+

WO2018101160A1 - Magnet unit - Google Patents

Magnet unit Download PDF

Info

Publication number
WO2018101160A1
WO2018101160A1 PCT/JP2017/042174 JP2017042174W WO2018101160A1 WO 2018101160 A1 WO2018101160 A1 WO 2018101160A1 JP 2017042174 W JP2017042174 W JP 2017042174W WO 2018101160 A1 WO2018101160 A1 WO 2018101160A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
permanent magnet
axial direction
target
permanent
Prior art date
Application number
PCT/JP2017/042174
Other languages
French (fr)
Japanese (ja)
Inventor
池本正幸
宮路剛
津田哲平
Original Assignee
アイシン・エィ・ダブリュ株式会社
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, アイシン精機株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2018101160A1 publication Critical patent/WO2018101160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a magnet unit used for a rotor for a rotating electrical machine.
  • Patent Document 1 discloses a permanent magnet (2) used for a rotor core (1) having a step skew structure. Specifically, the rotor core (1) of Patent Document 1 is divided into a plurality of blocks in the axial direction, and a stage skew structure is formed by disposing each block in the circumferential direction. . And the permanent magnet (2) is divided
  • a first feature of a magnet unit that is used in a rotor for a rotating electrical machine having a rotor core in which magnet insertion holes extending in the axial direction are formed at a plurality of positions in the circumferential direction is inserted into one magnet insertion hole.
  • the configuration includes a first permanent magnet and a second permanent magnet having a residual magnetic flux density lower than that of the first permanent magnet, and the first permanent magnet and the second permanent magnet have the same magnetization direction.
  • one side of the axial direction is the first side in the axial direction and one side of the target direction is the first in the target direction
  • the opposing surfaces of the first permanent magnet and the second permanent magnet have a first inclined surface that goes toward the first direction in the target direction toward the first side in the axial direction.
  • the opposed surfaces of the first permanent magnet and the second permanent magnet have the first inclined surface inclined with respect to the axial direction. Therefore, even when the magnet unit is formed so as to extend parallel to the axial direction as a whole, the position in the target direction where the density of the magnetic flux generated from the magnet unit is the highest is the axial direction of the first inclined surface. In the formation region, it can be configured to move toward the first direction in the target direction toward the first side in the axial direction, and a continuous skew structure can be realized with a single magnet unit.
  • since the second permanent magnet is arranged in the space where the first permanent magnet in the magnet insertion hole is not arranged, compared to the case where the second permanent magnet is not arranged in the space.
  • the second feature of the magnet unit that is used in a rotor for a rotating electrical machine having a rotor core in which magnet insertion holes extending in the axial direction are formed at a plurality of positions in the circumferential direction is inserted into one magnet insertion hole.
  • the configuration includes a magnet body including at least a first permanent magnet, and a second permanent magnet having a residual magnetic flux density lower than that of the first permanent magnet, and the magnet body and the second permanent magnet have respective magnetization directions.
  • the magnet body and the second permanent magnet are arranged side by side in a target direction orthogonal to both the axial direction and the magnetization direction, and the magnet body and the second permanent magnet each have a width in the magnetization direction in the axial direction.
  • the width in the target direction of one of the magnet body and the second permanent magnet increases toward the first axial direction.
  • the magnet body The other of the target width of the fine said second permanent magnet is that is decreasing toward the axially first side.
  • variety of one object direction is the axial direction 1st in the magnet body in which the 1st permanent magnet whose residual magnetic flux density is higher than a 2nd permanent magnet is contained, and a 2nd permanent magnet. It arrange
  • FIG. 1 which shows the rotary electric machine which concerns on 1st embodiment.
  • Axial view of a part of the rotor according to the first embodiment Sectional drawing orthogonal to the axial direction of a part of the rotor according to the first embodiment
  • the perspective view of the magnet unit which concerns on 1st embodiment Partial axial view of the rotor according to the second embodiment Sectional drawing orthogonal to the axial direction of a part of the rotor according to the second embodiment
  • Side view of magnet unit according to other embodiment Side view of magnet unit according to other embodiment
  • axial direction L “radial direction R”, and “circumferential direction C” are axes A of a rotor for a rotating electrical machine (hereinafter referred to as “rotor 2”) (see FIG. 1). Is defined as a standard.
  • the axis A is a virtual axis, and the rotor 2 rotates about the axis A.
  • first axial direction L1 one side in the axial direction L
  • Side L2 “.
  • a direction orthogonal to both the axial direction L and the magnetization direction M is defined as a target direction D (see FIG. 4).
  • One side of the target direction D is set as “target direction first side D1”
  • the other side of the target direction D is set as “target direction second side D2.”
  • the magnet unit 30 will be described using each of the above directions, assuming that the magnet unit 30 is mounted on the rotor core 15 (the state shown in FIGS. 2 and 3). Further, in this specification, terms related to dimensions, arrangement direction, arrangement position, and the like are used as a concept including a state having a difference due to an error (an error that is acceptable in manufacturing).
  • the magnet unit 30 is used for the rotor 2.
  • the rotor 2 includes a rotor core 15 in which magnet insertion holes 20 extending in the axial direction L are formed at a plurality of positions in the circumferential direction C. 30 is inserted into one magnet insertion hole 20 (each of the magnet insertion holes 20).
  • the rotor 2 is a rotor for a rotating electrical machine, and is used for the rotating electrical machine 1 together with the stator 3. In the example shown in FIG.
  • the rotating electrical machine 1 is housed in a case 4, a stator core 10 that is a core of the stator 3 is fixed to the case 4 (here, the inner surface of the case 4), and the rotor 2 is attached to the case 4. On the other hand, it is rotatably supported.
  • the rotating electrical machine 1 includes a rotor shaft 6 that is rotatably supported with respect to the case 4 via a bearing 5, and a rotor core 15 that is a core of the rotor 2 rotates integrally with the rotor shaft 6. To be connected.
  • the rotor core 15 is disposed to face the stator core 10 in the radial direction R.
  • the rotating electrical machine 1 is an inner rotor type rotating electrical machine.
  • the rotor 2 in which the magnet unit 30 is used is an inner rotor type rotor for a rotating electrical machine, and the rotor 2 is on the inner side in the radial direction R with respect to the diameter of the stator 3 (stator core 10). It is arranged at a position overlapping with the stator 3 (stator core 10) when viewed in the direction R.
  • the rotating electrical machine 1 is a rotating field type rotating electrical machine, and a coil 13 is wound around the stator core 10.
  • rotary electric machine is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary. Yes.
  • the rotor 2 has a rotor core 15 to which the magnet unit 30 is attached.
  • magnet insertion holes 20 extending in the axial direction L are formed at a plurality of positions in the circumferential direction C in the rotor core 15 to which the magnet unit 30 is attached.
  • the magnet unit 30 is inserted into one magnet insertion hole 20 (each of the magnet insertion holes 20). That is, one rotor core 15 is equipped with the same number of magnet units 30 as the magnet insertion holes 20 formed in the rotor core 15.
  • the rotor 2 is a rotor used in a rotary electric machine (for example, a synchronous motor) having an embedded magnet structure, and the magnet insertion hole 20 has a shape that does not open in a direction orthogonal to the axial direction L (that is, viewed in the axial direction L). The shape is closed over the entire circumference).
  • the rotor core 15 is formed, for example, by laminating a plurality of annular plate-like magnetic plates (for example, electromagnetic steel plates) in the axial direction L, or press-molding magnetic powder that is magnetic material powder.
  • the green compact is formed as the main component.
  • the magnet insertion hole 20 is formed so as to penetrate the rotor core 15 in the axial direction L. As shown in FIG. 1, in this embodiment, the magnet insertion hole 20 is formed so as to extend parallel to the axial direction L. In the present embodiment, the magnet insertion hole 20 has a cross-sectional shape orthogonal to the axial direction L that is formed uniformly (uniformly) along the axial direction L. According to the shape of the magnet insertion hole 20, in this embodiment, the magnet unit 30 is disposed inside the magnet insertion hole 20 so as to extend in parallel with the axial direction L as a whole. And the cross-sectional shape orthogonal to the axial direction L of the whole magnet unit 30 is formed uniformly along the axial direction L.
  • the center position S in the circumferential direction C is arranged along the axial direction L in the magnet insertion hole 20 in the present embodiment. Since the magnet insertion hole 20 is arranged at the same position in the radial direction R at each position in the axial direction L, the center position S in the circumferential direction C of the magnet insertion hole 20 is arranged along the axial direction L. Center positions of the magnet insertion hole 20 in both the circumferential direction C and the radial direction R are arranged along the axial direction L. In this specification, “arranged along the axial direction L” is not limited to being arranged parallel to the axial direction L, and is less than a predetermined angle with respect to the axial direction L (for example, less than 20 degrees). ) Is used as a concept including the case of being inclined. In the present embodiment, the magnet insertion hole 20 is arranged such that the center position S in the circumferential direction C is parallel to the axial direction L.
  • each of the magnetic poles P formed in the circumferential direction C is formed by one magnet unit 30. That is, in the present embodiment, the magnet unit 30 is inserted into the magnet insertion hole 20 disposed in the central portion of the magnetic pole P in the circumferential direction C.
  • the center in the circumferential direction C of the magnetic pole P is a region in the circumferential direction C including the magnetic pole center Q, where the center in the circumferential direction C of the magnetic pole P is the magnetic pole center Q.
  • the magnet unit 30 is inserted into each of the magnet insertion holes 20 formed in a plurality (the same number as the magnetic poles P) in the circumferential direction C so that two magnetic poles P adjacent in the circumferential direction C have opposite polarities.
  • the magnet insertion hole 20 functions as a magnetic resistance (flux barrier) against the magnetic flux flowing inside the rotor core 15 in addition to the magnet arrangement region in which the magnet unit 30 is arranged.
  • the region to be operated is provided on both sides in the circumferential direction C with respect to the magnet arrangement region.
  • the magnet insertion hole 20 (magnet arrangement region) is seen in the axial direction L, on both sides of the circumferential direction C from the magnetic pole center Q, and in the radial direction at the magnetic pole center Q. It is formed so as to extend linearly in a direction orthogonal to R (hereinafter referred to as “extending direction”). That is, the extending direction of the magnet insertion hole 20 coincides with the tangential direction at the magnetic pole center Q of the circle with the axis A as a reference when viewed in the axial direction L.
  • the magnet insertion hole 20 (magnet arrangement region) has a width in a direction orthogonal to both the axial direction L and the extending direction (a width in a direction parallel to the radial direction R at the magnetic pole center Q). Is uniformly formed along the extending direction. And this width
  • the magnet unit 30 includes a first permanent magnet 41 and a second permanent magnet 42 having a residual magnetic flux density lower than that of the first permanent magnet 41.
  • the magnet unit 30 further includes a third permanent magnet 43 having a residual magnetic flux density lower than that of the first permanent magnet 41.
  • the third permanent magnet 43 has the same residual magnetic flux density as the second permanent magnet 42.
  • the magnet unit 30 includes the magnet body 40 including at least the first permanent magnet 41 and the second permanent magnet 42 having a residual magnetic flux density lower than that of the first permanent magnet 41.
  • the magnet body 40 includes a third permanent magnet 43 in addition to the first permanent magnet 41.
  • the magnet unit 30 is formed by a combination of a plurality of permanent magnets. As shown in FIG. 4, in the present embodiment, the entire shape of the magnet unit 30 is formed in a rectangular parallelepiped shape in accordance with the shape of the magnet insertion hole 20 (magnet arrangement region).
  • the plurality of permanent magnets forming one magnet unit 30 are inserted into the magnet insertion hole 20 while being fixed to each other by an adhesive or the like, or are inserted into the magnet insertion hole 20 without being fixed to each other.
  • the relative positions of the plurality of permanent magnets inside the magnet insertion hole 20 are fixed directly or indirectly by an adhesive, a filler, or the like.
  • the plurality of permanent magnets included in the magnet unit 30 may be permanent magnets whose main components are the same as each other or permanent magnets whose main components are different from each other.
  • the plurality of permanent magnets included in the magnet unit 30 are the same as each other, for example, by adjusting the amount of additive element (for example, dysprosium) added to the main component, The residual magnetic flux densities can be made different from each other.
  • the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 can all be rare earth magnets such as neodymium magnets.
  • the plurality of permanent magnets included in the magnet unit 30 are permanent magnets having different main components, for example, a rare earth magnet such as a neodymium magnet is used as the first permanent magnet 41, and the second permanent magnet 42 and the third permanent magnet 42 are used.
  • a ferrite magnet can be used as the permanent magnet 43.
  • a permanent magnet which comprises the magnet unit 30 not a sintered magnet but a bond magnet, a rubber magnet, etc. can also be used. It is preferable to combine (use) an inexpensive magnet that is strong against a demagnetizing field.
  • the first permanent magnet 41 and the second permanent magnet 42 are arranged in the target direction D orthogonal to both the axial direction L and the magnetization direction M so that the respective magnetization directions M face the same side. Be placed. Therefore, as shown in FIGS. 2 and 3, the first permanent magnet 41 and the second permanent magnet 42 included in one magnet unit 30 generate magnetic fluxes B in the same direction.
  • the third permanent magnet 43 is the first permanent magnet 41 in the target direction D such that the magnetization direction M of the third permanent magnet 43 faces the same side as the magnetization direction M of the first permanent magnet 41.
  • the two permanent magnets 42 are arranged side by side on the opposite side.
  • the second permanent magnet 42 is disposed on the first direction D1 in the target direction with respect to the first permanent magnet 41
  • the third permanent magnet 43 is disposed on the second direction D2 in the target direction with respect to the first permanent magnet 41. . Therefore, as shown in FIG. 3, the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 provided in one magnet unit 30 generate magnetic fluxes B in the same direction.
  • the plurality of permanent magnets constituting the magnet body 40 (a plurality of permanent magnets including the first permanent magnet 41, and in the present embodiment, the first permanent magnet 41 and the third permanent magnet 43) Arranged in the target direction D so that the magnetization direction M faces the same side.
  • the magnetization direction M of the magnet body 40 is the common magnetization direction M between the plurality of permanent magnets constituting the magnet body 40.
  • the magnet body 40 and the second permanent magnet 42 are arranged side by side in the target direction D so that the respective magnetization directions M face the same side.
  • 2 is a view of a part of the rotor 2 as viewed from the second axial side L2
  • FIG. 3 shows a sectional shape of a part of the rotor 2 at the central part in the axial direction L of the magnet unit 30.
  • the magnetization direction M is a common direction among the plurality of permanent magnets provided in one magnet unit 30.
  • the common magnetization direction M may be referred to as the magnetization direction M of the magnet unit 30.
  • the magnet unit 30 is arranged so that the magnetization direction M of the magnet unit 30 faces the outside or the inside of the radial direction R.
  • the opposing surface (the opposing surface in the target direction D) of the first permanent magnet 41 and the second permanent magnet 42 is a first opposing surface 51
  • a surface facing the third permanent magnet 43 (a surface facing the target direction D) is defined as a second facing surface 52.
  • the first facing surface 51 has a first inclined surface 61 that goes toward the target direction first side D ⁇ b> 1 as it goes toward the axial direction first side L ⁇ b> 1.
  • the 1st inclined surface 61 is made into the plane which goes to the object direction 1st side D1 by a fixed ratio as it goes to the axial direction 1st side L1.
  • the first inclined surface 61 is formed in a straight line shape toward the first direction D1 in the target direction as viewed from the magnetization direction M of the magnet unit 30 toward the first side L1 in the axial direction.
  • the entire first facing surface 51 is the first inclined surface 61.
  • the second facing surface 52 is an inclined surface (third inclined surface 63) that faces the first direction D1 in the target direction toward the first axial direction L1 in the region in the axial direction L where the first inclined surface 61 is formed. )have.
  • the 3rd inclined surface 63 is made into the plane which goes to the object direction 1st side D1 by a fixed ratio as it goes to the axial direction 1st side L1.
  • the third inclined surface 63 is formed in a straight line shape toward the first direction D1 in the target direction as it goes toward the first side L1 in the axial direction when viewed in the magnetization direction M of the magnet unit 30.
  • the third inclined surface 63 is formed in parallel with the first inclined surface 61.
  • the entire second facing surface 52 is a third inclined surface 63.
  • the entire shape of the magnet unit 30 is formed in a rectangular parallelepiped shape. Therefore, the end surfaces on both sides in the target direction D of the magnet unit 30 are formed in a planar shape along a plane orthogonal to the target direction D, unlike the first inclined surface 61 and the third inclined surface 63.
  • the end surface of the target direction first side D1 of the magnet unit 30 is formed by the end surface of the second permanent magnet 42 on the first direction D1 in the target direction.
  • the end surface on the second direction D2 in the target direction of the magnet unit 30 is formed by the end surface on the second direction D2 in the target direction of the third permanent magnet 43.
  • the first permanent magnet 41 is formed so that the width in the target direction D is uniform along the axial direction L.
  • the end surface on the first direction D1 in the target direction of the first permanent magnet 41 is formed in a planar shape that forms the first inclined surface 61
  • the end surface on the second direction D2 in the target direction of the first permanent magnet 41 is The three inclined surfaces 63 are formed in a planar shape. That is, the first permanent magnet 41 is formed in a parallelogram shape when viewed in the magnetization direction M.
  • the first permanent magnet 41 is formed such that the width of the magnetization direction M is uniform along the target direction D and the axial direction L.
  • the second permanent magnet 42 is formed to have the same length in the axial direction L as the first permanent magnet 41.
  • the width in the target direction D of the second permanent magnet 42 is equal to the width in the target direction D of the first permanent magnet 41 at the end portion on the second axial side L2, and zero at the end portion on the first axial side L1. It is formed to become.
  • the end surface of the target direction first side D1 of the second permanent magnet 42 is formed in a planar shape along a surface orthogonal to the target direction D, and the end surface of the second permanent magnet 42 on the target direction second side D2 is
  • the first inclined surface 61 is formed in a planar shape.
  • the second permanent magnet 42 is formed in a right triangle shape with the first facing surface 51 (first inclined surface 61) as the hypotenuse as viewed in the magnetization direction M.
  • the second permanent magnet 42 is formed such that the width in the magnetization direction M is equal to the width in the magnetization direction M of the first permanent magnet 41 (the width in the magnetization direction M of the magnet body 40). And uniformly formed along the target direction D and the axial direction L.
  • the second permanent magnet 42 is formed so that the width of the magnetization direction M is uniform along the axial direction L.
  • the third permanent magnet 43 is formed to have the same length in the axial direction L as the first permanent magnet 41.
  • the width of the third permanent magnet 43 in the target direction D becomes zero at the end portion on the second axial side L2, and the width of the first permanent magnet 41 in the target direction D at the end portion on the first axial side L1. It is formed to be equal.
  • the end surface of the target direction first side D1 of the third permanent magnet 43 is formed in a planar shape that forms the third inclined surface 63, and the end surface of the third permanent magnet 43 on the target direction second side D2 is the target. It is formed in a planar shape along a plane orthogonal to the direction D.
  • the third permanent magnet 43 when viewed in the magnetization direction M, the third permanent magnet 43 is formed in a right triangle shape in which the second facing surface 52 (third inclined surface 63) is a hypotenuse.
  • the third permanent magnet 43 is formed so that the width in the magnetization direction M is equal to the width in the magnetization direction M of the first permanent magnet 41, and along the target direction D and the axial direction L. It is formed uniformly. That is, the magnet body 40 formed by the first permanent magnet 41 and the third permanent magnet 43 is formed so that the width of the magnetization direction M is uniform along the axial direction L. Further, the magnet body 40 is formed so that the width of the magnetization direction M is uniform along the target direction D.
  • the third permanent magnet 43 has a shape obtained by inverting the second permanent magnet 42 in the axial direction L (a shape in which the direction of the axial direction L is changed).
  • the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 configured as described above are combined to form a rectangular parallelepiped (flat plate) magnet as a whole.
  • a unit 30 is formed. That is, the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 that constitute one magnet unit 30 are the sum of the widths in the target direction D in each cross section (cross section orthogonal to the axial direction L). Is formed to be uniform along the axial direction L. In other words, the sum of the widths in the target direction D of the magnet body 40 and the second permanent magnet 42 constituting one magnet unit 30 is the same in the entire region in the axial direction L. And as shown in FIG.
  • variety of the object direction D of the 2nd permanent magnet 42 is decreasing (it decreases at a fixed ratio here) toward the axial direction 1st side L1. Therefore, the width in the target direction D of the magnet body 40 increases at the same rate as the decreasing rate of the width in the target direction D of the second permanent magnet 42 toward the first axial side L1.
  • the width of the first permanent magnet 41 in the target direction D is the same in the entire area in the axial direction L, and the width of the third permanent magnet 43 in the target direction D is on the first axial direction L1.
  • the width in the target direction D of the magnet body 40 which is the sum of the width of the target direction D of the first permanent magnet 41 and the width of the target direction D of the third permanent magnet 43, increases as it goes toward the first direction in the axial direction. Increasing toward L1.
  • the width in the target direction D of one of the magnet body 40 and the second permanent magnet 42 is the first side in the axial direction in the entire region in the axial direction L.
  • the width in the target direction D of the other of the magnet body 40 and the second permanent magnet 42 decreases toward the first axial side L1. Yes.
  • the center in the arrangement region of the first permanent magnet 41 in the target direction D coincides with the magnetic pole center Q.
  • the position in the target direction D of the end portion on the second side L2 in the axial direction of the first opposing surface 51 (first inclined surface 61) is the axial direction of the second opposing surface 52 (third inclined surface 63). It is equal to the position in the target direction D at the end of the first side L1. That is, in this embodiment, the center in the arrangement region of the first permanent magnet 41 in the target direction D is the target direction D of the end portion on the second axial side L2 of the first facing surface 51 (first inclined surface 61). 2, the position of the first facing surface 51 in the target direction D (see FIG. 4) coincides with the magnetic pole center Q at the end on the second axial side L2.
  • the first permanent magnet 41 has a plurality of magnetic poles of the rotor 2 more than the second permanent magnet 42 in at least a partial region in the axial direction L. It arrange
  • the first permanent magnet 41 is disposed closer to the magnetic pole center Q than the second permanent magnet 42 in the entire region in the axial direction L excluding the end portion on the second axial side L2.
  • the first permanent magnet 41 is more central than the third permanent magnet 43 in the circumferential direction C in each of the plurality of magnetic poles P of the rotor 2 (that is, the magnetic pole center Q Is arranged on the side).
  • the first permanent magnet 41 is disposed closer to the magnetic pole center Q than the third permanent magnet 43 in the entire region in the axial direction L excluding the end portion on the first axial side L1.
  • the density of the magnetic flux B generated from the magnet unit 30 in each cross section (cross section orthogonal to the axial direction L) is the first permanent magnet 41 as shown in FIGS. Becomes the highest at the position in the target direction D (position in the circumferential direction C). And since the center position (center position of the circumferential direction C) of the object direction D of the 1st permanent magnet 41 goes to the object direction 1st side D1 (circumferential direction 2nd side C2) as it goes to the axial direction 1st side L1.
  • the position where the magnetic flux density is highest in each cross section of the magnet unit 30 moves to the target direction first side D1 (circumferential second side C2) as it goes to the first axial direction L1 (here, continuously moving). To do). And in this embodiment, since the center in the arrangement
  • the second permanent magnet 42 having a lower residual magnetic flux density than the first permanent magnet 41 is disposed on the first direction D1 (circumferential second side C2) in the target direction with respect to the first permanent magnet 41.
  • the third permanent magnet 43 having a lower residual magnetic flux density than the first permanent magnet 41 is disposed on the second direction D2 in the target direction (circumferential first side C1) with respect to the first permanent magnet 41. That is, permanent magnets (42, 43) having a residual magnetic flux density lower than that of the first permanent magnet 41 are arranged on both sides in the target direction D (both sides in the circumferential direction C) with respect to the first permanent magnet 41.
  • the magnetic flux density distribution formed in the air gap between the rotor core 15 and the stator core 10 is rapidly increased along the circumferential direction C. Can be suppressed (that is, harmonic components included in the magnetic flux density distribution can be reduced). As a result, it is possible to further reduce cogging torque, torque ripple, iron loss, and the like. Moreover, compared with the case where the 2nd permanent magnet 42 and the 3rd permanent magnet 43 are not arrange
  • this magnet unit 30 it is possible to use the thing of the shape continuous in the axial direction L as a permanent magnet (the 1st permanent magnet 41, the 2nd permanent magnet 42, etc.) which comprises the magnet unit 30,
  • the rotor core 15 does not need to be divided into a plurality of stages in the axial direction L and arranged so as to be shifted in the circumferential direction C for each stage. Therefore, it is possible to realize the magnet unit 30 with few restrictions on the configuration of the rotor core 15 to be mounted while minimizing the increase in the number of parts required for realizing the skew structure.
  • each of the magnetic poles P formed in the circumferential direction C is formed by two magnet units 30 (a first magnet unit 31 and a second magnet unit 32 described later). It is formed. That is, in the present embodiment, the magnet unit 30 is inserted into each of the pair of magnet insertion holes 20 arranged on both sides of the center (magnetic pole center Q) of the magnetic pole P in the circumferential direction C.
  • 5 is a view of a part of the rotor 2 as viewed from the second axial side L2
  • FIG. 6 shows a sectional shape of a part of the rotor 2 at the central part in the axial direction L of the magnet unit 30. ing.
  • the magnet insertion hole 20 disposed on the circumferential first side C ⁇ b> 1 is referred to as a first magnet insertion hole 21, and the magnet insertion hole 20 disposed on the circumferential second side C ⁇ b> 2.
  • the magnet unit 30 inserted into the first magnet insertion hole 21 is referred to as a first magnet unit 31, and the magnet unit 30 inserted into the second magnet insertion hole 22 is referred to as a second magnet unit 32.
  • the first magnet insertion hole 21 and the second magnet insertion hole 22 arranged on both sides in the circumferential direction C across the magnetic pole center Q are magnetic poles in a cross section orthogonal to the axial direction L.
  • the line segments extending parallel to the radial direction R through the center Q are symmetrical to each other with the axis of symmetry as the axis of symmetry.
  • the first magnet insertion hole 21 and the second magnet insertion hole 22 are V-shaped so that the distance between the first magnet insertion hole 21 and the second magnet insertion hole 22 increases toward the outside in the radial direction R in the cross section orthogonal to the axial direction L. Arranged in a shape.
  • the 1st magnet unit 31 and the 2nd magnet unit 32 which form one magnetic pole P are arrange
  • the magnet torque generated by the interlinkage magnetic flux (coil interlinkage magnetic flux) by the magnet unit 30 (permanent magnet) in addition to the magnet torque generated by the interlinkage magnetic flux (coil interlinkage magnetic flux) by the magnet unit 30 (permanent magnet),
  • the reluctance torque generated by the saliency (Ld ⁇ Lq) between the q-axis inductance (Lq) and the d-axis inductance (Ld) can also be used.
  • the magnet unit 30 (31, 32) includes the first permanent magnet 41 and the second permanent magnet 42, but does not include the third permanent magnet 43. That is, in this embodiment, the magnet unit 30 (31, 32) is formed by combining the first permanent magnet 41 and the second permanent magnet 42. In other words, in the present embodiment, the magnet body 40 includes only the first permanent magnet 41. As shown in FIG. 7, the first magnet unit 31 and the second magnet unit 32 are formed in a rectangular parallelepiped shape as a whole, like the magnet unit 30 according to the first embodiment.
  • the first permanent magnet 41 and the second permanent magnet 42 constituting one magnet unit 30 (31, 32) are each in a cross section (a cross section perpendicular to the axial direction L).
  • the sum of the widths in the target direction D is uniform along the axial direction L.
  • each of the first permanent magnet 41 and the second permanent magnet 42 constituting one magnet unit 30 (31, 32) is seen in the magnetization direction M, and the first facing surface 51 (first inclined surface). 61) is formed in the shape of a right triangle that is the hypotenuse. That is, the second permanent magnet 42 has a shape obtained by inverting the first permanent magnet 41 in the axial direction L.
  • the end surface on one side of the target direction D of the first permanent magnet 41 is formed in a flat shape that forms the first inclined surface 61, and the end surface on the other side of the target direction D of the first permanent magnet 41 is , Formed in a planar shape along a plane orthogonal to the target direction D.
  • the end surface of the one side of the object direction D of the 2nd permanent magnet 42 is formed in the planar shape which forms the 1st inclined surface 61, and the end surface of the other side of the object direction D of the 2nd permanent magnet 42 is an object direction. It is formed in a planar shape along a plane orthogonal to D.
  • the width in the target direction D of the second permanent magnet 42 which is one of the magnet body 40 (first permanent magnet 41) and the second permanent magnet 42, is the axis in the entire region in the axial direction L.
  • the width in the target direction D of the magnet body 40 which is the other of the magnet body 40 and the second permanent magnet 42, decreases toward the first axial side L1.
  • the width in the target direction D of the magnet body 40, which is one of the magnet body 40 (first permanent magnet 41) and the second permanent magnet 42, in the entire axial direction L is The width in the target direction D of the second permanent magnet 42, which is the other of the magnet body 40 and the second permanent magnet 42, decreases toward the first side L1 and decreases toward the first side L1 in the axial direction.
  • the first permanent magnet 41 is a magnetic pole in the circumferential direction C rather than the second permanent magnet 42 in the entire area in the axial direction L. It is arranged on the center side of P (that is, on the side of the magnetic pole center Q). That is, the first magnet unit 31 is inserted into the first magnet insertion hole 21 in a direction in which the first permanent magnet 41 is closer to the magnetic pole center Q than the second permanent magnet 42, and the second magnet unit 32 is The permanent magnet 41 is inserted into the second magnet insertion hole 22 in a direction that is closer to the magnetic pole center Q than the second permanent magnet 42.
  • the 1st magnet unit 31 and the 2nd magnet unit 32 are the same side of the circumferential direction C as each 1st inclined surface 61 goes to the axial direction 1st side L1 (in the example shown in FIG. Arranged in the direction towards the second side C2).
  • the position where the magnetic flux density formed by both 31 and the second magnet unit 32 is the highest is from the position on the first circumferential side C1 with respect to the magnetic pole center Q toward the first axial side L1 (FIG. 5).
  • Reference Moves through the magnetic pole center Q (see FIG. 6) to the position on the second circumferential side C2 from the magnetic pole center Q (here, it moves continuously).
  • both the first magnet unit 31 and the second magnet unit 32 have a residual magnetic flux density higher than that of the first permanent magnet 41 on the side opposite to the magnetic pole center Q with respect to the first permanent magnet 41.
  • a low second permanent magnet 42 is arranged. Therefore, compared with the case where the second permanent magnet 42 is not arranged, a rapid change along the circumferential direction C of the magnetic flux density distribution formed in the air gap between the rotor core 15 and the stator core 10 is suppressed. (In other words, it is possible to reduce the harmonic component included in the magnetic flux density distribution). As a result, it is possible to further reduce cogging torque, torque ripple, iron loss, and the like. Moreover, compared with the case where the 2nd permanent magnet 42 is not arrange
  • the configuration in which the entire first facing surface 51 is the first inclined surface 61 has been described as an example.
  • the configuration is not limited to such a configuration, and the first facing surface 51 may have another surface in addition to the first inclined surface 61.
  • the second inclined surface 62 (see FIG. 8) is directed to the first direction D1 in the target direction as the first facing surface 51 moves to the second direction L2 in the axial direction at a position different from the first inclined surface 61 in the axial direction L. ).
  • the skew structure formed by the magnet unit 30 can be a V-shaped skew structure.
  • the first facing surface 51 is located at a different position in the axial direction L from the first inclined surface 61, and the first direction in the target direction toward the second axial direction L 2.
  • the example comprised so that it might have the 2nd inclined surface 62 which goes to D1 is shown.
  • the second facing surface 52 is directed to the second axial side L2 at a position different from the third inclined surface 63 in the axial direction L (a region in the axial direction L where the second inclined surface 62 is formed).
  • the fourth inclined surface 64 toward the target direction first side D1 is provided.
  • the fourth inclined surface 64 is formed in parallel with the second inclined surface 62.
  • the first inclined surface 61 and the second inclined surface 62 are formed such that the moving amount (that is, the degree of inclination) in the target direction D with respect to the moving amount in the axial direction L is equal to each other.
  • the first inclined surface 61 and the second inclined surface 62 are connected.
  • the third inclined surface 63 and the fourth inclined surface 64 are connected in the central portion of the magnet unit 30 in the axial direction L.
  • the second permanent magnet 42 is divided in the axial direction L into two second magnet portions 42a (magnet pieces).
  • the width of one target direction D of the magnet body 40 and the second permanent magnet 42 increases toward the axial first side L1, and the magnet
  • the width of the other target direction D of the body 40 and the second permanent magnet 42 has been described as an example in which the width decreases toward the first axial direction L1, but as in the example illustrated in FIG.
  • the tendency of the change in the width of the target direction D with respect to the movement toward the first axial direction L1 may be different.
  • the width of one target direction D of the magnet body 40 and the second permanent magnet 42 is a first region that is a partial region of the axial direction L, and increases toward the first axial direction L1 and the shaft
  • the width decreases in the other target direction D of the magnet body 40 and the second permanent magnet 42 in the first direction L1 in the axial direction.
  • the distance decreases toward the first axial direction L1 and increases in the second region toward the first axial direction L1.
  • the configuration in which the plurality of permanent magnets (41, 42, 43) constituting the magnet unit 30 are integrally formed has been described as an example.
  • at least one of the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 may be formed by a set of a plurality of magnet pieces.
  • the second permanent magnet 42 is formed by an assembly of a plurality of magnet pieces (second magnet portions 42a).
  • all of the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 may be formed by a set of a plurality of magnet pieces.
  • the first permanent magnet 41 is formed by a set of four magnet pieces (first magnet portion 41a), and the second permanent magnet 42 is formed by a set of two magnet pieces (second magnet portion 42a).
  • the third permanent magnet 43 is formed by a set of two magnet pieces (third magnet portion 43a).
  • the 2nd opposing surface 52 goes to the object direction 1st side D1 toward the axial direction 1st side L1 in the area
  • the configuration having the inclined surface (the third inclined surface 63) is described as an example. However, without being limited to such a configuration, the second facing surface 52 is in the region in the axial direction L where the first inclined surface 61 is formed, and the target direction second side toward the first axial direction L1.
  • a configuration having an inclined surface toward D2 is also possible.
  • one magnetic pole P is formed by one magnet unit 30
  • one magnetic pole P has two magnet units 30.
  • the case of forming by the above has been described as an example.
  • one magnetic pole P may be formed by three or more magnet units 30.
  • the magnet unit 30 is used in an inner rotor type rotor for a rotating electrical machine has been described as an example.
  • the magnet unit 30 may be used for a rotor for an outer rotor type rotating electrical machine without being limited to such a configuration.
  • a magnet insertion hole (20) extending in the axial direction (L) is used in a rotating electrical machine rotor (2) having a rotor core (15) formed at a plurality of positions in the circumferential direction (C).
  • the first permanent magnet (41) and the second permanent magnet (42) have both the axial direction (L) and the magnetization direction (M) so that the magnetization directions (M) face the same side.
  • D1, the first permanent magnet (41) and the second permanent magnet (42) Facing surfaces (51) has the first inclined surface toward the object direction the first side to the (D1) to (61) toward to the axial direction first side (L1).
  • the opposing surface (51) between the first permanent magnet (41) and the second permanent magnet (42) has the first inclined surface (61) inclined with respect to the axial direction (L). Therefore, even when the magnet unit (30) is formed so as to extend parallel to the axial direction (L) as a whole, the target direction (D) in which the density of magnetic flux generated from the magnet unit (30) is the highest. In the axial direction (L) formation region of the first inclined surface (61), the position of the first direction (D1) moves toward the first direction (L1) in the axial direction.
  • a continuous skew structure can be realized by a single magnet unit (30).
  • the second permanent magnet (42) is disposed in a space where the first permanent magnet (41) in the magnet insertion hole (20) is not disposed, the second permanent magnet is disposed in the space. Compared with the case where (42) is not arranged, it is easy to suppress a rapid change in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10). From the above, according to the above configuration, it is possible to realize the magnet unit (30) capable of further reducing the cogging torque and the torque ripple.
  • the first permanent magnet (41) has a plurality of magnetic poles of the rotating electrical machine rotor (2) rather than the second permanent magnet (42). It is preferable to adopt a configuration that is arranged on the center (Q) side in the circumferential direction (C) in each of (P).
  • the rotor core (15) and the stator core (10) can be
  • the magnetic flux density distribution formed in the air gap of the magnetic pole (P) has a peak at the central portion in the circumferential direction (C) of the magnetic pole (P) and gradually changes therefrom (for example, a distribution close to a sine wave). It becomes possible. As a result, the harmonic component contained in the magnetic flux density distribution can be reduced.
  • the third permanent magnet (43) further includes a third permanent magnet (43) having a low magnetic flux density, and the magnetization direction (M) of the third permanent magnet (43) is the magnetization of the first permanent magnet (41).
  • the first permanent magnet (41) is arranged side by side opposite to the second permanent magnet (42) in the target direction (D) so as to face the same side as the direction (M).
  • the opposing surface (52) of the permanent magnet (41) and the third permanent magnet (43) is in the axial direction (L) where the first inclined surface (61) is formed. It has the inclined surface (63) which goes to the said target direction 1st side (D1) as it goes to the side (L1) It is preferable to have.
  • the permanent magnets (42, 43) having a residual magnetic flux density lower than that of the first permanent magnet (41) are disposed on both sides of the target direction (D) with respect to the first permanent magnet (41). Therefore, an abrupt change in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10) is suppressed on both sides of the target direction (D) with respect to the first permanent magnet (41). be able to. Therefore, when the magnet unit (30) is inserted into the magnet insertion hole (20) disposed in the central portion of the magnetic pole (P) in the circumferential direction (C), the gap between the rotor core (15) and the stator core (10) is obtained.
  • the magnetic flux density distribution formed in the air gap can be brought close to a sinusoidal distribution having a peak in the circumferential direction (C) where the first permanent magnet (41) is arranged. As a result, the magnetic flux density The harmonic component contained in the distribution can be further reduced.
  • a magnet unit (30) is inserted into each of the pair of magnet insertion holes (21, 22) arranged on both sides of the center (Q) of the magnetic pole (P) in the circumferential direction (C).
  • the first permanent magnet (41) is closer to the center (Q) side of the magnetic pole (P) in the circumferential direction (C) than the second permanent magnet (42). It is preferable that the configuration is arranged.
  • the rotor core (15) and the stator core (10) can be A sudden change in the magnetic flux density distribution formed in the air gap can be suppressed on both sides in the circumferential direction (C) with respect to the center (Q) in the circumferential direction (C) of the magnetic pole (P). Therefore, when the magnet unit (30) is inserted into each of the pair of magnet insertion holes (21, 22) arranged on both sides across the center (Q) in the circumferential direction (C) of the magnetic pole (P).
  • the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10) can be approximated to a sinusoidal distribution, and as a result, the harmonic components contained in the magnetic flux density distribution can be reduced. More can be achieved.
  • the opposed surface (51) of the first permanent magnet (41) and the second permanent magnet (42) is different from the first inclined surface (61) in the axial direction (L). It is preferable to have a second inclined surface (62) heading toward the first direction (D1) in the target direction toward the second side (L2) in the axial direction opposite to the first side (L1) in the axial direction. It is.
  • a V-shaped skew structure can be formed by the first inclined surface (61) and the second inclined surface (62).
  • a specific harmonic component included in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10) can be reduced. It becomes possible.
  • the axial direction (L) thrust that can be generated in the magnet unit (30) by providing the skew structure, the axial direction (L) formation region of the first inclined surface (61) and the second inclined surface ( 62) in the axial direction (L) formation region, the bearings (5) supporting the rotor core (15) can be prevented from being worn by the thrust load. .
  • a magnet insertion hole (20) extending in the axial direction (L) is used in a rotating electrical machine rotor (2) having a rotor core (15) formed at a plurality of positions in the circumferential direction (C).
  • 20) a magnet unit (30) inserted into a magnet body (40) including at least a first permanent magnet (41), and a second permanent magnetic flux density lower than that of the first permanent magnet (41).
  • a magnet (42), and the magnet body (40) and the second permanent magnet (42) have the axial direction (L) and the magnetization direction such that the respective magnetization directions (M) face the same side.
  • the magnet body (40) and the second permanent magnet (42) are arranged side by side in a target direction (D) orthogonal to both directions (M), and the width of the magnetization direction (M) is the axial direction.
  • One of the axial directions (L) formed uniformly along (L) Is the first axial direction (L1)
  • the width of the target direction (D) of one of the magnet body (40) and the second permanent magnet (42) is toward the first axial direction (L1).
  • the width of the other target direction (D) of the magnet body (40) and the second permanent magnet (42) decreases toward the first axial direction (L1).
  • the magnet body (40) containing the 1st permanent magnet (41) whose residual magnetic flux density is higher than a 2nd permanent magnet (42), and a 2nd permanent magnet (42) are one side. It arrange
  • the center position (S) in the circumferential direction (C) of the magnet insertion hole (20) is arranged along the axial direction (L).
  • the configuration of the rotor core (15) can be made relatively simple, and the cost of the rotor (2) for the rotating electrical machine can be reduced.
  • a continuous skew structure can be realized by the magnet unit (30) alone, and thus, as described above, the magnet insertion hole (20) Even in the configuration in which the center position (S) in the circumferential direction (C) is arranged along the axial direction (L), the cogging torque and the torque ripple can be reduced.
  • the magnet unit according to the present disclosure only needs to exhibit at least one of the effects described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A magnet unit (30) is provided with a first permanent magnet (41), and a second permanent magnet having a lower residual magnetic flux density than that of the first permanent magnet (41). The first permanent magnet (41) and the second permanent magnet (42) are placed aligned in a target direction (D) that is orthogonal to both an axial direction (L) and a magnetization direction (M) so that the respective magnetization directions (M) thereof are oriented facing the same side. A facing surface (51) of the first permanent magnet (41) and the second permanent magnet (42) has a first inclined surface (61) that faces a target direction first side (D1) in accordance with facing an axial direction first side (L1).

Description

磁石ユニットMagnet unit
 本発明は、回転電機用ロータに用いられる磁石ユニットに関する。 The present invention relates to a magnet unit used for a rotor for a rotating electrical machine.
 回転電機用ロータに用いられる磁石ユニットの一例として、特開2015-115985号公報(特許文献1)に記載されたものが知られている。特許文献1には、段スキュー構造を有する回転子鉄心(1)に用いられる永久磁石(2)が開示されている。具体的には、特許文献1の回転子鉄心(1)は、軸方向に複数のブロックに分割されており、各ブロックを周方向にずらして配置することで、段スキュー構造が形成されている。そして、永久磁石(2)は、回転子鉄心(1)の軸方向の分割数と同数、軸方向に分割されている。このような段スキュー構造を採用することで、コギングトルクやトルクリップルの低減を図ることができる。 As an example of a magnet unit used in a rotor for a rotating electrical machine, one described in JP-A-2015-115985 (Patent Document 1) is known. Patent Document 1 discloses a permanent magnet (2) used for a rotor core (1) having a step skew structure. Specifically, the rotor core (1) of Patent Document 1 is divided into a plurality of blocks in the axial direction, and a stage skew structure is formed by disposing each block in the circumferential direction. . And the permanent magnet (2) is divided | segmented into the axial direction by the same number as the division | segmentation number of the axial direction of a rotor core (1). By adopting such a step skew structure, it is possible to reduce cogging torque and torque ripple.
 しかしながら、特許文献1に記載の構成では、軸方向に並ぶ複数の永久磁石が、複数のブロック毎に段階的に周方向にずらして配置される。そのため、ロータコアとステータコアとの間のエアギャップに形成される磁束密度分布の急激な変化を抑制する効果が限定的であり、コギングトルクやトルクリップルを大きく低減させることが難しかった。 However, in the configuration described in Patent Document 1, a plurality of permanent magnets arranged in the axial direction are arranged so as to be gradually shifted in the circumferential direction for each of a plurality of blocks. Therefore, the effect of suppressing a rapid change in the magnetic flux density distribution formed in the air gap between the rotor core and the stator core is limited, and it is difficult to greatly reduce cogging torque and torque ripple.
特開2015-115985号公報JP2015-115985A
 そこで、コギングトルクやトルクリップルの更なる低減を図ることが可能な磁石ユニットの実現が望まれる。 Therefore, it is desired to realize a magnet unit that can further reduce cogging torque and torque ripple.
 上記に鑑みた、軸方向に延びる磁石挿入孔が周方向の複数位置に形成されたロータコアを有する回転電機用ロータに用いられ、1つの前記磁石挿入孔に挿入される磁石ユニットの第一の特徴構成は、第一永久磁石と、前記第一永久磁石よりも残留磁束密度が低い第二永久磁石と、を備え、前記第一永久磁石と前記第二永久磁石は、それぞれの磁化方向が同じ側を向くように、前記軸方向及び前記磁化方向の双方に直交する対象方向に並べて配置され、前記軸方向の一方側を軸方向第一側とすると共に前記対象方向の一方側を対象方向第一側として、前記第一永久磁石と前記第二永久磁石との対向面が、前記軸方向第一側へ向かうに従って前記対象方向第一側へ向かう第一傾斜面を有している点にある。 In view of the above, a first feature of a magnet unit that is used in a rotor for a rotating electrical machine having a rotor core in which magnet insertion holes extending in the axial direction are formed at a plurality of positions in the circumferential direction is inserted into one magnet insertion hole. The configuration includes a first permanent magnet and a second permanent magnet having a residual magnetic flux density lower than that of the first permanent magnet, and the first permanent magnet and the second permanent magnet have the same magnetization direction. So that one side of the axial direction is the first side in the axial direction and one side of the target direction is the first in the target direction As a side, the opposing surfaces of the first permanent magnet and the second permanent magnet have a first inclined surface that goes toward the first direction in the target direction toward the first side in the axial direction.
 上記第一の特徴構成によれば、第一永久磁石と第二永久磁石との対向面が軸方向に対して傾斜した第一傾斜面を有する。そのため、磁石ユニットが全体として軸方向に平行に延びるように形成される場合であっても、磁石ユニットから発生する磁束の密度が最も高くなる対象方向の位置が、第一傾斜面の軸方向の形成領域において、軸方向第一側へ向かうに従って対象方向第一側へ移動する構成とすることができ、磁石ユニット単体で連続的なスキュー構造を実現することができる。その上で、上記第一の特徴構成によれば、磁石挿入孔における第一永久磁石が配置されない空間に第二永久磁石が配置されるため、当該空間に第二永久磁石が配置されない場合に比べて、ロータコアとステータコアとの間のエアギャップに形成される磁束密度分布の急激な変化を抑制しやすい。以上のことから、上記第一の特徴構成によれば、コギングトルクやトルクリップルの更なる低減を図ることが可能な磁石ユニットを実現することができる。 According to the first characteristic configuration, the opposed surfaces of the first permanent magnet and the second permanent magnet have the first inclined surface inclined with respect to the axial direction. Therefore, even when the magnet unit is formed so as to extend parallel to the axial direction as a whole, the position in the target direction where the density of the magnetic flux generated from the magnet unit is the highest is the axial direction of the first inclined surface. In the formation region, it can be configured to move toward the first direction in the target direction toward the first side in the axial direction, and a continuous skew structure can be realized with a single magnet unit. In addition, according to the first characteristic configuration, since the second permanent magnet is arranged in the space where the first permanent magnet in the magnet insertion hole is not arranged, compared to the case where the second permanent magnet is not arranged in the space. Thus, it is easy to suppress a sudden change in the magnetic flux density distribution formed in the air gap between the rotor core and the stator core. From the above, according to the first characteristic configuration, a magnet unit capable of further reducing cogging torque and torque ripple can be realized.
 上記に鑑みた、軸方向に延びる磁石挿入孔が周方向の複数位置に形成されたロータコアを有する回転電機用ロータに用いられ、1つの前記磁石挿入孔に挿入される磁石ユニットの第二の特徴構成は、少なくとも第一永久磁石を含む磁石体と、前記第一永久磁石よりも残留磁束密度が低い第二永久磁石と、を備え、前記磁石体と前記第二永久磁石は、それぞれの磁化方向が同じ側を向くように、前記軸方向及び前記磁化方向の双方に直交する対象方向に並べて配置され、前記磁石体及び前記第二永久磁石のそれぞれは、前記磁化方向の幅が前記軸方向に沿って均一に形成され、前記軸方向の一方側を軸方向第一側として、前記磁石体及び前記第二永久磁石の一方の前記対象方向の幅は、前記軸方向第一側に向かうに従って増加し、前記磁石体及び前記第二永久磁石の他方の前記対象方向の幅は、前記軸方向第一側に向かうに従って減少している点にある。 In view of the above, the second feature of the magnet unit that is used in a rotor for a rotating electrical machine having a rotor core in which magnet insertion holes extending in the axial direction are formed at a plurality of positions in the circumferential direction is inserted into one magnet insertion hole. The configuration includes a magnet body including at least a first permanent magnet, and a second permanent magnet having a residual magnetic flux density lower than that of the first permanent magnet, and the magnet body and the second permanent magnet have respective magnetization directions. Are arranged side by side in a target direction orthogonal to both the axial direction and the magnetization direction, and the magnet body and the second permanent magnet each have a width in the magnetization direction in the axial direction. The width in the target direction of one of the magnet body and the second permanent magnet increases toward the first axial direction. And the magnet body The other of the target width of the fine said second permanent magnet is that is decreasing toward the axially first side.
 上記第二の特徴構成によれば、第二永久磁石よりも残留磁束密度が高い第一永久磁石が含まれる磁石体と、第二永久磁石とが、一方の対象方向の幅が軸方向第一側に向かうに従って増加し、他方の対象方向の幅が軸方向第一側に向かうに従って減少するように配置される。そのため、磁石ユニットが全体として軸方向に平行に延びるように形成される場合であっても、磁石ユニットから発生する磁束の密度が最も高くなる対象方向の位置が、軸方向第一側へ向かうに従って対象方向の一方側へ移動する構成とすることができ、磁石ユニット単体で連続的なスキュー構造を実現することができる。その上で、上記第二の特徴構成によれば、磁石挿入孔における磁石体が配置されない空間に第二永久磁石が配置されるため、当該空間に第二永久磁石が配置されない場合に比べて、ロータコアとステータコアとの間のエアギャップに形成される磁束密度分布の急激な変化を抑制しやすい。以上のことから、上記第二の特徴構成によれば、コギングトルクやトルクリップルの更なる低減を図ることが可能な磁石ユニットを実現することができる。 According to said 2nd characteristic structure, the width | variety of one object direction is the axial direction 1st in the magnet body in which the 1st permanent magnet whose residual magnetic flux density is higher than a 2nd permanent magnet is contained, and a 2nd permanent magnet. It arrange | positions so that it may increase as it goes to the side and the width | variety of the other object direction decreases as it goes to the axial direction 1st side. Therefore, even when the magnet unit is formed so as to extend in parallel in the axial direction as a whole, the position in the target direction where the density of magnetic flux generated from the magnet unit is the highest is directed toward the first side in the axial direction. It can be set as the structure which moves to the one side of an object direction, and a continuous skew structure is realizable with a magnet unit single-piece | unit. In addition, according to the second feature configuration, since the second permanent magnet is disposed in a space where the magnet body in the magnet insertion hole is not disposed, compared to the case where the second permanent magnet is not disposed in the space, It is easy to suppress a sudden change in the magnetic flux density distribution formed in the air gap between the rotor core and the stator core. From the above, according to the second characteristic configuration, a magnet unit capable of further reducing cogging torque and torque ripple can be realized.
第一の実施形態に係る回転電機を示す図The figure which shows the rotary electric machine which concerns on 1st embodiment. 第一の実施形態に係るロータの一部の軸方向視図Axial view of a part of the rotor according to the first embodiment 第一の実施形態に係るロータの一部の軸方向に直交する断面図Sectional drawing orthogonal to the axial direction of a part of the rotor according to the first embodiment 第一の実施形態に係る磁石ユニットの斜視図The perspective view of the magnet unit which concerns on 1st embodiment 第二の実施形態に係るロータの一部の軸方向視図Partial axial view of the rotor according to the second embodiment 第二の実施形態に係るロータの一部の軸方向に直交する断面図Sectional drawing orthogonal to the axial direction of a part of the rotor according to the second embodiment 第二の実施形態に係る磁石ユニットの斜視図The perspective view of the magnet unit which concerns on 2nd embodiment. その他の実施形態に係る磁石ユニットの側面図Side view of magnet unit according to other embodiment その他の実施形態に係る磁石ユニットの側面図Side view of magnet unit according to other embodiment
〔第一の実施形態〕
 磁石ユニットの第一の実施形態について、図面(図1~図4)を参照して説明する。なお、以下の説明では、「軸方向L」、「径方向R」、及び「周方向C」は、回転電機用ロータ(以下、「ロータ2」という。)の軸心A(図1参照)を基準として定義している。軸心Aは仮想軸であり、ロータ2が軸心A回りに回転する。そして、図4に示すように、軸方向Lの一方側を「軸方向第一側L1」とし、軸方向Lの他方側(軸方向第一側L1とは反対側)を「軸方向第二側L2」としている。また、周方向Cの一方側を「周方向第一側C1」とし、周方向Cの他方側(周方向第一側C1とは反対側)を「周方向第二側C2」としている。また、後述するように、軸方向L及び磁化方向Mの双方に直交する方向を対象方向Dと定義している(図4参照)。そして、対象方向Dの一方側を「対象方向第一側D1」とし、対象方向Dの他方側(対象方向第一側D1とは反対側)を「対象方向第二側D2」としている。
[First embodiment]
A first embodiment of a magnet unit will be described with reference to the drawings (FIGS. 1 to 4). In the following description, “axial direction L”, “radial direction R”, and “circumferential direction C” are axes A of a rotor for a rotating electrical machine (hereinafter referred to as “rotor 2”) (see FIG. 1). Is defined as a standard. The axis A is a virtual axis, and the rotor 2 rotates about the axis A. As shown in FIG. 4, one side in the axial direction L is referred to as “first axial direction L1”, and the other side in the axial direction L (side opposite to the first axial direction L1) is referred to as “second axial direction. Side L2 ". One side in the circumferential direction C is referred to as a “circumferential first side C1”, and the other side in the circumferential direction C (a side opposite to the circumferential first side C1) is referred to as a “circumferential second side C2”. Further, as described later, a direction orthogonal to both the axial direction L and the magnetization direction M is defined as a target direction D (see FIG. 4). One side of the target direction D is set as “target direction first side D1”, and the other side of the target direction D (the side opposite to the target direction first side D1) is set as “target direction second side D2.”
 以下では、磁石ユニット30がロータコア15に装着された状態(図2及び図3に示す状態)を想定し、上記の各方向を用いて磁石ユニット30についての説明を行う。また、本明細書では、寸法、配置方向、配置位置等に関する用語は、誤差(製造上許容され得る程度の誤差)による差異を有する状態も含む概念として用いている。 Hereinafter, the magnet unit 30 will be described using each of the above directions, assuming that the magnet unit 30 is mounted on the rotor core 15 (the state shown in FIGS. 2 and 3). Further, in this specification, terms related to dimensions, arrangement direction, arrangement position, and the like are used as a concept including a state having a difference due to an error (an error that is acceptable in manufacturing).
 磁石ユニット30は、ロータ2に用いられる。詳細は後述するが、図2及び図3に示すように、ロータ2は、軸方向Lに延びる磁石挿入孔20が周方向Cの複数位置に形成されたロータコア15を有しており、磁石ユニット30は、1つの磁石挿入孔20(磁石挿入孔20のそれぞれ)に挿入される。図1に示すように、ロータ2は、回転電機用のロータであり、ステータ3と共に、回転電機1に用いられる。図1に示す例では、回転電機1はケース4に収容されており、ステータ3のコアであるステータコア10が、ケース4(ここではケース4の内面)に固定され、ロータ2が、ケース4に対して回転可能に支持されている。具体的には、回転電機1は、軸受5を介してケース4に対して回転可能に支持されるロータ軸6を備えており、ロータ2のコアであるロータコア15が、ロータ軸6と一体回転するように連結されている。 The magnet unit 30 is used for the rotor 2. As will be described in detail later, as shown in FIGS. 2 and 3, the rotor 2 includes a rotor core 15 in which magnet insertion holes 20 extending in the axial direction L are formed at a plurality of positions in the circumferential direction C. 30 is inserted into one magnet insertion hole 20 (each of the magnet insertion holes 20). As shown in FIG. 1, the rotor 2 is a rotor for a rotating electrical machine, and is used for the rotating electrical machine 1 together with the stator 3. In the example shown in FIG. 1, the rotating electrical machine 1 is housed in a case 4, a stator core 10 that is a core of the stator 3 is fixed to the case 4 (here, the inner surface of the case 4), and the rotor 2 is attached to the case 4. On the other hand, it is rotatably supported. Specifically, the rotating electrical machine 1 includes a rotor shaft 6 that is rotatably supported with respect to the case 4 via a bearing 5, and a rotor core 15 that is a core of the rotor 2 rotates integrally with the rotor shaft 6. To be connected.
 ロータコア15は、ステータコア10に対して径方向Rに対向配置される。本実施形態では、回転電機1は、インナーロータ型の回転電機である。すなわち、本実施形態では、磁石ユニット30が用いられるロータ2は、インナーロータ型の回転電機用のロータであり、ロータ2は、ステータ3(ステータコア10)よりも径方向Rの内側であって径方向Rに見てステータ3(ステータコア10)と重複する位置に配置されている。回転電機1は回転界磁型の回転電機であり、ステータコア10にはコイル13が巻装されている。そして、ステータ3から発生する磁界により、界磁としてのロータ2が回転する。なお、本明細書では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。 The rotor core 15 is disposed to face the stator core 10 in the radial direction R. In this embodiment, the rotating electrical machine 1 is an inner rotor type rotating electrical machine. In other words, in the present embodiment, the rotor 2 in which the magnet unit 30 is used is an inner rotor type rotor for a rotating electrical machine, and the rotor 2 is on the inner side in the radial direction R with respect to the diameter of the stator 3 (stator core 10). It is arranged at a position overlapping with the stator 3 (stator core 10) when viewed in the direction R. The rotating electrical machine 1 is a rotating field type rotating electrical machine, and a coil 13 is wound around the stator core 10. Then, the magnetic field generated from the stator 3 rotates the rotor 2 as a field. In this specification, “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary. Yes.
 ロータ2は、磁石ユニット30が装着されるロータコア15を有している。図2及び図3に示すように、磁石ユニット30の装着対象のロータコア15には、軸方向Lに延びる磁石挿入孔20が周方向Cの複数位置に形成されている。そして、磁石ユニット30は、1つの磁石挿入孔20(磁石挿入孔20のそれぞれ)に挿入される。すなわち、1つのロータコア15には、当該ロータコア15に形成される磁石挿入孔20と同数の磁石ユニット30が装着される。ロータ2は、埋込磁石構造の回転電機(例えば、同期電動機)に用いられるロータであり、磁石挿入孔20は、軸方向Lに直交する方向に開口しない形状(すなわち、軸方向Lに見て全周に亘って閉じた形状)に形成される。ロータコア15は、例えば、円環板状の磁性体板(例えば、電磁鋼板等)を軸方向Lに複数積層して形成され、或いは、磁性材料の粉体である磁性粉体を加圧成形してなる圧粉材を主な構成要素として形成される。 The rotor 2 has a rotor core 15 to which the magnet unit 30 is attached. As shown in FIGS. 2 and 3, magnet insertion holes 20 extending in the axial direction L are formed at a plurality of positions in the circumferential direction C in the rotor core 15 to which the magnet unit 30 is attached. The magnet unit 30 is inserted into one magnet insertion hole 20 (each of the magnet insertion holes 20). That is, one rotor core 15 is equipped with the same number of magnet units 30 as the magnet insertion holes 20 formed in the rotor core 15. The rotor 2 is a rotor used in a rotary electric machine (for example, a synchronous motor) having an embedded magnet structure, and the magnet insertion hole 20 has a shape that does not open in a direction orthogonal to the axial direction L (that is, viewed in the axial direction L). The shape is closed over the entire circumference). The rotor core 15 is formed, for example, by laminating a plurality of annular plate-like magnetic plates (for example, electromagnetic steel plates) in the axial direction L, or press-molding magnetic powder that is magnetic material powder. The green compact is formed as the main component.
 磁石挿入孔20は、ロータコア15を軸方向Lに貫通するように形成される。図1に示すように、本実施形態では、磁石挿入孔20は、軸方向Lに平行に延びるように形成される。また、本実施形態では、磁石挿入孔20は、軸方向Lに直交する断面形状が軸方向Lに沿って均一に(一様に)形成される。このような磁石挿入孔20の形状に合わせて、本実施形態では、磁石ユニット30は、全体として軸方向Lに平行に延びるように磁石挿入孔20の内部に配置される。そして、磁石ユニット30の全体の軸方向Lに直交する断面形状は、軸方向Lに沿って均一に形成される。 The magnet insertion hole 20 is formed so as to penetrate the rotor core 15 in the axial direction L. As shown in FIG. 1, in this embodiment, the magnet insertion hole 20 is formed so as to extend parallel to the axial direction L. In the present embodiment, the magnet insertion hole 20 has a cross-sectional shape orthogonal to the axial direction L that is formed uniformly (uniformly) along the axial direction L. According to the shape of the magnet insertion hole 20, in this embodiment, the magnet unit 30 is disposed inside the magnet insertion hole 20 so as to extend in parallel with the axial direction L as a whole. And the cross-sectional shape orthogonal to the axial direction L of the whole magnet unit 30 is formed uniformly along the axial direction L.
 上記のように磁石挿入孔20が形成されるため、本実施形態では、磁石挿入孔20は、周方向Cの中心位置Sが軸方向Lに沿って配置される。磁石挿入孔20は、軸方向Lの各位置で径方向Rの同じ位置に配置されるため、磁石挿入孔20の周方向Cの中心位置Sが軸方向Lに沿って配置されることで、磁石挿入孔20の周方向C及び径方向Rの双方での中心位置が、軸方向Lに沿って配置される。なお、本明細書では、「軸方向Lに沿って配置される」とは、軸方向Lに平行に配置される場合に限らず、軸方向Lに対して所定角度未満(例えば、20度未満)で傾斜して配置される場合も含む概念として用いている。本実施形態では、磁石挿入孔20は、周方向Cの中心位置Sが軸方向Lに平行に配置されている。 Since the magnet insertion hole 20 is formed as described above, the center position S in the circumferential direction C is arranged along the axial direction L in the magnet insertion hole 20 in the present embodiment. Since the magnet insertion hole 20 is arranged at the same position in the radial direction R at each position in the axial direction L, the center position S in the circumferential direction C of the magnet insertion hole 20 is arranged along the axial direction L. Center positions of the magnet insertion hole 20 in both the circumferential direction C and the radial direction R are arranged along the axial direction L. In this specification, “arranged along the axial direction L” is not limited to being arranged parallel to the axial direction L, and is less than a predetermined angle with respect to the axial direction L (for example, less than 20 degrees). ) Is used as a concept including the case of being inclined. In the present embodiment, the magnet insertion hole 20 is arranged such that the center position S in the circumferential direction C is parallel to the axial direction L.
 図2及び図3に示すように、本実施形態では、周方向Cに複数形成される磁極Pのそれぞれが、1つの磁石ユニット30により形成される。すなわち、本実施形態では、磁石ユニット30は、磁極Pの周方向Cの中心部に配置される磁石挿入孔20に挿入される。磁極Pの周方向Cの中心を磁極中心Qとして、磁極Pの周方向Cの中心部は、磁極中心Qを含む周方向Cの領域である。磁石ユニット30は、周方向Cに隣り合う2つの磁極Pが互いに逆の極性となる向きで、周方向Cに複数(磁極Pと同数)形成された磁石挿入孔20のそれぞれに挿入される。なお、図2及び図3に示す例では、磁石挿入孔20は、磁石ユニット30が配置される磁石配置領域に加えて、ロータコア15の内部を流れる磁束に対して磁気抵抗(フラックスバリア)として機能する領域を、磁石配置領域に対して周方向Cの両側に有している。 2 and 3, in the present embodiment, each of the magnetic poles P formed in the circumferential direction C is formed by one magnet unit 30. That is, in the present embodiment, the magnet unit 30 is inserted into the magnet insertion hole 20 disposed in the central portion of the magnetic pole P in the circumferential direction C. The center in the circumferential direction C of the magnetic pole P is a region in the circumferential direction C including the magnetic pole center Q, where the center in the circumferential direction C of the magnetic pole P is the magnetic pole center Q. The magnet unit 30 is inserted into each of the magnet insertion holes 20 formed in a plurality (the same number as the magnetic poles P) in the circumferential direction C so that two magnetic poles P adjacent in the circumferential direction C have opposite polarities. In the example shown in FIGS. 2 and 3, the magnet insertion hole 20 functions as a magnetic resistance (flux barrier) against the magnetic flux flowing inside the rotor core 15 in addition to the magnet arrangement region in which the magnet unit 30 is arranged. The region to be operated is provided on both sides in the circumferential direction C with respect to the magnet arrangement region.
 図2及び図3に示すように、本実施形態では、磁石挿入孔20(磁石配置領域)は、軸方向Lに見て、磁極中心Qから周方向Cの両側に、磁極中心Qにおいて径方向Rに直交する方向(以下、「延在方向」という。)に直線状に延びるように形成される。すなわち、磁石挿入孔20の延在方向は、軸方向Lに見て、軸心Aを基準とする円の磁極中心Qにおける接線方向と一致する。また、本実施形態では、磁石挿入孔20(磁石配置領域)は、軸方向L及び上記延在方向の双方に直交する方向の幅(磁極中心Qにおいて径方向Rに平行となる方向の幅)が、当該延在方向に沿って均一に形成されている。そして、磁石挿入孔20(磁石配置領域)のこの幅は、磁石挿入孔20(磁石配置領域)の上記延在方向の幅よりも短い。すなわち、本実施形態では、磁石挿入孔20(磁石配置領域)は、軸方向Lに直交する断面の形状が、長辺が上記延在方向に沿う矩形状に形成されている。 As shown in FIGS. 2 and 3, in the present embodiment, the magnet insertion hole 20 (magnet arrangement region) is seen in the axial direction L, on both sides of the circumferential direction C from the magnetic pole center Q, and in the radial direction at the magnetic pole center Q. It is formed so as to extend linearly in a direction orthogonal to R (hereinafter referred to as “extending direction”). That is, the extending direction of the magnet insertion hole 20 coincides with the tangential direction at the magnetic pole center Q of the circle with the axis A as a reference when viewed in the axial direction L. In this embodiment, the magnet insertion hole 20 (magnet arrangement region) has a width in a direction orthogonal to both the axial direction L and the extending direction (a width in a direction parallel to the radial direction R at the magnetic pole center Q). Is uniformly formed along the extending direction. And this width | variety of the magnet insertion hole 20 (magnet arrangement | positioning area | region) is shorter than the width | variety of the said extension direction of the magnet insertion hole 20 (magnet arrangement | positioning area | region). That is, in this embodiment, the magnet insertion hole 20 (magnet arrangement region) is formed in a rectangular shape with a long side extending along the extending direction, with the cross-sectional shape orthogonal to the axial direction L.
 次に、本開示の要部である磁石ユニット30の構成について説明する。図4に示すように、磁石ユニット30は、第一永久磁石41と、第一永久磁石41よりも残留磁束密度が低い第二永久磁石42と、を備えている。本実施形態では、磁石ユニット30は、更に、第一永久磁石41よりも残留磁束密度が低い第三永久磁石43を備えている。本実施形態では、第三永久磁石43は、第二永久磁石42と残留磁束密度が等しい。このように、磁石ユニット30は、少なくとも第一永久磁石41を含む磁石体40と、第一永久磁石41よりも残留磁束密度が低い第二永久磁石42と、を備えている。そして、本実施形態では、磁石体40は、第一永久磁石41に加えて第三永久磁石43を備えている。このように、磁石ユニット30は、複数の永久磁石の組み合わせにより形成されている。図4に示すように、本実施形態では、磁石ユニット30の全体の形状は、磁石挿入孔20(磁石配置領域)の形状に合わせて、直方体状に形成されている。なお、1つの磁石ユニット30を形成する複数の永久磁石は、接着剤等により互いに固定された状態で磁石挿入孔20に挿入され、或いは、互いに固定されていない状態で磁石挿入孔20に挿入される。後者の場合、磁石挿入孔20の内部での複数の永久磁石の相対位置は、接着剤や充填剤等により直接的に或いは間接的に固定される。 Next, the configuration of the magnet unit 30 that is a main part of the present disclosure will be described. As shown in FIG. 4, the magnet unit 30 includes a first permanent magnet 41 and a second permanent magnet 42 having a residual magnetic flux density lower than that of the first permanent magnet 41. In the present embodiment, the magnet unit 30 further includes a third permanent magnet 43 having a residual magnetic flux density lower than that of the first permanent magnet 41. In the present embodiment, the third permanent magnet 43 has the same residual magnetic flux density as the second permanent magnet 42. As described above, the magnet unit 30 includes the magnet body 40 including at least the first permanent magnet 41 and the second permanent magnet 42 having a residual magnetic flux density lower than that of the first permanent magnet 41. In this embodiment, the magnet body 40 includes a third permanent magnet 43 in addition to the first permanent magnet 41. Thus, the magnet unit 30 is formed by a combination of a plurality of permanent magnets. As shown in FIG. 4, in the present embodiment, the entire shape of the magnet unit 30 is formed in a rectangular parallelepiped shape in accordance with the shape of the magnet insertion hole 20 (magnet arrangement region). The plurality of permanent magnets forming one magnet unit 30 are inserted into the magnet insertion hole 20 while being fixed to each other by an adhesive or the like, or are inserted into the magnet insertion hole 20 without being fixed to each other. The In the latter case, the relative positions of the plurality of permanent magnets inside the magnet insertion hole 20 are fixed directly or indirectly by an adhesive, a filler, or the like.
 磁石ユニット30が有する複数の永久磁石は、主成分が互いに同一の永久磁石であっても、主成分が互いに異なる永久磁石であっても良い。磁石ユニット30が有する複数の永久磁石が、主成分が互いに同一の永久磁石とされる場合、例えば、主成分に添加する添加元素(例えばジスプロシウム等)の添加量の調整により、複数の永久磁石の間で残留磁束密度を互いに異ならせることができる。この場合、例えば、第一永久磁石41、第二永久磁石42、及び第三永久磁石43を全て、ネオジム磁石等の希土類磁石とすることができる。また、磁石ユニット30が有する複数の永久磁石が、主成分が互いに異なる永久磁石とされる場合、例えば、第一永久磁石41としてネオジム磁石等の希土類磁石を用い、第二永久磁石42及び第三永久磁石43としてフェライト磁石を用いることができる。なお、磁石ユニット30を構成する永久磁石として、焼結磁石ではなく、ボンド磁石やラバー磁石等を用いることもできる。廉価で反磁界に強い磁石を組み合わせると(用いると)好適である。 The plurality of permanent magnets included in the magnet unit 30 may be permanent magnets whose main components are the same as each other or permanent magnets whose main components are different from each other. When the plurality of permanent magnets included in the magnet unit 30 are the same as each other, for example, by adjusting the amount of additive element (for example, dysprosium) added to the main component, The residual magnetic flux densities can be made different from each other. In this case, for example, the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 can all be rare earth magnets such as neodymium magnets. When the plurality of permanent magnets included in the magnet unit 30 are permanent magnets having different main components, for example, a rare earth magnet such as a neodymium magnet is used as the first permanent magnet 41, and the second permanent magnet 42 and the third permanent magnet 42 are used. A ferrite magnet can be used as the permanent magnet 43. In addition, as a permanent magnet which comprises the magnet unit 30, not a sintered magnet but a bond magnet, a rubber magnet, etc. can also be used. It is preferable to combine (use) an inexpensive magnet that is strong against a demagnetizing field.
 図4に示すように、第一永久磁石41と第二永久磁石42は、それぞれの磁化方向Mが同じ側を向くように、軸方向L及び磁化方向Mの双方に直交する対象方向Dに並べて配置される。よって、図2及び図3に示すように、1つの磁石ユニット30に備えられる第一永久磁石41及び第二永久磁石42は、互いに同方向の磁束Bを発生させる。また、第三永久磁石43は、当該第三永久磁石43の磁化方向Mが第一永久磁石41の磁化方向Mと同じ側を向くように、第一永久磁石41に対して対象方向Dにおける第二永久磁石42とは反対側に並べて配置される。すなわち、第二永久磁石42は第一永久磁石41に対して対象方向第一側D1に配置され、第三永久磁石43は第一永久磁石41に対して対象方向第二側D2に配置される。よって、図3に示すように、1つの磁石ユニット30に備えられる第一永久磁石41、第二永久磁石42、及び第三永久磁石43は、互いに同方向の磁束Bを発生させる。このように、磁石体40を構成する複数の永久磁石(第一永久磁石41を含む複数の永久磁石であり、本実施形態では、第一永久磁石41と第三永久磁石43)は、それぞれの磁化方向Mが同じ側を向くように、対象方向Dに並べて配置される。すなわち、磁石体40の磁化方向Mは、磁石体40を構成する複数の永久磁石の間の共通の磁化方向Mとなる。そして、磁石体40と第二永久磁石42は、それぞれの磁化方向Mが同じ側を向くように、対象方向Dに並べて配置される。なお、図2は、ロータ2の一部を軸方向第二側L2から見た図であり、図3は、磁石ユニット30の軸方向Lの中央部におけるロータ2の一部の断面形状を示している。このように、1つの磁石ユニット30に備えられる複数の永久磁石の間で磁化方向Mは共通の方向となり、以下ではこの共通の磁化方向Mを、磁石ユニット30の磁化方向Mという場合がある。図2及び図3に示すように、磁石ユニット30は、当該磁石ユニット30の磁化方向Mが径方向Rの外側又は内側を向くように配置される。 As shown in FIG. 4, the first permanent magnet 41 and the second permanent magnet 42 are arranged in the target direction D orthogonal to both the axial direction L and the magnetization direction M so that the respective magnetization directions M face the same side. Be placed. Therefore, as shown in FIGS. 2 and 3, the first permanent magnet 41 and the second permanent magnet 42 included in one magnet unit 30 generate magnetic fluxes B in the same direction. In addition, the third permanent magnet 43 is the first permanent magnet 41 in the target direction D such that the magnetization direction M of the third permanent magnet 43 faces the same side as the magnetization direction M of the first permanent magnet 41. The two permanent magnets 42 are arranged side by side on the opposite side. That is, the second permanent magnet 42 is disposed on the first direction D1 in the target direction with respect to the first permanent magnet 41, and the third permanent magnet 43 is disposed on the second direction D2 in the target direction with respect to the first permanent magnet 41. . Therefore, as shown in FIG. 3, the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 provided in one magnet unit 30 generate magnetic fluxes B in the same direction. Thus, the plurality of permanent magnets constituting the magnet body 40 (a plurality of permanent magnets including the first permanent magnet 41, and in the present embodiment, the first permanent magnet 41 and the third permanent magnet 43) Arranged in the target direction D so that the magnetization direction M faces the same side. That is, the magnetization direction M of the magnet body 40 is the common magnetization direction M between the plurality of permanent magnets constituting the magnet body 40. The magnet body 40 and the second permanent magnet 42 are arranged side by side in the target direction D so that the respective magnetization directions M face the same side. 2 is a view of a part of the rotor 2 as viewed from the second axial side L2, and FIG. 3 shows a sectional shape of a part of the rotor 2 at the central part in the axial direction L of the magnet unit 30. ing. As described above, the magnetization direction M is a common direction among the plurality of permanent magnets provided in one magnet unit 30. Hereinafter, the common magnetization direction M may be referred to as the magnetization direction M of the magnet unit 30. As shown in FIGS. 2 and 3, the magnet unit 30 is arranged so that the magnetization direction M of the magnet unit 30 faces the outside or the inside of the radial direction R.
 ここで、図2~図4に示すように、第一永久磁石41と第二永久磁石42との対向面(対象方向Dの対向面)を第一対向面51とし、第一永久磁石41と第三永久磁石43との対向面(対象方向Dの対向面)を第二対向面52とする。図4に示すように、第一対向面51は、軸方向第一側L1へ向かうに従って対象方向第一側D1へ向かう第一傾斜面61を有している。本実施形態では、第一傾斜面61は、軸方向第一側L1へ向かうに従って一定の割合で対象方向第一側D1へ向かう平面とされている。よって、第一傾斜面61は、磁石ユニット30の磁化方向Mに見て、軸方向第一側L1へ向かうに従って対象方向第一側D1へ向かう直線状に形成される。本実施形態では、第一対向面51の全体が、第一傾斜面61とされている。また、第二対向面52は、第一傾斜面61が形成される軸方向Lの領域に、軸方向第一側L1へ向かうに従って対象方向第一側D1へ向かう傾斜面(第三傾斜面63)を有している。本実施形態では、第三傾斜面63は、軸方向第一側L1へ向かうに従って一定の割合で対象方向第一側D1へ向かう平面とされている。よって、第三傾斜面63は、磁石ユニット30の磁化方向Mに見て、軸方向第一側L1へ向かうに従って対象方向第一側D1へ向かう直線状に形成される。第三傾斜面63は、第一傾斜面61と平行に形成されている。本実施形態では、第二対向面52の全体が、第三傾斜面63とされている。 Here, as shown in FIGS. 2 to 4, the opposing surface (the opposing surface in the target direction D) of the first permanent magnet 41 and the second permanent magnet 42 is a first opposing surface 51, A surface facing the third permanent magnet 43 (a surface facing the target direction D) is defined as a second facing surface 52. As shown in FIG. 4, the first facing surface 51 has a first inclined surface 61 that goes toward the target direction first side D <b> 1 as it goes toward the axial direction first side L <b> 1. In this embodiment, the 1st inclined surface 61 is made into the plane which goes to the object direction 1st side D1 by a fixed ratio as it goes to the axial direction 1st side L1. Therefore, the first inclined surface 61 is formed in a straight line shape toward the first direction D1 in the target direction as viewed from the magnetization direction M of the magnet unit 30 toward the first side L1 in the axial direction. In the present embodiment, the entire first facing surface 51 is the first inclined surface 61. In addition, the second facing surface 52 is an inclined surface (third inclined surface 63) that faces the first direction D1 in the target direction toward the first axial direction L1 in the region in the axial direction L where the first inclined surface 61 is formed. )have. In this embodiment, the 3rd inclined surface 63 is made into the plane which goes to the object direction 1st side D1 by a fixed ratio as it goes to the axial direction 1st side L1. Therefore, the third inclined surface 63 is formed in a straight line shape toward the first direction D1 in the target direction as it goes toward the first side L1 in the axial direction when viewed in the magnetization direction M of the magnet unit 30. The third inclined surface 63 is formed in parallel with the first inclined surface 61. In the present embodiment, the entire second facing surface 52 is a third inclined surface 63.
 上述したように磁石ユニット30の全体の形状は、直方体状に形成される。そのため、磁石ユニット30の対象方向Dの両側の端面は、第一傾斜面61や第三傾斜面63とは異なり、対象方向Dに直交する面に沿う平面状に形成される。本実施形態では、磁石ユニット30の対象方向第一側D1の端面は、第二永久磁石42の対象方向第一側D1の端面により形成される。また、本実施形態では、磁石ユニット30の対象方向第二側D2の端面は、第三永久磁石43の対象方向第二側D2の端面により形成される。 As described above, the entire shape of the magnet unit 30 is formed in a rectangular parallelepiped shape. Therefore, the end surfaces on both sides in the target direction D of the magnet unit 30 are formed in a planar shape along a plane orthogonal to the target direction D, unlike the first inclined surface 61 and the third inclined surface 63. In this embodiment, the end surface of the target direction first side D1 of the magnet unit 30 is formed by the end surface of the second permanent magnet 42 on the first direction D1 in the target direction. In the present embodiment, the end surface on the second direction D2 in the target direction of the magnet unit 30 is formed by the end surface on the second direction D2 in the target direction of the third permanent magnet 43.
 図4に示すように、本実施形態では、第一永久磁石41は、対象方向Dの幅が軸方向Lに沿って均一に形成されている。ここでは、第一永久磁石41の対象方向第一側D1の端面は、第一傾斜面61を形成する平面状に形成され、第一永久磁石41の対象方向第二側D2の端面は、第三傾斜面63を形成する平面状に形成されている。すなわち、第一永久磁石41は、磁化方向Mに見て、平行四辺形状に形成されている。また、本実施形態では、第一永久磁石41は、磁化方向Mの幅が対象方向D及び軸方向Lに沿って均一に形成されている。 As shown in FIG. 4, in the present embodiment, the first permanent magnet 41 is formed so that the width in the target direction D is uniform along the axial direction L. Here, the end surface on the first direction D1 in the target direction of the first permanent magnet 41 is formed in a planar shape that forms the first inclined surface 61, and the end surface on the second direction D2 in the target direction of the first permanent magnet 41 is The three inclined surfaces 63 are formed in a planar shape. That is, the first permanent magnet 41 is formed in a parallelogram shape when viewed in the magnetization direction M. In the present embodiment, the first permanent magnet 41 is formed such that the width of the magnetization direction M is uniform along the target direction D and the axial direction L.
 第二永久磁石42は、第一永久磁石41と軸方向Lの長さが等しく形成されている。そして、第二永久磁石42の対象方向Dの幅は、軸方向第二側L2の端部において第一永久磁石41の対象方向Dの幅に等しく、軸方向第一側L1の端部においてゼロとなるように形成されている。ここでは、第二永久磁石42の対象方向第一側D1の端面は、対象方向Dに直交する面に沿う平面状に形成され、第二永久磁石42の対象方向第二側D2の端面は、第一傾斜面61を形成する平面状に形成されている。すなわち、第二永久磁石42は、磁化方向Mに見て、第一対向面51(第一傾斜面61)が斜辺となる直角三角形状に形成されている。また、本実施形態では、第二永久磁石42は、磁化方向Mの幅が、第一永久磁石41の磁化方向Mの幅(磁石体40の磁化方向Mの幅)と等しく形成されていると共に、対象方向D及び軸方向Lに沿って均一に形成されている。このように、第二永久磁石42は、磁化方向Mの幅が軸方向Lに沿って均一に形成されている。 The second permanent magnet 42 is formed to have the same length in the axial direction L as the first permanent magnet 41. The width in the target direction D of the second permanent magnet 42 is equal to the width in the target direction D of the first permanent magnet 41 at the end portion on the second axial side L2, and zero at the end portion on the first axial side L1. It is formed to become. Here, the end surface of the target direction first side D1 of the second permanent magnet 42 is formed in a planar shape along a surface orthogonal to the target direction D, and the end surface of the second permanent magnet 42 on the target direction second side D2 is The first inclined surface 61 is formed in a planar shape. That is, the second permanent magnet 42 is formed in a right triangle shape with the first facing surface 51 (first inclined surface 61) as the hypotenuse as viewed in the magnetization direction M. In the present embodiment, the second permanent magnet 42 is formed such that the width in the magnetization direction M is equal to the width in the magnetization direction M of the first permanent magnet 41 (the width in the magnetization direction M of the magnet body 40). And uniformly formed along the target direction D and the axial direction L. Thus, the second permanent magnet 42 is formed so that the width of the magnetization direction M is uniform along the axial direction L.
 第三永久磁石43は、第一永久磁石41と軸方向Lの長さが等しく形成されている。そして、第三永久磁石43の対象方向Dの幅は、軸方向第二側L2の端部においてゼロとなり、軸方向第一側L1の端部において第一永久磁石41の対象方向Dの幅に等しくなるように形成されている。ここでは、第三永久磁石43の対象方向第一側D1の端面は、第三傾斜面63を形成する平面状に形成され、第三永久磁石43の対象方向第二側D2の端面は、対象方向Dに直交する面に沿う平面状に形成されている。すなわち、第三永久磁石43は、磁化方向Mに見て、第二対向面52(第三傾斜面63)が斜辺となる直角三角形状に形成されている。また、本実施形態では、第三永久磁石43は、磁化方向Mの幅が、第一永久磁石41の磁化方向Mの幅と等しく形成されていると共に、対象方向D及び軸方向Lに沿って均一に形成されている。すなわち、第一永久磁石41及び第三永久磁石43が構成する磁石体40は、磁化方向Mの幅が軸方向Lに沿って均一に形成されている。また、磁石体40は、磁化方向Mの幅が対象方向Dに沿って均一に形成されている。第三永久磁石43は、第二永久磁石42を軸方向Lに反転させた形状(軸方向Lの向きを入れ替えた形状)を有している。 The third permanent magnet 43 is formed to have the same length in the axial direction L as the first permanent magnet 41. The width of the third permanent magnet 43 in the target direction D becomes zero at the end portion on the second axial side L2, and the width of the first permanent magnet 41 in the target direction D at the end portion on the first axial side L1. It is formed to be equal. Here, the end surface of the target direction first side D1 of the third permanent magnet 43 is formed in a planar shape that forms the third inclined surface 63, and the end surface of the third permanent magnet 43 on the target direction second side D2 is the target. It is formed in a planar shape along a plane orthogonal to the direction D. That is, when viewed in the magnetization direction M, the third permanent magnet 43 is formed in a right triangle shape in which the second facing surface 52 (third inclined surface 63) is a hypotenuse. In the present embodiment, the third permanent magnet 43 is formed so that the width in the magnetization direction M is equal to the width in the magnetization direction M of the first permanent magnet 41, and along the target direction D and the axial direction L. It is formed uniformly. That is, the magnet body 40 formed by the first permanent magnet 41 and the third permanent magnet 43 is formed so that the width of the magnetization direction M is uniform along the axial direction L. Further, the magnet body 40 is formed so that the width of the magnetization direction M is uniform along the target direction D. The third permanent magnet 43 has a shape obtained by inverting the second permanent magnet 42 in the axial direction L (a shape in which the direction of the axial direction L is changed).
 図4に示すように、本実施形態では、以上のような構成の第一永久磁石41、第二永久磁石42、及び第三永久磁石43を組み合わせて、全体として直方体状(平板状)の磁石ユニット30が形成される。すなわち、1つの磁石ユニット30を構成する第一永久磁石41、第二永久磁石42、及び第三永久磁石43は、各断面(軸方向Lに直交する断面)での対象方向Dの幅の和が軸方向Lに沿って均一となるように形成されている。言い換えれば、1つの磁石ユニット30を構成する磁石体40及び第二永久磁石42のそれぞれの対象方向Dの幅の和は、軸方向Lの全域で同じ大きさとなっている。そして、図4に示すように、第二永久磁石42の対象方向Dの幅は、軸方向第一側L1に向かうに従って減少(ここでは、一定の割合で減少)している。そのため、磁石体40の対象方向Dの幅は、軸方向第一側L1に向かうに従って、第二永久磁石42の対象方向Dの幅の減少割合と同じ割合で増加している。本実施形態では、第一永久磁石41の対象方向Dの幅は、軸方向Lの全域で同じ大きさとなっており、第三永久磁石43の対象方向Dの幅が軸方向第一側L1に向かうに従って増加することで、第一永久磁石41の対象方向Dの幅と第三永久磁石43の対象方向Dの幅の和である磁石体40の対象方向Dの幅が、軸方向第一側L1に向かうに従って増加している。このように、本実施形態では、軸方向Lの全域で、磁石体40及び第二永久磁石42の一方(本実施形態では、磁石体40)の対象方向Dの幅が、軸方向第一側L1に向かうに従って増加し、磁石体40及び第二永久磁石42の他方(本実施形態では、第二永久磁石42)の対象方向Dの幅が、軸方向第一側L1に向かうに従って減少している。 As shown in FIG. 4, in the present embodiment, the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 configured as described above are combined to form a rectangular parallelepiped (flat plate) magnet as a whole. A unit 30 is formed. That is, the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 that constitute one magnet unit 30 are the sum of the widths in the target direction D in each cross section (cross section orthogonal to the axial direction L). Is formed to be uniform along the axial direction L. In other words, the sum of the widths in the target direction D of the magnet body 40 and the second permanent magnet 42 constituting one magnet unit 30 is the same in the entire region in the axial direction L. And as shown in FIG. 4, the width | variety of the object direction D of the 2nd permanent magnet 42 is decreasing (it decreases at a fixed ratio here) toward the axial direction 1st side L1. Therefore, the width in the target direction D of the magnet body 40 increases at the same rate as the decreasing rate of the width in the target direction D of the second permanent magnet 42 toward the first axial side L1. In the present embodiment, the width of the first permanent magnet 41 in the target direction D is the same in the entire area in the axial direction L, and the width of the third permanent magnet 43 in the target direction D is on the first axial direction L1. The width in the target direction D of the magnet body 40, which is the sum of the width of the target direction D of the first permanent magnet 41 and the width of the target direction D of the third permanent magnet 43, increases as it goes toward the first direction in the axial direction. Increasing toward L1. Thus, in the present embodiment, the width in the target direction D of one of the magnet body 40 and the second permanent magnet 42 (magnet body 40 in the present embodiment) is the first side in the axial direction in the entire region in the axial direction L. The width in the target direction D of the other of the magnet body 40 and the second permanent magnet 42 (in the present embodiment, the second permanent magnet 42) decreases toward the first axial side L1. Yes.
 図2及び図3に示すように磁石ユニット30が磁石挿入孔20に配置された状態では、第一永久磁石41の対象方向Dの配置領域における中心が、磁極中心Qと一致する。本実施形態では、第一対向面51(第一傾斜面61)の軸方向第二側L2の端部の対象方向Dの位置は、第二対向面52(第三傾斜面63)の軸方向第一側L1の端部の対象方向Dの位置に等しい。すなわち、本実施形態では、第一永久磁石41の対象方向Dの配置領域における中心が、第一対向面51(第一傾斜面61)の軸方向第二側L2の端部の対象方向Dの位置と一致するため、図2に示すように、軸方向第二側L2の端部では、第一対向面51の対象方向D(図4参照)の位置が、磁極中心Qと一致する。 2 and 3, in the state where the magnet unit 30 is arranged in the magnet insertion hole 20, the center in the arrangement region of the first permanent magnet 41 in the target direction D coincides with the magnetic pole center Q. In the present embodiment, the position in the target direction D of the end portion on the second side L2 in the axial direction of the first opposing surface 51 (first inclined surface 61) is the axial direction of the second opposing surface 52 (third inclined surface 63). It is equal to the position in the target direction D at the end of the first side L1. That is, in this embodiment, the center in the arrangement region of the first permanent magnet 41 in the target direction D is the target direction D of the end portion on the second axial side L2 of the first facing surface 51 (first inclined surface 61). 2, the position of the first facing surface 51 in the target direction D (see FIG. 4) coincides with the magnetic pole center Q at the end on the second axial side L2.
 上記のように磁石ユニット30が磁石挿入孔20に配置される結果、軸方向Lの少なくとも一部の領域で、第一永久磁石41は、第二永久磁石42よりも、ロータ2の複数の磁極Pのそれぞれにおける周方向Cの中心側(すなわち、磁極中心Qの側)に配置される。本実施形態では、軸方向第二側L2の端部を除く軸方向Lの全域で、第一永久磁石41は、第二永久磁石42よりも磁極中心Qの側に配置される。また、軸方向Lの少なくとも一部の領域で、第一永久磁石41は、第三永久磁石43よりも、ロータ2の複数の磁極Pのそれぞれにおける周方向Cの中心側(すなわち、磁極中心Qの側)に配置される。本実施形態では、軸方向第一側L1の端部を除く軸方向Lの全域で、第一永久磁石41は、第三永久磁石43よりも磁極中心Qの側に配置される。 As a result of the magnet unit 30 being arranged in the magnet insertion hole 20 as described above, the first permanent magnet 41 has a plurality of magnetic poles of the rotor 2 more than the second permanent magnet 42 in at least a partial region in the axial direction L. It arrange | positions at the center side (namely, magnetic pole center Q side) of the circumferential direction C in each of P. In the present embodiment, the first permanent magnet 41 is disposed closer to the magnetic pole center Q than the second permanent magnet 42 in the entire region in the axial direction L excluding the end portion on the second axial side L2. Further, in at least a part of the region in the axial direction L, the first permanent magnet 41 is more central than the third permanent magnet 43 in the circumferential direction C in each of the plurality of magnetic poles P of the rotor 2 (that is, the magnetic pole center Q Is arranged on the side). In the present embodiment, the first permanent magnet 41 is disposed closer to the magnetic pole center Q than the third permanent magnet 43 in the entire region in the axial direction L excluding the end portion on the first axial side L1.
 以上のような構成の磁石ユニット30では、各断面(軸方向Lに直交する断面)における磁石ユニット30から発生する磁束Bの密度は、図2及び図3に示すように、第一永久磁石41が配置される対象方向Dの位置(周方向Cの位置)で最も高くなる。そして、第一永久磁石41の対象方向Dの中心位置(周方向Cの中心位置)は、軸方向第一側L1へ向かうに従って対象方向第一側D1(周方向第二側C2)へ向かうため、磁石ユニット30の各断面における磁束密度が最も高くなる位置は、軸方向第一側L1へ向かうに従って対象方向第一側D1(周方向第二側C2)へ移動する(ここでは連続的に移動する)。そして、本実施形態では、上記のように第一永久磁石41の対象方向Dの配置領域における中心が磁極中心Qと一致するため、磁石ユニット30の各断面における磁束密度が最も高くなる位置は、軸方向第一側L1へ向かうに従って、磁極中心Qよりも対象方向第二側D2(周方向第一側C1)の位置から(図2参照)磁極中心Qを通って(図3参照)磁極中心Qよりも対象方向第一側D1(周方向第二側C2)の位置まで移動する(ここでは連続的に移動する)。すなわち、磁束密度が最も高くなる位置が軸方向Lに対して傾斜した方向に延びるスキュー構造を実現することができ、この結果、コギングトルクの低減、トルクリップルの低減、鉄損の低減等を図ることが可能となっている。 In the magnet unit 30 configured as described above, the density of the magnetic flux B generated from the magnet unit 30 in each cross section (cross section orthogonal to the axial direction L) is the first permanent magnet 41 as shown in FIGS. Becomes the highest at the position in the target direction D (position in the circumferential direction C). And since the center position (center position of the circumferential direction C) of the object direction D of the 1st permanent magnet 41 goes to the object direction 1st side D1 (circumferential direction 2nd side C2) as it goes to the axial direction 1st side L1. The position where the magnetic flux density is highest in each cross section of the magnet unit 30 moves to the target direction first side D1 (circumferential second side C2) as it goes to the first axial direction L1 (here, continuously moving). To do). And in this embodiment, since the center in the arrangement | positioning area | region of the target direction D of the 1st permanent magnet 41 corresponds with the magnetic pole center Q as mentioned above, the position where the magnetic flux density in each cross section of the magnet unit 30 becomes the highest is The magnetic pole center from the position in the target direction second side D2 (circumferential first side C1) with respect to the magnetic pole center Q through the magnetic pole center Q (see FIG. 3) as it goes toward the first axial direction L1. It moves to the position of the object direction first side D1 (circumferential direction second side C2) rather than Q (here, it moves continuously). That is, it is possible to realize a skew structure in which the position where the magnetic flux density is highest extends in a direction inclined with respect to the axial direction L. As a result, it is possible to reduce cogging torque, torque ripple, iron loss, and the like. It is possible.
 更に、本実施形態では、第一永久磁石41に対して対象方向第一側D1(周方向第二側C2)に、第一永久磁石41よりも残留磁束密度の低い第二永久磁石42が配置されると共に、第一永久磁石41に対して対象方向第二側D2(周方向第一側C1)に、第一永久磁石41よりも残留磁束密度の低い第三永久磁石43が配置される。すなわち、第一永久磁石41に対して対象方向Dの両側(周方向Cの両側)に、第一永久磁石41よりも残留磁束密度の低い永久磁石(42,43)が配置される。よって、このような第二永久磁石42や第三永久磁石43が配置されない場合に比べて、ロータコア15とステータコア10との間のエアギャップに形成される磁束密度分布の周方向Cに沿った急激な変化を抑制すること(すなわち、磁束密度分布に含まれる高調波成分を低減すること)が可能となる。この結果、コギングトルクの低減、トルクリップルの低減、鉄損の低減等を、より一層図ることができる。また、第二永久磁石42や第三永久磁石43が配置されない場合に比べて、磁石挿入孔20の内部における空間の利用率を高めて、出力トルクの向上を図ることもできる。 Furthermore, in the present embodiment, the second permanent magnet 42 having a lower residual magnetic flux density than the first permanent magnet 41 is disposed on the first direction D1 (circumferential second side C2) in the target direction with respect to the first permanent magnet 41. In addition, the third permanent magnet 43 having a lower residual magnetic flux density than the first permanent magnet 41 is disposed on the second direction D2 in the target direction (circumferential first side C1) with respect to the first permanent magnet 41. That is, permanent magnets (42, 43) having a residual magnetic flux density lower than that of the first permanent magnet 41 are arranged on both sides in the target direction D (both sides in the circumferential direction C) with respect to the first permanent magnet 41. Therefore, compared with the case where the second permanent magnet 42 and the third permanent magnet 43 are not arranged, the magnetic flux density distribution formed in the air gap between the rotor core 15 and the stator core 10 is rapidly increased along the circumferential direction C. Can be suppressed (that is, harmonic components included in the magnetic flux density distribution can be reduced). As a result, it is possible to further reduce cogging torque, torque ripple, iron loss, and the like. Moreover, compared with the case where the 2nd permanent magnet 42 and the 3rd permanent magnet 43 are not arrange | positioned, the utilization factor of the space in the magnet insertion hole 20 can be raised, and the improvement of an output torque can also be aimed at.
 また、この磁石ユニット30では、磁石ユニット30を構成する永久磁石(第一永久磁石41や第二永久磁石42等)として、軸方向Lに連続した形状のものを用いることが可能であり、また、ロータコア15として、軸方向Lに複数段に分割されて段毎に周方向Cにずらして配置されたものを用いる必要もない。よって、スキュー構造を実現するために必要となる部品点数の増大を最小限に抑えつつ、装着対象のロータコア15の構成についての制約が少ない磁石ユニット30を実現することが可能となっている。 Moreover, in this magnet unit 30, it is possible to use the thing of the shape continuous in the axial direction L as a permanent magnet (the 1st permanent magnet 41, the 2nd permanent magnet 42, etc.) which comprises the magnet unit 30, The rotor core 15 does not need to be divided into a plurality of stages in the axial direction L and arranged so as to be shifted in the circumferential direction C for each stage. Therefore, it is possible to realize the magnet unit 30 with few restrictions on the configuration of the rotor core 15 to be mounted while minimizing the increase in the number of parts required for realizing the skew structure.
〔第二の実施形態〕
 磁石ユニットの第二の実施形態について、図5~図7を参照して説明する。以下では、本実施形態の磁石ユニットについて、第一の実施形態との相違点を中心に説明する。特に明記しない点については第一の実施形態と同様であり、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
A second embodiment of the magnet unit will be described with reference to FIGS. Below, the magnet unit of this embodiment is demonstrated centering on difference with 1st embodiment. The points not particularly specified are the same as those in the first embodiment, and the same reference numerals are assigned and detailed description is omitted.
 図5及び図6に示すように、本実施形態では、周方向Cに複数形成される磁極Pのそれぞれが、2つの磁石ユニット30(後述する第一磁石ユニット31及び第二磁石ユニット32)により形成される。すなわち、本実施形態では、磁石ユニット30は、磁極Pの周方向Cの中心(磁極中心Q)を挟んで両側に配置される一対の磁石挿入孔20のそれぞれに挿入される。なお、図5は、ロータ2の一部を軸方向第二側L2から見た図であり、図6は、磁石ユニット30の軸方向Lの中央部におけるロータ2の一部の断面形状を示している。ここで、これら一対の磁石挿入孔20のうち、周方向第一側C1に配置される磁石挿入孔20を第一磁石挿入孔21とし、周方向第二側C2に配置される磁石挿入孔20を第二磁石挿入孔22とする。また、第一磁石挿入孔21に挿入される磁石ユニット30を第一磁石ユニット31とし、第二磁石挿入孔22に挿入される磁石ユニット30を及び第二磁石ユニット32とする。 As shown in FIGS. 5 and 6, in the present embodiment, each of the magnetic poles P formed in the circumferential direction C is formed by two magnet units 30 (a first magnet unit 31 and a second magnet unit 32 described later). It is formed. That is, in the present embodiment, the magnet unit 30 is inserted into each of the pair of magnet insertion holes 20 arranged on both sides of the center (magnetic pole center Q) of the magnetic pole P in the circumferential direction C. 5 is a view of a part of the rotor 2 as viewed from the second axial side L2, and FIG. 6 shows a sectional shape of a part of the rotor 2 at the central part in the axial direction L of the magnet unit 30. ing. Here, out of the pair of magnet insertion holes 20, the magnet insertion hole 20 disposed on the circumferential first side C <b> 1 is referred to as a first magnet insertion hole 21, and the magnet insertion hole 20 disposed on the circumferential second side C <b> 2. Is the second magnet insertion hole 22. The magnet unit 30 inserted into the first magnet insertion hole 21 is referred to as a first magnet unit 31, and the magnet unit 30 inserted into the second magnet insertion hole 22 is referred to as a second magnet unit 32.
 図5及び図6に示すように、磁極中心Qを挟んで周方向Cの両側に配置される第一磁石挿入孔21及び第二磁石挿入孔22は、軸方向Lに直交する断面において、磁極中心Qを通って径方向Rに平行に延びる線分を対称軸として、互いに対称な形状とされている。具体的には、本実施形態では、第一磁石挿入孔21及び第二磁石挿入孔22は、軸方向Lに直交する断面において、径方向Rの外側に向かうに従って互いの間隔が広くなるV字状に配置されている。そして、1つの磁極Pを形成する第一磁石ユニット31及び第二磁石ユニット32は、互いに同じ極性(N極又はS極)の磁極面を径方向Rの外側に向けて配置されている。このような磁石ユニット30の配置構成を採用することで、本実施形態に係る回転電機1では、磁石ユニット30(永久磁石)による鎖交磁束(コイル鎖交磁束)によって生じるマグネットトルクに加えて、q軸インダクタンス(Lq)とd軸インダクタンス(Ld)との間の突極性(Ld<Lq)によって生じるリラクタンストルクも利用することが可能となっている。 As shown in FIGS. 5 and 6, the first magnet insertion hole 21 and the second magnet insertion hole 22 arranged on both sides in the circumferential direction C across the magnetic pole center Q are magnetic poles in a cross section orthogonal to the axial direction L. The line segments extending parallel to the radial direction R through the center Q are symmetrical to each other with the axis of symmetry as the axis of symmetry. Specifically, in the present embodiment, the first magnet insertion hole 21 and the second magnet insertion hole 22 are V-shaped so that the distance between the first magnet insertion hole 21 and the second magnet insertion hole 22 increases toward the outside in the radial direction R in the cross section orthogonal to the axial direction L. Arranged in a shape. And the 1st magnet unit 31 and the 2nd magnet unit 32 which form one magnetic pole P are arrange | positioned so that the magnetic pole surface of the mutually same polarity (N pole or S pole) may face the outer side of radial direction R. By adopting such an arrangement configuration of the magnet unit 30, in the rotating electrical machine 1 according to the present embodiment, in addition to the magnet torque generated by the interlinkage magnetic flux (coil interlinkage magnetic flux) by the magnet unit 30 (permanent magnet), The reluctance torque generated by the saliency (Ld <Lq) between the q-axis inductance (Lq) and the d-axis inductance (Ld) can also be used.
 本実施形態では、磁石ユニット30(31,32)は、第一永久磁石41と第二永久磁石42とを備えているが、第三永久磁石43は備えていない。すなわち、本実施形態では、第一永久磁石41と第二永久磁石42とを組み合わせて磁石ユニット30(31,32)が形成されている。言い換えれば、本実施形態では、磁石体40は、第一永久磁石41のみを備えている。図7に示すように、第一磁石ユニット31や第二磁石ユニット32は、上記第一の実施形態に係る磁石ユニット30と同様、全体として直方体状に形成されている。 In the present embodiment, the magnet unit 30 (31, 32) includes the first permanent magnet 41 and the second permanent magnet 42, but does not include the third permanent magnet 43. That is, in this embodiment, the magnet unit 30 (31, 32) is formed by combining the first permanent magnet 41 and the second permanent magnet 42. In other words, in the present embodiment, the magnet body 40 includes only the first permanent magnet 41. As shown in FIG. 7, the first magnet unit 31 and the second magnet unit 32 are formed in a rectangular parallelepiped shape as a whole, like the magnet unit 30 according to the first embodiment.
 具体的には、図7に示すように、1つの磁石ユニット30(31,32)を構成する第一永久磁石41と第二永久磁石42は、各断面(軸方向Lに直交する断面)での対象方向Dの幅の和が軸方向Lに沿って均一となるように形成されている。具体的には、1つの磁石ユニット30(31,32)を構成する第一永久磁石41及び第二永久磁石42のそれぞれは、磁化方向Mに見て、第一対向面51(第一傾斜面61)が斜辺となる直角三角形状に形成されている。すなわち、第二永久磁石42は、第一永久磁石41を軸方向Lに反転させた形状を有している。 Specifically, as shown in FIG. 7, the first permanent magnet 41 and the second permanent magnet 42 constituting one magnet unit 30 (31, 32) are each in a cross section (a cross section perpendicular to the axial direction L). The sum of the widths in the target direction D is uniform along the axial direction L. Specifically, each of the first permanent magnet 41 and the second permanent magnet 42 constituting one magnet unit 30 (31, 32) is seen in the magnetization direction M, and the first facing surface 51 (first inclined surface). 61) is formed in the shape of a right triangle that is the hypotenuse. That is, the second permanent magnet 42 has a shape obtained by inverting the first permanent magnet 41 in the axial direction L.
 本実施形態では、第一永久磁石41の対象方向Dの一方側の端面は、第一傾斜面61を形成する平面状に形成され、第一永久磁石41の対象方向Dの他方側の端面は、対象方向Dに直交する面に沿う平面状に形成されている。また、第二永久磁石42の対象方向Dの一方側の端面は、第一傾斜面61を形成する平面状に形成され、第二永久磁石42の対象方向Dの他方側の端面は、対象方向Dに直交する面に沿う平面状に形成されている。そして、第一磁石ユニット31では、軸方向Lの全域で、磁石体40(第一永久磁石41)及び第二永久磁石42の一方である第二永久磁石42の対象方向Dの幅が、軸方向第一側L1に向かうに従って増加し、磁石体40及び第二永久磁石42の他方である磁石体40の対象方向Dの幅が、軸方向第一側L1に向かうに従って減少している。一方、第二磁石ユニット32では、軸方向Lの全域で、磁石体40(第一永久磁石41)及び第二永久磁石42の一方である磁石体40の対象方向Dの幅が、軸方向第一側L1に向かうに従って増加し、磁石体40及び第二永久磁石42の他方である第二永久磁石42の対象方向Dの幅が、軸方向第一側L1に向かうに従って減少している。 In the present embodiment, the end surface on one side of the target direction D of the first permanent magnet 41 is formed in a flat shape that forms the first inclined surface 61, and the end surface on the other side of the target direction D of the first permanent magnet 41 is , Formed in a planar shape along a plane orthogonal to the target direction D. Moreover, the end surface of the one side of the object direction D of the 2nd permanent magnet 42 is formed in the planar shape which forms the 1st inclined surface 61, and the end surface of the other side of the object direction D of the 2nd permanent magnet 42 is an object direction. It is formed in a planar shape along a plane orthogonal to D. In the first magnet unit 31, the width in the target direction D of the second permanent magnet 42, which is one of the magnet body 40 (first permanent magnet 41) and the second permanent magnet 42, is the axis in the entire region in the axial direction L. The width in the target direction D of the magnet body 40, which is the other of the magnet body 40 and the second permanent magnet 42, decreases toward the first axial side L1. On the other hand, in the second magnet unit 32, the width in the target direction D of the magnet body 40, which is one of the magnet body 40 (first permanent magnet 41) and the second permanent magnet 42, in the entire axial direction L is The width in the target direction D of the second permanent magnet 42, which is the other of the magnet body 40 and the second permanent magnet 42, decreases toward the first side L1 and decreases toward the first side L1 in the axial direction.
 そして、図7に示すように、第一磁石ユニット31及び第二磁石ユニット32のそれぞれについて、第一永久磁石41は、軸方向Lの全域で、第二永久磁石42よりも周方向Cにおいて磁極Pの中心側(すなわち、磁極中心Qの側)に配置される。すなわち、第一磁石ユニット31は、第一永久磁石41が第二永久磁石42よりも磁極中心Qの側となる向きで第一磁石挿入孔21に挿入され、第二磁石ユニット32は、第一永久磁石41が第二永久磁石42よりも磁極中心Qの側となる向きで第二磁石挿入孔22に挿入される。そして、第一磁石ユニット31と第二磁石ユニット32は、それぞれの第一傾斜面61が、軸方向第一側L1に向かうに従って周方向Cの互いに同じ側(図7に示す例では周方向第二側C2)に向かう向きで配置される。 As shown in FIG. 7, for each of the first magnet unit 31 and the second magnet unit 32, the first permanent magnet 41 is a magnetic pole in the circumferential direction C rather than the second permanent magnet 42 in the entire area in the axial direction L. It is arranged on the center side of P (that is, on the side of the magnetic pole center Q). That is, the first magnet unit 31 is inserted into the first magnet insertion hole 21 in a direction in which the first permanent magnet 41 is closer to the magnetic pole center Q than the second permanent magnet 42, and the second magnet unit 32 is The permanent magnet 41 is inserted into the second magnet insertion hole 22 in a direction that is closer to the magnetic pole center Q than the second permanent magnet 42. And the 1st magnet unit 31 and the 2nd magnet unit 32 are the same side of the circumferential direction C as each 1st inclined surface 61 goes to the axial direction 1st side L1 (in the example shown in FIG. Arranged in the direction towards the second side C2).
 上記のように第一磁石ユニット31及び第二磁石ユニット32を配置することで、図5及び図6に示すように、各断面(軸方向Lに直交する断面)における磁束密度(第一磁石ユニット31及び第二磁石ユニット32の双方によって形成される磁束密度)が最も高くなる位置は、軸方向第一側L1へ向かうに従って、磁極中心Qよりも周方向第一側C1の位置から(図5参照)磁極中心Qを通って(図6参照)磁極中心Qよりも周方向第二側C2の位置まで移動する(ここでは連続的に移動する)。これにより、上述した第一の実施形態と同様に、磁束密度が最も高くなる位置が軸方向Lに対して傾斜した方向に延びるスキュー構造を実現することができ、この結果、コギングトルクの低減、トルクリップルの低減、鉄損の低減等を図ることが可能となっている。 By arranging the first magnet unit 31 and the second magnet unit 32 as described above, the magnetic flux density (first magnet unit) in each cross section (cross section orthogonal to the axial direction L) as shown in FIGS. The position where the magnetic flux density formed by both 31 and the second magnet unit 32 is the highest is from the position on the first circumferential side C1 with respect to the magnetic pole center Q toward the first axial side L1 (FIG. 5). Reference) Moves through the magnetic pole center Q (see FIG. 6) to the position on the second circumferential side C2 from the magnetic pole center Q (here, it moves continuously). Thereby, similarly to the first embodiment described above, it is possible to realize a skew structure in which the position where the magnetic flux density is highest extends in a direction inclined with respect to the axial direction L. As a result, the cogging torque can be reduced, It is possible to reduce torque ripple and iron loss.
 更に、本実施形態では、第一磁石ユニット31及び第二磁石ユニット32の双方について、第一永久磁石41に対して磁極中心Qとは反対側に、第一永久磁石41よりも残留磁束密度の低い第二永久磁石42が配置される。よって、このような第二永久磁石42が配置されない場合に比べて、ロータコア15とステータコア10との間のエアギャップに形成される磁束密度分布の周方向Cに沿った急激な変化を抑制すること(すなわち、磁束密度分布に含まれる高調波成分を低減すること)が可能となる。この結果、コギングトルクの低減、トルクリップルの低減、鉄損の低減等を、より一層図ることができる。また、第二永久磁石42が配置されない場合に比べて、磁石挿入孔20の内部における空間の利用率を高めて、出力トルクの向上を図ることもできる。 Furthermore, in this embodiment, both the first magnet unit 31 and the second magnet unit 32 have a residual magnetic flux density higher than that of the first permanent magnet 41 on the side opposite to the magnetic pole center Q with respect to the first permanent magnet 41. A low second permanent magnet 42 is arranged. Therefore, compared with the case where the second permanent magnet 42 is not arranged, a rapid change along the circumferential direction C of the magnetic flux density distribution formed in the air gap between the rotor core 15 and the stator core 10 is suppressed. (In other words, it is possible to reduce the harmonic component included in the magnetic flux density distribution). As a result, it is possible to further reduce cogging torque, torque ripple, iron loss, and the like. Moreover, compared with the case where the 2nd permanent magnet 42 is not arrange | positioned, the utilization factor of the space in the magnet insertion hole 20 can be raised, and the improvement of output torque can also be aimed at.
〔その他の実施形態〕
 次に、磁石ユニットのその他の実施形態について説明する。
[Other Embodiments]
Next, other embodiments of the magnet unit will be described.
(1)上記第一及び第二の実施形態では、第一対向面51の全体が第一傾斜面61とされる構成を例として説明した。しかし、そのような構成に限定されることなく、第一対向面51が、第一傾斜面61に加えて他の面を有する構成とすることもできる。例えば、第一対向面51が、第一傾斜面61とは軸方向Lの異なる位置に、軸方向第二側L2へ向かうに従って対象方向第一側D1へ向かう第二傾斜面62(図8参照)を有する構成とすることができる。このような構成とした場合、磁石ユニット30により形成されるスキュー構造を、V字状のスキュー構造とすることができる。 (1) In the first and second embodiments, the configuration in which the entire first facing surface 51 is the first inclined surface 61 has been described as an example. However, the configuration is not limited to such a configuration, and the first facing surface 51 may have another surface in addition to the first inclined surface 61. For example, the second inclined surface 62 (see FIG. 8) is directed to the first direction D1 in the target direction as the first facing surface 51 moves to the second direction L2 in the axial direction at a position different from the first inclined surface 61 in the axial direction L. ). In such a configuration, the skew structure formed by the magnet unit 30 can be a V-shaped skew structure.
 図8に、上記第一の実施形態の構成において、第一対向面51が、第一傾斜面61とは軸方向Lの異なる位置に、軸方向第二側L2へ向かうに従って対象方向第一側D1へ向かう第二傾斜面62を有するように構成した例を示す。この例では、第二対向面52が、第三傾斜面63とは軸方向Lの異なる位置(第二傾斜面62が形成される軸方向Lの領域)に、軸方向第二側L2へ向かうに従って対象方向第一側D1へ向かう第四傾斜面64を有している。第四傾斜面64は、第二傾斜面62と平行に形成されている。この例では、第一傾斜面61と第二傾斜面62は、軸方向Lの移動量に対する対象方向Dの移動量(すなわち、傾斜の度合)が互いに等しく形成されており、磁石ユニット30の軸方向Lの中央部において、第一傾斜面61と第二傾斜面62とが接続されている。同様に、この例では、磁石ユニット30の軸方向Lの中央部において、第三傾斜面63と第四傾斜面64とが接続されている。この例では、第二永久磁石42は、2つの第二磁石部42a(磁石片)に軸方向Lに分割されている。 In the configuration of the first embodiment shown in FIG. 8, the first facing surface 51 is located at a different position in the axial direction L from the first inclined surface 61, and the first direction in the target direction toward the second axial direction L 2. The example comprised so that it might have the 2nd inclined surface 62 which goes to D1 is shown. In this example, the second facing surface 52 is directed to the second axial side L2 at a position different from the third inclined surface 63 in the axial direction L (a region in the axial direction L where the second inclined surface 62 is formed). Accordingly, the fourth inclined surface 64 toward the target direction first side D1 is provided. The fourth inclined surface 64 is formed in parallel with the second inclined surface 62. In this example, the first inclined surface 61 and the second inclined surface 62 are formed such that the moving amount (that is, the degree of inclination) in the target direction D with respect to the moving amount in the axial direction L is equal to each other. In the central portion in the direction L, the first inclined surface 61 and the second inclined surface 62 are connected. Similarly, in this example, the third inclined surface 63 and the fourth inclined surface 64 are connected in the central portion of the magnet unit 30 in the axial direction L. In this example, the second permanent magnet 42 is divided in the axial direction L into two second magnet portions 42a (magnet pieces).
 上記第一及び第二の実施形態では、軸方向Lの全域で、磁石体40及び第二永久磁石42の一方の対象方向Dの幅が、軸方向第一側L1に向かうに従って増加し、磁石体40及び第二永久磁石42の他方の対象方向Dの幅が、軸方向第一側L1に向かうに従って減少する構成を例として説明したが、図8に示す例のように、軸方向Lの領域に応じて、軸方向第一側L1への移動に対する対象方向Dの幅の変化の傾向(増加するか減少するかの傾向)が異なる構成とすることもできる。すなわち、磁石体40及び第二永久磁石42の一方の対象方向Dの幅が、軸方向Lの一部の領域である第一領域で、軸方向第一側L1に向かうに従って増加すると共に、軸方向Lの別の一部の領域である第二領域で、軸方向第一側L1に向かうに従って減少し、磁石体40及び第二永久磁石42の他方の対象方向Dの幅が、上記第一領域で軸方向第一側L1に向かうに従って減少すると共に、上記第二領域で軸方向第一側L1に向かうに従って増加する構成とすることができる。 In the first and second embodiments, in the entire area in the axial direction L, the width of one target direction D of the magnet body 40 and the second permanent magnet 42 increases toward the axial first side L1, and the magnet The width of the other target direction D of the body 40 and the second permanent magnet 42 has been described as an example in which the width decreases toward the first axial direction L1, but as in the example illustrated in FIG. Depending on the region, the tendency of the change in the width of the target direction D with respect to the movement toward the first axial direction L1 (the tendency to increase or decrease) may be different. That is, the width of one target direction D of the magnet body 40 and the second permanent magnet 42 is a first region that is a partial region of the axial direction L, and increases toward the first axial direction L1 and the shaft In the second region which is another partial region in the direction L, the width decreases in the other target direction D of the magnet body 40 and the second permanent magnet 42 in the first direction L1 in the axial direction. In the region, the distance decreases toward the first axial direction L1 and increases in the second region toward the first axial direction L1.
(2)上記第一及び第二の実施形態では、磁石ユニット30を構成する複数の永久磁石(41,42,43)が、それぞれ一体的に形成された構成を例として説明した。しかし、そのような構成に限定されることなく、第一永久磁石41、第二永久磁石42、及び第三永久磁石43の少なくともいずれかが、複数の磁石片の集合によって形成されても良い。例えば、上述した図8の例では、第二永久磁石42が、複数の磁石片(第二磁石部42a)の集合によって形成されている。また、例えば、図9に示す例のように、第一永久磁石41、第二永久磁石42、及び第三永久磁石43の全てが、複数の磁石片の集合によって形成されても良い。図8の例では、第一永久磁石41が4つの磁石片(第一磁石部41a)の集合によって形成され、第二永久磁石42が2つの磁石片(第二磁石部42a)の集合によって形成され、第三永久磁石43が2つの磁石片(第三磁石部43a)の集合によって形成されている。 (2) In the first and second embodiments, the configuration in which the plurality of permanent magnets (41, 42, 43) constituting the magnet unit 30 are integrally formed has been described as an example. However, without being limited to such a configuration, at least one of the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 may be formed by a set of a plurality of magnet pieces. For example, in the example of FIG. 8 described above, the second permanent magnet 42 is formed by an assembly of a plurality of magnet pieces (second magnet portions 42a). Further, for example, as in the example illustrated in FIG. 9, all of the first permanent magnet 41, the second permanent magnet 42, and the third permanent magnet 43 may be formed by a set of a plurality of magnet pieces. In the example of FIG. 8, the first permanent magnet 41 is formed by a set of four magnet pieces (first magnet portion 41a), and the second permanent magnet 42 is formed by a set of two magnet pieces (second magnet portion 42a). The third permanent magnet 43 is formed by a set of two magnet pieces (third magnet portion 43a).
(3)上記第一の実施形態では、第二対向面52が、第一傾斜面61が形成される軸方向Lの領域に、軸方向第一側L1へ向かうに従って対象方向第一側D1へ向かう傾斜面(第三傾斜面63)を有する構成を例として説明した。しかし、そのような構成に限定されることなく、第二対向面52が、第一傾斜面61が形成される軸方向Lの領域に、軸方向第一側L1へ向かうに従って対象方向第二側D2へ向かう傾斜面を有する構成とすることも可能である。 (3) In said 1st embodiment, the 2nd opposing surface 52 goes to the object direction 1st side D1 toward the axial direction 1st side L1 in the area | region of the axial direction L in which the 1st inclined surface 61 is formed. The configuration having the inclined surface (the third inclined surface 63) is described as an example. However, without being limited to such a configuration, the second facing surface 52 is in the region in the axial direction L where the first inclined surface 61 is formed, and the target direction second side toward the first axial direction L1. A configuration having an inclined surface toward D2 is also possible.
(4)上記第一の実施形態では、1つの磁極Pが1つの磁石ユニット30により形成される場合を例として説明し、上記第二の実施形態では、1つの磁極Pが2つの磁石ユニット30により形成される場合を例として説明した。しかし、そのような構成に限定されることなく、1つの磁極Pが3つ以上の磁石ユニット30により形成される構成とすることもできる。 (4) In the first embodiment, a case where one magnetic pole P is formed by one magnet unit 30 will be described as an example. In the second embodiment, one magnetic pole P has two magnet units 30. The case of forming by the above has been described as an example. However, without being limited to such a configuration, one magnetic pole P may be formed by three or more magnet units 30.
(5)上記第一及び第二の実施形態では、磁石ユニット30が、インナーロータ型の回転電機用のロータに用いられる場合を例として説明した。しかし、そのような構成に限定されることなく、磁石ユニット30が、アウターロータ型の回転電機用のロータに用いられても良い。 (5) In the first and second embodiments, the case where the magnet unit 30 is used in an inner rotor type rotor for a rotating electrical machine has been described as an example. However, the magnet unit 30 may be used for a rotor for an outer rotor type rotating electrical machine without being limited to such a configuration.
(6)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (6) It should be noted that the configuration disclosed in each of the above-described embodiments is applied in combination with the configuration disclosed in the other embodiment unless there is a contradiction (between the embodiments described as other embodiments. (Including combinations) is also possible. Regarding other configurations, the embodiments disclosed herein are merely examples in all respects. Accordingly, various modifications can be made as appropriate without departing from the spirit of the present disclosure.
〔上記実施形態の概要〕
 以下、上記において説明した磁石ユニットの概要について説明する。
[Overview of the above embodiment]
The outline of the magnet unit described above will be described below.
 軸方向(L)に延びる磁石挿入孔(20)が周方向(C)の複数位置に形成されたロータコア(15)を有する回転電機用ロータ(2)に用いられ、1つの前記磁石挿入孔(20)に挿入される磁石ユニット(30)であって、第一永久磁石(41)と、前記第一永久磁石(41)よりも残留磁束密度が低い第二永久磁石(42)と、を備え、前記第一永久磁石(41)と前記第二永久磁石(42)は、それぞれの磁化方向(M)が同じ側を向くように、前記軸方向(L)及び前記磁化方向(M)の双方に直交する対象方向(D)に並べて配置され、前記軸方向(L)の一方側を軸方向第一側(L1)とすると共に前記対象方向(D)の一方側を対象方向第一側(D1)として、前記第一永久磁石(41)と前記第二永久磁石(42)との対向面(51)が、前記軸方向第一側(L1)へ向かうに従って前記対象方向第一側(D1)へ向かう第一傾斜面(61)を有している。 A magnet insertion hole (20) extending in the axial direction (L) is used in a rotating electrical machine rotor (2) having a rotor core (15) formed at a plurality of positions in the circumferential direction (C). 20) a magnet unit (30) inserted into the first permanent magnet (41) and a second permanent magnet (42) having a residual magnetic flux density lower than that of the first permanent magnet (41). The first permanent magnet (41) and the second permanent magnet (42) have both the axial direction (L) and the magnetization direction (M) so that the magnetization directions (M) face the same side. Are arranged side by side in a target direction (D) orthogonal to the first direction (L1) in one side of the axial direction (L) and the first side in the target direction (L1) of the target direction (D). D1), the first permanent magnet (41) and the second permanent magnet (42) Facing surfaces (51) has the first inclined surface toward the object direction the first side to the (D1) to (61) toward to the axial direction first side (L1).
 この構成によれば、第一永久磁石(41)と第二永久磁石(42)との対向面(51)が軸方向(L)に対して傾斜した第一傾斜面(61)を有する。そのため、磁石ユニット(30)が全体として軸方向(L)に平行に延びるように形成される場合であっても、磁石ユニット(30)から発生する磁束の密度が最も高くなる対象方向(D)の位置が、第一傾斜面(61)の軸方向(L)の形成領域において、軸方向第一側(L1)へ向かうに従って対象方向第一側(D1)へ移動する構成とすることができ、磁石ユニット(30)単体で連続的なスキュー構造を実現することができる。その上で、上記の構成によれば、磁石挿入孔(20)における第一永久磁石(41)が配置されない空間に第二永久磁石(42)が配置されるため、当該空間に第二永久磁石(42)が配置されない場合に比べて、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布の急激な変化を抑制しやすい。以上のことから、上記の構成によれば、コギングトルクやトルクリップルの更なる低減を図ることが可能な磁石ユニット(30)を実現することができる。 According to this configuration, the opposing surface (51) between the first permanent magnet (41) and the second permanent magnet (42) has the first inclined surface (61) inclined with respect to the axial direction (L). Therefore, even when the magnet unit (30) is formed so as to extend parallel to the axial direction (L) as a whole, the target direction (D) in which the density of magnetic flux generated from the magnet unit (30) is the highest. In the axial direction (L) formation region of the first inclined surface (61), the position of the first direction (D1) moves toward the first direction (L1) in the axial direction. A continuous skew structure can be realized by a single magnet unit (30). In addition, according to the above configuration, since the second permanent magnet (42) is disposed in a space where the first permanent magnet (41) in the magnet insertion hole (20) is not disposed, the second permanent magnet is disposed in the space. Compared with the case where (42) is not arranged, it is easy to suppress a rapid change in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10). From the above, according to the above configuration, it is possible to realize the magnet unit (30) capable of further reducing the cogging torque and the torque ripple.
 ここで、前記軸方向(L)の少なくとも一部の領域で、前記第一永久磁石(41)が、前記第二永久磁石(42)よりも、前記回転電機用ロータ(2)の複数の磁極(P)のそれぞれにおける前記周方向(C)の中心(Q)側に配置される構成とすると好適である。 Here, in at least a part of the region in the axial direction (L), the first permanent magnet (41) has a plurality of magnetic poles of the rotating electrical machine rotor (2) rather than the second permanent magnet (42). It is preferable to adopt a configuration that is arranged on the center (Q) side in the circumferential direction (C) in each of (P).
 この構成によれば、第一永久磁石(41)と第二永久磁石(42)との間の残留磁束密度の大小関係を適切に考慮して、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布を、磁極(P)の周方向(C)の中心部においてピークとなると共にそこから緩やかに変化する分布(例えば、正弦波に近い分布)とすることが可能となる。この結果、当該磁束密度分布に含まれる高調波成分の低減を図ることができる。 According to this configuration, in consideration of the magnitude relationship of the residual magnetic flux density between the first permanent magnet (41) and the second permanent magnet (42), the rotor core (15) and the stator core (10) can be The magnetic flux density distribution formed in the air gap of the magnetic pole (P) has a peak at the central portion in the circumferential direction (C) of the magnetic pole (P) and gradually changes therefrom (for example, a distribution close to a sine wave). It becomes possible. As a result, the harmonic component contained in the magnetic flux density distribution can be reduced.
 また、磁石ユニット(30)が、前記磁極(P)の前記周方向(C)の中心部に配置される前記磁石挿入孔(20)に挿入され、前記第一永久磁石(41)よりも残留磁束密度が低い第三永久磁石(43)を更に備え、前記第三永久磁石(43)は、当該第三永久磁石(43)の磁化方向(M)が前記第一永久磁石(41)の磁化方向(M)と同じ側を向くように、前記第一永久磁石(41)に対して前記対象方向(D)における前記第二永久磁石(42)とは反対側に並べて配置され、前記第一永久磁石(41)と前記第三永久磁石(43)との対向面(52)が、前記第一傾斜面(61)が形成される前記軸方向(L)の領域に、前記軸方向第一側(L1)へ向かうに従って前記対象方向第一側(D1)へ向かう傾斜面(63)を有していると好適である。 Further, the magnet unit (30) is inserted into the magnet insertion hole (20) disposed at the central portion in the circumferential direction (C) of the magnetic pole (P), and remains more than the first permanent magnet (41). The third permanent magnet (43) further includes a third permanent magnet (43) having a low magnetic flux density, and the magnetization direction (M) of the third permanent magnet (43) is the magnetization of the first permanent magnet (41). The first permanent magnet (41) is arranged side by side opposite to the second permanent magnet (42) in the target direction (D) so as to face the same side as the direction (M). The opposing surface (52) of the permanent magnet (41) and the third permanent magnet (43) is in the axial direction (L) where the first inclined surface (61) is formed. It has the inclined surface (63) which goes to the said target direction 1st side (D1) as it goes to the side (L1) It is preferable to have.
 この構成によれば、第一永久磁石(41)に対して対象方向(D)の両側に、第一永久磁石(41)よりも残留磁束密度の低い永久磁石(42,43)が配置されるため、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布の急激な変化を、第一永久磁石(41)に対して対象方向(D)の両側において抑制することができる。よって、磁石ユニット(30)が磁極(P)の周方向(C)の中心部に配置される磁石挿入孔(20)に挿入される場合に、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布を、第一永久磁石(41)が配置される周方向(C)の位置をピークとする正弦波状の分布に近づけることができ、この結果、当該磁束密度分布に含まれる高調波成分の低減をより一層図ることができる。 According to this configuration, the permanent magnets (42, 43) having a residual magnetic flux density lower than that of the first permanent magnet (41) are disposed on both sides of the target direction (D) with respect to the first permanent magnet (41). Therefore, an abrupt change in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10) is suppressed on both sides of the target direction (D) with respect to the first permanent magnet (41). be able to. Therefore, when the magnet unit (30) is inserted into the magnet insertion hole (20) disposed in the central portion of the magnetic pole (P) in the circumferential direction (C), the gap between the rotor core (15) and the stator core (10) is obtained. The magnetic flux density distribution formed in the air gap can be brought close to a sinusoidal distribution having a peak in the circumferential direction (C) where the first permanent magnet (41) is arranged. As a result, the magnetic flux density The harmonic component contained in the distribution can be further reduced.
 また、磁石ユニット(30)が、前記磁極(P)の前記周方向(C)の中心(Q)を挟んで両側に配置される一対の前記磁石挿入孔(21,22)のそれぞれに挿入され、前記軸方向(L)の全域で、前記第一永久磁石(41)が、前記第二永久磁石(42)よりも前記周方向(C)において前記磁極(P)の中心(Q)側に配置される構成とすると好適である。 A magnet unit (30) is inserted into each of the pair of magnet insertion holes (21, 22) arranged on both sides of the center (Q) of the magnetic pole (P) in the circumferential direction (C). In the whole axial direction (L), the first permanent magnet (41) is closer to the center (Q) side of the magnetic pole (P) in the circumferential direction (C) than the second permanent magnet (42). It is preferable that the configuration is arranged.
 この構成によれば、第一永久磁石(41)と第二永久磁石(42)との間の残留磁束密度の大小関係を適切に考慮して、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布の急激な変化を、磁極(P)の周方向(C)の中心(Q)に対して周方向(C)の両側において抑制することができる。よって、磁石ユニット(30)が、磁極(P)の周方向(C)の中心(Q)を挟んで両側に配置される一対の磁石挿入孔(21,22)のそれぞれに挿入される場合に、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布を正弦波状の分布に近づけることができ、この結果、当該磁束密度分布に含まれる高調波成分の低減をより一層図ることができる。 According to this configuration, in consideration of the magnitude relationship of the residual magnetic flux density between the first permanent magnet (41) and the second permanent magnet (42), the rotor core (15) and the stator core (10) can be A sudden change in the magnetic flux density distribution formed in the air gap can be suppressed on both sides in the circumferential direction (C) with respect to the center (Q) in the circumferential direction (C) of the magnetic pole (P). Therefore, when the magnet unit (30) is inserted into each of the pair of magnet insertion holes (21, 22) arranged on both sides across the center (Q) in the circumferential direction (C) of the magnetic pole (P). The magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10) can be approximated to a sinusoidal distribution, and as a result, the harmonic components contained in the magnetic flux density distribution can be reduced. More can be achieved.
 また、前記第一永久磁石(41)と前記第二永久磁石(42)との対向面(51)が、前記第一傾斜面(61)とは前記軸方向(L)の異なる位置に、前記軸方向第一側(L1)とは反対側である軸方向第二側(L2)へ向かうに従って前記対象方向第一側(D1)へ向かう第二傾斜面(62)を有していると好適である。 The opposed surface (51) of the first permanent magnet (41) and the second permanent magnet (42) is different from the first inclined surface (61) in the axial direction (L). It is preferable to have a second inclined surface (62) heading toward the first direction (D1) in the target direction toward the second side (L2) in the axial direction opposite to the first side (L1) in the axial direction. It is.
 この構成によれば、第一傾斜面(61)と第二傾斜面(62)とによってV字状のスキュー構造を形成することができる。これにより、例えば、V字の角度を調整することで、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布に含まれる特定の高調波成分を低減することが可能となる。また、例えば、スキュー構造を設けることによって磁石ユニット(30)に発生し得る軸方向(L)の推力を、第一傾斜面(61)の軸方向(L)の形成領域と第二傾斜面(62)の軸方向(L)の形成領域とで互いに逆向きとすることができるため、ロータコア(15)を支持する軸受(5)が、スラスト荷重によって摩耗することを抑制することが可能となる。 According to this configuration, a V-shaped skew structure can be formed by the first inclined surface (61) and the second inclined surface (62). Thus, for example, by adjusting the V-shaped angle, a specific harmonic component included in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10) can be reduced. It becomes possible. In addition, for example, the axial direction (L) thrust that can be generated in the magnet unit (30) by providing the skew structure, the axial direction (L) formation region of the first inclined surface (61) and the second inclined surface ( 62) in the axial direction (L) formation region, the bearings (5) supporting the rotor core (15) can be prevented from being worn by the thrust load. .
 軸方向(L)に延びる磁石挿入孔(20)が周方向(C)の複数位置に形成されたロータコア(15)を有する回転電機用ロータ(2)に用いられ、1つの前記磁石挿入孔(20)に挿入される磁石ユニット(30)であって、少なくとも第一永久磁石(41)を含む磁石体(40)と、前記第一永久磁石(41)よりも残留磁束密度が低い第二永久磁石(42)と、を備え、前記磁石体(40)と前記第二永久磁石(42)は、それぞれの磁化方向(M)が同じ側を向くように、前記軸方向(L)及び前記磁化方向(M)の双方に直交する対象方向(D)に並べて配置され、前記磁石体(40)及び前記第二永久磁石(42)のそれぞれは、前記磁化方向(M)の幅が前記軸方向(L)に沿って均一に形成され、前記軸方向(L)の一方側を軸方向第一側(L1)として、前記磁石体(40)及び前記第二永久磁石(42)の一方の前記対象方向(D)の幅は、前記軸方向第一側(L1)に向かうに従って増加し、前記磁石体(40)及び前記第二永久磁石(42)の他方の前記対象方向(D)の幅は、前記軸方向第一側(L1)に向かうに従って減少している。 A magnet insertion hole (20) extending in the axial direction (L) is used in a rotating electrical machine rotor (2) having a rotor core (15) formed at a plurality of positions in the circumferential direction (C). 20) a magnet unit (30) inserted into a magnet body (40) including at least a first permanent magnet (41), and a second permanent magnetic flux density lower than that of the first permanent magnet (41). A magnet (42), and the magnet body (40) and the second permanent magnet (42) have the axial direction (L) and the magnetization direction such that the respective magnetization directions (M) face the same side. The magnet body (40) and the second permanent magnet (42) are arranged side by side in a target direction (D) orthogonal to both directions (M), and the width of the magnetization direction (M) is the axial direction. One of the axial directions (L) formed uniformly along (L) Is the first axial direction (L1), the width of the target direction (D) of one of the magnet body (40) and the second permanent magnet (42) is toward the first axial direction (L1). And the width of the other target direction (D) of the magnet body (40) and the second permanent magnet (42) decreases toward the first axial direction (L1).
 上記の構成によれば、第二永久磁石(42)よりも残留磁束密度が高い第一永久磁石(41)が含まれる磁石体(40)と、第二永久磁石(42)とが、一方の対象方向(D)の幅が軸方向第一側(L1)に向かうに従って増加し、他方の対象方向(D)の幅が軸方向第一側(L1)に向かうに従って減少するように配置される。そのため、磁石ユニット(30)が全体として軸方向(L)に平行に延びるように形成される場合であっても、磁石ユニット(30)から発生する磁束の密度が最も高くなる対象方向(D)の位置が、軸方向第一側(L1)へ向かうに従って対象方向(D)の一方側へ移動する構成とすることができ、磁石ユニット(30)単体で連続的なスキュー構造を実現することができる。その上で、上記の構成によれば、磁石挿入孔(20)における磁石体(40)が配置されない空間に第二永久磁石(42)が配置されるため、当該空間に第二永久磁石(42)が配置されない場合に比べて、ロータコア(15)とステータコア(10)との間のエアギャップに形成される磁束密度分布の急激な変化を抑制しやすい。以上のことから、上記の構成によれば、コギングトルクやトルクリップルの更なる低減を図ることが可能な磁石ユニット(30)を実現することができる。 According to said structure, the magnet body (40) containing the 1st permanent magnet (41) whose residual magnetic flux density is higher than a 2nd permanent magnet (42), and a 2nd permanent magnet (42) are one side. It arrange | positions so that the width | variety of object direction (D) may increase as it goes to the axial direction 1st side (L1), and the width | variety of the other object direction (D) will decrease as it goes to the axial direction 1st side (L1). . Therefore, even when the magnet unit (30) is formed so as to extend parallel to the axial direction (L) as a whole, the target direction (D) in which the density of magnetic flux generated from the magnet unit (30) is the highest. Can move to one side of the target direction (D) as it goes to the first axial direction (L1), and a continuous skew structure can be realized with the magnet unit (30) alone. it can. In addition, according to the above configuration, since the second permanent magnet (42) is disposed in the space where the magnet body (40) in the magnet insertion hole (20) is not disposed, the second permanent magnet (42) is disposed in the space. ) Is not arranged, it is easy to suppress a rapid change in the magnetic flux density distribution formed in the air gap between the rotor core (15) and the stator core (10). From the above, according to the above configuration, it is possible to realize the magnet unit (30) capable of further reducing the cogging torque and the torque ripple.
 ここで、前記磁石挿入孔(20)は、前記周方向(C)の中心位置(S)が前記軸方向(L)に沿って配置されていると好適である。 Here, it is preferable that the center position (S) in the circumferential direction (C) of the magnet insertion hole (20) is arranged along the axial direction (L).
 この構成によれば、ロータコア(15)の構成を比較的簡素なものとして、回転電機用ロータ(2)のコストの低減を図ることができる。なお、上述したように、本開示に係る磁石ユニット(30)では、磁石ユニット(30)単体で連続的なスキュー構造を実現することができるため、上記のように、磁石挿入孔(20)の周方向(C)の中心位置(S)が軸方向(L)に沿って配置される構成においても、コギングトルクやトルクリップルを小さく抑えることが可能となる。 According to this configuration, the configuration of the rotor core (15) can be made relatively simple, and the cost of the rotor (2) for the rotating electrical machine can be reduced. Note that, as described above, in the magnet unit (30) according to the present disclosure, a continuous skew structure can be realized by the magnet unit (30) alone, and thus, as described above, the magnet insertion hole (20) Even in the configuration in which the center position (S) in the circumferential direction (C) is arranged along the axial direction (L), the cogging torque and the torque ripple can be reduced.
 本開示に係る磁石ユニットは、上述した各効果のうち、少なくとも1つを奏することができれば良い。 The magnet unit according to the present disclosure only needs to exhibit at least one of the effects described above.
2:ロータ(回転電機用ロータ)
15:ロータコア
20:磁石挿入孔
21:第一磁石挿入孔(磁石挿入孔)
22:第二磁石挿入孔(磁石挿入孔)
30:磁石ユニット
31:第一磁石ユニット(磁石ユニット)
32:第二磁石ユニット(磁石ユニット)
40:磁石体
41:第一永久磁石
42:第二永久磁石
43:第三永久磁石
51:第一対向面(第一永久磁石と第二永久磁石との対向面)
52:第二対向面(第一永久磁石と第三永久磁石との対向面)
61:第一傾斜面
62:第二傾斜面
63:第三傾斜面(傾斜面)
C:周方向
D:対象方向
D1:対象方向第一側
L:軸方向
L1:軸方向第一側
L2:軸方向第二側
M:磁化方向
P:磁極
Q:磁極中心(磁極の周方向の中心)
S:中心位置
2: Rotor (rotor for rotating electrical machines)
15: Rotor core 20: Magnet insertion hole 21: First magnet insertion hole (magnet insertion hole)
22: Second magnet insertion hole (magnet insertion hole)
30: Magnet unit 31: First magnet unit (magnet unit)
32: Second magnet unit (magnet unit)
40: Magnet body 41: First permanent magnet 42: Second permanent magnet 43: Third permanent magnet 51: First facing surface (facing surface between the first permanent magnet and the second permanent magnet)
52: Second facing surface (facing surface between the first permanent magnet and the third permanent magnet)
61: First inclined surface 62: Second inclined surface 63: Third inclined surface (inclined surface)
C: circumferential direction D: target direction D1: target direction first side L: axial direction L1: axial direction first side L2: axial direction second side M: magnetization direction P: magnetic pole Q: magnetic pole center (in the circumferential direction of the magnetic pole) center)
S: Center position

Claims (7)

  1.  軸方向に延びる磁石挿入孔が周方向の複数位置に形成されたロータコアを有する回転電機用ロータに用いられ、1つの前記磁石挿入孔に挿入される磁石ユニットであって、
     第一永久磁石と、前記第一永久磁石よりも残留磁束密度が低い第二永久磁石と、を備え、
     前記第一永久磁石と前記第二永久磁石は、それぞれの磁化方向が同じ側を向くように、前記軸方向及び前記磁化方向の双方に直交する対象方向に並べて配置され、
     前記軸方向の一方側を軸方向第一側とすると共に前記対象方向の一方側を対象方向第一側として、前記第一永久磁石と前記第二永久磁石との対向面が、前記軸方向第一側へ向かうに従って前記対象方向第一側へ向かう第一傾斜面を有している磁石ユニット。
    A magnet unit that is used in a rotor for a rotating electrical machine having a rotor core formed with a plurality of axially extending magnet insertion holes in a circumferential direction, and is inserted into one of the magnet insertion holes,
    A first permanent magnet, and a second permanent magnet having a lower residual magnetic flux density than the first permanent magnet,
    The first permanent magnet and the second permanent magnet are arranged side by side in a target direction orthogonal to both the axial direction and the magnetization direction so that the respective magnetization directions face the same side,
    One side of the axial direction is set as the first side in the axial direction, and one side of the target direction is set as the first side in the target direction, and the opposing surfaces of the first permanent magnet and the second permanent magnet are The magnet unit which has the 1st inclined surface which goes to the said target direction 1st side as it goes to one side.
  2.  前記軸方向の少なくとも一部の領域で、前記第一永久磁石が、前記第二永久磁石よりも、前記回転電機用ロータの複数の磁極のそれぞれにおける前記周方向の中心側に配置される請求項1に記載の磁石ユニット。 2. The first permanent magnet is arranged at a center side in the circumferential direction in each of a plurality of magnetic poles of the rotor for a rotating electrical machine with respect to the second permanent magnet in at least a partial region in the axial direction. 2. The magnet unit according to 1.
  3.  前記磁極の前記周方向の中心部に配置される前記磁石挿入孔に挿入され、
     前記第一永久磁石よりも残留磁束密度が低い第三永久磁石を更に備え、
     前記第三永久磁石は、当該第三永久磁石の磁化方向が前記第一永久磁石の磁化方向と同じ側を向くように、前記第一永久磁石に対して前記対象方向における前記第二永久磁石とは反対側に並べて配置され、
     前記第一永久磁石と前記第三永久磁石との対向面が、前記第一傾斜面が形成される前記軸方向の領域に、前記軸方向第一側へ向かうに従って前記対象方向第一側へ向かう傾斜面を有している請求項2に記載の磁石ユニット。
    Inserted in the magnet insertion hole disposed in the central portion of the magnetic pole in the circumferential direction;
    A third permanent magnet having a lower residual magnetic flux density than the first permanent magnet,
    The third permanent magnet includes the second permanent magnet in the target direction with respect to the first permanent magnet such that the magnetization direction of the third permanent magnet faces the same side as the magnetization direction of the first permanent magnet. Are placed side by side on the opposite side,
    The facing surfaces of the first permanent magnet and the third permanent magnet are directed to the first direction in the target direction toward the first axial direction in the axial direction region where the first inclined surface is formed. The magnet unit according to claim 2, wherein the magnet unit has an inclined surface.
  4.  前記磁極の前記周方向の中心を挟んで両側に配置される一対の前記磁石挿入孔のそれぞれに挿入され、
     前記軸方向の全域で、前記第一永久磁石が、前記第二永久磁石よりも前記周方向において前記磁極の中心側に配置される請求項2に記載の磁石ユニット。
    Inserted into each of the pair of magnet insertion holes arranged on both sides across the circumferential center of the magnetic pole,
    3. The magnet unit according to claim 2, wherein the first permanent magnet is disposed closer to the center side of the magnetic pole in the circumferential direction than the second permanent magnet in the entire area in the axial direction.
  5.  前記第一永久磁石と前記第二永久磁石との対向面が、前記第一傾斜面とは前記軸方向の異なる位置に、前記軸方向第一側とは反対側である軸方向第二側へ向かうに従って前記対象方向第一側へ向かう第二傾斜面を有している請求項1から4のいずれか一項に記載の磁石ユニット。 The opposing surface of the first permanent magnet and the second permanent magnet is at a position different from the first inclined surface in the axial direction and toward the second axial side opposite to the first axial side. The magnet unit according to any one of claims 1 to 4, wherein the magnet unit has a second inclined surface toward the first side in the target direction as it goes.
  6.  軸方向に延びる磁石挿入孔が周方向の複数位置に形成されたロータコアを有する回転電機用ロータに用いられ、1つの前記磁石挿入孔に挿入される磁石ユニットであって、
     少なくとも第一永久磁石を含む磁石体と、前記第一永久磁石よりも残留磁束密度が低い第二永久磁石と、を備え、
     前記磁石体と前記第二永久磁石は、それぞれの磁化方向が同じ側を向くように、前記軸方向及び前記磁化方向の双方に直交する対象方向に並べて配置され、
     前記磁石体及び前記第二永久磁石のそれぞれは、前記磁化方向の幅が前記軸方向に沿って均一に形成され、
     前記軸方向の一方側を軸方向第一側として、前記磁石体及び前記第二永久磁石の一方の前記対象方向の幅は、前記軸方向第一側に向かうに従って増加し、前記磁石体及び前記第二永久磁石の他方の前記対象方向の幅は、前記軸方向第一側に向かうに従って減少している磁石ユニット。
    A magnet unit that is used in a rotor for a rotating electrical machine having a rotor core formed with a plurality of axially extending magnet insertion holes in a circumferential direction, and is inserted into one of the magnet insertion holes,
    A magnet body including at least a first permanent magnet, and a second permanent magnet having a residual magnetic flux density lower than that of the first permanent magnet,
    The magnet body and the second permanent magnet are arranged side by side in a target direction orthogonal to both the axial direction and the magnetization direction so that the respective magnetization directions face the same side,
    Each of the magnet body and the second permanent magnet is formed with a uniform width in the magnetization direction along the axial direction.
    With one side in the axial direction as the first side in the axial direction, the width of the target direction of one of the magnet body and the second permanent magnet increases toward the first side in the axial direction, and the magnet body and the The magnet unit in which the width of the other target direction of the second permanent magnet decreases toward the first side in the axial direction.
  7.  前記磁石挿入孔は、前記周方向の中心位置が前記軸方向に沿って配置されている請求項1から6のいずれか一項に記載の磁石ユニット。 The magnet unit according to any one of claims 1 to 6, wherein a center position of the circumferential direction of the magnet insertion hole is arranged along the axial direction.
PCT/JP2017/042174 2016-11-30 2017-11-24 Magnet unit WO2018101160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016233187 2016-11-30
JP2016-233187 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101160A1 true WO2018101160A1 (en) 2018-06-07

Family

ID=62241396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042174 WO2018101160A1 (en) 2016-11-30 2017-11-24 Magnet unit

Country Status (1)

Country Link
WO (1) WO2018101160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157066A (en) * 2020-09-07 2022-03-08 日立金属株式会社 Rotating electrical machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174324A (en) * 1996-12-06 1998-06-26 Matsushita Electric Ind Co Ltd Permanent-magnet rotor
JP2008245336A (en) * 2007-03-23 2008-10-09 Toshiba Corp Rotor, and permanent magnet type rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174324A (en) * 1996-12-06 1998-06-26 Matsushita Electric Ind Co Ltd Permanent-magnet rotor
JP2008245336A (en) * 2007-03-23 2008-10-09 Toshiba Corp Rotor, and permanent magnet type rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157066A (en) * 2020-09-07 2022-03-08 日立金属株式会社 Rotating electrical machine

Similar Documents

Publication Publication Date Title
RU2689311C1 (en) Rotating electrical machine
JP6026023B2 (en) Rotating electric machine
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
JP6422595B2 (en) Electric motor and air conditioner
US8829758B2 (en) Rotary electric machine
JP5813254B2 (en) Permanent magnet rotating electric machine
US8138641B2 (en) Permanent-magnet rotary electric machine
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
CN109964388B (en) Rotor for rotating electrical machine and method for manufacturing rotor for rotating electrical machine
JP2011223742A (en) Permanent magnet type rotary machine
US7405504B2 (en) Rotor for rotary electric machine
WO2021065687A1 (en) Rotor and motor
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP5490171B2 (en) Rotor and synchronous motor
JP2006166688A (en) Permanent magnet motor
JP6121914B2 (en) Synchronous motor
JPWO2020194390A1 (en) Rotating machine
JP2018098936A (en) Magnet unit
WO2018101160A1 (en) Magnet unit
JP2010136462A (en) Hybrid type two-phase permanent magnet rotating electrical machine
JP2013176267A (en) Rotor
WO2013111335A1 (en) Rotary electric machine
WO2019069661A1 (en) Rotor and motor
TWI678864B (en) Permanent magnet motor
WO2021182088A1 (en) Permanent magnet synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载