+

WO2018101739A1 - Method for manufacturing thermally refined high-purity nanodiamond having improved dispersibility - Google Patents

Method for manufacturing thermally refined high-purity nanodiamond having improved dispersibility Download PDF

Info

Publication number
WO2018101739A1
WO2018101739A1 PCT/KR2017/013814 KR2017013814W WO2018101739A1 WO 2018101739 A1 WO2018101739 A1 WO 2018101739A1 KR 2017013814 W KR2017013814 W KR 2017013814W WO 2018101739 A1 WO2018101739 A1 WO 2018101739A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
nanodiamonds
purity
improved dispersibility
heat treatment
Prior art date
Application number
PCT/KR2017/013814
Other languages
French (fr)
Korean (ko)
Inventor
권한상
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2018101739A1 publication Critical patent/WO2018101739A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/20Powder free flowing behaviour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing high purity nanodiamonds having improved dispersibility in a liquid phase.
  • Nanodiamond refers to diamond single crystal nanoparticles having a structure in which a carbon atom is bonded to a hetero atom on the surface, the particle size of 5 ⁇ 100 nm.
  • Nanodiamond a kind of nanocarbon, is a high-tech material that is specialized in wear resistance, biocompatibility, lubricity, heat conduction, and non-conductivity unlike other carbon materials, and is a high-tech, high-value-added, high-spec high-tech product. It is a new material that can be applied.
  • nanodiamonds have high hardness (Mohs hardness 15), wear resistance (10 times durability), high refractive index (2.43), friction resistance (lowest coefficient of friction (0.03)), corrosion resistance (4 times higher), insulation, optical (Quantum dots, IR / UV absorption), biocompatibility, high specific surface area (200 ⁇ 450m 2 / cm 2 ), high thermal conductivity (2000W / mk), lowest thermal window coefficient, etc.
  • Mohs hardness 15 wear resistance (10 times durability), high refractive index (2.43), friction resistance (lowest coefficient of friction (0.03)), corrosion resistance (4 times higher), insulation, optical (Quantum dots, IR / UV absorption), biocompatibility, high specific surface area (200 ⁇ 450m 2 / cm 2 ), high thermal conductivity (2000W / mk), lowest thermal window coefficient, etc.
  • nanodiamonds have surface characteristics of amphiphilic form, so that even when dispersed in a liquid phase to perform a post-treatment process for use in various applications, there is a technical difficulty that is difficult to maintain the desired size.
  • Patent Document 1 Korean Patent Publication No. 10-2015-0015245 (Published Date: 2015.02.10)
  • Patent Document 2 Korean Patent Publication No. 10-2013-0074206 (Published Date: 2013.07.04)
  • Patent Document 3 Korean Patent Publication No. 10-2013-0041573 (Published Date: 2013.04.25)
  • the present invention has been made to solve the problems of the prior art as described above, the dispersibility in the liquid phase is significantly improved compared to the prior art, and furthermore, to provide a method for producing a nanodiamond having a high crystallinity for that purpose. do.
  • the present invention provides a method for producing high purity nanodiamonds having improved dispersibility comprising the step of heat-treating nanodiamond (nD).
  • the step of heat treatment provides a method for producing high purity nanodiamonds having improved dispersibility, characterized in that carried out at a temperature of 450 °C to 800 °C under an air atmosphere (air atmosphere).
  • the heat treatment step provides a method for producing high-purity nanodiamonds having improved dispersibility, which is performed at an air temperature of 600 ° C. for 300 minutes.
  • the present invention provides a method for producing high purity nanodiamonds having improved dispersibility, characterized in that heat treatment of nanodiamonds produced by a detonation technique or a high-pressure high-temperature (HPHT) method. .
  • the manufacture of having improved dispersibility characterized in that the conversion in the step of the heat treatment is performed at the sp 3 bonded carbon (sp 3 -bonded carbon) sp 2 carbon bond (sp 2 -bonded carbon) of high purity NCD NCD Provide a method.
  • the present invention provides nanodiamonds prepared by the above method.
  • it provides a nanodiamond dispersion in which the nanodiamond is dispersed.
  • the dispersion medium provides a nanodiamond dispersion, characterized in that the distilled water (distilled water).
  • nanodiamond dispersion characterized in that dispersed by ultrasonic or electrostatic dispersion method.
  • the zeolite high crystalline nanodiamond particles are easily dispersed without agglomeration in the liquid phase through ultrasonic or electrostatic dispersion method without using a separate dispersant, so that various fields such as machinery, automobiles, trains, ships, aerospace, etc. It can be applied as a material part, and in particular, it can be immediately parted into bushings requiring strength and abrasion resistance, and it is also possible to implement a quantum dot effect, and thus it is expected to be applied as a basic material for various display materials and quantum computers. Due to its excellent heat dissipation, it can be usefully used as a heat dissipating material for satellites and electronic devices.
  • 1 is a diagram schematically showing an apparatus for synthesizing nanodiamonds by the HPHT method.
  • FIG. 2 (b) is an enlarged view of FIG. 2 (a) and It is the result of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
  • SEM scanning electron microscope
  • Figure 3 (a) is a graph of the thermogravimetric analysis (TGA) results according to the temperature change
  • Figure 3 (b) is a graph of the thermogravimetric analysis (TGA) results when maintained for 300 minutes at a specific temperature.
  • FIG. 4 shows unannealed nanodiamonds (125 nm SYN raw), nanodiamonds thermally treated at 500 ° C. for 300 minutes (500 ° C., 300 min), nanodiamonds thermally treated at 600 ° C. for 300 minutes (600 ° C., 300 min), and 800 ° C.
  • 5 (a) and 5 (b) are optical photographs of the nanodiamond powder before and after the heat treatment for 420 minutes at 600 ° C in the air, respectively, Figures 5 (c) to 5 (f) Scanning electron microscope (SEM) image showing the shape of the nanodiamonds.
  • Figure 6 (a) is a photograph showing the ultrasonic dispersion device
  • Figure 6 (b) and Figure 6 (c) is a scanning electron microscope (SEM) picture of the ultrasonic nano-dispersed passion nanodiamond particles
  • Figure 6 (d) 6 is a photograph showing an electrostatic dispersing device
  • FIGS. 6 (e) and 6 (f) are scanning electron microscope (SEM) photographs of electrostatically dispersed passion nanodiamond particles.
  • 7 is a result of analyzing the particle size distribution of the ultrasonically dispersed passion nanodiamond using a PowderShape device.
  • 8 is a result of analyzing the particle size distribution of the electrostatically dispersed passion nanodiamond using a PowderShape device.
  • Embodiments according to the concept of the present invention can be variously modified and can have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
  • the method for improving dispersibility of nanodiamonds according to the present invention includes the step of heat-treating the nanodiamonds.
  • the step of heat treatment is preferably carried out at a temperature of 550 °C to 750 °C in an air atmosphere (air atmosphere), which is when sp 2 -bonded carbon (sp 2 -bonded carbon) when the heat treatment at a temperature of less than 550 °C sp 3 bonded carbon (sp 3 -bonded carbon) not it is effectively made the transition to difficult formation of a high-purity nano-diamond, if a heat treatment at a temperature exceeding 750 °C has as an oxide by heating (overheating) (oxide) This is because impurities such as these are formed to lower the purity of the nanodiamond.
  • air atmosphere air atmosphere
  • the sp 3 bonded carbon sp 3 -bonded carbon
  • the sp 2 carbon bond sp 2 -bonded carbon of the raw nano diamond by performing the heat treatment at a temperature of 450 °C to 800 °C the invention
  • the raw nanodiamonds provided in the heat treatment can be prepared by a known synthesis method, for example, detonation technique (detonation technique), high-pressure high-temperature (HPHT) method, other chemicals It may be produced by a synthetic method or the like.
  • detonation technique detonation technique
  • HPHT high-pressure high-temperature
  • the explosive synthesis method mainly used in the synthesis method the carbon component of the gunpowder at the high temperature and high pressure generated by detonating the high explosives in an airtight container is a form in which ⁇ 5 nm single crystal diamond nanoparticles are agglomerated to 50 to 500 nm in the carbonization process. Nanodiamonds are synthesized.
  • the high-purity nanodiamonds obtained by the manufacturing method according to the present invention are greatly improved in dispersibility in a liquid, in particular, in water, through a thermal purification through heat treatment, in the form of a dispersion dispersed in distilled water. After processing, it may be utilized in various fields such as nanocomposite, quantum dot, and biomedical material through subsequent processes (surface treatment, commercialization, etc.).
  • the highly crystalline highly dispersed individually in the liquid phase (individually dispersed) Nanodiamonds can be obtained.
  • the zeolite high crystalline nanodiamond particles are easily dispersed without agglomeration in the liquid phase through ultrasonic or electrostatic dispersion method without using a separate dispersant, so that various fields such as machinery, automobiles, trains, ships, aerospace, etc. It can be applied as a material part, and in particular, it can be immediately parted into bushings requiring strength and abrasion resistance, and it is also possible to implement a quantum dot effect, and thus it is expected to be applied as a basic material for various display materials and quantum computers. Due to its excellent heat dissipation, it can be usefully used as a heat dissipating material for satellites and electronic devices.
  • single crystal nanodiamond particles (average particle size: 125 nm) were synthesized by a high pressure and high temperature (HPHT) method.
  • thermogravimetric analyzer model: TGA7 Thermogravimetric Analyzer, Perkin Elmer, USA
  • Thermogravimetric Analysis was performed at various temperatures (up to 800 ° C) and holding time in the atmosphere at a heating rate of ⁇ C / min.
  • the weight loss of the nanodiamond particles showed a different value depending on the treatment temperature. That is, weight loss of about 4, 10, 16, and 48% occurred at treatment temperatures 500, 550, 600, and 800 ° C, respectively (see FIG. 3 (a)). Except for the case of 500 °C, after 300 minutes of holding time, the weight loss ratio (weight loss ratio) was significantly changed (see Fig. 3 (b)). In particular, at 800 ° C., at the point where the holding time was about 220 minutes, the residual nanodiamonds reached 3% by weight (97% by weight of nanodiamond combustion) and reached a weight loss saturation state. At 600 ° C. for 300 minutes, it was nearly saturated, but still a relatively large amount of nanodiamonds (about 16 wt%) remained. The results indicate that the heat treatment temperature plays an important role in the purification of nanodiamonds.
  • Raman spectroscopy was performed using a red He-Ne ion laser (Leica, Switzerland) having a wavelength of 633 nm.
  • the microstructure of nanodiamonds was examined using high resolution cold field emission scanning electron microscopy (Hitachi, HRCFE-SEM S-4800).
  • Raman spectroscopy is a very useful method for determining the quality of nanodiamonds.
  • single crystal nanodiamonds which were not heat-treated after synthesis were found to have relatively high D-bands due to defects in crystals in the Raman spectrum.
  • Diamond (sp 3 ) peaks were observed in the Raman spectrum of both the heat treated nanodiamonds as well as the heat treated nanodiamond specimens.
  • the Raman spectra of the nanodiamond specimens heat-treated at 600 ° C. for 300 minutes did not show G-bands, which are commonly observed in sp 2 -bonded carbon materials. This means that sp 2 bonded carbon has been effectively converted to sp 3 bonded carbon.
  • the Raman spectrum of the specimen heat-treated at 600 ° C. for 300 minutes shows a very unstable peak, even though only a diamond peak appears in the Raman spectrum of the specimen, which is still in a transient state.
  • the unstable peak exists in the Raman spectrum of the nanodiamond, which has been enthusiastically limited at 600 ° C. for 300 minutes, it exhibits a high intensity diamond peak without a G band. It has been found that it can be formed in large quantities.
  • the synthesized nanodiamond was 600 at a temperature increase rate of 5 ⁇ C / min in a muffle furnace (model: L5 / 12, Nabertherm Gmbh, Germany). After heating to ⁇ C it was carried out heat treatment to hold for 300 minutes.
  • the color of the nanodiamonds which were not heat treated was changed from black to grayish white by heat treatment.
  • the weight loss rate (85%) of the nanodiamond after the heat treatment was similar to the TGA analysis result.
  • Figs. 5 (d) and 5 (e) some very fine particles were observed, which were formed by thermal decomposition of nanodiamonds during the heat treatment.
  • most of the particle size and shape of the heat treated nanodiamonds were similar to the particle size and shape of the nanodiamonds which were not heat treated (see FIG. 2). Therefore, it was confirmed that the enthusiastic agent by the heat treatment did not significantly affect the grain growth.
  • the nanodiamonds obtained after the heat treatment showed high crystalline high quality, while the collection ratio was still very low.
  • the heat treated nanodiamond particles were dispersed for 5 minutes in a volume of 10 ml of water using an ultrasonic device (model: UP50H, Hielscher Ultrasonic Gmbh, Germany). The ultrasonically dispersed solution was then dropped directly onto the polished silicon wafer using a pipette. Heat-treated nanodiamonds were also dispersed directly on the polished silicon wafer using an electrostatic dispersion device (model: TSI nanometer aerosol sampler 3089, TSI Incorporated, USA). The dispersibility of nanodiamonds dispersed in the two methods was examined using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average particle size of the individually dispersed nanodiamonds was measured by a PowderShape system (model: PowderShape MF, IST-AG-Innovative Sintering Technologies, Switzerland) based on SEM images.
  • the average particle size distribution of the heat treated nanodiamonds was also analyzed by a dynamic light scattering (DLS) device (model: StabiSizer PMX200C, Microtrac Europe Gmbh, Germany).
  • DLS dynamic light scattering
  • the heat treated grayish white nanodiamond particles were well dispersed on the silicon (Si) wafer by the ultrasonic dispersion method and the electrostatic dispersion method. As shown in FIG. 6, the two dispersion methods showed the same aspect.
  • nanodiamonds entrapped according to the present invention were easily sprayed into the distilled water by ultrasonic or electrostatic dispersion method, which means that the distilled water is an excellent dispersant for the nanodiamond particles.
  • the size distribution of the nanodiamond particles dispersed by the two methods described above was measured using two kinds of particle analysis equipment (Powdershape and Stabisizer).
  • Powdershape is a characterization system developed for quality investigation of powder and all kinds of particles
  • Stabisizer is a colloid characterization system through dynamic light scattering (DLS).
  • DFS dynamic light scattering
  • the passionate highly crystalline nanodiamond particles are easily dispersed without agglomeration in the liquid phase through ultrasonic or electrostatic dispersing without using a separate dispersant, It can be applied as material parts in various fields such as automobiles, trains, ships and aerospace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a high-purity nanodiamond (nD) having improved dispersibility, comprising a step of thermally treating a nanodiamond, and according to the present invention, the method for manufacturing a high-purity nanodiamond having improved dispersibility is capable of: obtaining a high-crystalline nanodiamond which is completely individually dispersed within a liquid, through a simple heat treatment process in a specific temperature range under the atmosphere; allowing particles of the thermally refined high-crystalline nanodiamond to be easily dispersed in the liquid without coagulation, through an ultrasonic or electrostatic dispersion method even without using a separate dispersant, so as to be applicable as material components in various fields such as machinery, automobiles, trains, vessels, and space aviation, and specifically, to be immediately modularized to bushings and the like which require strength and wear resistance; being expected to be applied as a basic material for various display materials and quantum computers since a quantum dot effect can be implemented; and being useful as heat dissipating materials for artificial satellites and electronic devices due to excellent heat dissipating properties.

Description

향상된 분산성을 가지는 열정제된 고순도 나노다이아몬드의 제조방법Process for preparing passion-purified high-purity nanodiamonds with improved dispersibility
본 발명은 액상에서의 분산성이 향상된 고순도 나노다이아몬드의 제조방법에 대한 것이다.The present invention relates to a method for producing high purity nanodiamonds having improved dispersibility in a liquid phase.
나노다이아몬드(nanodiamond, nD)는 표면에 탄소원자가 헤테로 원자로 결합된 구조를 가지며, 입자 크기가 5 ∼100 nm인 다이아몬드 단결정 나노입자를 일컫는다.Nanodiamond (nanodiamond, nD) refers to diamond single crystal nanoparticles having a structure in which a carbon atom is bonded to a hetero atom on the surface, the particle size of 5 ~ 100 nm.
나노탄소의 한 종류인 나노다이아몬드는 다른 탄소 소재와 달리 내마모성, 생체적합성, 윤활성, 열전도, 비전도 특성에 특화된 성질을 보이는 첨단 소재이며 산업 고도화에 따른 고기능성, 고부가가치, 고사양의 첨단 제품에 대한 적용이 가능한 신소재이다.Nanodiamond, a kind of nanocarbon, is a high-tech material that is specialized in wear resistance, biocompatibility, lubricity, heat conduction, and non-conductivity unlike other carbon materials, and is a high-tech, high-value-added, high-spec high-tech product. It is a new material that can be applied.
구체적으로, 나노다이아몬드는 고경도(Mohs 경도 15), 내마모 (10배 내구성), 높은 굴절률(2.43), 내마찰(최저마찰계수(0.03)), 내부식성 (4배증가), 절연성, 광학(양자점, IR/UV흡수), 생체적합성, 고비표면적(200~450m2/cm2), 고열전도도 (2000W/mk), 최저 열평창률 등 월등히 우수한 특성을 가져, 복합체, 광학, 전자, 생의학 기술 분야에서 기계적 및 열적 성능을 최적화하기 위한 첨가제로서 각광받고 있다.Specifically, nanodiamonds have high hardness (Mohs hardness 15), wear resistance (10 times durability), high refractive index (2.43), friction resistance (lowest coefficient of friction (0.03)), corrosion resistance (4 times higher), insulation, optical (Quantum dots, IR / UV absorption), biocompatibility, high specific surface area (200 ~ 450m 2 / cm 2 ), high thermal conductivity (2000W / mk), lowest thermal window coefficient, etc. BACKGROUND OF THE INVENTION There are many spotlights in the art as additives for optimizing mechanical and thermal performance.
하지만, 나노다이아몬드는 양친매성 형태의 표면 특성을 가져, 다양한 용도로의 활용을 위한 후처리 공정을 실시하기 위해 액상에 분산시키더라도 쉽게 응집현상이 일어나 원하는 크기를 유지하기 어려운 기술적 어려움이 존재한다.However, nanodiamonds have surface characteristics of amphiphilic form, so that even when dispersed in a liquid phase to perform a post-treatment process for use in various applications, there is a technical difficulty that is difficult to maintain the desired size.
따라서, 나노다이아몬드를 전술한 다양한 기술 분야에서 실제로 활용하기 위해서는 나노다이아몬드의 분산성을 높여 개별적으로 분산시킬 수 있는 기술 개발이 선행되어야 한다.Therefore, in order to actually utilize nanodiamonds in the above-described various technical fields, development of a technique capable of individually dispersing by increasing the dispersibility of nanodiamonds should be preceded.
(특허문헌 1) 한국공개특허 제10-2015-0015245호 (공개일 : 2015.02.10)(Patent Document 1) Korean Patent Publication No. 10-2015-0015245 (Published Date: 2015.02.10)
(특허문헌 2) 한국공개특허 제10-2013-0074206호 (공개일 : 2013.07.04)(Patent Document 2) Korean Patent Publication No. 10-2013-0074206 (Published Date: 2013.07.04)
(특허문헌 3) 한국공개특허 제10-2013-0041573호 (공개일 : 2013.04.25)(Patent Document 3) Korean Patent Publication No. 10-2013-0041573 (Published Date: 2013.04.25)
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 종래에 비해 액상에서의 분산성이 크게 향상되며, 나아가, 고결정성을 가지는 나노다이아몬드를 제조하는 방법의 제공을 그 목적으로 한다.The present invention has been made to solve the problems of the prior art as described above, the dispersibility in the liquid phase is significantly improved compared to the prior art, and furthermore, to provide a method for producing a nanodiamond having a high crystallinity for that purpose. do.
상기한 바와 같은 기술적 과제를 달성하기 위해서, 본 발명은 나노다이아몬드(nanodiamond, nD)를 열처리하는 단계를 포함하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법을 제공한다.In order to achieve the technical problem as described above, the present invention provides a method for producing high purity nanodiamonds having improved dispersibility comprising the step of heat-treating nanodiamond (nD).
또한, 상기 열처리하는 단계는 대기 분위기(air atmosphere) 하에서 450 ℃ 내지 800 ℃의 온도로 실시하는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법을 제공한다.In addition, the step of heat treatment provides a method for producing high purity nanodiamonds having improved dispersibility, characterized in that carried out at a temperature of 450 ℃ to 800 ℃ under an air atmosphere (air atmosphere).
또한, 상기 열처리하는 단계는 대기 분위기 하에서 600 ℃의 온도로 300분 동안 실시하는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법을 제공한다.In addition, the heat treatment step provides a method for producing high-purity nanodiamonds having improved dispersibility, which is performed at an air temperature of 600 ° C. for 300 minutes.
또한, 폭발합성법(detonation technique) 또는 고온고압법(high-pressure high-temperature(HPHT) method)으로 제조된 나노다이아몬드를 열처리하는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법을 제공한다.In addition, the present invention provides a method for producing high purity nanodiamonds having improved dispersibility, characterized in that heat treatment of nanodiamonds produced by a detonation technique or a high-pressure high-temperature (HPHT) method. .
또한, 상기 열처리하는 단계에서 나노다이아몬드의 sp2 결합 탄소(sp2-bonded carbon)가 sp3 결합 탄소(sp3-bonded carbon)로 변환되는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법을 제공한다.In addition, the manufacture of having improved dispersibility, characterized in that the conversion in the step of the heat treatment is performed at the sp 3 bonded carbon (sp 3 -bonded carbon) sp 2 carbon bond (sp 2 -bonded carbon) of high purity NCD NCD Provide a method.
그리고, 본 발명은 발명의 다른 측면에서, 상기 제조방법에 의해 제조된 나노다이아몬드를 제공한다.In another aspect of the present invention, the present invention provides nanodiamonds prepared by the above method.
나아가, 본 발명은 발명의 또 다른 측면에서, 상기 나노다이아몬드를 분산시킨 나노다이아몬드 분산액을 제공한다.Furthermore, in another aspect of the present invention, it provides a nanodiamond dispersion in which the nanodiamond is dispersed.
또한, 상기 분산매는 증류수(distilled water)인 것을 특징으로 하는 나노다이아몬드 분산액을 제공한다.In addition, the dispersion medium provides a nanodiamond dispersion, characterized in that the distilled water (distilled water).
또한, 초음파 또는 정전기적 분산법에 의해 분산된 것을 특징으로 하는 나노다이아몬드 분산액을 제공한다.In addition, it provides a nanodiamond dispersion, characterized in that dispersed by ultrasonic or electrostatic dispersion method.
본 발명에 따른 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법에 의하면, 대기 분위기 하에서 특정 온도 범위로 열처리하는 간단한 공정을 통해, 액상 내에서 완벽하게 개별 분산되는(individually dispersed) 고결정성의 나노다이아몬드를 얻을 수 있다.According to the method for preparing high-purity nanodiamonds having improved dispersibility according to the present invention, highly crystalline nanodiamonds which are individually dispersed in a liquid phase through a simple process of heat treatment to a specific temperature range in an atmospheric atmosphere. You can get it.
또한, 상기 열정제된 고결정성의 나노다이아몬드 입자는 별도의 분산제를 사용하지 않고도 초음파 또는 정전기적 분산법을 통해 액상 내에 응집 없이 쉽게 분산되므로, 기계, 자동차, 열차, 선박, 우주항공 등의 다양한 분야에서 소재부품으로 적용이 가능하며, 특히, 강도와 내마모성이 요구되는 부싱류 등에 바로 부품화 할 수 있으며, 또한, 양자점 효과의 구현이 가능해 다양한 디스플레이 재료 및 양자 컴퓨터의 기본 소재로 적용이 기대되고, 우수한 방열성으로 인해 인공위성 및 전자기기의 방열재료로 유용하게 사용될 수 있다.In addition, the zeolite high crystalline nanodiamond particles are easily dispersed without agglomeration in the liquid phase through ultrasonic or electrostatic dispersion method without using a separate dispersant, so that various fields such as machinery, automobiles, trains, ships, aerospace, etc. It can be applied as a material part, and in particular, it can be immediately parted into bushings requiring strength and abrasion resistance, and it is also possible to implement a quantum dot effect, and thus it is expected to be applied as a basic material for various display materials and quantum computers. Due to its excellent heat dissipation, it can be usefully used as a heat dissipating material for satellites and electronic devices.
도 1은 HPHT법에 따라 나노다이아몬드를 합성하기 위한 장치를 모식적으로 나타낸 그림이다.1 is a diagram schematically showing an apparatus for synthesizing nanodiamonds by the HPHT method.
도 2(a)는 본원 실시예에서 합성된 단결정(monocrystalline) 나노다이아몬드(D90=125nm)에 대한 주사전자현미경(SEM) 사진이며, 도 2(b)는 상기 도 2(a)의 확대도 및 에너지 분산형 X-ray 분광법(EDS)에 의한 원소 분석 결과이다.FIG. 2 (a) is a scanning electron microscope (SEM) photograph of monocrystalline nanodiamonds (D90 = 125 nm) synthesized in the Examples of the present application, and FIG. 2 (b) is an enlarged view of FIG. 2 (a) and It is the result of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
도 3(a)는 온도 변화에 따른 열중량 분석(TGA) 결과 그래프이고, 도 3(b)는 특정 온도에서 300분간 유지할 경우의 열중량 분석(TGA) 결과 그래프이다.Figure 3 (a) is a graph of the thermogravimetric analysis (TGA) results according to the temperature change, Figure 3 (b) is a graph of the thermogravimetric analysis (TGA) results when maintained for 300 minutes at a specific temperature.
도 4는 열처리하지 않은 나노다이아몬드(125nm SYN raw), 500 ℃에서 300 분간 열처리한 나노다이아몬드(500 ℃ 300 min), 600 ℃에서 300 분간 열처리한 나노다이아몬드(600 ℃ 300 min), 및 800 ℃에서 300분간 열처리한 나노다이아몬드(800 ℃ 300 min)에 대한 라만 분광 분석 결과이다.FIG. 4 shows unannealed nanodiamonds (125 nm SYN raw), nanodiamonds thermally treated at 500 ° C. for 300 minutes (500 ° C., 300 min), nanodiamonds thermally treated at 600 ° C. for 300 minutes (600 ° C., 300 min), and 800 ° C. Raman spectroscopic analysis results of nanodiamond (800 300 min) heat-treated for 300 minutes.
도 5(a) 및 도 5(b)는 각각 대기 중에서 600 ˚C의 온도로 420 분간 열처리하기 전과 열처리한 후의 나노다이아몬드 분말의 광학 사진이고, 도 5(c) 내지 도 5(f)는 열처리된 나노다이아몬드의 형상을 보여주는 주사전자현미경(SEM) 사진이다.5 (a) and 5 (b) are optical photographs of the nanodiamond powder before and after the heat treatment for 420 minutes at 600 ° C in the air, respectively, Figures 5 (c) to 5 (f) Scanning electron microscope (SEM) image showing the shape of the nanodiamonds.
도 6(a)는 초음파 분산 장치를 보여주는 사진이며, 도 6(b) 및 도 6(c)는 초음파 분산된 열정제 나노다이아몬드 입자에 대한 주사전자현미경(SEM) 사진이고, 도 6(d)는 정전기적 분산 장치를 보여주는 사진이며, 도 6(e) 및 도 6(f)는 정전기적 분산된 열정제 나노다이아몬드 입자에 대한 주사전자현미경(SEM) 사진이다.Figure 6 (a) is a photograph showing the ultrasonic dispersion device, Figure 6 (b) and Figure 6 (c) is a scanning electron microscope (SEM) picture of the ultrasonic nano-dispersed passion nanodiamond particles, Figure 6 (d) 6 is a photograph showing an electrostatic dispersing device, and FIGS. 6 (e) and 6 (f) are scanning electron microscope (SEM) photographs of electrostatically dispersed passion nanodiamond particles.
도 7은 초음파 분산된 열정제 나노다이아몬드의 입자 크기 분포를 PowderShape 장치를 이용해 분석한 결과이며. 도 8은 정전기적 분산된 열정제 나노다이아몬드의 입자 크기 분포를 PowderShape 장치를 이용해 분석한 결과이다.7 is a result of analyzing the particle size distribution of the ultrasonically dispersed passion nanodiamond using a PowderShape device. 8 is a result of analyzing the particle size distribution of the electrostatically dispersed passion nanodiamond using a PowderShape device.
도 9는 동적 광산란(DLS)에 의해 열정제 나노다이아몬드의 입자 크기 분포를 분석한 결과이다.9 is a result of analyzing the particle size distribution of the passion nanodiamond by dynamic light scattering (DLS).
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Embodiments according to the concept of the present invention can be variously modified and can have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof that is described, and that one or more other features or numbers are present. It should be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 나노다이아몬드의 분산성 향상방법은, 나노다이아몬드를 열처리하는 단계를 포함한다.The method for improving dispersibility of nanodiamonds according to the present invention includes the step of heat-treating the nanodiamonds.
이때, 열처리하는 단계는 대기 분위기(air atmosphere) 하에서 550 ℃ 내지 750 ℃의 온도로 실시하는 것이 바람직한데, 이는 550 ℃ 미만의 온도에서 열처리할 경우에는 sp2 결합 탄소(sp2-bonded carbon)가 sp3 결합 탄소(sp3-bonded carbon)로의 전환이 유효하게 이루어지지 않아 고순도의 나노다이아몬드의 형성이 어렵고, 750 ℃를 초과하는 온도에서 열처리할 경우에는 과가열(overheating)에 의해 산화물(oxide) 등의 불순물이 형성되어 나노다이아몬드의 순도를 오히려 떨어뜨리기 때문이다.At this time, the step of heat treatment is preferably carried out at a temperature of 550 ℃ to 750 ℃ in an air atmosphere (air atmosphere), which is when sp 2 -bonded carbon (sp 2 -bonded carbon) when the heat treatment at a temperature of less than 550 ℃ sp 3 bonded carbon (sp 3 -bonded carbon) not it is effectively made the transition to difficult formation of a high-purity nano-diamond, if a heat treatment at a temperature exceeding 750 ℃ has as an oxide by heating (overheating) (oxide) This is because impurities such as these are formed to lower the purity of the nanodiamond.
상기에서 언급한 바와 같이, 본 발명에서는 450 ℃ 내지 800 ℃의 온도에서 열처리를 수행하여 원료 나노다이아몬드의 sp2 결합 탄소(sp2-bonded carbon)를 sp3 결합 탄소(sp3-bonded carbon)로 전환시킴으로써, 액상에서의 분상성이 크게 향상된 고결정성(highly crystalline)의 나노다이아몬드를 제조할 수 있다.As it mentioned above, in the sp 3 bonded carbon (sp 3 -bonded carbon) the sp 2 carbon bond (sp 2 -bonded carbon) of the raw nano diamond by performing the heat treatment at a temperature of 450 ℃ to 800 ℃ the invention By converting, highly crystalline nanodiamonds with greatly improved powder separation in the liquid phase can be produced.
한편, 상기 열처리에 제공되는 원료 나노다이아몬드는 공지의 합성법에 의해 제조될 수 있으며, 예를 들어, 폭발합성법(detonation technique), 고온고압법(high-pressure high-temperature(HPHT) method), 기타 화학합성법 등으로 제조될 수 있다.On the other hand, the raw nanodiamonds provided in the heat treatment can be prepared by a known synthesis method, for example, detonation technique (detonation technique), high-pressure high-temperature (HPHT) method, other chemicals It may be produced by a synthetic method or the like.
상기 합성방법 중에서 주로 사용되는 폭발합성법을 예로 들면, 고폭화약을 밀폐용기 내에 기폭하여 발생되는 고온 고압에서 화약의 탄소성분이 탄화과정에서 ~5 nm 단결정 다이아몬드 나노입자가 50~500 nm로 응집된 형태의 나노다이아몬드가 합성된다.For example, the explosive synthesis method mainly used in the synthesis method, the carbon component of the gunpowder at the high temperature and high pressure generated by detonating the high explosives in an airtight container is a form in which ~ 5 nm single crystal diamond nanoparticles are agglomerated to 50 to 500 nm in the carbonization process. Nanodiamonds are synthesized.
상기 본 발명에 따른 제조방법에 의해 얻어지는 고순도 나노다이아몬드는 열처리를 통한 열정제(thermal purification)를 거쳐 액상 특히, 물에서의 분산성이 크게 향상되기 때문에, 증류수(distilled)에 분산된 분산액의 형태로 가공된 후, 후속공정(표면처리, 제품화 등)을 통해 나노복합체(nanocomposite), 양자점(quantum dot), 및 생의학 소재(biomedical material) 등의 다양한 분야에서 활용될 수 있다.The high-purity nanodiamonds obtained by the manufacturing method according to the present invention are greatly improved in dispersibility in a liquid, in particular, in water, through a thermal purification through heat treatment, in the form of a dispersion dispersed in distilled water. After processing, it may be utilized in various fields such as nanocomposite, quantum dot, and biomedical material through subsequent processes (surface treatment, commercialization, etc.).
위에서 상세히 설명한 본 발명에 따른 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법에 의하면, 대기 분위기 하에서 특정 온도 범위로 열처리하는 간단한 공정을 통해, 액상 내에서 완벽하게 개별 분산되는(individually dispersed) 고결정성의 나노다이아몬드를 얻을 수 있다.According to the method for preparing high-purity nanodiamonds having improved dispersibility according to the present invention described above in detail, through a simple process of heat treatment to a specific temperature range in an air atmosphere, the highly crystalline highly dispersed individually in the liquid phase (individually dispersed) Nanodiamonds can be obtained.
또한, 상기 열정제된 고결정성의 나노다이아몬드 입자는 별도의 분산제를 사용하지 않고도 초음파 또는 정전기적 분산법을 통해 액상 내에 응집 없이 쉽게 분산되므로, 기계, 자동차, 열차, 선박, 우주항공 등의 다양한 분야에서 소재부품으로 적용이 가능하며, 특히, 강도와 내마모성이 요구되는 부싱류 등에 바로 부품화 할 수 있으며, 또한, 양자점 효과의 구현이 가능해 다양한 디스플레이 재료 및 양자 컴퓨터의 기본 소재로 적용이 기대되고, 우수한 방열성으로 인해 인공위성 및 전자기기의 방열재료로 유용하게 사용될 수 있다.In addition, the zeolite high crystalline nanodiamond particles are easily dispersed without agglomeration in the liquid phase through ultrasonic or electrostatic dispersion method without using a separate dispersant, so that various fields such as machinery, automobiles, trains, ships, aerospace, etc. It can be applied as a material part, and in particular, it can be immediately parted into bushings requiring strength and abrasion resistance, and it is also possible to implement a quantum dot effect, and thus it is expected to be applied as a basic material for various display materials and quantum computers. Due to its excellent heat dissipation, it can be usefully used as a heat dissipating material for satellites and electronic devices.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present disclosure may be modified in various other forms, and the scope of the present disclosure is not interpreted to be limited to the embodiments described below. The embodiments of the present specification are provided to more fully describe the present specification to those skilled in the art.
<실시예><Example>
먼저, 도 1에 도시한 바와 같이 고온고압법(high pressure and high temperature(HPHT) method)으로 단결정 나노다이아몬드 입자(평균 입자 크기 : 125 nm)를 합성하였다.First, as shown in FIG. 1, single crystal nanodiamond particles (average particle size: 125 nm) were synthesized by a high pressure and high temperature (HPHT) method.
도 2에 도시된 바와 같이, SEM-EDS 분석 결과, 합성된 단결정 나노다이아몬드는 열처리 전에 불규칙한 형상을 가지면서 심하게 응집되어 있으며, 산화물 성분을 포함했다. 구체적으로, EDS 분석 결과에 따르면 비교적 높은 함량의 탄소가 나노다이아몬드에 포함된 것으로 나타났으나, 약 8.5 중량%의 산소도 포함하고 있는 것으로 확인되었다.As shown in FIG. 2, as a result of SEM-EDS analysis, the synthesized single crystal nanodiamonds were heavily aggregated and had an irregular shape before the heat treatment, and included oxide components. Specifically, according to the results of EDS analysis, a relatively high content of carbon was found to be included in the nanodiamond, but it was confirmed that it contained about 8.5 wt% oxygen.
상기 합성된 나노다이아몬드 입자의 열적 거동을 살펴보기 위해 열중량 분석기(model: TGA7 Thermogravimetric Analyzer, Perkin Elmer, USA)를 이용해 5 ˚C/min의 가열 속도로 대기 중에서 다양한 온도(최대 800 ˚C) 및 유지시간(holding time)에서의 열중량 분석(Thermogravimetric Analysis, TGA)을 실시하였다.To examine the thermal behavior of the synthesized nanodiamond particles, a thermogravimetric analyzer (model: TGA7 Thermogravimetric Analyzer, Perkin Elmer, USA) was used. Thermogravimetric Analysis (TGA) was performed at various temperatures (up to 800 ° C) and holding time in the atmosphere at a heating rate of ˚C / min.
TGA 분석결과에 따르면 나노다이아몬드 입자의 중량 손실은 처리 온도에 따라 다른 값을 나타냈다. 즉, 처리온도 500, 550, 600, 및 800 ℃에서 각각 약 4, 10, 16, 및 48 %의 중량손실이 발생한 것으로 나타났다(도 3(a) 참조). 500 ℃의 경우를 제외하고는 유지시간이 300 분 경과한 후에는 중량손실비(weight loss ratio)가 현저히 변화하였다(도 3(b) 참조). 특히 800 ℃에서는 유지시간이 약 220 분에 해당되는 지점에서 잔류 나노다이아몬드가 3 중량%(나노다이아몬드 97 중량% 연소)로서 중량 손실 포화 상태에 이르렀다. 600 ℃에서는 300분 동안 유지할 경우 거의 포화 상태에 이르렀으나, 여전히 비교적 많은 양의 나노다이아몬드(약 16 중량%)가 잔류했다. 상기 결과는 열처리 온도가 나노다이아몬드의 정제에 중요한 역할을 한다는 것을 의미한다.According to the TGA analysis, the weight loss of the nanodiamond particles showed a different value depending on the treatment temperature. That is, weight loss of about 4, 10, 16, and 48% occurred at treatment temperatures 500, 550, 600, and 800 ° C, respectively (see FIG. 3 (a)). Except for the case of 500 ℃, after 300 minutes of holding time, the weight loss ratio (weight loss ratio) was significantly changed (see Fig. 3 (b)). In particular, at 800 ° C., at the point where the holding time was about 220 minutes, the residual nanodiamonds reached 3% by weight (97% by weight of nanodiamond combustion) and reached a weight loss saturation state. At 600 ° C. for 300 minutes, it was nearly saturated, but still a relatively large amount of nanodiamonds (about 16 wt%) remained. The results indicate that the heat treatment temperature plays an important role in the purification of nanodiamonds.
한편, 열처리시 800 ℃에서 300 분간 유지할 경우 갈색을 띠는 백색(brownish white) 나노다이아몬드 분말이 얻어졌다. 그리고, 600 ℃에서 300 분간 유지할 경우에는 회색을 띠는 백색(greyish white) 나노다이아몬드 분말이 얻어졌다. 일반적으로 sp3 결합의 나노다이아몬드의 순도는 그 색상에 의해 손쉽게 확인할 수 있는데, 800 ℃에서 300 분간 유지할 때 얻어진 나노다이아몬드 분말의 색상은 과가열(overheating)에 따라 다량의 산화물이 포함됨에 따른 것이다.On the other hand, when the heat treatment for 300 minutes at 800 ℃ brownish white (brownish white) nanodiamond powder was obtained. And, when maintained at 600 ° C. for 300 minutes, a greyish white nanodiamond powder was obtained. In general, the purity of the nanodiamonds of sp 3 bond can be easily confirmed by the color, the color of the nanodiamond powder obtained when maintained at 800 300 minutes is due to the inclusion of a large amount of oxide overheating (overheating).
그리고, 나노다이아몬드의 품질을 평가하기 위해, 파장 633 nm의 적색 He-Ne 이온 레이저(Leica, Switzerland)를 이용해 라만분광법(Raman spectroscopy)을 실시하였다. 나노다이아몬드의 미세구조는 고해상동 냉전계방출형 주사전자현미경(high resolution cold field emission scanning electron microscopy) (Hitachi, HRCFE-SEM S-4800)을 이용해 살펴보았다.In order to evaluate the quality of the nanodiamonds, Raman spectroscopy was performed using a red He-Ne ion laser (Leica, Switzerland) having a wavelength of 633 nm. The microstructure of nanodiamonds was examined using high resolution cold field emission scanning electron microscopy (Hitachi, HRCFE-SEM S-4800).
라만분광법(Raman spectroscopy)은 나노다이아몬드의 품질을 파악하는데 있어서 매우 유용한 방법이다. 도 4를 참조하면, 합성 후 열처리하지 않은 단결정 나노다이아몬드는 해당 라만 스펙트럼에 결정 내 결함에 의해 발생되는 D 밴드(D-band)가 나타나지 않아 비교적 고품질을 갖는 것으로 확인되었다. 열처리하지 않은 나노다이아몬드는 물론 열처리한 나노다이아몬드 시편 모두의 라만 스펙트럼에서 다이아몬드(sp3) 피크가 관찰되었다. 한편, 600 ℃에서 300 분간 열처리한 나노다이아몬드 시편의 라만 스펙트럼에서는 sp2 결합 탄소 물질에서 통상적으로 관찰되는 G 밴드(G-band)가 나타나지 않았는데, 이는 대기 중에서의 간단한 열처리를 통해 열처리전 나노다이아몬드에서의 sp2 결합 탄소가 sp3 결합 탄소로 유효하게 전환되었음을 의미한다. 한편, 600 ℃에서 300분간 열처리한 시편의 라만 스펙트럼은 매우 불안정한 피크를 나타내는데, 이는 해당 시편의 라만 스펙트럼에서 다이아몬드 피크만이 나타난다고 하더라도 여전히 과도 상태(transient state)에 있음에 따른 것이다. 상기와 같이 600 ℃에서 300 분간 열정제한 나노다이아몬드의 라만 스펙트럼에는 불안정한 피크가 존재하긴 하지만, G 밴드 없이 높은 강도의 다이아몬드 피크를 나타내기 때문에, 상기 열처리 조건으로 열정제된 나노다이아몬드는 고품질을 가지며 비교적 다량으로 형성될 수 있는 것으로 확인되었다.Raman spectroscopy is a very useful method for determining the quality of nanodiamonds. Referring to FIG. 4, single crystal nanodiamonds which were not heat-treated after synthesis were found to have relatively high D-bands due to defects in crystals in the Raman spectrum. Diamond (sp 3 ) peaks were observed in the Raman spectrum of both the heat treated nanodiamonds as well as the heat treated nanodiamond specimens. On the other hand, the Raman spectra of the nanodiamond specimens heat-treated at 600 ° C. for 300 minutes did not show G-bands, which are commonly observed in sp 2 -bonded carbon materials. This means that sp 2 bonded carbon has been effectively converted to sp 3 bonded carbon. On the other hand, the Raman spectrum of the specimen heat-treated at 600 ° C. for 300 minutes shows a very unstable peak, even though only a diamond peak appears in the Raman spectrum of the specimen, which is still in a transient state. As described above, although the unstable peak exists in the Raman spectrum of the nanodiamond, which has been enthusiastically limited at 600 ° C. for 300 minutes, it exhibits a high intensity diamond peak without a G band. It has been found that it can be formed in large quantities.
다음으로, 합성된 나노다이아몬드를 머플 퍼니스(muffle furnace) (model: L5/12, Nabertherm Gmbh, Germany) 내에서 5˚C/min의 승온속도로 600 ˚C까지 가열한 후 300 분간 유지하는 열처리를 실시하였다.Next, the synthesized nanodiamond was 600 at a temperature increase rate of 5˚C / min in a muffle furnace (model: L5 / 12, Nabertherm Gmbh, Germany). After heating to ˚C it was carried out heat treatment to hold for 300 minutes.
도 5(a) 및 도 5(b)에 도시된 것처럼, 열처리하지 않은 나노다이아몬드의 색상은 열처리에 의해 흑색으로부터 회색을 띠는 백색으로 변했다. 열처리 후 나노다이아몬드의 중량 손실률(85%)는 상기 TGA 분석 결과와 유사했다. 도 5(d) 및 도 5(e)에 따르면, 몇몇 매우 미세한 입자들이 관찰되었는데, 이는 열처리동안 나노다이아몬드가 열분해(thermal decomposition)되어 형성된 것이다. 그러나, 열처리된 나노다이아몬드의 입자크기 및 형상의 대부분은 열처리하지 않은 나노다이아몬드의 입자크기 및 형상(도 2 참조)과 유사했다. 따라서, 열처리에 의한 열정제는 입자 성장에 큰 영향을 끼치지 않는 것으로 확인되었다. 한편, 열처리 후 얻어진 나노다이아몬드는 고결정성의 높은 품질을 나타내는 반면, 회수율(collection ratio)는 여전히 매우 낮았다. 5 (a) and 5 (b), the color of the nanodiamonds which were not heat treated was changed from black to grayish white by heat treatment. The weight loss rate (85%) of the nanodiamond after the heat treatment was similar to the TGA analysis result. According to Figs. 5 (d) and 5 (e), some very fine particles were observed, which were formed by thermal decomposition of nanodiamonds during the heat treatment. However, most of the particle size and shape of the heat treated nanodiamonds were similar to the particle size and shape of the nanodiamonds which were not heat treated (see FIG. 2). Therefore, it was confirmed that the enthusiastic agent by the heat treatment did not significantly affect the grain growth. On the other hand, the nanodiamonds obtained after the heat treatment showed high crystalline high quality, while the collection ratio was still very low.
상기 열처리된 나노다이아몬드 입자는 초음파 장치(model: UP50H, Hielscher Ultrasonic Gmbh, Germany)를 이용해 부피 10 ml의 물에서 5분 동안 분산시켰다. 그리고나서, 초음파 분산된 용액을 피펫을 이용해 연마된 실리콘 웨이퍼 상에 직접 적하였다. 또한, 열처리된 나노다이아몬드는 연마된 실리콘 웨이퍼 상에 정전기적 분산 장치(model: TSI nanometer aerosol sampler 3089, TSI Incorporated, USA)를 이용해 직접 분산시켰다. 상기 2개의 방법으로 분산된 나노다이아몬드의 분산성은 주사전자현미경(SEM)을 이용해 살펴보았다. 다음으로, 개별 분산된 나노다이아몬드의 평균입자크기를 SEM 이미지에 기초해 PowderShape 시스템 (model: PowderShape MF, IST-AG-Innovative Sintering Technologies, Switzerland)으로 측정하였다. 열처리된 나노다이아몬드의 평균입자크기 분포는 또한 동적 광산란(dynamic light scattering, DLS) 장치 (model: StabiSizer PMX200C, Microtrac Europe Gmbh, Germany)로 분석하였다.The heat treated nanodiamond particles were dispersed for 5 minutes in a volume of 10 ml of water using an ultrasonic device (model: UP50H, Hielscher Ultrasonic Gmbh, Germany). The ultrasonically dispersed solution was then dropped directly onto the polished silicon wafer using a pipette. Heat-treated nanodiamonds were also dispersed directly on the polished silicon wafer using an electrostatic dispersion device (model: TSI nanometer aerosol sampler 3089, TSI Incorporated, USA). The dispersibility of nanodiamonds dispersed in the two methods was examined using a scanning electron microscope (SEM). Next, the average particle size of the individually dispersed nanodiamonds was measured by a PowderShape system (model: PowderShape MF, IST-AG-Innovative Sintering Technologies, Switzerland) based on SEM images. The average particle size distribution of the heat treated nanodiamonds was also analyzed by a dynamic light scattering (DLS) device (model: StabiSizer PMX200C, Microtrac Europe Gmbh, Germany).
열처리된 회색을 띠는 백색 나노다이아몬드 입자는 초음파 분산법(ultrasonic dispersion method) 및 정전기적 분산법(electrostatic dispersion method)에 의해 실리콘(Si) 웨이퍼 상에 잘 분산되었다. 도 6에 도시된 바와 같이 상기 2개의 분산 방법은 동일한 양상을 나타냈다.The heat treated grayish white nanodiamond particles were well dispersed on the silicon (Si) wafer by the ultrasonic dispersion method and the electrostatic dispersion method. As shown in FIG. 6, the two dispersion methods showed the same aspect.
일반적으로, 나노입자 물질의 분산에 있어서 강한 응집을 일으키는 큰 표면적에 의해 발생하는 입자의 응집이 해결해야할 난제이다. 하지만, 본 발명에 따라 열정제된 나노다이아몬드는 초음파 또는 정전기적 분산 방법에 의해 증류수 내에 용이하게 분사되었으며, 이는 증류수가 나노다이아몬드 입자에 대한 훌륭한 분산제(dispersant)가 됨을 의미한다. In general, agglomeration of particles caused by large surface areas causing strong agglomeration in the dispersion of nanoparticle materials is a challenge to be solved. However, the nanodiamonds entrapped according to the present invention were easily sprayed into the distilled water by ultrasonic or electrostatic dispersion method, which means that the distilled water is an excellent dispersant for the nanodiamond particles.
전술한 2가지 방법에 의해 분산된 나노다이아몬드 입자의 크기 분포는 2가지 종류의 입자 분석 장비 (Powdershape 및 Stabisizer)를 이용해 측정하였다. 참고로, Powdershape은 분말 및 모든 종류의 입자의 품질 조사를 위해 개발된 특성 분석 시스템이며, Stabisizer는 동적 광산란(dynamic light scattering, DLS)을 통한 콜로이드 특성 분석 시스템이다. 도 7 및 도 8의 Powdershape 결과에 따르면, 전술한 2가지 방법에 의해 각각 분산된 입자들은 D50값이 80~90nm으로 유사하게 나타났다. 입자 크기 분포의 범위는 2~180nm이고, 가장 작은 크기의 나노다이아몬드 입자는 정전기적으로 분산된 시편에서 발견되었다. 하지만, 정전기적으로 분산된 입자들은 초음파 분산된 입자들에 비해 보다 좁고 보다 연속적으로 분포된 히스토그램(histogram)을 나타내 분산성이 더 뛰어난 것으로 확인되었다. 그렇지만, 허용가능한 오차 범위(10%) 내에서 상기 2가지 방법으로 분산된 입자들은 유사한 분산성을 나타냈다.The size distribution of the nanodiamond particles dispersed by the two methods described above was measured using two kinds of particle analysis equipment (Powdershape and Stabisizer). For reference, Powdershape is a characterization system developed for quality investigation of powder and all kinds of particles, and Stabisizer is a colloid characterization system through dynamic light scattering (DLS). According to the Powdershape results of FIGS. 7 and 8, the particles dispersed by the two methods described above were similarly shown to have a D50 value of 80 to 90 nm. The particle size distribution ranged from 2 nm to 180 nm, and the smallest nanodiamond particles were found in electrostatically dispersed specimens. Electrostatically dispersed particles, however, were found to be more dispersible, exhibiting narrower and more continuously distributed histograms than ultrasonically dispersed particles. However, the particles dispersed in both methods within the acceptable error range (10%) showed similar dispersibility.
도 9는 DLS로부터 얻어진 열처리된 나노다이아몬드의 D50값(88nm)이 Powdershape 결과와 매우 유사함을 보여준다. 특히, 크기 분포의 10%까지 잘 일치하는 것으로 나타났다(Powdershape: 50nm, DLS: 53nm). 열처리 여부와 관계없이 Powdershape 및 DLS에 의해 약 100 nm 크기의 나노다이아몬드의 크기 분포가 측정(표 1 참조)되었다는 것은 주목할 만하다. 초음파 및 정전기적 분산법에 의해 개별적으로 분산된(individually dispersed) 나노다이아몬드는 추가 공정을 실시해 나노복합체(nanocomposite), 양자점(quantum dot), 및 생의학 소재(biomedical material) 등으로서 활용될 수 있는 잠재성을 가진다.9 shows that the D50 value (88 nm) of the heat treated nanodiamonds obtained from DLS is very similar to the Powdershape results. In particular, up to 10% of the size distribution showed good agreement (Powdershape: 50 nm, DLS: 53 nm). It is noteworthy that the size distribution of nanodiamonds of about 100 nm size was measured (see Table 1) by Powdershape and DLS with or without heat treatment. Individually dispersed nanodiamonds by ultrasonic and electrostatic dispersion methods can be further processed to be used as nanocomposites, quantum dots, and biomedical materials. Has
본 발명의 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법에서, 열정제된 고결정성의 나노다이아몬드 입자는 별도의 분산제를 사용하지 않고도 초음파 또는 정전기적 분산법을 통해 액상 내에 응집 없이 쉽게 분산되므로, 기계, 자동차, 열차, 선박, 우주항공 등의 다양한 분야에서 소재부품으로 적용이 가능하다.In the manufacturing method of the high purity nanodiamond having the improved dispersibility of the present invention, since the passionate highly crystalline nanodiamond particles are easily dispersed without agglomeration in the liquid phase through ultrasonic or electrostatic dispersing without using a separate dispersant, It can be applied as material parts in various fields such as automobiles, trains, ships and aerospace.
특히, 강도와 내마모성이 요구되는 부싱류 등에 바로 부품화 할 수 있고, 또한, 양자점 효과의 구현이 가능해 다양한 디스플레이 재료 및 양자 컴퓨터의 기본 소재로 적용이 기대되고, 우수한 방열성으로 인해 인공위성 및 전자기기의 방열재료로 유용하게 사용될 수 있다.Particularly, it can be directly made into parts such as bushings requiring strength and wear resistance, and it is also possible to realize quantum dot effect, so it is expected to be applied to various display materials and basic materials of quantum computer. It can be usefully used as a heat radiation material.

Claims (9)

  1. 나노다이아몬드(nanodiamond, nD)를 열처리하는 단계를 포함하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법.A method of manufacturing high-purity nanodiamonds having improved dispersibility, comprising the step of heat-treating nanodiamonds (nD).
  2. 제1항에 있어서,The method of claim 1,
    상기 열처리하는 단계는 대기 분위기(air atmosphere) 하에서 450 ℃ 내지 800 ℃의 온도로 실시하는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법.The heat treatment is a method for producing high purity nanodiamonds having improved dispersibility, characterized in that carried out at a temperature of 450 ℃ to 800 ℃ under an air atmosphere (air atmosphere).
  3. 제2항에 있어서,The method of claim 2,
    상기 열처리하는 단계는 대기 분위기 하에서 600 ℃의 온도로 300분 동안 실시하는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법.The heat treatment step is a method for producing high purity nanodiamonds having improved dispersibility, characterized in that carried out for 300 minutes at a temperature of 600 ℃ under an atmospheric atmosphere.
  4. 제1항에 있어서,The method of claim 1,
    폭발합성법(detonation technique) 또는 고온고압법(high-pressure high-temperature(HPHT) method)으로 제조된 나노다이아몬드를 열처리하는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법.A method for producing high purity nanodiamonds having improved dispersibility, characterized in that heat treatment of nanodiamonds produced by a detonation technique or a high-pressure high-temperature (HPHT) method.
  5. 제1항에 있어서,The method of claim 1,
    상기 열처리하는 단계에서 나노다이아몬드의 sp2 결합 탄소(sp2-bonded carbon)가 sp3 결합 탄소(sp3-bonded carbon)로 변환되는 것을 특징으로 하는 향상된 분산성을 가지는 고순도 나노다이아몬드의 제조방법.The sp 2 bond of nanodiamonds in the step of heat treatment of carbon (sp 2 -bonded carbon) is sp 3 carbon bonding process for producing a high-purity nano-diamond having improved dispersibility, characterized in that is converted to (sp 3 -bonded carbon).
  6. 제1항 내지 제5항 중 어느 한 항의 방법에 의해 제조된 나노다이아몬드.Nanodiamond produced by the method of any one of claims 1 to 5.
  7. 제6항에 기재된 나노다이아몬드를 분산시킨 나노다이아몬드 분산액.The nanodiamond dispersion liquid which disperse | distributed the nanodiamond of Claim 6.
  8. 제7항에 있어서,The method of claim 7, wherein
    분산매는 증류수(distilled water)인 것을 특징으로 하는 나노다이아몬드 분산액.The dispersion medium is nanodiamond dispersion, characterized in that the distilled water (distilled water).
  9. 제7항에 있어서,The method of claim 7, wherein
    초음파 또는 정전기적 분산법에 의해 분산된 것을 특징으로 하는 나노다이아몬드 분산액.Nanodiamond dispersion, characterized in that dispersed by ultrasonic or electrostatic dispersion method.
PCT/KR2017/013814 2016-12-01 2017-11-29 Method for manufacturing thermally refined high-purity nanodiamond having improved dispersibility WO2018101739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160162657A KR101953751B1 (en) 2016-12-01 2016-12-01 Method for manufacturing thermally purified high-purity nanodiamond having enhanced dispersibility
KR10-2016-0162657 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101739A1 true WO2018101739A1 (en) 2018-06-07

Family

ID=62242491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013814 WO2018101739A1 (en) 2016-12-01 2017-11-29 Method for manufacturing thermally refined high-purity nanodiamond having improved dispersibility

Country Status (2)

Country Link
KR (1) KR101953751B1 (en)
WO (1) WO2018101739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394885A (en) * 2018-03-26 2018-08-14 大连理工大学 A kind of method of Gaseous Detonation composite solid state carbon quantum dot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613024B1 (en) * 2021-06-30 2023-12-12 주식회사 에스더블유케미컬즈 High purity nanodiamond and preparing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130121909A1 (en) * 2007-05-21 2013-05-16 Igor Leonidovich Petrov Nanodiamond material, method and device for purifying and modifying a nanodiamond

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685089B2 (en) * 2004-03-09 2011-05-18 エレメント シックス ベスローテン フェンノートシャップ Electrochemical sensor containing diamond particles
JP2006273704A (en) * 2005-03-30 2006-10-12 Kri Inc Method for refining diamond, and nanodiamond
WO2007103256A2 (en) * 2006-03-03 2007-09-13 Battelle Memorial Institute Method and apparatus for high mass concentration nano particle generation
WO2009060613A1 (en) * 2007-11-08 2009-05-14 Nippon Kayaku Kabushiki Kaisha Dispersion of nanodiamond in organic solvent, and method for production thereof
KR101337683B1 (en) 2011-10-17 2013-12-06 한국원자력연구원 Hydrophobical surface treated nano diamond and method for manufacturing the same
KR101353153B1 (en) 2011-12-26 2014-01-23 인하대학교 산학협력단 Method of dispersing diamond in resin solution and surface-treated steel sheet by using the resin composition
KR20150015245A (en) 2013-07-31 2015-02-10 주식회사 네오엔비즈 Surface-modified nanodiamond and method of modifying a surface of nanodiamond

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130121909A1 (en) * 2007-05-21 2013-05-16 Igor Leonidovich Petrov Nanodiamond material, method and device for purifying and modifying a nanodiamond

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CUI, J.-F. ET AL.: "Quantification of C=C and C=O Surface Carbons in Detonation Nanodiamond by NMR", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 118, 9 April 2014 (2014-04-09), pages 9621 - 9627, XP055491740, Retrieved from the Internet <URL:DOI:10.1021/jp503053r> *
KIM, CHANGKYU: "Deaggregation and Ultradispersion of Detonation Nanodiamonds in Polar Solvent Using Phy sicochemical Treatments", JOURNAL OF KOREAN POWDER METALLURGY INSTITUTE, vol. 20, no. 6, 2013, pages 479 - 486, XP055491744, Retrieved from the Internet <URL:DOI:10.4150/KPMI.2013.20.6.479> *
OSSWALD, S. ET AL.: "Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 35, 2006, pages 11635 - 11642, XP025844854 *
SHENDEROVA, O. ET AL.: "Modification of Detonation Nanodiamonds by Heat Treatment in Air", DIAMOND & RELATED MATERIALS, vol. 15, 2006, pages 1799 - 1803, XP028000751 *
XU, X. ET AL.: "Influence of Surface Modification Adopting Thermal Treatments on Dispersion of Detonation Nanodiamond", JOURNAL OF SOLID STATE CHEMISTRY, vol. 178, no. 3, 1 March 2005 (2005-03-01), pages 688 - 693, XP004781941, Retrieved from the Internet <URL:https://doi.org/10.1016/j.jssc.2004.12.025> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394885A (en) * 2018-03-26 2018-08-14 大连理工大学 A kind of method of Gaseous Detonation composite solid state carbon quantum dot
CN108394885B (en) * 2018-03-26 2021-03-26 大连理工大学 A method for gas phase detonation synthesis of solid carbon quantum dots

Also Published As

Publication number Publication date
KR101953751B1 (en) 2019-03-08
KR20180062696A (en) 2018-06-11

Similar Documents

Publication Publication Date Title
Fernandes et al. Carbon dot based nanopowders and their application for fingerprint recovery
Harrison et al. Quantification of hexagonal boron nitride impurities in boron nitride nanotubes via FTIR spectroscopy
Stan et al. One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide
Ozawa et al. Preparation and behavior of brownish, clear nanodiamond colloids
Yiamsawas et al. Preparation of ZnO nanostructures by solvothermal method
Wang et al. Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order
Xu et al. A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method
WO2011099823A2 (en) Nano-diamond dispersion solution and method for preparing same
Xie et al. Fluorescent graphene oxide composites synthesis and its biocompatibility study
Najafi et al. A study on sol–gel synthesis and characterization of SiC nano powder
Khalaj et al. Evaluation of APC impact on controlling precursors properties in the sol for synthesizing meso porous ZrC nanopowder through sol-gel process
WO2018101739A1 (en) Method for manufacturing thermally refined high-purity nanodiamond having improved dispersibility
Jasiorski et al. Morphology and absorption properties control of silver nanoparticles deposited on two types of sol–gel spherical silica substrates
Hou et al. Bi2Se3 nanosheets: Advanced nanofillers for reinforcing and flame retarding polyethylene nanocomposites
WO2018026548A1 (en) Formed hexagonal boron nitride body, heat-treated hexagonal boron nitride body and processes for producing the same
US11897767B2 (en) Direct gas fluorination of boron nitrides and compositions including fluorinated boron nitrides
Gorzkowski et al. Formation of nanodimensional 3C-SiC structures from rice husks
Wang et al. Synthesis, photoluminescence and bio-targeting applications of blue graphene quantum dots
TW202323193A (en) Silica for electronic materials and method for producing same
CN103694989B (en) Sodium yttrium tetrafluoride/ ferroferric oxide/carbon multifunctional nano material and preparation method thereof
Li et al. Photoluminescence enhancement of ZnO nanocrystallites with BN capsules
JP2021102537A (en) Hexagonal boron nitride powder, method for producing the same, cosmetic and method for producing the same
Kim et al. Graphene for Water-Based Nanofluid Preparation: Effect of Chemical Modifications on Dispersion and Stability
Kwon et al. Dispersion behavior and size analysis of thermally purified high pressure-high temperature synthesized nanodiamond particles
Arvanitelis et al. Carbon nanotube–SiO2 composites by colloidal processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875724

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载