WO2018100566A1 - Composition for recovering carbon dioxide and method for recovering carbon dioxide - Google Patents
Composition for recovering carbon dioxide and method for recovering carbon dioxide Download PDFInfo
- Publication number
- WO2018100566A1 WO2018100566A1 PCT/IB2018/000031 IB2018000031W WO2018100566A1 WO 2018100566 A1 WO2018100566 A1 WO 2018100566A1 IB 2018000031 W IB2018000031 W IB 2018000031W WO 2018100566 A1 WO2018100566 A1 WO 2018100566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- ionic liquid
- absorption
- melting point
- temperature
- Prior art date
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 276
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 138
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 74
- 239000000203 mixture Substances 0.000 title claims abstract description 38
- 239000002608 ionic liquid Substances 0.000 claims abstract description 89
- 230000008018 melting Effects 0.000 claims abstract description 60
- 238000002844 melting Methods 0.000 claims abstract description 60
- 238000011084 recovery Methods 0.000 claims abstract description 52
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims description 94
- 230000008569 process Effects 0.000 claims description 46
- 230000008929 regeneration Effects 0.000 claims description 33
- 238000011069 regeneration method Methods 0.000 claims description 33
- FIFGLZPEFMUKIZ-UHFFFAOYSA-N N1=C[N-]C2=C1C=CC=C2.C(C)[N+](CC)(CC)CC Chemical compound N1=C[N-]C2=C1C=CC=C2.C(C)[N+](CC)(CC)CC FIFGLZPEFMUKIZ-UHFFFAOYSA-N 0.000 claims description 6
- PMIIQSLXSJGMGJ-UHFFFAOYSA-N imidazol-3-ide tetraethylazanium Chemical compound [N-]1C=NC=C1.C(C)[N+](CC)(CC)CC PMIIQSLXSJGMGJ-UHFFFAOYSA-N 0.000 claims description 6
- XGWBBRJTYZRCJL-UHFFFAOYSA-N carbazol-9-ide;tetrabutylazanium Chemical compound C1=CC=C2C3=CC=CC=C3[N-]C2=C1.CCCC[N+](CCCC)(CCCC)CCCC XGWBBRJTYZRCJL-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 62
- 238000012545 processing Methods 0.000 description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000002250 absorbent Substances 0.000 description 15
- 230000002745 absorbent Effects 0.000 description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000011358 absorbing material Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 4
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 4
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229910052916 barium silicate Inorganic materials 0.000 description 1
- HMOQPOVBDRFNIU-UHFFFAOYSA-N barium(2+);dioxido(oxo)silane Chemical compound [Ba+2].[O-][Si]([O-])=O HMOQPOVBDRFNIU-UHFFFAOYSA-N 0.000 description 1
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- YXBZNMSPFZDRFZ-UHFFFAOYSA-M methanol;tetrabutylazanium;hydroxide Chemical compound [OH-].OC.CCCC[N+](CCCC)(CCCC)CCCC YXBZNMSPFZDRFZ-UHFFFAOYSA-M 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/82—Solid phase processes with stationary reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/96—Regeneration, reactivation or recycling of reactants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/62—Quaternary ammonium compounds
- C07C211/63—Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention relates to a carbon dioxide recovery composition containing an ionic liquid, and a carbon dioxide recovery method using the carbon dioxide recovery composition.
- Patent Document 1 proposes a carbon dioxide separation and recovery method in which CO 2 is separated and recovered from a multicomponent mixed gas by a physical absorption method using an ionic liquid absorbing liquid.
- absorption of carbon dioxide into an ionic liquid is an exothermic reaction.
- the temperature of the ionic liquid is increased due to heat generation, the absorption rate of carbon dioxide is not preferable.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a carbon dioxide recovery composition and a carbon dioxide recovery method that are advantageous in terms of heat balance when recovering carbon dioxide.
- the characteristic configuration of the carbon dioxide recovery composition for achieving the above object is a carbon dioxide recovery composition containing an ionic liquid, which is an absorption state that is a melting point of the ionic liquid in a state of absorbing carbon dioxide
- the melting point is 50 ° C. or more and 110 ° C. or less, and the melting point or decomposition temperature of the ionic liquid in a state where carbon dioxide is desorbed is higher than the absorption state melting point.
- Carbon dioxide recovery is performed on exhaust gas (hereinafter referred to as processing gas) from engines and boilers in factories and power plants.
- the temperature of these processing gases is generally about 60 ° C to 120 ° C.
- the inventors have conceived to mitigate the adverse effects of heat generation due to absorption of carbon dioxide in this temperature range by utilizing heat generation and heat absorption associated with phase transition of the ionic liquid. And measure the melting point of the ionic liquid in the state of absorbing carbon dioxide of some ionic liquids, confirm that these ionic liquids cause a phase transition in the temperature range of general processing gas, carbon dioxide recovery As a result, the present invention was completed.
- the absorption state melting point which is the melting point of the ionic liquid in the state of absorbing carbon dioxide
- the carbon dioxide recovery composition containing the ionic liquid can be suitably used for carbon dioxide recovery.
- Another characteristic configuration of the carbon dioxide recovery composition according to the present invention is that the ionic liquid contains tetraethylammonium benzimidazolide.
- the absorption state melting point of tetraethylammonium benzimidazolide (hereinafter sometimes referred to as “N2Bn”) measured by the inventors is 55 ° C.
- N2Bn tetraethylammonium benzimidazolide
- Another characteristic configuration of the carbon dioxide recovery composition according to the present invention is that the ionic liquid contains tetraethylammonium imidazolide.
- the absorption melting point of tetraethylammonium imidazolide (hereinafter sometimes referred to as “N2Im”) measured by the inventor is 70 ° C.
- N2Im tetraethylammonium imidazolide
- the carbon dioxide recovery composition can be suitably used for recovering carbon dioxide from a processing gas having a temperature higher than 70 ° C.
- Another characteristic configuration of the carbon dioxide recovery composition according to the present invention is that the ionic liquid contains tetrabutylammonium carbazolide.
- the absorption melting point of tetrabutylammonium carbazolide (hereinafter sometimes referred to as “N4Cz”) measured by the inventor is 100 ° C.
- N4Cz tetrabutylammonium carbazolide
- the characteristic configuration of the carbon dioxide recovery method for achieving the above object is a carbon dioxide recovery method having an absorption step
- the absorption step is a step in which a treatment gas containing carbon dioxide is brought into contact with a carbon dioxide recovery composition containing an ionic liquid to absorb carbon dioxide into the ionic liquid;
- the absorption state melting point which is the melting point of the ionic liquid in a state of absorbing carbon dioxide, is 50 ° C. or more and 110 ° C. or less, and the melting point or decomposition temperature of the ionic liquid in the state of removing carbon dioxide is the absorption state melting point.
- Higher than The absorption process temperature at which the absorption process is performed is higher than the absorption state melting point.
- Carbon dioxide recovery is performed on exhaust gas (hereinafter referred to as processing gas) from engines and boilers in factories and power plants.
- the temperature of these processing gases is generally about 60 ° C to 120 ° C.
- the inventors have conceived to mitigate the adverse effects of heat generation due to absorption of carbon dioxide in this temperature range by utilizing heat generation and heat absorption associated with phase transition of the ionic liquid. And measure the melting point of the ionic liquid in the state of absorbing carbon dioxide of some ionic liquids, confirm that these ionic liquids cause a phase transition in the temperature range of general processing gas, carbon dioxide recovery As a result, the present invention was completed.
- the absorption state melting point of the ionic liquid in the state of absorbing carbon dioxide is 50 ° C. or higher and 110 ° C. or lower, and the melting point or decomposition temperature of the ionic liquid in the state of desorbing carbon dioxide is higher than the absorption state melting point.
- the absorption process is performed using the carbon dioxide recovery composition containing the ionic liquid, and the absorption process temperature at which the absorption process is performed is higher than the absorption state melting point.
- the carbon dioxide can be recovered in an advantageous state.
- the regeneration step is a step of heating the carbon dioxide recovery composition to desorb carbon dioxide, and is performed after the absorption step,
- the regeneration process temperature at which the regeneration process is performed is higher than the absorption process temperature and lower than the melting point and decomposition temperature of the ionic liquid.
- FIG. 1 is a schematic configuration diagram of a temperature swing adsorption device in which a carbon dioxide recovery method using a carbon dioxide recovery composition is performed.
- An ionic liquid is an organic salt that is melted without crystallization even at room temperature.
- the composition for carbon dioxide recovery according to this embodiment is configured to contain the above-described ionic liquid.
- the ionic liquid according to the present embodiment has an absorption state melting point that is a melting point of the ionic liquid in a state where carbon dioxide is absorbed is 50 ° C. or higher and 110 ° C. or lower, and a melting point of the ionic liquid in a state where carbon dioxide is desorbed or A decomposition temperature higher than the absorption state melting point is used.
- Examples of the ionic liquid having such characteristics include tetraethylammonium benzimidazolide (N2Bn), tetraethylammonium imidazolide (N2Im), and tetrabutylammonium carbazolide (N4Cz).
- N2Bn tetraethylammonium benzimidazolide
- N2Im tetraethylammonium imidazolide
- N4Cz tetrabutylammonium carbazolide
- Tetraethylammonium benzimidazolide (tetraethyl ammoniumbenzimidazolide, N2Bn) is cationic: tetraethylammonium (tetraethylammonium, N 2222) and an anion: A benzimidazole (benzimidazole, BnIm) and salts, ionic liquids represented by the following formula 1 It is.
- N2Bn can be synthesized by reacting tetraethylammonium hydroxide and benzimidazole. Specifically, it can be synthesized by the following procedure.
- the absorption state melting point (Tmad) of N2Bn and the melting point or decomposition temperature (Tmde) of the ionic liquid in a state where carbon dioxide was desorbed were measured as follows.
- Tmad About 1 g of N2Bn was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min with 14 kPa of carbon dioxide gas supplied. The temperature was raised. N2Bn was visually observed, and the temperature at which N2Bn was liquefied and about half was transparent was defined as Tmad. The Tmad of N2Bn was measured to be 55 ° C.
- Tetraethylammonium imidazolide (tetraethylammoniumimidazolide, N2Im) is cationic: tetraethylammonium (tetraethylammonium, N 2222) and an anion: a salt with imidazole (imidazole, Im), it is an ionic liquid represented by the following Formula 2.
- N2Im can be synthesized by reacting tetraethylammonium hydroxide and imidazole. Specifically, it can be synthesized by the following procedure.
- a 100 ml three-necked reactor equipped with a dropping funnel and a three-way cock is charged with 0.82 g of imidazole (because it is a 98% product, 0.80 g, 11.8 mmol) and 4.0 ml of methanol, and stirred at room temperature. 4.94 g of 35% tetraethylammonium hydroxide solution (1.73 g, 11.8 mmol because it is a 35% product) is dropped from the dropping funnel. Thereafter, the dropping funnel is washed with methanol (2.0 ml), and the methanol solution is also dropped into the reaction system. After stirring at room temperature for 1 day, the solvent of this reaction mixture is distilled off and dried under reduced pressure (60 ° C. 17 hr) to obtain 1.45 g of a white solid.
- the absorption melting point (Tmad) of N2Im and the melting point or decomposition temperature (Tmde) of the ionic liquid in a state where carbon dioxide was desorbed were measured as follows, similarly to N2Bn.
- Tmad About 1 g of N2Im was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was supplied at a rate of 0.5 ° C./min from room temperature to 150 ° C. while supplying 14 kPa of carbon dioxide gas. The temperature was raised. N2Im was visually observed, and the temperature at the time when N2Im liquefied and about half of the amount became transparent was defined as Tmad. The Tmad of N2Im was measured as 70 ° C.
- Tmde Treatment temperature
- Tetrabutylammonium carbazolyl de (tetrabuthylammoniumcarbazolide, N4Cz) is cationic: tetrabutylammonium (tetrabuthylammonium, N 4444) and an anion: carbazole (carbazole, Cz) is a salt with an ionic liquid represented by the following Formula 3 It is.
- N4Cz can be synthesized by reacting tetrabutylammonium hydroxide with carbazole. Specifically, it can be synthesized by the following procedure.
- a 100 ml three-necked reactor equipped with a dropping funnel and a three-way cock is charged with 0.67 g of carbazole (because it is a 96% product, 0.64 g, 3.85 mmol) and 5.0 ml of THF, and stirred at room temperature.
- a dropping funnel 10.00 g of a 10% tetrabutylammonium hydroxide methanol solution (1.00 g, 3.85 mmol because it is a 10% product) is dropped.
- the dropping funnel is washed with THF (2.0 ml), and the THF solution is also dropped into the reaction system.
- the solvent of this reaction mixture is distilled off and dried under reduced pressure (60 ° C., 17 hr) to obtain 1.26 g of a yellow solid.
- the absorption melting point (Tmad) of N4Cz and the melting point or decomposition temperature (Tmde) of the ionic liquid in a state where carbon dioxide was desorbed were measured as follows in the same manner as N2Bn.
- Tmad About 1 g of N4Cz was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was supplied at a rate of 0.5 ° C./min from room temperature to 150 ° C. while supplying 14 kPa of carbon dioxide gas. The temperature was raised. N4Cz was visually observed, and the temperature at which N4Cz was liquefied and about half was transparent was defined as Tmad. The N4Cz Tmad was measured at 100 ° C.
- Tmde melting temperature
- composition for recovering carbon dioxide containing an ionic liquid can be used for recovering carbon dioxide in a liquid state. Further, it is more preferable to use a carbon dioxide recovery composition containing an ionic liquid for carbon dioxide recovery in a state of being supported on a carrier.
- Examples of applicable carriers include capsules and porous inorganic particles.
- the capsule for example, a core-shell type capsule or a sea-island structure type capsule that is configured so that the gas absorbing material is not exposed to the surface is preferable. That is, the gas absorbing material is disposed on the inner side, and the outer side of the gas absorbing material is covered with a film or an outer shell.
- the porous inorganic particles are preferably those that penetrate to the surface but do not elute even when the gas absorbing material is liquefied because the pore diameter is small.
- Examples of inorganic substances forming the porous inorganic particles include silicates, phosphates, oxides, and the like.
- Examples of the silicate include calcium silicate, barium silicate, magnesium silicate, and zeolite.
- Examples of the phosphate include calcium phosphate, barium phosphate, magnesium phosphate, zirconium phosphate, and apatite.
- Examples of the oxide include silicon oxide such as silicon dioxide and silicon monoxide, and alumina. Preferred is an oxide, more preferred is silicon oxide, and even more preferred is silicon dioxide.
- the temperature swing adsorption device 1 in this embodiment includes a first absorption tank 2, a second absorption tank 3, a steam supply line 4, a process gas supply line 5, a carbon dioxide recovery line 6, an exhaust line 7, and a blower 8.
- the gas absorbing material 9 is filled in each of the first absorption tank 2 and the second absorption tank 3.
- the gas absorbent 9 is obtained by supporting the above-described carbon dioxide recovery composition on a carrier.
- processing gas applicable to the temperature swing adsorption device 1 for example, industrial processing gas discharged from a thermal power plant, a steelworks blast furnace, an automobile and the like can be mentioned.
- the processing gas is supplied to the first absorption tank 2 through the processing gas supply line 5 for a predetermined time, and the gas absorbent 9 absorbs carbon dioxide contained in the processing gas (absorption process).
- the remaining gas components are discharged via the exhaust line 7.
- the processing gas supply line 5 is switched to supply the processing gas to the second absorption tank 3 for a predetermined time, and high-temperature steam is supplied to the first absorption tank 2 through the vapor supply line 4 for a predetermined time. Then, carbon dioxide is desorbed to regenerate the gas absorbent 9 (regeneration step). The desorbed carbon dioxide is recovered via the carbon dioxide recovery line 6.
- the processing gas supply line 5 is switched to supply the processing gas to the first absorption tank 2 again for a predetermined time, and the steam supply line 4 is switched to supply steam to the second absorption tank 3 for a predetermined time. And heated to desorb carbon dioxide to regenerate the gas absorbent 9.
- an absorption process is performed in which the gas absorbent 9 is brought into contact with the processing gas and carbon dioxide is absorbed.
- the carbon dioxide is removed by heating.
- the regeneration step of regenerating the gas absorbing material 9 is operated, and is configured to switch every predetermined time. Therefore, carbon dioxide in the processing gas can be continuously separated and recovered.
- phase change of the ionic liquid in the absorption process and the regeneration process described above will be described by taking as an example the case of using tetraethylammonium benzimidazolide (N2Bn) as the ionic liquid.
- the regeneration step of the present embodiment is a step of heating the carbon dioxide recovery composition to desorb carbon dioxide.
- N2Im tetraethylammonium imidazolide
- the above-described temperature swing adsorption device 1 may further include a condenser. Since the recovered carbon dioxide contains moisture, only the carbon dioxide can be separated and recovered by removing the moisture with a condenser. The removed water can be reused as steam.
- the above-described temperature swing adsorption device may be combined with a pressure swing method as necessary, or only the pressure swing method may be adopted instead of the temperature swing method.
- the pressure swing method during the regeneration process, the carbon dioxide recovery line is pulled by a pump to make the inside of the absorption tank have a reduced pressure, so that regeneration of the gas absorbent can be promoted.
- the gas absorbent 9 is filled in the first absorbent tank 2 and the second absorbent tank 3, and carbon dioxide is recovered without the gas absorbent 9 moving. And in the 1st absorption tank 2 and the 2nd absorption tank 3, an absorption process and a regeneration process are performed by turns.
- the absorption process is performed in one tank (absorption tower), the regeneration process is performed in the other tank (regeneration tower), and the gas absorbent 9 (carrier carrying ionic liquid) is put into two tanks. It may be circulated. Specifically, the gas absorbent 9 comes into contact with the processing gas in the absorption tower, and the ionic liquid absorbs carbon dioxide and melts.
- the gas absorbent 9 is transferred to the regeneration tower and heated by high-temperature steam, and the ionic liquid releases carbon dioxide and solidifies. And the gas absorption material 9 is moved to an absorption tower again.
- the pressure swing method may be combined with the temperature swing method, or only the pressure swing method may be adopted instead of the temperature swing method.
- the gas absorbent material 9 in a liquid state may be configured as follows. Then, the gas absorbent 9 in the liquid state may be circulated to the absorption tower / regeneration tower described above.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Inorganic Chemistry (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Provided are a composition for recovering carbon dioxide and a method for recovering carbon dioxide, which are advantageous in terms of heat balance during carbon dioxide recovery. A composition for recovering carbon dioxide, said composition containing an ionic liquid, wherein an absorption-state melting point, which is the melting point of the ionic liquid with carbon dioxide absorbed therein is between 50-110°C inclusive, and the decomposition temperature or melting point of the ionic liquid with carbon dioxide desorbed therefrom is higher than the absorption-state melting point.
Description
本発明は、イオン液体を含有する二酸化炭素回収用組成物、および二酸化炭素回収用組成物を利用した二酸化炭素回収方法に関する。
The present invention relates to a carbon dioxide recovery composition containing an ionic liquid, and a carbon dioxide recovery method using the carbon dioxide recovery composition.
これまでの研究(非特許文献1、2)により、イオン液体は、従来の物理吸収液より、優れた二酸化炭素吸収量を持つことが明らかにされている。特許文献1では、イオン液体吸収液を用いた物理吸収法により、多成分混合ガスからCO2を分離回収する二酸化炭素分離回収方法が提案されている。
From previous studies (Non-Patent Documents 1 and 2), it has been clarified that the ionic liquid has a carbon dioxide absorption superior to that of the conventional physical absorption liquid. Patent Document 1 proposes a carbon dioxide separation and recovery method in which CO 2 is separated and recovered from a multicomponent mixed gas by a physical absorption method using an ionic liquid absorbing liquid.
一般に、イオン液体への二酸化炭素の吸収は発熱反応であるが、発熱によりイオン液体の温度が上昇すると、二酸化炭素の吸収率が低下してしまい好ましくない。
Generally, absorption of carbon dioxide into an ionic liquid is an exothermic reaction. However, when the temperature of the ionic liquid is increased due to heat generation, the absorption rate of carbon dioxide is not preferable.
本発明は上述の課題に鑑みてなされたものであり、その目的は、二酸化炭素の回収に際して熱収支の面で有利な二酸化炭素回収用組成物および二酸化炭素回収方法を提供することにある。
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a carbon dioxide recovery composition and a carbon dioxide recovery method that are advantageous in terms of heat balance when recovering carbon dioxide.
上記目的を達成するための二酸化炭素回収用組成物の特徴構成は、イオン液体を含有する二酸化炭素回収用組成物であって、二酸化炭素を吸収した状態での前記イオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態での前記イオン液体の融点または分解温度が前記吸収状態融点よりも高い点にある。
The characteristic configuration of the carbon dioxide recovery composition for achieving the above object is a carbon dioxide recovery composition containing an ionic liquid, which is an absorption state that is a melting point of the ionic liquid in a state of absorbing carbon dioxide The melting point is 50 ° C. or more and 110 ° C. or less, and the melting point or decomposition temperature of the ionic liquid in a state where carbon dioxide is desorbed is higher than the absorption state melting point.
二酸化炭素の回収は、工場や発電所等のエンジンやボイラー等の排気ガス等(以下、処理ガス)に対して行われる。これらの処理ガスの温度は一般に、60℃~120℃程度である。発明者らは、この温度域での二酸化炭素の吸収に伴う発熱の悪影響を、イオン液体の相転移に伴う発熱・吸熱を利用して緩和することに想到した。そして幾つかのイオン液体の、二酸化炭素を吸収した状態でのイオン液体の融点を測定し、それらイオン液体が一般的な処理ガスの温度範囲で相転移を起こすことを確認して、二酸化炭素回収の用途に好適に用い得ることを見出し、本発明を完成したのである。
Carbon dioxide recovery is performed on exhaust gas (hereinafter referred to as processing gas) from engines and boilers in factories and power plants. The temperature of these processing gases is generally about 60 ° C to 120 ° C. The inventors have conceived to mitigate the adverse effects of heat generation due to absorption of carbon dioxide in this temperature range by utilizing heat generation and heat absorption associated with phase transition of the ionic liquid. And measure the melting point of the ionic liquid in the state of absorbing carbon dioxide of some ionic liquids, confirm that these ionic liquids cause a phase transition in the temperature range of general processing gas, carbon dioxide recovery As a result, the present invention was completed.
すなわち上述の特徴構成によれば、二酸化炭素を吸収した状態でのイオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態でのイオン液体の融点または分解温度が吸収状態融点よりも高いことによって、固体状態のイオン液体が60℃~120℃程度の処理ガスに接触して二酸化炭素を吸収すると、融点が低下して、固体状態のイオン液体は融解する。その際にイオン液体は融解熱を吸収するから、二酸化炭素吸収に伴う発熱の影響を緩和することができる。また液体状態のイオン液体から二酸化炭素が脱離すると、融点が上昇して、液体状態のイオン液体は凝固する。その際にイオン液体は凝固熱を放出するから、二酸化炭素脱離に伴う吸熱の影響を緩和することができる。以上の作用機序により、上述のイオン液体を含有する二酸化炭素回収用組成物は、二酸化炭素の回収の用途に好適に用い得る。
That is, according to the above-described feature configuration, the absorption state melting point, which is the melting point of the ionic liquid in the state of absorbing carbon dioxide, is 50 ° C. or higher and 110 ° C. or lower, and the melting point of the ionic liquid in the state of desorbing carbon dioxide or When the decomposition temperature is higher than the absorption state melting point, when the solid state ionic liquid comes into contact with the processing gas of about 60 ° C. to 120 ° C. and absorbs carbon dioxide, the melting point decreases and the solid state ionic liquid melts. To do. At that time, since the ionic liquid absorbs the heat of fusion, the influence of heat generation accompanying the absorption of carbon dioxide can be mitigated. Further, when carbon dioxide is desorbed from the liquid ionic liquid, the melting point increases and the liquid ionic liquid is solidified. At that time, since the ionic liquid releases heat of solidification, it is possible to reduce the influence of the endotherm accompanying carbon dioxide desorption. With the above mechanism of action, the carbon dioxide recovery composition containing the ionic liquid can be suitably used for carbon dioxide recovery.
本発明に係る二酸化炭素回収用組成物の別の特徴構成は、前記イオン液体が、テトラエチルアンモニウムベンゾイミダゾリドを含む点にある。
Another characteristic configuration of the carbon dioxide recovery composition according to the present invention is that the ionic liquid contains tetraethylammonium benzimidazolide.
発明者によって測定された、テトラエチルアンモニウムベンゾイミダゾリド(以下「N2Bn」と記す場合がある。)の吸収状態融点は55℃である。そうすると、55℃より高い温度の処理ガスに二酸化炭素回収用組成物が接触すると、固体状態のイオン液体が二酸化炭素を吸収して融点が55℃となり、融解する。すなわち上述の特徴構成によれば、二酸化炭素回収用組成物を、55℃より高い温度の処理ガスからの二酸化炭素の回収用途に好適に用い得る。
The absorption state melting point of tetraethylammonium benzimidazolide (hereinafter sometimes referred to as “N2Bn”) measured by the inventors is 55 ° C. Then, when the carbon dioxide recovery composition comes into contact with a processing gas having a temperature higher than 55 ° C., the solid ionic liquid absorbs carbon dioxide and has a melting point of 55 ° C. and melts. That is, according to the above-described feature configuration, the carbon dioxide recovery composition can be suitably used for recovering carbon dioxide from a processing gas having a temperature higher than 55 ° C.
本発明に係る二酸化炭素回収用組成物の別の特徴構成は、前記イオン液体が、テトラエチルアンモニウムイミダゾリドを含む点にある。
Another characteristic configuration of the carbon dioxide recovery composition according to the present invention is that the ionic liquid contains tetraethylammonium imidazolide.
発明者によって測定された、テトラエチルアンモニウムイミダゾリド(以下「N2Im」と記す場合がある。)の吸収状態融点は70℃である。そうすると、70℃より高い温度の処理ガスに二酸化炭素回収用組成物が接触すると、固体状態のイオン液体が二酸化炭素を吸収して融点が70℃となり、融解する。すなわち上述の特徴構成によれば、二酸化炭素回収用組成物を、70℃より高い温度の処理ガスからの二酸化炭素の回収用途に好適に用い得る。
The absorption melting point of tetraethylammonium imidazolide (hereinafter sometimes referred to as “N2Im”) measured by the inventor is 70 ° C. Then, when the composition for recovering carbon dioxide comes into contact with a processing gas having a temperature higher than 70 ° C., the solid ionic liquid absorbs carbon dioxide and has a melting point of 70 ° C. and melts. That is, according to the above-described characteristic configuration, the carbon dioxide recovery composition can be suitably used for recovering carbon dioxide from a processing gas having a temperature higher than 70 ° C.
本発明に係る二酸化炭素回収用組成物の別の特徴構成は、前記イオン液体が、テトラブチルアンモニウムカルバゾリドを含む点にある。
Another characteristic configuration of the carbon dioxide recovery composition according to the present invention is that the ionic liquid contains tetrabutylammonium carbazolide.
発明者によって測定された、テトラブチルアンモニウムカルバゾリド(以下「N4Cz」と記す場合がある。)の吸収状態融点は100℃である。そうすると、100℃より高い温度の処理ガスに二酸化炭素回収用組成物が接触すると、固体状態のイオン液体が二酸化炭素を吸収して融点が100℃となり、融解する。すなわち上述の特徴構成によれば、二酸化炭素回収用組成物を、100℃より高い温度の処理ガスからの二酸化炭素の回収用途に好適に用い得る。
The absorption melting point of tetrabutylammonium carbazolide (hereinafter sometimes referred to as “N4Cz”) measured by the inventor is 100 ° C. Then, when the composition for recovering carbon dioxide comes into contact with a processing gas having a temperature higher than 100 ° C., the solid ionic liquid absorbs carbon dioxide and has a melting point of 100 ° C. and melts. That is, according to the above-described characteristic configuration, the composition for recovering carbon dioxide can be suitably used for recovering carbon dioxide from a processing gas having a temperature higher than 100 ° C.
上記目的を達成するための二酸化炭素回収方法の特徴構成は、吸収工程を有する二酸化炭素回収方法であって、
前記吸収工程は、二酸化炭素を含有する処理ガスをイオン液体を含有する二酸化炭素回収用組成物に接触させて、二酸化炭素を前記イオン液体に吸収させる工程であり、
二酸化炭素を吸収した状態での前記イオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態での前記イオン液体の融点または分解温度が前記吸収状態融点よりも高く、
前記吸収工程が行われる吸収工程温度は前記吸収状態融点よりも高い点にある。 The characteristic configuration of the carbon dioxide recovery method for achieving the above object is a carbon dioxide recovery method having an absorption step,
The absorption step is a step in which a treatment gas containing carbon dioxide is brought into contact with a carbon dioxide recovery composition containing an ionic liquid to absorb carbon dioxide into the ionic liquid;
The absorption state melting point, which is the melting point of the ionic liquid in a state of absorbing carbon dioxide, is 50 ° C. or more and 110 ° C. or less, and the melting point or decomposition temperature of the ionic liquid in the state of removing carbon dioxide is the absorption state melting point. Higher than
The absorption process temperature at which the absorption process is performed is higher than the absorption state melting point.
前記吸収工程は、二酸化炭素を含有する処理ガスをイオン液体を含有する二酸化炭素回収用組成物に接触させて、二酸化炭素を前記イオン液体に吸収させる工程であり、
二酸化炭素を吸収した状態での前記イオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態での前記イオン液体の融点または分解温度が前記吸収状態融点よりも高く、
前記吸収工程が行われる吸収工程温度は前記吸収状態融点よりも高い点にある。 The characteristic configuration of the carbon dioxide recovery method for achieving the above object is a carbon dioxide recovery method having an absorption step,
The absorption step is a step in which a treatment gas containing carbon dioxide is brought into contact with a carbon dioxide recovery composition containing an ionic liquid to absorb carbon dioxide into the ionic liquid;
The absorption state melting point, which is the melting point of the ionic liquid in a state of absorbing carbon dioxide, is 50 ° C. or more and 110 ° C. or less, and the melting point or decomposition temperature of the ionic liquid in the state of removing carbon dioxide is the absorption state melting point. Higher than
The absorption process temperature at which the absorption process is performed is higher than the absorption state melting point.
二酸化炭素の回収は、工場や発電所等のエンジンやボイラー等の排気ガス等(以下、処理ガス)に対して行われる。これらの処理ガスの温度は一般に、60℃~120℃程度である。発明者らは、この温度域での二酸化炭素の吸収に伴う発熱の悪影響を、イオン液体の相転移に伴う発熱・吸熱を利用して緩和することに想到した。そして幾つかのイオン液体の、二酸化炭素を吸収した状態でのイオン液体の融点を測定し、それらイオン液体が一般的な処理ガスの温度範囲で相転移を起こすことを確認して、二酸化炭素回収の用途に好適に用い得ることを見出し、本発明を完成したのである。
Carbon dioxide recovery is performed on exhaust gas (hereinafter referred to as processing gas) from engines and boilers in factories and power plants. The temperature of these processing gases is generally about 60 ° C to 120 ° C. The inventors have conceived to mitigate the adverse effects of heat generation due to absorption of carbon dioxide in this temperature range by utilizing heat generation and heat absorption associated with phase transition of the ionic liquid. And measure the melting point of the ionic liquid in the state of absorbing carbon dioxide of some ionic liquids, confirm that these ionic liquids cause a phase transition in the temperature range of general processing gas, carbon dioxide recovery As a result, the present invention was completed.
二酸化炭素を吸収した状態でのイオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態でのイオン液体の融点または分解温度が吸収状態融点よりも高いことによって、固体状態のイオン液体が60℃~120℃程度の処理ガスに接触して二酸化炭素を吸収すると、融点が低下して、固体状態のイオン液体は融解する。その際にイオン液体は融解熱を吸収するから、二酸化炭素吸収に伴う発熱の影響を緩和することができる。すなわち上述の特徴構成によれば、イオン液体を含有する二酸化炭素回収用組成物を用いて吸収工程を行い、吸収工程が行われる吸収工程温度は吸収状態融点よりも高いことにより、熱収支の面で有利な状態で二酸化炭素の回収を行うことができる。
The absorption state melting point of the ionic liquid in the state of absorbing carbon dioxide is 50 ° C. or higher and 110 ° C. or lower, and the melting point or decomposition temperature of the ionic liquid in the state of desorbing carbon dioxide is higher than the absorption state melting point. Thus, when the solid state ionic liquid comes into contact with the processing gas of about 60 ° C. to 120 ° C. and absorbs carbon dioxide, the melting point is lowered and the solid state ionic liquid is melted. At that time, since the ionic liquid absorbs the heat of fusion, the influence of heat generation accompanying the absorption of carbon dioxide can be mitigated. That is, according to the above-described feature configuration, the absorption process is performed using the carbon dioxide recovery composition containing the ionic liquid, and the absorption process temperature at which the absorption process is performed is higher than the absorption state melting point. The carbon dioxide can be recovered in an advantageous state.
本発明に係る二酸化炭素回収方法の別の特徴構成は、再生工程を有し、
前記再生工程は、前記二酸化炭素回収用組成物を加熱して二酸化炭素を脱離させる工程であり、前記吸収工程の次に行われ、
前記再生工程が行われる再生工程温度は、前記吸収工程温度よりも高く、前記イオン液体の融点および分解温度よりも低い点にある。 Another characteristic configuration of the carbon dioxide recovery method according to the present invention includes a regeneration step,
The regeneration step is a step of heating the carbon dioxide recovery composition to desorb carbon dioxide, and is performed after the absorption step,
The regeneration process temperature at which the regeneration process is performed is higher than the absorption process temperature and lower than the melting point and decomposition temperature of the ionic liquid.
前記再生工程は、前記二酸化炭素回収用組成物を加熱して二酸化炭素を脱離させる工程であり、前記吸収工程の次に行われ、
前記再生工程が行われる再生工程温度は、前記吸収工程温度よりも高く、前記イオン液体の融点および分解温度よりも低い点にある。 Another characteristic configuration of the carbon dioxide recovery method according to the present invention includes a regeneration step,
The regeneration step is a step of heating the carbon dioxide recovery composition to desorb carbon dioxide, and is performed after the absorption step,
The regeneration process temperature at which the regeneration process is performed is higher than the absorption process temperature and lower than the melting point and decomposition temperature of the ionic liquid.
上記の特徴構成によれば、再生工程温度が吸収工程温度よりも高くイオン液体の融点および分解温度よりも低いことによって、再生工程で二酸化炭素回収用組成物から二酸化炭素が脱離し、融点が上昇して液体状態のイオン液体は凝固する。その際にイオン液体は凝固熱を放出するから、二酸化炭素脱離に伴う吸熱の影響を緩和することができる。したがって熱収支の面で有利な状態で二酸化炭素の回収を行うことができる。
According to the above characteristic configuration, when the regeneration process temperature is higher than the absorption process temperature and lower than the melting point and decomposition temperature of the ionic liquid, carbon dioxide is desorbed from the carbon dioxide recovery composition in the regeneration process, and the melting point increases. Thus, the ionic liquid in the liquid state is solidified. At that time, since the ionic liquid releases heat of solidification, it is possible to reduce the influence of the endotherm accompanying carbon dioxide desorption. Therefore, carbon dioxide can be recovered in a state advantageous in terms of heat balance.
[図1]は、二酸化炭素回収用組成物を用いた二酸化炭素回収方法が行われる温度スイング吸着装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a temperature swing adsorption device in which a carbon dioxide recovery method using a carbon dioxide recovery composition is performed.
まず本実施形態に係る二酸化炭素回収用組成物およびイオン液体について説明する。イオン液体とは、常温でも結晶化せずに溶融している有機塩である。本実施形態に係る二酸化炭素回収用組成物は、上述のイオン液体を含有して構成される。
First, the carbon dioxide recovery composition and ionic liquid according to this embodiment will be described. An ionic liquid is an organic salt that is melted without crystallization even at room temperature. The composition for carbon dioxide recovery according to this embodiment is configured to contain the above-described ionic liquid.
本実施形態に係るイオン液体は、二酸化炭素を吸収した状態でのイオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態でのイオン液体の融点または分解温度が吸収状態融点よりも高いものが用いられる。
The ionic liquid according to the present embodiment has an absorption state melting point that is a melting point of the ionic liquid in a state where carbon dioxide is absorbed is 50 ° C. or higher and 110 ° C. or lower, and a melting point of the ionic liquid in a state where carbon dioxide is desorbed or A decomposition temperature higher than the absorption state melting point is used.
このような特性を有するイオン液体としては、テトラエチルアンモニウムベンゾイミダゾリド(N2Bn)、テトラエチルアンモニウムイミダゾリド(N2Im)、テトラブチルアンモニウムカルバゾリド(N4Cz)を例示することができる。
Examples of the ionic liquid having such characteristics include tetraethylammonium benzimidazolide (N2Bn), tetraethylammonium imidazolide (N2Im), and tetrabutylammonium carbazolide (N4Cz).
テトラエチルアンモニウムベンゾイミダゾリド(tetraethyl ammoniumbenzimidazolide、N2Bn)は、カチオン:テトラエチルアンモニウム(tetraethylammonium、N2222)と、アニオン:ベンゾイミダゾール(benzimidazole、BnIm)との塩であり、以下の化1で表されるイオン液体である。
Tetraethylammonium benzimidazolide (tetraethyl ammoniumbenzimidazolide, N2Bn) is cationic: tetraethylammonium (tetraethylammonium, N 2222) and an anion: A benzimidazole (benzimidazole, BnIm) and salts, ionic liquids represented by the following formula 1 It is.
N2Bnは、テトラエチルアンモニウムヒドロキシドとベンゾイミダゾールとを反応させて合成することができる。具体的には、以下の手順で合成することができる。
N2Bn can be synthesized by reacting tetraethylammonium hydroxide and benzimidazole. Specifically, it can be synthesized by the following procedure.
滴下漏斗と三方コックを装着した100ml三つ口反応器にベンゾイミダゾール2.00g(98%品であるため実質、1.96g,16.6mmol)、メタノール5.5mlを仕込み、室温撹拌する。滴下漏斗より35%テトラエチルアンモニウムヒドロキシド溶液6.98g(35%品であるため2.44g、16.6mmol)を滴下する。その後、滴下漏斗をメタノール(2.8ml)で洗い、そのメタノール溶液も反応系中に滴下する。室温で1日撹拌したのち、この反応混合液の溶媒を溜去して減圧乾燥(60℃17hr)することで白色固体3.72gを得る。
In a 100 ml three-necked reactor equipped with a dropping funnel and a three-way cock, 2.00 g of benzimidazole (substantially 1.96 g, 16.6 mmol because it is a 98% product) and 5.5 ml of methanol are charged and stirred at room temperature. 6.98 g of 35% tetraethylammonium hydroxide solution (2.44 g, 16.6 mmol because it is a 35% product) is dropped from the dropping funnel. Thereafter, the dropping funnel is washed with methanol (2.8 ml), and the methanol solution is also dropped into the reaction system. After stirring at room temperature for 1 day, the solvent of the reaction mixture is distilled off and dried under reduced pressure (60 ° C. 17 hr) to obtain 3.72 g of a white solid.
N2Bnの吸収状態融点(Tmad)と、二酸化炭素を脱離した状態でのイオン液体の融点または分解温度(Tmde)は、次の様にして測定された。
The absorption state melting point (Tmad) of N2Bn and the melting point or decomposition temperature (Tmde) of the ionic liquid in a state where carbon dioxide was desorbed were measured as follows.
(Tmad)
フラスコに約1gのN2Bnを入れて、フラスコ内を0.1kPa以下の真空状態とした後、14kPaの二酸化炭素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Bnを観察し、N2Bnが液化して約半量が透明化した時点の温度をTmadとした。N2BnのTmadは55℃と測定された。 (Tmad)
About 1 g of N2Bn was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min with 14 kPa of carbon dioxide gas supplied. The temperature was raised. N2Bn was visually observed, and the temperature at which N2Bn was liquefied and about half was transparent was defined as Tmad. The Tmad of N2Bn was measured to be 55 ° C.
フラスコに約1gのN2Bnを入れて、フラスコ内を0.1kPa以下の真空状態とした後、14kPaの二酸化炭素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Bnを観察し、N2Bnが液化して約半量が透明化した時点の温度をTmadとした。N2BnのTmadは55℃と測定された。 (Tmad)
About 1 g of N2Bn was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min with 14 kPa of carbon dioxide gas supplied. The temperature was raised. N2Bn was visually observed, and the temperature at which N2Bn was liquefied and about half was transparent was defined as Tmad. The Tmad of N2Bn was measured to be 55 ° C.
(Tmde)
フラスコに約1gのN2Bnを入れて、フラスコ内を0.1kPa以下の真空状態とした後、101kPaの窒素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Bnを観察したところ、150℃に到達するまでN2Bnは液化せず、150℃でN2Bnは分解した。よってN2BnのTmde(分解温度)は150℃と測定された。 (Tmde)
About 1 g of N2Bn was put in the flask, and the inside of the flask was evacuated to 0.1 kPa or less. Then, with the supply of 101 kPa of nitrogen gas, the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min. The temperature rose. When N2Bn was visually observed, N2Bn was not liquefied until it reached 150 ° C, and N2Bn decomposed at 150 ° C. Therefore, the Tmde (decomposition temperature) of N2Bn was measured to be 150 ° C.
フラスコに約1gのN2Bnを入れて、フラスコ内を0.1kPa以下の真空状態とした後、101kPaの窒素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Bnを観察したところ、150℃に到達するまでN2Bnは液化せず、150℃でN2Bnは分解した。よってN2BnのTmde(分解温度)は150℃と測定された。 (Tmde)
About 1 g of N2Bn was put in the flask, and the inside of the flask was evacuated to 0.1 kPa or less. Then, with the supply of 101 kPa of nitrogen gas, the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min. The temperature rose. When N2Bn was visually observed, N2Bn was not liquefied until it reached 150 ° C, and N2Bn decomposed at 150 ° C. Therefore, the Tmde (decomposition temperature) of N2Bn was measured to be 150 ° C.
テトラエチルアンモニウムイミダゾリド(tetraethylammoniumimidazolide、N2Im)は、カチオン:テトラエチルアンモニウム(tetraethylammonium、N2222)と、アニオン:イミダゾール(imidazole、Im)との塩であり、以下の化2で表されるイオン液体である。
Tetraethylammonium imidazolide (tetraethylammoniumimidazolide, N2Im) is cationic: tetraethylammonium (tetraethylammonium, N 2222) and an anion: a salt with imidazole (imidazole, Im), it is an ionic liquid represented by the following Formula 2.
N2Imは、テトラエチルアンモニウムヒドロキシドとイミダゾールとを反応させて合成することができる。具体的には、以下の手順で合成することができる。
N2Im can be synthesized by reacting tetraethylammonium hydroxide and imidazole. Specifically, it can be synthesized by the following procedure.
滴下漏斗と三方コックを装着した100ml三つ口反応器にイミダゾール0.82g(98%品であるため実質、0.80g,11.8mmol)、メタノール4.0mlを仕込み、室温撹拌する。滴下漏斗より35%テトラエチルアンモニウムヒドロキシド溶液4.94g(35%品であるため1.73g、11.8mmol)を滴下する。その後、滴下漏斗をメタノール(2.0ml)で洗い、そのメタノール溶液も反応系中に滴下する。室温で1日撹拌したのち、この反応混合液の溶媒を溜去して減圧乾燥(60℃17hr)することで白色固体1.45gを得る。
A 100 ml three-necked reactor equipped with a dropping funnel and a three-way cock is charged with 0.82 g of imidazole (because it is a 98% product, 0.80 g, 11.8 mmol) and 4.0 ml of methanol, and stirred at room temperature. 4.94 g of 35% tetraethylammonium hydroxide solution (1.73 g, 11.8 mmol because it is a 35% product) is dropped from the dropping funnel. Thereafter, the dropping funnel is washed with methanol (2.0 ml), and the methanol solution is also dropped into the reaction system. After stirring at room temperature for 1 day, the solvent of this reaction mixture is distilled off and dried under reduced pressure (60 ° C. 17 hr) to obtain 1.45 g of a white solid.
N2Imの吸収状態融点(Tmad)と、二酸化炭素を脱離した状態でのイオン液体の融点または分解温度(Tmde)は、N2Bnと同様に、次の様にして測定された。
The absorption melting point (Tmad) of N2Im and the melting point or decomposition temperature (Tmde) of the ionic liquid in a state where carbon dioxide was desorbed were measured as follows, similarly to N2Bn.
(Tmad)
フラスコに約1gのN2Imを入れて、フラスコ内を0.1kPa以下の真空状態とした後、14kPaの二酸化炭素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Imを観察し、N2Imが液化して約半量が透明化した時点の温度をTmadとした。N2ImのTmadは70℃と測定された。 (Tmad)
About 1 g of N2Im was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was supplied at a rate of 0.5 ° C./min from room temperature to 150 ° C. while supplying 14 kPa of carbon dioxide gas. The temperature was raised. N2Im was visually observed, and the temperature at the time when N2Im liquefied and about half of the amount became transparent was defined as Tmad. The Tmad of N2Im was measured as 70 ° C.
フラスコに約1gのN2Imを入れて、フラスコ内を0.1kPa以下の真空状態とした後、14kPaの二酸化炭素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Imを観察し、N2Imが液化して約半量が透明化した時点の温度をTmadとした。N2ImのTmadは70℃と測定された。 (Tmad)
About 1 g of N2Im was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was supplied at a rate of 0.5 ° C./min from room temperature to 150 ° C. while supplying 14 kPa of carbon dioxide gas. The temperature was raised. N2Im was visually observed, and the temperature at the time when N2Im liquefied and about half of the amount became transparent was defined as Tmad. The Tmad of N2Im was measured as 70 ° C.
(Tmde)
フラスコに約1gのN2Imを入れて、フラスコ内を0.1kPa以下の真空状態とした後、101kPaの窒素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Imを観察したところ、125℃に到達するまでN2Imは液化せず、125℃でN2Imは分解した。よってN2ImのTmde(分解温度)は125℃と測定された。 (Tmde)
About 1 g of N2Im was put into the flask, and after the inside of the flask was evacuated to 0.1 kPa or less, 101 kPa of nitrogen gas was supplied and the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min. The temperature rose. When N2Im was visually observed, N2Im was not liquefied until it reached 125 ° C, and N2Im decomposed at 125 ° C. Therefore, the Tmde (decomposition temperature) of N2Im was measured to be 125 ° C.
フラスコに約1gのN2Imを入れて、フラスコ内を0.1kPa以下の真空状態とした後、101kPaの窒素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN2Imを観察したところ、125℃に到達するまでN2Imは液化せず、125℃でN2Imは分解した。よってN2ImのTmde(分解温度)は125℃と測定された。 (Tmde)
About 1 g of N2Im was put into the flask, and after the inside of the flask was evacuated to 0.1 kPa or less, 101 kPa of nitrogen gas was supplied and the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min. The temperature rose. When N2Im was visually observed, N2Im was not liquefied until it reached 125 ° C, and N2Im decomposed at 125 ° C. Therefore, the Tmde (decomposition temperature) of N2Im was measured to be 125 ° C.
テトラブチルアンモニウムカルバゾリド(tetrabuthylammoniumcarbazolide、N4Cz)は、カチオン:テトラブチルアンモニウム(tetrabuthylammonium、N4444)と、アニオン:カルバゾール(carbazole、Cz)との塩であり、以下の化3で表されるイオン液体である。
Tetrabutylammonium carbazolyl de (tetrabuthylammoniumcarbazolide, N4Cz) is cationic: tetrabutylammonium (tetrabuthylammonium, N 4444) and an anion: carbazole (carbazole, Cz) is a salt with an ionic liquid represented by the following Formula 3 It is.
N4Czは、テトラブチルアンモニウムヒドロキシドとカルバゾールとを反応させて合成することができる。具体的には、以下の手順で合成することができる。
N4Cz can be synthesized by reacting tetrabutylammonium hydroxide with carbazole. Specifically, it can be synthesized by the following procedure.
滴下漏斗と三方コックを装着した100ml三つ口反応器にカルバゾール0.67g(96%品であるため実質、0.64g,3.85mmol)、THF5.0mlを仕込み、室温撹拌する。滴下漏斗より10%テトラブチルアンモニウムヒドロキシドメタノール溶液10.00g(10%品であるため1.00g、3.85mmol)を滴下する。その後、滴下漏斗をTHF(2.0ml)で洗い、そのTHF溶液も反応系中に滴下する。室温で2日撹拌した後、この反応混合液の溶媒を溜去して減圧乾燥(60℃17hr)することで黄色固体1.26gを得る。
A 100 ml three-necked reactor equipped with a dropping funnel and a three-way cock is charged with 0.67 g of carbazole (because it is a 96% product, 0.64 g, 3.85 mmol) and 5.0 ml of THF, and stirred at room temperature. From a dropping funnel, 10.00 g of a 10% tetrabutylammonium hydroxide methanol solution (1.00 g, 3.85 mmol because it is a 10% product) is dropped. Thereafter, the dropping funnel is washed with THF (2.0 ml), and the THF solution is also dropped into the reaction system. After stirring at room temperature for 2 days, the solvent of this reaction mixture is distilled off and dried under reduced pressure (60 ° C., 17 hr) to obtain 1.26 g of a yellow solid.
N4Czの吸収状態融点(Tmad)と、二酸化炭素を脱離した状態でのイオン液体の融点または分解温度(Tmde)は、N2Bnと同様に、次の様にして測定された。
The absorption melting point (Tmad) of N4Cz and the melting point or decomposition temperature (Tmde) of the ionic liquid in a state where carbon dioxide was desorbed were measured as follows in the same manner as N2Bn.
(Tmad)
フラスコに約1gのN4Czを入れて、フラスコ内を0.1kPa以下の真空状態とした後、14kPaの二酸化炭素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN4Czを観察し、N4Czが液化して約半量が透明化した時点の温度をTmadとした。N4CzのTmadは100℃と測定された。 (Tmad)
About 1 g of N4Cz was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was supplied at a rate of 0.5 ° C./min from room temperature to 150 ° C. while supplying 14 kPa of carbon dioxide gas. The temperature was raised. N4Cz was visually observed, and the temperature at which N4Cz was liquefied and about half was transparent was defined as Tmad. The N4Cz Tmad was measured at 100 ° C.
フラスコに約1gのN4Czを入れて、フラスコ内を0.1kPa以下の真空状態とした後、14kPaの二酸化炭素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN4Czを観察し、N4Czが液化して約半量が透明化した時点の温度をTmadとした。N4CzのTmadは100℃と測定された。 (Tmad)
About 1 g of N4Cz was put into the flask, the inside of the flask was evacuated to 0.1 kPa or less, and then the flask was supplied at a rate of 0.5 ° C./min from room temperature to 150 ° C. while supplying 14 kPa of carbon dioxide gas. The temperature was raised. N4Cz was visually observed, and the temperature at which N4Cz was liquefied and about half was transparent was defined as Tmad. The N4Cz Tmad was measured at 100 ° C.
(Tmde)
フラスコに約1gのN4Czを入れて、フラスコ内を0.1kPa以下の真空状態とした後、101kPaの窒素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN4Czを観察した。150℃に到達するまで、N4Czは溶融および分解しなかった。よってN4CzのTmde(分解温度)は150℃以上と測定された。 (Tmde)
About 1 g of N4Cz was put into the flask, and the inside of the flask was evacuated to 0.1 kPa or less. Then, with the supply of 101 kPa of nitrogen gas, the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min. The temperature rose. N4Cz was visually observed. N4Cz did not melt and decompose until 150 ° C was reached. Therefore, the Tmde (decomposition temperature) of N4Cz was measured to be 150 ° C. or higher.
フラスコに約1gのN4Czを入れて、フラスコ内を0.1kPa以下の真空状態とした後、101kPaの窒素ガスを供給した状態で、フラスコを室温から150℃まで0.5℃/minの速度で昇温した。目視でN4Czを観察した。150℃に到達するまで、N4Czは溶融および分解しなかった。よってN4CzのTmde(分解温度)は150℃以上と測定された。 (Tmde)
About 1 g of N4Cz was put into the flask, and the inside of the flask was evacuated to 0.1 kPa or less. Then, with the supply of 101 kPa of nitrogen gas, the flask was heated from room temperature to 150 ° C. at a rate of 0.5 ° C./min. The temperature rose. N4Cz was visually observed. N4Cz did not melt and decompose until 150 ° C was reached. Therefore, the Tmde (decomposition temperature) of N4Cz was measured to be 150 ° C. or higher.
上述したイオン液体を含む二酸化炭素回収用組成物は、液体の状態で二酸化炭素の回収に用いることが可能である。また、イオン液体を含む二酸化炭素回収用組成物を、担体に担持させた状態で二酸化炭素の回収に用いるとより好適である。適用可能な担体としては、例えば、カプセルや多孔質無機粒子等が挙げられる。
The above-mentioned composition for recovering carbon dioxide containing an ionic liquid can be used for recovering carbon dioxide in a liquid state. Further, it is more preferable to use a carbon dioxide recovery composition containing an ionic liquid for carbon dioxide recovery in a state of being supported on a carrier. Examples of applicable carriers include capsules and porous inorganic particles.
カプセルとしては、例えば、コアシェル型カプセルや、海島構造型カプセルなど、ガス吸収材料が表面に露出しないよう構成されるものが好ましい。即ち、ガス吸収材料が内側に配置され、ガス吸収材料の外側が膜や外殻で覆われる状態となる。
As the capsule, for example, a core-shell type capsule or a sea-island structure type capsule that is configured so that the gas absorbing material is not exposed to the surface is preferable. That is, the gas absorbing material is disposed on the inner side, and the outer side of the gas absorbing material is covered with a film or an outer shell.
多孔質無機粒子としては、表面まで貫通しているが、孔径が小さくてガス吸収材料が液化しても溶出しないものが好ましい。
The porous inorganic particles are preferably those that penetrate to the surface but do not elute even when the gas absorbing material is liquefied because the pore diameter is small.
多孔質無機粒子を形成する無機物としては、例えば、ケイ酸塩、リン酸塩、酸化物等が挙げられる。ケイ酸塩としては、例えばケイ酸カルシウム、ケイ酸バリウム、ケイ酸マグネシウム、ゼオライト等が挙げられる。リン酸塩としては、例えば、リン酸カルシウム、リン酸バリウム、リン酸マグネシウム、リン酸ジルコニウム、アパタイト等が挙げられる。酸化物としては、例えば、二酸化ケイ素や一酸化ケイ素などの酸化ケイ素、アルミナ等が挙げられる。好ましくは酸化物であり、より好ましくは酸化ケイ素であり、さらにより好ましくは二酸化ケイ素である。
Examples of inorganic substances forming the porous inorganic particles include silicates, phosphates, oxides, and the like. Examples of the silicate include calcium silicate, barium silicate, magnesium silicate, and zeolite. Examples of the phosphate include calcium phosphate, barium phosphate, magnesium phosphate, zirconium phosphate, and apatite. Examples of the oxide include silicon oxide such as silicon dioxide and silicon monoxide, and alumina. Preferred is an oxide, more preferred is silicon oxide, and even more preferred is silicon dioxide.
次に本実施形態に係る二酸化炭素回収方法と、二酸化炭素回収方法が行われる設備の一例としての温度スイング吸着装置1について図1を参照して説明する。
Next, a carbon dioxide recovery method according to this embodiment and a temperature swing adsorption device 1 as an example of equipment in which the carbon dioxide recovery method is performed will be described with reference to FIG.
本実施形態における温度スイング吸着装置1は、第1吸収槽2、第2吸収槽3、蒸気供給ライン4、処理ガス供給ライン5、二酸化炭素回収ライン6、排気ライン7、及びブロワー8を備えて構成されており、ガス吸収材9が、第1吸収槽2及び第2吸収槽3のそれぞれの内部に充填されている。ガス吸収材9は、上述の二酸化炭素回収用組成物を担体に担持させたものである。
The temperature swing adsorption device 1 in this embodiment includes a first absorption tank 2, a second absorption tank 3, a steam supply line 4, a process gas supply line 5, a carbon dioxide recovery line 6, an exhaust line 7, and a blower 8. The gas absorbing material 9 is filled in each of the first absorption tank 2 and the second absorption tank 3. The gas absorbent 9 is obtained by supporting the above-described carbon dioxide recovery composition on a carrier.
温度スイング吸着装置1に適用可能な処理ガスとしては、例えば、火力発電所、製鉄所高炉、自動車等から排出される産業処理ガスが挙げられる。
As the processing gas applicable to the temperature swing adsorption device 1, for example, industrial processing gas discharged from a thermal power plant, a steelworks blast furnace, an automobile and the like can be mentioned.
処理ガス供給ライン5を介して処理ガスを第1吸収槽2に所定時間供給して、処理ガス中に含まれる二酸化炭素をガス吸収材9に吸収させる(吸収工程)。残りのガス成分は排気ライン7を介して排出される。
The processing gas is supplied to the first absorption tank 2 through the processing gas supply line 5 for a predetermined time, and the gas absorbent 9 absorbs carbon dioxide contained in the processing gas (absorption process). The remaining gas components are discharged via the exhaust line 7.
所定時間経過後、処理ガス供給ライン5を切り替えて、処理ガスを第2吸収槽3に所定時間供給すると共に、蒸気供給ライン4を介して高温の蒸気を第1吸収槽2に所定時間供給して加熱し、二酸化炭素を脱離させてガス吸収材9を再生させる(再生工程)。脱離した二酸化炭素は二酸化炭素回収ライン6を介して回収される。
After a predetermined time has elapsed, the processing gas supply line 5 is switched to supply the processing gas to the second absorption tank 3 for a predetermined time, and high-temperature steam is supplied to the first absorption tank 2 through the vapor supply line 4 for a predetermined time. Then, carbon dioxide is desorbed to regenerate the gas absorbent 9 (regeneration step). The desorbed carbon dioxide is recovered via the carbon dioxide recovery line 6.
さらに所定時間経過後、処理ガス供給ライン5を切り替えて、処理ガスを再び第1吸収槽2に所定時間供給すると共に、蒸気供給ライン4を切り替えて、蒸気を第2吸収槽3に所定時間供給して加熱し、二酸化炭素を脱離させてガス吸収材9を再生させる。
Further, after a predetermined time has elapsed, the processing gas supply line 5 is switched to supply the processing gas to the first absorption tank 2 again for a predetermined time, and the steam supply line 4 is switched to supply steam to the second absorption tank 3 for a predetermined time. And heated to desorb carbon dioxide to regenerate the gas absorbent 9.
即ち、第1吸収槽2及び第2吸収槽3のいずれか一方において、処理ガスと接触して二酸化炭素をガス吸収材9に吸収させる吸収工程が運転され、他方において、加熱により二酸化炭素を脱離させてガス吸収材9を再生させる再生工程が運転され、所定時間ごとに切り替わるように構成されている。従って、処理ガス中の二酸化炭素を連続的に分離・回収することができる。
That is, in either one of the first absorption tank 2 and the second absorption tank 3, an absorption process is performed in which the gas absorbent 9 is brought into contact with the processing gas and carbon dioxide is absorbed. On the other hand, the carbon dioxide is removed by heating. The regeneration step of regenerating the gas absorbing material 9 is operated, and is configured to switch every predetermined time. Therefore, carbon dioxide in the processing gas can be continuously separated and recovered.
ここで上述の吸収工程および再生工程におけるイオン液体の相変化について、イオン液体としてテトラエチルアンモニウムベンゾイミダゾリド(N2Bn)を使用する場合を例として説明する。
Here, the phase change of the ionic liquid in the absorption process and the regeneration process described above will be described by taking as an example the case of using tetraethylammonium benzimidazolide (N2Bn) as the ionic liquid.
本実施形態の吸収工程は、二酸化炭素を含有する処理ガスを二酸化炭素回収用組成物に接触させて、二酸化炭素をイオン液体に吸収させる工程であり、吸収工程が行われる吸収工程温度Tadは吸収状態融点よりも高い。具体的には処理ガスの温度をN2Bnの吸収状態融点Tmad=55℃よりも高く、例えば70℃として、吸収工程を行う。二酸化炭素を吸収する前のN2Bnは、Tmde(二酸化炭素を脱離した状態でのイオン液体の融点または分解温度)=150℃であることから、固体である。70℃の処理ガスと接触して二酸化炭素を吸収すると、N2Bnの融点はTmad=55℃まで下がり、吸収工程温度Tadよりも低くなるから、N2Bnは融解する。このときN2Bnは融解熱を放出する。
The absorption process of the present embodiment is a process in which a treatment gas containing carbon dioxide is brought into contact with the carbon dioxide recovery composition and carbon dioxide is absorbed into the ionic liquid, and the absorption process temperature Tad at which the absorption process is performed is absorbed. It is higher than the state melting point. Specifically, the absorption process is performed with the temperature of the processing gas being higher than the absorption state melting point Tmad of N2Bn = 55 ° C., for example, 70 ° C. Since N2Bn before absorbing carbon dioxide is Tmde (melting point or decomposition temperature of the ionic liquid in a state where carbon dioxide is desorbed) = 150 ° C., it is a solid. When carbon dioxide is absorbed in contact with a processing gas at 70 ° C., the melting point of N 2 Bn falls to Tmad = 55 ° C. and becomes lower than the absorption process temperature Tad, so that N 2 Bn melts. At this time, N2Bn releases heat of fusion.
本実施形態の再生工程は、二酸化炭素回収用組成物を加熱して二酸化炭素を脱離させる工程であり、吸収工程の次に行われ、再生工程が行われる再生工程温度Tdeは、吸収工程温度Tadよりも高く、イオン液体の融点および分解温度(Tmde)よりも低い。具体的には蒸気の温度(再生工程温度)をTad=70℃よりも高く、かつN2BnのTmde=150℃よりも低くして行う。例えば再生工程温度Tde=120℃として再生工程を行う。二酸化炭素を脱離する前のN2Bnは、Tmad=55℃であることから、液体である。120℃の蒸気と接触して二酸化炭素を脱離すると、N2Bnの融点は上昇してTmde=150℃以上となり、再生工程温度Tde=120℃よりも高くなるから、N2Bnは凝固する。このときN2Bnは凝固熱を放出する。
The regeneration step of the present embodiment is a step of heating the carbon dioxide recovery composition to desorb carbon dioxide. The regeneration step temperature Tde performed after the absorption step and performing the regeneration step is the absorption step temperature. It is higher than Tad and lower than the melting point and decomposition temperature (Tmde) of the ionic liquid. Specifically, the vapor temperature (regeneration process temperature) is higher than Tad = 70 ° C. and lower than Tmde = 150 ° C. of N 2 Bn. For example, the regeneration process is performed at a regeneration process temperature Tde = 120 ° C. Since N2Bn before desorbing carbon dioxide is Tmad = 55 ° C., it is a liquid. When carbon dioxide is desorbed by contact with steam at 120 ° C., the melting point of N 2 Bn rises to Tmde = 150 ° C. or higher and becomes higher than the regeneration process temperature Tde = 120 ° C., so that N 2 Bn is solidified. At this time, N2Bn releases heat of solidification.
イオン液体としてテトラエチルアンモニウムイミダゾリド(N2Im)を使用する場合、N2ImのTmad=70℃、Tmde=125℃であることから、吸収工程を、吸収工程温度TadがTmad=70℃より高い状態、例えば80℃で行う。再生工程を、再生工程温度TdeがTad=80℃より高くTmde=125℃より低い状態、例えば100℃で行う。
When tetraethylammonium imidazolide (N2Im) is used as the ionic liquid, since the Tmad of N2Im is 70 ° C. and Tmde = 125 ° C., the absorption process is performed in a state where the absorption process temperature Tad is higher than Tmad = 70 ° C., for example, 80 Perform at ℃. The regeneration process is performed in a state where the regeneration process temperature Tde is higher than Tad = 80 ° C. and lower than Tmde = 125 ° C., for example, 100 ° C.
イオン液体としてテトラブチルアンモニウムカルバゾリド(N4Cz)を使用する場合、N4CzのTmad=100℃、Tmde=150℃であることから、吸収工程を、吸収工程温度TadがTmad=100℃より高い状態、例えば110℃で行う。再生工程を、再生工程温度TdeがTad=110℃より高くTmde=150℃より低い状態、例えば130℃で行う。
When tetrabutylammonium carbazolide (N4Cz) is used as the ionic liquid, since the N4Cz Tmad = 100 ° C. and Tmde = 150 ° C., the absorption process is performed in a state where the absorption process temperature Tad is higher than Tmad = 100 ° C. For example, it is performed at 110 ° C. The regeneration process is performed in a state where the regeneration process temperature Tde is higher than Tad = 110 ° C. and lower than Tmde = 150 ° C., for example, 130 ° C.
(他の実施形態)
(1)上述の温度スイング吸着装置1において、第1吸収槽2、及び第2吸収槽3の2つの吸収槽を使用しているが、この構成に限定されるものではなく、さらにより多くの吸収槽を設置してもよい。 (Other embodiments)
(1) In the above-described temperature swing adsorption device 1, two absorption tanks, the first absorption tank 2 and thesecond absorption tank 3, are used, but the present invention is not limited to this configuration, and even more An absorption tank may be installed.
(1)上述の温度スイング吸着装置1において、第1吸収槽2、及び第2吸収槽3の2つの吸収槽を使用しているが、この構成に限定されるものではなく、さらにより多くの吸収槽を設置してもよい。 (Other embodiments)
(1) In the above-described temperature swing adsorption device 1, two absorption tanks, the first absorption tank 2 and the
(2)上述の温度スイング吸着装置1が、さらに凝縮器を備えるように構成してもよい。回収された二酸化炭素は水分を含むため、凝縮器によって水分を除去して、二酸化炭素のみを分離・回収することができる。尚、取り除かれた水分は、蒸気として再利用することができる。
(2) The above-described temperature swing adsorption device 1 may further include a condenser. Since the recovered carbon dioxide contains moisture, only the carbon dioxide can be separated and recovered by removing the moisture with a condenser. The removed water can be reused as steam.
(3)上述の温度スイング吸着装置に対して、必要に応じて圧力スイング法を組み合わせてもよいし、あるいは温度スイング法に替えて圧力スイング法のみを採用するようにしてもよい。圧力スイング法では、再生工程中に、二酸化炭素回収ラインをポンプで引いて吸収槽内を減圧気味にするため、ガス吸収材の再生を促すことができる。
(3) The above-described temperature swing adsorption device may be combined with a pressure swing method as necessary, or only the pressure swing method may be adopted instead of the temperature swing method. In the pressure swing method, during the regeneration process, the carbon dioxide recovery line is pulled by a pump to make the inside of the absorption tank have a reduced pressure, so that regeneration of the gas absorbent can be promoted.
(4)上述の温度スイング吸着装置では、ガス吸収材9は第1吸収槽2および第2吸収槽3に充填され、ガス吸収材9が移動しない状態で二酸化炭素の回収が行われる。そして第1吸収槽2および第2吸収槽3では、吸収工程と再生工程とが交互に行われる。これを改変し、一方の槽(吸収塔)で吸収工程を行わせ、他方の槽(再生塔)で再生工程を行わせ、ガス吸収材9(イオン液体を担持した担体)を2つの槽に循環させてもよい。具体的には、吸収塔でガス吸収材9が処理ガスと接触して、イオン液体が二酸化炭素を吸収し、融解する。そしてガス吸収材9が再生塔に移され、高温の蒸気により加熱されて、イオン液体が二酸化炭素を放出し、凝固する。そしてガス吸収材9が再び吸収塔に移される。この場合でも、温度スイング法に加えて圧力スイング法を組み合わせてもよいし、あるいは温度スイング法に替えて圧力スイング法のみを採用するようにしてもよい。
(4) In the above-described temperature swing adsorption device, the gas absorbent 9 is filled in the first absorbent tank 2 and the second absorbent tank 3, and carbon dioxide is recovered without the gas absorbent 9 moving. And in the 1st absorption tank 2 and the 2nd absorption tank 3, an absorption process and a regeneration process are performed by turns. By modifying this, the absorption process is performed in one tank (absorption tower), the regeneration process is performed in the other tank (regeneration tower), and the gas absorbent 9 (carrier carrying ionic liquid) is put into two tanks. It may be circulated. Specifically, the gas absorbent 9 comes into contact with the processing gas in the absorption tower, and the ionic liquid absorbs carbon dioxide and melts. Then, the gas absorbent 9 is transferred to the regeneration tower and heated by high-temperature steam, and the ionic liquid releases carbon dioxide and solidifies. And the gas absorption material 9 is moved to an absorption tower again. Even in this case, the pressure swing method may be combined with the temperature swing method, or only the pressure swing method may be adopted instead of the temperature swing method.
(5)上述の実施形態では、イオン液体を担体に担持させて固体として取り扱う例を説明したが、イオン液体を溶解させない溶媒を用いて、その液中にイオン液体をスラリー状に分散させ、全体として液体の状態のガス吸収材9を構成してもよい。そして液体状態のガス吸収剤9を、上述の吸収塔・再生塔に循環させてもよい。
(5) In the above-described embodiment, an example in which an ionic liquid is supported on a carrier and handled as a solid has been described. However, a solvent that does not dissolve the ionic liquid is used to disperse the ionic liquid in a slurry and the whole The gas absorbent material 9 in a liquid state may be configured as follows. Then, the gas absorbent 9 in the liquid state may be circulated to the absorption tower / regeneration tower described above.
なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
Note that the configurations disclosed in the above-described embodiments (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments unless there is a contradiction. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.
1 :温度スイング吸着装置
2 :第1吸収槽
3 :第2吸収槽
4 :蒸気供給ライン
5 :処理ガス供給ライン
6 :二酸化炭素回収ライン
7 :排気ライン
8 :ブロワー
9 :ガス吸収材 1: Temperature swing adsorption device 2: 1st absorption tank 3: 2nd absorption tank 4: Steam supply line 5: Process gas supply line 6: Carbon dioxide recovery line 7: Exhaust line 8: Blower 9: Gas absorber
2 :第1吸収槽
3 :第2吸収槽
4 :蒸気供給ライン
5 :処理ガス供給ライン
6 :二酸化炭素回収ライン
7 :排気ライン
8 :ブロワー
9 :ガス吸収材 1: Temperature swing adsorption device 2: 1st absorption tank 3: 2nd absorption tank 4: Steam supply line 5: Process gas supply line 6: Carbon dioxide recovery line 7: Exhaust line 8: Blower 9: Gas absorber
Claims (6)
- イオン液体を含有する二酸化炭素回収用組成物であって、二酸化炭素を吸収した状態での前記イオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態での前記イオン液体の融点または分解温度が前記吸収状態融点よりも高い、二酸化炭素回収用組成物。 A composition for recovering carbon dioxide containing an ionic liquid, wherein the absorption state melting point of the ionic liquid in a state of absorbing carbon dioxide is 50 ° C. or higher and 110 ° C. or lower and carbon dioxide is desorbed The composition for carbon dioxide recovery, wherein the melting point or decomposition temperature of the ionic liquid is higher than the absorption state melting point.
- 前記イオン液体が、テトラエチルアンモニウムベンゾイミダゾリドを含む請求項1に記載の二酸化炭素回収用組成物。 The composition for carbon dioxide recovery according to claim 1, wherein the ionic liquid contains tetraethylammonium benzimidazolide.
- 前記イオン液体が、テトラエチルアンモニウムイミダゾリドを含む請求項1に記載の二酸化炭素回収用組成物。 The composition for carbon dioxide recovery according to claim 1, wherein the ionic liquid contains tetraethylammonium imidazolide.
- 前記イオン液体が、テトラブチルアンモニウムカルバゾリドを含む請求項1に記載の二酸化炭素回収用組成物。 The composition for carbon dioxide recovery according to claim 1, wherein the ionic liquid contains tetrabutylammonium carbazolide.
- 吸収工程を有する二酸化炭素回収方法であって、
前記吸収工程は、二酸化炭素を含有する処理ガスをイオン液体を含有する二酸化炭素回収用組成物に接触させて、二酸化炭素を前記イオン液体に吸収させる工程であり、
二酸化炭素を吸収した状態での前記イオン液体の融点である吸収状態融点が50℃以上110℃以下であり、二酸化炭素を脱離した状態での前記イオン液体の融点または分解温度が前記吸収状態融点よりも高く、
前記吸収工程が行われる吸収工程温度は前記吸収状態融点よりも高い、二酸化炭素回収方法。 A carbon dioxide recovery method having an absorption step,
The absorption step is a step in which a treatment gas containing carbon dioxide is brought into contact with a carbon dioxide recovery composition containing an ionic liquid to absorb carbon dioxide into the ionic liquid;
The absorption state melting point, which is the melting point of the ionic liquid in a state of absorbing carbon dioxide, is 50 ° C. or more and 110 ° C. or less, and the melting point or decomposition temperature of the ionic liquid in the state of removing carbon dioxide is the absorption state melting point. Higher than
The carbon dioxide recovery method, wherein the absorption process temperature at which the absorption process is performed is higher than the absorption state melting point. - 再生工程を有し、
前記再生工程は、前記二酸化炭素回収用組成物を加熱して二酸化炭素を脱離させる工程であり、前記吸収工程の次に行われ、
前記再生工程が行われる再生工程温度は、前記吸収工程温度よりも高く、前記イオン液体の融点および分解温度よりも低い、請求項5に記載の二酸化炭素回収方法。 Has a regeneration process,
The regeneration step is a step of heating the carbon dioxide recovery composition to desorb carbon dioxide, and is performed after the absorption step,
The carbon dioxide recovery method according to claim 5, wherein a regeneration process temperature at which the regeneration process is performed is higher than the absorption process temperature and lower than a melting point and a decomposition temperature of the ionic liquid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-234543 | 2016-12-01 | ||
JP2016234543A JP6815177B2 (en) | 2016-12-01 | 2016-12-01 | Carbon dioxide capture composition and carbon dioxide capture method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018100566A1 true WO2018100566A1 (en) | 2018-06-07 |
Family
ID=62242394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/000031 WO2018100566A1 (en) | 2016-12-01 | 2018-01-25 | Composition for recovering carbon dioxide and method for recovering carbon dioxide |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6815177B2 (en) |
WO (1) | WO2018100566A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7442137B2 (en) * | 2020-05-11 | 2024-03-04 | 株式会社タクマ | Gas recovery device and gas recovery method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120222557A1 (en) * | 2009-11-03 | 2012-09-06 | University Of Notre Dame Du Lac | Ionic liquids comprising heteraromatic anions |
WO2015069799A1 (en) * | 2013-11-05 | 2015-05-14 | University Of Notre Dame Du Lac | Carbon dioxide capture using phase change ionic liquids |
US20150196895A1 (en) * | 2012-07-13 | 2015-07-16 | Danmarks Tekniske Universitet | Co2 sorption by supported amino acid ionic liquids |
WO2017163944A1 (en) * | 2016-03-24 | 2017-09-28 | 大阪瓦斯株式会社 | Carbon dioxide absorber and process for producing carbon dioxide absorber |
WO2017169669A1 (en) * | 2016-03-30 | 2017-10-05 | 大阪瓦斯株式会社 | Gas absorbing material, carbon dioxide separation and recovery system, and carbon dioxide separation and recovery method |
-
2016
- 2016-12-01 JP JP2016234543A patent/JP6815177B2/en active Active
-
2018
- 2018-01-25 WO PCT/IB2018/000031 patent/WO2018100566A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120222557A1 (en) * | 2009-11-03 | 2012-09-06 | University Of Notre Dame Du Lac | Ionic liquids comprising heteraromatic anions |
US20150196895A1 (en) * | 2012-07-13 | 2015-07-16 | Danmarks Tekniske Universitet | Co2 sorption by supported amino acid ionic liquids |
WO2015069799A1 (en) * | 2013-11-05 | 2015-05-14 | University Of Notre Dame Du Lac | Carbon dioxide capture using phase change ionic liquids |
WO2017163944A1 (en) * | 2016-03-24 | 2017-09-28 | 大阪瓦斯株式会社 | Carbon dioxide absorber and process for producing carbon dioxide absorber |
WO2017169669A1 (en) * | 2016-03-30 | 2017-10-05 | 大阪瓦斯株式会社 | Gas absorbing material, carbon dioxide separation and recovery system, and carbon dioxide separation and recovery method |
Also Published As
Publication number | Publication date |
---|---|
JP6815177B2 (en) | 2021-01-20 |
JP2018089569A (en) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seggiani et al. | CO2 sorption/desorption performance study on K2CO3-doped Li4SiO4-based pellets | |
JP5460283B2 (en) | Method for producing lithium sulfide | |
TW201231639A (en) | Methane recycling method and methane recycling apparatus | |
WO2016024456A1 (en) | Hydrogen gas purification method and purification device for same | |
JPH01155945A (en) | Production of adsorbent for separating and recovering co | |
JP4496208B2 (en) | Carbon dioxide absorbent, carbon dioxide separator and reformer | |
KR101427191B1 (en) | Composition for absorbing carbon dioxide comprising anti-solvent and method and apparatus for absorbing carbon dioxide using the same | |
KR20150125978A (en) | Purification of argon through liquid phase cryogenic adsorption | |
WO2023013397A1 (en) | Carbon dioxide absorbent, method for recovering carbon dioxide, and apparatus for separating and recovering carbon dioxide | |
Hemalatha et al. | Role of ceria in CO2 adsorption on NaZSM-5 synthesized using rice husk ash | |
JPH04310213A (en) | Removing method of acidic gas | |
JP6671204B2 (en) | Gas separation equipment | |
CN102502523B (en) | A kind of preparation method of hydrogen sulfide | |
JP2018071894A (en) | Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas | |
WO2018100566A1 (en) | Composition for recovering carbon dioxide and method for recovering carbon dioxide | |
JP2004256328A (en) | Apparatus and method for purifying hydrogen gas | |
JP2007253116A (en) | Carbon dioxide absorbing material, apparatus for separating carbon dioxide and reforming apparatus | |
JPH0218360B2 (en) | ||
JP2011173769A (en) | Method and apparatus for purifying argon gas | |
JP5807904B2 (en) | Method for separating and recovering carbon dioxide from mixed gas | |
JP4724830B2 (en) | Carbon dioxide reduction method | |
JP2013194004A (en) | Method for purifying dissolved acetylene | |
JP7197223B2 (en) | Nitrogen oxide absorbent slurry and methods for its preparation, use and regeneration | |
JP2019115888A (en) | Carbon dioxide absorbent and recovery method of carbon dioxide | |
US20250128239A1 (en) | Systems and methods for regenerating a sorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18727644 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18727644 Country of ref document: EP Kind code of ref document: A1 |