+

WO2018100621A1 - イオン化装置及び質量分析装置 - Google Patents

イオン化装置及び質量分析装置 Download PDF

Info

Publication number
WO2018100621A1
WO2018100621A1 PCT/JP2016/085353 JP2016085353W WO2018100621A1 WO 2018100621 A1 WO2018100621 A1 WO 2018100621A1 JP 2016085353 W JP2016085353 W JP 2016085353W WO 2018100621 A1 WO2018100621 A1 WO 2018100621A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
gas
ionization
flow path
gas flow
Prior art date
Application number
PCT/JP2016/085353
Other languages
English (en)
French (fr)
Inventor
学 上田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/085353 priority Critical patent/WO2018100621A1/ja
Publication of WO2018100621A1 publication Critical patent/WO2018100621A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns

Definitions

  • the present invention relates to an ionizer that ionizes components in a sample and a mass spectrometer equipped with the ionizer, and more specifically, an ionizer suitable for an ion source such as a mass spectrometer and an ion mobility meter, and the ionizer.
  • the present invention relates to a mass spectrometer provided.
  • LC-MS liquid chromatograph mass spectrometer
  • a mass spectrometer as a detector of a liquid chromatograph (LC)
  • electrospray ionization is used to ionize a liquid sample containing components separated by an LC column.
  • An atmospheric pressure ion source using an (ESI) method, an atmospheric pressure chemical ionization (APCI) method, an atmospheric pressure photoionization (APPI) method or the like is used.
  • ESI atmospheric pressure chemical ionization
  • APPI atmospheric pressure photoionization
  • a pressurized liquid feeding method described in Patent Document 1 As a method for introducing a standard sample into an atmospheric pressure ion source of a mass spectrometer, a pressurized liquid feeding method described in Patent Document 1 is conventionally known.
  • an inert gas for example, nitrogen gas
  • the other end of the liquid feeding tube having one end inserted below the liquid surface of the standard sample solution is connected to an ionization probe of the mass spectrometer.
  • the pressurized gas introduced into the internal space of the sealed container pushes down the liquid level of the standard sample solution, whereby the standard sample solution is fed to the ionization probe through the liquid feeding tube.
  • the standard sample solution is fed in a state where the pressurized inert gas is sealed in a sealed container. For this reason, as the gas pressure in the container decreases as the liquid level decreases, the amount of liquid fed gradually decreases, and the standard sample solution cannot be fed to the ionization probe at a constant flow rate.
  • the liquid feeding is continued for a certain long time, for example, every time the liquid level is lowered by a predetermined height, the operator needs to introduce an inert gas into the container. there were.
  • the standard sample solution when the standard sample solution is fed, the standard sample solution does not reach the ionization probe until the flow path in the liquid feeding tube is filled with the standard sample solution. Therefore, even if the standard sample solution starts to be fed, it is necessary to wait for a certain amount of time (for example, 1 minute) until the standard sample solution is introduced into the ionization probe and the components in the sample are ionized. Inefficient.
  • the present invention has been made in view of the above problems, and the main purpose thereof is a component in a standard sample introduced at a stable flow rate over a long period of time without performing complicated work such as additional introduction of gas.
  • An ionization apparatus which has been made to solve the above problems, a) a sample container containing a liquid sample or gas sample; b) a gas flow path through which gas flows, a sample flow path having one end connected in the middle of the gas flow path and the other end connected to the sample container, and a gas supply for feeding gas into the gas flow path A liquid sample or a gas sample in the sample container through the sample channel by the venturi effect by the gas fed from the gas supply unit into the gas channel and mixed with the gas flow A sampling part to perform, c) an ionization unit that introduces at least a part of a gas mixed with a liquid sample or a gas sample in the sample collection unit and ionizes components in the gas; It is characterized by having.
  • the gas sample itself can be stored in the sample container, a solid sample or a liquid sample can be put in the sample container, and a component volatilized from these samples can be used as the gas sample.
  • a gas is supplied at a predetermined flow rate from the gas supply unit to the gas flow path in the sample collection unit.
  • This gas is preferably an inert gas such as nitrogen.
  • the gas flows in the gas flow path, but a sample flow path communicating with the sample container is connected in the middle of the gas flow path, and the connection portion is in a decompressed state in accordance with Bernoulli's law of conservation of energy. As a result, a venturi effect occurs, and the liquid sample in the sample container is sucked to the gas channel side through the sample channel and mixed with the gas flowing in the gas channel.
  • the gas mixed with the liquid sample is introduced into the ionization unit, and components in the liquid sample are ionized in the ionization unit.
  • a gas sample is stored in the sample container.
  • the gas mixed with the sample in the sample collection unit may be entirely introduced into the ionization unit, or only part of the gas may be branched and introduced into the ionization unit.
  • the gas flow rate fed from the gas supply unit into the gas flow path is controlled to be substantially constant, whereby a substantially constant amount of sample is introduced into the ionization unit, and the components in the sample are removed. It can be ionized. Moreover, since the sample is mixed with the gas flow and introduced into the ionization section regardless of the liquid or gas, the sample-derived ions can be generated with almost no delay from the start of gas supply.
  • the ionization unit includes a reaction ion generation unit that ionizes a predetermined liquid or gas to generate a reaction ion, and in the gas in which the liquid sample or the gas sample is mixed
  • the component in the gas in which the liquid sample or the gas sample is mixed can be ionized by an ion-molecule reaction between the component and the reaction ion generated in the reaction ion generation unit.
  • the reactive ion generation unit is configured to generate reactive ions by one or more of an electrospray ionization (ESI) method, an atmospheric pressure chemical ionization (APCI) method, or an atmospheric pressure photoionization (APPI) method.
  • ESI electrospray ionization
  • APCI atmospheric pressure chemical ionization
  • APPI atmospheric pressure photoionization
  • a dedicated ionization probe for the ESI method, APCI method, or APPI method conventionally used, or ionization and APCI by the ESI method as disclosed in Non-Patent Document 1 are used.
  • An ionization probe that can simultaneously perform ionization by the method may be used.
  • such an ionization probe ionizes components in an externally supplied liquid sample such as an LC column.
  • an externally supplied liquid sample such as an LC column.
  • the solvent or mobile phase is used.
  • the reaction ion derived from can be produced
  • the gas supply from the gas supply unit in the sample collection unit is stopped and the sample is stored in the sample container. Is stopped and components in the liquid sample supplied to the ionization probe may be ionized.
  • liquid sample introduction path and the standard sample introduction path which are the purpose of analysis into the ionization section, can be separated, and there is no need to reconnect the pipes between them or to switch the flow path using a valve. In addition, contamination of both samples can be avoided.
  • the ionization unit includes a thermoelectron generation unit that generates thermoelectrons, and the thermoelectrons generated by the thermoelectron generation unit are brought into contact with components in the gas in which the liquid sample or gas sample is mixed. May be ionized by an electron ionization (EI) method.
  • EI electron ionization
  • thermoelectrons ionization by ion-molecule reaction using ions generated by the above ESI method, APCI method or the like is possible in an atmospheric pressure atmosphere, but ionization by the EI method using thermoelectrons is performed in a vacuum atmosphere. There is a need. Therefore, a vacuum that is communicated with the chamber through a small-diameter opening or channel and not evacuated by a vacuum pump, rather than in a chamber at approximately atmospheric pressure to which a gas mixed with a sample is supplied through the gas channel. A thermoelectron generator may be provided indoors. In this configuration, since ionization is performed by the EI method, fragment ions (product ions) are easily generated instead of molecular ions.
  • the mass-to-charge ratio derived from the component is different. Multiple types of fragment ions can be obtained. Thereby, when tuning a mass spectrometer etc. using the ion derived from a standard sample, it is possible to perform tuning at a plurality of different mass-to-charge ratio values.
  • the ionization apparatus may further include an ion dissociation unit that dissociates ions derived from the sample components ionized by the ionization unit.
  • CID collision induced dissociation
  • ETD electron transfer dissociation
  • ECD electron capture dissociation
  • the gas supplied into the gas flow channel at the outlet end of the gas flow channel for introducing the gas mixed with the liquid sample or the gas sample into the ionization unit.
  • a valve body may be provided that is pushed by the flow to open the outlet end and closes the outlet end in a state where the gas flow is stopped.
  • the gas flow path and the ionization unit can be blocked by the valve body. Therefore, when components in the liquid sample to be analyzed are ionized in the ionization section, it is possible to prevent molecules of the components and ions derived from the components from entering the gas flow path. Thereby, when ionizing the component in the standard sample accommodated in the sample container, the contamination by the component in the liquid sample to be analyzed can be avoided.
  • the mass spectrometer according to the present invention is characterized in that any of the above-described ionizers according to the present invention is provided as an ion source. That is, the mass spectrometer according to the present invention is an atmospheric pressure ionization mass spectrometer that ionizes components in a liquid sample at approximately atmospheric pressure and performs mass analysis. For example, a liquid chromatograph mass spectrometer combined with a liquid chromatograph Can be configured.
  • a stable flow rate can be obtained over a long period of time without performing complicated work such as additional introduction of gas required in the conventional pressurized liquid feeding method.
  • a sample such as a standard sample can be introduced into the ionization section, and components in the sample can be ionized. Regardless of whether the sample is liquid or gas, the sample is mixed with the gas flow and introduced into the ionization unit. Therefore, a standard sample can be quickly introduced into the ionization unit during device tuning. Components in the sample can be ionized and subjected to analysis. Thereby, operations such as device tuning can be performed efficiently.
  • the block diagram of the principal part of the mass spectrometer which is one Example of this invention.
  • the schematic block diagram of the modification of a standard sample supply part The schematic block diagram of the other modification of a standard sample supply part.
  • the block diagram of the principal part of the mass spectrometer which is another Example of this invention.
  • the partial block diagram of the principal part of the mass spectrometer which is another Example of this invention.
  • FIG. 1 is a configuration diagram of a main part of the mass spectrometer of the present embodiment
  • FIG. 2 is a schematic configuration diagram of a standard sample supply unit 21 in the mass spectrometer of the present embodiment.
  • an ionization chamber 11 having a substantially atmospheric pressure atmosphere and an analysis chamber 14 maintained in a high vacuum atmosphere by a high performance vacuum pump (not shown) are provided in the housing 10.
  • middle vacuum chamber 13 which are between these ionization chambers 11 and the analysis chambers 14, and whose vacuum degree is increasing in steps are formed. That is, the mass spectrometer of this embodiment has a multistage differential exhaust system configuration.
  • An ionization probe 20 is provided as an ion source in the ionization chamber 11, and the ionization chamber 11 and the first intermediate vacuum chamber 12 communicate with each other through a small-sized desolvation tube 23.
  • ion guides 24 and 26 are provided for transporting ions to the subsequent stage while converging ions, respectively.
  • the chamber 13 is separated by a skimmer 25 having a small hole at the top.
  • a quadrupole mass filter 27 that separates ions according to the mass-to-charge ratio m / z, and an ion detector 28 that detects ions that have passed through the quadrupole mass filter 27.
  • the configuration of each part can be changed as appropriate, such as replacing the quadrupole mass filter 27 with an orthogonal acceleration time-of-flight mass analyzer.
  • the ionization probe 20 ionizes components contained in a liquid sample supplied from the outside by the ESI method.
  • the eluate that has reached the ionization probe 20 is sprayed into the ionization chamber 11, which is an atmosphere at substantially atmospheric pressure, with the help of the nebulizing gas as charged droplets having a biased charge.
  • the charged droplet ejected from the ionization probe 20 is miniaturized by contacting with the surrounding gas, and the vaporization of the solvent in the droplet is promoted.
  • the sample components contained in the charged droplets are ionized in the process of making the charged droplets finer and removing the solvent.
  • a standard sample is supplied from a standard sample supply unit 21 via a sample introduction tube 22 to a region where charged droplets are sprayed from the ionization probe 20, that is, an ionization region in the ionization chamber 11.
  • a sample introduction tube 22 to a region where charged droplets are sprayed from the ionization probe 20, that is, an ionization region in the ionization chamber 11.
  • the generated ions derived from the sample components are sucked into the desolvation tube 23 by the air flow generated mainly by the pressure difference between the ionization chamber 11 and the first intermediate vacuum chamber 12, and then flowed into the first intermediate vacuum chamber 12. Sent.
  • the desolvation tube 23 is heated by a heater (not shown), and the desolvation of the charged droplets is promoted inside the desolvation tube 23 to generate ions derived from the sample components.
  • the ions are converged by the ion guide 24, sent to the second intermediate vacuum chamber 13 through a small hole at the top of the skimmer 25, and further converged by the ion guide 26 and sent to the analysis chamber 14.
  • a predetermined voltage is applied to the four rod electrodes constituting the quadrupole mass filter 27 from a power source (not shown), and only ions having a mass-to-charge ratio corresponding to the voltage pass through the quadrupole mass filter 27 and are ionized.
  • the light enters the detector 28.
  • the ion detector 28 outputs a detection signal corresponding to the amount of incident ions. Therefore, for example, when the voltage applied to the rod electrode constituting the quadrupole mass filter 27 is scanned within a predetermined range, the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 27 is scanned within the predetermined mass-charge ratio range. Is done.
  • a data processor (not shown) can obtain a mass spectrum indicating the signal intensity of ions over a predetermined mass-to-charge ratio range based on the detection signals sequentially obtained at this time.
  • the standard sample supply unit 21 includes a sample container 213 in which a standard sample solution is stored, a gas flow channel 212, one end immersed in the standard sample solution in the sample container 213, and the other end gas.
  • a sample channel 214 connected in the middle of the channel 212 and a gas feeding unit 211 that feeds gas at a predetermined flow rate into the gas channel 212 are included.
  • the end (the right end in FIG. 2) of the gas flow path 212 opposite to where the gas is introduced is connected to the sample introduction tube 22 opened in the ionization chamber 11.
  • the standard sample supply unit 21 sucks and feeds the standard sample solution in the sample container 213 using the venturi effect caused by the gas flowing in the gas flow path 212.
  • the commonly known Bernoulli equation expresses the law of conservation of energy per unit mass of fluid, and is expressed by the following equation (1).
  • (1/2) v 2 + (P / ⁇ ) constant (1)
  • v is the velocity of the fluid
  • P is the pressure of the fluid
  • the density of the fluid. From this equation, it can be seen that the pressure decreases as the fluid velocity increases.
  • an inert gas such as nitrogen is allowed to flow from the gas supply unit 211 into the gas flow path 212.
  • P1 the pressure at the connection portion of the sample channel 214 to the gas channel 212
  • P1 the pressure in the upper space in the sample container 213
  • P1 the pressure in the upper space in the sample container 213
  • the standard sample solution is mixed with the gas flowing in the gas channel 212 and introduced into the ionization chamber 11.
  • the gas supplied from the gas supply unit 211 is preferably a high-temperature dry gas. When the sucked standard sample solution is mixed with such dry gas, the solvent in the solution is easily vaporized, and the gas molecules of the standard sample can be introduced into the ionization chamber 11.
  • the ionization probe 20 is supplied with only a liquid sample containing no substantial sample component, for example, a mobile phase used in LC.
  • This sample is electrostatically sprayed from the ionization probe 20 to generate a large amount of solvent molecular ions. That is, many solvent molecular ions exist as reaction ions in the region where the standard sample components are introduced into the ionization chamber 11 together with the gas through the sample introduction tube 22. Therefore, the component molecules derived from the standard sample come into efficient contact with the solvent molecular ions and are ionized by the ion-molecule reaction.
  • the ions derived from the standard sample thus generated are sucked into the desolvation tube 23 on the air flow generated mainly by the pressure difference between the ionization chamber 11 and the first intermediate vacuum chamber 12, and sent to the subsequent stage for mass analysis. To be served.
  • the components in the standard sample are ionized and massed in the ionization chamber 11 instead of the eluate from the LC column. Can be used for analysis.
  • a substantially constant amount of the standard sample can be introduced into the ionization chamber 11.
  • the time taken for the gas delivered from the gas delivery unit 211 to pass through the gas flow path 212 and reach the ionization chamber 11 is short, it will enter the ionization chamber 11 without much time delay from the start of gas delivery.
  • the introduction of standard samples can be started.
  • the standard sample introduction path to the ionization chamber 11 is completely different from the path through which the eluate is sent from the LC column outlet to the ionization probe. There is no need to switch roads. In addition, contamination caused by the sample remaining in the channel can be avoided.
  • the ionization probe 20 performs ionization by the ESI method.
  • the ionization probe 20 may perform ionization by the APCI method or the APPI method.
  • ionization by a plurality of mechanisms may be performed simultaneously.
  • any solvent molecular ion that can be used for the ion-molecule reaction may be supplied to the ionization chamber 11.
  • the standard sample solution was accommodated in the sample container 213.
  • PEG polyethylene glycol
  • PFTBA perfluorotributylamine
  • a volatile solid sample may be accommodated in the sample container 213, and a sample component that volatilizes from the solid sample, that is, a gas sample may be mixed into a gas flow and introduced into the ionization chamber 11.
  • a sample component that volatilizes from a volatile liquid sample stored in the sample container 213 may be introduced into the ionization chamber 11 in a gas flow.
  • the amount of evaporation from the solid sample or liquid sample and the gas flow in the gas channel 212 based on the vapor pressure and pressure difference (P2-P1) of the solid sample.
  • the amount of sample mixed in can be adjusted.
  • the sample mixing amount can also be adjusted by changing to a solid sample having a different vapor pressure, changing the inner diameter of the gas flow path 212, changing the gas flow rate, or the like.
  • FIG. 3 is a schematic configuration diagram of a modified example of the standard sample supply unit 21.
  • the inner diameter of the gas channel 212 is made smaller in the vicinity of the connecting portion of the sample channel 214 than on both sides thereof. Thereby, the flow velocity of the gas passing through the vicinity of the connection portion is increased, and the pressure is decreased, so that the sample is easily sucked up.
  • FIG. 4 is a schematic configuration diagram of another modification of the standard sample supply unit 21.
  • the gas flow channel 212 is divided into a first gas flow channel 212A and a second gas flow channel 212B, and the opposing ends of the two flow channels 212A and 212B are both tapered nozzles. It is formed in a shape.
  • the sample channel 214 is connected to a sealed connection chamber 212c provided so as to surround the facing portions of the two channels 212A and 212B. As a result, the flow rate of the gas passing through the two flow paths 212A and 212B is increased, and the pressure in the connection chamber 212c is reduced, so that the sample is easily sucked up.
  • the component derived from the sample is basically ionized in the ionization chamber 11 which is an atmospheric pressure atmosphere.
  • the gaseous sample component generated by desolvation in the ionization chamber 11 is used. It may be introduced into the first intermediate vacuum chamber 12 and ionized in the first intermediate vacuum chamber. In this case, an ionization method different from the atmospheric pressure ionization method can be used.
  • FIG. 5 is a configuration diagram of a main part of a mass spectrometer which is another embodiment of the present invention.
  • a thermoelectron generator 30 including a filament that generates thermoelectrons by supplying a heating current from the outside into the first intermediate vacuum chamber 12, and thermoelectrons emitted from the thermoelectron generator 30.
  • the trap electrode 31 for receiving is disposed in pairs.
  • sample components are ionized in the ionization chamber 11 and then dissociated in the first intermediate vacuum chamber 12 to generate product ions having various mass-to-charge ratios.
  • in-source CID is generated in the first intermediate vacuum chamber 12
  • a collision cell is disposed in the first intermediate vacuum chamber 12
  • CID is generated in the collision cell
  • ETD or ECD is generated.
  • the sample component ions may be dissociated by utilizing the above.
  • a part of the liquid sample electrostatically sprayed from the ionization probe 20 during normal analysis enters the inside of the sample introduction tube 22 to contaminate the inside of the pipeline and cause contamination. It may be a cause. Therefore, in order to avoid this, as shown in FIG. 6, a valve body 22 a that can be swung by a hinge or the like is provided on the end surface of the sample introduction tube 22 opened in the ionization chamber 11. When the gas is not supplied from the gas supply unit 211 into the gas flow path 212, the valve body 22a closes the end surface of the sample introduction tube 22 as shown in FIG.
  • valve body 22a is opened by the pressure of the gas, and the gas accompanying the sample is ionized. It is introduced into the chamber 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

略大気圧雰囲気であるイオン化室に標準試料を導入するための標準試料供給部(21)は、標準試料が収容された試料容器(213)と、ガス流路(212)と、該ガス流路(212)の途中に一端が接続され他端が試料容器(213)に接続された試料流路(214)と、ガス流路(212)中にガスを送給するガス送給部(211)と、を含む。ガス送給部(211)からガス流路(212)中にガスを送給すると、ベンチュリ効果によって試料流路(214)を通して試料容器(213)内の試料が吸引され、ガスの流れに混合されてイオン化室に導入される。イオン化室ではESI法等により溶媒分子イオンが生成され、試料成分分子はイオン-分子反応によりイオン化される。これにより、イオン化プローブとは異なる経路でイオン化室内に標準試料由来の成分を安定的に導入し、該成分をイオン化することができる。 

Description

イオン化装置及び質量分析装置
 本発明は試料中の成分をイオン化するイオン化装置及び該イオン化装置を備えた質量分析装置に関し、さらに詳しくは、質量分析装置やイオン移動度計などのイオン源として好適なイオン化装置及び該イオン化装置を備えた質量分析装置に関する。
 液体クロマトグラフ(LC)の検出器として質量分析装置を用いた液体クロマトグラフ質量分析装置(LC-MS)では、LCのカラムで分離された成分を含む液体試料をイオン化するために、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(APCI)法、大気圧光イオン化(APPI)法などによる大気圧イオン源が利用されている。LC-MSにおいて通常の分析を実行する際には、LCのカラムからの溶出液が質量分析装置に導入されるが、質量分析装置の各部のチューニングや質量較正を行う際には、含有成分の種類や濃度が既知である標準試料が質量分析装置に直接導入される。
 標準試料を質量分析装置の大気圧イオン源に導入する方法として、特許文献1に記載の加圧送液法が従来から知られている。加圧送液法では、標準試料溶液を収容した密閉容器の液面より上の容器内空間に、加圧管を通して所定圧の不活性ガス(例えば窒素ガス)を導入する。一方、標準試料溶液の液面下に一端が挿入された送液管の他端は、質量分析装置のイオン化プローブに接続されている。密閉容器の容器内空間に導入された、加圧されたガスは標準試料溶液の液面を押し下げ、それによって標準試料溶液は送液管を通してイオン化プローブに送給される。
 上記加圧送液法では、加圧された不活性ガスが密閉容器内に封入された状態で標準試料溶液の送給が行われる。そのため、液面の低下に伴って容器内のガス圧が低下するに従い送液量は徐々に減少することになり、一定流量で標準試料溶液をイオン化プローブに送給することができなかった。また、或る程度の長い時間送液を継続する場合には、例えば液面が所定高さだけ低下する毎に操作者が容器内に不活性ガスを追加導入する必要があり、作業が煩雑であった。
 また、上記加圧送液法では、標準試料溶液の送給開始時に、送液管内の流路が標準試料溶液で満たされるまで、イオン化プローブへ標準試料溶液が到達しない。そのため、標準試料溶液を送給し始めてもイオン化プローブへ標準試料溶液が導入されて該試料中の成分がイオン化されるまでには或る程度の時間(例えば1分間)待つ必要があり、作業の効率が悪かった。
 また上記従来の標準試料導入法では、標準試料溶液をイオン化プローブに導入して該試料中の成分をイオン化するため、チューニング等を行う際には、LCのカラム出口に一端が接続されている溶出液配管に代えて標準試料容器に一端が接続されている送液管をイオン化プローブに接続するように、配管の繋ぎ替えを操作者が行う必要があった。また、そうした繋ぎ替えの作業をなくすには、LCのカラム出口とイオン化プローブとの間の配管に流路切替え用のバルブを設ける必要があった。
 こうした配管の繋ぎ替えは大変面倒であり、分析作業の効率を低下させることになる。一方、流路切替え用バルブを設けると装置のコストが上がることになるし、また、イオン化プローブ内の配管やイオン化プローブと流路切替え用バルブとを接続する配管には、標準試料と液体クロマトグラフからの溶出液とが選択的に流されるため、コンタミネーションの問題もある。
 さらにまた、上記従来の標準試料導入法では、液体である標準試料しかイオン源に導入することができず、例えば固体である標準試料から揮発したガス状の標準試料をイオン源に導入することはできなかった。
国際公開第2009/141847号パンフレット
「LCMS-2020 超高速シングル四重極型質量分析計 デュアルイオンソース DUIS-2020」、[online]、株式会社島津製作所、[平成28年11月7日検索]、インターネット<URL: http://www.an.shimadzu.co.jp/lcms/lcms2020/duis.htm>
 本発明は上記課題に鑑みてなされたものであり、その主たる目的は、ガスの追加導入などの煩雑な作業を行うことなく、長い時間に亘って安定した流量で導入された標準試料中の成分をイオン化することができ、しかも質量分析装置のチューニング等のために標準試料を使用したい場合に迅速に標準試料を導入して該試料中の成分をイオン化することができるイオン化装置を提供することである。
 上記課題を解決するためになされた本発明に係るイオン化装置は、
 a)液体試料又は気体試料が収容された試料容器と、
 b)ガスが流通するガス流路と、該ガス流路の途中に一端が接続され他端が前記試料容器に接続された試料流路と、前記ガス流路中にガスを送給するガス供給部と、を含み、前記ガス供給部から前記ガス流路中に送給するガスによるベンチュリ効果により前記試料流路を通して前記試料容器内の液体試料又は気体試料を吸引して前記ガスの流れに混合する試料採取部と、
 c)前記試料採取部において液体試料又は気体試料が混合されたガスの少なくとも一部が導入され、該ガス中の成分をイオン化するイオン化部と、
 を備えることを特徴としている。
 ここで、気体試料はそれ自体を試料容器に収容しておくことも可能であるが、固体試料や液体試料を試料容器に入れ、これら試料から揮発した成分を気体試料とすることもできる。
 本発明に係るイオン化装置において、試料容器に収容した例えば液体試料中の成分をイオン化する場合には、試料採取部においてガス供給部からガス流路中に所定流量でガスを送給する。このガスは窒素等の不活性ガスであることが好ましい。ガスはガス流路中を流れるが、そのガス流路の途中には試料容器に連通している試料流路が接続されており、ベルヌーイのエネルギー保存則に従って、その接続部分は減圧状態になる。これにより、ベンチュリ効果が生じ、試料流路を通して試料容器内の液体試料がガス流路側に吸引され、該ガス流路中を流れるガスに混じる。こうして、液体試料が混じったガスがイオン化部に導入され、該イオン化部において液体試料中の成分がイオン化される。試料容器に気体試料が収容されている場合も全く同様である。なお、試料採取部で試料が混合されたガスはその全量がイオン化部に導入されてもよいし、一部のみが分岐されてイオン化部に導入されてもよい。
 本発明に係るイオン化装置では、ガス供給部からガス流路中に送給するガス流量を略一定に制御することで、略一定の量の試料をイオン化部に導入し、該試料中の成分をイオン化することができる。また、液体、気体に拘わらず試料はガス流に混じってイオン化部に導入されるので、ガス送給開始時点から殆ど時間遅れなく試料由来のイオンを生成することができる。
 本発明に係るイオン化装置の一態様として、前記イオン化部は、所定の液体又はガスをイオン化して反応イオンを生成する反応イオン生成部を含み、前記液体試料又は気体試料が混合されたガス中の成分と前記反応イオン生成部で生成された反応イオンとのイオン-分子反応により、前記液体試料又は気体試料が混合されたガス中の成分をイオン化する構成とすることができる。
 例えば前記反応イオン生成部は、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(APCI)法、又は大気圧光イオン化(APPI)法のいずれか一つ又は複数により反応イオンを生成する構成とすることができる。
 これら構成として具体的には、従来から用いられているESI法、APCI法、若しくはAPPI法のための専用のイオン化プローブ、又は、非特許文献1に開示されているようなESI法によるイオン化とAPCI法によるイオン化とを同時に行うことが可能なイオン化プローブなどを利用すればよい。
 上述したように、こうしたイオン化プローブはLCのカラム等、外部から供給された液体試料中の成分をイオン化するものであるが、溶媒や移動相のみの液体試料を供給することで該溶媒又は移動相由来の反応イオンを生成することができる。こうした構成のイオン化装置では、目的とする液体試料を分析する際には、上記試料採取部におけるガス供給部からのガスの送給を停止して試料容器内に収容されている試料のイオン化部への導入を停止し、イオン化プローブに供給した液体試料中の成分をイオン化すればよい。一方、標準試料を用いた装置のチューニングなどを行う際には、イオン化プローブには溶媒のみ又は移動相のみの液体試料を供給し、上記試料採取部におけるガス供給部からガス流路へのガスの送給を実施して試料容器内に収容されている標準試料をイオン化部へ導入して該試料中の成分をイオン化すればよい。
 このように、イオン化部への分析目的である液体試料の導入経路と標準試料の導入経路とを分けることができ、両者の配管の繋ぎ替えやバルブによる流路の切替えが不要になる。また、両試料のコンタミネーションも回避できる。
 また本発明に係るイオン化装置の別の態様として、
 前記イオン化部は、熱電子を生成する熱電子生成部を含み、該熱電子生成部で生成された熱電子を前記液体試料又は気体試料が混合されたガス中の成分に接触させることで該成分を電子イオン化(EI)法によりイオン化する構成としてもよい。
 但し、上記ESI法、APCI法等により生成したイオンを利用したイオン-分子反応によるイオン化は大気圧雰囲気の下で可能であるが、熱電子を利用したEI法によるイオン化は真空雰囲気の下で行う必要がある。そこで、ガス流路を通して試料が混入しているガスが供給される略大気圧であるチャンバ内でなく、該チャンバと細径の開口や流路を通して連通しており真空ポンプにより真空排気される真空室内において熱電子生成部を設けるとよい。この構成では、EI法によるイオン化であるので分子イオンでなくフラグメントイオン(プロダクトイオン)が生成され易く、例えば一種類の既知成分を含む標準試料を用いる場合でも、該成分由来の質量電荷比が相違する複数種のフラグメントイオンを得ることができる。それにより、標準試料由来のイオンを利用して質量分析装置等のチューニングを行う際に、異なる複数の質量電荷比値におけるチューニングを実施することができる。
 また本発明に係るイオン化装置では、前記イオン化部でイオン化された試料成分由来のイオンを解離させるイオン解離部をさらに備える構成としてもよい。
 イオン解離部におけるイオン解離方法としては、例えば衝突誘起解離(CID)、インソースCID、電子移動解離(ETD)、電子捕獲解離(ECD)などを利用することができる。これらイオン解離も、略大気圧であるチャンバ内でなく上述したように真空排気される真空室内で行うようにするとよい。この構成でも、一種類の成分から質量電荷比が相違する複数種のプロダクトイオンを得ることができるから、上述したように標準試料由来のイオンを利用して質量分析装置等のチューニングを行う際に、異なる複数の質量電荷比値におけるチューニングを実施することができる。
 また本発明に係るイオン化装置において、好ましくは、前記イオン化部へ前記液体試料又は気体試料が混合されたガスを導入する前記ガス流路の出口端に、該ガス流路中に送給されるガス流に押されて該出口端を開放する一方、該ガス流が停止された状態で該出口端を閉鎖する弁体、をさらに備える構成とするとよい。
 この構成によれば、試料容器に収容されている試料をイオン化部に導入しない場合には、弁体によってガス流路とイオン化部とを遮断することができる。そのため、イオン化部において分析対象である液体試料中の成分のイオン化が行われるとき、該成分の分子や該成分由来のイオンがガス流路内に入り込むことを防止することができる。それにより、試料容器に収容されている標準試料中の成分のイオン化を行う際に、上記分析対象である液体試料中の成分によるコンタミネーションを回避することができる。
 また本発明に係る質量分析装置は、上述した本発明に係るイオン化装置のいずれかをイオン源として備えたことを特徴としている。即ち、本発明に係る質量分析装置は、略大気圧下で液体試料中の成分をイオン化して質量分析する大気圧イオン化質量分析装置であり、例えば液体クロマトグラフと組み合わせて液体クロマトグラフ質量分析装置を構成することができる。
 本発明に係るイオン化装置及び質量分析装置によれば、従来の加圧送液法で必要とされるガスの追加導入などの煩雑な作業を行うことなく、長い時間に亘って安定した流量で以て標準試料等の試料をイオン化部に導入し、該試料中の成分をイオン化することができる。また、試料が液体であるか気体であるかに拘わらず、該試料はガス流に混じってイオン化部に導入されるので、装置のチューニング等の際に迅速に標準試料をイオン化部に導入して該試料中の成分をイオン化し分析に供することができる。それにより、装置のチューニング等の作業も効率よく行うことができる。
本発明の一実施例である質量分析装置の要部の構成図。 本実施例の質量分析装置における標準試料供給部の概略構成図。 標準試料供給部の一変形例の概略構成図。 標準試料供給部の他の変形例の概略構成図。 本発明の他の実施例である質量分析装置の要部の構成図。 本発明の他の実施例である質量分析装置の要部の一部構成図。
 本発明に係るイオン化装置を備えた質量分析装置の一実施例について、添付図面を参照して説明する。
 図1は本実施例の質量分析装置の要部の構成図、図2は本実施例の質量分析装置における標準試料供給部21の概略構成図である。
 図1に示すように、本実施例の質量分析装置においてハウジング10内には、略大気圧雰囲気であるイオン化室11と、図示しない高性能の真空ポンプにより高真空雰囲気に維持される分析室14と、それらイオン化室11と分析室14との間にあって真空度が段階的に高くなっている第1中間真空室12及び第2中間真空室13と、が形成されている。即ち、本実施例の質量分析装置は多段差動排気系の構成を有する。イオン化室11内にはイオン源としてイオン化プローブ20が設けられ、該イオン化室11と第1中間真空室12とは細径の脱溶媒管23を通して連通している。
 第1中間真空室12内及び第2中間真空室13内にはそれぞれ、イオンを収束させつつ後段へ輸送するためのイオンガイド24、26が設置され、第1中間真空室12と第2中間真空室13との間は頂部に小孔を有するスキマー25で隔てられている。また、分析室14内には、イオンを質量電荷比m/zに応じて分離する四重極マスフィルタ27と、四重極マスフィルタ27を通り抜けたイオンを検出するイオン検出器28と、が配置されている。なお、四重極マスフィルタ27を直交加速式飛行時間型質量分析器に置き換える等、各部の構成は適宜に変更可能である。
 次に、本実施例の質量分析装置における典型的な質量分析動作を説明する。本実施例の質量分析装置のイオン化プローブ20には、図示しない液体クロマトグラフ(LC)のカラムから溶出する溶出液が導入される。この溶出液には、LCのカラムで時間方向に分離された各種成分が含まれる。この成分が本実施例の質量分析装置における分析目的の試料である。
 イオン化プローブ20は、外部から供給される液体試料に含まれる成分をESI法によりイオン化するものである。即ち、イオン化プローブ20に達した溶出液は、ネブライズガスの助けを受けて、片寄った電荷を有する帯電液滴として略大気圧雰囲気であるイオン化室11内に噴霧される。イオン化プローブ20から噴出した帯電液滴は周囲の気体と接触することで微細化され、該液滴中の溶媒の気化が促進される。そうした帯電液滴の微細化及び脱溶媒化の過程で、帯電液滴に含まれる試料成分はイオン化する。イオン化プローブ20から帯電液滴が噴霧される領域、つまりはイオン化室11内のイオン化領域には、標準試料供給部21から試料導入管22を介して標準試料が供給されるようになっているが、上述したように溶出液中の成分を分析する際には、イオン化室11内への標準試料の導入は停止される。
 生成された試料成分由来のイオンは、主としてイオン化室11内と第1中間真空室12内との圧力差によって生じる空気流に乗って脱溶媒管23に吸い込まれ、第1中間真空室12へと送られる。脱溶媒管23は図示しないヒータにより加熱されており、脱溶媒管23の内部においても帯電液滴の脱溶媒化が促進されて試料成分由来のイオンが生成される。第1中間真空室12内においてイオンはイオンガイド24で収束され、スキマー25頂部の小孔を経て第2中間真空室13へと送られ、さらにイオンガイド26で収束され分析室14へ送られる。
 四重極マスフィルタ27を構成する4本のロッド電極には図示しない電源から所定の電圧が印加され、その電圧に対応した質量電荷比を有するイオンのみが四重極マスフィルタ27を通り抜けてイオン検出器28に入射する。イオン検出器28は入射したイオンの量に応じた検出信号を出力する。したがって、例えば、四重極マスフィルタ27を構成するロッド電極に印加する電圧を所定範囲で走査すると、四重極マスフィルタ27を通過し得るイオンの質量電荷比が所定の質量電荷比範囲で走査される。図示しないデータ処理部では、このときに順次得られる検出信号に基づき、所定の質量電荷比範囲に亘るイオンの信号強度を示すマススペクトルを得ることができる。
 本実施例の質量分析装置では、例えば上記のような分析の実行に先立って、イオンガイド24、26等の各部に印加する電圧を最適化するチューニングが行われる。その際には、イオン化プローブ20に供給される液体試料中の成分ではなく、試料導入管22を介して導入される標準試料中の成分が利用される。
 図2に示すように、標準試料供給部21は、標準試料溶液が貯留された試料容器213と、ガス流路212と、一端が試料容器213内の標準試料溶液中に浸漬され他端がガス流路212の途中に接続された試料流路214と、ガス流路212中に所定流量でガスを送給するガス送給部211と、を含む。ガス流路212にあってガスが導入されるのと反対側の端部(図2では右側の端部)がイオン化室11内に開放している試料導入管22に接続されている。
 この標準試料供給部21は、ガス流路212中に流れるガスによるベンチュリ効果を利用して試料容器213内の標準試料溶液を吸い上げて送給するものである。
 一般に知られるベルヌーイの式は、流体の単位質量あたりのエネルギー保存則を表すもので、次の(1)式で表される。
 (1/2)v2+(P/ρ)=一定   …(1)
ここで、vは流体の速度、Pは流体の圧力、ρは流体の密度である。この式から、流体の速度が増加するほど圧力は減少することが分かる。
 いま、図2に示した標準試料供給部21において、ガス送給部211からガス流路212中に窒素等の不活性ガスを流す。このとき、ガス流路212への試料流路214の接続部における圧力をP1、試料容器213内の上部空間の圧力をP2とすると、ベルヌーイのエネルギー保存則よりP1<P2となる。即ち、試料流路214の両端には圧力差P1-P2が生じ、この圧力差によって試料容器213内に貯留されている標準試料溶液は吸い上げられ、該標準試料溶液は試料流路214を通ってガス流路212中に導入される。そして、この標準試料溶液はガス流路212中を流れるガスと混じり合ってイオン化室11内に導入される。ガス送給部211から供給するガスは高温の乾燥したガスであることが好ましい。吸い上げられた標準試料溶液がこうした乾燥したガスを混合されると該溶液中の溶媒が気化し易く、標準試料の気体分子をイオン化室11内に導入することができる。
 このとき、イオン化プローブ20には実質的な試料成分を含まない溶媒のみの液体試料、例えばLCに使用される移動相のみが供給される。イオン化プローブ20からこの試料が静電噴霧され、多量の溶媒分子イオンが生成される。即ち、試料導入管22を通してガスと共にイオン化室11内に標準試料成分が導入される領域には、多くの溶媒分子イオンが反応イオンとして存在する。そのため、標準試料由来の成分分子は溶媒分子イオンと効率良く接触し、イオン-分子反応によってイオン化する。こうして生成された標準試料由来のイオンは、主としてイオン化室11内と第1中間真空室12内との圧力差によって生じる空気流に乗って脱溶媒管23に吸い込まれ後段へと送られて質量分析に供される。
 以上のようにして、例えば装置のチューニングや質量較正など、標準試料を利用する必要がある場合、LCのカラムからの溶出液に代えて、イオン化室11内で標準試料中の成分をイオン化し質量分析に供することができる。ガス送給部211からガス流路212に送給するガスの流量を略一定に維持することで、ほぼ一定量の標準試料をイオン化室11内に導入することができる。また、ガス送給部211から送り出されたガスがガス流路212を通過してイオン化室11に到達するまでの時間は短いので、ガスを送給し始めてからそれほど時間遅れなくイオン化室11内への標準試料の導入を開始することができる。また、イオン化室11への標準試料の導入経路はLCのカラム出口から溶出液をイオン化プローブまで送る経路とは全く別であるため、標準試料を利用する際に、配管の繋ぎ替えやバルブによる流路の切り替えは不要である。また、流路に残留する試料に起因するコンタミネーションも回避することができる。
 上記実施例では、イオン化プローブ20はESI法によるイオン化を行うものであったが、APCI法やAPPI法によるイオン化を行うものでもよいことは当然である。また、非特許文献1に記載のDUISプローブのように、複数のメカニズムによるイオン化を同時に行うものでもよい。いずれにしても、イオン-分子反応に利用可能な溶媒分子イオンをイオン化室11に供給できるものであればよい。
 上記実施例では、試料容器213内に標準試料溶液を収容していた。標準試料溶液としては、水やメタノールに溶解したPEG(ポリエチレングリコール)、PFTBA(パーフルオロトリブチルアミン)などを用いることができる。また、試料容器213内に揮発性の固体試料を収容し、該固体試料から揮発する試料成分、つまりは気体試料をガス流に混合してイオン化室11に導入するようにしてもよい。こうした固体試料としては、真空グリースなどを用いることができる。また、試料容器213内に収容した揮発性の液体試料から揮発する試料成分をガス流にイオン化室11に導入するようにしてもよい。なお、固体試料や液体試料から揮発した気体試料をベンチュリ効果を利用して吸い上げる場合には、試料流路214の一端は単に試料容器213の上部に接続すればよい。
 こうした揮発性の固体試料や液体試料を用いる場合、該固体試料の蒸気圧と圧力差(P2-P1)とに基づいて、固体試料や液体試料からの蒸発量、ガス流路212中のガス流への試料混入量を調整することができる。該試料混入量の調整は、蒸気圧が相違する固体試料への変更、ガス流路212の内径の変更、ガス流速の変更などによっても可能である。
 また、上述したベンチュリ効果による試料の吸い上げは圧力差(P2-P1)が大きいほうが効果的であり、そのためには、ガス流路212と試料流路214との接続部付近の圧力P1を下げる必要がある。圧力P1を下げるにはその接続部におけるガス流速を増加させるとよい。図3は標準試料供給部21の一変形例の概略構成図である。この例では、ガス流路212の内径を、試料流路214の接続部付近ではその両側よりも小さくしている。これにより、その接続部付近を通過するガスの流速が上がり、圧力が下がって試料が吸い上げられ易くなる。
 また、ガス流路212はガスの流れ方向に連続である必要はない。図4は標準試料供給部21の別の変形例の概略構成図である。この例では、ガス流路212は、第1ガス流路212A、第2ガス流路212Bの二つに分かれており、それら二つの流路212A、212Bの対向する端部はいずれも先細のノズル状に形成されている。そして、それら二つの流路212A、212Bの対向部を囲むように設けられた密閉された連結室212cに試料流路214が接続されている。これにより、この二つの流路212A、212Bの対向部では通過するガスの流速が上がり、連結室212c内の圧力が下がって試料が吸い上げられ易くなる。
 上記実施例の質量分析装置では基本的に、大気圧雰囲気であるイオン化室11内で試料由来の成分をイオン化していたが、イオン化室11内において脱溶媒化によって生成した気体状の試料成分を第1中間真空室12内に導入し、該第1中間真空室内でイオン化してもよい。この場合には、大気圧イオン化法とは異なるイオン化法を利用することができる。
 図5は本発明の他の実施例である質量分析装置の要部の構成図である。図1に示した実施例と同じ構成要素には同じ符号を付している。
 この質量分析装置では、第1中間真空室12内に、外部から加熱電流を供給することで熱電子を生成するフィラメントを含む熱電子生成部30と、熱電子生成部30から射出された熱電子を受けるトラップ電極31と、が対で配置されている。第1中間真空室12内に導入された試料成分分子に熱電子生成部30から射出された熱電子が接触すると、該成分分子は電子イオン化(EI)法によりイオン化される。
 一般に装置のチューニングや質量較正の際には、異なる複数の質量電荷比値においてそれぞれ最適化や質量較正が行われる。EI法によるイオン化ではフラグメントが起こり易いので、試料成分が一種類のみであったとしても様々な質量電荷比を有するフラグメントイオンが生成される。例えば、こうして生成される異なる質量電荷比値を有するフラグメントイオンそれぞれについてその検出信号が最大になるように例えばイオンガイドなどに印加される電圧を調整してその情報を収集することで、一つの又は小数の成分しか含まない標準試料を利用して精度の高いチューニングが可能となる。また、標準試料を利用した質量較正を行う場合も同様である。
 また上記と同様の効果を得るために、イオン化室11内で試料成分をイオン化したあと第1中間真空室12内で試料成分イオンを解離させることで、様々な質量電荷比を有するプロダクトイオンを生成するようにしてもよい。その場合、例えば第1中間真空室12内においてインソースCIDを生じさせて、第1中間真空室12内にコリジョンセルを配置して該コリジョンセル内でCIDを生じさせて、或いは、ETDやECDなどを利用することで試料成分イオンを解離させればよい。
 また、上述した構成の質量分析装置では、通常の分析時にイオン化プローブ20から静電噴霧された液体試料の一部が試料導入管22の内側に入り込んで該管路内を汚染してコンタミネーションの原因となる場合がある。そこで、これを避けるために、図6に示すように、イオン化室11内に開放した試料導入管22の端面に、蝶番などにより蝶動可能な弁体22aを設けるとよい。ガス送給部211からガス流路212中にガスを送給しないときには、図6(a)に示すように、弁体22aは試料導入管22の端面を閉鎖する。これにより、ガス流路212内空間とイオン化室11内空間とは弁体22aで遮断される。一方、ガス送給部211からガス流路212中にガスが送給されると、図6(b)に示すように、ガスの圧力によって弁体22aが開放し、試料を伴ったガスがイオン化室11内に導入される。このようにして、この構成の質量分析装置では、イオン化室11内に存在する微細液滴などがガス流路212に入り込むことを防止できる。
 なお、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願請求の範囲に包含されることは明らかである。
10…ハウジング
11…イオン化室
12…第1中間真空室
13…第2中間真空室
14…分析室
20…イオン化プローブ
21…標準試料供給部
211…ガス送給部
212、212A、212B…ガス流路
213…試料容器
214…試料流路
22…試料導入管
22a…弁体
23…脱溶媒管
24、26…イオンガイド
25…スキマー
27…四重極マスフィルタ
28…イオン検出器
30…熱電子生成部
31…トラップ電極

Claims (7)

  1.  a)液体試料又は気体試料が収容された試料容器と、
     b)ガスが流通するガス流路と、該ガス流路の途中に一端が接続され他端が前記試料容器に接続された試料流路と、前記ガス流路中にガスを送給するガス供給部と、を含み、前記ガス供給部から前記ガス流路中に送給するガスによるベンチュリ効果により前記試料流路を通して前記試料容器内の液体試料又は気体試料を吸引して前記ガスの流れに混合する試料採取部と、
     c)前記試料採取部において液体試料又は気体試料が混合されたガスの少なくとも一部が導入され、該ガス中の成分をイオン化するイオン化部と、
     を備えることを特徴とするイオン化装置。
  2.  請求項1に記載のイオン化装置であって、
     前記イオン化部は、所定の液体又はガスをイオン化して反応イオンを生成する反応イオン生成部を含み、前記液体試料又は気体試料が混合されたガス中の成分と前記反応イオン生成部で生成された反応イオンとのイオン-分子反応により、前記液体試料又は気体試料が混合されたガス中の成分をイオン化するものであることを特徴とするイオン化装置。
  3.  請求項2に記載のイオン化装置であって、
     前記反応イオン生成部は、エレクトロスプレーイオン化法、大気圧化学イオン化法、又は大気圧光イオン化法のいずれか一つ又は複数により反応イオンを生成することを特徴とするイオン化装置。
  4.  請求項1に記載のイオン化装置であって、
     前記イオン化部は、熱電子を生成する熱電子生成部を含み、該熱電子生成部で生成された熱電子を前記液体試料又は気体試料が混合されたガス中の成分に接触させることで該成分を電子イオン化するものであることを特徴とするイオン化装置。
  5.  請求項1に記載のイオン化装置であって、
     前記イオン化部でイオン化された試料成分由来のイオンを解離させるイオン解離部をさらに備えることを特徴とするイオン化装置。
  6.  請求項1に記載のイオン化装置であって、
     前記イオン化部へ前記液体試料又は気体試料が混合されたガスを導入する前記ガス流路の出口端に、該ガス流路中に送給されるガス流に押されて該出口端を開放する一方、該ガス流が停止された状態で該出口端を閉鎖する弁体、をさらに備えることを特徴とするイオン化装置。
  7.  請求項1~6のいずれか1項に記載のイオン化装置をイオン源として備えたことを特徴とする質量分析装置。
PCT/JP2016/085353 2016-11-29 2016-11-29 イオン化装置及び質量分析装置 WO2018100621A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085353 WO2018100621A1 (ja) 2016-11-29 2016-11-29 イオン化装置及び質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085353 WO2018100621A1 (ja) 2016-11-29 2016-11-29 イオン化装置及び質量分析装置

Publications (1)

Publication Number Publication Date
WO2018100621A1 true WO2018100621A1 (ja) 2018-06-07

Family

ID=62242425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085353 WO2018100621A1 (ja) 2016-11-29 2016-11-29 イオン化装置及び質量分析装置

Country Status (1)

Country Link
WO (1) WO2018100621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224973A1 (ja) * 2020-05-08 2021-11-11 株式会社島津製作所 ガスクロマトグラフ質量分析計
CN116358967A (zh) * 2023-05-25 2023-06-30 中国科学院大气物理研究所 一种航天探测用气体检测仪器在轨定标微型标准源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008453A1 (fr) * 1998-08-06 2000-02-17 Hitachi, Ltd. Chargeuse d'echantillons, source d'ions et analyseur de masse avec lesquels on utilise la chargeuse
JP2013178194A (ja) * 2012-02-29 2013-09-09 Panasonic Corp 試料気体収集方法
JP2013538430A (ja) * 2010-09-01 2013-10-10 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析計のためのイオン源
JP2015181126A (ja) * 2015-06-04 2015-10-15 株式会社島津製作所 質量分析装置
JP2016157523A (ja) * 2015-02-23 2016-09-01 株式会社島津製作所 イオン化装置
JP6028875B2 (ja) * 2014-01-20 2016-11-24 株式会社島津製作所 タンデム質量分析データ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008453A1 (fr) * 1998-08-06 2000-02-17 Hitachi, Ltd. Chargeuse d'echantillons, source d'ions et analyseur de masse avec lesquels on utilise la chargeuse
JP2013538430A (ja) * 2010-09-01 2013-10-10 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分析計のためのイオン源
JP2013178194A (ja) * 2012-02-29 2013-09-09 Panasonic Corp 試料気体収集方法
JP6028875B2 (ja) * 2014-01-20 2016-11-24 株式会社島津製作所 タンデム質量分析データ処理装置
JP2016157523A (ja) * 2015-02-23 2016-09-01 株式会社島津製作所 イオン化装置
JP2015181126A (ja) * 2015-06-04 2015-10-15 株式会社島津製作所 質量分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRYAN J. MCCULLOUGH ET AL.: "On-line reaction monitoring by extractive electrospray ionisation", RAPID. COMMUN. MASS SPECTROM., vol. 25, 2011, pages 1445 - 1451, XP055275118, DOI: doi:10.1002/rcm.5016 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224973A1 (ja) * 2020-05-08 2021-11-11 株式会社島津製作所 ガスクロマトグラフ質量分析計
JPWO2021224973A1 (ja) * 2020-05-08 2021-11-11
JP7409492B2 (ja) 2020-05-08 2024-01-09 株式会社島津製作所 ガスクロマトグラフ質量分析計
CN116358967A (zh) * 2023-05-25 2023-06-30 中国科学院大气物理研究所 一种航天探测用气体检测仪器在轨定标微型标准源装置
CN116358967B (zh) * 2023-05-25 2023-09-26 中国科学院大气物理研究所 一种航天探测用气体检测仪器在轨定标微型标准源装置

Similar Documents

Publication Publication Date Title
US11133162B2 (en) IRMS sample introduction system and method
US8704170B2 (en) Method and apparatus for generating and analyzing ions
US7855357B2 (en) Apparatus and method for ion calibrant introduction
JP6620896B2 (ja) イオン化装置及び質量分析装置
US20170287690A1 (en) Ion focusing
US20060237663A1 (en) High speed combination multi-mode ionization source for mass spectrometers
US20090045330A1 (en) Sample ionization at above-vacuum pressures
US7145136B2 (en) Atmospheric pressure ionization with optimized drying gas flow
US7365315B2 (en) Method and apparatus for ionization via interaction with metastable species
WO2018100621A1 (ja) イオン化装置及び質量分析装置
EP3061119B1 (en) Charge-stripping of multiply-charged ions
US8853626B2 (en) Ionization apparatus and ionization analysis apparatus
US20240258093A1 (en) An electron impact ionization within radio frequency confinement fields
GB2522739A (en) Charge-stripping of multiply-charged ions
JP4811361B2 (ja) 大気圧化学イオン化質量分析装置
JPH10269985A (ja) 質量分析装置及び質量分析方法
JP2003107054A (ja) 液体クロマトグラフ質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载