+

WO2018101356A1 - 有機el表示装置 - Google Patents

有機el表示装置 Download PDF

Info

Publication number
WO2018101356A1
WO2018101356A1 PCT/JP2017/042894 JP2017042894W WO2018101356A1 WO 2018101356 A1 WO2018101356 A1 WO 2018101356A1 JP 2017042894 W JP2017042894 W JP 2017042894W WO 2018101356 A1 WO2018101356 A1 WO 2018101356A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
display device
insulating layer
weight
layer
Prior art date
Application number
PCT/JP2017/042894
Other languages
English (en)
French (fr)
Inventor
新井 猛
三好 一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/463,729 priority Critical patent/US11011707B2/en
Priority to JP2017563146A priority patent/JPWO2018101356A1/ja
Priority to KR1020197014037A priority patent/KR102475330B1/ko
Priority to CN201780070589.4A priority patent/CN109964540B/zh
Publication of WO2018101356A1 publication Critical patent/WO2018101356A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0381Macromolecular compounds which are rendered insoluble or differentially wettable using a combination of a phenolic resin and a polyoxyethylene resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers

Definitions

  • the present invention relates to an organic EL display device having a transparent electrode, an organic EL layer, a non-transparent electrode, and an insulating layer.
  • Organic EL display devices are attracting attention as next-generation flat panel displays.
  • the organic EL display device is a self-luminous display device that uses electroluminescence by an organic compound, and can display an image with a wide viewing angle, high-speed response, and high contrast, and is thinner, lighter, and flexible. In recent years, research and development has been actively promoted.
  • Organic EL display devices are classified into a lower emission (bottom emission) method that emits light toward the substrate and an upper emission (top emission) method that emits light on the opposite side of the substrate, depending on the emission method. In any method, it is required to efficiently extract light emitted from an organic EL (Electro Luminescence) layer.
  • an organic EL element in which an anode is made of a metal having a high reflectance has been proposed as an upper-emitting organic EL element (see, for example, Patent Document 1).
  • the organic EL display device has an insulating layer to divide the pixels.
  • an organic EL display device having an insulating layer for example, a first electrode formed on a substrate, an insulating layer formed on the first electrode so as to partially expose the first electrode, and the first electrode
  • a display device including a second electrode provided so as to face the substrate, wherein the insulating layer is made of positive photosensitive polyimide see, for example, Patent Document 2.
  • an object of the present invention is to provide an organic EL display device that suppresses external light reflection, has excellent contrast, and reduces color misregistration.
  • the organic EL display device is an organic EL display device having at least a transparent electrode, an organic EL layer, and a non-transparent electrode in this order, and further having a black insulating layer, and the reflectance of the non-transparent electrode is 25% ⁇ 20%.
  • the organic EL display device of the present invention has little external light reflection, excellent contrast, and can reduce color misregistration.
  • FIG. 1 is a schematic cross-sectional view of a bottom emission type organic EL display device.
  • FIG. 2 is a schematic cross-sectional view of a top emission type organic EL display device.
  • FIG. 3 is a schematic diagram of the dark luminance, bright luminance, and chromaticity evaluation environment of the organic EL display device in the embodiment.
  • FIG. 4 is a graph showing the relationship between the wavelength and transmittance of the ultraviolet absorbing plate used in Examples and Comparative Examples.
  • FIG. 5A is a schematic diagram (part 1) of a manufacturing procedure of an organic EL display device according to an example.
  • FIG. 5B is a schematic diagram (part 2) of the manufacturing procedure of the organic EL display device in the example.
  • FIG. 5C is a schematic diagram (part 3) of a manufacturing procedure of the organic EL display device according to the example.
  • FIG. 5D is a schematic diagram (part 4) of a manufacturing procedure of the organic EL display device according to the example.
  • the organic EL display device of the present invention has a transparent electrode, an organic EL layer, a non-transparent electrode in this order, and further has an insulating layer.
  • FIG. 1 is a schematic sectional view of a bottom emission type organic EL display device which is one embodiment
  • FIG. 2 is a schematic sectional view of a top emission type organic EL display device which is another embodiment.
  • the bottom emission type organic EL display device of FIG. 1 has a first electrode 2 made of a transparent electrode on a substrate 1. It has the insulating layer 3 so that the periphery of this 1st electrode 2 may be covered, and also has the 2nd electrode 5 which consists of an organic electroluminescent layer 4 and a non-transparent electrode.
  • the top emission type organic EL display device of FIG. 2 has a first electrode 6 made of a non-transparent electrode on a substrate 1. It has the insulating layer 3 so that the periphery of this 1st electrode 6 may be covered, and also has the 2nd electrode 7 which consists of an organic electroluminescent layer 4 and a transparent electrode. By selecting the first electrode 6 made of a non-transparent electrode and the second electrode 7 made of a transparent electrode, the emitted light in the organic EL layer 4 is extracted to the side opposite to the substrate 1.
  • Organic EL display devices are roughly classified into an active matrix type and a passive matrix type depending on the driving method, but any driving method may be used in the present invention.
  • the transparent electrode in the organic EL display device of the present invention refers to an electrode having a light transmittance of 30% or more at a wavelength of 550 nm
  • the non-transparent electrode refers to an electrode having a light transmittance of less than 30% at a wavelength of 550 nm.
  • the light transmittance in this invention can be measured with a spectrophotometer about the electrode formed on the transparent glass substrate.
  • the organic EL display device of the present invention can extract light emitted from the organic EL layer 4 to one side by combining a transparent electrode and a non-transparent electrode as the first electrode and the second electrode.
  • the transparent electrode and the non-transparent electrode in the present invention are excellent in electrical properties, can be efficiently injected with holes when used as an anode, and can be efficiently injected with electrons when used as a cathode. Is required.
  • Examples of the material for forming the transparent electrode in the present invention include transparent conductive oxides and metals.
  • ITO, IZO, AZO, GZO, ATO and the like are preferable, and when used as a cathode, Li, Mg, Ag, Al and the like are preferable.
  • the reflectance of the non-transparent electrode in the present invention is preferably 80% or less.
  • the reflectance of the non-transparent electrode in the present invention refers to the reflectance at a wavelength of 550 nm, and the electrode formed on the transparent glass substrate can be measured with a spectrophotometer. If the reflectance of the non-transparent electrode exceeds 80%, the light emission in the organic EL layer can be efficiently extracted, but the contrast decreases due to an increase in the reflection of external light, or the color shift due to the diffusion of light to adjacent pixels. Likely to happen.
  • the reflectance of the non-transparent electrode is more preferably 45% or less, and further preferably 30% or less. Further, the reflectance of the non-transparent electrode is preferably 5% or more, and more preferably 10% or more, from the viewpoint of luminance, avoiding that the reflectance of the non-transparent electrode is too small.
  • Examples of the material for forming the non-transparent electrode in the present invention include carbon and metal.
  • Ag, Al, C, Cr, Cu, Mo, Ni, or Ti is preferably the main component, and the corrosion resistance of the non-transparent electrode can be improved and the reliability of the organic EL display device can be improved.
  • More preferably, Ag, Al or Cu is the main component.
  • the main component in the present invention refers to a component that is contained most in the material forming the non-transparent electrode.
  • electrode materials including these include AgIn alloys, AgZn alloys, AgZnBi alloys, Al graphene alloys, AlMn alloys, AlNd alloys, AlGaNi alloys, CuZn alloys, CuZnMg alloys, Ag nanofillers (wires), and Ag. Examples include nanoparticles.
  • the non-transparent electrode has a multi-layer structure in order to achieve both composite characteristics.
  • the non-transparent electrode may have a multilayer structure, and may have a base layer that improves adhesion and corrosion resistance on the substrate side, and a reflection adjustment layer that adjusts the reflectance.
  • the transparent conductive oxide material ITO, IZO, AZO, GZO, ATO or the like is preferable because of its high transmittance and low resistivity.
  • Examples of the structure of the organic EL layer in the organic EL display device of the present invention include (1) hole transport layer / light emitting layer, (2) hole transport layer / light emitting layer / electron transport layer, and (3) light emitting layer / Examples thereof include an electron transport layer.
  • Various studies have been made on the structure of the organic EL layer in order to comprehensively improve the injection and transport of holes and electrons, the light emission efficiency in the light emitting layer, and the like.
  • JP-A-8-109373 discloses. The organic thin film EL element described etc. are mentioned.
  • the organic EL display device of the present invention has a black insulating layer.
  • the black insulating layer in the present invention means that the optical density (Optical Density, OD value) of the insulating layer in the visible light region having a wavelength of 380 to 700 nm is 0.3 or more per 1.0 ⁇ m film thickness. Point to.
  • the OD value per film thickness of 1.0 ⁇ m is more preferably 0.8 or more, and further preferably 1.0 or more.
  • a cured film of a photosensitive resin composition is preferable.
  • the cured film may be simply referred to as a film.
  • the photosensitive resin composition preferably contains (C) a coloring material, more preferably contains (A) an alkali-soluble resin, (B) a photosensitive agent and (C) a coloring material, and (D) an organic material. More preferably, it contains a solvent.
  • the photosensitive resin composition contains the coloring material (C)
  • the insulating layer can be blackened.
  • the photosensitive resin composition may further contain other components.
  • the insulating layer aperture ratio in the display area of the organic EL display device decreases, the load on the organic EL layer increases.
  • the insulating layer aperture ratio in the display area is preferably 5% or more, more preferably 10% or more from the viewpoint of reliability.
  • the insulating layer aperture ratio in the display area is preferably 35% or less, more preferably 30% or less from the viewpoint of contrast.
  • alkali-soluble means that a solution in which a resin is dissolved in ⁇ -butyrolactone is applied on a silicon wafer and prebaked at 120 ° C. for 4 minutes to form a prebaked film having a thickness of 10 ⁇ m ⁇ 0.5 ⁇ m.
  • the dissolution rate obtained from the decrease in film thickness when the membrane is immersed in a 2.38 wt% tetramethylammonium hydroxide aqueous solution at 23 ⁇ 1 ° C. for 1 minute and then rinsed with pure water is 50 nm / min or more.
  • the alkali-soluble resin preferably has an aromatic carboxylic acid structure from the viewpoint of improving heat resistance.
  • the aromatic carboxylic acid structure means a carboxylic acid structure directly covalently bonded to an aromatic ring.
  • alkali-soluble resin examples include polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, polysiloxane, acrylic resin, and cardo resin. Two or more of these may be contained.
  • a polyimide precursor is preferable because of excellent heat resistance and a small amount of outgas under high temperature conditions.
  • a polyimide precursor having an amic acid structure is more preferable from the viewpoint of improving alkali solubility.
  • examples of (B) the photosensitive agent include (b1) o-quinonediazide compounds.
  • (b2) photoinitiator can be mentioned as (B) photosensitive agent.
  • the negative photosensitive resin composition preferably further contains a (G) radical polymerizable compound described later.
  • the o-quinonediazide compound is preferably a compound in which a sulfonic acid of naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group.
  • a compound having a phenolic hydroxyl group include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ.
  • naphthoquinone diazide sulfonic acid examples include 4-naphthoquinone diazide sulfonic acid and 5-naphthoquinone diazide sulfonic acid.
  • 4-Naphthoquinonediazide sulfonyl ester compounds have absorption in the i-line region of mercury lamps and are suitable for i-line exposure.
  • the 5-naphthoquinone diazide sulfonyl ester compound has absorption up to the g-line region of a mercury lamp and is suitable for g-line exposure. It is preferable to select a 4-naphthoquinone diazide sulfonyl ester compound or a 5-naphthoquinone diazide sulfonyl ester compound depending on the wavelength to be exposed.
  • a naphthoquinone diazide sulfonyl ester compound having a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule can be used, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound can be used. It can also be used together.
  • the naphthoquinonediazide compound can be synthesized by an esterification reaction between a compound having a phenolic hydroxyl group and a quinonediazidesulfonic acid compound.
  • the content of the (b1) o-quinonediazide compound in the positive photosensitive resin composition is preferably 6% by weight or more and 20% by weight or less in the total solid content of 100% by weight of the positive photosensitive resin composition. Workability can be improved.
  • the photopolymerization initiator refers to a compound that generates radicals by bond cleavage and / or reaction upon exposure.
  • Photopolymerization initiators include benzyl ketal photopolymerization initiators, ⁇ -hydroxyketone photopolymerization initiators, ⁇ -aminoketone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime ester photopolymerization initiators.
  • Polymerization initiator acridine photopolymerization initiator, titanocene photopolymerization initiator, benzophenone photopolymerization initiator, acetophenone photopolymerization initiator, aromatic ketoester photopolymerization initiator, benzoate photopolymerization initiator, etc. Is mentioned. Two or more of these may be contained.
  • B2 As a photopolymerization initiator, from the viewpoint of improving sensitivity, an ⁇ -hydroxyketone photopolymerization initiator, an ⁇ -aminoketone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, and an oxime ester photopolymerization initiator are started.
  • Agents acridine photopolymerization initiators, and benzophenone photopolymerization initiators are more preferable, and ⁇ -aminoketone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime ester photopolymerization initiators are more preferable.
  • Examples of the benzyl ketal photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Examples of ⁇ -hydroxyketone photopolymerization initiators include 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one and 2-hydroxy-2-methyl-1-phenylpropane-1. -One, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-1- [4- [4- ( 2-hydroxy-2-methylpropionyl) benzyl] phenyl] -2-methylpropan-1-one and the like.
  • Examples of the ⁇ -aminoketone photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholinophenyl) -butan-1-one, 3,6-bis (2-methyl- 2-morpholinopropionyl) -9-octyl-9H-carbazole and the like.
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxybenzoyl). )-(2,4,4-trimethylpentyl) phosphine oxide.
  • oxime ester photopolymerization initiator examples include 1-phenylpropane-1,2-dione-2- (O-ethoxycarbonyl) oxime, 1-phenylbutane-1,2-dione-2- (O-methoxy).
  • Examples of the acridine photopolymerization initiator include 1,7-bis (acridin-9-yl) -n-heptane.
  • titanocene photopolymerization initiator for example, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl] titanium ( IV), bis ( ⁇ 5-3-methyl-2,4-cyclopentadien-1-yl) -bis (2,6-difluorophenyl) titanium (IV), and the like.
  • benzophenone photopolymerization initiator examples include benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-phenylbenzophenone, 4,4-dichlorobenzophenone, 4- Examples thereof include hydroxybenzophenone, alkylated benzophenone, 3,3 ′, 4,4′-tetrakis (t-butylperoxycarbonyl) benzophenone, 4-methylbenzophenone, dibenzyl ketone, fluorenone and the like.
  • acetophenone photopolymerization initiator examples include 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, 4-azidobenzalacetophenone, and the like.
  • aromatic ketoester photopolymerization initiators examples include methyl 2-phenyl-2-oxyacetate.
  • benzoate photopolymerization initiator examples include ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid (2-ethyl) hexyl, ethyl 4-diethylaminobenzoate, methyl 2-benzoylbenzoate and the like. It is done.
  • the content of (b2) the photopolymerization initiator in the negative photosensitive resin composition is based on 100 parts by weight of the total weight of (A) the alkali-soluble resin and (G) the radical polymerizable compound described later. 1 part by weight or more is preferable, and from the viewpoint of resolution and taper shape, 15 parts by weight or less is preferable with respect to a total of 100 parts by weight of (A) alkali-soluble resin and (G) radical polymerizable compound described later.
  • the coloring material (C) in the present invention is a compound that absorbs light of a specific wavelength, and particularly a compound that is colored by absorbing light having a visible light wavelength (380 to 780 nm).
  • the insulating layer can be colored, and the color that imparts the desired color to the light transmitted through the insulating layer or the light reflected from the insulating layer can be imparted.
  • light having a wavelength absorbed by the coloring material can be blocked from light transmitted through the insulating layer or light reflected from the insulating layer.
  • the optical density of the insulating layer in the visible light region having a wavelength of 380 to 700 nm can be set to the above-described range.
  • coloring material examples include compounds that absorb light having a wavelength of visible light and are colored white, red, orange, yellow, green, blue, and purple. By combining two or more of these coloring materials, it is possible to improve the toning property of toning the light transmitted through the insulating layer or the light reflected from the insulating layer to a desired color coordinate.
  • the coloring material preferably contains (C1) a pigment and / or (C2) a dye. Moreover, it is preferable that (C) coloring material contains coloring materials other than (Ca) black agent and / or (Cb) black. By containing a coloring material other than (Ca) black agent and / or (Cb) black, the insulating layer is provided with light shielding properties, and color adjustment in the color system becomes easy.
  • the (C) coloring material contains the (C1) pigment
  • the (C) coloring As an aspect in which the material contains (C2) dye, (C2) dye is preferably contained as a coloring material other than (Ca) black agent and / or (Cb) black.
  • a black agent refers to a compound that is colored black by absorbing light having a wavelength of visible light.
  • the insulating layer can be blackened, the transmitted light and reflected light of the insulating layer can be blocked, and the light blocking property can be improved.
  • the (Ca) black agent a compound that absorbs light of all wavelengths of visible light and is colored black is preferable from the viewpoint of light shielding properties.
  • a combination of two or more coloring materials selected from white, red, orange, yellow, green, blue or purple coloring materials is also preferable. By combining two or more of these coloring materials, the material can be pseudo-colored black, and the light shielding property can be improved.
  • a coloring material other than black means a compound that is colored by absorbing light having a wavelength of visible light. That is, it is a coloring material that is colored white, red, orange, yellow, green, blue, or purple, excluding the black color described above.
  • (C1) Pigment means a compound that colors an object by (C1) pigment being physically adsorbed on the surface of the object, or (C1) the pigment interacts with the surface of the object, Generally insoluble in solvents and the like.
  • (C1) Coloring with a pigment is highly concealed and has a characteristic that fading due to ultraviolet rays or the like is unlikely to occur. Therefore, by containing the (C1) pigment, the insulating layer can be colored with an excellent concealing property. In addition, the light shielding properties and weather resistance of the insulating layer can be improved.
  • the number average particle diameter of the (C1) pigment in the photosensitive resin composition is preferably 1 nm or more, more preferably 5 nm or more, and more preferably 10 nm or more.
  • the number average particle size of the (C1) pigment in the photosensitive resin composition is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 200 nm, from the viewpoint of pattern processability.
  • (C1) the number average particle size of the pigment is a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.) or a zeta potential / particle size / molecular weight measuring device (Zeta Sizer Nano ZS; Sysmex). (Made by Co., Ltd.), and measuring the laser scattering by the Brownian motion of the (C1) pigment in the photosensitive resin composition (dynamic light scattering method).
  • Examples of the pigment include organic pigments and inorganic pigments.
  • An organic pigment is preferable, and the transmission spectrum and absorption spectrum of the insulating layer can be easily adjusted to a desired range, such as transmitting or blocking light of a specific wavelength by changing the chemical structure or functional group conversion.
  • the organic pigment for example, anthraquinone pigments, quinacridone pigments, pyranthrone pigments, diketopyrrolopyrrole pigments, benzofuranone pigments, perylene pigments, condensed azo pigments, carbon black and the like are preferable.
  • the (C2) dye refers to a compound that colors the target object by chemical adsorption or strong interaction of a substituent such as an ionic group or a hydroxy group in the (C2) dye with the surface structure of the target object. Generally, it is soluble in a solvent or the like.
  • Coloring with a dye has a high coloring power and high color development efficiency because each molecule is adsorbed to an object.
  • C2 By including a dye, the color in the color system of the insulating layer The adjustment becomes easier.
  • Examples of (C2) dyes include direct dyes, reactive dyes, sulfur dyes, vat dyes, sulfur dyes, acid dyes, metal-containing dyes, metal-containing acid dyes, basic dyes, mordant dyes, acid mordant dyes, and disperse dyes. , Cationic dyes, fluorescent whitening dyes and the like. Two or more of these may be contained.
  • (C2) dyes include anthraquinone dyes, azo dyes, azine dyes, phthalocyanine dyes, methine dyes, oxazine dyes, quinoline dyes, indigo dyes, indigoid dyes, carbonium dyes, selenium. Dyes, perinone dyes, perylene dyes, triarylmethane dyes, xanthene dyes, and the like. (D) From the viewpoint of solubility in organic solvents and heat resistance, anthraquinone dyes, azo dyes, azine dyes, methine dyes, triarylmethane dyes, and xanthene dyes are preferred.
  • the content of the (C) coloring material in the photosensitive resin composition used in the present invention is (A) an alkali-soluble resin, (C) the coloring material, and a dispersion described later, from the viewpoints of light shielding properties, coloring properties, and toning properties. 15 parts by weight or more is preferable, 20 parts by weight or more is more preferable, 25 parts by weight or more is further preferable, and 30 parts by weight or more is more preferable with respect to 100 parts by weight of the total of the agent.
  • the content of (C) the coloring material is preferably 80 parts by weight or less, more preferably 75 parts by weight or less, further preferably 70 parts by weight or less, and further preferably 65 parts by weight or less from the viewpoint of sensitivity.
  • the content of the coloring material (C) in the solid content of the photosensitive resin composition is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of light shielding properties, colorability, and toning properties. 15% by weight or more is more preferable.
  • the content of the coloring material (C) in the solid content of the photosensitive resin composition is preferably 70% by weight or less, more preferably 65% by weight or less, and further preferably 60% by weight or less from the viewpoint of sensitivity.
  • the content of the (C1) pigment in the solid content of the photosensitive resin composition is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoints of light shielding properties, colorability and toning properties. More preferably by weight.
  • the content of the (C1) pigment in the solid content of the photosensitive resin composition is preferably 70% by weight or less, more preferably 65% by weight or less, and further preferably 60% by weight or less from the viewpoint of sensitivity.
  • the content of the (C2) dye in the solid content of the photosensitive resin composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, from the viewpoint of colorability and toning properties. More preferably, it is 0.1% by weight or more.
  • the content of the (C2) dye in the solid content of the photosensitive resin composition is preferably 50% by weight or less, more preferably 45% by weight or less, and more preferably 40% by weight or less from the viewpoint of heat resistance of the insulating layer. Further preferred.
  • organic solvent (D) examples include polar aprotic solvents such as ⁇ -butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, Diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol Mono-n-propyl ether, propylene glycol mono-n-buty Ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glyco
  • the content of the (D) organic solvent in the photosensitive resin composition can be appropriately selected depending on the coating method and the like. For example, when applied by spin coating, it is generally 50 to 95% by weight in the photosensitive resin composition.
  • the photosensitive resin composition used in the present invention can contain (E) a thermal crosslinking agent.
  • the thermal crosslinking agent refers to a compound having at least two thermally reactive functional groups in the molecule. Examples of the thermally reactive functional group include an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group. Two or more of these may be contained.
  • (E) By containing a thermal crosslinking agent, (A) alkali-soluble resin and other additive components can be crosslinked, and the heat resistance, chemical resistance and hardness of the cured film can be increased. Moreover, the amount of outgas from the cured film can be reduced, and the reliability of the organic EL display device can be improved.
  • thermal crosslinking agent having an alkoxymethyl group or a methylol group as a thermally reactive functional group examples include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, and DML-PCHP.
  • DML-OCHP DML-PFP, DML-PSBP, DML-POP
  • DML-MBOC DML-MBPC
  • DML-MTrisPC DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P
  • DMOM-PC DMOM-PTBP
  • DMOM-MBPC TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP , TMOM-BP, TMOM-B E, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.), “NIKACALAC (registered trademark) "MX-290”,
  • thermal crosslinking agent having an epoxy group as a thermally reactive functional group examples include, for example, Epolite 40E, Epolite 100E, Epolite 200E, Epolite 400E, Epolite 70P, Epolite 200P, Epolite 400P, Epolite 1500NP, Epolite 80MF, Epolite 4000, Epolite 3002 (manufactured by Kyoeisha Chemical Co., Ltd.), “Denacol (registered trademark)” EX-212L, “Denacol” EX-214L, “Denacol” EX-216L, “Denacol” EX-850L, “Denacol” EX-321L (Nagase ChemteX Co., Ltd.), GAN, GOT (Nippon Kayaku Co., Ltd.), “Epicoat (registered trademark)” 828, “Epicoat” 1002, “Epicoat” 1750, “Epicoat
  • thermal crosslinking agent having an oxetanyl group as a thermally reactive functional group examples include, for example, “Ethanacol (registered trademark)” EHO, “Ethanacol” OXBP, “Ethanacol” OXTP, “Ethanacol” OXMA (above, Ube Industries, Ltd.) Manufactured) and oxetaneated phenol novolac.
  • the content of the thermal crosslinking agent is not particularly limited.
  • a positive photosensitive resin composition it is preferably 1% by weight to 30% by weight in the solid content of the photosensitive resin composition.
  • the amount is preferably 0.1 parts by weight or more and 70 parts by weight or less with respect to 100 parts by weight in total of (A) the alkali-soluble resin and (G) the radical polymerizable compound.
  • the content of the thermal crosslinking agent is within the above range, the hardness and chemical resistance of the insulating layer can be improved.
  • the photosensitive resin composition used in the present invention preferably further contains (F) a dispersant.
  • the dispersant is a surface affinity group that interacts with the surface of the above-described (C1) pigment or (C2) disperse dye as a dye, and (C1) improves the dispersion stability of the pigment or disperse dye.
  • the dispersion stabilizing structure of the dispersant includes a polymer chain, a substituent having an electrostatic charge, and the like, and a dispersion effect due to expression of steric hindrance and electrostatic repulsion can be expected.
  • (F) By containing a dispersing agent, when the photosensitive resin composition contains (C1) a pigment or a disperse dye, their dispersion stability can be improved and resolution can be improved. In particular, in the case of particles in which (C1) pigment is crushed to a number average particle diameter of 1 ⁇ m or less, the surface area of (C1) pigment particles increases, and (C1) aggregation of pigment particles tends to occur. On the other hand, when (C1) the pigment is contained, the surface of the crushed (C1) pigment interacts with the surface affinity group of the (F) dispersant, and (F) the three-dimensional structure due to the dispersion stabilizing structure of the dispersant. The obstruction and / or electrostatic repulsion can inhibit the aggregation of (C1) pigment particles and improve the dispersion stability.
  • Examples of the dispersant include a dispersant having an amine value of 5 mgKOH / g or more, a dispersant having an acid value of 5 mgKOH / g or more, a dispersant having an amine value and an acid value of 5 mgKOH / g, amine value, and acid. Dispersants with a value of less than 5 mg KOH / g can be mentioned.
  • C1 From the viewpoint of improving the dispersion stability of the pigment particles, a dispersant having an amine value of 5 mgKOH / g or more is preferable.
  • the amine value of the dispersant is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, and even more preferably 10 mgKOH / g or more from the viewpoint of (C1) pigment dispersion stability.
  • the amine value of the (F) dispersant is preferably 150 mgKOH / g or less, more preferably 120 mgKOH / g or less, and still more preferably 100 mgKOH / g or less, from the viewpoint of the storage stability of the photosensitive resin composition.
  • the amine value here refers to the weight of potassium hydroxide equivalent to the acid reacting with 1 g of (F) dispersant, and the unit is mgKOH / g.
  • the amine value can be determined by titrating with an aqueous potassium hydroxide solution. From the amine value, the amine equivalent (unit: g / mol), which is the weight per 1 mol of amino groups, can be calculated, and the number of amino groups in the (F) dispersant can be determined.
  • the acid value of the dispersant is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, and even more preferably 10 mgKOH / g or more from the viewpoint of (C1) pigment dispersion stability.
  • the acid value of (F) dispersant is preferably 200 mgKOH / g or less, more preferably 170 mgKOH / g or less, and even more preferably 150 mgKOH / g or less, from the viewpoint of the storage stability of the photosensitive resin composition.
  • the acid value means the weight of potassium hydroxide that reacts with 1 g of (F) dispersant, and its unit is mgKOH / g.
  • the acid value can be determined by titrating 1 g of the dispersant with an aqueous potassium hydroxide solution. From the value of the acid value, the acid equivalent (unit: g / mol) which is the weight per 1 mol of the acidic group can be calculated, and the number of acidic groups in the (F) dispersant can be determined.
  • the dispersant has a structure in which an amino group and / or an acidic group which is a surface affinity group is salted with an acid and / or a base.
  • Examples of the dispersant having an amine value of 5 mgKOH / g or more and an acid value of 0 mgKOH / g include “DISPERBYK (registered trademark)”-108, -109, -160, -161, -162, and- 163, -164, -166, -167, -168, -168, -182, -184, -185, -2000, -2008, -2009, -2022, and -2050, -2055, -2150, -2155, -2163, -2164, -2061, "BYK (registered trademark)” -9075, -9077, -LP-N6919, -LP-N21116, -LP-N21324 (all of which are manufactured by Big Chemie Japan Co., Ltd.), "EFKA (registered trademark)” 4015, 4020, 4046, 4047, 4050, 4055, 4060, 4080, 4080, 4300, 4330, 4340
  • Examples of the dispersant having an amine value and an acid value of 5 mgKOH / g or more include “ANTI-TERRA (registered trademark)”-U100 or -204, “DISPERBYK (registered trademark)”-106, 142, -145, -180, -2001, -2013, -2020, -2025, -187 or -191, “BYK (registered trademark)” -9076 (Bicchemy Japan Co., Ltd.) ), “Azisper (registered trademark)” PB821, PB880, and PB881 (all of which are manufactured by Ajinomoto Fine Techno Co., Ltd.), “SOLPERSE (registered trademark)” 9000, 11200, 13650, 24000, and the like. 32000, 32500, 32500, 32600, 3300 , The 34,750, the 35100, the 35200, the 37500, the 39000, the 56000, the 76500 (all manufactured by Lubrizol) and
  • Examples of the dispersant having an amine value of 0 mg KOH / g and an acid value of 5 mg KOH / g or more include “DISPERBYK (registered trademark)”-102, -110, -111, -118, -170, and- 171, -174, -2060 or -2096, “BYK (registered trademark)” -P104, -P105, -220S (all of which are manufactured by Big Chemie Japan Co., Ltd.) or "SOLPERSE (registered trademark) ) "3000, 16000, 17000, 18000, 21000, 21000, 26000, 28000, 36000, 36600, 38500, 41000, 41090, 53090, 55000 (all are manufactured by Lubrizol) Is mentioned.
  • Examples of (F) dispersants having both an amine value and an acid value of 0 mg KOH / g include “DISPERBYK (registered trademark)”-103, -1522, -2200, and -192 (all of which are described above as Big Chemie ⁇ Japan Ltd.), “SOLSPERSE (registered trademark)” 27000, 54000, and X300 (all of which are manufactured by Lubrizol).
  • the (F) dispersant may be a dispersant having a polymer chain.
  • the dispersant having a polymer chain include an acrylic resin dispersant, a polyoxyalkylene ether dispersant, a polyester dispersant, a polyurethane dispersant, a polyol dispersant, a polyethyleneimine dispersant, or a polyallylamine dispersant. Is mentioned. From the viewpoint of pattern processability with an alkaline developer, acrylic resin dispersants, polyoxyalkylene ether dispersants, polyester dispersants, polyurethane dispersants, and polyol dispersants are preferred.
  • the (F) in the negative photosensitive resin composition used in the present invention contains a disperse dye as the (C1) pigment and / or (C2) dye
  • the (F) in the negative photosensitive resin composition used in the present invention (F )
  • the content of the dispersant is preferably at least 1 part by weight with respect to a total of 100 parts by weight of the (C1) pigment, the (C2) dye in the dye and the (F) dispersant. 5 parts by weight or more is more preferable, and 10 parts by weight or more is more preferable.
  • the content of the (F) dispersant is preferably 60 parts by weight or less, more preferably 55 parts by weight or less, and further preferably 50 parts by weight or less, from the viewpoint of heat resistance of the insulating layer.
  • the (G) radical polymerizable compound refers to a compound having two or more ethylenically unsaturated double bond groups in the molecule.
  • the (G) radical polymerizable compound By containing a radically polymerizable compound, UV hardening at the time of exposure can be accelerated
  • the crosslink density after thermosetting can be improved and the hardness of the insulating layer can be improved.
  • a compound having a (meth) acryl group which is easy to proceed with radical polymerization, is preferable. From the viewpoint of improving the sensitivity during exposure and improving the hardness of the cured film, a compound having two or more (meth) acryl groups in the molecule is more preferable.
  • the double bond equivalent to the radically polymerizable compound is preferably 80 to 400 g / mol from the viewpoint of improving the sensitivity during exposure and improving the hardness of the cured film.
  • Examples of the radically polymerizable compound (G) include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane di ( (Meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane di (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meta) ) Acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate 1,6-hexanediol di (
  • (G) Radical polymerizable compounds are trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, and ditrimethylolpropane tetra (meth) acrylate from the viewpoint of improving sensitivity during exposure and improving the hardness of the cured film.
  • (G) a radical polymerizable compound is used to improve the resolution after development between a compound having two or more glycidoxy groups and an unsaturated carboxylic acid having an ethylenically unsaturated double bond group.
  • a compound obtained by reacting a cycloaddition reaction product with a polybasic acid carboxylic acid or polybasic carboxylic acid anhydride is also preferred.
  • the content of the (G) radical polymerizable compound in the negative photosensitive resin composition used in the present invention is determined from the viewpoints of sensitivity and pattern shape of (A) the alkali-soluble resin and (G) the radical polymerizable compound. 15 parts by weight or more is preferable, 20 parts by weight or more is more preferable, 25 parts by weight or more is more preferable, and 30 parts by weight or more is more preferable with respect to the total content of 100 parts by weight.
  • the content of the (G) radical polymerizable compound is preferably 65 parts by weight or less, more preferably 60 parts by weight or less, still more preferably 55 parts by weight or less, and 50 parts by weight or less from the viewpoint of heat resistance of the insulating layer. Is more preferable.
  • the photosensitive resin composition used in the present invention may contain an adhesion improving agent.
  • an adhesion improver By containing an adhesion improver, the adhesion between the photosensitive resin composition film and a base substrate such as a silicon wafer, ITO, SiO 2 or silicon nitride can be enhanced. Further, resistance to oxygen plasma and UV ozone treatment used for cleaning or the like can be increased.
  • adhesion improvers examples include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and p-styryltrimethoxy.
  • Silane coupling agents such as silane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy
  • titanium chelating agents aluminum chelating agents
  • Examples include a reaction product with a group-containing silicon compound. Two or more of these may be contained.
  • the content of the adhesion improving agent is preferably 0.1 to 10% by weight in the solid content of the photosensitive resin composition.
  • the photosensitive resin composition used in the present invention may contain a surfactant as necessary. By containing the surfactant, the wettability between the photosensitive resin composition film and the substrate can be improved.
  • surfactants include SH series, SD series, ST series from Toray Dow Corning Co., Ltd., BYK series from Big Chemie Japan Co., Ltd., KP series from Shin-Etsu Chemical Co., Ltd., and NOF Corporation.
  • Silicone surfactants such as the Distortion Series, TSF Series of Momentive Performance Materials Japan GK, DIC Corporation's "MegaFac (R)” series, and Sumitomo 3M's Florard series Fluorosurfactants such as “Surflon (registered trademark)” series of Asahi Glass Co., Ltd., “Asahi Guard (registered trademark)” series, EF series of Shin-Akita Kasei Co., Ltd., Polyfox series of Omninova Solution, etc. , Kyoeisha Chemical Co., Ltd. Polyflow series, Enomoto Kasei Co., Ltd. Isuparon (registered trademark) "series and a surfactant comprising a polymer of (meth) acrylic compounds like. Two or more of these may be contained.
  • the content of the surfactant is preferably 0.001 to 1% by weight in the solid content of the photosensitive resin composition.
  • the positive photosensitive resin composition used in the present invention may contain a compound having a phenolic hydroxyl group, if necessary.
  • a photosensitive resin composition containing a compound having a phenolic hydroxyl group hardly dissolves in an alkaline developer before exposure, and easily dissolves in an alkaline developer upon exposure. It can be developed in time, and the sensitivity can be improved.
  • Examples of the compound having a phenolic hydroxyl group include Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ.
  • the content of the compound having a phenolic hydroxyl group is preferably 1 to 20% by weight in the solid content of the photosensitive resin composition.
  • the negative photosensitive resin composition used in the present invention may contain a sensitizer as necessary.
  • a sensitizer is a compound that absorbs energy from exposure, generates excited triplet electrons by internal conversion and intersystem crossing, and can undergo energy transfer to the photopolymerization initiator (b2) described above. Say. The sensitivity at the time of exposure can be improved by containing a sensitizer.
  • a thioxanthone sensitizer is preferable.
  • the thioxanthone sensitizer include thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, or 2,4-dichlorothioxanthone. . Two or more of these may be contained.
  • the content of the sensitizer in the negative photosensitive resin composition used in the present invention is 100 parts by weight in total of the contents of (A) the alkali-soluble resin and (G) the radical polymerizable compound from the viewpoint of sensitivity.
  • the amount is preferably 1 part by weight or more.
  • the content of the sensitizer is preferably 8 parts by weight or less from the viewpoint of resolution and pattern shape.
  • the negative photosensitive resin composition used in the present invention may contain a chain transfer agent as necessary.
  • the chain transfer agent refers to a compound that can receive a radical from a polymer growth end of a polymer chain obtained by radical polymerization at the time of exposure and can undergo radical transfer to another polymer chain.
  • a chain transfer agent By containing a chain transfer agent, the sensitivity during exposure can be improved. This is presumed to be because radicals generated by exposure undergo radical crosslinking to the deep part of the film by radical transfer to other polymer chains by the chain transfer agent.
  • the photosensitive resin composition contains the (Ca) black agent as the (C) coloring material described above
  • the light from the exposure is absorbed by the (Ca) black agent, so that the light reaches the deep part of the film.
  • radical crosslinking is carried out to the deep part of the film by radical transfer by the chain transfer agent, so that the sensitivity during exposure can be improved.
  • a low taper pattern shape can be obtained by containing a chain transfer agent. This is presumed to be because the molecular weight of the polymer chain obtained by radical polymerization at the time of exposure can be controlled by radical transfer by a chain transfer agent.
  • a thiol chain transfer agent As the chain transfer agent, a thiol chain transfer agent is preferable.
  • the thiol chain transfer agent include ⁇ -mercaptopropionic acid, methyl ⁇ -mercaptopropionate, ethyl ⁇ -mercaptopropionate, 2-ethylhexyl ⁇ -mercaptopropionate, n-octyl ⁇ -mercaptopropionate, ⁇ - Methoxybutyl mercaptopropionate, stearyl ⁇ -mercaptopropionate, isononyl ⁇ -mercaptopropionate, ⁇ -mercaptobutanoic acid, methyl ⁇ -mercaptobutanoate, ethyl ⁇ -mercaptobutanoate, 2-ethylhexyl ⁇ -mercaptobutanoate, ⁇ -N-octyl mercaptobutanoate, methoxybutyl ⁇ -mercaptobut
  • the chain transfer agent is 1,4-bis (3-mercaptobutanoyloxy) butane, 1,4-bis (3-mercaptopropionyloxy) butane, 1 from the viewpoint of improving sensitivity during exposure and a low taper pattern shape.
  • the content of the chain transfer agent in the negative photosensitive resin composition used in the present invention is the sum of the contents of (A) the alkali-soluble resin and (G) the radical polymerizable compound from the viewpoint of sensitivity and pattern shape. 1 part by weight or more is preferable with respect to 100 parts by weight. On the other hand, the content of the chain transfer agent is preferably 8 parts by weight or less from the viewpoint of resolution and heat resistance of the insulating layer.
  • the negative photosensitive resin composition used in the present invention may contain a polymerization inhibitor as necessary.
  • a polymerization inhibitor can stop radical polymerization by capturing radicals generated during exposure or radicals at the polymer growth end of the polymer chain obtained by radical polymerization during exposure and holding them as stable radicals. A possible compound. By containing a polymerization inhibitor, generation of residues after development can be suppressed and resolution after development can be improved.
  • a phenol polymerization inhibitor is preferable.
  • phenol polymerization inhibitors include 4-methoxyphenol, 1,4-hydroquinone, 1,4-benzoquinone, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 4 -T-butylcatechol, 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-1,4-hydroquinone, 2,5-di-t-amyl-1,4 -Hydroquinone or "IRGANOX (registered trademark)" 1010, 1035, 1076, 1098, 1135, 1330, 1726, 1425, 1520, 245, 259, 3114, 565, 295 (All of which are manufactured by BASF). Two or more of these may be contained.
  • the content of the polymerization inhibitor in the negative photosensitive resin composition used in the present invention is the content of (A) an alkali-soluble resin and (G) a radical polymerizable compound from the viewpoint of resolution and heat resistance of the insulating layer. 0.1 parts by weight or more is preferable with respect to the total amount of 100 parts by weight. On the other hand, the content of the polymerization inhibitor is preferably 3 parts by weight or less from the viewpoint of sensitivity.
  • the photosensitive resin composition used in the present invention may further contain other resins.
  • other resins include polyamide, polyamideimide, epoxy resin, novolac resin, urea resin, polyurethane, and precursors thereof.
  • the photosensitive resin composition used in the present invention may contain a thermal acid generator as long as the reliability of the organic EL display device is not impaired.
  • the thermal acid generator generates an acid by heating and promotes the crosslinking reaction of the thermal crosslinking agent.
  • the thermal decomposition starting temperature of the thermal acid generator used in the present invention is preferably 50 ° C. to 270 ° C., more preferably 250 ° C. or less.
  • no acid is generated during drying (pre-baking: about 70 to 140 ° C.) after the photosensitive resin composition used in the present invention is applied to a substrate, and then heat treatment (cure: patterning by exposure and development). It is preferable to select one that generates an acid at about 100 to 400 ° C., since it can suppress a decrease in sensitivity during development.
  • the acid generated from the thermal acid generator used in the present invention is preferably a strong acid.
  • a strong acid for example, p-toluenesulfonic acid, arylsulfonic acid such as benzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid
  • Alkyl sulfonic acids such as haloalkyl sulfonic acids such as trifluoromethyl sulfonic acid are preferred.
  • salts such as onium salts or as covalently bonded compounds such as imidosulfonates. Two or more of these may be contained.
  • the content of the thermal acid generator used in the present invention is preferably 0.1% by weight or more in the solid content of the photosensitive resin composition from the viewpoint of the mechanical properties and chemical resistance of the insulating layer.
  • the content of the thermal acid generator is preferably 3% by weight or less from the viewpoint of electrical insulation of the insulating layer.
  • the organic EL display device of the present invention preferably further has an ultraviolet absorbing layer, and can improve reliability.
  • the ultraviolet absorbing layer is preferably a layer that absorbs light having a wavelength of 320 nm or less, more preferably a layer that absorbs light having a wavelength of 360 nm or less, and even more preferably a layer that absorbs light having a wavelength of 420 nm or less.
  • the ultraviolet absorbing layer preferably has a high transmittance in a region having a wavelength of 420 nm or more. This is particularly effective when the organic EL display device of the present invention is used outdoors.
  • UV absorbing layer is polyimide resin, polyamide resin, polyamideimide resin, polycarbonate resin, polyester resin, polyethersulfone resin, polyarylate resin, polyolefin resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polysulfone resin, polyethylene resin, polychlorinated resin It is preferable to contain a resin such as a vinyl resin, an alicyclic olefin polymer resin, an acrylic polymer resin, or a cellulose ester resin. Two or more of these may be contained. Among these, a polyimide resin and a polyamide resin are preferable.
  • the ultraviolet absorbing layer may contain an ultraviolet absorber.
  • UV absorbers include benzophenone compounds, oxybenzophenone compounds, benzotriazole compounds, salicylate compounds, salicylic acid ester compounds, acrylonitrile compounds, cyanoacrylate compounds, hindered amine compounds, triazine compounds, nickel complex salts. Examples thereof include ultrafine particles of titanium oxide, metal complex compounds, and other polymer ultraviolet absorbers. Two or more of these may be contained.
  • the ultraviolet absorbing layer is preferably a benzotriazole compound or a benzophenone compound that is excellent in transparency, and more preferably a benzotriazole compound.
  • benzotriazole compounds examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -5-chlorobenzo Triazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1 , 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2′-hydroxy-3 -Tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2-
  • TINUVIN registered trademark
  • TINUVIN 171 TINUVIN 326
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, and bis (2-methoxy-4-hydroxy-). 5-benzoylphenylmethane). Two or more of these may be contained.
  • Examples of the polymeric ultraviolet absorber include a reactive ultraviolet absorber RUVA-93 manufactured by Otsuka Chemical Co., Ltd.
  • the organic EL display device of the present invention preferably further has a substrate.
  • the substrate include glass, a film, and the like that can form electrodes, insulating layers, and organic EL layers.
  • the substrate preferably has high gas barrier properties in order to suppress deterioration of the organic EL layer. In the case of the bottom emission method, it is preferable that the substrate has high transparency.
  • an organic EL display device having a polarizing layer may be mentioned.
  • the polarizing layer for example, a film obtained by dyeing a polyvinyl alcohol film with iodine and stretching it uniaxially is often used. By having the polarizing layer, external light reflection can be suppressed.
  • the polarizing layer since the emitted light from the organic EL layer is partially blocked by the polarizing layer and only the transmitted polarized light is output to the outside, the luminance of the organic EL display device tends to decrease.
  • the polarizing layer since the polarizing layer is provided, it is difficult to reduce the thickness, weight, and flexibility of the display device.
  • the polarizing layer is not included in the present invention.
  • the organic EL display device of the present invention can reduce external light reflection without using a polarizing layer, and can improve the luminance of the organic EL display device as compared with the case of using a polarizing layer.
  • the organic EL display device of the present invention When the organic EL display device of the present invention is an active matrix type, it has a TFT (Thin Film Transistor) in the substrate.
  • the organic EL display device of the present invention can protect a TFT having a black insulating layer by shielding it from light.
  • a TFT using an oxide semiconductor containing In, Ga, Sn, Ti, Nb, Sb and / or Zn changes in threshold voltage due to external light or light emitted from an organic EL layer, suppression of deterioration, etc. This makes it possible to stabilize the characteristics and improve the reliability.
  • the same effect can be obtained by blackening the planarization layer formed so as to cover the TFT layer.
  • ⁇ Method for producing photosensitive resin composition The typical manufacturing method of the photosensitive resin composition used for this invention is demonstrated.
  • a pigment is contained as a coloring material (C)
  • (F) a dispersant is added to a solution of (A) an alkali-soluble resin and (D) an organic solvent, and this mixture solution is added to the mixed solution using a disperser.
  • (C1) It is preferable to prepare a pigment dispersion by dispersing the pigment.
  • the photosensitive resin composition is obtained by filtering the obtained solution after stirring.
  • the disperser examples include a ball mill, a bead mill, a sand grinder, a three-roll mill, and a high-speed impact mill.
  • the disperser is preferably a bead mill from the viewpoint of dispersion efficiency and fine dispersion.
  • examples of the bead mill include a coball mill, a basket mill, a pin mill, and a dyno mill.
  • examples of beads of the bead mill include titania beads, zirconia beads, and zircon beads.
  • the bead diameter of the bead mill is preferably 0.01 to 6 mm, more preferably 0.015 to 5 mm, and further preferably 0.03 to 3 mm.
  • (C1) When the primary particle size of the pigment and the secondary particles formed by aggregation of the primary particles are several hundred nm or less, fine beads having a bead size of 0.015 to 0.1 mm are preferred. In this case, a bead mill having a centrifugal separator capable of separating fine beads and pigment dispersion is preferable. On the other hand, when the (C1) pigment contains coarse particles of several hundred nm or more, beads having a bead diameter of 0.1 to 6 mm are preferable from the viewpoint of increasing dispersion efficiency.
  • a transparent electrode is selected for the bottom emission method
  • a non-transparent electrode is selected for the top emission method.
  • the electrode forming method include a method of patterning after forming a material for forming the first electrode.
  • the film forming method include sputtering, vapor deposition, CVD, spin coating, slit coating, dip coating, spray coating, and printing, and an appropriate method corresponding to the material should be selected. Can do.
  • the pattern processing method include an etching method using a shadow mask or a photomask. In general, a film is formed by a sputtering method, and pattern processing is performed by an etching method using a photoresist.
  • an insulating layer on the first electrode. It is preferable to apply the photosensitive resin composition described above to a substrate having a first electrode to obtain a coating film of the photosensitive resin composition. Examples of the coating method include spin coating, slit coating, dip coating, spray coating, and printing. Prior to application, the substrate to which the photosensitive resin composition is applied may be pretreated with an adhesion improving agent in advance.
  • a method of treating the substrate surface examples include spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment. After application, it is preferably dried under reduced pressure as necessary, and then heated in the range of 50 ° C. to 180 ° C. for 1 minute to several hours using a hot plate, oven, infrared rays, or the like.
  • a pattern from the obtained photosensitive resin film it is preferable to form a pattern from the obtained photosensitive resin film. It is preferable to irradiate actinic radiation through a mask having a desired pattern on the photosensitive resin film.
  • actinic radiation used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays.
  • a developer examples include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol.
  • An aqueous solution of an alkaline compound such as dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine is preferred.
  • polar solutions such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, Alcohols such as ethanol and isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added.
  • Examples of the developing method include spraying, paddle, dipping, and ultrasonic methods.
  • rinsing treatment may be performed by adding alcohols such as ethanol and isopropyl alcohol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate to pure water.
  • the bleaching process it is preferable to perform a bleaching process.
  • the quinonediazide compound is changed to indenecarboxylic acid by bleaching treatment, and the formation of an acid anhydride can be suppressed.
  • the bleaching treatment it is preferable to irradiate actinic rays such as ultraviolet rays, visible rays, electron beams, and X-rays.
  • mercury rays i rays (365 nm), h rays (405 nm) or g rays (436 nm) are emitted by 10 It is preferable to irradiate about ⁇ 10,000 mJ / cm 2 .
  • the alkali-soluble resin includes a polyimide precursor, a polybenzoxazole precursor, a copolymer thereof, or a copolymer of these and a polyimide
  • an imide ring or an oxazole ring is formed by heat treatment. Therefore, the heat resistance and chemical resistance of the insulating layer can be improved.
  • a thermal crosslinking agent is included, a thermal crosslinking reaction can be advanced by heat processing, and the heat resistance and chemical resistance of an insulating layer can be improved.
  • This heat treatment is preferably carried out for 5 minutes to 5 hours while selecting the temperature and raising the temperature stepwise, or selecting a certain temperature range and continuously raising the temperature.
  • a method of performing heat treatment at 150 ° C. and 250 ° C. for 30 minutes each, a method of linearly raising the temperature from room temperature to 300 ° C. over 2 hours, and the like can be mentioned.
  • the heat treatment temperature is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher.
  • the heat treatment temperature is preferably 400 ° C. or lower, and more preferably 350 ° C. or lower.
  • a typical mask vapor deposition method is a method in which an organic compound is vapor-deposited using a vapor deposition mask and patterned, and a method of performing vapor deposition by arranging a vapor deposition mask having a desired pattern as an opening on the vapor deposition source side of the substrate is mentioned. It is done. In order to obtain a highly accurate vapor deposition pattern, it is preferable to adhere a vapor deposition mask with high flatness to the substrate. Generally, the vapor deposition mask is mounted on the substrate by a technique for applying tension to the vapor deposition mask or a magnet disposed on the back of the substrate.
  • a technique for closely contacting the surface is used.
  • the method for producing a vapor deposition mask include an etching method, mechanical polishing, a sand blast method, a sintering method, a laser processing method, and the use of a photosensitive resin. If a fine pattern is required, the processing accuracy is excellent. In many cases, an etching method or an electroforming method is used.
  • a non-transparent electrode is selected for the bottom emission method, and a transparent electrode is selected for the top emission method. From the viewpoint of reducing damage to the organic EL layer, it is preferable to form the second electrode by a mask vapor deposition method using a vapor deposition mask.
  • the range called the light emitting pixel in the organic EL display device is a range regulated by a portion where the first electrode and the second electrode arranged to face each other intersect and overlap each other, and further by an insulating layer on the first electrode.
  • the portion where the switching means is formed may be arranged so as to occupy a part of the luminescent pixel, and the shape of the luminescent pixel is not rectangular but may be a part of which is missing. Good.
  • the shape of the light emitting pixel is not limited to these, and may be circular, for example, and can be easily changed depending on the shape of the insulating layer.
  • the organic EL layer is preferably not exposed to oxygen or moisture, and it is preferable to adhere a glass or metal sealing can or a gas barrier film in a vacuum or an absolutely dry atmosphere. At the same time, it is possible to enclose a desiccant or a hygroscopic agent.
  • An organic EL layer having emission peak wavelengths in the red, green, and blue regions, or an organic EL layer that emits white light on the entire surface and used in combination with a separate color filter is called a color display.
  • the peak wavelength of light displayed in the red region is usually in the range of 560 to 700 nm
  • the green region is in the range of 500 to 560 nm
  • the blue region is in the range of 420 to 500 nm.
  • the film thickness of the electrode and insulating layer in each Example and Comparative Example was measured using a surface roughness measuring machine (Surfcom 1400D; manufactured by Tokyo Seimitsu Co., Ltd.).
  • the thickness of the film contained in the ultraviolet absorbing plate or the circularly polarizing plate was measured using a dial gauge (manufactured by PEACOCK, product name “DG-205 type pds-2”).
  • a metal layer of 100 nm was formed on a 38 mm ⁇ 46 mm non-alkali glass substrate by a sputtering method using a magnetron sputtering apparatus (SH-450; manufactured by ULVAC, Inc.).
  • SH-450 magnetron sputtering apparatus
  • the film composition was changed as shown in Table 1, and the film composition was confirmed by ICP-AES method (inductively coupled plasma analysis).
  • An ITO transparent conductive film 10 nm was further formed on the metal layer to obtain non-transparent electrodes 1 to 13.
  • the photosensitive resin compositions 1 to 8 obtained in Preparation Examples 7 to 14 were applied to a 38 mm ⁇ 46 mm non-alkali glass substrate by a spin coat method so that the film thickness after curing was 1.0 ⁇ m. Pre-baked for 2 minutes on a hot plate at 0 ° C. This film was exposed to UV through a photomask and then developed with a 2.38 wt% TMAH aqueous solution to dissolve unnecessary portions and rinsed with pure water to obtain a resin pattern. The obtained resin pattern was cured for 60 minutes at 250 ° C.
  • insulating layers 1 to 8 each having a square shape with a side of 16 mm were formed at the center of the substrate.
  • OD value log 10 (I 0 / I) (1)
  • the reflectance (including specular reflection light) of the surface of the organic EL display device is measured using a spectrocolorimeter (CM-2002; manufactured by Konica Minolta Co., Ltd.). The value at a wavelength of 550 nm of the SCI method) was measured. The smaller the reflectance, the more preferable it is because the reflection of external light can be suppressed.
  • FIG. 10 A schematic diagram of the dark luminance evaluation environment of the organic EL display device is shown in FIG.
  • the apparatus 10 was arranged so that the fluorescent lamp 11 and the spectral radiance meter (CS-1000; manufactured by Konica Minolta Co., Ltd.) 12 face each other with the reflecting surface as a reflection surface. Using the spectral radiance meter 12, the luminance of the surface of the organic EL display device 10 in this environment was measured to obtain dark luminance.
  • CS-1000 spectral radiance meter
  • the organic EL display device 10 obtained by each of the examples and the comparative examples is caused to emit light by 0.625 mA DC drive, and an organic EL display is performed using the spectral radiance meter 12.
  • the brightness and chromaticity of the surface of the apparatus 10 were measured.
  • Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound 18.3 g (0.05 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF) was added to 100 mL of acetone / 17.4 g of propylene oxide ( 0.3 mol) in a mixed solvent and cooled to ⁇ 15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was reacted at ⁇ 15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
  • BAHF 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • a white solid was placed in a 300 mL stainless steel autoclave, dispersed in 250 mL of methyl cellosolve, and 2 g of a palladium carbon catalyst (palladium 5 wt%) was added. Hydrogen was introduced here with a balloon and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated by confirming that the balloons did not squeeze any more. After completion of the reaction, the palladium compound as a catalyst was removed by filtration and concentrated with a rotary evaporator to obtain a hydroxyl group-containing diamine compound represented by the following formula.
  • Synthesis Example 2 Synthesis of Alkali-Soluble Resin (A-1) 31.0 g (0.10 mol) of bis (3,4-dicarboxyphenyl) ether dianhydride (ODPA) was added to N-methyl-2 under a dry nitrogen stream. -Dissolved in 500 g of pyrrolidone (NMP). Here, 45.35 g (0.075 mol) of the hydroxyl group-containing diamine compound obtained in Synthesis Example 1 and 1.24 g (0.005 mol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (SiDA) were obtained. ) was added together with 50 g of NMP, reacted at 20 ° C.
  • A-1 Alkali-Soluble Resin
  • Synthesis Example 4 Synthesis of Alkali-Soluble Resin (PI-1) In a three-necked flask under a dry nitrogen stream, 31.13 g (0.085 mol) of BAHF, 6.21 g (0.0050 mol) of SiDA, and 3-aminophenol as an end-capping agent; 2.18 g (0.020 mol) of metaaminophenol (MAP) and 150.00 g of NMP were weighed and dissolved. A solution prepared by dissolving 31.02 g (0.10 mol) of ODPA in 50.00 g of NMP was added thereto, and the mixture was stirred at 20 ° C. for 1 hour, and then stirred at 50 ° C. for 4 hours.
  • PI-1 Alkali-Soluble Resin
  • Synthesis Example 5 Synthesis of Alkali-Soluble Resin (PIP-1) Under a dry nitrogen stream, 31.02 g (0.10 mol) of ODPA and 150 g of NMP were weighed and dissolved in a three-necked flask. A solution prepared by dissolving 25.64 g (0.070 mol) of BAHF and 6.21 g (0.0050 mol) of SiDA in 50 g of NMP was added thereto, followed by stirring at 20 ° C. for 1 hour and then at 50 ° C. for 2 hours. Next, a solution prepared by dissolving 5.46 g (0.050 mol) of MAP in 15 g of NMP was added as a terminal blocking agent, and the mixture was stirred at 50 ° C.
  • PIP-1 Alkali-Soluble Resin
  • Synthesis Example 8 Synthesis of alkali-soluble resin (NV-1) In a three-necked flask equipped with a reflux condenser and a thermometer, 94 g (1.0 mol) of phenol was weighed, 176 g (0.8 mol) of zinc acetate as a catalyst, Hydrochloric acid 70 mL (0.84 mol) was added and stirred at 95 ° C. until the solution became homogeneous. Thereafter, about 37% by weight of formalin 81 g (1.0 mol as formaldehyde) was added, and the mixture was stirred at 95 ° C. for 11 hours. The product after stirring was dissolved in acetone, reprecipitated twice with distilled water and dried to obtain an alkali-soluble resin (NV-1) which is a novolak resin.
  • Synthesis Example 9 Synthesis of Alkali-Soluble Resin (PHS-1) 310 mL of a tetrahydrofuran solution in which 1.5 mol of potassium t-butoxy was dissolved was stirred and cooled to 5 ° C. with ice cooling, and 50 g (0.31 mol) of paraacetoxystyrene was cooled. Was added dropwise over 30 minutes while maintaining the reaction system at 20 ° C. or lower, and then maintained for another 30 minutes to prepare a tetrahydrofuran solution of potassium paravinyl phenolate colored yellowish yellow. The obtained solution was cooled with ice water, and while maintaining the temperature at 20 ° C.
  • PHS-1 Alkali-Soluble Resin
  • a 2-liter flask was charged with 1200 mL of tetrahydrofuran as a solvent and 5.0 ⁇ 10 ⁇ 3 mol of n-butyllithium as a polymerization initiator, cooled to ⁇ 78 ° C., and then synthesized pt-butoxycarbonyloxystyrene.
  • 60 g of monomer dissolved in 50 mL of tetrahydrofuran and cooled to ⁇ 78 ° C.
  • the living polymerization reaction was carried out for 1 hour, the solution turned red.
  • the reaction was stopped by adding methanol to the reaction solution to terminate the living polymerization reaction.
  • the obtained reaction mixture was poured into methanol to precipitate a polymer, and separated and dried to obtain 60 g of a white polymer.
  • 1 H-NMR and IR of the obtained polymer were measured.
  • the polymer was found to be poly (pt-butoxycarbonyl) in which the active end did not react with the pt-butoxycarbonyloxy group.
  • the number average molecular weight measured by the membrane osmotic pressure measurement method was 10,000 g / mol.
  • the obtained polymer was monodisperse poly (p-hydroxystyrene).
  • the number average molecular weight by the membrane osmotic pressure measuring method of the obtained polymer was 6000 g / mol.
  • Preparation Example 1 Preparation of Pigment Dispersion (Bk-1) 138.0 g of a 30% by weight MBA solution of alkali-soluble resin (PI-1) obtained in Synthesis Example 4, “SOLPERSE (registered trademark)” 20000 (Lublizol) Manufactured; polyether dispersant (S-20000) 13.8 g, MBA 685.4 g, “IRGAPHOR (registered trademark)” BLACK S0100CF (benzofuranone-based black pigment having a primary particle size of 40 to 80 nm, manufactured by BASF) (Bk-S0100CF) 82.8 g was weighed and mixed, and stirred for 20 minutes using a high-speed disperser (Homodisper 2.5 type; manufactured by Primix Co., Ltd.) to obtain a preliminary dispersion.
  • PI-1 alkali-soluble resin obtained in Synthesis Example 4
  • SOLPERSE registered trademark
  • S-20000 13.8 g
  • MBA 685.4 g IRGAPHOR (registered
  • the obtained spare was prepared in an ultra apex mill (UAM-015; manufactured by Kotobuki Industries Co., Ltd.) equipped with a centrifugal separator filled with 75% of 0.30 mm ⁇ zirconia pulverized balls (YTZ; manufactured by Tosoh Corporation).
  • Bk-1) was obtained.
  • the number average particle diameter of the pigment in the obtained pigment dispersion was 100 nm.
  • Preparation Examples 2 to 6 Preparation of Pigment Dispersion Liquid (Bk-2) to Pigment Dispersion Liquid (Bk-6)
  • Table 3 shows the types and contents of (C) coloring materials, (A) alkali-soluble resins, and (F) dispersants.
  • a pigment dispersion (Bk-2) to a pigment dispersion (Bk-6) were obtained in the same manner as in Preparation Example 1, except that the changes were made as described in 1.
  • Table 3 summarizes the compositions of Preparation Examples 1 to 6 and the number average particle diameter of the pigment.
  • Preparation Examples 8 to 13 A photosensitive resin was prepared in the same manner as in Preparation Example 7, except that the types of pigment dispersion, (A) alkali-soluble resin, (B) photosensitizer, and (G) radical polymerizable compound were changed as shown in Table 4. Compositions 2-7 were prepared. The compositions of Preparation Examples 8 to 13 are summarized in Table 4.
  • Preparation Example 14 Preparation of Photosensitive Resin Composition 8 10.0 g of the alkali-soluble resin (A-1) obtained in Synthesis Example 2 and 1.2 g of the photosensitizer (B-1) obtained in Synthesis Example 3 were mixed with propylene. After dissolving in a mixed solvent of 32.0 g of glycol monomethyl ether (PGME) and 8.0 g of ⁇ -butyrolactone (GBL), a 0.2 ⁇ m polytetrafluoroethylene filter (manufactured by Sumitomo Electric Industries, Ltd.) was used. Filtration was performed to obtain a photosensitive resin composition 8.
  • PGME glycol monomethyl ether
  • GBL ⁇ -butyrolactone
  • an aqueous cesium carbonate solution was continuously supplied as a catalyst at a ratio of 0.5 ⁇ mol (as a metal amount, 1.0 ⁇ mol per 1 mol of BPA) with respect to 1 mol of BPA.
  • the reaction liquid discharged from the bottom of the reactor is successively and continuously supplied to the second and third vertical stirring reactors (capacity 10 m 3 ) and the fourth horizontal reactor (capacity 15 m 3 ). It was extracted from the polymer outlet at the bottom of the vessel.
  • the fourth reactor a biaxial horizontal reactor was used.
  • the peripheral speed of the stirring shaft of this fourth polymerization tank was 8.8 cm / s, and the diameter of the stirring shaft was 560 mm.
  • the reaction conditions in the second to fourth reactors are the second reactor (260 ° C., 4.00 ⁇ 103 Pa, 75 rpm), the third reactor (270 ° C., 200 Pa, 75 rpm), the fourth reactor (280 ° C., 67 Pa, 4 rpm), and with the progress of the reaction, high temperature and high vacuum were set.
  • the liquid level was controlled so that the average residence time of the second and third reactors was 60 minutes and the average residence time of the fourth reactor was 90 minutes. Distillation was also performed.
  • the viscosity average molecular weight (Mv) of the reaction solution at the outlet of the fourth reactor was 21,000, and the melt viscosity at 280 ° C. was about 1000 Pa ⁇ s.
  • a commercially available leaf disk polymer filter manufactured by Nippon Pole Co., Ltd., metal nonwoven fabric type with an absolute filtration accuracy of 20 ⁇ m (material: SUS316L) was used.
  • the obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single screw extruder (manufactured by Isuzu Chemical Industries, Ltd., screw diameter 25 mm, cylinder set temperature: 220 ° C.), T die (width 200 mm, set temperature) : 220 ° C.), a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder, to prepare a polycarbonate resin film having a thickness of 100 ⁇ m.
  • the retardation film on which the easy-adhesion layer is formed is placed on one side of a polarizer used for a commercially available polarizing plate (manufactured by Nitto Denko Corporation, product name “CVS1775SDUHC”). Thus, it bonded together through the PVA-type adhesive agent. At that time, the retardation film was bonded so that the slow axis of the retardation film and the absorption axis of the polarizer formed an angle of 45 °.
  • a saponified TAC film manufactured by Fuji Photo Film Co., Ltd., trade name: Fuji Tac UV80
  • Fuji Tac UV80 Fuji Tac UV80
  • a resin composition containing 0.1% by weight of SiO 2 particles having an average particle diameter of 0.25 ⁇ m as an additive in polyethylene terephthalate (PET) (inherent viscosity [ ⁇ ] 0.65) has a water content of 50 ppm or less.
  • PET polyethylene terephthalate
  • the mixture was supplied to an extruder and melted at 280 ° C., and then filtered through a 10 ⁇ m cut fiber-sintered metal filter, introduced into the die, and the molten film was extruded. While applying an electrostatic charge from the wire electrode to the molten film, the molten film was brought into close contact with the cooling roll and cooled to obtain an extruded film.
  • the obtained extruded film was preheated at a preheating temperature of 80 ° C., stretched 3.0 times at a stretching temperature of 90 ° C. using a roll-type longitudinal stretching machine, and then cooled to a glass transition temperature or lower. Subsequently, both ends of the obtained stretched film in the longitudinal direction are guided to a tenter while being gripped by clips, stretched 3.5 times in the width direction in a hot air atmosphere heated to a stretching temperature of 105 ° C., and then heated at 235 ° C. Fixed.
  • the film forming speed was 50 m / min, and the thickness of the obtained stretched film was 100 ⁇ m.
  • an aromatic polyamide solution is applied onto a stainless steel plate using an applicator, dried under conditions of hot air temperature of 120 ° C. and support temperature of 150 ° C. until the film has self-supporting property, and then the gel film is removed from the stainless steel plate. It peeled.
  • the gel film was fixed to a metal frame, and the remaining solvent was extracted with water in a water bath having a water temperature of 80 ° C. After the water extraction, the moisture on both surfaces of the water-containing film was wiped off with gauze, and heat treated in an oven at 250 ° C. while being fixed to the metal frame, to obtain an ultraviolet absorbing plate C having a thickness of 75 ⁇ m.
  • a synthesized varnish was spin-coated on a glass substrate (AN100 (Asahi Glass Co., Ltd.)) having a thickness of 300 mm ⁇ 400 mm ⁇ 0.7 mm so that the thickness after prebaking at 140 ° C. for 4 minutes was 50 ⁇ m. Then, the prebaking process for 140 degreeC x 4 minutes was performed using the hotplate.
  • AN100 Aligni Glass Co., Ltd.
  • the pre-baked coating film is placed in an inert oven, heated to 300 ° C. at a heating rate of 3.5 ° C./min under a nitrogen stream (oxygen concentration of 20 ppm or less), held at 300 ° C. for 30 minutes, and kept at 5 ° C.
  • the polyimide resin film (on the glass substrate) was produced by cooling to 50 ° C. at a temperature lowering rate of / min.
  • a UV absorber represented by the following structural formula
  • IRGANOX 1010 manufactured by Ciba Specialty Chemicals
  • GSY-P101 ⁇ Chemical Industry Co., Ltd.
  • B stabilizer represented by the following structural formula
  • C plasticizer represented by the following structural formula
  • the transmittance of the obtained ultraviolet absorbing plates A to E was measured.
  • the measurement results are shown in FIG.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents transmittance (%).
  • Examples 1 to 20 and Comparative Examples 1 to 22 An outline of a manufacturing procedure of the organic EL display device will be described with reference to FIGS. 5A to 5D.
  • a non-transparent electrode metal layer composition is shown in Table 1
  • 100 nm and ITO transparent conductive film 10 nm shown in Table 5 were formed on the entire surface of the substrate by sputtering.
  • Etching was performed as an electrode (non-transparent electrode) 6.
  • the ITO transparent conductive film was not formed only in Example 18 and Comparative Example 17.
  • an auxiliary electrode 9 for taking out the second electrode 7 was also formed (FIG. 5A).
  • the obtained substrate was subjected to ultrasonic cleaning with Semico Clean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 10 minutes, and then washed with ultrapure water.
  • the photosensitive resin composition shown in Table 5 was applied to the entire surface of the substrate by spin coating, and prebaked on a hot plate at 120 ° C. for 2 minutes.
  • This film was exposed to UV through a photomask and then developed with a 2.38 wt% TMAH aqueous solution to dissolve unnecessary portions and rinsed with pure water.
  • the obtained resin pattern was cured for 60 minutes at 250 ° C. in a nitrogen atmosphere using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo System Co., Ltd.).
  • the openings having a width of 70 ⁇ m and a length of 260 ⁇ m are arranged with a pitch of 155 ⁇ m in the width direction and a pitch of 465 ⁇ m in the length direction, and the insulating layer 3 having a shape in which each opening exposes the first electrode 6, It was limited to the substrate effective area (FIG. 5B).
  • the insulating layer 3 having an insulating layer aperture ratio of 25% was formed in the substrate effective area (display area) having a square of 16 mm on one side.
  • the thickness of the insulating layer 3 was about 1.0 ⁇ m.
  • an organic EL layer 4 including a light emitting layer was formed by a vacuum deposition method (FIG. 5C).
  • the degree of vacuum at the time of vapor deposition was 1 ⁇ 10 ⁇ 3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during the vapor deposition.
  • 10 nm of the compound (HT-1) was deposited as a hole injection layer, and 50 nm of the compound (HT-2) was deposited as a hole transport layer.
  • a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited on the light emitting layer in a thickness of 40 nm so that the doping concentration was 10%.
  • the compound (ET-1) and the compound (LiQ) as an electron transporting material were laminated at a volume ratio of 1: 1 to a thickness of 40 nm.
  • the structure of the compound used in the organic EL layer is shown below.
  • a second electrode (transparent electrode) 7 (FIG. 5D).
  • a cap-shaped glass plate is sealed by bonding with an epoxy resin adhesive in a low-humidity nitrogen atmosphere, and a top emission type organic EL that is a square with a side of 5 mm on one substrate.
  • the film thickness said here is a display value in a crystal oscillation type film thickness monitor. Further, when the same film as the second electrode was measured by the same method as the evaluation of the non-transparent electrode, the transmittance was 50%.
  • Example 9 Except for Example 9, the circularly polarizing plate and the ultraviolet absorbing plate obtained by the above-described method were mounted on the front side of the organic EL display device.
  • Table 5 shows the configuration of the organic EL display device
  • Table 6 shows the results of evaluating the obtained organic EL display device by the above-described method.
  • Comparative Example 23 A substrate was fabricated in the same manner as in Example 3 except that the opening was changed to a 40 ⁇ m wide and 55 ⁇ m long opening with a pitch of 155 ⁇ m and a length of 465 ⁇ m by changing the design of the photomask. In this way, an insulating layer having an insulating layer aperture ratio of 3% in the display area was formed. When this substrate was used for evaluation in the same manner as in Example 3, the reliability was significantly reduced.
  • Comparative Example 24 A substrate was fabricated in the same manner as in Example 3 except that the openings were changed to 100 ⁇ m wide and 325 ⁇ m long by changing the design of the photomask, and arranged with a pitch of 155 ⁇ m in the width direction and a pitch of 465 ⁇ m in the length direction. In this manner, an insulating layer having an insulating layer opening ratio of 45% in the display area was formed.
  • this substrate was evaluated in the same manner as in Example 3, the reflectance of the surface of the organic EL display device was significantly increased, and the contrast was deteriorated.
  • ITO Indium tin oxide
  • KOH Potassium hydroxide
  • Substrate 2 First electrode (transparent electrode) 3: Insulating layer 4: Organic EL layer 5: Second electrode (non-transparent electrode) 6: First electrode (non-transparent electrode) 7: Second electrode (transparent electrode) 8: Glass substrate 9: Auxiliary electrode 10: Organic EL display device 11: Fluorescent lamp 12: Spectral radiance meter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Materials For Photolithography (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

外光反射を抑制し、コントラストに優れ、色ズレを低減した有機EL表示装置を提供する。有機EL表示装置は、少なくとも透明電極、有機EL層、非透明電極をこの順に有し、さらに黒色の絶縁層を有する有機EL表示装置であって、前記非透明電極の反射率が25%±20%である。

Description

有機EL表示装置
 本発明は、透明電極、有機EL層、非透明電極および絶縁層を有する有機EL表示装置に関する。
 次世代フラットパネルディスプレイとして有機EL表示装置が注目されている。有機EL表示装置は、有機化合物による電界発光を利用した自己発光型の表示装置であって、広視野角、高速応答、高コントラストの画像表示が可能であり、さらに、薄型化、軽量化、フレキシブル化が可能であることから、近年盛んに研究開発が進められている。
 有機EL表示装置は、その発光方式により、基板側に光を発する下部発光(ボトムエミッション)方式と、基板の反対面に光を発する上部発光(トップエミッション)方式とに分類される。何れの方式においても、有機EL(Electro Luminescence)層における発光を効率よく取り出すことが求められている。これまでに、上部発光方式の有機EL素子として、陽極が高い反射率を持つ金属で構成される有機EL素子が提案されている(例えば、特許文献1参照)。
 また、有機EL表示装置においては、画素間を分割するために絶縁層を有する。絶縁層を有する有機EL表示装置としては、例えば、基板上に形成された第一電極と、第一電極を部分的に露出せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、前記絶縁層がポジ型感光性ポリイミドからなる表示装置が提案されている(例えば、特許文献2参照)。
特開2005-56848号公報 特開2002-91343号公報
 しかしながら、特許文献1に記載されるような高い反射率を持つ電極を用いた場合には、外光反射が大きくなり、コントラストの低下が課題となる。さらに、高い反射率を持つ電極によって、有機EL層における発光が隣接画素に拡散しやすくなることから、表示品位に関わる色ズレも課題となる。
 また、特許文献2に記載される表示装置は、絶縁層が透明であり外光を透過することから、その下部にある電極における外光反射に起因したコントラスト低下の課題が発生する。さらに、絶縁層が透明であることにより、有機EL層による発光が隣接画素へ拡散しやすくなることから、色ズレも課題となる。
 そこで、本発明は、上記課題に鑑み、外光反射を抑制し、コントラストに優れ、色ズレを低減した有機EL表示装置を提供することを目的とする。
 本発明に係る有機EL表示装置は、少なくとも透明電極、有機EL層、非透明電極をこの順に有し、さらに黒色の絶縁層を有する有機EL表示装置であって、前記非透明電極の反射率が25%±20%である。
 本発明の有機EL表示装置は、外光反射が少なく、コントラストに優れ、色ズレを低減することができる。
図1は、ボトムエミッション方式の有機EL表示装置の概略断面図である。 図2は、トップエミッション方式の有機EL表示装置の概略断面図である。 図3は、実施例における有機EL表示装置の暗輝度、明輝度および色度評価環境の概略図である。 図4は、実施例および比較例に用いた紫外線吸収板の波長と透過率の関係を示すグラフである。 図5Aは、実施例における有機EL表示装置の作製手順の概略図(その1)である。 図5Bは、実施例における有機EL表示装置の作製手順の概略図(その2)である。 図5Cは、実施例における有機EL表示装置の作製手順の概略図(その3)である。 図5Dは、実施例における有機EL表示装置の作製手順の概略図(その4)である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について詳細に説明する。なお、本発明は、以下に説明する実施の形態によってのみ限定されるべきものではない。
 本発明の有機EL表示装置は、透明電極、有機EL層、非透明電極をこの順に有し、さらに絶縁層を有する。図1に、一つの実施の形態であるボトムエミッション方式の有機EL表示装置の概略断面図、図2に、別の実施の形態であるトップエミッション方式の有機EL表示装置の概略断面図を示す。図1のボトムエミッション方式の有機EL表示装置は、基板1上に透明電極からなる第一電極2を有する。この第一電極2の周辺を覆うように絶縁層3を有し、さらに有機EL層4と非透明電極からなる第二電極5を有する。第一電極2が透明で第二電極5が非透明であることから、有機EL層4における発光光は、基板1側に取り出される。図2のトップエミッション方式の有機EL表示装置は、基板1上に、非透明電極からなる第一電極6を有する。この第一電極6の周辺を覆うように絶縁層3を有し、さらに有機EL層4と透明電極からなる第二電極7を有する。非透明電極からなる第一電極6と透明電極からなる第二電極7を選択することにより、有機EL層4における発光光は、基板1とは反対側に取り出される。
 有機EL表示装置は、駆動方式により、アクティブマトリックス型とパッシブマトリックス型に大別されるが、本発明においてはいずれの駆動方式であってもよい。
 本発明の有機EL表示装置における透明電極とは、波長550nmにおける光透過率が30%以上である電極を指し、非透明電極とは、波長550nmにおける光透過率が30%未満である電極を指す。ここで、本発明における光透過率は、透明なガラス基板上に形成した電極について、分光光度計により測定することができる。
 本発明の有機EL表示装置は、前述の第一電極と第二電極として、透明電極と非透明電極とを組み合わせることにより、有機EL層4における発光を片側に取り出すことができる。本発明における透明電極および非透明電極には、電気特性に優れること、陽極として用いる場合には効率よく正孔を注入できること、陰極として用いる場合には効率よく電子を注入できることなどの複合的な特性が求められる。
 本発明における透明電極を形成する材料としては、例えば、透明導電性酸化物や金属などが挙げられる。陽極として用いる場合には、ITO、IZO、AZO、GZO、ATOなどが好ましく、陰極として用いる場合には、Li、Mg、Ag、Alなどが好ましい。
 また、本発明における非透明電極の反射率は、80%以下であることが好ましい。ここで、本発明における非透明電極の反射率とは、波長550nmにおける反射率を指し、透明なガラス基板上に形成した電極について、分光光度計により測定することができる。非透明電極の反射率が80%を超えると、有機EL層における発光を効率よく取り出すことができるものの、外光反射の増加によりコントラストが低下したり、隣接画素への光の拡散による色ズレが発生しやすい。非透明電極の反射率は、45%以下がより好ましく、30%以下がさらに好ましい。また、非透明電極の反射率は、輝度の点からは、非透明電極の反射率が小さすぎることは避け、5%以上であることが好ましく、10%以上であることがより好ましい。
 本発明における非透明電極を形成する材料としては、例えば、炭素、金属などが挙げられる。特に、Ag、Al、C、Cr、Cu、Mo、NiまたはTiを主成分とすることが好ましく、非透明電極の耐腐食性を向上させ、有機EL表示装置の信頼性を向上させることができる。Ag、AlまたはCuを主成分とすることがより好ましい。ここで、本発明における主成分とは、非透明電極を形成する材料中に最も多く含まれる成分を指す。これらを含む電極材料としては、例えば、AgIn合金、AgZn合金、AgZnBi合金、Alグラフェン合金、AlMn合金、AlNd合金、AlGaNi合金、CuZn合金、CuZnMg合金などの合金や、Agナノフィラー(ワイヤー)、Agナノ粒子などが挙げられる。
 また、複合的な特性を両立するために、非透明電極を多層構造とすることも好ましい。例えば、非透明電極を多層構造とし、基板側に密着性や耐腐食性を向上させる下地層や、反射率を調整する反射調整層を有することもできる。また、非透明電極を多層構造とし、有機EL層側の最表面層に透明導電性酸化物材料を積層することにより、有機EL層との界面における仕事関数差を調整することも好ましい。透明導電性酸化物材料としては、高透過率で低抵抗率であることから、ITO、IZO、AZO、GZO、ATOなどが好ましい。
 本発明の有機EL表示装置における有機EL層の構成としては、例えば、(1)正孔輸送層/発光層、(2)正孔輸送層/発光層/電子輸送層、(3)発光層/電子輸送層などが挙げられる。有機EL層の構成については、正孔と電子の注入や輸送、発光層における発光効率などを総合的に高めるために種々検討されており、好ましい態様の一例として、特開平8-109373号公報に記載された有機薄膜EL素子などが挙げられる。
 本発明の有機EL表示装置は、黒色の絶縁層を有する。黒色の絶縁層を有することにより、非透明電極における外光反射を抑制し、コントラストを向上させることができる。また、外光反射や有機EL層における発光光が隣接画素へ拡散することを抑制し、色ズレを低減することができる。ここで、本発明における黒色の絶縁層とは、波長380~700nmの可視光域における絶縁層の光学濃度(Optical Density、OD値)が、膜厚1.0μmあたり0.3以上であることを指す。膜厚1.0μmあたりのOD値は0.8以上がより好ましく、1.0以上がさらに好ましい。なお、絶縁層のOD値は、顕微分光器(大塚電子製MCPD2000)を用いて絶縁層への入射光強度と絶縁層の透過光強度を測定し、下記の関係式(1)より求めることができる。求めたOD値を絶縁層の膜厚(μm)で除することにより、膜厚1.0μmあたりのOD値を算出することができる。
 OD値 = log10(I/I)       (1)
 I;入射光強度、I;透過光強度。
 絶縁層としては、感光性樹脂組成物の硬化膜が好ましい。なお、本発明において、硬化膜を単に膜という場合がある。感光性樹脂組成物は、(C)着色材料を含有することが好ましく、(A)アルカリ可溶性樹脂、(B)感光剤および(C)着色材料を含有することがより好ましく、さらに(D)有機溶剤を含むことがさらに好ましい。感光性樹脂組成物が(C)着色材料を含有することにより、絶縁層を黒色化することができる。また、感光性樹脂組成物として(A)アルカリ可溶性樹脂と(B)感光剤を組み合わせて含有させることにより、感光性を用いたパターン加工が可能となり、(D)有機溶剤を含有することにより、ワニスの状態にすることができ、塗布性を向上させることができる場合がある。感光性樹脂組成物は、さらに他の成分を含有してもよい。
 有機EL表示装置の表示エリアにおける絶縁層開口率が小さくなると有機EL層への負荷が大きくなる。このため、表示エリアにおける絶縁層開口率は、信頼性の点から5%以上が好ましく、10%以上がより好ましい。また、表示エリアにおける絶縁層開口率が大きくなると非点灯時の反射率が高くなる。このため、表示エリアにおける絶縁層開口率は、コントラストの点から35%以下が好ましく、30%以下がより好ましい。
<(A)アルカリ可溶性樹脂>
 本発明におけるアルカリ可溶性とは、樹脂をγ-ブチロラクトンに溶解した溶液をシリコンウェハー上に塗布し、120℃で4分間プリベークを行って膜厚10μm±0.5μmのプリベーク膜を形成し、該プリベーク膜を23±1℃の2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に1分間浸漬した後、純水でリンス処理したときの膜厚減少から求められる溶解速度が50nm/分以上であることをいう。
 (A)アルカリ可溶性樹脂は、耐熱性向上の点から、芳香族カルボン酸構造を有することが好ましい。なお、本発明において、芳香族カルボン酸構造とは、芳香環と直接共有結合したカルボン酸構造をいう。
 (A)アルカリ可溶性樹脂としては、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリシロキサン、アクリル樹脂、カルド樹脂などが挙げられる。これらを2種以上含有してもよい。これらの樹脂の中でも、耐熱性に優れ、高温条件下におけるアウトガス量が少ないことから、ポリイミド前駆体が好ましい。さらに、アルカリ可溶性向上の点から、アミド酸構造を有するポリイミド前駆体がより好ましい。
<(B)感光剤>
 本発明における感光性樹脂組成物にポジ型感光性を付与する場合、(B)感光剤としては、(b1)o-キノンジアジド化合物を挙げることができる。また、本発明における感光性樹脂組成物にネガ型感光性を付与する場合、(B)感光剤としては、(b2)光重合開始剤を挙げることができる。ネガ型感光性樹脂組成物は、さらに後述する(G)ラジカル重合性化合物を含有することが好ましい。
 (b1)o-キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸のスルホン酸がエステル結合した化合物が好ましい。フェノール性水酸基を有する化合物としては、例えば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(商品名、旭有機材工業(株)製)、2,6-ジメトキシメチル-4-tert-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業(株)製)などが挙げられる。ナフトキノンジアジドスルホン酸としては、4-ナフトキノンジアジドスルホン酸、5-ナフトキノンジアジドスルホン酸などが挙げられる。これらの(b1)o-キノンジアジド化合物を含有することにより、感光性樹脂組成物の解像度、感度、残膜率を向上させることができる。
 4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収を持っており、g線露光に適している。露光する波長に応じて、4-ナフトキノンジアジドスルホニルエステル化合物または5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基および5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を使用することもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を併用することもできる。
 上記ナフトキノンジアジド化合物は、フェノール性水酸基を有する化合物と、キノンジアジドスルホン酸化合物とのエステル化反応によって合成することができる。
 ポジ型感光性樹脂組成物における(b1)o-キノンジアジド化合物の含有量は、ポジ型感光性樹脂組成物の固形分全量100重量%中、6重量%以上20重量%以下が好ましく、感度およびパターン加工性を向上させることができる。
 (b2)光重合開始剤とは、露光によって結合開裂および/または反応してラジカルを発生する化合物をいう。(b2)光重合開始剤としては、ベンジルケタール系光重合開始剤、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、ベンゾフェノン系光重合開始剤、アセトフェノン系光重合開始剤、芳香族ケトエステル系光重合開始剤、安息香酸エステル系光重合開始剤などが挙げられる。これらを2種以上含有してもよい。(b2)光重合開始剤としては、感度向上の観点から、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、ベンゾフェノン系光重合開始剤がより好ましく、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤がさらに好ましい。
 ベンジルケタール系光重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどが挙げられる。
 α-ヒドロキシケトン系光重合開始剤としては、例えば、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オンなどが挙げられる。
 α-アミノケトン系光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-ブタン-1-オン、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-オクチル-9H-カルバゾールなどが挙げられる。
 アシルホスフィンオキシド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)ホスフィンオキシドなどが挙げられる。
 オキシムエステル系光重合開始剤としては、例えば、1-フェニルプロパン-1,2-ジオン-2-(O-エトキシカルボニル)オキシム、1-フェニルブタン-1,2-ジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパン-1,2,3-トリオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイル)オキシム、1-[4-[4-(カルボキシフェニル)チオ]フェニル]プロパン-1,2-ジオン-2-(O-アセチル)オキシム、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム、1-[9-エチル-6-[2-メチル-4-[1-(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルオキシ]ベンゾイル]-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム、“アデカアークルズ(登録商標)”NCI-831((株)ADEKA製)などが挙げられる。
 アクリジン系光重合開始剤としては、例えば、1,7-ビス(アクリジン-9-イル)-n-ヘプタンなどが挙げられる。
 チタノセン系光重合開始剤としては、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル]チタン(IV)、ビス(η5-3-メチル-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロフェニル)チタン(IV)などが挙げられる。
 ベンゾフェノン系光重合開始剤としては、例えば、ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、4-ヒドロキシベンゾフェノン、アルキル化ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-メチルベンゾフェノン、ジベンジルケトン、フルオレノンなどが挙げられる。
 アセトフェノン系光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどが挙げられる。
 芳香族ケトエステル系光重合開始剤としては、例えば、2-フェニル-2-オキシ酢酸メチルなどが挙げられる。
 安息香酸エステル系光重合開始剤としては、例えば、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル、2-ベンゾイル安息香酸メチルなどが挙げられる。
 ネガ型感光性樹脂組成物における(b2)光重合開始剤の含有量は、感度の観点から、(A)アルカリ可溶性樹脂と後述する(G)ラジカル重合性化合物の重量の合計100重量部に対して1重量部以上が好ましく、解像度とテーパー形状の観点から、(A)アルカリ可溶性樹脂と後述する(G)ラジカル重合性化合物の重量の合計100重量部に対して15重量部以下が好ましい。
<(C)着色材料>
 本発明における(C)着色材料とは、特定波長の光を吸収する化合物であり、特に、可視光線の波長(380~780nm)の光を吸収することにより着色する化合物が好ましい。(C)着色材料を含有することにより、絶縁層を着色することができ、絶縁層を透過する光または絶縁層から反射する光を、所望の色に着色する、着色性を付与することができる。また、絶縁層を透過する光または絶縁層から反射する光から、(C)着色材料が吸収する波長の光を遮光する、遮光性を付与することができる。この結果、波長380~700nmの可視光域における絶縁層の光学濃度を前述の範囲にすることができる。
 (C)着色材料としては、可視光線の波長の光を吸収し、白、赤、橙、黄、緑、青、紫色に着色する化合物が挙げられる。これらの着色材料を二色以上組み合わせることにより、絶縁層を透過する光または絶縁層から反射する光を、所望の色座標に調色する、調色性を向上させることができる。
 (C)着色材料は、(C1)顔料および/または(C2)染料を含有することが好ましい。また、(C)着色材料は、(Ca)黒色剤および/または(Cb)黒色以外の着色材料を含有することが好ましい。(Ca)黒色剤および/または(Cb)黒色以外の着色材料を含有することにより、絶縁層に遮光性を付与し、表色系における色の調整が容易となる。(C)着色材料が(C1)顔料を含有する態様としては、(Ca)黒色剤および/または(Cb)黒色以外の着色材料として、(C1)顔料を含有することが好ましく、(C)着色材料が(C2)染料を含有する態様としては、(Ca)黒色剤および/または(Cb)黒色以外の着色材料として、(C2)染料を含有することが好ましい。
 (Ca)黒色剤とは、可視光線の波長の光を吸収することにより、黒色に着色する化合物をいう。(Ca)黒色剤を含有することにより、絶縁層を黒色化することができ、絶縁層の透過光や反射光を遮光し、遮光性を向上させることができる。
 (Ca)黒色剤としては、遮光性の観点から、可視光線の全波長の光を吸収し、黒色に着色する化合物が好ましい。また、白、赤、橙、黄、緑、青または紫色の着色材料から選ばれる二色以上の着色材料の組み合わせも好ましい。これらの着色材料を二色以上組み合わせることにより、擬似的に黒色に着色することができ、遮光性を向上させることができる。
 (Cb)黒色以外の着色材料とは、可視光線の波長の光を吸収することにより着色する化合物をいう。すなわち、前述した黒色を除く、白、赤、橙、黄、緑、青または紫色に着色する着色材料である。
<(C1)顔料>
 (C1)顔料とは、対象物の表面に(C1)顔料が物理吸着したり、対象物の表面と(C1)顔料とが相互作用したりすることにより、対象物を着色させる化合物をいい、一般的に溶剤等に不溶である。(C1)顔料による着色は隠蔽性が高く、紫外線等による色褪せが生じにくい特性を有することから、(C1)顔料を含有することにより、絶縁層を隠蔽性に優れた色に着色することができ、絶縁層の遮光性および耐候性を向上させることができる。
 感光性樹脂組成物中における(C1)顔料の数平均粒子径は、分散安定性の観点から、1nm以上が好ましく、5nm以上がより好ましく、10nm以上がより好ましい。一方、感光性樹脂組成物中における(C1)顔料の数平均粒子径は、パターン加工性の観点から、1,000nm以下が好ましく、500nm以下がより好ましく、200nmがさらに好ましい。ここで、(C1)顔料の数平均粒子径は、サブミクロン粒度分布測定装置(N4-PLUS;ベックマン・コールター(株)製)またはゼータ電位・粒子径・分子量測定装置(ゼータサイザーナノZS;シスメックス(株)製)を用いて、感光性樹脂組成物中の(C1)顔料のブラウン運動によるレーザー散乱を測定する(動的光散乱法)ことにより求めることができる。
 (C1)顔料としては、有機顔料、無機顔料などが挙げられる。有機顔料が好ましく、化学構造変化または官能基変換により、所望の特定波長の光を透過または遮光するなど、絶縁層の透過スペクトルや吸収スペクトルを所望の範囲に容易に調整することができる。有機顔料としては、例えば、アントラキノン系顔料、キナクリドン系顔料、ピランスロン系顔料、ジケトピロロピロール系顔料、ベンゾフラノン系顔料、ペリレン系顔料、縮合アゾ系顔料、カーボンブラックなどが好ましい。
<(C2)染料>
 (C2)染料とは、対象物の表面構造に、(C2)染料中のイオン性基またはヒドロキシ基などの置換基が、化学吸着または強く相互作用することなどにより対象物を着色する化合物をいい、一般的に溶剤等に可溶である。(C2)染料による着色は、分子一つ一つが対象物と吸着するため、着色力が高く、発色効率が高いことから、(C2)染料を含有することにより、絶縁層の表色系における色の調整が容易となる。
 (C2)染料としては、例えば、直接染料、反応性染料、硫化染料、バット染料、硫化染料、酸性染料、含金属染料、含金属酸性染料、塩基性染料、媒染染料、酸性媒染染料、分散染料、カチオン染料、蛍光増白染料などが挙げられる。これらを2種以上含有してもよい。
 また、(C2)染料としては、アントラキノン系染料、アゾ系染料、アジン系染料、フタロシアニン系染料、メチン系染料、オキサジン系染料、キノリン系染料、インジゴ系染料、インジゴイド系染料、カルボニウム系染料、スレン系染料、ペリノン系染料、ペリレン系染料、トリアリールメタン系染料、キサンテン系染料などが挙げられる。(D)有機溶剤への溶解性および耐熱性の観点から、アントラキノン系染料、アゾ系染料、アジン系染料、メチン系染料、トリアリールメタン系染料、キサンテン系染料が好ましい。
 本発明に用いられる感光性樹脂組成物における(C)着色材料の含有量は、遮光性、着色性および調色性の観点から、(A)アルカリ可溶性樹脂、(C)着色材料および後述する分散剤の合計100重量部に対して、15重量部以上が好ましく、20重量部以上がより好ましく、25重量部以上がさらに好ましく、30重量部以上がさらに好ましい。一方、(C)着色材料の含有量は、感度の観点から、80重量部以下が好ましく、75重量部以下がより好ましく、70重量部以下がさらに好ましく、65重量部以下がさらに好ましい。また、感光性樹脂組成物の固形分中における(C)着色材料の含有量は、遮光性、着色性および調色性の観点から、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましい。一方、感光性樹脂組成物の固形分中における(C)着色材料の含有量は、感度の観点から、70重量%以下が好ましく、65重量%以下がより好ましく、60重量%以下がさらに好ましい。
 さらに、感光性樹脂組成物の固形分中における(C1)顔料の含有量は、遮光性、着色性および調色性の観点から、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましい。一方、感光性樹脂組成物の固形分中における(C1)顔料の含有量は、感度の観点から、70重量%以下が好ましく、65重量%以下がより好ましく、60重量%以下がさらに好ましい。
 また、感光性樹脂組成物の固形分中における(C2)染料の含有量は、着色性および調色性の観点から、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.1重量%以上がさらに好ましい。一方、感光性樹脂組成物の固形分中における(C2)染料の含有量は、絶縁層の耐熱性の観点から、50重量%以下が好ましく、45重量%以下がより好ましく、40重量%以下がさらに好ましい。
<(D)有機溶剤>
 (D)有機溶剤としては、例えば、γ-ブチロラクトンなどの極性の非プロトン性溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン、ジアセトンアルコールなどのケトン類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチルなどのエステル類、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、ぎ酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等の他のエステル類、トルエン、キシレンなどの芳香族炭化水素類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類などが挙げられる。これらを2種以上含有してもよい。
 感光性樹脂組成物中における(D)有機溶剤の含有量は、塗布方法などに応じて適宜選択することができる。例えば、スピンコーティングにより塗布する場合、感光性樹脂組成物中、50~95重量%が一般的である。
<(E)熱架橋剤>
 本発明で用いられる感光性樹脂組成物は、(E)熱架橋剤を含有することができる。熱架橋剤とは、熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱反応性の官能基としては、例えば、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基などが挙げられる。これらを2種以上含有してもよい。(E)熱架橋剤を含有することにより、(A)アルカリ可溶性樹脂やその他添加成分を架橋し、硬化膜の耐熱性、耐薬品性および硬度を高めることができる。また、硬化膜からのアウトガス量を低減し、有機EL表示装置の信頼性を向上させることができる。
 熱反応性の官能基としてアルコキシメチル基またはメチロール基を有する熱架橋剤としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、“NIKALAC(登録商標)”MX-290、“NIKALAC”MX-280、“NIKALAC”MX-270、“NIKALAC”MX-279、“NIKALAC”MW-100LM、“NIKALAC”MX-750LM(以上、商品名、(株)三和ケミカル製)などが挙げられる。
 熱反応性の官能基としてエポキシ基を有する熱架橋剤としては、例えば、エポライト40E、エポライト100E、エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P、エポライト1500NP、エポライト80MF、エポライト4000、エポライト3002(以上、共栄社化学(株)製)、“デナコール(登録商標)”EX-212L、“デナコール”EX-214L、“デナコール”EX-216L、“デナコール”EX-850L、“デナコール”EX-321L(以上、ナガセケムテックス(株)製)、GAN、GOT(以上、日本化薬(株)製)、“エピコート(登録商標)”828、“エピコート”1002、“エピコート”1750、“エピコート”1007、YX8100-BH30、E1256、E4250、E4275(以上、ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”EXA-9583、HP4032(以上、大日本インキ化学工業(株)製)、VG3101(三井化学(株)製)、“テピック(登録商標)”S、“テピック”G、“テピック”P(以上、日産化学工業(株)製)、NC6000(日本化薬(株)製)、エポトート(登録商標)YH-434L(東都化成(株)製)、EPPN502H、NC3000(日本化薬(株)製)、エピクロンN695、HP7200(以上、大日本インキ化学工業(株)製)などが挙げられる。
 熱反応性の官能基としてオキセタニル基を有する熱架橋剤としては、例えば、“エタナコール(登録商標)”EHO、“エタナコール”OXBP、“エタナコール”OXTP、“エタナコール”OXMA(以上、宇部興産(株)製)、オキセタン化フェノールノボラックなどが挙げられる。
 熱架橋剤の含有量は特に限定されないが、例えば、ポジ型感光性樹脂組成物の場合、感光性樹脂組成物の固形分中1重量%以上30重量%以下が好ましい。一方、ネガ型感光性樹脂組成物の場合、(A)アルカリ可溶性樹脂および(G)ラジカル重合性化合物の合計100重量部に対して、0.1重量部以上70重量部以下が好ましい。熱架橋剤の含有量が上記範囲内であると、絶縁層の硬度および耐薬品性を向上させることができる。
<(F)分散剤>
 本発明に用いられる感光性樹脂組成物は、さらに、(F)分散剤を含有することが好ましい。(F)分散剤とは、前述した(C1)顔料または(C2)染料としての分散染料などの表面と相互作用する表面親和性基と、(C1)顔料または分散染料の分散安定性を向上させる分散安定化構造とを有する化合物をいう。(F)分散剤の分散安定化構造としては、ポリマー鎖、静電荷を有する置換基などが挙げられ、立体障害や静電反発の発現による分散効果を期待できる。
 (F)分散剤を含有することにより、感光性樹脂組成物が、(C1)顔料または分散染料を含有する場合、それらの分散安定性を向上させることができ、解像度を向上させることができる。特に、(C1)顔料が1μm以下の数平均粒子径に解砕された粒子の場合、(C1)顔料の粒子の表面積が増大するため、(C1)顔料の粒子の凝集が発生しやすくなる。一方、(C1)顔料を含有する場合、解砕された(C1)顔料の表面と(F)分散剤の表面親和性基が相互作用するとともに、(F)分散剤の分散安定化構造による立体障害および/または静電反発により、(C1)顔料の粒子の凝集を阻害し、分散安定性を向上させることができる。
 (F)分散剤としては、例えば、アミン価が5mgKOH/g以上の分散剤、酸価が5mgKOH/g以上の分散剤、アミン価および酸価が5mgKOH/g以上の分散剤、アミン価および酸価のいずれも5mgKOH/g未満の分散剤が挙げられる。(C1)顔料の粒子の分散安定性向上を観点から、アミン価が5mgKOH/g以上の分散剤が好ましい。
 (F)分散剤のアミン価は、(C1)顔料の分散安定性の観点から、5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、10mgKOH/g以上がさらに好ましい。一方、(F)分散剤のアミン価は、感光性樹脂組成物の保存安定性の観点から、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましく、100mgKOH/g以下がさらに好ましい。
 ここでいうアミン価とは、(F)分散剤1g当たりと反応する酸と当量の水酸化カリウムの重量をいい、単位はmgKOH/gである。(F)分散剤1gを酸で中和させた後、水酸化カリウム水溶液で滴定することにより、アミン価を求めることができる。アミン価の値から、アミノ基1mol当たりの重量であるアミン当量(単位はg/mol)を算出することができ、(F)分散剤中のアミノ基の数を求めることができる。
 (F)分散剤の酸価は、(C1)顔料の分散安定性の観点から、5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、10mgKOH/g以上がさらに好ましい。一方、(F)分散剤の酸価は、感光性樹脂組成物の保存安定性の観点から、200mgKOH/g以下が好ましく、170mgKOH/g以下がより好ましく、150mgKOH/g以下がさらに好ましい。
 ここでいう酸価とは、(F)分散剤1g当たりと反応する水酸化カリウムの重量をいい、単位はmgKOH/gである。(F)分散剤1gを水酸化カリウム水溶液で滴定することにより、酸価を求めることができる。酸価の値から、酸性基1mol当たりの重量である酸当量(単位はg/mol)を算出することができ、(F)分散剤中の酸性基の数を求めることができる。
 (F)分散剤は、表面親和性基であるアミノ基および/または酸性基が、酸および/または塩基と塩形成した構造を有することも好ましい。
 アミン価が5mgKOH/g以上で酸価が0mgKOH/gの分散剤としては、例えば、“DISPERBYK(登録商標)”-108、同-109、同-160、同-161、同-162、同-163、同-164、同-166、同-167、同-168、同-182、同-184、同-185、同-2000、同-2008、同-2009、同-2022、同-2050、同-2055、同-2150、同-2155、同-2163、同-2164、同-2061、“BYK(登録商標)”-9075、同-9077、同-LP-N6919、同-LP-N21116、同-LP-N21324(以上、何れもビックケミー・ジャパン(株)製)、“EFKA(登録商標)” 4015、同 4020、同 4046、同 4047、同 4050、同 4055、同 4060、同 4080、同 4300、同 4330、同 4340、同 4400、同 4401、同 4402、同 4403、同 4800(以上、何れもBASF製)、“アジスパー(登録商標)” PB711(味の素ファインテクノ(株)製)、“SOLSPERSE(登録商標)” 13240、同 13940、同 20000、同 71000、同 76500(以上、何れもLubrizol製)が挙げられる。
 アミン価および酸価が5mgKOH/g以上の分散剤としては、例えば、“ANTI-TERRA(登録商標)”-U100若しくは同-204、“DISPERBYK(登録商標)”-106、同-140、同-142、同-145、同-180、同-2001、同-2013、同-2020、同-2025、同-187若しくは同-191、“BYK(登録商標)”-9076(ビックケミー・ジャパン(株)製)、“アジスパー(登録商標)” PB821、同 PB880、同 PB881(以上、何れも味の素ファインテクノ(株)製)、“SOLSPERSE(登録商標)” 9000、同 11200、同 13650、同 24000、同 32000、同 32500、同 32500、同 32600、同 33000、同 34750、同 35100、同35200、同 37500、同 39000、同 56000、同 76500(以上、何れもLubrizol製)が挙げられる。
 アミン価が0mgKOH/gで酸価が5mgKOH/g以上の分散剤としては、例えば、“DISPERBYK(登録商標)”-102、同-110、同-111、同-118、同-170、同-171、同-174、同-2060若しくは同-2096、“BYK(登録商標)”-P104、同-P105、同-220S(以上、何れもビックケミー・ジャパン(株)製)または“SOLSPERSE(登録商標)” 3000、同 16000、同 17000、同 18000、同 21000、同 26000、同 28000、同 36000、同 36600、同 38500、同 41000、同 41090、同 53095、同 55000(以上、何れもLubrizol製)が挙げられる。
 アミン価および酸価のいずれも0mgKOH/gの(F)分散剤としては、例えば、“DISPERBYK(登録商標)”-103、同-2152、同-2200、同-192(以上、何れもビックケミー・ジャパン(株)製)、“SOLSPERSE(登録商標)” 27000、同 54000、同 X300(以上、何れもLubrizol製)が挙げられる。
 前記(F)分散剤は、ポリマー鎖を有する分散剤であってもよい。前記ポリマー鎖を有する分散剤としては、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤、ポリエチレンイミン系分散剤またはポリアリルアミン系分散剤が挙げられる。アルカリ現像液でのパターン加工性の観点から、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤が好ましい。
 本発明で用いられるネガ型の感光性樹脂組成物が(C1)顔料および/または(C2)染料として分散染料を含有する場合、本発明で用いられるネガ型の感光性樹脂組成物中における(F)分散剤の含有量は、分散安定性および解像度の観点から、(C1)顔料、(C2)染料における分散染料および(F)分散剤の合計100重量部に対して、1重量部以上が好ましく、5重量部以上がより好ましく、10重量部以上がさらに好ましい。一方、(F)分散剤の含有量は、絶縁層の耐熱性の観点から、60重量部以下が好ましく、55重量部以下がより好ましく、50重量部以下がさらに好ましい。
<(G)ラジカル重合性化合物>
 本発明において、(G)ラジカル重合性化合物とは、分子中に二つ以上のエチレン性不飽和二重結合基を有する化合物をいう。(G)ラジカル重合性化合物を含有することにより、露光時のUV硬化を促進し、感度を向上させることができる。加えて、熱硬化後の架橋密度を向上させ、絶縁層の硬度を向上させることができる。
 (G)ラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有する化合物が好ましい。露光時の感度向上および硬化膜の硬度向上の観点から、(メタ)アクリル基を分子内に二つ以上有する化合物がより好ましい。(G)ラジカル重合性化合物との二重結合当量は、露光時の感度向上および硬化膜の硬度向上の観点から、80~400g/molが好ましい。
 (G)ラジカル重合性化合物としては、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、ペンタペンタエリスリトールウンデカ(メタ)アクリレート、ペンタペンタエリスリトールドデカ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレン、それらの酸変性体、エチレンオキシド変性体、プロピレンオキシド変性体などが挙げられる。これらを2種以上含有してもよい。(G)ラジカル重合性化合物は、露光時の感度向上および硬化膜の硬度向上の観点から、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、2,2-ビス[4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレン、それらの酸変性体、エチレンオキシド変性体、プロピレンオキシド変性体が好ましく、現像後の解像度向上の観点から、それらの酸変性体、エチレンオキシド変性体がより好ましい。また、(G)ラジカル重合性化合物は、現像後の解像度向上の観点から、分子内に二つ以上のグリシドキシ基を有する化合物とエチレン性不飽和二重結合基を有する不飽和カルボン酸との開環付加反応物に、多塩基酸カルボン酸または多塩基カルボン酸無水物を反応させて得られる化合物も好ましい。
 本発明で用いられるネガ型の感光性樹脂組成物中における(G)ラジカル重合性化合物の含有量は、感度とパターン形状の観点から、(A)アルカリ可溶性樹脂および(G)ラジカル重合性化合物の含有量の合計100重量部に対して、15重量部以上が好ましく、20重量部以上がより好ましく、25重量部以上がさらに好ましく、30重量部以上がさらに好ましい。一方、(G)ラジカル重合性化合物の含有量は、絶縁層の耐熱性の観点から、65重量部以下が好ましく、60重量部以下がより好ましく、55重量部以下がさらに好ましく、50重量部以下がさらに好ましい。
<その他成分-密着改良剤>
 本発明で用いられる感光性樹脂組成物は、密着改良剤を含有してもよい。密着改良剤を含有することにより、感光性樹脂組成物膜と、シリコンウェハー、ITO、SiO、窒化ケイ素などの下地基材との密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。密着改良剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物との反応物などが挙げられる。これらを2種以上含有してもよい。密着改良剤の含有量は、感光性樹脂組成物の固形分中、0.1~10重量%が好ましい。
<その他成分-界面活性剤>
 本発明で用いられる感光性樹脂組成物は、必要に応じて界面活性剤を含有してもよい。界面活性剤を含有することにより、感光性樹脂組成物膜と基板との濡れ性を向上させることができる。界面活性剤としては、例えば、東レ・ダウコーニング(株)のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン(株)のBYKシリーズ、信越化学工業(株)のKPシリーズ、日油(株)のディスフォームシリーズ、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社のTSFシリーズなどのシリコーン系界面活性剤、DIC(株)の“メガファック(登録商標)”シリーズ、住友スリーエム(株)のフロラードシリーズ、旭硝子(株)の“サーフロン(登録商標)”シリーズ、“アサヒガード(登録商標)”シリーズ、新秋田化成(株)のEFシリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズなどのフッ素系界面活性剤、共栄社化学(株)のポリフローシリーズ、楠本化成(株)の“ディスパロン(登録商標)”シリーズなどの(メタ)アクリル系化合物の重合体からなる界面活性剤などが挙げられる。これらを2種以上含有してもよい。
 界面活性剤の含有量は、感光性樹脂組成物の固形分中、0.001~1重量%が好ましい。
<その他成分-フェノール性水酸基含有化合物>
 本発明で用いられるポジ型の感光性樹脂組成物は、必要に応じてフェノール性水酸基を有する化合物を含有してもよい。フェノール性水酸基を有する化合物を含有する感光性樹脂組成物は、露光前はアルカリ現像液にほとんど溶解せず、露光することにより容易にアルカリ現像液に溶解するため、現像による膜減りが少なく、短時間で現像することができ、感度を向上させることができる。フェノール性水酸基を有する化合物としては、例えば、Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCRIPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisPHAP、TrisP-PA、TrisP-PHBA、TrisP-SA、TrisOCR-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPC-OCHP、Bis25X-OCHP、Bis26X-OCHP、BisOCHP-OC、Bis236T-OCHP、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP(商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(商品名、旭有機材工業(株)製)、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオール、8-キノリノールなどが挙げられる。これらを2種以上含有してもよい。
 フェノール性水酸基を有する化合物の含有量は、感光性樹脂組成物の固形分中、1~20重量%が好ましい。
<その他成分-増感剤>
 本発明で用いられるネガ型の感光性樹脂組成物は、必要に応じて増感剤を含有してもよい。増感剤とは、露光によるエネルギーを吸収し、内部転換および項間交差によって励起三重項の電子を生じ、前述した(b2)光重合開始剤などへのエネルギー移動を介することが可能な化合物をいう。増感剤を含有することにより、露光時の感度を向上させることができる。
 増感剤としては、チオキサントン系増感剤が好ましい。チオキサントン系増感剤としては、例えば、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントンまたは2,4-ジクロロチオキサントンが挙げられる。これらを2種以上含有してもよい。
 本発明で用いられるネガ型の感光性樹脂組成物中における増感剤の含有量は、感度の観点から、(A)アルカリ可溶性樹脂および(G)ラジカル重合性化合物の含有量の合計100重量部に対して、1重量部以上が好ましい。一方、増感剤の含有量は、解像度およびパターン形状の観点から、8重量部以下が好ましい。
<その他成分-連鎖移動剤>
 本発明で用いられるネガ型の感光性樹脂組成物は、必要に応じて連鎖移動剤を含有してもよい。連鎖移動剤とは、露光時のラジカル重合により得られるポリマー鎖の、ポリマー成長末端からラジカルを受け取り、他のポリマー鎖へのラジカル移動を介することが可能な化合物をいう。連鎖移動剤を含有することにより、露光時の感度を向上させることができる。これは、露光によって発生したラジカルが、連鎖移動剤によって他のポリマー鎖へラジカル移動することにより、膜の深部にまでラジカル架橋をするためであると推測される。特に、感光性樹脂組成物が前述の(C)着色材料として、(Ca)黒色剤を含有する場合、露光による光が(Ca)黒色剤によって吸収されるため、膜の深部まで光が到達しにくい傾向にあるが、連鎖移動剤を含有する場合、連鎖移動剤によるラジカル移動によって、膜の深部にまでラジカル架橋をするため、露光時の感度を向上させることができる。また、連鎖移動剤を含有させることにより、低テーパーのパターン形状を得ることができる。これは、連鎖移動剤によるラジカル移動によって、露光時のラジカル重合により得られるポリマー鎖の、分子量制御をすることができるためであると推測される。すなわち、連鎖移動剤を含有することにより、露光時の過剰なラジカル重合による、顕著な高分子量のポリマー鎖の生成が阻害され、得られる膜の軟化点の上昇が抑制される。そのため、熱硬化時のパターンのリフロー性が向上し、低テーパーのパターン形状が得られると考えられる。
 連鎖移動剤としては、チオール系連鎖移動剤が好ましい。チオール系連鎖移動剤としては、例えば、β-メルカプトプロピオン酸、β-メルカプトプロピオン酸メチル、β-メルカプトプロピオン酸エチル、β-メルカプトプロピオン酸2-エチルヘキシル、β-メルカプトプロピオン酸n-オクチル、β-メルカプトプロピオン酸メトキシブチル、β-メルカプトプロピオン酸ステアリル、β-メルカプトプロピオン酸イソノニル、β-メルカプトブタン酸、β-メルカプトブタン酸メチル、β-メルカプトブタン酸エチル、β-メルカプトブタン酸2-エチルヘキシル、β-メルカプトブタン酸n-オクチル、β-メルカプトブタン酸メトキシブチル、β-メルカプトブタン酸ステアリル、β-メルカプトブタン酸イソノニル、チオグリコール酸メチル、チオグリコール酸n-オクチル、チオグリコール酸メトキシブチル、1,4-ビス(3-メルカプトブタノイルオキシ)ブタン、1,4-ビス(3-メルカプトプロピオニルオキシ)ブタン、1,4-ビス(チオグリコロイルオキシ)ブタン、エチレングリコールビス(チオグリコレート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(チオグリコレート)、1,3,5-トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌル酸、1,3,5-トリス[(3-メルカプトブタノイルオキシ)エチル]イソシアヌル酸、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)などが挙げられる。これらを2種以上含有してもよい。連鎖移動剤は、露光時の感度向上および低テーパーのパターン形状の観点から、1,4-ビス(3-メルカプトブタノイルオキシ)ブタン、1,4-ビス(3-メルカプトプロピオニルオキシ)ブタン、1,4-ビス(チオグリコロイルオキシ)ブタン、エチレングリコールビス(チオグリコレート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(チオグリコレート)、1,3,5-トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌル酸、1,3,5-トリス[(3-メルカプトブタノイルオキシ)エチル]イソシアヌル酸、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)が好ましい。
 本発明で用いられるネガ型の感光性樹脂組成物中における連鎖移動剤の含有量は、感度およびパターン形状の観点から、(A)アルカリ可溶性樹脂および(G)ラジカル重合性化合物の含有量の合計100重量部に対して、1重量部以上が好ましい。一方、連鎖移動剤の含有量は、解像度および絶縁層の耐熱性の観点から、8重量部以下が好ましい。
<その他成分-重合禁止剤>
 本発明で用いられるネガ型の感光性樹脂組成物は、必要に応じて重合禁止剤を含有してもよい。重合禁止剤とは、露光時に発生したラジカル、または、露光時のラジカル重合により得られるポリマー鎖の、ポリマー成長末端のラジカルを捕捉し、安定ラジカルとして保持することで、ラジカル重合を停止することが可能な化合物をいう。重合禁止剤を含有することにより、現像後の残渣発生を抑制し、現像後の解像度を向上させることができる。
 重合禁止剤としては、フェノール系重合禁止剤が好ましい。フェノール系重合禁止剤としては、例えば、4-メトキシフェノール、1,4-ヒドロキノン、1,4-ベンゾキノン、2-t-ブチル-4-メトキシフェノール、3-t-ブチル-4-メトキシフェノール、4-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-1,4-ヒドロキノン、2,5-ジ-t-アミル-1,4-ヒドロキノンまたは“IRGANOX(登録商標)” 1010、同 1035、同 1076、同 1098、同 1135、同 1330、同 1726、同 1425、同 1520、同 245、同 259、同 3114、同 565、同 295(以上、何れもBASF製)などが挙げられる。これらを2種以上含有してもよい。
 本発明で用いられるネガ型の感光性樹脂組成物中における重合禁止剤の含有量は、解像度および絶縁層の耐熱性の観点から、(A)アルカリ可溶性樹脂および(G)ラジカル重合性化合物の含有量の合計100重量部に対して、0.1重量部以上が好ましい。一方、重合禁止剤の含有量は、感度の観点から、3重量部以下が好ましい。
<その他の添加剤>
 本発明に用いられる感光性樹脂組成物は、さらに、他の樹脂を含有しても構わない。他の樹脂としては、例えば、ポリアミド、ポリアミドイミド、エポキシ樹脂、ノボラック樹脂、ウレア樹脂、ポリウレタン、それらの前駆体が挙げられる。
 本発明で用いられる感光性樹脂組成物は、有機EL表示装置の信頼性を損なわない範囲で熱酸発生剤を含有してもよい。熱酸発生剤は、加熱により酸を発生し、熱架橋剤の架橋反応を促進する他、(A)アルカリ可溶性樹脂に未閉環のイミド環構造、オキサゾール環構造を有している場合はこれらの環化を促進し、硬化膜の機械特性をより向上させることができる。
 本発明に用いられる熱酸発生剤の熱分解開始温度は、50℃~270℃が好ましく、250℃以下がより好ましい。また、本発明で用いられる感光性樹脂組成物を基板に塗布した後の乾燥(プリベーク:約70~140℃)時には酸を発生せず、その後露光、現像でパターニングした後の加熱処理(キュア:約100~400℃)時に酸を発生するものを選択すると、現像時の感度低下を抑制できるため好ましい。
 本発明に用いられる熱酸発生剤から発生する酸は強酸が好ましく、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸などのアリールスルホン酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸などのアルキルスルホン酸やトリフルオロメチルスルホン酸などのハロアルキルスルホン酸などが好ましい。これらはオニウム塩のような塩として、またはイミドスルホナートのような共有結合化合物として用いられる。これらを2種以上含有してもよい。
 本発明に用いられる熱酸発生剤の含有量は、絶縁層の機械特性および耐薬品性の観点から、感光性樹脂組成物の固形分中、0.1重量%以上が好ましい。一方、熱酸発生剤の含有量は、絶縁層の電気絶縁性の観点から、3重量%以下が好ましい。
 本発明の有機EL表示装置は、さらに紫外線吸収層を有することが好ましく、信頼性を向上させることができる。紫外線吸収層としては、波長320nm以下の光を吸収する層が好ましく、波長360nm以下の光を吸収する層がより好ましく、波長420nm以下の光を吸収する層がさらに好ましい。ただし、波長420nm以上の光は表示に用いる青色の発光波長と重複するため、紫外線吸収層は、波長420nm以上の領域において高い透過率を有することが好ましい。このことは、本発明の有機EL表示装置が屋外で使用される場合において特に有効である。
 紫外線吸収層は、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂、ポリスルホン樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、脂環式オレフィンポリマー樹脂、アクリル系ポリマー樹脂、セルロースエステル樹脂等の樹脂を含有することが好ましい。これらを2種以上含有してもよい。これらの中でも、ポリイミド樹脂やポリアミド樹脂が好ましい。また、紫外線吸収層は、紫外線吸収剤を含有してもよい。紫外線吸収剤としては、ベンゾフェノン系化合物、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サルチレート系化合物、サリチル酸エステル系化合物、アクリルニトリル系化合物、シアノアクリレート系化合物、ヒンダードアミン系化合物、トリアジン系化合物、ニッケル錯塩系化合物、超微粒子酸化チタン、金属錯塩系化合物、その他の高分子紫外線吸収剤等を挙げることができる。これらを2種以上含有してもよい。紫外線吸収層は、透明性に優れるベンゾトリアゾール系化合物、ベンゾフェノン系化合物が好ましく、ベンゾトリアゾール系化合物がより好ましい。
 ベンゾトリアゾール系化合物としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートなどが挙げられる。これらを2種以上含有してもよい。また、ベンゾトリアゾール系化合物の市販品として、“チヌビン(TINUVIN)(登録商標)”109、“チヌビン(TINUVIN)”171、“チヌビン(TINUVIN)”326(何れもBASFジャパン(株)製)などが挙げられる。
 ベンゾフェノン系化合物としては、例えば、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができる。これらを2種以上含有してもよい。
 高分子紫外線吸収剤としては、例えば、大塚化学(株)製の反応型紫外線吸収剤RUVA-93を挙げることができる。
 本発明の有機EL表示装置は、さらに基板を有することが好ましい。基板としては、電極、絶縁層、有機EL層の形成が可能なガラスやフィルムなどが挙げられる。基板は、有機EL層の劣化を抑制するために、ガスバリア性が高いことが好ましい。また、ボトムエミッション方式の場合は、基板の透明性が高いことが好ましい。
 外光反射を抑制する技術として、偏光層を有する有機EL表示装置が挙げられる。偏光層としては、例えば、ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸して得られるフィルムが多く用いられている。偏光層を有することにより外光反射を抑制することができる。その反面、有機EL層からの発光光は、偏光層によって一部遮断され、透過した偏光のみが外部へと出力されるため、有機EL表示装置の輝度が低下しやすい傾向にある。また、偏光層を有することにより、表示装置の薄型化、軽量化、フレキシブル化が難しくなる。これらの点に鑑みて、本発明においては、偏光層を含まないことが好ましい。本発明の有機EL表示装置は、偏光層を用いなくとも外光反射を低減することができ、偏光層を用いる場合に比べて有機EL表示装置の輝度を向上させることができる。
 本発明の有機EL表示装置がアクティブマトリックス型の場合、前述の基板の中にTFT(Thin Film Transistor)を有する。本発明の有機EL表示装置は、黒色の絶縁層を有する、TFTを遮光して保護することができる。特に、In、Ga、Sn、Ti、Nb、Sbおよび/またはZnを含む酸化物半導体を用いたTFTの場合は、外光や有機EL層からの発光光による閾値電圧の変化や劣化の抑制などを達成し、特性の安定化や信頼性の向上が可能となる。なお、TFT層を覆うように形成される平坦化層を黒色化することによっても同様の効果を奏する。
 次に、本発明の有機EL表示装置の製造方法について説明する。まず、絶縁層を形成する感光性樹脂組成物の製造方法について説明する。
<感光性樹脂組成物の製造方法>
 本発明に用いられる感光性樹脂組成物の、代表的な製造方法について説明する。例えば、(C)着色材料として(C1)顔料を含有する場合、(A)アルカリ可溶性樹脂と(D)有機溶剤の溶液に(F)分散剤を加え、分散機を用いて、この混合溶液に(C1)顔料を分散させ、顔料分散液を調製することが好ましい。次に、この顔料分散液に、(B)感光剤、その他の添加剤を加え、20分間~3時間撹拌して均一な溶液とすることが好ましい。撹拌後、得られた溶液をろ過することにより、感光性樹脂組成物が得られる。
 分散機としては、例えば、ボールミル、ビーズミル、サンドグラインダー、3本ロールミル、高速度衝撃ミルが挙げられる。分散機は、分散効率化および微分散化の観点から、ビーズミルが好ましい。ビーズミルとしては、例えば、コボールミル、バスケットミル、ピンミル、ダイノーミルが挙げられる。ビーズミルのビーズとしては、例えば、チタニアビーズ、ジルコニアビーズ、ジルコンビーズが挙げられる。ビーズミルのビーズ径としては、0.01~6mmが好ましく、0.015~5mmがより好ましく、0.03~3mmがさらに好ましい。(C1)顔料の一次粒子径および一次粒子が凝集して形成された二次粒子の粒子径が、数百nm以下の場合、ビーズ径が0.015~0.1mmの微小なビーズが好ましい。この場合、微小なビーズと顔料分散液とを分離することが可能な、遠心分離方式によるセパレータを備えるビーズミルが好ましい。一方、(C1)顔料が、数百nm以上の粗大な粒子を含む場合、分散効率化の観点から、ビーズ径が0.1~6mmのビーズが好ましい。
<本発明の有機EL表示装置の製造方法>
 まず、基板上に第一電極を形成することが好ましい。上述したとおり、ボトムエミッション方式であれば透明電極、トップエミッション方式であれば非透明電極を選択する。電極の形成方法としては、例えば、第一電極を形成する材料を成膜した後、パターン加工する方法が挙げられる。成膜方法としては、例えば、スパッタリング法、蒸着法、CVD法、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などが挙げられ、材料に応じた適切な方法を選ぶことができる。パターン加工方法としては、シャドーマスクやフォトマスクなどを用いたエッチング法などが挙げられる。一般的には、スパッタ法により成膜し、フォトレジストを用いたエッチング法によりパターン加工を行う。
 次に、第一電極上に絶縁層を形成することが好ましい。前述の感光性樹脂組成物を第一電極を有する基板に塗布し、感光性樹脂組成物の塗布膜を得ることが好ましい。塗布方法としては、例えば、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などが挙げられる。塗布に先立ち、感光性樹脂組成物を塗布する基板を、予め密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20重量%溶解させた溶液を用いて、基板表面を処理する方法が挙げられる。基板表面の処理方法としては、スピンコート法、スリットダイコート法、バーコート法、ディップコート法、スプレーコート法、蒸気処理法などが挙げられる。塗布後、必要に応じて減圧乾燥し、その後、ホットプレート、オーブン、赤外線などを用いて、50℃~180℃の範囲で1分間~数時間加熱することが好ましい。
 次に、得られた感光性樹脂膜からパターンを形成することが好ましい。感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射することが好ましい。露光に用いられる化学線としては、例えば、紫外線、可視光線、電子線、X線などが挙げられる。本発明においては、水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。
 露光後、現像液を用いて、ポジ型の場合は露光部を、ネガ型の場合は未露光部を除去することが好ましい。現像液としては、例えば、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性化合物の水溶液が好ましい。また、必要に応じて、これらのアルカリ水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が挙げられる。
 次に、現像によって形成したパターンを純水によりリンス処理をすることが好ましい。また、必要に応じて、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを純水に加えてリンス処理をしてもよい。
 次に、ブリーチ処理をすることが好ましい。例えば、キノンジアジド化合物を含むポジ型感光性樹脂組成物の場合、ブリーチ処理によりキノンジアジド化合物がインデンカルボン酸に変化し、酸無水物の生成を抑制することができる。なお、ブリーチ処理は、後述する加熱硬化工程の後に行ってもよい。ブリーチ処理としては、紫外線、可視光線、電子線、X線などの化学線を照射することが好ましく、例えば、水銀灯のi線(365nm)、h線(405nm)またはg線(436nm)を、10~10000mJ/cm程度照射することが好ましい。
 次に、加熱処理を行うことが好ましい。加熱処理により、残留溶剤や耐熱性の低い成分を除去することができるため、絶縁層の耐熱性および耐薬品性を向上させることができる。特に、(A)アルカリ可溶性樹脂として、ポリイミド前駆体、ポリベンゾオキサゾール前駆体、それらの共重合体またはそれらとポリイミドとの共重合体を含む場合は、加熱処理によりイミド環、オキサゾール環を形成することができるため、絶縁層の耐熱性および耐薬品性を向上させることができる。また、(E)熱架橋剤を含む場合は、加熱処理により熱架橋反応を進行させることができ、絶縁層の耐熱性および耐薬品性を向上させることができる。この加熱処理は、温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施することが好ましい。一例としては、150℃、250℃で各30分間ずつ熱処理する方法や、室温より300℃まで2時間かけて直線的に昇温する方法などが挙げられる。加熱処理温度は150℃以上が好ましく、200℃以上がより好ましい。一方、加熱処理温度は400℃以下が好ましく、350℃以下がより好ましい。
 その後、必要な領域に、マスク蒸着法やインクジェット法を用いて有機EL層を形成することが好ましい。代表的なマスク蒸着法は、蒸着マスクを用いて有機化合物を蒸着してパターニングする方法で、所望のパターンを開口部とした蒸着マスクを基板の蒸着源側に配置して蒸着を行う方法が挙げられる。高精度の蒸着パターンを得るためには、平坦性の高い蒸着マスクを基板に密着させることが好ましく、一般的に、蒸着マスクに張力をかける技術や、基板背面に配置した磁石によって蒸着マスクを基板に密着させる技術などが用いられる。蒸着マスクの製造方法としては、エッチング法や機械的研磨、サンドブラスト法、焼結法、レーザー加工法、感光性樹脂の利用などが挙げられるが、微細なパターンが必要な場合は、加工精度に優れるエッチング法や電鋳法を用いることが多い。
 続けて第二電極を形成することが好ましい。ボトムエミッション方式であれば非透明電極、トップエミッション方式であれば透明電極を選択する。有機EL層へのダメージを低減する観点から、蒸着マスクを用いたマスク蒸着法により第二電極を形成することが好ましい。
 このようにして、第一電極と第二電極が交差し、かつ絶縁層が存在しない部分が発光する、有機EL表示装置が完成する。有機EL表示装置における発光画素と呼ばれる範囲は、対向配置された第一電極と第二電極とが交差し重なる部分、さらに、第一電極上の絶縁層により規制される範囲である。アクティブマトリックス型ディスプレイにおいては、スイッチング手段が形成される部分が発光画素の一部を占有するように配置されることがあり、発光画素の形状は矩形状ではなく、一部分が欠落したような形でもよい。しかしながら、発光画素の形状はこれらに限定されるものではなく、例えば円形でもよく、絶縁層の形状によっても容易に変化させることができる。
 その後、有機EL層を保護する目的で封止を行うことが好ましい。有機EL層を酸素や水分に触れさせないことが好ましく、真空中や絶乾雰囲気中において、ガラスや金属の封止缶もしくはガスバリアフィルムを接着することが好ましい。同時に乾燥剤や吸湿剤を封入することも可能である。
 赤、緑、青色領域にそれぞれ発光ピーク波長を有する有機EL層を配列したものや、全面に白色発光する有機EL層を作製して別途カラーフィルタと組み合わせて使用するようなものをカラーディスプレイと呼ぶ。カラーディスプレイにおいて、通常、表示される赤色領域の光のピーク波長は560~700nm、緑色領域は500~560nm、青色領域は420~500nmの範囲である。
 以下、実施例等をあげて本発明を説明する。まず、評価方法について説明する。
<膜厚の測定>
 各実施例および比較例における電極と絶縁層の膜厚は、表面粗さ測定機(サーフコム1400D;(株)東京精密製)を使用して測定した。紫外線吸収板や円偏光板に含まれるフィルムの厚みは、ダイヤルゲージ(PEACOCK社製、製品名「DG-205 type pds-2」)を使用して測定した。
<非透明電極の評価>
 38mm×46mmの無アルカリガラス基板に、マグネトロンスパッタ装置(SH-450;(株)アルバック製)を用いて、スパッタ法により金属層100nmを形成した。ターゲット組成を変更することにより表1に示すとおりに膜組成を変更し、膜組成はICP-AES法(誘導結合プラズマ分析法)により確認した。金属層上に、さらにITO透明導電膜10nmを形成し、非透明電極1~13を得た。
 分光光度計(U-4100;(株)日立ハイテクノロジーズ製)を用いて、得られた非透明電極1~13の波長550nmにおける反射率と透過率を測定した。非透明電極1~13の金属層組成と反射率および透過率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<絶縁層の遮光性評価>
 38mm×46mmの無アルカリガラス基板に、調製例7~14により得られた感光性樹脂組成物1~8を、キュア後の膜厚が1.0μmになるようにスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークした。この膜にフォトマスクを介してUV露光した後、2.38重量%TMAH水溶液で現像し、不要な部分を溶解させ、純水でリンスして樹脂パターンを得た。得られた樹脂パターンを、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて窒素雰囲気下250℃で60分間キュアした。このようにして、基板中央部に1辺が16mmの四角形である絶縁層1~8を形成した。
 透過濃度計(X-Rite 361T(V);サカタインクスエンジニアリング(株)製)を用いて、作製した絶縁層の入射光強度(I)および透過光強度(I)をそれぞれ測定した。遮光性の指標として、光学濃度(以下、「OD」値)を下記式(1)により算出した。その結果を表2に示す。
 OD値=log10(I/I)       (1)
Figure JPOXMLDOC01-appb-T000002
<顔料の数平均粒子径測定>
 調製例1~6により得られた顔料分散液Bk-1~6を、希釈溶媒としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)を用いて1.0×10-5~40体積%の濃度に希釈した溶液について、ゼータ電位・粒子径・分子量測定装置(ゼータサイザーナノZSP;シスメックス(株)製)を用いて、希釈溶媒の屈折率をPGMEAの屈折率に、測定対象の屈折率を1.8に設定して、波長633nmのレーザー光を照射して顔料分散液中の顔料の数平均粒子径を測定した。
<有機EL表示装置の反射率評価>
 各実施例および比較例により得られた有機EL表示装置について、分光測色計(CM-2002;コニカミノルタ(株)製)を用いて、有機EL表示装置表面の反射率(正反射光を含むSCI方式の波長550nmにおける値)を測定した。反射率が小さいほど、外光反射を抑制することができるため好ましい。
<有機EL表示装置の暗輝度評価>
 有機EL表示装置の暗輝度評価環境の概略図を図3に示す。各実施例および比較例により得られた点灯していない有機EL表示装置10を、蛍光灯11の直下2.4m、照度500lxの環境下で、水平に対して45°に傾けて、有機EL表示装置10を反射面として蛍光灯11と分光放射輝度計(CS-1000;コニカミノルタ(株)製)12が正対するように配置した。分光放射輝度計12を用いて、この環境における有機EL表示装置10表面の輝度を測定し、暗輝度とした。
<有機EL表示装置の明輝度、色度評価>
 前述の暗輝度評価と同じ環境下で、各実施例および比較例により得られた有機EL表示装置10を0.625mAの直流駆動にて発光させ、分光放射輝度計12を用いて、有機EL表示装置10表面の輝度と色度を測定した。発光色である色度(x、y=0.350、0.600)を基準とし、基準と測定値との差異により色ズレを判定した。判定は、x、y共に±0.01以内となれば○、x、y共に±0.02以上となれば×、それ以外を△とした。
<有機EL表示装置のコントラスト評価>
 上記方法により測定した暗輝度と明輝度の比を、暗輝度を1として算出した。比が大きいほどコントラストが高く好ましい。
<有機EL表示装置の信頼性評価>
 各実施例および比較例により得られた有機EL表示装置を、発光面を上にして80℃に加熱したホットプレートに載せ、波長365nm、照度0.6mW/cmのUV光を照射した。照射直後(0時間)、250時間、500時間、1000時間経過後に、有機EL表示装置0.625mAの直流駆動により発光させ、発光画素の面積に対する発光部の面積率(画素発光面積率)を測定した。
 合成例1 ヒドロキシル基含有ジアミン化合物の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF)18.3g(0.05モル)をアセトン100mL/プロピレンオキシド17.4g(0.3モル)の混合溶媒に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、パラジウム炭素触媒(パラジウム5重量%)を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、触媒であるパラジウム化合物を濾過により除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物を得た。
Figure JPOXMLDOC01-appb-C000003
 合成例2 アルカリ可溶性樹脂(A-1)の合成
 乾燥窒素気流下、ビス(3,4-ジカルボキシフェニル)エーテル二無水物(ODPA)31.0g(0.10モル)をN-メチル-2-ピロリドン(NMP)500gに溶解させた。ここに合成例1で得られたヒドロキシル基含有ジアミン化合物45.35g(0.075モル)と1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(SiDA)1.24g(0.005モル)をNMP50gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に、末端封止剤として4-アミノフェノール4.36g(0.04モル)をNMP5gとともに加え、50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール23.8g(0.20モル)をNMP50gで希釈した溶液を10分間かけて滴下した。滴下後、50℃で3時間撹拌した。撹拌後、溶液を室温まで冷却した後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過により集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド前駆体であるアルカリ可溶性樹脂(A-1)を得た。
 合成例3 感光剤(B-1)の合成
 乾燥窒素気流下、1,1-ビス(4-ヒドロキシフェニル)-1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エタン(TrisP-PA(商品名、本州化学工業(株)製))21.22g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド36.27g(0.135モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過により集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表される感光剤(B-1)を得た。
Figure JPOXMLDOC01-appb-C000004
 合成例4 アルカリ可溶性樹脂(PI-1)の合成
 乾燥窒素気流下、三口フラスコに、BAHF31.13g(0.085mol)、SiDA6.21g(0.0050mol)、末端封止剤として3-アミノフェノール;メタアミノフェノール(MAP)2.18g(0.020mol)、NMP150.00gを秤量して溶解させた。ここに、NMP50.00gにODPA31.02g(0.10mol)を溶解した溶液を添加し、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレン15gを添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過により集めた。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド樹脂であるアルカリ可溶性樹脂(PI-1)を得た。
 合成例5 アルカリ可溶性樹脂(PIP-1)の合成
 乾燥窒素気流下、三口フラスコに、ODPA31.02g(0.10mol)、NMP150gを秤量して溶解させた。ここに、NMP50gにBAHF25.64g(0.070mol)、SiDA6.21g(0.0050mol)を溶解した溶液を添加し、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。次に、末端封止剤として、NMP15gにMAP5.46g(0.050mol)を溶解した溶液を添加し、50℃で2時間撹拌した。その後、NMP15gにN,N-ジメチルホルムアミドジメチルアセタール(DFA)23.83g(0.20mol)を溶解した溶液を10分間かけて滴下した。滴下終了後、50℃で3時間撹拌した。撹拌後、反応溶液を室温に冷却した後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド前駆体であるアルカリ可溶性樹脂(PIP-1)を得た。
 合成例6 アルカリ可溶性樹脂(CD-1)の合成
 三口フラスコに、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BHPF)を35.04g(0.10mol)、3-メトキシ-n-ブチルアセテート(MBA)を40.31g秤量して溶解させた。ここに、MBA30.00gにODPA27.92g(0.090mol)、末端封止剤としてフタル酸無水物(PHA)2.96g(0.020mol)を溶解した溶液を添加し、20℃で1時間撹拌した。その後、窒素雰囲気下、150℃で5時間撹拌した。撹拌後、得られた溶液に、MBA10.00gにメタクリル酸グリシジル(GMA)14.22g(0.10mol)、ジベンジルアミン(DBA)0.135g(0.0010mol)、4-メトキシフェノール(4-MOP)0.037g(0.0003mol)を溶解した溶液を添加し、90℃で4時間撹拌して、カルド系樹脂であるアルカリ可溶性樹脂(CD-1)溶液を得た。得られたアルカリ可溶性樹脂(CD-1)のMwは4,000、カルボン酸当量は800であり、二重結合当量は800であった。
 合成例7 アルカリ可溶性樹脂(AC-1)溶液の合成
 三口フラスコに、2,2’-アゾビス(イソブチロニトリル)(AIBN)0.821g(1mol%)、PGMEA29.29gを仕込んだ。次に、メタクリル酸(MAA)21.52g(50mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル;ジメチロール-トリシクロデカンジメタアクリレート(TCDM)22.03g(20mol%)、スチレン(STR)15.62g(30mol%)を仕込み、室温でしばらく撹拌して、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間撹拌した。次に、得られた溶液に、PGMEA59.47gにGMA14.22g(20mol%)、DBA0.676g(1mol%)、4-MOP0.186g(0.3mol%)を溶解した溶液を添加し、90℃で4時間撹拌して、アクリル樹脂であるアルカリ可溶性樹脂(AC-1)溶液を得た。得られたアルカリ可溶性樹脂(AC-1)のMwは15,000、カルボン酸当量は490であり、二重結合当量は730であった。
 合成例8 アルカリ可溶性樹脂(NV-1)の合成
 還流冷却器と温度計を備えた三口フラスコに、フェノール94g(1.0mol)を秤取し、触媒として酢酸亜鉛176g(0.8mol)、濃塩酸70mL(0.84mol)を加え、95℃で溶液が均一になるまで撹拌した。その後、約37重量%ホルマリン81g(ホルムアルデヒドとして1.0mol)を加え、95℃のまま11時間撹拌した。撹拌後の生成物をアセトンに溶解させ、蒸留水で2回再沈し乾燥して、ノボラック樹脂であるアルカリ可溶性樹脂(NV-1)を得た。
 合成例9 アルカリ可溶性樹脂(PHS-1)の合成
 t-ブトキシカリウム1.5molを溶解したテトラヒドロフラン溶液310mLを、氷冷しながら撹拌して5℃に冷却し、パラアセトキシスチレン50g(0.31mol)を、反応系を20℃以下に保ちながら30分間掛けて滴下した後、更に30分間そのまま維持して黄燈色に着色したカリウムパラビニルフェノラートのテトラヒドロフラン溶液を調製した。得られた溶液を氷水を用いて冷却し、20℃以下に保ちながら、ジ-t-ブチルカーボネート67.28g(0.31mol)を溶解したテトラヒドロフラン溶液60mLを滴下し、更に室温で1時間撹拌した。得られた溶液に飽和食塩水300mLを加え、振とうした後、水相と分離した有機相を分取した。得られた有機相に無水硫酸ナトリウムを加え、水分を除去し、次いで溶媒を留去して濃縮液を得た。得られた濃縮液を減圧下で乾燥して、26.7Paの圧力下における沸点が90~92℃のp-t-ブトキシカルボニルオキシスチレン65gを得た。上記のようにして得たp-t-ブトキシカルボニルオキシスチレン(モノマー)を、更にCaHの存在下で蒸留した後、ベンゾフェノンナトリウムを用いて精製し、水分等の不純物を除去した。
 2リットルのフラスコに、溶媒としてテトラヒドロフラン1200mL、重合開始剤としてn-ブチルリチウム5.0×10-3molを仕込み、-78℃に冷却した後、先に合成したp-t-ブトキシカルボニルオキシスチレンモノマー60g(50mLのテトラヒドロフランに溶解して-78℃に冷却したもの)を添加し、リビング重合反応を1時間行ったところ、溶液は赤色を呈した。反応の停止は、反応溶液にメタノールを添加してリビング重合反応を終了させることにより行った。次に、得られた反応混合物をメタノール中に注いで重合体を沈澱させ、分離・乾燥して白色の重合体60gを得た。得られた重合体のH-NMRおよびIRを測定したところ、該重合体は、p-t-ブトキシカルボニルオキシ基に活性末端が反応せずに残っている、ポリ(p-t-ブトキシカルボニルオキシスチレン)であり、またGPC溶出曲線の結果から、単分散性(Mw/Mn=1.20)であることが確認された。なお、膜浸透圧測定法によって測定した数平均分子量は10000g/モルであった。
 合成したポリ(p-t-ブトキシカルボニルオキシスチレン)50gをアセトン1,500mLに溶解し、少量の塩酸を60℃で添加して8時間撹拌した後、該溶液を水中に注いで重合体を沈澱させ、洗浄し、分離・乾燥してポリパラヒドロキシスチレン樹脂であるアルカリ可溶性樹脂(PHS-1)30gを得た。得られたポリマーのGPC溶出曲線から、単分散性が極めて高いことが確認された。
 得られたポリマーのH-NMRスペクトルにおいては、p-t-ブトキシカルボニルオキシ基に由来するピークが消失し、又、IRスペクトルにおいては、ポリ(p-ヒドロキシスチレン)に相当する特性吸収バンドが現れた。これらの結果から、得られたポリマーが、単分散性のポリ(p-ヒドロキシスチレン)であることが確認された。なお、得られたポリマーの膜浸透圧測定法による数平均分子量は6000g/molであった。
 調製例1 顔料分散液(Bk-1)の調製
 合成例4により得られた、アルカリ可溶性樹脂(PI-1)の30重量%のMBA溶液138.0g、“SOLSPERSE(登録商標)”20000(Lubrizol製;ポリエーテル系分散剤)(S-20000)13.8g、MBA685.4g、“IRGAPHOR(登録商標)”BLACK S0100CF(一次粒子径40~80nmのベンゾフラノン系黒色顔料、BASF製)(Bk-S0100CF)82.8gを秤量して混合し、高速分散機(ホモディスパー 2.5型;プライミクス(株)製)を用いて20分撹拌し、予備分散液を得た。0.30mmφのジルコニア粉砕ボール(YTZ;東ソー(株)製)が75%充填された遠心分離セパレータを具備する、ウルトラアペックスミル(UAM-015;寿工業(株)製)に、得られた予備分散液を供給し、ローター周速7.0m/sで3時間処理して、固形分濃度15重量%、着色剤/樹脂/分散剤=60/30/10(重量比)の顔料分散液(Bk-1)を得た。得られた顔料分散液中の顔料の数平均粒子径は100nmであった。
 調製例2~6 顔料分散液(Bk-2)~顔料分散液(Bk-6)の調製
 (C)着色材料、(A)アルカリ可溶性樹脂、(F)分散剤の種類と含有量を表3に記載のとおりに変更したこと以外は調製例1と同様にして、顔料分散液(Bk-2)~顔料分散液(Bk-6)を得た。
 調製例1~6の組成と顔料の数平均粒子径をまとめて表3に示す。
Figure JPOXMLDOC01-appb-T000005
 調製例7 感光性樹脂組成物1の調製
 黄色灯下、感光剤“アデカアークルズ”NCI-831((株)ADEKA製)(NCI-831)0.256gをMBA10.186gに添加し、撹拌して溶解させた。次に、合成例4により得られたアルカリ可溶性樹脂(PI-1)の30重量%のMBA溶液0.300g、合成例5により得られたアルカリ可溶性樹脂(PIP-1)の30重量%のMBA溶液2.275g、ラジカル重合性化合物 “KAYARAD”DPHA(日本化薬(株)製;ジペンタエリスリトールヘキサアクリレート)(DPHA)の80重量%のMBA溶液1.422gを添加して撹拌し、均一溶液である調合液を得た。次に、調製例1により得られた顔料分散液(Bk-1)12.968gを秤量し、ここに、上記で得られた調合液12.032gを添加して撹拌し、均一溶液とした。その後、得られた溶液を0.45μmφのフィルターでろ過し、感光性樹脂組成物1を調製した。
 調製例8~13
 顔料分散液、(A)アルカリ可溶性樹脂、(B)感光剤、(G)ラジカル重合性化合物の種類を表4に記載のとおりに変更したこと以外は調製例7と同様にして、感光性樹脂組成物2~7を調製した。
 調製例8~13の組成をまとめて表4に示す。
Figure JPOXMLDOC01-appb-T000006
 調製例14 感光性樹脂組成物8の調製
 前記合成例2により得られたアルカリ可溶性樹脂(A-1)10.0g、合成例3により得られた感光剤(B-1)1.2gをプロピレングリコールモノメチルエーテル(PGME)32.0gとγ-ブチロラクトン(GBL)8.0gの混合溶媒に溶解した後、0.2μmのポリテトラフルオロエチレン製のフィルター(住友電気工業(株)製)を用いて濾過し、感光性樹脂組成物8を得た。
<円偏光板の作製>
 (ポリカーボネート樹脂フィルムの作製)
 ジフェニルカーボネート(三菱化学(株)製)(DPC)とビスフェノールA(三菱化学(株)製)(BPA)とを、モル比DPC/BPAが1.050となるように混合し、温度155℃で原料混合物の溶融液を調製した。原料導入管を介して、220℃、13.3×10Paに制御した容量10mの第1竪型撹拌反応器内に、4400kg/時の流量で原料溶融液を連続供給し、平均滞留時間が60分間となるように、反応器底部のポリマー排出ラインに設けられたバルブ開度を制御しつつ、液面レベルを一定に保った。また、原料溶融液の供給を開始すると同時に、触媒として、BPA1モルに対し、0.5μモル(金属量としてBPA1モルに対し1.0μモル)の割合で炭酸セシウム水溶液を連続供給した。
 反応器底部より排出された反応液を、引き続き、第2、第3の竪型撹拌反応器(容量10m)および第4の横型反応器(容量15m)に逐次連続供給し、第4反応器底部のポリマー排出口から抜き出した。該第4反応器は、2軸横型反応器を使用した。この第4重合槽の撹拌軸の周速は8.8cm/s、撹拌軸の直径は560mmであった。
 次に、第4反応器底部のポリマー排出口から抜き出されたポリマーを溶融状態のままで、ダイ出口にポリマーフィルターを設置した2軸押出機((株)日本製鋼所製 スクリュー径0.174m、L/D=39(ここで、Lとはスクリューの直径を、Dとはスクリューの全長を意味する))に送り、p-トルエンスルホン酸ブチル(触媒として使用した炭酸セシウムに対して5倍モル量)を連続して混練し、ダイからストランド状で抜き出し、カッターで切断し、ポリカーボネート樹脂ペレット(粘度平均分子量(Mv)21,000)を得た。
 第2~第4反応器における反応条件は、第2反応器(260℃、4.00×103Pa、75rpm)、第3反応器(270℃、200Pa、75rpm)、第4反応器(280℃、67Pa、4rpm)とし、反応の進行と共に、高温、高真空とした。また、反応の間は第2と第3反応器の平均滞留時間が60分間、第4反応器の平均滞留時間が90分間となるように液面レベルの制御を行い、同時に副生するフェノールの留去も行った。このとき第4反応器出口反応液の粘度平均分子量(Mv)は21,000、280℃での溶融粘度は約1000Pa・sであった。
 反応器内のポリマーフィルターとしては、リーフディスク型ポリマーフィルターの市販品(日本ポール(株)製、絶対濾過精度20μmの金属不織布型(材質:SUS316L))を使用した。
 得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機(株)製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅200mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み100μmのポリカーボネート樹脂フィルムを作製した。
(位相差フィルムの作製)
 上記方法により得られたポリカーボネート樹脂フィルムから幅350mm、長さ700mmの試料を切り出した。この試料を、バッチ式二軸延伸装置KARO IV(ブルックナー社製)を用いて、延伸温度:ガラス転移温度+4℃、延伸速度:180mm/分(ひずみ速度300%/分)の条件で、1×2.0倍の一軸延伸を行い、透明フィルムを得た。このとき、延伸方向に対して直交方向は保持せずに延伸を行った。このようにして、厚み70μmの位相差フィルムを得た。
(円偏光板の作製)
 上記方法により得られた位相差フィルムの一方の面にコロナ処理を施した。一方、化学式:NHCHNHCHCHSi(OCで表されるシラン化合物(日本ユニカー(株)製、商品名:APZ6601)100重量部に対してイソプロピルアルコール67部重量を混合し、濃度60重量%のシラン化合物溶液を調製した。得られたシラン化合物溶液を、位相差フィルムのコロナ処理面に塗布し、120℃で2分間乾燥して、位相差フィルム上に厚み40nmの易接着層を形成した。
 次いで、上記易接着層を形成した位相差フィルムを、市販の偏光板(日東電工(株)製、製品名「CVS1775SDUHC」)に用いられる偏光子の片面に、易接着層が偏光子側となるようにしてPVA系接着剤を介して貼り合わせた。その際、位相差フィルムの遅相軸と偏光子の吸収軸とが45°の角度をなすようにして貼り合わせた。偏光子のもう一方の面には、けん化処理したTACフィルム(富士写真フイルム(株)製、商品名:富士タックUV80)を、PVA系接着剤を介して貼り合わせた。この積層体を70℃で10分間乾燥し、330mm×250mmに切り出し、円偏光板を得た。
<紫外線吸収板Aの作製>
 前記円偏光板の作製に記載の方法により得られたポリカーボネート樹脂フィルムを紫外線吸収板Aとした。
<紫外線吸収板Bの作製>
 ポリエチレンテレフタレート(PET)(固有粘度[η]=0.65)に添加剤として平均粒径0.25μmのSiO粒子を0.1重量%含有する樹脂組成物を、含水率が50ppm以下になるように乾燥した後、押出機に供給して280℃で溶融した後に、10μmカットの繊維燒結金属フィルターを通過させて濾過し、口金に導入し、溶融フィルムを押し出した。この溶融フィルムにワイヤー状の電極から静電荷を印加しながら、冷却ロール上に溶融フィルムを密着させ、冷却して押出フィルムを得た。得られた押出フィルムを予熱温度80℃で予備加熱して、ロール式長手方向延伸機を用いて、延伸温度90℃で3.0倍に延伸した後、ガラス転移温度以下に冷却した。続いて、得られた長手方向延伸フィルムの両端をクリップで把持しながらテンタに導き、延伸温度105℃に加熱された熱風雰囲気中で幅方向に3.5倍に延伸した後、235℃で熱固定した。製膜速度は50m/minで、得られた延伸フィルムの厚さは100μmであった。
<紫外線吸収板Cの作製>
 脱水したNMPに、85モル%に相当する2-クロルパラフェニレンジアミンと15モル%に相当する4,4’-ジアミノジフェニルエーテルを溶解させ、これに98.5モル%に相当する2-クロルテレフタル酸クロリドを添加して、30℃以下で約2時間の撹拌を行い、芳香族ポリアミドを重合した。得られた芳香族ポリアミド溶液を、炭酸リチウム、ジエタノールアミン、トリエタノールアミンにより中和した後、多量の水に投入し、再沈・乾燥して粉体状の芳香族ポリアミドを得た。その後、得られた芳香族ポリアミド粉末をNMPに溶解させ、芳香族ポリアミド溶液を得た。
 次いで、アプリケーターを用いて芳香族ポリアミド溶液をステンレス板上に塗布し、熱風温度120℃、支持体温度150℃の条件で、フィルムが自己支持性を持つまで乾燥した後、ゲルフィルムをステンレス板から剥離した。次に、ゲルフィルムを金属枠に固定して、水温80℃の水槽内で残存溶媒の水抽出を行った。水抽出後、含水フィルム両面の水分をガーゼで拭き取り、金枠に固定したまま、250℃のオーブンで熱処理することにより、厚み75μmの紫外線吸収板Cを得た。
<紫外線吸収板Dの作製>
 乾燥窒素気流下、200mL4つ口フラスコに3,3’、4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)14.6181g(49.7mmol)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BSAA)1.3611g(2.6mmol)、トランス-1,4-ジアミノシクロへキサン(CHDA)5.9721g(52.3mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してワニスとした。
 300mm×400mm×0.7mm厚のガラス基板(AN100(旭硝子(株)))に、140℃×4分間のプリベーク後の厚さが50μmになるように、合成したワニスをスピン塗布した。その後、ホットプレートを用いて140℃×4分間のプリベーク処理を行った。
 プリベーク処理後の塗膜をイナートオーブンに入れ、窒素気流下(酸素濃度20ppm以下)、3.5℃/分の昇温速度で300℃まで昇温し、300℃で30分間保持し、5℃/分の降温速度で50℃まで冷却し、ポリイミド樹脂膜(ガラス基板上)を作製した。
 その後、ガラス基板上に作製したポリイミド樹脂膜の周辺に切り込みを入れ、水に12時間浸漬してポリイミド樹脂膜をガラス基板から剥離して、膜厚40μmの紫外線吸収板Dを得た。
<紫外線吸収板Eの作製>
 セルロースアセテートプロピオネート(アセチル基置換度1.4、プロピオニル基置換度1.3、分子量Mn=86,000、Mw/Mn=2.5)を、空気中、常圧下で130℃、2時間乾燥し、室温まで放冷した。このセルロースアセテートプロピオネート100重量部に、下記構造式で表されるA紫外線吸収剤2.3重量部、IRGANOX 1010(チバスペシャルティケミカルズ(株)製)0.5重量部、GSY-P101(堺化学工業(株)製)0.25重量部、下記構造式で表されるB安定剤0.3重量部、下記構造式で表されるC可塑剤8.0重量部を添加し、この混合物を250℃で加熱溶融した後、T型ダイより溶融押出成形し、さらに160℃において1.2×1.2の延伸比で延伸し、膜厚40μmの紫外線吸収板Eを得た。
Figure JPOXMLDOC01-appb-C000007
 分光光度計(U-4100;(株)日立ハイテクノロジーズ製)を用いて、得られた紫外線吸収板A~Eの透過率を測定した。測定結果を図4に示す。図4に示すグラフは、横軸が波長(nm)、縦軸が透過率(%)である。
 実施例1~20、比較例1~22
 図5A~図5Dを参照して、有機機EL表示装置の作製手順の概略を説明する。まず、38mm×46mmの無アルカリガラス基板8に、表5に示す非透明電極の金属層(組成は表1に示す)100nmおよびITO透明導電膜10nmをスパッタ法により基板全面に形成し、第一電極(非透明電極)6としてエッチングした。ただし、実施例18と比較例17のみ、ITO透明導電膜を形成しなかった。また同時に、第二電極7を取り出すための補助電極9も形成した(図5A)。得られた基板をセミコクリーン56(商品名、フルウチ化学(株)製)で10分間超音波洗浄してから、超純水で洗浄した。次にこの基板全面に、表5に示す感光性樹脂組成物をスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークした。この膜にフォトマスクを介してUV露光した後、2.38重量%TMAH水溶液で現像し、不要な部分を溶解させ、純水でリンスした。得られた樹脂パターンを、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて窒素雰囲気下250℃で60分間キュアした。このようにして、幅70μm、長さ260μmの開口部が幅方向にピッチ155μm、長さ方向にピッチ465μmで配置され、それぞれの開口部が第一電極6を露出せしめる形状の絶縁層3を、基板有効エリアに限定して形成した(図5B)。このようにして、1辺が16mmの四角形である基板有効エリア(表示エリア)に絶縁層開口率25%の絶縁層3を形成した。絶縁層3の厚さは約1.0μmであった。
 次に、前処理として窒素プラズマ処理を行った後、真空蒸着法により発光層を含む有機EL層4を形成した(図5C)。なお、蒸着時の真空度は1×10-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として化合物(HT-1)を10nm、正孔輸送層として化合物(HT-2)を50nm蒸着した。次に発光層に、ホスト材料としての化合物(GH-1)とドーパント材料としての化合物(GD-1)を、ドープ濃度が10%になるようにして40nmの厚さに蒸着した。次に、電子輸送材料として化合物(ET-1)と化合物(LiQ)を体積比1:1で40nmの厚さに積層した。有機EL層で用いた化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000008
 次に、化合物(LiQ)を2nm蒸着した後、MgおよびAgを体積比10:1で10nm蒸着して第二電極(透明電極)7とした(図5D)。最後に、低湿窒素雰囲気下でキャップ状ガラス板をエポキシ樹脂系接着剤を用いて接着することで封止をし、1枚の基板上に1辺が5mmの四角形であるトップエミッション方式の有機EL表示装置を4つ作製した。なお、ここで言う膜厚は水晶発振式膜厚モニターにおける表示値である。また、第二電極と同じ膜を前述の非透明電極の評価と同じ方法で測定したところ、透過率は50%であった。
 実施例9を除き、前述の方法により得られた円偏光板や紫外線吸収板を、有機EL表示装置の前面側に重ね合わせて装着した。各実施例における組み合わせを表5に示す。
 有機EL表示装置の構成を表5に、得られた有機EL表示装置について、前述の方法により評価した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 比較例23
 フォトマスクの設計変更により、開口部を幅40μm、長さ55μmの開口部とし、幅方向にピッチ155μm、長さ方向にピッチ465μmで配置した以外は、実施例3と同様に基板を作製した。このようにして表示エリアにおける絶縁層開口率3%の絶縁層を形成した。この基板を用いて実施例3と同様に評価したところ、信頼性が著しく低下した。
 比較例24
 フォトマスクの設計変更により、開口部を幅100μm、長さ325μmの開口部とし、幅方向にピッチ155μm、長さ方向にピッチ465μmで配置した以外は、実施例3と同様に基板を作製した。このようにして表示エリアにおける絶縁層開口率45%の絶縁層を形成した。この基板を用いて実施例3と同様に評価したところ、有機EL表示装置表面の反射率が大幅に上昇し、コントラストが悪化した。
[化合物の略名の説明]
ITO:酸化インジウムスズ
KOH:水酸化カリウム
1:基板
2:第一電極(透明電極)
3:絶縁層
4:有機EL層
5:第二電極(非透明電極)
6:第一電極(非透明電極)
7:第二電極(透明電極)
8:ガラス基板
9:補助電極
10:有機EL表示装置
11:蛍光灯
12:分光放射輝度計

Claims (10)

  1.  少なくとも透明電極、有機EL層、非透明電極をこの順に有し、さらに黒色の絶縁層を有する有機EL表示装置であって、
     前記非透明電極の反射率が25%±20%である、有機EL表示装置。
  2.  偏光層を有しない、請求項1記載の有機EL表示装置。
  3.  さらに紫外線吸収層を含む、請求項1または2記載の有機EL表示装置。
  4.  前記絶縁層が、(C)着色材料を含有する感光性樹脂組成物の硬化膜である、請求項1~3のいずれか記載の有機EL表示装置。
  5.  前記感光性樹脂組成物が、さらに(A)アルカリ可溶性樹脂および(B)感光剤を含有する、請求項4記載の有機EL表示装置。
  6.  前記(A)アルカリ可溶性樹脂が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリシロキサン、アクリル樹脂および/またはカルド樹脂を含む、請求項5記載の有機EL表示装置。
  7.  前記非透明電極が、Ag、Al、C、Cr、Cu、Mo、NiまたはTiを主成分とする、請求項1~6のいずれか記載の有機EL表示装置。
  8.  表示エリアにおける絶縁層開口率が20%±15%である、請求項7記載の有機EL表示装置。
  9.  前記非透明電極が多層構造を有する、請求項7または8記載の有機EL表示装置。
  10. 前記非透明電極を構成する多層構造のうち、最表面層が透明導電性酸化物材料から形成される、請求項9記載の有機EL表示装置。
PCT/JP2017/042894 2016-12-01 2017-11-29 有機el表示装置 WO2018101356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/463,729 US11011707B2 (en) 2016-12-01 2017-11-29 Organic EL display device
JP2017563146A JPWO2018101356A1 (ja) 2016-12-01 2017-11-29 有機el表示装置
KR1020197014037A KR102475330B1 (ko) 2016-12-01 2017-11-29 유기 el 표시 장치
CN201780070589.4A CN109964540B (zh) 2016-12-01 2017-11-29 有机el显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233898 2016-12-01
JP2016233898 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101356A1 true WO2018101356A1 (ja) 2018-06-07

Family

ID=62241653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042894 WO2018101356A1 (ja) 2016-12-01 2017-11-29 有機el表示装置

Country Status (6)

Country Link
US (1) US11011707B2 (ja)
JP (1) JPWO2018101356A1 (ja)
KR (1) KR102475330B1 (ja)
CN (1) CN109964540B (ja)
TW (1) TWI769196B (ja)
WO (1) WO2018101356A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004717A (ja) * 2018-06-25 2020-01-09 東レ株式会社 有機el表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573894A (zh) * 2019-03-15 2021-10-29 日东电工株式会社 粘合剂、中间层叠体的制造方法以及中间层叠体
CN111443530A (zh) * 2020-04-15 2020-07-24 深圳市华星光电半导体显示技术有限公司 显示屏和显示装置
TWI845821B (zh) * 2021-02-26 2024-06-21 新應材股份有限公司 光阻組成物、光學膜及光學膜之製造方法
CN114967323A (zh) * 2021-02-26 2022-08-30 新应材股份有限公司 光阻组成物、光学膜及光学膜的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527688A (ja) * 1996-12-23 2001-12-25 ザ トラスティーズ オブ プリンストン ユニバーシテイ 保護層を含有する有機発光デバイス
JP2004281365A (ja) * 2002-10-03 2004-10-07 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器
JP2005339957A (ja) * 2004-05-26 2005-12-08 Seiko Epson Corp 電界発光素子及び表示素子
JP2010103105A (ja) * 2008-09-29 2010-05-06 Mitsubishi Chemicals Corp 有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2013069789A1 (ja) * 2011-11-11 2013-05-16 旭硝子株式会社 ネガ型感光性樹脂組成物、隔壁、ブラックマトリックス及び光学素子
WO2015098714A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 光学積層体および面光源装置
JP2015197995A (ja) * 2014-04-01 2015-11-09 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法及び有機エレクトロルミネッセンス装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861219A (en) 1997-04-15 1999-01-19 The Trustees Of Princeton University Organic light emitting devices containing a metal complex of 5-hydroxy-quinoxaline as a host material
US5986401A (en) 1997-03-20 1999-11-16 The Trustee Of Princeton University High contrast transparent organic light emitting device display
US5998803A (en) 1997-05-29 1999-12-07 The Trustees Of Princeton University Organic light emitting device containing a hole injection enhancement layer
US5811833A (en) 1996-12-23 1998-09-22 University Of So. Ca Electron transporting and light emitting layers based on organic free radicals
US5834893A (en) 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US5981306A (en) 1997-09-12 1999-11-09 The Trustees Of Princeton University Method for depositing indium tin oxide layers in organic light emitting devices
US6091195A (en) 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6046543A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University High reliability, high efficiency, integratable organic light emitting devices and methods of producing same
US6045930A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University Materials for multicolor light emitting diodes
US6125226A (en) 1997-04-18 2000-09-26 The Trustees Of Princeton University Light emitting devices having high brightness
US5874803A (en) 1997-09-09 1999-02-23 The Trustees Of Princeton University Light emitting device with stack of OLEDS and phosphor downconverter
KR100743338B1 (ko) 2000-06-28 2007-07-26 도레이 가부시끼가이샤 표시 장치
JP4982927B2 (ja) 2000-06-28 2012-07-25 東レ株式会社 表示装置
JP3705282B2 (ja) * 2002-10-03 2005-10-12 セイコーエプソン株式会社 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
US7164228B2 (en) 2002-12-27 2007-01-16 Seiko Epson Corporation Display panel and electronic apparatus with the same
US7355337B2 (en) 2002-12-27 2008-04-08 Seiko Epson Corporation Display panel, electronic apparatus with the same, and method of manufacturing the same
KR100546662B1 (ko) 2003-08-05 2006-01-26 엘지전자 주식회사 유기 el 소자
JP5685558B2 (ja) * 2012-04-19 2015-03-18 株式会社東芝 表示装置
WO2014035197A1 (ko) * 2012-08-31 2014-03-06 주식회사 엘지화학 전도성 구조체 및 이의 제조방법
JP2014097117A (ja) * 2012-11-13 2014-05-29 Makita Corp 集塵機
CN104241535B (zh) * 2013-06-06 2017-07-25 上海和辉光电有限公司 一种有机发光结构
JP5941935B2 (ja) * 2014-02-25 2016-06-29 介面光電股▲ふん▼有限公司 タッチパネル装置及びその電極構造
KR102182828B1 (ko) * 2014-08-14 2020-11-26 엘지디스플레이 주식회사 유기발광표시패널
US10896942B2 (en) * 2015-03-11 2021-01-19 Toray Industries, Inc. Organic EL display device and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527688A (ja) * 1996-12-23 2001-12-25 ザ トラスティーズ オブ プリンストン ユニバーシテイ 保護層を含有する有機発光デバイス
JP2004281365A (ja) * 2002-10-03 2004-10-07 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器
JP2005339957A (ja) * 2004-05-26 2005-12-08 Seiko Epson Corp 電界発光素子及び表示素子
JP2010103105A (ja) * 2008-09-29 2010-05-06 Mitsubishi Chemicals Corp 有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2013069789A1 (ja) * 2011-11-11 2013-05-16 旭硝子株式会社 ネガ型感光性樹脂組成物、隔壁、ブラックマトリックス及び光学素子
WO2015098714A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 光学積層体および面光源装置
JP2015197995A (ja) * 2014-04-01 2015-11-09 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法及び有機エレクトロルミネッセンス装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004717A (ja) * 2018-06-25 2020-01-09 東レ株式会社 有機el表示装置
JP7310349B2 (ja) 2018-06-25 2023-07-19 東レ株式会社 有機el表示装置

Also Published As

Publication number Publication date
US20190386217A1 (en) 2019-12-19
CN109964540A (zh) 2019-07-02
KR20190085929A (ko) 2019-07-19
TW201828774A (zh) 2018-08-01
CN109964540B (zh) 2022-04-01
KR102475330B1 (ko) 2022-12-08
JPWO2018101356A1 (ja) 2019-10-24
US11011707B2 (en) 2021-05-18
TWI769196B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP6743693B2 (ja) 有機el表示装置、およびその製造方法
TWI757457B (zh) 感光性樹脂組成物、硬化膜、具備硬化膜之元件、具備硬化膜之有機el顯示裝置、硬化膜之製造方法、及有機el顯示裝置之製造方法
WO2018101356A1 (ja) 有機el表示装置
TWI709641B (zh) 組成物、膜、近紅外線截止濾波器、積層體、圖案形成方法、固體攝像元件、圖像顯示裝置、紅外線感測器及濾色器
JP6879204B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する表示装置、並びにその製造方法
US10209554B2 (en) Method for manufacturing laminated resin black-matrix substrate
US20210191264A1 (en) Negative photosensitive resin composition, cured film, and organic el display and manufacturing method therefor
CN111454711A (zh) 量子点、组合物与使用其的固化层、包含固化层的滤色器与显示装置以及制造固化层的方法
WO2019065902A1 (ja) 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法
CN110024485A (zh) 有机el显示装置
JP7106863B2 (ja) 有機el表示装置用感光性樹脂組成物
TWI786364B (zh) 量子點、可固化組成物、固化層、濾色器以及顯示裝置
CN109897449B (zh) 可固化组合物、感光性树脂组合物、感光性树脂膜、彩色滤光片及制造像素的方法
CN112724959B (zh) 量子点、包括其的可固化组合物、固化层以及彩色滤光器
CN114096640B (zh) 量子点、包括其的可固化组成物、固化层以及彩色滤光片
TW201800500A (zh) 硬化性組成物、硬化膜、濾光器、積層體、固體攝像元件、圖像顯示裝置及紅外線感測器
KR20180126299A (ko) 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 컬러필터
JPWO2019182041A1 (ja) 硬化膜の製造方法、及び有機elディスプレイの製造方法
TW202026365A (zh) 組成物、膜、濾光器、固體攝像元件、紅外線感測器、濾光器的製造方法、相機模組、化合物及分散組成物
CN115052936B (zh) 着色组合物、膜、滤光器、固体摄像元件及图像显示装置
KR102284582B1 (ko) 적색 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 컬러필터
KR102667382B1 (ko) 감광성 수지 조성물, 이를 이용하여 제조된 디스플레이 격벽 구조물 및 이를 포함하는 표시장치
CN119730675A (zh) 像素界定层制备方法
CN113946102A (zh) 感光性树脂组合物、使用其的感光性树脂膜及彩色滤光片
KR20240106110A (ko) 흑색 감광성 수지 조성물, 이를 사용하여 제조된 화소정의막 및 이를 포함하는 유기발광소자 및 표시장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017563146

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014037

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876428

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载