207B2 (en) | Lead-acid battery | |
WO2018105005A1 (en) | Lead storage battery | |
JP2019204702A (en) | Lead acid battery | |
JP6743919B2 (en) | Lead-acid batteries, idling stop system vehicles and micro hybrid vehicles | |
JP6950365B2 (en) | Negative electrode material paste, negative electrode and lead acid battery, and their manufacturing method | |
JP6958685B2 (en) | Lead-acid batteries, idling stop system vehicles and micro-hybrid vehicles | |
JP6953874B2 (en) | Lead-acid battery | |
JP6856113B2 (en) | Lead-acid battery | |
JP2015137330A (en) | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition | |
JP2019218461A (en) | Bisphenol-based resin, electrode, lead storage battery and method for producing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16923571 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018555338 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16923571 Country of ref document: EP Kind code of ref document: A1 |