WO2018199454A1 - Hybrid passive/decoding delivery relay terminal for underwater magnetic-field communications, and method for relay thereof - Google Patents
Hybrid passive/decoding delivery relay terminal for underwater magnetic-field communications, and method for relay thereof Download PDFInfo
- Publication number
- WO2018199454A1 WO2018199454A1 PCT/KR2018/002212 KR2018002212W WO2018199454A1 WO 2018199454 A1 WO2018199454 A1 WO 2018199454A1 KR 2018002212 W KR2018002212 W KR 2018002212W WO 2018199454 A1 WO2018199454 A1 WO 2018199454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- time slot
- terminal
- during
- receiving
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004891 communication Methods 0.000 title claims abstract description 35
- 230000006698 induction Effects 0.000 claims description 8
- 238000012937 correction Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract description 23
- 238000005516 engineering process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000009365 direct transmission Effects 0.000 description 3
- 101150080778 INPP5D gene Proteins 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000010397 one-hybrid screening Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
- H04B5/26—Inductive coupling using coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B13/00—Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
- H04B13/02—Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/40—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
- H04B5/48—Transceivers
Definitions
- the present invention relates to a hybrid passive-decryption relay terminal for submerged magnetic field communication and a relay method thereof, and more particularly, to improve communication performance while extending transmission distance of underwater magnetic field communication using passive-decryption relay terminal.
- the present invention relates to a hybrid passive-decryption relay terminal for improving underwater magnetic field communication and a relay method thereof.
- Underwater sensor network collects various kinds of underwater information through underwater sensor and transmits it to the ground through underwater base station.
- Underwater information includes marine climate observation and ecological environment analysis, shipping industry information such as ship's route and territorial sea defense. It can be used in various areas such as the defense field.
- data transmission for the underwater sensor network uses optical, electromagnetic, and acoustic techniques.However, in order to improve communication performance due to poor channel conditions in the underwater environment, magnetic induction is required. Magnetic field communication technology using Induction is most suitable.
- Magnetic field communication technology is a transmission technology that is very interested in all environments, such as ground, underground, and underwater.
- the antenna size can be efficiently reduced and long distance high speed transmission is possible, and the antenna price is cheaper than other communication technologies. Therefore, it is evaluated as an economical technology.
- underwater magnetic field communication is highly affected by propagation path loss.
- the path loss of the magnetic field communication is not actually lost but is not sufficiently transmitted from the transmitting end to the receiving end, the transmission and reception power decreases when the transmission distance becomes far.
- the path loss of magnetic field communication is affected by operating frequency, transmission distance, coil antenna size, number of wire windings, coaxial nature of the transmitting and receiving coil antenna, and underwater environmental conditions. When propagated, eddy currents are generated, which causes problems with insufficient energy.
- the background technology of the present invention is disclosed in Korean Patent Registration No. 10-1284151 (July 10, 2013).
- the present invention provides a hybrid passive-decryption relay terminal and a relay method for underwater magnetic field communication, which extends the transmission distance of underwater magnetic field communication and improves communication performance by using the passive-decryption relay terminal. To provide.
- the hybrid passive-decryption relay terminal is a signal induced magnetically from the transmitting terminal Receiving, transmitting the received signal to a receiving terminal during a first time slot and simultaneously storing the received signal in a buffer, and decoding and modulating a signal stored in the buffer during a second time slot to transmit a modulated signal to the receiving terminal. Transmitting.
- the current induced by the coil antenna of the transmitting terminal may be received through the coil antenna in a magnetic field induction manner.
- an AC voltage to the coil antenna can be controlled to transmit a modulated signal.
- the method may further include generating information on the strength and magnetic field distortion of the pilot signal and correcting an axis of the coil antenna in response to the generated information.
- Receiving a self-derived signal from the transmitting terminal receiving a signal from the transmitting terminal during the nth time slot, receiving a signal from the transmitting terminal during the n + 1 time slot, the nth time And comparing the signal received during the slot with the signal received during the n + 1th time slot, and requesting retransmission of the signal to the transmitting terminal when it is determined that the signal is not the same signal.
- a hybrid passive-decryption relay terminal receives a signal received from a transmitting terminal, the self-induced signal, and stores the received signal in a buffer during a first time slot, the buffer during a second time slot And a transmitter for decoding and modulating a signal stored in the transmitter, and a transmitter for transmitting the received signal to the receiving terminal during the first time slot and transmitting the modulated signal to the receiving terminal during the second time slot.
- the present invention it is possible to improve the performance of the magnetic field communication in the underwater environment by extending the transmission distance of the magnetic field communication in the dynamically changing underwater environment and reducing the path loss.
- 1 is an exemplary view showing the operation of a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
- FIG. 3 is a flowchart illustrating a relay method of a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
- FIG. 4 is a view for explaining the step S310 of FIG. 3 in detail.
- 5 and 6 are diagrams for comparing the path loss between the transmission method and the direct transmission method according to an embodiment of the present invention.
- FIG. 1 is an exemplary view showing the operation of a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
- FIG. 1A illustrates a case where one hybrid passive passive decoding relay terminal 200 is used
- FIG. 1B illustrates a plurality of hybrid passive passive decryption relay terminals 200-1 and 200-2. In the case of using.
- the underwater magnetic field communication is a transmission terminal 100, hybrid passive-decryption relay terminal (200: 200-1,200-2) and It includes a receiving terminal 300.
- the transmitting terminal 100 represents a terminal that collects underwater information through an underwater sensor and transmits a signal including the collected underwater information
- a hybrid passive-decryption relay terminal ( 200 denotes a terminal positioned between the transmitting terminal 100 and the receiving terminal 300 and serving as a relay to extend a transmission distance of a signal transmitted by the transmitting terminal 100.
- the receiving terminal 300 finally indicates a destination terminal to which the transmitting terminal 100 intends to transmit a signal.
- the transmitting terminal 100 applies an alternating voltage to the coil antenna, a magnetic field is formed, and the formed magnetic field induces a current to the coil antenna of the adjacent hybrid passive-decryption relay terminal 200.
- the hybrid passive-decryption relay terminal 200 selects a signal having the greatest intensity through a search process from the induced current and transmits the signal to the transmitting terminal 100 during the first time slot # 1.
- the same method transmits the received signal to the receiving terminal 300 in a self-induction method.
- the hybrid passive-decryption relay terminal 200 decodes, modulates, and modulates a signal received during the second time slot # 2 to the receiving terminal 300.
- the receiving terminal 300 receives a signal from the hybrid passive type-decoding relay terminal 200 in the first time slot # 1 and the second time slot # 2.
- Figure 1 (b) uses a plurality of hybrid passive-decryption relay terminal (200-1, 200-2) to extend the transmission distance of the magnetic field communication than (a).
- hybrid passive-decryption relay terminals 200 Although two hybrid passive-decryption relay terminals 200 are shown in FIG. 1B, the number of hybrid passive-decryption relay terminals 200 may be adjusted according to the underwater communication environment.
- the passive-decryption relay terminal 200-2 may receive a second time slot (# 1) and a second time slot from the hybrid passive-decryption relay terminal 200-1. If a signal is received during 2), it is determined whether the signal is the same by comparing the signals received in the first time slot # 1 and the second time slot # 2. If the hybrid passive-decryption relay terminal 200-2 determines that the two signals are the same, the hybrid passive-decryption relay terminal 200-2 sends a signal to the third time slot # 3 through the same process as the hybrid passive-decryption relay terminal 200-1. The signal is transmitted to the receiving terminal 300, the signal is decoded and modulated in the fourth time slot # 4, and the modulated signal is transmitted to the receiving terminal 300.
- the magnetic field communication may transmit and transmit a signal using at least one hybrid passive-decryption relay terminal 200 according to a distance to be transmitted.
- a hybrid passive-decryption relay terminal 200 for selectively transmitting a signal to an adjacent terminal or decoding and modulating the signal by using a power source will be described in detail with reference to FIG. 2.
- FIG. 2 is a block diagram showing a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
- the hybrid passive-decryption relay terminal 200 may include a receiver 210, a controller 220, and a transmitter 230, and may further include an axis corrector 240.
- the receiver 210 receives a magnetically induced signal from the transmitting terminal 100 through a coil antenna. That is, when a signal having the greatest intensity is selected through a search process in the current derived from the transmitting terminal 100, the selected signal is estimated as a received signal.
- the reception unit 210 may compare the signal received during the nth time slot and the signal received during the n + 1th time slot and request a retransmission to the transmitting terminal 100 when the signal is not the same signal.
- the controller 220 stores the received signal in a buffer (not shown) during the first time slot, and decodes and modulates the signal stored in the buffer during the second time slot.
- controller 220 controls the connection with the power supply line to block the power supply line during the first time slot so that the received signal is transmitted as it is using magnetic field communication (Passive relay), and the power supply during the second time slot.
- the supply line may be connected to decode and modulate the received signal to transmit a modulated signal (DF: Decode and Forward relay).
- the transmitter 230 transmits the received signal to the receiving terminal 300 during the first time slot and transmits the modulated signal to the receiving terminal 300 during the second time slot through a coil antenna.
- the axis correction unit 240 may generate information on the strength and magnetic field distortion of the pilot signal, and correct the axis of the coil antenna in response to the generated information.
- the axis correction unit 240 may correct the axis of the coil antenna by using a correction value corresponding to the information on the strength and magnetic field distortion of the pilot signal stored in a separate database.
- FIG. 3 is a flowchart illustrating a relay method of a hybrid passive-decryption relay terminal according to an exemplary embodiment of the present invention
- FIG. 4 is a view for explaining step S310 of FIG. 3 in detail.
- the hybrid passive type-decryption relay terminal 200 receives a magnetically induced signal from the transmitting terminal 100 (S310).
- the hybrid passive-decryption relay terminal 200 may receive the current induced by the coil antenna of the transmitting terminal 100 through the coil antenna in a magnetic field induction manner.
- the hybrid passive-decryption relay terminal 200 selects the largest signal from the induced current and estimates the received signal.
- a magnetic field induction method is applied to the first time slot # 1 and the second time slot # 2.
- Receive the signal That is, the hybrid passive-decryption relay terminal 200-2 receives a signal from the hybrid passive-decryption relay terminal 200-1 to the first time slot # 1 and the second time slot # 2.
- the hybrid passive-decryption relay terminal 200-1 will be referred to as a transmission terminal 100, and the hybrid passive-decryption transmission will be described.
- the relay terminal 200-2 is referred to as a hybrid passive-decryption relay terminal 200.
- the hybrid passive-decryption relay terminal 200 receives a signal from the transmitting terminal 100 during an nth time slot (S311).
- the hybrid passive-decryption relay terminal 200 receives a signal from the transmitting terminal 100 during the n + 1th time slot (S312).
- the signal received in step S311 and the signal received in step S312 are the same signal, but the signal received during the nth time slot is simply a received signal, and the signal received during the n + 1th time slot is the transmitting terminal 100. Denotes the decoded and modulated signal.
- the hybrid passive-decryption relay terminal 200 compares whether the signal received during the nth time slot and the signal received during the n + 1th time slot are the same (S313).
- the hybrid passive-decryption relay terminal 200 may determine whether the received signal and the received signal are the same during each time slot.
- the hybrid passive-decryption relay terminal 200 requests a retransmission of the signal to the transmitting terminal 100 (S314).
- the hybrid passive-decryption relay terminal 200 proceeds from step S310 to step S320.
- the hybrid passive-decryption relay terminal 200 transmits the received signal to the receiving terminal 300 during the first time slot and simultaneously stores the received signal in the buffer (S320).
- the hybrid passive-decryption relay terminal 200 cuts off the power supply line and transfers the received signal directly to the receiving terminal 300 through the magnetic field induction method.
- the hybrid passive-decryption relay terminal 200 temporarily stores the received signal in a buffer to compensate for the time difference between the first time slot and the second time slot.
- the hybrid passive-decryption relay terminal 200 decodes and modulates the signal stored in the buffer during the second time slot and transmits the modulated signal to the receiving terminal 300 (S330).
- the hybrid passive-decryption relay terminal 200 connects the power supply line during the second time slot to decode the received signal and modulates the decoded signal.
- the hybrid passive-decoding relay terminal 200 modulates in the same manner as the first received signal, the signal transmitted during the first time slot and the signal transmitted during the second time slot are substantially the same.
- the hybrid passive-decryption relay terminal 200 transmits a modulated signal by applying an AC voltage to the coil antenna by connecting a power supply line during the second time slot.
- the hybrid passive-decryption relay terminal 200 may generate information on the strength and magnetic field distortion of the pilot signal.
- the hybrid passive-decryption relay terminal 200 may correct the axis of the coil antenna to move and rotate in response to the information on the strength of the pilot signal and the magnetic field distortion.
- 5 and 6 are diagrams for comparing the path loss between the transmission method and the direct transmission method according to an embodiment of the present invention.
- FIG. 5A illustrates a case where the axes of the coils between a transmitter terminal and a receiver coil that perform direct communication are aligned in a line with each other.
- FIG. 5A Under the same conditions as in FIG. 5A, the coaxial property of the coil antenna is broken and thus not disposed in a straight line (displaced).
- FIG. 5 is a waveguide transmission method through the hybrid passive-decryption relay terminal according to an embodiment of the present invention, the coaxial property of the coil antenna is destroyed so that the axis of the coil of each terminal is not arranged in a straight line Indicated if replaced.
- 5A and 5B show that the distance between the transmitting terminal and the receiving terminal is r, the distance between the transmitting terminal and the hybrid passive-decryption relay terminal is r / 2 in FIG. Set the position of the hybrid passive-decryption relay terminal and perform simulation.
- FIG. 6 a graph showing the path loss for each frequency band of the simulation result is shown in FIG. 6, and the result in the condition of FIG. 5 (a) is represented by a straight line (directly-MI; horizontally deployed).
- the result in the condition of (b) of (b) is shown as a red square (direct-MI; displaced), the result in the condition (c) of Figure 5 is shown as a black circle (MI-waveguide; displaced).
- the embodiment of the present invention by extending the transmission distance of the magnetic field communication in the dynamically changing underwater environment and reducing the path loss, it is possible to improve the performance of the magnetic field communication in the underwater environment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
The present invention relates to a hybrid passive/decoding delivery relay terminal for underwater magnetic-field communications and a method for relay thereof. The method for relay using the hybrid passive/decoding delivery relay terminal for underwater magnetic-field communications comprises: a step in which the hybrid passive/decoding delivery relay terminal receives a magnetically induced signal from a transmission terminal; a step for delivering the received signal to a reception terminal and simultaneously storing same in a buffer during a first time slot; and a step for decoding and modulating the signal stored in the buffer and transmitting the modulated signal to the reception terminal during a second time slot. The present invention can improve the performance of magnetic-field communications in an underwater environment by reducing path loss as well as expanding the transmission distance of the magnetic-field communications in the dynamically changing underwater environment.
Description
본 발명은 수중 자기장 통신을 위한 하이브리드 수동형-복호전달 중계 단말 및 그 중계 방법에 관한 것으로, 보다 상세하게는 수동형-복호전달 중계 단말을 이용하여 수중 자기장 통신의 전송거리를 확장함과 동시에 통신 성능을 개선하는 수중 자기장 통신을 위한 하이브리드 수동형-복호전달 중계 단말 및 그 중계 방법에 관한 것이다.The present invention relates to a hybrid passive-decryption relay terminal for submerged magnetic field communication and a relay method thereof, and more particularly, to improve communication performance while extending transmission distance of underwater magnetic field communication using passive-decryption relay terminal. The present invention relates to a hybrid passive-decryption relay terminal for improving underwater magnetic field communication and a relay method thereof.
수중 센서 네트워크는 수중 센서를 통해 각종 수중 정보를 수집하고 이를 수중 기지국을 통해 지상으로 전송하는 형태로 수중 정보는 해양 기후 관측 및 생태 환경 분석 등의 분야와 선박의 항로 정보 등 해운 산업 분야, 영해 방위를 위한 국방 분야 등 다양한 영역에서 활용이 가능하다.Underwater sensor network collects various kinds of underwater information through underwater sensor and transmits it to the ground through underwater base station. Underwater information includes marine climate observation and ecological environment analysis, shipping industry information such as ship's route and territorial sea defense. It can be used in various areas such as the defense field.
즉, 수중에서의 탐지 기능을 통해 해수의 온도와 흐름뿐만 아니라 해저 지진파 등의 감지를 통해 해양 기후의 관측과 해저에서 시작되는 자연재해에 정확한 예측을 하는 것은 물론 선박 사고 등에 대해서도 신속한 대처가 가능하기 때문에, 수중 센서 네트워크의 관심도가 높아지고 있다. In other words, through the underwater detection function, not only the temperature and flow of the sea water but also the earthquake waves can be used to make accurate predictions of natural disasters starting from the seabed and observation of the ocean climate, as well as quick response to ship accidents. Therefore, the interest of the underwater sensor network is increasing.
일반적으로 수중 센서 네트워크를 위한 데이터 전송은 광(Optical), 전자기파(Electromagnetic), 음향(Acoustic)을 이용한 기법이 사용되고 있지만, 수중 환경에서의 열악한 채널 상태로 인한 통신 성능을 개선하기 위해서는 자기 유도(Magnetic Induction)를 이용하는 자기장 통신 기술이 가장 적합하다. In general, data transmission for the underwater sensor network uses optical, electromagnetic, and acoustic techniques.However, in order to improve communication performance due to poor channel conditions in the underwater environment, magnetic induction is required. Magnetic field communication technology using Induction is most suitable.
자기장 통신 기술은 지상, 지중, 수중의 모든 환경에서 매우 관심을 가지고 있는 전송 기술로써 기술적으로는 안테나 크기를 효율적으로 줄이면서도 장거리 고속 전송을 할 수 있고, 경제적으로는 다른 통신 기술보다 안테나 가격이 저렴하기 때문에 경제성이 있는 기술로 평가된다. Magnetic field communication technology is a transmission technology that is very interested in all environments, such as ground, underground, and underwater. Technically, the antenna size can be efficiently reduced and long distance high speed transmission is possible, and the antenna price is cheaper than other communication technologies. Therefore, it is evaluated as an economical technology.
하지만, 수중 자기장 통신은 전파 경로 손실의 영향을 많이 받게 된다. 특히, 자기장 통신의 경로 손실은 에너지가 실제적으로 손실되는 것이 아니라 송신단에서 수신단으로 충분히 전달되지 못해서 발생되기 때문에 전송 거리가 멀어지면 송수신 전력이 모두 감소한다. 자기장 통신의 경로 손실은 동작 주파수, 전송 거리, 코일 안테나의 크기, 와이어를 감는 횟수, 송수신단 코일 안테나의 동축 성질, 수중 환경 조건의 영향을 받으며, 특히 교류 자기장은 해수와 같이 전도도가 높은 수중에서 전파될 때 맴돌이 전류 (Eddy Current)가생성되어 에너지를 충분히 사용하지 못하는 문제가 발생한다. However, underwater magnetic field communication is highly affected by propagation path loss. In particular, since the path loss of the magnetic field communication is not actually lost but is not sufficiently transmitted from the transmitting end to the receiving end, the transmission and reception power decreases when the transmission distance becomes far. The path loss of magnetic field communication is affected by operating frequency, transmission distance, coil antenna size, number of wire windings, coaxial nature of the transmitting and receiving coil antenna, and underwater environmental conditions. When propagated, eddy currents are generated, which causes problems with insufficient energy.
따라서, 수중 탐사의 효율을 높이기 위해서는 수중 네트워크의 이동성 및 확장성이 요구되며, 수중 장거리 고속 전송 기술의 정확도를 높이는 기술이 요구된다. Therefore, in order to increase the efficiency of underwater exploration, the mobility and scalability of the underwater network is required, and a technique for increasing the accuracy of the underwater long-distance high-speed transmission technology is required.
본 발명의 배경이 되는 기술은 대한민국 국내등록특허 제 10-1284151호(2013.07.10 공고)에 개시되어 있다.The background technology of the present invention is disclosed in Korean Patent Registration No. 10-1284151 (July 10, 2013).
본 발명이 이루고자 하는 기술적 과제는 수동형-복호전달 중계 단말을 이용하여 수중 자기장 통신의 전송거리를 확장함과 동시에 통신 성능을 개선시키는 수중 자기장 통신을 위한 하이브리드 수동형-복호전달 중계 단말 및 그 중계 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention provides a hybrid passive-decryption relay terminal and a relay method for underwater magnetic field communication, which extends the transmission distance of underwater magnetic field communication and improves communication performance by using the passive-decryption relay terminal. To provide.
이러한 기술적 과제를 이루기 위한 본 발명의 실시예에 따르면, 수중 자기장 통신을 위한 하이브리드 수동형-복호전달 중계 단말을 이용한 중계 방법에 있어서, 상기 하이브리드 수동형-복호전달 중계 단말은 송신 단말으로부터 자기 유도된 신호를 수신하는 단계, 제1 타임 슬롯 동안 상기 수신 신호를 수신 단말로 전달함과 동시에 버퍼에 저장하는 단계, 그리고 제2 타임 슬롯 동안 상기 버퍼에 저장된 신호를 복호화하고 변조하여 변조된 신호를 상기 수신 단말로 전송하는 단계를 포함한다.According to an embodiment of the present invention for achieving the above technical problem, in the relay method using a hybrid passive-decryption relay terminal for underwater magnetic field communication, the hybrid passive-decryption relay terminal is a signal induced magnetically from the transmitting terminal Receiving, transmitting the received signal to a receiving terminal during a first time slot and simultaneously storing the received signal in a buffer, and decoding and modulating a signal stored in the buffer during a second time slot to transmit a modulated signal to the receiving terminal. Transmitting.
상기 송신 단말로부터 자기 유도된 신호를 수신하는 단계에 있어서, 상기 송신 단말의 코일 안테나에 의해 유도된 전류를 자기장 유도 방식으로 코일 안테나를 통하여 수신할 수 있다. In the receiving of the magnetically induced signal from the transmitting terminal, the current induced by the coil antenna of the transmitting terminal may be received through the coil antenna in a magnetic field induction manner.
상기 제1 타임 슬롯 동안 전원 공급 라인을 차단하여 상기 수신 신호를 상기 수신 단말로 전달하도록 제어하고, 상기 제2 타임 슬롯 동안 전원 공급 라인을 연결하여 상기 수신된 신호를 복호화하고 상기 복호화된 신호를 변조시키며, 코일 안테나로 교류 전압을 가하여 변조된 신호를 전송하도록 제어할 수 있다. Blocking the power supply line during the first time slot to control the transmission of the received signal to the receiving terminal, and connecting the power supply line during the second time slot to decode the received signal and modulate the decoded signal. In addition, by applying an AC voltage to the coil antenna can be controlled to transmit a modulated signal.
상기 수신 신호를 수신하기 이전에 파일럿 신호를 수신하면, 상기 파일럿 신호의 세기와 자기장 왜곡에 대한 정보를 생성하고, 상기 생성된 정보에 대응하여 상기 코일 안테나의 축을 보정하는 단계를 더 포함할 수 있다. When receiving a pilot signal before receiving the received signal, the method may further include generating information on the strength and magnetic field distortion of the pilot signal and correcting an axis of the coil antenna in response to the generated information. .
상기 송신 단말으로부터 자기 유도된 신호를 수신하는 단계는, 제n 타임 슬롯 동안 상기 송신 단말으로부터 신호를 전달받는 단계, 제n+1 타임 슬롯 동안 상기 송신 단말로부터 신호를 전송받는 단계, 상기 제n 타임 슬롯 동안 전달받은 신호와 상기 제n+1 타임 슬롯 동안 수신된 신호를 비교하는 단계, 그리고 비교 결과 동일한 신호가 아닌 것으로 판단되면 상기 송신 단말로 신호의 재전송을 요청하는 단계를 포함할 수 있다. Receiving a self-derived signal from the transmitting terminal, receiving a signal from the transmitting terminal during the nth time slot, receiving a signal from the transmitting terminal during the n + 1 time slot, the nth time And comparing the signal received during the slot with the signal received during the n + 1th time slot, and requesting retransmission of the signal to the transmitting terminal when it is determined that the signal is not the same signal.
본 발명의 다른 실시예에 따르면, 하이브리드 수동형-복호전달 중계 단말은 송신 단말으로부터 자기 유도된 신호를 수신하는 수신부, 제1 타임 슬롯 동안 상기 수신 신호를 버퍼에 저장하고, 제2 타임 슬롯 동안 상기 버퍼에 저장된 신호를 복호화하고 변조하는 제어부, 그리고 상기 제1 타임 슬롯 동안 상기 수신 신호를 수신 단말로 전달하고 상기 제2 타임 슬롯 동안 변조된 신호를 상기 수신 단말로 전송하는 송신부를 포함한다. According to another embodiment of the present invention, a hybrid passive-decryption relay terminal receives a signal received from a transmitting terminal, the self-induced signal, and stores the received signal in a buffer during a first time slot, the buffer during a second time slot And a transmitter for decoding and modulating a signal stored in the transmitter, and a transmitter for transmitting the received signal to the receiving terminal during the first time slot and transmitting the modulated signal to the receiving terminal during the second time slot.
본 발명에 따르면, 동적으로 변화하는 수중 환경에서 자기장 통신의 전송 거리를 확장하는 동시에 경로 손실을 감소시킴으로써, 수중 환경에서 자기장 통신의 성능을 개선시킬 수 있다. According to the present invention, it is possible to improve the performance of the magnetic field communication in the underwater environment by extending the transmission distance of the magnetic field communication in the dynamically changing underwater environment and reducing the path loss.
도 1은 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말의 동작을 나타낸 예시도이다. 1 is an exemplary view showing the operation of a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말을 나타낸 구성도이다. 2 is a block diagram showing a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말의 중계 방법을 나타낸 순서도이다. 3 is a flowchart illustrating a relay method of a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
도 4는 도 3의 S310 단계를 상세하게 설명하기 위한 도면이다. 4 is a view for explaining the step S310 of FIG. 3 in detail.
도 5 및 도 6은 본 발명의 실시예에 따른 전송방법과 직접 전송 방법의 경로 손실을 비교하는 도면이다. 5 and 6 are diagrams for comparing the path loss between the transmission method and the direct transmission method according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
그러면 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
이하에서는 도 1을 이용하여 본 발명의 실시예에 따른 수중 자기장 통신에서 하이브리드 수동형-복호전달 중계 단말의 동작을 상세하게 설명한다. Hereinafter, the operation of the hybrid passive-decryption relay terminal in underwater magnetic field communication according to an embodiment of the present invention will be described in detail with reference to FIG. 1.
도 1은 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말의 동작을 나타낸 예시도이다. 도 1의 (a)는 하나의 하이브리드 수동형-복호전달 중계 단말(200)을 이용한 경우를 나타내고, 도 1의 (b)는 복수의 하이브리드 수동형-복호전달 중계 단말(200-1, 200-2)를 이용한 경우를 나타낸다. 1 is an exemplary view showing the operation of a hybrid passive-decryption relay terminal according to an embodiment of the present invention. FIG. 1A illustrates a case where one hybrid passive passive decoding relay terminal 200 is used, and FIG. 1B illustrates a plurality of hybrid passive passive decryption relay terminals 200-1 and 200-2. In the case of using.
도 1의 (a) 및 (b)에 도시한 바와 같이, 본 발명의 실시예에 따른 수중 자기장 통신은 송신 단말(100), 하이브리드 수동형-복호전달 중계 단말(200:200-1,200-2) 및 수신 단말(300)을 포함한다. As shown in (a) and (b) of Figure 1, the underwater magnetic field communication according to an embodiment of the present invention is a transmission terminal 100, hybrid passive-decryption relay terminal (200: 200-1,200-2) and It includes a receiving terminal 300.
도 1의 (a)에 도시한 바와 같이 송신 단말(100)은 수중 센서를 통해 수중 정보를 수집하고, 수집된 수중 정보를 포함하는 신호를 전달하는 단말을 나타내고, 하이브리드 수동형-복호전달 중계 단말(200)은 송신 단말(100)과 수신 단말(300) 사이에 위치하면서, 송신 단말(100)이 전달하는 신호의 전송 거리를 확장시키기 위해 중계기 역할을 수행하는 단말을 나타낸다. 그리고 수신 단말(300)은 최종적으로 송신 단말(100)이 신호를 전달하고자 하는 목적 단말을 나타낸다. As shown in (a) of FIG. 1, the transmitting terminal 100 represents a terminal that collects underwater information through an underwater sensor and transmits a signal including the collected underwater information, and a hybrid passive-decryption relay terminal ( 200 denotes a terminal positioned between the transmitting terminal 100 and the receiving terminal 300 and serving as a relay to extend a transmission distance of a signal transmitted by the transmitting terminal 100. In addition, the receiving terminal 300 finally indicates a destination terminal to which the transmitting terminal 100 intends to transmit a signal.
먼저, 송신 단말(100)이 코일 안테나에 교류 전압을 가하면 자기장이 형성되고, 형성된 자기장은 인접한 하이브리드 수동형-복호전달 중계 단말(200)의 코일 안테나로 전류를 유도하게 된다. 이와 같이, 전류가 유도되면, 하이브리드 수동형-복호전달 중계 단말(200)은 유도된 전류에서 탐색 과정을 거쳐 세기가 가장 큰 신호를 선택하여 제1 타임 슬롯(#1)동안 송신 단말(100)과 동일한 방법인 자가유도방식으로 수신한 신호를 수신 단말(300)로 전달한다. First, when the transmitting terminal 100 applies an alternating voltage to the coil antenna, a magnetic field is formed, and the formed magnetic field induces a current to the coil antenna of the adjacent hybrid passive-decryption relay terminal 200. As such, when a current is induced, the hybrid passive-decryption relay terminal 200 selects a signal having the greatest intensity through a search process from the induced current and transmits the signal to the transmitting terminal 100 during the first time slot # 1. The same method transmits the received signal to the receiving terminal 300 in a self-induction method.
그리고 하이브리드 수동형-복호전달 중계 단말(200)은 제2 타임 슬롯(#2)동안 수신된 신호를 복호화하고 변조하여 변조한 신호를 수신 단말(300)로 전송한다. The hybrid passive-decryption relay terminal 200 decodes, modulates, and modulates a signal received during the second time slot # 2 to the receiving terminal 300.
즉, 수신 단말(300)은 제1 타임 슬롯(#1)과 제2 타임 슬롯(#2)에 하이브리드 수동형-복호전달 중계 단말(200)로부터 신호를 수신하게 된다. That is, the receiving terminal 300 receives a signal from the hybrid passive type-decoding relay terminal 200 in the first time slot # 1 and the second time slot # 2.
한편, 도 1의 (b)는 (a)보다 자기장 통신의 전송 거리를 확장하도록 복수의 하이브리드 수동형-복호전달 중계 단말(200-1, 200-2)를 이용한다.On the other hand, Figure 1 (b) uses a plurality of hybrid passive-decryption relay terminal (200-1, 200-2) to extend the transmission distance of the magnetic field communication than (a).
도 1의 (b)에서 2개의 하이브리드 수동형-복호전달 중계 단말(200)을 도시하였지만, 하이브리드 수동형-복호전달 중계 단말(200)의 개수는 수중 통신 환경에 따라 조절될 수 있다. Although two hybrid passive-decryption relay terminals 200 are shown in FIG. 1B, the number of hybrid passive-decryption relay terminals 200 may be adjusted according to the underwater communication environment.
도 1의 (b)에 따르면, 수동형-복호전달 중계 단말(200-2)은 하이브리드 수동형-복호전달 중계 단말(200-1)로부터 제1 타임 슬롯(#1) 동안과 제2 타임 슬롯(#2) 동안에 신호를 수신하면, 제1 타임 슬롯(#1)과 제2 타임 슬롯(#2)에 수신된 각 신호를 비교하여 동일 여부를 판단한다. 그리고 하이브리드 수동형-복호전달 중계 단말(200-2)은 두 신호가 동일하다고 판단하면, 하이브리드 수동형-복호전달 중계 단말(200-1)과 동일한 과정을 거쳐 제3 타임 슬롯(#3)에 신호를 수신 단말(300)로 전달하고, 제4 타임 슬롯(#4)에 신호를 복호화하고 변조하여, 변조된 신호를 수신 단말(300)로 전송한다. According to FIG. 1B, the passive-decryption relay terminal 200-2 may receive a second time slot (# 1) and a second time slot from the hybrid passive-decryption relay terminal 200-1. If a signal is received during 2), it is determined whether the signal is the same by comparing the signals received in the first time slot # 1 and the second time slot # 2. If the hybrid passive-decryption relay terminal 200-2 determines that the two signals are the same, the hybrid passive-decryption relay terminal 200-2 sends a signal to the third time slot # 3 through the same process as the hybrid passive-decryption relay terminal 200-1. The signal is transmitted to the receiving terminal 300, the signal is decoded and modulated in the fourth time slot # 4, and the modulated signal is transmitted to the receiving terminal 300.
이와 같이, 본 발명의 실시예에 따른 자기장 통신은 전송하고자 하는 거리에 따라 적어도 하나의 하이브리드 수동형-복호전달 중계 단말(200)을 이용하여 신호를 전달 및 전송할 수 있다. As such, the magnetic field communication according to the embodiment of the present invention may transmit and transmit a signal using at least one hybrid passive-decryption relay terminal 200 according to a distance to be transmitted.
이하에서는 도 2를 이용하여 선택적으로 신호를 인접한 단말로 전달하거나 전원을 이용하여 신호를 복호화 및 변조하여 전송하는 하이브리드 수동형-복호전달 중계 단말(200)에 대해서 상세하게 설명한다. Hereinafter, a hybrid passive-decryption relay terminal 200 for selectively transmitting a signal to an adjacent terminal or decoding and modulating the signal by using a power source will be described in detail with reference to FIG. 2.
도 2는 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말을 나타낸 구성도이다. 2 is a block diagram showing a hybrid passive-decryption relay terminal according to an embodiment of the present invention.
도 2에서와 같이, 하이브리드 수동형-복호전달 중계 단말(200)은 수신부(210), 제어부(220) 및 송신부(230)를 포함하며, 축 보정부(240)를 더 포함할 수 있다. As shown in FIG. 2, the hybrid passive-decryption relay terminal 200 may include a receiver 210, a controller 220, and a transmitter 230, and may further include an axis corrector 240.
먼저, 수신부(210)는 코일 안테나(coil antenna)를 통해 송신 단말(100)으로부터 자기 유도된 신호를 수신한다. 즉, 송신 단말(100)로부터 유도된 전류에서 탐색 과정을 거쳐 세기가 가장 큰 신호를 선택하면 선택된 신호를 수신 신호로 추정한다. First, the receiver 210 receives a magnetically induced signal from the transmitting terminal 100 through a coil antenna. That is, when a signal having the greatest intensity is selected through a search process in the current derived from the transmitting terminal 100, the selected signal is estimated as a received signal.
그리고 수신부(210)는 제n 타임 슬롯동안 전달받은 신호와 제n+1 타임 슬롯동안 전송받은 신호를 비교하여 동일한 신호가 아닌 경우 송신 단말(100)로 재전송을 요청할 수 있다. In addition, the reception unit 210 may compare the signal received during the nth time slot and the signal received during the n + 1th time slot and request a retransmission to the transmitting terminal 100 when the signal is not the same signal.
다음으로 제어부(220)는 제1 타임 슬롯 동안 수신 신호를 버퍼(미도시함)에 저장하고, 제2 타임 슬롯 동안 버퍼에 저장된 신호를 복호화하고 변조한다. Next, the controller 220 stores the received signal in a buffer (not shown) during the first time slot, and decodes and modulates the signal stored in the buffer during the second time slot.
그리고 제어부(220)는 전원 공급 라인과의 연결을 제어하여 제1 타임 슬롯 동안에는 전원 공급 라인을 차단함으로써 수신된 신호를 자기장 통신을 이용하여 그대로 전달하도록 하고 (Passive relay), 제2 타임 슬롯 동안에는 전원 공급 라인을 연결하여 수신된 신호를 복호화하고 변조하여 변조된 신호를 전송하도록 할 수 있다(DF: Decode and Forward relay). In addition, the controller 220 controls the connection with the power supply line to block the power supply line during the first time slot so that the received signal is transmitted as it is using magnetic field communication (Passive relay), and the power supply during the second time slot. The supply line may be connected to decode and modulate the received signal to transmit a modulated signal (DF: Decode and Forward relay).
송신부(230)는 코일 안테나(coil antenna)를 통해 제1 타임 슬롯 동안 수신 신호를 수신 단말(300)로 전달하고 제2 타임 슬롯 동안 변조된 신호를 수신 단말(300)로 전송한다. The transmitter 230 transmits the received signal to the receiving terminal 300 during the first time slot and transmits the modulated signal to the receiving terminal 300 during the second time slot through a coil antenna.
축 보정부(240)는 수신 신호를 수신하기 이전에 파일럿 신호를 수신하면, 파일럿 신호의 세기와 자기장 왜곡에 대한 정보를 생성하고, 생성된 정보에 대응하여 코일 안테나의 축을 보정할 수 있다. If the axis correction unit 240 receives the pilot signal before receiving the received signal, the axis correction unit 240 may generate information on the strength and magnetic field distortion of the pilot signal, and correct the axis of the coil antenna in response to the generated information.
이때, 축 보정부(240)는 별도의 데이터베이스에 저장된 파일럿 신호의 세기 및 자기장 왜곡에 대한 정보에 대응되는 보정값을 이용하여 코일 안테나의 축을 보정할 수 있다. At this time, the axis correction unit 240 may correct the axis of the coil antenna by using a correction value corresponding to the information on the strength and magnetic field distortion of the pilot signal stored in a separate database.
이하에서는 도 3 및 도 4를 이용하여 수중 환경에서 하이브리드 수동형-복호전달 중계 단말을 이용하여 자기장 통신을 수행하는 방법에 대해서 상세하게 설명한다. Hereinafter, a method of performing magnetic field communication using a hybrid passive-decryption relay terminal in an underwater environment will be described in detail with reference to FIGS. 3 and 4.
도 3은 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말의 중계 방법을 나타낸 순서도이고, 도 4는 도 3의 S310 단계를 상세하게 설명하기 위한 도면이다. 3 is a flowchart illustrating a relay method of a hybrid passive-decryption relay terminal according to an exemplary embodiment of the present invention, and FIG. 4 is a view for explaining step S310 of FIG. 3 in detail.
도 3에 도시한 바와 같이, 하이브리드 수동형-복호전달 중계 단말(200)은 송신 단말(100)으로부터 자기 유도된 신호를 수신한다(S310).As shown in FIG. 3, the hybrid passive type-decryption relay terminal 200 receives a magnetically induced signal from the transmitting terminal 100 (S310).
하이브리드 수동형-복호전달 중계 단말(200)은 송신 단말(100)의 코일 안테나에 의해 유도된 전류를 자기장 유도 방식으로 코일 안테나를 통하여 수신할 수 있다. The hybrid passive-decryption relay terminal 200 may receive the current induced by the coil antenna of the transmitting terminal 100 through the coil antenna in a magnetic field induction manner.
그리고 하이브리드 수동형-복호전달 중계 단말(200)은 유도된 전류에서 가장 큰 신호를 선택하여 수신 신호로 추정한다. The hybrid passive-decryption relay terminal 200 selects the largest signal from the induced current and estimates the received signal.
한편, 도 1의 (b)와 같이, 하이브리드 수동형-복호전달 중계 단말(200-1,200-2)간의 통신에서는 제1 타임 슬롯(#1)과 제2 타임 슬롯(#2)에 자기장 유도 방식으로 신호를 수신한다. 즉, 하이브리드 수동형-복호전달 중계 단말(200-2)는 하이브리드 수동형-복호전달 중계 단말(200-1)로부터 제1 타임 슬롯(#1)에 신호를 전달받고, 제2 타임 슬롯(#2)에 신호를 전송받는다. Meanwhile, as shown in FIG. 1B, in the communication between the hybrid passive type-decoding relay terminals 200-1 and 200-2, a magnetic field induction method is applied to the first time slot # 1 and the second time slot # 2. Receive the signal. That is, the hybrid passive-decryption relay terminal 200-2 receives a signal from the hybrid passive-decryption relay terminal 200-1 to the first time slot # 1 and the second time slot # 2. Receive a signal to
이하에서는 상기의 S310 단계를 다음의 도 4를 이용하여 더욱 상세하게 설명하며, 설명의 편의상 하이브리드 수동형-복호전달 중계 단말(200-1)을 송신 단말(100)로 지칭하고, 하이브리드 수동형-복호전달 중계 단말(200-2)은 하이브리드 수동형-복호전달 중계 단말(200)로 지칭한다. Hereinafter, the step S310 will be described in more detail with reference to FIG. 4 below. For convenience of description, the hybrid passive-decryption relay terminal 200-1 will be referred to as a transmission terminal 100, and the hybrid passive-decryption transmission will be described. The relay terminal 200-2 is referred to as a hybrid passive-decryption relay terminal 200.
도 4에 도시한 바와 같이, 하이브리드 수동형-복호전달 중계 단말(200)은 제n 타임 슬롯 동안 송신 단말(100)로부터 신호를 전달받는다(S311). 그리고 하이브리드 수동형-복호전달 중계 단말(200)은 제n+1 타임 슬롯 동안 송신 단말(100)로부터 신호를 전송받는다(S312).As shown in FIG. 4, the hybrid passive-decryption relay terminal 200 receives a signal from the transmitting terminal 100 during an nth time slot (S311). The hybrid passive-decryption relay terminal 200 receives a signal from the transmitting terminal 100 during the n + 1th time slot (S312).
즉, S311 단계에서 수신한 신호와 S312 단계에서 수신한 신호는 동일한 신호이지만, 제n 타임 슬롯 동안 수신한 신호는 단순히 전달받은 신호이고, 제n+1 타임 슬롯 동안 수신한 신호는 송신 단말(100)에서 복호화하고 변조한 신호를 나타낸다. That is, the signal received in step S311 and the signal received in step S312 are the same signal, but the signal received during the nth time slot is simply a received signal, and the signal received during the n + 1th time slot is the transmitting terminal 100. Denotes the decoded and modulated signal.
다음으로, 하이브리드 수동형-복호전달 중계 단말(200)은 제n 타임 슬롯 동안 전달받은 신호와 제n+1 타임 슬롯 동안 수신된 신호가 동일한지 여부를 비교한다(S313).Next, the hybrid passive-decryption relay terminal 200 compares whether the signal received during the nth time slot and the signal received during the n + 1th time slot are the same (S313).
즉, 하이브리드 수동형-복호전달 중계 단말(200)은 각 타임 슬롯 동안 전달받은 신호와 전송받은 신호가 동일한지를 판단할 수 있다. That is, the hybrid passive-decryption relay terminal 200 may determine whether the received signal and the received signal are the same during each time slot.
비교 결과, 하이브리드 수동형-복호전달 중계 단말(200)은 동일한 신호가 아닌 것으로 판단되면 송신 단말(100)로 신호의 재전송을 요청한다(S314). As a result of the comparison, if it is determined that the hybrid passive-decryption relay terminal 200 is not the same signal, it requests a retransmission of the signal to the transmitting terminal 100 (S314).
그리고 하이브리드 수동형-복호전달 중계 단말(200)은 동일한 신호로 판단되면, S310 단계에서 다음 단계인 S320 단계로 진행된다. When the hybrid passive-decryption relay terminal 200 is determined to be the same signal, the hybrid passive-decryption relay terminal 200 proceeds from step S310 to step S320.
다음으로 하이브리드 수동형-복호전달 중계 단말(200)은 제1 타임 슬롯 동안 수신 신호를 수신 단말(300)로 전달함과 동시에 버퍼에 저장한다(S320).Next, the hybrid passive-decryption relay terminal 200 transmits the received signal to the receiving terminal 300 during the first time slot and simultaneously stores the received signal in the buffer (S320).
제1 타임 슬롯 동안 하이브리드 수동형-복호전달 중계 단말(200)은 전원 공급라인을 차단하고, 자기장 유도 방식을 통해 수신된 신호를 바로 수신 단말(300)로 전달한다. 그리고 하이브리드 수동형-복호전달 중계 단말(200)은 제1 타임 슬롯과 제2 타임 슬롯의 시간 차이를 보상하기 위해 버퍼에 일시적으로 수신 신호를 저장한다. During the first time slot, the hybrid passive-decryption relay terminal 200 cuts off the power supply line and transfers the received signal directly to the receiving terminal 300 through the magnetic field induction method. The hybrid passive-decryption relay terminal 200 temporarily stores the received signal in a buffer to compensate for the time difference between the first time slot and the second time slot.
다음으로, 하이브리드 수동형-복호전달 중계 단말(200)은 제2 타임 슬롯 동안 버퍼에 저장된 신호를 복호화하고 변조하여 변조된 신호를 수신 단말(300)로 전송한다(S330).Next, the hybrid passive-decryption relay terminal 200 decodes and modulates the signal stored in the buffer during the second time slot and transmits the modulated signal to the receiving terminal 300 (S330).
여기서, 하이브리드 수동형-복호전달 중계 단말(200)은 제2 타임 슬롯 동안 전원 공급 라인을 연결하여 수신된 신호를 복호화하고 복호화된 신호를 변조한다. Here, the hybrid passive-decryption relay terminal 200 connects the power supply line during the second time slot to decode the received signal and modulates the decoded signal.
이때, 하이브리드 수동형-복호전달 중계 단말(200)은 처음 수신된 신호와 동일한 방법으로 변조하기 때문에, 실질적으로, 제1 타임 슬롯 동안 전달한 신호와 제2 타임 슬롯 동안 전송한 신호는 동일하다. At this time, since the hybrid passive-decoding relay terminal 200 modulates in the same manner as the first received signal, the signal transmitted during the first time slot and the signal transmitted during the second time slot are substantially the same.
그리고 하이브리드 수동형-복호전달 중계 단말(200)은 제2 타임 슬롯 동안 전원 공급라인을 연결함으로써, 코일 안테나로 교류 전압을 가하여 변조된 신호를 전송한다.The hybrid passive-decryption relay terminal 200 transmits a modulated signal by applying an AC voltage to the coil antenna by connecting a power supply line during the second time slot.
한편, 하이브리드 수동형-복호전달 중계 단말(200)은 송신 단말(100)로부터 수신 신호를 수신하기 이전에 파일럿 신호를 수신하면, 파일럿 신호의 세기와 자기장 왜곡에 대한 정보를 생성할 수 있다. 그리고 하이브리드 수동형-복호전달 중계 단말(200)은 파일럿 신호의 세기와 자기장 왜곡에 대한 정보에 대응하여 코일 안테나의 축을 이동 및 회전하도록 보정할 수 있다. On the other hand, if the hybrid passive-decryption relay terminal 200 receives the pilot signal before receiving the received signal from the transmitting terminal 100, it may generate information on the strength and magnetic field distortion of the pilot signal. The hybrid passive-decryption relay terminal 200 may correct the axis of the coil antenna to move and rotate in response to the information on the strength of the pilot signal and the magnetic field distortion.
이하에서는 도 5 및 도 6을 이용하여 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말을 통한 도파로 전송방법과 송신 단말과 수신 단말의 직접 전송 방법에서 나타나는 경로 손실을 비교한다. Hereinafter, the path loss shown in the waveguide transmission method through the hybrid passive-decryption relay terminal and the direct transmission method of the transmitting terminal and the receiving terminal according to an embodiment of the present invention will be compared with reference to FIGS. 5 and 6.
도 5 및 도 6은 본 발명의 실시예에 따른 전송방법과 직접 전송 방법의 경로 손실을 비교하는 도면이다. 5 and 6 are diagrams for comparing the path loss between the transmission method and the direct transmission method according to an embodiment of the present invention.
도 5의 (a)는 직접 통신을 수행하는 송신 단말(Transmitter coil)과 수신 단말(Receiver coil)간의 코일의 축이 서로 일직선으로 나란히 정렬된 경우(aligned)를 나타내고, 도 5의 (b)는 도 5의 (a)와 동일한 조건하에서 코일 안테나의 동축 성질이 파괴되어 일직선으로 나란히 배열되지 않은 경우(displaced)를 나타낸다. FIG. 5A illustrates a case where the axes of the coils between a transmitter terminal and a receiver coil that perform direct communication are aligned in a line with each other. FIG. Under the same conditions as in FIG. 5A, the coaxial property of the coil antenna is broken and thus not disposed in a straight line (displaced).
그리고 도 5의 (c)는 본 발명의 실시예에 따른 하이브리드 수동형-복호전달 중계 단말을 통한 도파로 전송방법으로, 코일 안테나의 동축 성질이 파괴되어 각 단말의 코일의 축이 일직선으로 나란히 배열되지 않은 경우(displaced)를 나타낸다. And (c) of Figure 5 is a waveguide transmission method through the hybrid passive-decryption relay terminal according to an embodiment of the present invention, the coaxial property of the coil antenna is destroyed so that the axis of the coil of each terminal is not arranged in a straight line Indicated if replaced.
이때, 도 5의 (a)와 (b)는 송신 단말과 수신 단말간의 거리가 r이라고 한다면, 도 5의 (c)의 경우, 송신 단말과 하이브리드 수동형-복호전달 중계 단말간의 거리가 r/2가 되도록 하이브리드 수동형-복호전달 중계 단말의 위치를 설정하고 모의 실험을 수행한다. 5A and 5B show that the distance between the transmitting terminal and the receiving terminal is r, the distance between the transmitting terminal and the hybrid passive-decryption relay terminal is r / 2 in FIG. Set the position of the hybrid passive-decryption relay terminal and perform simulation.
이와 같은 조건에서 모의 실험 수행 결과의 주파수대 별로 경로 손실을 나타내는 그래프는 도 6과 같으며, 도 5의 (a)의 조건에서의 결과는 직선(direct-MI; horizontally deployed)으로 표시하였으며, 도 5의 (b)의 조건에서의 결과는 빨간색 네모(direct-MI; displaced)로 표시하였고, 도 5의 (c)조건에서의 결과는 검은색 동그라미(MI-waveguide; displaced)로 표시하였다. In this condition, a graph showing the path loss for each frequency band of the simulation result is shown in FIG. 6, and the result in the condition of FIG. 5 (a) is represented by a straight line (directly-MI; horizontally deployed). The result in the condition of (b) of (b) is shown as a red square (direct-MI; displaced), the result in the condition (c) of Figure 5 is shown as a black circle (MI-waveguide; displaced).
도 6에서 나타난 결과와 같이, 도 5의 (c)에 따른 하이브리드 수동형-복호전달 중계 단말을 이용하여 자기장 통신을 수행한 경우, 평균적으로 경로 손실이 가장 적게 발생하는 것을 알 수 있다. As shown in FIG. 6, when the magnetic field communication is performed using the hybrid passive-decryption relay terminal according to (c) of FIG. 5, it can be seen that path loss occurs on average.
이와 같이 본 발명의 실시예에 따르면, 동적으로 변화하는 수중 환경에서 자기장 통신의 전송 거리를 확장하는 동시에 경로 손실을 감소시킴으로써, 수중 환경에서 자기장 통신의 성능을 개선시킬 수 있다. Thus, according to the embodiment of the present invention, by extending the transmission distance of the magnetic field communication in the dynamically changing underwater environment and reducing the path loss, it is possible to improve the performance of the magnetic field communication in the underwater environment.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
Claims (10)
- 수중 자기장 통신을 위한 하이브리드 수동형-복호전달 중계 단말을 이용한 중계 방법에 있어서, In the relay method using a hybrid passive-decryption relay terminal for underwater magnetic field communication,상기 하이브리드 수동형-복호전달 중계 단말은 송신 단말으로부터 자기 유도된 신호를 수신하는 단계, Receiving, by the hybrid passive type-decoding relay terminal, a magnetically induced signal from a transmitting terminal,제1 타임 슬롯 동안 상기 수신 신호를 수신 단말로 전달함과 동시에 버퍼에 저장하는 단계, 그리고 Transmitting the received signal to a receiving terminal and simultaneously storing the received signal during a first time slot; and제2 타임 슬롯 동안 상기 버퍼에 저장된 신호를 복호화하고 변조하여 변조된 신호를 상기 수신 단말로 전송하는 단계를 포함하는 중계 방법.And decoding and modulating a signal stored in the buffer during a second time slot to transmit a modulated signal to the receiving terminal.
- 제1항에 있어서, The method of claim 1,상기 송신 단말로부터 자기 유도된 신호를 수신하는 단계에 있어서, In the step of receiving a magnetically induced signal from the transmitting terminal,상기 송신 단말의 코일 안테나에 의해 유도된 전류를 자기장 유도 방식으로 코일 안테나를 통하여 수신하는 중계 방법.The relay method for receiving the current induced by the coil antenna of the transmitting terminal through the coil antenna in a magnetic field induction method.
- 제1항에 있어서, The method of claim 1,상기 제1 타임 슬롯 동안 전원 공급 라인을 차단하여 상기 수신 신호를 상기 수신 단말로 전달하도록 제어하고, Cut off a power supply line during the first time slot to control the reception signal to be transmitted to the reception terminal;상기 제2 타임 슬롯 동안 전원 공급 라인을 연결하여 상기 수신된 신호를 복호화하고 상기 복호화된 신호를 변조시키며, 코일 안테나로 교류 전압을 가하여 변조된 신호를 전송하도록 제어하는 중계 방법. And connecting a power supply line during the second time slot to decode the received signal, modulate the decoded signal, and apply an alternating voltage to a coil antenna to transmit the modulated signal.
- 제3항에 있어서, The method of claim 3,상기 수신 신호를 수신하기 이전에 파일럿 신호를 수신하면, 상기 파일럿 신호의 세기와 자기장 왜곡에 대한 정보를 생성하고, 상기 생성된 정보에 대응하여 상기 코일 안테나의 축을 보정하는 단계를 더 포함하는 중계 방법. If the pilot signal is received before receiving the received signal, generating information on the strength and magnetic field distortion of the pilot signal, and further comprising correcting the axis of the coil antenna in response to the generated information .
- 제4항에 있어서, The method of claim 4, wherein상기 송신 단말으로부터 자기 유도된 신호를 수신하는 단계는, Receiving a self-derived signal from the transmitting terminal,제n 타임 슬롯 동안 상기 송신 단말으로부터 신호를 전달받는 단계,Receiving a signal from the transmitting terminal during an nth time slot,제n+1 타임 슬롯 동안 상기 송신 단말로부터 신호를 전송받는 단계,Receiving a signal from the transmitting terminal during an n + 1 time slot;상기 제n 타임 슬롯 동안 전달받은 신호와 상기 제n+1 타임 슬롯 동안 수신된 신호를 비교하는 단계, 그리고Comparing the signal received during the nth time slot with a signal received during the n + 1th time slot, and비교 결과 동일한 신호가 아닌 것으로 판단되면 상기 송신 단말로 신호의 재전송을 요청하는 단계를 포함하는 중계 방법.Requesting retransmission of the signal to the transmitting terminal if it is determined that the comparison is not the same signal.
- 송신 단말으로부터 자기 유도된 신호를 수신하는 수신부, Receiving unit for receiving the self-induced signal from the transmitting terminal,제1 타임 슬롯 동안 상기 수신 신호를 버퍼에 저장하고, 제2 타임 슬롯 동안 상기 버퍼에 저장된 신호를 복호화하고 변조하는 제어부, 그리고 A controller which stores the received signal in a buffer during a first time slot and decodes and modulates a signal stored in the buffer during a second time slot;상기 제1 타임 슬롯 동안 상기 수신 신호를 수신 단말로 전달하고 상기 제2 타임 슬롯 동안 변조된 신호를 상기 수신 단말로 전송하는 송신부를 포함하는 하이브리드 수동형-복호전달 중계 단말.And a transmitter for transmitting the received signal to a receiving terminal during the first time slot and transmitting a modulated signal to the receiving terminal during the second time slot.
- 제6항에 있어서, The method of claim 6,상기 수신부는, The receiving unit,상기 송신 단말의 코일 안테나에 의해 유도된 전류를 자기장 유도 방식으로 코일 안테나를 통하여 수신하는 하이브리드 수동형-복호전달 중계 단말.Hybrid passive-decryption relay terminal for receiving the current induced by the coil antenna of the transmitting terminal through the coil antenna in a magnetic field induction method.
- 제6항에 있어서, The method of claim 6,상기 제1 타임 슬롯 동안 전원 공급 라인을 차단하여 상기 수신 신호를 상기 수신 단말로 전달하도록 제어하고,Cut off a power supply line during the first time slot to control the reception signal to be transmitted to the reception terminal;상기 제2 타임 슬롯 동안 전원 공급 라인을 연결하여 상기 수신된 신호를 복호화하고 상기 복호화된 신호를 변조시키며, 코일 안테나로 교류 전압을 가하여 변조된 신호를 전송하도록 제어하는 하이브리드 수동형-복호전달 중계 단말.And connecting a power supply line during the second time slot to decode the received signal, modulate the decoded signal, and apply an alternating voltage to a coil antenna to transmit the modulated signal.
- 제8항에 있어서, The method of claim 8,상기 수신 신호를 수신하기 이전에 파일럿 신호를 수신하면, 상기 파일럿 신호의 세기와 자기장 왜곡에 대한 정보를 생성하고, 상기 생성된 정보에 대응하여 상기 코일 안테나의 축을 보정하는 보정부를 더 포함하는 하이브리드 수동형-복호전달 중계 단말.If the pilot signal is received before receiving the received signal, the hybrid passive type further comprises a correction unit for generating information on the strength and magnetic field distortion of the pilot signal, and correcting the axis of the coil antenna in response to the generated information Decryption relay terminal.
- 제9항에 있어서, The method of claim 9,상기 제어부는, The control unit,제n 타임 슬롯 동안 상기 송신 단말으로부터 신호를 전달받고, 제n+1 타임 슬롯 동안 상기 송신 단말로부터 신호를 전송받으면, 상기 제n 타임 슬롯 동안 전달받은 신호와 상기 제n+1 타임 슬롯 동안 수신된 신호를 비교하여, 비교 결과 동일한 신호가 아닌 것으로 판단되면 상기 송신 단말로 신호의 재전송을 요청하도록 제어하는 하이브리드 수동형-복호전달 중계 단말.When a signal is received from the transmitting terminal during the nth time slot and a signal is received from the transmitting terminal during the n + 1th time slot, the signal received during the nth time slot and the received signal during the n + 1th time slot are received. And comparing the signals and controlling to request retransmission of the signals to the transmitting terminal when it is determined that the comparison is not the same signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0052788 | 2017-04-25 | ||
KR1020170052788A KR101945102B1 (en) | 2017-04-25 | 2017-04-25 | Apparatus for hybrid passive/decoding delivery relay at underwater magnetic field communication and method for relay thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018199454A1 true WO2018199454A1 (en) | 2018-11-01 |
Family
ID=63918394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002212 WO2018199454A1 (en) | 2017-04-25 | 2018-02-22 | Hybrid passive/decoding delivery relay terminal for underwater magnetic-field communications, and method for relay thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101945102B1 (en) |
WO (1) | WO2018199454A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070111492A (en) * | 2005-02-22 | 2007-11-21 | 마츠시타 덴끼 산교 가부시키가이샤 | Wireless communication method, relay station device and wireless receiving device |
US20120170417A1 (en) * | 2006-08-03 | 2012-07-05 | Mark Rhodes | Underwater communications |
US8520505B1 (en) * | 2012-05-14 | 2013-08-27 | Empire Technology Development, Llc | Combined hard/soft relay forwarding for hybrid-automatic repeat request (ARQ) exploitation |
US20140341584A1 (en) * | 2013-03-15 | 2014-11-20 | Fairfield Industries Incorporated | High-bandwidth underwater data communication system |
US20160069674A1 (en) * | 2014-09-08 | 2016-03-10 | The Government Of The United States, As Represented By The Secretary Of The Army | Underwater Signal Conversion |
-
2017
- 2017-04-25 KR KR1020170052788A patent/KR101945102B1/en active Active
-
2018
- 2018-02-22 WO PCT/KR2018/002212 patent/WO2018199454A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070111492A (en) * | 2005-02-22 | 2007-11-21 | 마츠시타 덴끼 산교 가부시키가이샤 | Wireless communication method, relay station device and wireless receiving device |
US20120170417A1 (en) * | 2006-08-03 | 2012-07-05 | Mark Rhodes | Underwater communications |
US8520505B1 (en) * | 2012-05-14 | 2013-08-27 | Empire Technology Development, Llc | Combined hard/soft relay forwarding for hybrid-automatic repeat request (ARQ) exploitation |
US20140341584A1 (en) * | 2013-03-15 | 2014-11-20 | Fairfield Industries Incorporated | High-bandwidth underwater data communication system |
US20160069674A1 (en) * | 2014-09-08 | 2016-03-10 | The Government Of The United States, As Represented By The Secretary Of The Army | Underwater Signal Conversion |
Also Published As
Publication number | Publication date |
---|---|
KR20180119270A (en) | 2018-11-02 |
KR101945102B1 (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014175656A1 (en) | Apparatus and method for transmitting and receiving feedback information in beamforming communication system | |
WO2013125849A1 (en) | Wireless charging apparatus and method | |
WO2010019015A2 (en) | Method to generate beamforming vector and provide the information for generating beamforming vector | |
WO2014088237A1 (en) | Apparatus for detecting train position | |
WO2015156575A1 (en) | Method and apparatus for tracking uplink beam in beamforming-based cellular system | |
RU2019118265A (en) | COMMUNICATION DEVICE AND COMMUNICATION METHOD | |
ATE455402T1 (en) | PACKET DATA TRANSMISSION IN A MIMO SYSTEM | |
AU2003256987A8 (en) | System and method for near-field electromagnetic ranging | |
WO2011122900A2 (en) | A mimo transmission based method for transmitting and receiving downlink control information | |
WO2020067669A1 (en) | Method for transmitting and receiving aod information and device therefor | |
WO2018199454A1 (en) | Hybrid passive/decoding delivery relay terminal for underwater magnetic-field communications, and method for relay thereof | |
US10064223B2 (en) | Apparatus and method for selecting D2D communication mode depending on signal interference | |
WO2017048090A1 (en) | Communication system | |
JP2006300861A (en) | Device and method for calculating relative position, its program, and recording medium | |
WO2013073720A1 (en) | Relay communication method in multiple user equipment relay system | |
WO2020159058A1 (en) | Method for transmitting and receiving uplink signal for positioning, and device therefor | |
WO2022139285A1 (en) | Method and system for measuring distance to a movable beacon by using a beacon scanner | |
KR102003956B1 (en) | Wireless Communication System for Ship | |
WO2018199455A1 (en) | Underwater networking method using magnetic-field communications system | |
CN115765871A (en) | Underwater wireless optical communication device, method, and platform suitable for small unmanned platforms | |
WO2020105832A1 (en) | Method for setting beam set for relay node to transmit and receive signals in next generation communication system, and device therefor | |
WO2016085043A1 (en) | Method for forming group on basis of proximity between plurality of mobile terminals | |
Liu et al. | Initialization of hybrid underwater optical/acoustic network with asymmetrical duplex link | |
WO2020149487A1 (en) | Device and method for controlling beamforming of multi-relay | |
JPS5995746A (en) | Optical space propagating type network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18790304 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18790304 Country of ref document: EP Kind code of ref document: A1 |