WO2018104079A1 - Pipe produced with a polymer composition comprising a polyolefin - Google Patents
Pipe produced with a polymer composition comprising a polyolefin Download PDFInfo
- Publication number
- WO2018104079A1 WO2018104079A1 PCT/EP2017/080364 EP2017080364W WO2018104079A1 WO 2018104079 A1 WO2018104079 A1 WO 2018104079A1 EP 2017080364 W EP2017080364 W EP 2017080364W WO 2018104079 A1 WO2018104079 A1 WO 2018104079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin
- pipe according
- polyethylene
- polydialkylsiloxane
- composition
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 25
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 20
- 229920000642 polymer Polymers 0.000 title claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229920006294 polydialkylsiloxane Polymers 0.000 claims abstract description 15
- -1 polyethylene Polymers 0.000 claims description 55
- 229920000573 polyethylene Polymers 0.000 claims description 27
- 239000004698 Polyethylene Substances 0.000 claims description 26
- 229920001903 high density polyethylene Polymers 0.000 claims description 17
- 239000004700 high-density polyethylene Substances 0.000 claims description 17
- 230000002902 bimodal effect Effects 0.000 claims description 15
- 239000000178 monomer Substances 0.000 claims description 12
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 7
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 7
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical group CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 claims description 6
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 6
- AIXMJTYHQHQJLU-UHFFFAOYSA-N chembl210858 Chemical compound O1C(CC(=O)OC)CC(C=2C=CC(O)=CC=2)=N1 AIXMJTYHQHQJLU-UHFFFAOYSA-N 0.000 claims description 6
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 5
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical compound OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000000645 desinfectant Substances 0.000 abstract description 6
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 18
- 239000003054 catalyst Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 239000004155 Chlorine dioxide Substances 0.000 description 9
- 235000019398 chlorine dioxide Nutrition 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- VCMZIKKVYXGKCI-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butyl-6-methylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C(C)(C)C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C)C(C)(C)C)C(C)(C)C VCMZIKKVYXGKCI-UHFFFAOYSA-N 0.000 description 1
- TYCLKLCKLGCVEZ-UHFFFAOYSA-N 1,1-bis(2,6-ditert-butyl-4-methylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol phosphono dihydrogen phosphate Chemical compound OP(O)(=O)OP(=O)(O)O.C(C)(C)(C)C1=C(C(=CC(=C1)C)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1C(C)(C)C)C)C(C)(C)C TYCLKLCKLGCVEZ-UHFFFAOYSA-N 0.000 description 1
- BLWNLYFYKIIZKR-UHFFFAOYSA-N 1,3,7,9-tetratert-butyl-11-(6-methylheptoxy)-5h-benzo[d][1,3,2]benzodioxaphosphocine Chemical compound C1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP(OCCCCCC(C)C)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C BLWNLYFYKIIZKR-UHFFFAOYSA-N 0.000 description 1
- MYMKXVFDVQUQLG-UHFFFAOYSA-N 1,3,7,9-tetratert-butyl-11-fluoro-5-methyl-5h-benzo[d][1,3,2]benzodioxaphosphocine Chemical compound CC1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP(F)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C MYMKXVFDVQUQLG-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- SHDUFLICMXOBPA-UHFFFAOYSA-N 3,9-bis(2,4,6-tritert-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1OP1OCC2(COP(OC=3C(=CC(=CC=3C(C)(C)C)C(C)(C)C)C(C)(C)C)OC2)CO1 SHDUFLICMXOBPA-UHFFFAOYSA-N 0.000 description 1
- AIBRSVLEQRWAEG-UHFFFAOYSA-N 3,9-bis(2,4-ditert-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP1OCC2(COP(OC=3C(=CC(=CC=3)C(C)(C)C)C(C)(C)C)OC2)CO1 AIBRSVLEQRWAEG-UHFFFAOYSA-N 0.000 description 1
- YLUZWKKWWSCRSR-UHFFFAOYSA-N 3,9-bis(8-methylnonoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCC(C)C)OCC21COP(OCCCCCCCC(C)C)OC2 YLUZWKKWWSCRSR-UHFFFAOYSA-N 0.000 description 1
- PZRWFKGUFWPFID-UHFFFAOYSA-N 3,9-dioctadecoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCCCCCCCCCCCC)OCC21COP(OCCCCCCCCCCCCCCCCCC)OC2 PZRWFKGUFWPFID-UHFFFAOYSA-N 0.000 description 1
- PRWJPWSKLXYEPD-UHFFFAOYSA-N 4-[4,4-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butan-2-yl]-2-tert-butyl-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(C)CC(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=C(O)C=C1C PRWJPWSKLXYEPD-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- BEIOEBMXPVYLRY-UHFFFAOYSA-N [4-[4-bis(2,4-ditert-butylphenoxy)phosphanylphenyl]phenyl]-bis(2,4-ditert-butylphenoxy)phosphane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(C=1C=CC(=CC=1)C=1C=CC(=CC=1)P(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C BEIOEBMXPVYLRY-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- ZEFSGHVBJCEKAZ-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OCC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C ZEFSGHVBJCEKAZ-UHFFFAOYSA-N 0.000 description 1
- VZRMYAIVHSRUQY-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) methyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C VZRMYAIVHSRUQY-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 1
- CNUJLMSKURPSHE-UHFFFAOYSA-N trioctadecyl phosphite Chemical compound CCCCCCCCCCCCCCCCCCOP(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC CNUJLMSKURPSHE-UHFFFAOYSA-N 0.000 description 1
- WGKLOLBTFWFKOD-UHFFFAOYSA-N tris(2-nonylphenyl) phosphite Chemical compound CCCCCCCCCC1=CC=CC=C1OP(OC=1C(=CC=CC=1)CCCCCCCCC)OC1=CC=CC=C1CCCCCCCCC WGKLOLBTFWFKOD-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/18—Applications used for pipes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/28—Non-macromolecular organic substances
- C08L2666/30—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/28—Non-macromolecular organic substances
- C08L2666/40—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/66—Substances characterised by their function in the composition
- C08L2666/68—Plasticizers; Solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/66—Substances characterised by their function in the composition
- C08L2666/78—Stabilisers against oxidation, heat, light or ozone
Definitions
- the present invention relates to a pipe for the transport of water produced with a polymer composition comprising a polyolefin.
- the pipe has an improved resistance to chlorinated disinfectants.
- Pipes for the transport of gas, for sanitation and for water supply may be produced with for example bimodal polyethylene compositions. Pipes have a very good resistance to water however their lifetime is shortened when the pipes come into contact with disinfectants which are often added to water for hygienic reasons.
- the chlorine dioxide used as disinfectant in water degrades most materials including polyethylene (Colin, Aging of polyethylene pipes transporting drinking water disinfected by chlorine dioxide, part I, Chemical aspects; Polymer engineering and Science 49(7); 1429-1437; July 2009).
- Other chlorinated solvents are for example chloramine and chlorine.
- additives for example antioxidants and stabilizers to prevent said degradation.
- additives for example antioxidants and stabilizers to prevent said degradation.
- additives are proposed to protect polymers during processing and to achieve the desired end-use properties. However, appropriate combinations of stabilizers have to be carefully selected, depending on the desired final properties the polymeric article should have.
- chlorinated disinfectants for example chlorine dioxide, chloramine and chlorine.
- the pipe for the transport of water according to the invention is produced with a polymer composition comprising a polyolefin and polydialkylsiloxane wherein the amount of polydialkylsiloxane in the composition is lower than 2.0 wt% relative to the total weight amount of the composition and wherein the polyolefin is based on at least 70 % by weight of olefin monomer.
- Suitable polydialkylsiloxanes include for example polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane, polydioctylsiloxane, polydibutylsiloxanes, polydipentylsiloxanes, polydihexylsiloxanes, polydiheptylsiloxanes,
- polydinonylsiloxanes polydidecylsiloxanes and mixtures.
- the polydialkylsiloxane is polydimethylsiloxane.
- the drinking water pipe preferably a pressure pipe, based on this polyolefin grade has an improved protection against for example chlorine dioxide containing cold or hot water and consequently a longer life time. It is also possible to transport waste water or water for cooling.
- the polyolefin is based on ⁇ 90 % by weight and ⁇ 100 % by weight of olefin monomer. Suitable olefin monomers are for example ethylene and propylene.
- the polyethylene is multimodal polyethylene for example bimodal or trimodal polyethylene. More preferably, the polyethylene is bimodal polyethylene.
- the multimodal ethylene polymer may be an ethylene homo- or copolymer.
- the comonomer may be for example butene or hexene.
- the polyethylene is a multimodal high density polyethylene (HDPE) having a polymer density ⁇ 940 and ⁇ 970 kg/m 3 and a melt flow rate 190/5 in the range ⁇ 0,1 and ⁇ 4.0 g / 10 min. More preferably, the density is ⁇ 945 and ⁇ 955 kg/m 3 and the melt flow rate 190/5 in the range ⁇ 0,1 and ⁇ 0,6 g / 10 min.
- the density is measured according to ISO 1 183 A.
- the melt flow rate MFR 190/5 is measured according to ISO 1 133 -1 (190 °C; 5.0 kg).
- the HDPE may for example be natural or colored. Typical colors are yellow, orange or blue.
- the polyethylene is a compound comprising multimodal high density polyethylene and carbon black as pigment, wherein the density is in the range ⁇ 950 and ⁇ 970 kg/m 3 and MFR (190/5) in the range ⁇ 0,1 and ⁇ 4.0g/10 min. More preferably, the density is in the range ⁇ 956 and ⁇ 965 kg/m 3 and the melt flow rate 190/5 in the range ⁇ 0, 1 and ⁇ 0,6 g / 10 min. The density is measured according to ISO 1 183 A and the melt flow rate MFR 190/5 is measured according to ISO 1 133 -1 (190 °C; 5.0 kg).
- the polyethylene is based on at least 70 % by weight of ethylene monomer more preferably based on ⁇ 90 % by weight and ⁇ 100 % by weight of ethylene monomer.
- the polypropylene is based on at least 70 % by weight of propylene monomer more preferably based on ⁇ 90 % by weight and ⁇ 100 % by weight of propylene monomer.
- the polyolefin is multimodal polyethylene.
- the polyolefin is bimodal polyethylene.
- polyolefin wherein the polyolefin is based on at least 70 % by weight of olefin monomer.
- the weight ratio (b): (c+d) ranges between 7:1 and 1 :7.
- Suitable polyphenolic compounds include for example tetrakis[methylene-3- (3',5'-di-t-butyl-4-hydroxyphenyl)propionate] methane; 1 ,1 ,3-tris(2-methyl-4-hydroxy-5-t- butylphenyl)butane; 1 ,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, bis(3,3-bis(4'-hydroxy-3'-t-butylphenyl)butanoic acid]-glycol ester; tris(3,5-di-t-butyl-4- hydroxy benzyl)isocyanurate; 1 ,3,5-tris(4-t-butyl-2,6-dimethyl-3-hydroxy- benzyl)isocyanurate; 5-di-t-butyl-4-hydroxy-hydrocinnamic acid triester with 1 ,3,5-tris
- a preferred polyphenolic compound is 1 ,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4- hydroxybenzyl)benzene (Irganox 1330 supplied by BASF).
- Suitable organic phosphites and phosphonites include for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate, bis(2,6-di-tert- butyl-4-methylphenyl) pentaerythritol diphosphate, bisisodecyloxy-pentaerythritol diphosphite, bis
- a preferred phosphite is tris(2,4-di-tert-butylphenyl) phosphite (Irgafos 168 supplied by BASF).
- (b, (c) and (d) are added during the granulation step of the multimodal, for example bimodal, high density polyethylene powder.
- the components are added to the polyethylene resin while the polyethylene is in a molten state during extrusion.
- the components may be added together and may be added separately.
- the components are added in one step.
- the amount of polyolefin in the composition is higher than 95.0 wt%.
- the amount of polydialkylsiloxane in the composition is lower than 1.0 wt%.
- this amount ranges between 0.05 and 0.9 wt%.
- the multimodal ethylene polymer may be an ethylene homo- or copolymer.
- the multimodal ethylene grades to be applied in pipe applications may comprise additives such as for example carbon black, pigments, stearates, a UV stabilizer for example a sterically hindered amine, fillers, minerals .lubricants and/or other stabilisers.
- HDPE high density polyethylene
- bimodal high density polyethylene via a low pressure slurry process is described by Alt et al. in "Bimodal polyethylene-Interplay of catalyst and process” (Macromol.Symp. 2001 , 163, 135-143).
- polyethylene may be produced via a low pressure slurry process for the production of comprising a polymerisation stage, a powder drying stage, an extrusion and pellet handling stage, a recycling stage and a wax removal unit.
- a low pressure slurry process for the production of comprising a polymerisation stage, a powder drying stage, an extrusion and pellet handling stage, a recycling stage and a wax removal unit.
- the reactors may be fed continuously with a mixture of monomers, hydrogen, catalyst/co-catalyst and diluent recycled from the process.
- polymerisation of ethylene occurs as an exothermic reaction at pressures in the range between for example 0.5 MPa (5 bar) and 1 MPa (10 bar) and at temperatures in the range between for example 75 °C and 88 °C.
- the heat from the polymerisation reaction is removed by means of cooling water.
- the characteristics of the polyethylene are determined amongst others by the catalyst system and by the concentrations of catalyst, co monomer and hydrogen.
- the production of bimodal high density polyethylene (HDPE) via a low pressure slurry process may also be performed via a three stage process.
- Suitable catalysts for the production of multimodal polyethylene include Ziegler
- Natta catalysts chromium based catalysts and single site metallocene catalysts.
- the process and the catalyst have to form a well- balanced system.
- the catalyst is crucial for the polymerisation reaction of multimodal polyethylene. By cooperation of process and catalyst a definite polymer structure is produced.
- CN103396626 discloses a wear resistant soft PVC.
- the PVC composition may comprise a minor amount of HDPE and polydimethylsiloxane.
- the wear resistant soft PVC composition has improved friction properties and may be applied in the production of many articles for example pipes.
- CN103396626 does not give any disclosure of pipe applications with improved service lifetime for the transportation of water containing chlorinated disinfectants.
- the PVC composition according to CN103396626 and the polyolefin composition according to the present invention arew completely different compostions.
- SABIC Vestolen A5924 (Resin A) used as base polymer in all examples was a bimodal high density polyethylene with MFR 190/5 of 0.24 g/10min and density 958 kg/m 3 .
- Examples l-lll and Comparative Examples A-D use different additive packages in combination with Resin A to protect the polyethylene from attack by chlorine dioxide (see Table 1 ).
- the components as indicated in Table 1 were mixed at 245 degrees Celcius using a twin screw extruder. Table 1
- polydialkylsiloxane Polydimethylsiloxane added using MB50-002 available from DOW Corning.
- Irganox 133 1 ,3, 5-Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- hydroxybenzyl)benzene, commercially available from BASF;
- Irgafos 168 Tris(2,4-di-tert-butylphenyl) phosphite, commercially available from BASF ;
- the tensile bars were aged in a continuous water flow at a temperature of 40 °C with a chlorine dioxide concentration maintained at 1 mg/L and a pH maintained at 7.2. Flow rate was regulated at 200 L/h. Water hardness was regulated to 20 °F. A constant fresh water flow was added during testing allowing full renewal of the testing water each 4 hrs.
- the compression molded samples were aged for 1000 hrs.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention relates a pipe for the transport of water with improved resistance to chlorinated disinfectants. The pipe is produced with a polymer composition comprising polyolefin and polydialkylsiloxane.
Description
Pipe produced with a polymer composition
comprising a polyolefin
The present invention relates to a pipe for the transport of water produced with a polymer composition comprising a polyolefin. The pipe has an improved resistance to chlorinated disinfectants.
Pipes for the transport of gas, for sanitation and for water supply may be produced with for example bimodal polyethylene compositions. Pipes have a very good resistance to water however their lifetime is shortened when the pipes come into contact with disinfectants which are often added to water for hygienic reasons. The chlorine dioxide used as disinfectant in water degrades most materials including polyethylene (Colin, Aging of polyethylene pipes transporting drinking water disinfected by chlorine dioxide, part I, Chemical aspects; Polymer engineering and Science 49(7); 1429-1437; July 2009). Other chlorinated solvents are for example chloramine and chlorine. It is known in the art to apply additives for example antioxidants and stabilizers to prevent said degradation. Several types of additives are proposed to protect polymers during processing and to achieve the desired end-use properties. However, appropriate combinations of stabilizers have to be carefully selected, depending on the desired final properties the polymeric article should have.
It is the object of the present invention to provide pipe applications with improved service lifetime for the transportation of water containing chlorinated disinfectants, for example chlorine dioxide, chloramine and chlorine.
The pipe for the transport of water according to the invention is produced with a polymer composition comprising a polyolefin and polydialkylsiloxane wherein the amount of polydialkylsiloxane in the composition is lower than 2.0 wt% relative to the total weight amount of the composition and wherein the polyolefin is based on at least 70 % by weight of olefin monomer.
Suitable polydialkylsiloxanes include for example polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane, polydioctylsiloxane, polydibutylsiloxanes, polydipentylsiloxanes, polydihexylsiloxanes, polydiheptylsiloxanes,
polydinonylsiloxanes, polydidecylsiloxanes and mixtures.
According to a preferred embodiment of the invention the polydialkylsiloxane is polydimethylsiloxane.
The drinking water pipe, preferably a pressure pipe, based on this polyolefin grade has an improved protection against for example chlorine dioxide containing cold or hot water and consequently a longer life time. It is also possible to transport waste water or water for cooling.
Preferably the polyolefin is based on≥ 90 % by weight and≤ 100 % by weight of olefin monomer. Suitable olefin monomers are for example ethylene and propylene.
Preferably the polyethylene is multimodal polyethylene for example bimodal or trimodal polyethylene. More preferably, the polyethylene is bimodal polyethylene.
The multimodal ethylene polymer may be an ethylene homo- or copolymer. The comonomer may be for example butene or hexene.
According to a preferred embodiment of the invention the polyethylene is a multimodal high density polyethylene (HDPE) having a polymer density≥ 940 and < 970 kg/m3 and a melt flow rate 190/5 in the range≥ 0,1 and < 4.0 g / 10 min. More preferably, the density is≥ 945 and≤ 955 kg/m3 and the melt flow rate 190/5 in the range≥ 0,1 and≤ 0,6 g / 10 min. The density is measured according to ISO 1 183 A. The melt flow rate MFR 190/5 is measured according to ISO 1 133 -1 (190 °C; 5.0 kg). The HDPE may for example be natural or colored. Typical colors are yellow, orange or blue.
According to a preferred embodiment of the invention the polyethylene is a compound comprising multimodal high density polyethylene and carbon black as pigment, wherein the density is in the range≥ 950 and≤ 970 kg/m3 and MFR (190/5) in the range≥ 0,1 and≤ 4.0g/10 min. More preferably, the density is in the range≥ 956 and < 965 kg/m3 and the melt flow rate 190/5 in the range≥ 0, 1 and < 0,6 g / 10 min. The density is measured according to ISO 1 183 A and the melt flow rate MFR 190/5 is measured according to ISO 1 133 -1 (190 °C; 5.0 kg).
The polyethylene is based on at least 70 % by weight of ethylene monomer more preferably based on≥ 90 % by weight and≤ 100 % by weight of ethylene monomer.
The polypropylene is based on at least 70 % by weight of propylene monomer more preferably based on≥ 90 % by weight and≤ 100 % by weight of propylene monomer.
Preferably, the polyolefin is multimodal polyethylene.
More preferably, the polyolefin is bimodal polyethylene.
According to a further preferred embodiment of the invention the pipe is produced with a composition comprising
(a) polyolefin wherein the polyolefin is based on at least 70 % by weight of olefin monomer.
(b) polydialkylsiloxane
(c) polyphenolic compound and/or
(d) organic phosphite and/or phosphonite.
Preferably the weight ratio (b): (c+d) ranges between 7:1 and 1 :7.
Suitable polyphenolic compounds include for example tetrakis[methylene-3- (3',5'-di-t-butyl-4-hydroxyphenyl)propionate] methane; 1 ,1 ,3-tris(2-methyl-4-hydroxy-5-t- butylphenyl)butane; 1 ,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, bis(3,3-bis(4'-hydroxy-3'-t-butylphenyl)butanoic acid]-glycol ester; tris(3,5-di-t-butyl-4- hydroxy benzyl)isocyanurate; 1 ,3,5-tris(4-t-butyl-2,6-dimethyl-3-hydroxy- benzyl)isocyanurate; 5-di-t-butyl-4-hydroxy-hydrocinnamic acid triester with 1 ,3,5-tris(2- hydroxyethyl)-s-triazine-2, 4, 6(11-1, 3H, 5H)-trione; p-cresol/ dicyclopentadiene butylated reaction product; 2,6-bis(2'-bis-hydroxy-3'-t-butyl-5'-methyl-phenyl-4-methyl-phenol).
A preferred polyphenolic compound is 1 ,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4- hydroxybenzyl)benzene (Irganox 1330 supplied by BASF).
Suitable organic phosphites and phosphonites include for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate, bis(2,6-di-tert- butyl-4-methylphenyl) pentaerythritol diphosphate, bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl- 6-methylphenyl) pentaerythritol diphosphite, bis(2,4,6- tri-tert-butylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4'- biphenylenediphosphonite, 6-isooctyloxy-2,4,8,10- tetra-tert-butyl-12H-dibenzo[d,g]-1 ,3,2-dioxaphosphocin, 6-fluoro-2,4,8,10-tetra-tert- butyl-12-methyldibenzo[d,g]-1 ,3,2-dioxaphosphocin, bis(2,4-di-tert-butyl-6- methylphenyl) methyl phosphite, bis(2,4-di-tert-butyl- 6-methylphenyl) ethyl phosphite.
A preferred phosphite is tris(2,4-di-tert-butylphenyl) phosphite (Irgafos 168 supplied by BASF).
According to another preferred embodiment of the invention the pipe is produced with a polyethylene composition comprising
(a) multimodal polyethylene
(b) polydialkylsiloxane
(c) polyphenolic compound and
(d) organic phosphite and/or phosphonate wherein the weight ratio (b): (c+d) ranges between 7:1 and 1 :7.
Preferably (b, (c) and (d) are added during the granulation step of the multimodal, for example bimodal, high density polyethylene powder.
According to a preferred embodiment of the invention the components are added to the polyethylene resin while the polyethylene is in a molten state during extrusion.
The components may be added together and may be added separately.
Preferably the components are added in one step.
Preferably the amount of polyolefin in the composition is higher than 95.0 wt%. Preferably the amount of polydialkylsiloxane in the composition is lower than 1.0 wt%.
More preferably this amount ranges between 0.05 and 0.9 wt%.
These amounts protect the pipe against chlorine dioxide during a long period.
The multimodal ethylene polymer may be an ethylene homo- or copolymer. The multimodal ethylene grades to be applied in pipe applications may comprise additives such as for example carbon black, pigments, stearates, a UV stabilizer for example a sterically hindered amine, fillers, minerals .lubricants and/or other stabilisers.
The production processes for bimodal high density polyethylene (HDPE) are summarised at pages 16-20 of "PE 100 Pipe systems" (edited by Bromstrup; second edition, ISBN 3-8027-2728-2).
The production of bimodal high density polyethylene (HDPE) via a low pressure slurry process is described by Alt et al. in "Bimodal polyethylene-Interplay of catalyst and process" (Macromol.Symp. 2001 , 163, 135-143). Bimodal high density
polyethylene may be produced via a low pressure slurry process for the production of comprising a polymerisation stage, a powder drying stage, an extrusion and pellet handling stage, a recycling stage and a wax removal unit. In a two stage cascade process the reactors may be fed continuously with a mixture of monomers, hydrogen, catalyst/co-catalyst and diluent recycled from the process. In the reactors,
polymerisation of ethylene occurs as an exothermic reaction at pressures in the range between for example 0.5 MPa (5 bar) and 1 MPa (10 bar) and at temperatures in the range between for example 75 °C and 88 °C. The heat from the polymerisation reaction is removed by means of cooling water. The characteristics of the polyethylene are determined amongst others by the catalyst system and by the concentrations of catalyst, co monomer and hydrogen. The production of bimodal high density polyethylene (HDPE) via a low pressure slurry process may also be performed via a three stage process.
The concept of the two stage cascade process is elucidated at pages 137-138 by Alt et al. "Bimodal polyethylene-Interplay of catalyst and process" (Macromol. Symp.
2001 , 163). The reactors are set up in cascade with different conditions in each reactor including low hydrogen content in the second reactor. This allows for the production of HDPE with a bimodal molecular mass distribution and defined co monomer content in the polyethylene chains.
Suitable catalysts for the production of multimodal polyethylene include Ziegler
Natta catalysts, chromium based catalysts and single site metallocene catalysts. In all potential possible technologies the process and the catalyst have to form a well- balanced system. The catalyst is crucial for the polymerisation reaction of multimodal polyethylene. By cooperation of process and catalyst a definite polymer structure is produced.
CN103396626 discloses a wear resistant soft PVC. The PVC composition may comprise a minor amount of HDPE and polydimethylsiloxane. The wear resistant soft PVC composition has improved friction properties and may be applied in the production of many articles for example pipes. CN103396626 does not give any disclosure of pipe applications with improved service lifetime for the transportation of water containing chlorinated disinfectants. The PVC composition according to CN103396626 and the polyolefin composition according to the present invention arew completely different compostions.
The invention will be elucidated by means of the following non-limiting examples.
Examples
SABIC Vestolen A5924 (Resin A) used as base polymer in all examples was a bimodal high density polyethylene with MFR 190/5 of 0.24 g/10min and density 958 kg/m3.
Examples l-lll and Comparative Examples A-D
The Examples l-lll and Comparative Examples A-D use different additive packages in combination with Resin A to protect the polyethylene from attack by chlorine dioxide (see Table 1 ). The components as indicated in Table 1 were mixed at 245 degrees Celcius using a twin screw extruder.
Table 1
• Irganox 1010 :Tetrakis [methylen- 3-(3 ',5 ')-di-t-butyl-4 '-hydroxyphenyl)
propionate] methane commercially available from BASF,
• polydialkylsiloxane: Polydimethylsiloxane added using MB50-002 available from DOW Corning.
· Irganox 133 : 1 ,3, 5-Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- hydroxybenzyl)benzene, commercially available from BASF;
• Irgafos 168: Tris(2,4-di-tert-butylphenyl) phosphite, commercially available from BASF ;
• DHT-4A®, commercially available hydrotalcite from Kisuma Chemicals.
· Resin A: SABIC Vestolen A5924; bimodal high density polyethylene with
MFR 190/5 of 0.24 g/10min and density 958 kg/m3.
Compounds were compression molded using IS01872-2 resulting in plaques, which were cut to IS0527-1 A tensile bars (4 mm thick). Ageing test
The tensile bars were aged in a continuous water flow at a temperature of 40 °C with a chlorine dioxide concentration maintained at 1 mg/L and a pH maintained at 7.2. Flow rate was regulated at 200 L/h. Water hardness was regulated to 20 °F. A constant fresh water flow was added during testing allowing full renewal of the testing water each 4 hrs.
The compression molded samples were aged for 1000 hrs.
Tensile tests according to Plastics- Determination of tensile properties
IS0527-1 at room temperature at a strain rate of 50 mm/min on aged tensile bars were
performed to determine the residual elongation at break for the aged samples and reported in Table 2.
Table 2
From Table 2 it can be concluded that Examples I and II demonstrate significantly higher elongation at break after being exposed to water containing chlorine dioxide than Comparative Example A.
Comparing
· Comparative Example B to Example I and
• Comparative Example C to Example II
shows that the effect of adding polydimethylsiloxane had an additional profound effect on the elongation at break as obtained after exposure to water containing chlorine dioxide.
Claims
1. Pipe for the transport of water produced with a polymer composition comprising a polyolefin and polydialkylsiloxane wherein the amount of polydialkylsiloxane in the composition is lower than 2.0 wt% relative to the total weight amount of the composition and wherein the polyolefin is based on at least 70 % by weight of olefin monomer.
2. Pipe according to Claim 1 characterised in that the polyolefin is polyethylene or polypropylene.
3. Pipe according to any one of Claims 1-2 characterised in that the
polydialkylsiloxane is selected from polydimethylsiloxane, polydiethylsiloxane, polydipropylsiloxane, polydioctylsiloxane, polydibutylsiloxanes,
polydipentylsiloxanes, polydihexylsiloxanes, polydiheptylsiloxanes,
polydinonylsiloxanes, polydidecylsiloxanes and mixtures.
4. Pipe according to Claim 3 characterised in that the polydialkylsiloxane is
polydimethylsiloxane.
5. Pipe according to any one of Claims 1-4 characterised in that the composition comprises a polyphenolic compound and/or an organic phosphite and/or phosphonite.
6. Pipe according to any one of Claims 1-5 characterised in that the polyolefin is multimodal polyethylene.
7. Pipe according to Claim 6 characterised in that the polyethylene is a multimodal high density polyethylene (HDPE) having a polymer density≥ 940 and≤ 970 kg/m3 and a melt flow rate (MFR190/5) in the range≥ 0,1 and < 4.0 g / 10 min, wherein the density is measured according to ISO 1 183 A and the melt flow rate (MFR 190/5) is measured according to ISO 1 133 -1 (190 °C; 5.0 kg)
8. Pipe according to any one of Claims 6-7 characterised in that the polyolefin is bimodal polyethylene.
9. Pipe according to any one of Claims 1-8 characterised in that the amount of
polydialkylsiloxane in the composition is lower than 1.0 wt%.
10. Pipe according to any one of Claims 5-9 characterised in that the polyphenolic compound is 1 ,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene.
1 1. Pipe according to any one of Claims 5-10 characterised in that the phosphite is tris(2,4-di-tert-butylphenyl) phosphite.
12. Pipe according to any one of Claims 1-1 1 produced with a composition comprising (a) polyolefin
(b) polydialkylsiloxane
(c) polyphenolic compound and/or
(d) organic phosphite and/or phosphonate wherein the weight ratio (b): (c+d) ranges between 7:1 and 1 :7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16203062 | 2016-12-09 | ||
EP16203062.1 | 2016-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018104079A1 true WO2018104079A1 (en) | 2018-06-14 |
Family
ID=57544249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/080364 WO2018104079A1 (en) | 2016-12-09 | 2017-11-24 | Pipe produced with a polymer composition comprising a polyolefin |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018104079A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3962710B1 (en) | 2019-05-02 | 2023-12-06 | SABIC Global Technologies B.V. | Pipe for transport of chlorinated water |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103396626A (en) | 2013-07-15 | 2013-11-20 | 安徽省振云塑胶有限公司 | Soft wear-resistant PVC (polyvinyl chloride) |
-
2017
- 2017-11-24 WO PCT/EP2017/080364 patent/WO2018104079A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103396626A (en) | 2013-07-15 | 2013-11-20 | 安徽省振云塑胶有限公司 | Soft wear-resistant PVC (polyvinyl chloride) |
Non-Patent Citations (5)
Title |
---|
"PE 100 Pipe systems", pages: 16 - 20 |
ALT ET AL.: "Bimodal polyethylene-Interplay of catalyst and process", MACROMOL. SYMP., vol. 163, 2001, pages 137 - 138 |
ALT ET AL.: "Bimodal polyethylene-Interplay of catalyst and process", MACROMOL.SYMP., vol. 163, 2001, pages 135 - 143, XP001050880, DOI: doi:10.1002/1521-3900(200101)163:1<135::AID-MASY135>3.0.CO;2-7 |
COLIN: "Aging of polyethylene pipes transporting drinking water disinfected by chlorine dioxide, part I, Chemical aspects", POLYMER ENGINEERING AND SCIENCE, vol. 49, no. 7, July 2009 (2009-07-01), pages 1429 - 1437 |
SOARES, JOAO B. P. AND MCKENNA, TIMOTHY F. L.: "1. Introduction to Polyolefins", POLYOLEFIN REACTION ENGINEERING, 23 August 2012 (2012-08-23), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, XP002777150, Retrieved from the Internet <URL:https://application.wiley-vch.de/books/sample/3527317104_c01.pdf> [retrieved on 20180110], DOI: 10.1002/9783527646944.ch1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3962710B1 (en) | 2019-05-02 | 2023-12-06 | SABIC Global Technologies B.V. | Pipe for transport of chlorinated water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3411433B1 (en) | Pipe produced with a polymer composition comprising a polyethylene | |
AU2014256527A1 (en) | Multimodal polypropylene composition for pipe applications | |
US10882986B2 (en) | Pipe produced with a polymer composition comprising a polyolefin | |
EP3331945B1 (en) | Pipe for the transport of water having improved resistance to chlorinated disinfectants | |
AU2012320924B2 (en) | Process for the production of polyolefins wherein an antioxidant is fed to the reaction mixture during the process | |
WO2018104079A1 (en) | Pipe produced with a polymer composition comprising a polyolefin | |
US11091611B2 (en) | Polyolefin composition | |
WO2018028921A1 (en) | Pipe produced with a polymer composition | |
EP3649190B1 (en) | Polyethylene composition | |
WO2014108382A1 (en) | Polyethylene composition | |
WO2017186561A1 (en) | Pipe produced with a polymer composition comprising a polyolefin | |
US20250084248A1 (en) | Polyethylene glycol-based polymer processing aids | |
US20250101224A1 (en) | Polyethylene glycol-based polymer processing aids | |
US20250145820A1 (en) | Polyethylene glycol-based polymer processing aids | |
EP4479472A1 (en) | Polyethylene glycol-based polymer processing aids | |
WO2023149985A1 (en) | Polyethylene glycol-based polymer processing aids | |
WO2021148352A1 (en) | Pipe for transport of water containing chlorinated disinfectant | |
KR101810506B1 (en) | Use of additives for improving pipe stability against desinfectant containing water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17801480 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17801480 Country of ref document: EP Kind code of ref document: A1 |