+

WO2018199570A1 - Light-transmissive film and electrochromic element comprising same - Google Patents

Light-transmissive film and electrochromic element comprising same Download PDF

Info

Publication number
WO2018199570A1
WO2018199570A1 PCT/KR2018/004672 KR2018004672W WO2018199570A1 WO 2018199570 A1 WO2018199570 A1 WO 2018199570A1 KR 2018004672 W KR2018004672 W KR 2018004672W WO 2018199570 A1 WO2018199570 A1 WO 2018199570A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
light
electrochromic
transmittance
Prior art date
Application number
PCT/KR2018/004672
Other languages
French (fr)
Korean (ko)
Inventor
김용찬
김기환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180045418A external-priority patent/KR102202928B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019557574A priority Critical patent/JP7051183B2/en
Priority to EP18790688.8A priority patent/EP3617771B1/en
Priority to US16/604,841 priority patent/US11409178B2/en
Priority to CN201880026866.6A priority patent/CN110573953B/en
Publication of WO2018199570A1 publication Critical patent/WO2018199570A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light

Definitions

  • the present application relates to a light transmitting film and an electrochromic device including the same.
  • Electrochromic refers to a phenomenon in which the optical properties of the electrochromic material are changed by a reversible electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device.
  • the change in the optical properties of the device can be realized through the color change of the layer or film containing the electrochromic material.
  • WO 3 which is almost colorless and transparent as an electrochromic material
  • a reduction reaction occurs when electrolyte ions and electrons are moved by voltage application, and the color of the layer or film including the electrochromic material becomes blue. It is colored.
  • an oxidation reaction occurs in the layer or film, the layer or film is discolored to its original transparent state. In order for such discoloration to be fully realized in the device, not only the electrochromic layer or film in the discolored state, but also other layer or film configurations laminated together must have sufficient transparency (transmittance).
  • One object of the present application is to provide a light transmissive film that can be used in an electrochromic device.
  • Another object of the present application is to provide a light transmissive film capable of reversible discoloration depending on the voltage applied.
  • Still another object of the present application is to provide a light transmissive film for electrochromic device having excellent durability.
  • Still another object of the present application is to provide an electrochromic device including a transmissive film capable of reversible discoloration according to an applied voltage.
  • the present application relates to a light transmissive film.
  • the term “transmittance” may mean a case where the optical characteristic such as color change occurring in the electrochromic device is transparent enough to clearly recognize, and there is no external factor such as, for example, potential application.
  • the state that is, the decoloring state described below
  • the light transmittance of the film itself is at least 60% or more. More specifically, the lower limit of light transmittance of the light transmitting film of the present application may be 60% or more, 70% or more, or 75% or more, and the upper limit of the light transmittance may be 95% or less, 90% or less, or 85% or less.
  • light in the present application may mean visible light in the wavelength range of 380 nm to 780 nm, and more specifically, visible light in the 550 nm wavelength.
  • the transmittance can be measured using a known haze meter (HM).
  • the light transmissive film may include an oxynitride.
  • the light transmissive film may be an oxynitride having one layer or film form or a laminate of an oxynitride having a layer or film form and another layer or film configuration.
  • oxynitride is used differently from oxide or nitride.
  • the oxynitride may include two or more metals selected from Ti, Nb, Mo, Ta, and W.
  • the oxynitride of the light transmissive film may include Mo and Ti at the same time.
  • nitrides, oxides or oxynitrides containing only Mo are poor in adhesion to adjacent thin films, and nitrides, oxides or oxynitrides containing only Ti are poor in durability, such as decomposing upon application of potential.
  • nitrides or oxynitrides containing any one of the metals listed above, such as Ti alone or Mo only are for example 40% or less, 35% or less or 30% or less, even when no potential is applied.
  • the difference in the transmittance at the time of coloration and the transmittance at the time of decolorization such as the difference in the apparent optical properties of the coloration and decolorization required in the electrochromic device. Difficult to show
  • the oxynitride may be represented by the following formula (1).
  • a means an element content ratio of Mo
  • b means an element content ratio of Ti
  • x means an element content ratio of O
  • y means an element content ratio of N
  • the term "element content ratio" in the present application may be atomic%, and may be measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the light transmissive film may be a variable transmittance film that transmits light when a predetermined voltage is applied.
  • the permeability variable properties result from the reduction discoloration properties of the oxynitrides described above.
  • the oxynitride included in the film has a light transmittance close to colorless in an intact state without an electrochemical reaction, but when a predetermined voltage is applied, discoloration, ie, coloration, occurs at a predetermined level or more with a reduction reaction with the electrolyte ions.
  • the oxynitride is a reducing discoloration material.
  • the film is an electrochromic transmittance variable film having a light transmittance of 60% or more when decoloring (or discoloring) and having a light transmittance of less than 60% when coloring.
  • the light transmissive film can be colored under voltage application conditions of -2V or less, for example -2.5V or less or -3V or less. That is, the colored level of the light transmissive film may be 2 V, 2.5 V or 3 V.
  • the term “colored level” refers to an electrochemical reaction caused by a transmissive film or a predetermined voltage applied to a half-cell including the film and the conductive layer, and as a result, the translucent film is colored.
  • the transmittance of the film may be reduced, such as “minimum size (absolute value)” of a voltage that may cause coloration of the film.
  • the coloring level i.e., the minimum magnitude (absolute value) of the voltage causing coloring
  • the coloring level of a light transmissive film can change to some extent according to a specific structure in 2 V or more range. When colored, the light transmissive film may have a color of (dark) gray or black color.
  • the coloring level of oxides including any one of known color change materials for example, Ti, Nb, Mo, Ta, and W, is about 1V, the light-transmitting film of the present application may be said to have excellent durability against high voltage. Can be.
  • the upper limit of the voltage magnitude (absolute value) applied for coloring of the film is not particularly limited, but may be, for example, 6 V or less. If it exceeds 6V, the light transmissive film, or another structure adjacent thereto, may deteriorate.
  • the thickness of the light transmissive film may be 150 nm or less.
  • the light transmissive film may have a thickness of 140 nm or less, 130 nm or less, or 120 nm or less.
  • the lower limit of the thickness of the light transmissive film is not particularly limited, but may be, for example, 10 nm or more, 20 nm or more, or 30 nm or more. If it is less than 10 nm, the film stability is not good.
  • the light refractive index of the light transmitting film may be in the range of 1.5 to 3.0 or 1.8 to 2.8.
  • the visible light refractive index is in the above range, the light-transmitting film may implement visibility with respect to the appropriate transparency and optical properties change.
  • the method for forming the light transmissive film is not particularly limited.
  • a known deposition method such as sputter deposition can be used in forming the light transmitting film.
  • the present application relates to an electrochromic device.
  • the device may include an electrode layer, a light transmitting film, and an electrolyte (layer).
  • the form in which the element includes an electrode layer, a light transmitting film, and an electrolyte (layer) is not particularly limited.
  • the device may sequentially include an electrode layer, a light transmitting film, and an electrolyte (layer).
  • the light transmissive film used for the electrochromic device may have the same configuration as mentioned above. Since the translucent film which has the said structure can have a visible light transmittance of 60% or more, it is suitable as a film for electrochromic elements. Further, as described above, since it can be colored when a predetermined voltage is applied, it can also be used as a so-called electrochromic layer. Specifically, the light-transmitting film may have a transmittance of 60% or more by itself when decolorized, that is, uncolored, and when colored, transmittance of less than 60%, for example, 45% or less, 30, while the transmittance becomes low. It can have a transmittance of less than or equal to 20%. In one example, the light transmissive film may have a light transmittance difference of 20% or more or 30% or more during coloring and decolorization.
  • the electrochromic device may also have a visible light transmittance of 60% or more, more specifically in the range of 60% to 95%.
  • the electrochromic device may have a light transmittance difference of 10% or more, 20% or more, or 30% or more in coloration and decolorization.
  • the electrode layer may include a conductive compound, metal mesh, or OMO (oxide / metal / oxide).
  • ITO Indium Tin Oxide
  • IGO indium galium oxide
  • FTO Fluor doped Tin Oxide
  • AZO Alium doped Zinc Oxide
  • GZO Ga doped Zinc Oxide
  • ATO Antimony doped Tin Oxide
  • IZO Indium doped Zinc Oxide
  • NTO Niobium doped Titanium Oxide
  • ZnO zink oxide
  • CTO Cesium Tungsten Oxide
  • the materials listed above are not limited to the material of the transparent conductive compound.
  • the metal mesh used for the electrode layer may include Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni, or an alloy thereof, and may have a lattice form.
  • the materials usable for the metal mesh are not limited to the metal materials listed above.
  • the electrode layer may comprise oxide / metal / oxide (OMO). Since the OMO has a lower surface resistance than the transparent conductive oxide represented by ITO, it is possible to improve the electrical properties of the electrochromic device by reducing the color change rate.
  • OMO oxide / metal / oxide
  • the OMO may include a top layer, a bottom layer, and a metal layer provided between the two layers.
  • the upper layer may mean a layer located relatively farther from the translucent film among the layers constituting the OMO.
  • the top and bottom layers of an OMO electrode include Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr or oxides of these alloys. can do.
  • the type of each metal oxide included in the upper layer and the lower layer may be the same or different.
  • the thickness of the top layer may range from 10 nm to 120 nm or from 20 nm to 100 nm.
  • the visible light refractive index of the upper layer may be in the range of 1.0 to 3.0 or 1.2 to 2.8.
  • the thickness of the lower layer may range from 10 nm to 100 nm or from 20 nm to 80 nm.
  • the visible light refractive index of the lower layer may be in the range of 1.3 to 2.7 or 1.5 to 2.5.
  • the metal layer included in the OMO electrode may include a low resistance metal material.
  • a low resistance metal material for example, one or more of Ag, Cu, Zn, Au, Pd, and alloys thereof may be included in the metal layer.
  • the metal layer may have a thickness in the range of 3 nm to 30 nm or in the range of 5 nm to 20 nm.
  • the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the electrode layer and the device.
  • the electrode layer of the above configuration may have a thickness of 50 nm to 400 nm or less.
  • the light transmittance can be appropriately implemented within the thickness range.
  • the device may include another electrode layer.
  • the electrode layer may be referred to as first and second electrode layers according to positions relative to other configurations.
  • the device may sequentially include a first electrode layer, an electrolyte layer, the light transmissive film, and a second electrode layer.
  • the configuration of each electrode layer is the same as mentioned above.
  • the electrolyte layer may be configured to provide electrolyte ions involved in the electrochromic reaction.
  • Electrolyte ions may be monovalent cations, such as H + , Li + , Na + , K + , Rb + , or Cs + , which are inserted into the light transmissive film and which may be involved in the discoloration reaction.
  • the kind of electrolyte is not particularly limited.
  • liquid electrolytes, gel polymer electrolytes or inorganic solid electrolytes can be used without limitation.
  • the electrochromic film composition can include a compound capable of providing a monovalent cation such as H + , Li + , Na + , K + , Rb + , or Cs +
  • the composition of the specific compound used in the electrolyte layer Is not particularly limited.
  • the electrolyte may be LiClO 4 , LiBF 4 , LiAsF 6 , or LiPF 6 It may include a lithium salt compound, such as, or a sodium salt compound such as NaClO 4 .
  • the electrolyte layer may include a carbonate compound as a solvent. Since a carbonate type compound has high dielectric constant, ionic conductivity can be improved.
  • a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
  • the electrolyte layer may be polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polymethyl methacrylate ( Polymethyl methacrylate (PMMA), Polyvinyl chloride (PVC), Polyethylene oxide (PEO), Polypropylene oxide (PPO), Poly (vinylidene fluoride-hexafluoro fluoropropylene) ( Poly (vinylidene fluoride-hexafluoro propylene), PVdF-HFP), polyvinylacetate (Polyvinyl acetate, PVAc), polyoxyethylene (Polyoxyethylene, POE), polyamideimide (Polyamideimide, PAI) and the like may be included.
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PMMA Polymethyl methacrylate
  • PVC Polyethylene oxide
  • PPO Polypropylene oxide
  • PVdF-HFP Polyvinylacetate
  • the thickness of the electrolyte layer may range from 10 ⁇ m to 200 ⁇ m.
  • the electrochromic device of the present application may further include a second electrochromic layer.
  • the device may further include a second electrochromic layer between the first electrode layer and the electrolyte.
  • the electrochromic translucent film may be referred to as a first electrochromic layer.
  • the second electrochromic layer may have a color change characteristic different from that of the first electrochromic layer. That is, the second electrochromic layer may include an oxidative discoloring material that may be colored when oxidized. As such, when the color development (color change) characteristics of the color change material used in each of the first and second electrochromic layers are different, the second electrochromic layer is different from the first electrochromic layer during oxidation and reduction for electrochromic. You can set the charge balance of.
  • the oxidative discoloration material included in the second electrochromic layer such as LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2 , Rh 2 O 3 or CrO 3 , Cr, Mn, Fe, Oxides of Co, Ni, Rh, or Ir; Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And prussian blue.
  • the thickness of the second electrochromic layer may range from 50 nm to 450 nm.
  • the electrochromic device may further include a substrate.
  • the substrate may be located on the outer side of the device, for example on the outer side of the first and / or second electrode layer.
  • the substrate may also have a visible light transmittance of 60% to 95%. If the transmittance
  • glass or polymer resins can be used. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used, but is not limited thereto.
  • the electrochromic device may further include a power source.
  • the manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art.
  • a film having not only light transmittance but also reversible discoloration according to an applied voltage and excellent in resistance to high voltage may be provided.
  • Example 1 is a graph showing a state in which the laminate of the present application Example 1 is driven without degradation in durability when a voltage of ⁇ 5 V is applied.
  • ITO having a light transmittance of about 90% was formed on one surface of glass (galss) having a light transmittance of about 98%.
  • an oxynitride (Mo a Ti b O x N y ) layer containing Mo and Ti was formed on the one surface of ITO (as opposed to the glass position) by sputter deposition to form a thickness of 30 nm (Preparation Example 1).
  • the weight percent ratio of the target of Mo and Ti was 1: 1, the deposition power was 100 W, the process pressure was deposited at 15 mTorr, and each flow rate of Ar, N 2 and O 2 was 30 sccm, 5 sccm, and 5 sccm.
  • Nitrogen nitride layer was formed in the same manner as in Example 1, except that the flow rate of nitrogen was 10 sccm during deposition and the content ratio was changed as shown in Table 1 (Preparation Example 2).
  • Nitrogen nitride layer was formed in the same manner as in Example 1, except that the flow rate of nitrogen was 15 sccm during deposition, and the content ratio was changed as shown in Table 1 (Preparation Example 3).
  • An oxide layer was formed in the same manner as in Example 1 except that the flow rate of nitrogen was 0 sccm during deposition and the content ratio was changed as shown in Table 1 (Preparation Example 4).
  • the oxynitride layers of Comparative Examples 1 to 3 have very low transmittance, while the oxynitride layer of Example 1 has a transmittance of about 90%.
  • the oxynitride or the light-transmitting laminate including the same used in Example 1 can be used as a member for the electrochromic device.
  • Example 2 The laminate prepared in Example 1 (glass / ITO / oxynitride (Mo a Ti b O x N y ) (half-cell) was immersed in an electrolyte containing LiClO 4 (1M) and propylene carbonate (PC), 25 Coloring voltage of ⁇ 3 V and decolorization voltage of +3 V were applied alternately at 50 ° C. for 50 seconds, respectively.
  • the currents, transmittances, and discoloration times at the time of coloration and decolorization measured over time are as shown in Table 2. .
  • the laminate including the light-transmitting film of the present application has a discoloration characteristic when a potential having a size of 3 V or more is applied.
  • Fig. 1 is a graph showing the state in which the laminate (electrochromic device) of Example 2 is driven when a driving potential of ⁇ 5 V is applied. 1, it can be seen that the laminate including the light-transmitting film of the present application exhibits uniform cycle characteristics even when a relatively high driving potential is applied and operates without deterioration in durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present application relates to a light-transmissive film and an element comprising same. The film has light transmissivity, enables reversible chromism in accordance with an applied voltage and has excellent durability within a chromism driving voltage range.

Description

투광성 필름 및 이를 포함하는 전기변색소자Light transmitting film and electrochromic device comprising the same
관련 출원들과의 상호 인용Cross Citation with Related Applications
본 출원은 2017년 4월 24일 자 한국 특허 출원 제10-2017-0052047호 및 2018년 4월 19일 자 한국 특허출원 제10-2018-0045418호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0052047 dated April 24, 2017 and Korean Patent Application No. 10-2018-0045418 dated April 19, 2018, the corresponding Korean patent All content disclosed in the literature of the application is included as part of this specification.
기술분야Field of technology
본 출원은 투광성 필름 및 이를 포함하는 전기변색소자에 관한 것이다.The present application relates to a light transmitting film and an electrochromic device including the same.
전기변색이란 가역적인 전기화학적 산화 또는 환원 반응에 의하여 전기변색물질의 광학적 성질이 변하는 현상을 말하며, 상기 현상을 이용한 소자를 전기변색소자라 한다. 일반적으로, 소자의 광학적 성질 변화는 전기변색물질을 함유하는 층 또는 필름의 색 변화를 통해 구현될 수 있다. 예를 들어, 전기변색물질로서 무색 투명에 가까운 WO3를 사용할 경우, 전압 인가에 의해 전해질 이온과 전자가 이동하게 되면 환원반응이 일어나고, 전기변색물질을 포함하는 층 또는 필름의 색이 블루계통으로 착색된다. 반대로 상기 층 또는 필름에서 산화반응이 일어날 경우에는, 층 또는 필름이 본래의 투명 상태로 탈색된다. 상기와 같은 변색이 소자에서 충분히 구현되기 위해서는, 탈색 상태의 전기변색 층 또는 필름뿐 아니라, 함께 적층되는 다른 층 또는 필름 구성들 역시 충분한 투명성(투광성)을 가져야 한다.Electrochromic refers to a phenomenon in which the optical properties of the electrochromic material are changed by a reversible electrochemical oxidation or reduction reaction, and the device using the phenomenon is called an electrochromic device. In general, the change in the optical properties of the device can be realized through the color change of the layer or film containing the electrochromic material. For example, in the case of using WO 3 which is almost colorless and transparent as an electrochromic material, a reduction reaction occurs when electrolyte ions and electrons are moved by voltage application, and the color of the layer or film including the electrochromic material becomes blue. It is colored. In contrast, when an oxidation reaction occurs in the layer or film, the layer or film is discolored to its original transparent state. In order for such discoloration to be fully realized in the device, not only the electrochromic layer or film in the discolored state, but also other layer or film configurations laminated together must have sufficient transparency (transmittance).
본 출원의 일 목적은, 전기변색소자에 사용 가능한 투광성 필름을 제공하는 것이다.One object of the present application is to provide a light transmissive film that can be used in an electrochromic device.
본 출원의 다른 목적은, 인가되는 전압에 따라 가역적인 변색이 가능한 투광성 필름을 제공하는 것이다.Another object of the present application is to provide a light transmissive film capable of reversible discoloration depending on the voltage applied.
본 출원의 또 다른 목적은, 내구성이 우수한 전기변색소자용 투광성 필름을 제공하는 것이다.Still another object of the present application is to provide a light transmissive film for electrochromic device having excellent durability.
본 출원의 또 다른 목적은, 인가되는 전압에 따라 가역적인 변색이 가능한 투광성 필름을 포함하는 전기변색소자를 제공하는 것이다.Still another object of the present application is to provide an electrochromic device including a transmissive film capable of reversible discoloration according to an applied voltage.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.The above and other objects of the present application can all be solved by the present application described in detail below.
본 출원에 관한 일례에서, 본 출원은 투광성 필름에 관한 것이다. 본 출원에서, 「투광성」이란, 전기변색소자에서 일어나는 색 변화와 같은 광학 특성의 변화를 뚜렷하게 시인할 수 있을 만큼 투명한 경우를 의미할 수 있으며, 예를 들어, 전위 인가와 같은 어떠한 외부 요인도 없는 상태(즉, 하기 설명되는 탈색 상태)에서, 필름 자체가 갖는 광 투과율이 최소 60% 이상인 경우를 의미할 수 있다. 보다 구체적으로, 본 출원 투광성 필름의 광 투과율 하한은 60% 이상, 70% 이상, 또는 75% 이상일 수 있고, 광 투과율의 상한은 95% 이하, 90% 이하, 또는 85% 이하 일 수 있다. 특별히 언급하지 않는 이상, 본 출원에서 「광」이란, 380 nm 내지 780 nm 파장 범위의 가시광, 보다 구체적으로는 550 nm 파장의 가시광을 의미할 수 있다. 또한, 상기 투과율은 공지된 헤이즈 미터(haze meter: HM)를 이용하여 측정될 수 있다.In one example of the present application, the present application relates to a light transmissive film. In the present application, the term “transmittance” may mean a case where the optical characteristic such as color change occurring in the electrochromic device is transparent enough to clearly recognize, and there is no external factor such as, for example, potential application. In the state (that is, the decoloring state described below), it may mean that the light transmittance of the film itself is at least 60% or more. More specifically, the lower limit of light transmittance of the light transmitting film of the present application may be 60% or more, 70% or more, or 75% or more, and the upper limit of the light transmittance may be 95% or less, 90% or less, or 85% or less. Unless otherwise specified, "light" in the present application may mean visible light in the wavelength range of 380 nm to 780 nm, and more specifically, visible light in the 550 nm wavelength. In addition, the transmittance can be measured using a known haze meter (HM).
상기 투광성 필름은 산질화물(oxynitride)을 포함할 수 있다. 하나의 예시에서, 투광성 필름은 하나의 층 또는 필름 형태를 갖는 산질화물이거나, 층 또는 필름 형태를 갖는 산질화물과 다른 층 또는 필름 구성과의 적층체일 수 있다. 본 출원에서 산질화물은 산화물(oxide)이나 질화물(nitride)과는 구별되어 사용된다.The light transmissive film may include an oxynitride. In one example, the light transmissive film may be an oxynitride having one layer or film form or a laminate of an oxynitride having a layer or film form and another layer or film configuration. In this application, oxynitride is used differently from oxide or nitride.
하나의 예시에서, 상기 산질화물은 Ti, Nb, Mo, Ta 및 W 중에서 선택되는 2 이상의 금속을 포함할 수 있다. In one example, the oxynitride may include two or more metals selected from Ti, Nb, Mo, Ta, and W.
또 하나의 예시에서, 상기 투광성 필름의 산질화물은 Mo과 Ti을 동시에 포함할 수 있다. 이와 관련하여, Mo만을 포함하는 질화물, 산화물 또는 산질화물은 인접 박막과의 부착성이 좋지 못하고, Ti만을 포함하는 질화물, 산화물 또는 산질화물은 전위 인가시 분해되는 등 내구성이 좋지 못하다. 특히, 상기 나열된 금속 중 어느 하나의 금속, 예를 들어 Ti 만을 또는 Mo 만을 포함하는 질화물이나 산질화물은, 예를 들어 전위 등이 인가되지 않는 상태에서도, 40% 이하, 35% 이하 또는 30% 이하의 가시광 투과율을 갖는 것과 같이, 낮은 투광성을 갖기 때문에, 탈색(bleached)시 투명성이 요구되는 전기변색필름용 부재로 사용하기에 부적합하다. 또한, 상기와 같이 탈색시 투과율이 낮은 필름을 사용할 경우에는, 예를 들어 착색시 투과율과 탈색시 투과율의 차이가 30% 이상인 것과 같이, 전기변색소자에서 요구되는 착색과 탈색의 뚜렷한 광학 특성 변화를 보여주기 어렵다.In another example, the oxynitride of the light transmissive film may include Mo and Ti at the same time. In this regard, nitrides, oxides or oxynitrides containing only Mo are poor in adhesion to adjacent thin films, and nitrides, oxides or oxynitrides containing only Ti are poor in durability, such as decomposing upon application of potential. In particular, nitrides or oxynitrides containing any one of the metals listed above, such as Ti alone or Mo only, are for example 40% or less, 35% or less or 30% or less, even when no potential is applied. Since it has low light transmittance, such as having a visible light transmittance of, it is not suitable for use as an electrochromic film member requiring transparency when bleached. In addition, when using a film having a low transmittance at the time of decolorization as described above, for example, the difference in the transmittance at the time of coloration and the transmittance at the time of decolorization, such as the difference in the apparent optical properties of the coloration and decolorization required in the electrochromic device. Difficult to show
하나의 예시에서, 상기 산질화물은 하기 화학식 1로 표시될 수 있다.In one example, the oxynitride may be represented by the following formula (1).
[화학식 1][Formula 1]
MoaTibOxNy Mo a Ti b O x N y
화학식 1에서, a는 Mo의 원소 함량비를 의미하고, b는 Ti의 원소 함량비를 의미하고, x는 O의 원소 함량비를 의미하고, y는 N의 원소 함량비를 의미하고, a>0, b>0, x>0, y>0이고, 0.5 < a/b < 4.0이고, 0.005 < y/x < 0.02일 수 있다. 본 출원에서 용어 「원소 함량비」는 atomic%일 수 있고, XPS(X-ray photoelectron spectroscopy)에 의해 측정될 수 있다. 상기 원소 함량비(a/b) 를 만족할 경우, 내구성뿐 아니라 다른 층 구성과의 부착성이 우수한 필름이 제공될 수 있다. 상기 원소 함량비(y/x)를 만족할 경우, 상기 필름은 60% 이상의 광 투과율을 가질 수 있다. 특히, 상기 원소 함량비(y/x)를 만족하지 못하는 경우에는, 40% 이하 또는 35% 이하의 가시광 투과율을 갖는 것과 같이, 필름이 매우 낮은 투명성(투광성)을 갖게 되므로, 해당 필름을 전기변색소자용 부재로서 사용할 수 없다.In Formula 1, a means an element content ratio of Mo, b means an element content ratio of Ti, x means an element content ratio of O, y means an element content ratio of N, a> 0, b> 0, x> 0, y> 0, 0.5 <a / b <4.0, and 0.005 <y / x <0.02. The term "element content ratio" in the present application may be atomic%, and may be measured by X-ray photoelectron spectroscopy (XPS). When the element content ratio (a / b) is satisfied, a film excellent in adhesion as well as durability in other layer configurations may be provided. When the element content ratio (y / x) is satisfied, the film may have a light transmittance of 60% or more. In particular, when the element content ratio (y / x) is not satisfied, the film has very low transparency (translucency), such as having a visible light transmittance of 40% or less or 35% or less. It cannot be used as an element for an element.
하나의 예시에서, 상기 투광성 필름은 소정의 전압이 인가되는 경우 투광성이 변화하는 투과도 가변 필름일 수 있다. 투과도 가변 특성은 상기 설명된 산질화물의 환원 변색 특성으로부터 기인한다. 구체적으로, 상기 필름에 포함되는 산질화물은 전기화학 반응이 없는 본래 그대로의 상태에서는 무색에 가까운 투광성을 갖지만, 소정의 전압이 인가되면 전해질 이온과 일정 수준 이상의 환원반응을 하면서 변색, 즉 착색(coloration)될 수 있다. 즉, 상기 산질화물은 환원성 변색물질이다. 상기 투광성 필름이 착색되는 경우, 그 광 투과율은 60% 미만으로 저하된다. 정리하면, 상기 필름은 탈색시(또는 소색시에) 60% 이상의 광 투과율을 가질 수 있고, 착색시에는 60 % 미만의 광 투과율을 갖는 전기변색성 투과도 가변 필름이다.In one example, the light transmissive film may be a variable transmittance film that transmits light when a predetermined voltage is applied. The permeability variable properties result from the reduction discoloration properties of the oxynitrides described above. Specifically, the oxynitride included in the film has a light transmittance close to colorless in an intact state without an electrochemical reaction, but when a predetermined voltage is applied, discoloration, ie, coloration, occurs at a predetermined level or more with a reduction reaction with the electrolyte ions. Can be That is, the oxynitride is a reducing discoloration material. When the said translucent film is colored, the light transmittance falls to less than 60%. In summary, the film is an electrochromic transmittance variable film having a light transmittance of 60% or more when decoloring (or discoloring) and having a light transmittance of less than 60% when coloring.
하나의 예시에서, 상기 투광성 필름은 - 2 V 이하, 예를 들어, - 2.5 V 이하 또는 - 3 V 이하 전압 인가 조건에서 착색될 수 있다. 즉, 상기 투광성 필름의 착색 준위는 2 V, 2.5 V 또는 3 V 일 수 있다. 본 출원에서 「착색 준위」란, 투광성 필름, 또는 상기 필름과 도전층을 포함하는 적층체(half-cell)에 인가되는 소정 크기 전압에 의해 전기화학반응이 유발되고, 그 결과 상기 투광성 필름이 색채를 갖게 되면서 필름의 투과율이 저하되는 경우와 같이, 해당 필름의 착색(coloration)을 일으킬 수 있는 전압의 “최소 크기(절대값)”를 의미할 수 있다. 착색 준위, 즉 착색을 일으키는 전압의 최소 크기(절대값)는 착색에 관한 일종의 장벽(barrier)으로서 기능하기 때문에, 상기 크기(절대값)보다 작은 값의 전위를 인가하는 경우에는 사실상 착색이 일어나지 않는다(착색이 미세하게 일어나더라도 사용자에게 인식될 수 없거나, 인식될 만큼 충분치 않다). 투광성 필름의 착색 준위는, 2V 이상의 범위에서, 구체적인 구성에 따라 다소 변화할 수 있다. 착색시 상기 투광성 필름은 (다크) 그레이 또는 블랙 계통의 색을 가질 수 있다. 공지된 변색물질, 예를 들어, Ti, Nb, Mo, Ta 및 W 중 어느 하나를 포함하는 산화물의 착색 준위가 1V 내외 정도 임을 고려하면, 본 출원의 투광성 필름은 고전압에 대한 내구성이 우수하다고 할 수 있다.In one example, the light transmissive film can be colored under voltage application conditions of -2V or less, for example -2.5V or less or -3V or less. That is, the colored level of the light transmissive film may be 2 V, 2.5 V or 3 V. In the present application, the term “colored level” refers to an electrochemical reaction caused by a transmissive film or a predetermined voltage applied to a half-cell including the film and the conductive layer, and as a result, the translucent film is colored. As described above, the transmittance of the film may be reduced, such as “minimum size (absolute value)” of a voltage that may cause coloration of the film. Since the coloring level, i.e., the minimum magnitude (absolute value) of the voltage causing coloring, serves as a kind of barrier for coloring, virtually no coloring occurs when an electric potential of a value smaller than the magnitude (absolute value) is applied. (Fine coloring may not be recognized by the user or may not be sufficient to be recognized). The coloring level of a light transmissive film can change to some extent according to a specific structure in 2 V or more range. When colored, the light transmissive film may have a color of (dark) gray or black color. Considering that the coloring level of oxides including any one of known color change materials, for example, Ti, Nb, Mo, Ta, and W, is about 1V, the light-transmitting film of the present application may be said to have excellent durability against high voltage. Can be.
착색 준위와 관련하여, 필름의 착색을 위해 인가되는 전압 크기(절대값)의 상한은 특별히 제한되지 않으나, 예를 들어, 6V 이하일 수 있다. 6V를 초과할 경우 투광성 필름, 또는 이에 인접하는 다른 구성이 열화될 수 있다.Regarding the coloring level, the upper limit of the voltage magnitude (absolute value) applied for coloring of the film is not particularly limited, but may be, for example, 6 V or less. If it exceeds 6V, the light transmissive film, or another structure adjacent thereto, may deteriorate.
하나의 예시에서, 상기 투광성 필름의 두께는 150 nm 이하일 수 있다. 예를 들어, 상기 투광성 필름은 140 nm 이하, 130 nm 이하, 또는 120 nm 이하의 두께를 가질 수 있다. 상기 두께의 상한을 초과하는 경우, 전해질 이온의 삽입이나 탈리가 저하될 수 있고, 변색속도가 저하될 수 있다. 투광성 필름의 두께 하한은 특별히 제한되지 않으나, 예를 들어, 10 nm 이상, 20 nm 이상 또는 30 nm 이상 일 수 있다. 10 nm 미만일 경우, 박막 안정성이 좋지 못하다.In one example, the thickness of the light transmissive film may be 150 nm or less. For example, the light transmissive film may have a thickness of 140 nm or less, 130 nm or less, or 120 nm or less. When the upper limit of the thickness is exceeded, the insertion or desorption of electrolyte ions may be lowered and the discoloration rate may be lowered. The lower limit of the thickness of the light transmissive film is not particularly limited, but may be, for example, 10 nm or more, 20 nm or more, or 30 nm or more. If it is less than 10 nm, the film stability is not good.
하나의 예시에서, 상기 투광성 필름의 광 굴절률은 1.5 내지 3.0 범위 또는 1.8 내지 2.8 범위일 수 있다. 상기 범위의 가시광 굴절률을 가질 경우, 상기 투광성 필름은 적절한 투명성과 광학 특성 변화에 대한 시인성을 구현할 수 있다.In one example, the light refractive index of the light transmitting film may be in the range of 1.5 to 3.0 or 1.8 to 2.8. When the visible light refractive index is in the above range, the light-transmitting film may implement visibility with respect to the appropriate transparency and optical properties change.
상기 투광성 필름을 형성하는 방법은 특별히 제한되지 않는다. 예를 들어, 상기 구성을 만족하는 것을 전제로, 스퍼터링 증착과 같은 공지된 증착 방식이 투광성 필름 형성시 사용될 수 있다.The method for forming the light transmissive film is not particularly limited. For example, on the premise of satisfying the above configuration, a known deposition method such as sputter deposition can be used in forming the light transmitting film.
본 출원에 관한 또 다른 일례에서, 본 출원은 전기변색소자에 관한 것이다. 상기 소자는 전극층, 투광성 필름, 및 전해질(층)을 포함할 수 있다. 상기 소자가 전극층, 투광성 필름, 및 전해질(층)을 포함하는 형태는 특별히 제한되지 않는다. 예를 들어, 상기 소자는 전극층, 투광성 필름, 및 전해질(층)을 순차로 포함할 수 있다.In yet another example of the present application, the present application relates to an electrochromic device. The device may include an electrode layer, a light transmitting film, and an electrolyte (layer). The form in which the element includes an electrode layer, a light transmitting film, and an electrolyte (layer) is not particularly limited. For example, the device may sequentially include an electrode layer, a light transmitting film, and an electrolyte (layer).
전기변색소자에 사용되는 투광성 필름은 상기 언급한 것과 동일한 구성을 가질 수 있다. 상기 구성을 갖는 투광성 필름은, 60% 이상의 가시광 투과율을 가질 수 있기 때문에, 전기변색소자용 필름으로서 적합하다. 또한, 상기 설명한 바와 같이 소정의 전압 인가시에는 착색될 수 있기 때문에, 소위 전기변색층으로서도 사용될 수 있다. 구체적으로, 상기 투광성 필름은 탈색시, 즉 착색되지 않은 상태에서 그 자체로서 60% 이상의 투과율을 가질 수 있고, 착색시에는 투과도가 낮아지면서 60% 미만의 투과율, 예를 들어, 45% 이하, 30% 이하, 또는 20% 이하의 투과율을 가질 수 있다. 하나의 예시에서, 상기 상기 투광성 필름은 착색과 탈색 시의 광 투과율 차이가 20% 이상 또는 30% 이상일 수 있다.The light transmissive film used for the electrochromic device may have the same configuration as mentioned above. Since the translucent film which has the said structure can have a visible light transmittance of 60% or more, it is suitable as a film for electrochromic elements. Further, as described above, since it can be colored when a predetermined voltage is applied, it can also be used as a so-called electrochromic layer. Specifically, the light-transmitting film may have a transmittance of 60% or more by itself when decolorized, that is, uncolored, and when colored, transmittance of less than 60%, for example, 45% or less, 30, while the transmittance becomes low. It can have a transmittance of less than or equal to 20%. In one example, the light transmissive film may have a light transmittance difference of 20% or more or 30% or more during coloring and decolorization.
특별히 제한되지 않으나 투광성 필름 외에, 전기변색소자에 함께 사용되는 다른 구성 역시 60 % 이상, 보다 구체적으로는 60% 내지 95 % 범위의 가시광 투과율을 가질 수 있다. 하나의 예시에서, 상기 전기변색소자는 착색과 탈색 시의 광 투과율 차이가 10 % 이상, 20% 이상, 또는 30% 이상일 수 있다.Although not particularly limited, in addition to the light transmissive film, other components used together with the electrochromic device may also have a visible light transmittance of 60% or more, more specifically in the range of 60% to 95%. In one example, the electrochromic device may have a light transmittance difference of 10% or more, 20% or more, or 30% or more in coloration and decolorization.
전극층은 도전성 화합물, 메탈메쉬, 또는 OMO(oxide/metal/oxide)를 포함할 수 있다.The electrode layer may include a conductive compound, metal mesh, or OMO (oxide / metal / oxide).
하나의 예시에서, 전극층에 사용되는 투명 도전성 화합물로는, ITO(Indium Tin Oxide), In2O3(indium oxide), IGO(indium galium oxide), FTO(Fluor doped Tin Oxide), AZO(Aluminium doped Zinc Oxide), GZO(Galium doped Zinc Oxide), ATO(Antimony doped Tin Oxide), IZO(Indium doped Zinc Oxide), NTO(Niobium doped Titanium Oxide), ZnO(zink oxide), 또는 CTO (Cesium Tungsten Oxide) 등을 예로 들 수 있다. 그러나, 상기 나열된 물질로 투명 도전성 화합물의 재료가 제한되는 것은 아니다.In one example, as the transparent conductive compound used in the electrode layer, ITO (Indium Tin Oxide), In 2 O 3 (indium oxide), IGO (indium galium oxide), FTO (Fluor doped Tin Oxide), AZO (Aluminum doped) Zinc Oxide), GZO (Galium doped Zinc Oxide), ATO (Antimony doped Tin Oxide), IZO (Indium doped Zinc Oxide), NTO (Niobium doped Titanium Oxide), ZnO (zink oxide), or CTO (Cesium Tungsten Oxide) For example. However, the materials listed above are not limited to the material of the transparent conductive compound.
하나의 예시에서, 전극층에 사용되는 메탈메쉬는 Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni 또는 이들의 합금을 포함하고, 격자 형태를 가질 수 있다. 그러나, 메탈메쉬에 사용가능한 재료가 상기 나열된 금속 재료로 제한되는 것은 아니다.In one example, the metal mesh used for the electrode layer may include Ag, Cu, Al, Mg, Au, Pt, W, Mo, Ti, Ni, or an alloy thereof, and may have a lattice form. However, the materials usable for the metal mesh are not limited to the metal materials listed above.
하나의 예시에서, 전극층은 OMO(oxide/metal/oxide)를 포함할 수 있다. 상기 OMO는 ITO로 대표되는 투명 도전성 산화물 대비 좀 더 낮은 면 저항을 갖기 때문에, 변색 속도를 단축하는 등 전기변색소자의 전기적 특성을 개선할 수 있다.In one example, the electrode layer may comprise oxide / metal / oxide (OMO). Since the OMO has a lower surface resistance than the transparent conductive oxide represented by ITO, it is possible to improve the electrical properties of the electrochromic device by reducing the color change rate.
상기 OMO는 상부층, 하부층, 및 상기 2개 층 사이에 마련되는 금속층을 포함할 수 있다. 본 출원에서 상부층이란, OMO를 구성하는 층 중에서 투광성 필름으로부터 상대적으로 더 멀리 위치한 층을 의미할 수 있다.The OMO may include a top layer, a bottom layer, and a metal layer provided between the two layers. In the present application, the upper layer may mean a layer located relatively farther from the translucent film among the layers constituting the OMO.
하나의 예시에서, OMO 전극의 상부층 및 하부층은 Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr 또는 이들 합금의 산화물을 포함할 수 있다. 상기 상부층 및 하부층이 포함하는 각 금속산화물의 종류는 동일하거나 상이할 수 있다.In one example, the top and bottom layers of an OMO electrode include Sb, Ba, Ga, Ge, Hf, In, La, Se, Si, Ta, Se, Ti, V, Y, Zn, Zr or oxides of these alloys. can do. The type of each metal oxide included in the upper layer and the lower layer may be the same or different.
하나의 예시에서, 상기 상부층의 두께는 10 nm 내지 120 nm 범위 또는 20 nm 내지 100 nm 범위일 수 있다. 또한, 상기 상부층의 가시광 굴절률은 1.0 내지 3.0 범위 또는 1.2 내지 2.8 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 전극층과 소자에 부여될 수 있다. In one example, the thickness of the top layer may range from 10 nm to 120 nm or from 20 nm to 100 nm. In addition, the visible light refractive index of the upper layer may be in the range of 1.0 to 3.0 or 1.2 to 2.8. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the electrode layer and the device.
하나의 예시에서, 상기 하부층의 두께는 10 nm 내지 100 nm 범위 또는 20 nm 내지 80 nm 범위일 수 있다. 또한, 상기 하부층의 가시광 굴절률은 1.3 내지 2.7 범위 또는 1.5 내지 2.5 범위일 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 전극층과 소자에 부여될 수 있다.In one example, the thickness of the lower layer may range from 10 nm to 100 nm or from 20 nm to 80 nm. In addition, the visible light refractive index of the lower layer may be in the range of 1.3 to 2.7 or 1.5 to 2.5. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the electrode layer and the device.
하나의 예시에서, 상기 OMO 전극에 포함되는 금속층은 저저항 금속재료를 포함할 수 있다. 특별히 제한되지 않으나, 예를 들어, Ag, Cu, Zn, Au, Pd, 및 이들의 합금 중에서 하나 이상이 금속층에 포함될 수 있다.In one example, the metal layer included in the OMO electrode may include a low resistance metal material. Although not particularly limited, for example, one or more of Ag, Cu, Zn, Au, Pd, and alloys thereof may be included in the metal layer.
하나의 예시에서, 상기 금속층은 3 nm 내지 30 nm 범위 또는 5 nm 내지 20 nm 범위의 두께를 가질 수 있다. 또한, 상기 금속층은 1 이하 또는 0.5 이하의 가시광 굴절률을 가질 수 있다. 상기 범위의 굴절률 및 두께를 가질 경우, 적절한 수준의 광학 특성이 전극층과 소자에 부여될 수 있다.In one example, the metal layer may have a thickness in the range of 3 nm to 30 nm or in the range of 5 nm to 20 nm. In addition, the metal layer may have a visible light refractive index of 1 or less or 0.5 or less. When having a refractive index and a thickness in the above range, an appropriate level of optical properties can be imparted to the electrode layer and the device.
특별히 제한되지는 않으나, 상기 구성의 전극층은 50 nm 내지 400 nm 이하의 두께를 가질 수 있다. 상기 두께 범위 내에서 적절히 광 투과도를 구현할 수 있다.Although not particularly limited, the electrode layer of the above configuration may have a thickness of 50 nm to 400 nm or less. The light transmittance can be appropriately implemented within the thickness range.
하나의 예시에서, 상기 소자는 또 하나의 전극층을 포함할 수 있다. 이 경우 전극층은 다른 구성과의 상대적인 위치에 따라 제1 및 제2 전극층으로 호칭될 수 있다. 예를 들어, 상기 소자는 제1 전극층, 전해질층, 상기 투광성 필름 및 제2 전극층을 순차로 포함할 수 있다. 각 전극층의 구성은 상기 언급한 바와 동일하다.In one example, the device may include another electrode layer. In this case, the electrode layer may be referred to as first and second electrode layers according to positions relative to other configurations. For example, the device may sequentially include a first electrode layer, an electrolyte layer, the light transmissive film, and a second electrode layer. The configuration of each electrode layer is the same as mentioned above.
전해질층은 전기변색 반응에 관여하는 전해질 이온을 제공하는 구성일 수 있다. 전해질 이온은, 상기 투광성 필름에 삽입되고, 변색 반응에 관여할 수 있는 1가 양이온, 예를 들어, H+, Li+, Na+, K+, Rb+, 또는 Cs+ 일 수 있다. The electrolyte layer may be configured to provide electrolyte ions involved in the electrochromic reaction. Electrolyte ions may be monovalent cations, such as H + , Li + , Na + , K + , Rb + , or Cs + , which are inserted into the light transmissive film and which may be involved in the discoloration reaction.
전해질의 종류는 특별히 제한되지 않는다. 예를 들어, 액체 전해질, 겔 폴리머 전해질 또는 무기 고체 전해질이 제한없이 사용될 수 있다.The kind of electrolyte is not particularly limited. For example, liquid electrolytes, gel polymer electrolytes or inorganic solid electrolytes can be used without limitation.
전기변색 가능한 필름 구성에 H+, Li+, Na+, K+, Rb+, 또는 Cs+ 와 같은 1가 양이온을 제공할 수 있는 화합물을 포함할 수 있다면, 전해질층에 사용되는 구체적인 화합물의 구성은 특별히 제한되지 않는다. 예를 들어, 전해질은 LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이나, NaClO4와 같은 나트륨염 화합물을 포함할 수 있다.If the electrochromic film composition can include a compound capable of providing a monovalent cation such as H + , Li + , Na + , K + , Rb + , or Cs + , the composition of the specific compound used in the electrolyte layer Is not particularly limited. For example, the electrolyte may be LiClO 4 , LiBF 4 , LiAsF 6 , or LiPF 6 It may include a lithium salt compound, such as, or a sodium salt compound such as NaClO 4 .
또 하나의 예시에서, 상기 전해질층은, 용매로서 카보네이트 화합물을 포함할 수 있다. 카보네이트계 화합물은 유전율이 높기 때문에, 이온 전도도를 높일 수 있다. 비제한적인 일례로서, PC(propylene carbonate), EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate) 또는 EMC(ethylmethyl carbonate) 와 같은 용매가 카보네이트계 화합물로 사용될 수 있다.In another example, the electrolyte layer may include a carbonate compound as a solvent. Since a carbonate type compound has high dielectric constant, ionic conductivity can be improved. As a non-limiting example, a solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC) or ethylmethyl carbonate (EMC) may be used as the carbonate-based compound.
하나의 예시에서, 상기 전해질층이 겔 폴리머 전해질을 포함하는 경우, 상기 전해질층은 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF), 폴리아크릴로나이트릴(Polyacrylonitrile, PAN), 폴리메틸 메타크릴레이트(Polymethyl methacrylate, PMMA), 폴리비닐 클로라이드(Polyvinyl chloride, PVC), 폴리에틸렌 옥사이드(Polyethylene oxide, PEO), 폴리프로필렌 옥사이드(Polypropylene oxide, PPO), 폴리(비닐리덴 플루오라이드-헥사플루오로 플루오로프로필렌)(Poly(vinylidene fluoride-hexafluoro propylene), PVdF-HFP), 폴리비닐아세테이트(Polyvinyl acetate, PVAc), 폴리옥시에틸렌(Polyoxyethylene, POE), 폴리아미드이미드(Polyamideimide, PAI) 등의 고분자를 포함할 수 있다.In one example, when the electrolyte layer comprises a gel polymer electrolyte, the electrolyte layer may be polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polymethyl methacrylate ( Polymethyl methacrylate (PMMA), Polyvinyl chloride (PVC), Polyethylene oxide (PEO), Polypropylene oxide (PPO), Poly (vinylidene fluoride-hexafluoro fluoropropylene) ( Poly (vinylidene fluoride-hexafluoro propylene), PVdF-HFP), polyvinylacetate (Polyvinyl acetate, PVAc), polyoxyethylene (Polyoxyethylene, POE), polyamideimide (Polyamideimide, PAI) and the like may be included.
특별히 제한되지는 않으나, 전해질층의 두께는 10 ㎛ 내지 200 ㎛ 범위일 수 있다.Although not particularly limited, the thickness of the electrolyte layer may range from 10 μm to 200 μm.
하나의 예시에서, 본 출원의 전기변색소자는 제2 전기변색층을 추가로 포함할 수 있다. 제2 전기변색층이 소자에 포함되는 경우, 상기 소자는 제1 전극층과 전해질 사이에 제2 전기변색층을 더 포함할 수 있다. 이 경우, 전기변색 가능한 상기 투광성 필름은 제1 전기변색층으로 호칭될 수 있다.In one example, the electrochromic device of the present application may further include a second electrochromic layer. When the second electrochromic layer is included in the device, the device may further include a second electrochromic layer between the first electrode layer and the electrolyte. In this case, the electrochromic translucent film may be referred to as a first electrochromic layer.
상기 제2 전기변색층은 제1 전기변색층의 변색 특성과는 상이한 변색 특성을 가질 수 있다. 즉, 상기 제2 전기변색층은, 산화되는 경우에 착색이 이루어질 수 있는 산화성 변색물질을 포함할 수 있다. 이처럼, 제1 및 제2 전기변색층 각각에 사용되는 변색물질의 발색(변색) 특성이 상이한 경우, 상기 제2 전기변색층은 전기변색을 위한 산화 및 환원 반응시, 상기 제1 전기변색층과의 전하 균형(charge balance)을 맞출 수 있다. The second electrochromic layer may have a color change characteristic different from that of the first electrochromic layer. That is, the second electrochromic layer may include an oxidative discoloring material that may be colored when oxidized. As such, when the color development (color change) characteristics of the color change material used in each of the first and second electrochromic layers are different, the second electrochromic layer is different from the first electrochromic layer during oxidation and reduction for electrochromic. You can set the charge balance of.
하나의 예시에서, 상기 제2 전기변색층이 포함하는 산화성 변색물질은, LiNiOx, IrO2, NiO, V2O5, LixCoO2 , Rh2O3 또는 CrO3 등과 같이, Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 산화물; Cr, Mn, Fe, Co, Ni, Rh, 또는 Ir 의 수산화물; 및 프러시안 블루(prussian blue) 중에서 선택되는 하나 이상일 수 있다.In one example, the oxidative discoloration material included in the second electrochromic layer, such as LiNiOx, IrO 2 , NiO, V 2 O 5 , LixCoO 2 , Rh 2 O 3 or CrO 3 , Cr, Mn, Fe, Oxides of Co, Ni, Rh, or Ir; Hydroxides of Cr, Mn, Fe, Co, Ni, Rh, or Ir; And prussian blue.
특별히 제한되지는 않으나, 상기 제2 전기변색층의 두께는 50 nm 내지 450 nm 범위일 수 있다.Although not particularly limited, the thickness of the second electrochromic layer may range from 50 nm to 450 nm.
하나의 예시에서, 상기 전기변색소자는 기재를 추가로 포함할 수 있다. 상기 기재는 소자의 외측면, 예를 들어, 제1 및/또는 제2 전극층의 외측면에 위치할 수 있다. In one example, the electrochromic device may further include a substrate. The substrate may be located on the outer side of the device, for example on the outer side of the first and / or second electrode layer.
상기 기재 역시, 60 % 내지 95 %의 가시광 투과율을 가질 수 있다. 상기 범위의 투과율을 만족한 다면, 사용되는 기재의 종류는 특별히 제한되지 않는다. 예를 들어 유리 또는 고분자 수지가 사용될 수 있다. 보다 구체적으로, PC(Polycarbonate), PEN(poly(ethylene naphthalate)) 또는 PET(poly(ethylene terephthalate))와 같은 폴리에스테르 필름, PMMA(poly(methyl methacrylate))와 같은 아크릴 필름, 또는 PE(polyethylene) 또는 PP(polypropylene)와 같은 폴리올레핀 필름 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.The substrate may also have a visible light transmittance of 60% to 95%. If the transmittance | permeability of the said range is satisfied, the kind of base material used will not be restrict | limited in particular. For example glass or polymer resins can be used. More specifically, a polyester film such as polycarbonate (PC), polyethylene (phthalene naphthalate) (PEN) or polyethylene (ethylene terephthalate) (PET), an acrylic film such as poly (methyl methacrylate) (PMMA), or polyethylene (PE) Or a polyolefin film such as PP (polypropylene) may be used, but is not limited thereto.
또 하나의 예시에서, 상기 전기변색소자는 전원을 더 포함할 수 있다. 전원을 소자에 전기적으로 연결하는 방식은 특별히 제한되지 않으며, 관련 기술 분야에서 통상의 지식을 가진 자에 의해 적절히 이루어질 수 있다.In another example, the electrochromic device may further include a power source. The manner of electrically connecting the power source to the device is not particularly limited and may be appropriately made by those skilled in the art.
본 출원의 일례에 따르면, 투광성을 가질뿐 아니라, 인가되는 전압에 따라 가역적인 변색이 가능하고, 고전압에 대한 내구성이 우수한 필름이 제공될 수 있다.According to an example of the present application, a film having not only light transmittance but also reversible discoloration according to an applied voltage and excellent in resistance to high voltage may be provided.
도 1은, ± 5V 전압 인가시, 본 출원 실시예 1의 적층체가 내구성 저하 없이 구동하는 모습을 보여주는 그래프이다.1 is a graph showing a state in which the laminate of the present application Example 1 is driven without degradation in durability when a voltage of ± 5 V is applied.
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present application will be described in detail through examples. However, the protection scope of the present application is not limited by the examples described below.
실험례Experimental Example 1:  One: 산질화물층의Oxynitride layer 원소 함량과 그에 따른 투과율 비교 Comparison of Element Content and its Transmittance
실시예 1Example 1
적층체의 제조: 광 투과율이 약 98% 가량인 유리(galss) 일면에 광 투과율이 약 90% 가량인 ITO를 형성하였다. 이후, 스퍼터링 증착을 이용하여 (유리 위치와 반대되는) ITO 일면 상에 Mo와 Ti를 포함하는 산질화물(MoaTibOxNy)층을 30 nm 두께로 형성하였다(제조예 1). 구체적으로, Mo과 Ti의 타겟(target)의 중량% 비율은 1 : 1로, 증착 파워는 100 W로, 공정압은 15 mTorr로 증착을 진행하였으며, Ar, N2 및 O2 의 각 유량은 30 sccm, 5 sccm 및 5 sccm로 하였다. Preparation of the laminate : ITO having a light transmittance of about 90% was formed on one surface of glass (galss) having a light transmittance of about 98%. Subsequently, an oxynitride (Mo a Ti b O x N y ) layer containing Mo and Ti was formed on the one surface of ITO (as opposed to the glass position) by sputter deposition to form a thickness of 30 nm (Preparation Example 1). Specifically, the weight percent ratio of the target of Mo and Ti was 1: 1, the deposition power was 100 W, the process pressure was deposited at 15 mTorr, and each flow rate of Ar, N 2 and O 2 was 30 sccm, 5 sccm, and 5 sccm.
물성 측정: 산질화물층 각 원소의 함량비와 적층체의 투과율을 측정하고, 표 1에 기재하였다. 원소 함량(atomic%)은 XPS(X-ray photoelectron spectroscopy)에 의해 측정하였고, 투과율은 haze meter(solidspec 3700)를 이용하여 측정하였다. Physical property measurement: The content ratio of each element of the oxynitride layer and the transmittance of the laminate were measured, and are shown in Table 1 below. Elemental content (atomic%) was measured by X-ray photoelectron spectroscopy (XPS), and transmittance was measured using a haze meter (solidspec 3700).
비교예 1Comparative Example 1
증착시 질소의 유량을 10 sccm으로 하고, 표 1에서와 같이 함량비를 달리한 것을 제외하고, 실시예 1과 동일한 방법으로 산질화물층을 형성하였다(제조예 2).Nitrogen nitride layer was formed in the same manner as in Example 1, except that the flow rate of nitrogen was 10 sccm during deposition and the content ratio was changed as shown in Table 1 (Preparation Example 2).
비교예Comparative example 2 2
증착시 질소의 유량을 15 sccm으로 하고, 표 1에서와 같이 함량비를 달리한 것을 제외하고, 실시예 1과 동일한 방법으로 산질화물층을 형성하였다(제조예 3).Nitrogen nitride layer was formed in the same manner as in Example 1, except that the flow rate of nitrogen was 15 sccm during deposition, and the content ratio was changed as shown in Table 1 (Preparation Example 3).
비교예Comparative example 3 3
증착시 질소의 유량을 0 sccm으로 하고, 표 1에서와 같이 함량비를 달리한 것을 제외하고, 실시예 1과 동일한 방법으로 산화물층을 형성하였다(제조예 4).An oxide layer was formed in the same manner as in Example 1 except that the flow rate of nitrogen was 0 sccm during deposition and the content ratio was changed as shown in Table 1 (Preparation Example 4).
[표 1]TABLE 1
Figure PCTKR2018004672-appb-I000001
Figure PCTKR2018004672-appb-I000001
표 1로부터, 비교예 1 내지 3의 산질화물층은 매우 낮은 투과율을 갖지만, 실시예 1의 산질화물층은 약 90% 가량의 투과율을 갖는 다는 것을 유추할 수 있다. 비교예와 달리, 실시예 1에 사용된 산질화물 또는 이를 포함하는 투광성 적층체는 전기변색소자용 부재로 사용될 수 있다.From Table 1, it can be inferred that the oxynitride layers of Comparative Examples 1 to 3 have very low transmittance, while the oxynitride layer of Example 1 has a transmittance of about 90%. Unlike the comparative example, the oxynitride or the light-transmitting laminate including the same used in Example 1 can be used as a member for the electrochromic device.
실험례Experimental Example 2: 변색 특성 확인 2: Confirm discoloration characteristics
실시예 2Example 2
상기 실시예 1에서 제조된 적층체(유리/ITO/산질화물(MoaTibOxNy)(half-cell)를, LiClO4(1M)와 프로필렌카보네이트(PC) 함유 전해액에 담그고, 25 ℃에서, - 3 V의 착색 전압과 + 3 V의 탈색 전압을 각각 50 초간 교대로 인가하였다. 시간 경과에 따라 측정된 착색 및 탈색시의 전류, 투과율, 및 변색 시간은 표 2에 기재된 것과 같다. The laminate prepared in Example 1 (glass / ITO / oxynitride (Mo a Ti b O x N y ) (half-cell) was immersed in an electrolyte containing LiClO 4 (1M) and propylene carbonate (PC), 25 Coloring voltage of −3 V and decolorization voltage of +3 V were applied alternately at 50 ° C. for 50 seconds, respectively.The currents, transmittances, and discoloration times at the time of coloration and decolorization measured over time are as shown in Table 2. .
또한, ± 4 V 및 ± 5 V에 대해서도 상기와 같은 측정을 수행하고, 그 결과를 표 2에 기재하였다.In addition, the above measurements were also performed for ± 4 V and ± 5 V, and the results are shown in Table 2.
[표 2]TABLE 2
Figure PCTKR2018004672-appb-I000002
Figure PCTKR2018004672-appb-I000002
표 2에서와 같이, 본 출원의 투광성 필름을 포함하는 적층체는, 3V 이상의 크기를 갖는 전위가 인가되는 경우 변색 특성을 갖게 됨을 확인할 수 있다.As shown in Table 2, it can be seen that the laminate including the light-transmitting film of the present application has a discoloration characteristic when a potential having a size of 3 V or more is applied.
한편, 도 1은 ± 5V의 구동 전위를 인가한 경우에, 실시예 2의 적층체(전기변색소자)가 구동하는 모습을 기록한 그래프이다. 도 1로부터, 본 출원의 투광성 필름을 포함하는 적층체는 비교적 높은 구동 전위가 인가되는 경우에도 균일한 사이클 특성을 보이며 내구성 저하 없이 작동한다는 것을 확인할 수 있다.On the other hand, Fig. 1 is a graph showing the state in which the laminate (electrochromic device) of Example 2 is driven when a driving potential of ± 5 V is applied. 1, it can be seen that the laminate including the light-transmitting film of the present application exhibits uniform cycle characteristics even when a relatively high driving potential is applied and operates without deterioration in durability.

Claims (10)

  1. Ti, Nb, Mo, Ta 및 W 중에서 선택되는 2 이상의 금속을 함유하는 산질화물(oxynitride)을 포함하고, 광 투과율이 60% 이상인 투광성 필름.A light transmissive film comprising an oxynitride containing two or more metals selected from Ti, Nb, Mo, Ta, and W, and having a light transmittance of 60% or more.
  2. 제1항에 있어서, 산질화물은 Mo 및 Ti을 포함하는 투광성 필름.The translucent film of claim 1, wherein the oxynitride comprises Mo and Ti.
  3. 제2항에 있어서, 산질화물은 하기 화학식 1로 표시되는 투광성 필름:The light-transmissive film of claim 2, wherein the oxynitride is represented by Formula 1:
    [화학식 1][Formula 1]
    MoaTibOxNy Mo a Ti b O x N y
    (단, a는 Mo의 원소 함량비를 의미하고, b는 Ti의 원소 함량비를 의미하고, x는 O의 원소 함량비를 의미하고, y는 N의 원소 함량비를 의미하고, a>0, b>0, x>0, y>0이고, 0.5 < a/b < 4.0이고, 0.005 < y/x < 0.02이다.)(Where a means an element content ratio of Mo, b means an element content ratio of Ti, x means an element content ratio of O, y means an element content ratio of N, and a> 0 , b> 0, x> 0, y> 0, 0.5 <a / b <4.0, and 0.005 <y / x <0.02.)
  4. 제1항에 있어서, 두께가 150 nm 이하인 투광성 필름.The translucent film of claim 1, wherein the thickness is 150 nm or less.
  5. 제1항에 있어서, 가시광 굴절률이 1.5 내지 3.0 범위인 투광성 필름.The translucent film of claim 1, wherein the visible light refractive index is in the range of 1.5 to 3.0.
  6. 제1항에 있어서, 2 V 이상의 착색 준위를 갖는 투광성 필름.The translucent film of Claim 1 which has a coloring level of 2 V or more.
  7. 전극층; 제1항 내지 제6항 중 어느 한 항에 따른 상기 투광성 필름; 및 전해질층을 포함하는 전기변색소자.An electrode layer; The light transmitting film according to any one of claims 1 to 6; And an electrochromic device comprising an electrolyte layer.
  8. 제7항에 있어서, 제1 전극층, 상기 전해질층, 상기 투광성 필름, 및 제2 전극층을 순차로 포함하는 전기변색소자.The electrochromic device of claim 7, further comprising a first electrode layer, the electrolyte layer, the light transmissive film, and a second electrode layer.
  9. 제8항에 있어서, 제1 전극층과 전해질층 사이에 제2 전기변색층을 더 포함하는 전기변색소자.The electrochromic device of claim 8, further comprising a second electrochromic layer between the first electrode layer and the electrolyte layer.
  10. 제9항에 있어서, 제2 전기변색층은 산화성 변색물질을 포함하는 전기변색소자.The electrochromic device of claim 9, wherein the second electrochromic layer comprises an oxidative discoloring material.
PCT/KR2018/004672 2017-04-24 2018-04-23 Light-transmissive film and electrochromic element comprising same WO2018199570A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019557574A JP7051183B2 (en) 2017-04-24 2018-04-23 Translucent film and electrochromic devices containing it
EP18790688.8A EP3617771B1 (en) 2017-04-24 2018-04-23 Light-transmissive film and electrochromic element comprising same
US16/604,841 US11409178B2 (en) 2017-04-24 2018-04-23 Light-transmitting film and an electrochromic device comprising the same
CN201880026866.6A CN110573953B (en) 2017-04-24 2018-04-23 Light-transmitting film and electrochromic device including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0052047 2017-04-24
KR20170052047 2017-04-24
KR10-2018-0045418 2018-04-19
KR1020180045418A KR102202928B1 (en) 2017-04-24 2018-04-19 A transparent film and electrochromic device comprising the same

Publications (1)

Publication Number Publication Date
WO2018199570A1 true WO2018199570A1 (en) 2018-11-01

Family

ID=63918494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004672 WO2018199570A1 (en) 2017-04-24 2018-04-23 Light-transmissive film and electrochromic element comprising same

Country Status (1)

Country Link
WO (1) WO2018199570A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060089643A (en) * 2005-02-04 2006-08-09 신에쓰 가가꾸 고교 가부시끼가이샤 Translucent laminated film, photomask blank, photomask and manufacturing method thereof
US7099062B2 (en) * 2001-09-26 2006-08-29 Forskarpatent I Uppsala Ab Electrochromic film and device comprising the same
KR101271371B1 (en) * 2011-07-11 2013-06-07 주식회사 피케이엘 Gray tone mask for fabricating flat panel display and method for fabricating the same
KR101501104B1 (en) * 2012-12-28 2015-03-10 전자부품연구원 multi-functional flexible laminate for smart window
KR20160104584A (en) * 2015-02-26 2016-09-05 주식회사 엘지화학 Conductive structure body and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099062B2 (en) * 2001-09-26 2006-08-29 Forskarpatent I Uppsala Ab Electrochromic film and device comprising the same
KR20060089643A (en) * 2005-02-04 2006-08-09 신에쓰 가가꾸 고교 가부시끼가이샤 Translucent laminated film, photomask blank, photomask and manufacturing method thereof
KR101271371B1 (en) * 2011-07-11 2013-06-07 주식회사 피케이엘 Gray tone mask for fabricating flat panel display and method for fabricating the same
KR101501104B1 (en) * 2012-12-28 2015-03-10 전자부품연구원 multi-functional flexible laminate for smart window
KR20160104584A (en) * 2015-02-26 2016-09-05 주식회사 엘지화학 Conductive structure body and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR102118361B1 (en) An electrochromic film and a device comprising the same
CN110838262B (en) Cover plate assembly, preparation method of cover plate assembly and electronic equipment
KR102149672B1 (en) Electrochromic device
WO2017196035A1 (en) Electrochromic element
WO2017217710A1 (en) Electrochromic device
EP3617789B1 (en) Electrochromic device
WO2018199568A1 (en) Electrochromic film
KR102078403B1 (en) An electrochromic device
WO2018199570A1 (en) Light-transmissive film and electrochromic element comprising same
KR102651653B1 (en) An electochromic sheet and device comprising the same
WO2018199569A1 (en) Electrochromic film and electrochromic element comprising same
WO2018009001A1 (en) Electrochromic device and manufacturing method therefor
KR102202928B1 (en) A transparent film and electrochromic device comprising the same
WO2018199566A1 (en) Electrochromic device
WO2018174440A1 (en) Electrochromic device
KR20180119120A (en) A conductive stack and a device comprising the same
WO2018199572A1 (en) Conductive laminate and electrochromic device comprising same
WO2018199567A1 (en) Electrochromic device
KR102126684B1 (en) method for operating an electrochromic device
KR102126683B1 (en) method for operating an electrochromic device
KR20190118120A (en) An electrochromic film
KR102620140B1 (en) Reflective display device
WO2019199012A1 (en) Electrochromic film
KR20190118121A (en) An electrochromic film
KR102113478B1 (en) An electrochromic film, an electrochromic device and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790688

Country of ref document: EP

Effective date: 20191125

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载