+

WO2018199339A1 - コンバイナ、及び、レーザ装置 - Google Patents

コンバイナ、及び、レーザ装置 Download PDF

Info

Publication number
WO2018199339A1
WO2018199339A1 PCT/JP2018/017450 JP2018017450W WO2018199339A1 WO 2018199339 A1 WO2018199339 A1 WO 2018199339A1 JP 2018017450 W JP2018017450 W JP 2018017450W WO 2018199339 A1 WO2018199339 A1 WO 2018199339A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
face
bridge
input
combiner
Prior art date
Application number
PCT/JP2018/017450
Other languages
English (en)
French (fr)
Inventor
松本 亮吉
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US16/608,004 priority Critical patent/US20210103101A1/en
Priority to CN201880027210.6A priority patent/CN110546540A/zh
Priority to EP18791488.2A priority patent/EP3617760A4/en
Publication of WO2018199339A1 publication Critical patent/WO2018199339A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs

Definitions

  • the present invention relates to a combiner that combines light output from each of a plurality of light sources. Moreover, it is related with the laser apparatus provided with such a combiner.
  • a combiner is widely used as an optical component for obtaining a high-power laser beam by synthesizing a plurality of laser beams.
  • a combiner excitation combiner
  • the combined light obtained by the combiner is input to the fiber resonator as excitation light.
  • a combiner output combiner
  • the combined light obtained by the combiner is irradiated to the workpiece as output light.
  • the output combiner of the fiber laser system synthesizes a high-power laser beam, it is required that the optical loss be small in order to suppress heat generation. Also, the synthesized light obtained by the output combiner is required to have a small divergence angle and a good beam profile.
  • FIG. 4A is a perspective view of the combiner 4, and FIG. 4B is a cross-sectional view of the combiner 4.
  • the combiner 4 includes an input fiber bundle 41 composed of a plurality of input fibers 41-1 to 41-7, a bridge fiber 43, and an output fiber 44.
  • the laser beams input to the combiner 4 via the input fiber bundle 41 are combined in the bridge fiber 43 and output to the outside via the output fiber 44.
  • the core diameter at the exit end face to which the output fiber 44 is connected needs to be smaller than the core diameter at the entrance end face to which the input fiber bundle 41 is connected. For this reason, the bridge fiber 43 is provided with a reduced diameter portion in which the core diameter gradually decreases toward the exit end face.
  • the diameter reduction ratio of the bridge fiber 43 (core diameter at the incident end face) / (core diameter at the exit end face) is increased, the power density of the combined light incident on the output fiber 44 from the bridge fiber 43 can be increased. As a result, it is possible to realize a fiber laser system with higher processing capability.
  • the beam incident on the bridge fiber 43 from each input fiber bundle constituting the input fiber bundle 41 is reflected at the core-cladding boundary of the bridge fiber 43 in the process of propagating through the reduced diameter portion of the bridge fiber 43, Increase the propagation angle.
  • the degree of increase in the propagation angle increases as the diameter reduction ratio of the bridge fiber 43 increases.
  • a high NA (Numerical Aperture) component in the combined light incident on the output fiber 44 from the bridge fiber 43 increases.
  • a component having an NA exceeding the NA of the output fiber 44 cannot be confined in the core 44a of the output fiber 44, and therefore leaks from the core 44a of the output fiber 44.
  • the coating of the output fiber 44 and the like generate heat. As a result, the low loss property and reliability of the combiner 4 are impaired.
  • FIG. 5A is a perspective view of the combiner 5
  • FIG. 5B is a cross-sectional view of the combiner 5.
  • the combiner 5 includes an input fiber bundle 51 composed of a plurality of input fibers 51-1 to 51-7, a GI fiber bundle 52 composed of a plurality of GI (Graded Index) fibers 52-1 to 52-7, and a bridge fiber 53. And an output fiber 54.
  • the difference from the conventional combiner 4 is that a GI fiber is inserted between each input fiber constituting the input fiber bundle 51 and the bridge fiber 53.
  • This GI fiber functions as a GRIN lens that reduces the divergence angle of the beam incident from the input fiber.
  • the high NA component in the combined light incident on the output fiber 54 from the bridge fiber 53 can be reduced without reducing the power density of the combined light incident on the output fiber 54 from the bridge fiber 53.
  • the beam incident on the bridge fiber 53 from each GI fiber constituting the GI fiber bundle 52 increases the propagation angle in the process of propagating through the reduced diameter portion of the bridge fiber 53.
  • the GI fibers 52-1 to 52-7 constituting the GI fiber bundle 52 the GI fibers 52-2 to 52-7 arranged in the peripheral part (the periphery of the GI fiber 52-1 arranged in the central part) Since the beams incident on the bridge fiber 53 from the GI fibers 52-2 to 52-7) arranged in FIG. 5 are repeatedly reflected at the core-cladding boundary of the bridge fiber 53 as shown in FIG. Becomes a factor of increasing the high NA component in the combined light incident on the output fiber 54. As described above, when the high NA component increases in the combined light incident on the output fiber 54 from the bridge fiber 53, the low loss and reliability of the combiner 5 are impaired.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a combiner that has lower loss and higher reliability than conventional ones.
  • a combiner includes an input fiber bundle including a plurality of input fibers and a GI fiber portion on which a beam bundle emitted from the input fiber bundle is incident.
  • a bridge fiber having a diameter of the end face smaller than that of the incident end face, and the GI fiber portion focuses the beam bundle emitted from the input fiber bundle.
  • a high NA component in the combined light incident on the output fiber from the bridge fiber is less likely to occur. Therefore, it is possible to realize a combiner that has lower loss and higher reliability than conventional combiners.
  • FIG. 1 It is a figure which shows the structure of the combiner which concerns on the 1st Embodiment of this invention.
  • (A) is a perspective view of the combiner, and (b) is a cross-sectional view of the combiner. It is a figure which shows the structure of the combiner which concerns on the 2nd Embodiment of this invention.
  • (A) is a perspective view of the combiner, and (b) is a cross-sectional view of the combiner. It is a figure which shows the usage example of the combiner shown in FIG. 1 or FIG.
  • (A) is a block diagram of a fiber laser provided with the combiner as an excitation combiner, and (b) is a block diagram of a fiber laser system provided with the combiner as an output combiner.
  • FIG. 1 It is a figure which shows the structure of the conventional combiner.
  • (A) is a perspective view of the combiner, and (b) is a cross-sectional view of the combiner. It is a figure which shows the structure of the conventional combiner.
  • (A) is a perspective view of the combiner, and (b) is a cross-sectional view of the combiner.
  • GI fiber refers to a GI (Graded Index) type optical fiber
  • SI fiber refers to an SI (Step Index) type optical fiber.
  • FIG. 1A is a perspective view of the combiner 1
  • FIG. 1B is a cross-sectional view of the combiner 1.
  • the combiner 1 is an optical component for generating combined light by combining light output from each of a plurality of light sources (not shown). As shown in FIG. A fiber bundle 12, a bridge fiber 13, and an output fiber 14 are provided.
  • the input fiber bundle 11 is composed of a plurality of input fibers 11-1 to 11-n (n is a natural number of 2 or more).
  • the input fiber bundle 11 includes one input fiber 11-1, and six input fibers 11-2 to 11-7 arranged so as to surround the input fiber 11-1. Consists of.
  • the core 11a and the clad 11b are mainly composed of quartz glass, and the difference in refractive index between the core 11a and the clad 11b is the updopant (dopant for increasing the refractive index) added to the core 11a and the clad.
  • 11b is provided by one or both of a downdopant (dopant for reducing the refractive index) added to 11b.
  • Each input fiber 11-i may further include a cylindrical resin coating (not shown) that covers the outer surface of the clad 11b. However, in the vicinity of the exit end face of each input fiber 11-i, as shown in FIG. 1, the resin coating is removed, and the outer surface of the cladding 11-ib is exposed. This is because the exit end face of each input fiber 11-i is fused to the entrance end face of the corresponding GI fiber 12-i.
  • the GI fiber bundle 12 is composed of a plurality of GI fibers 12-1 to 12-n.
  • the GI fiber bundle 12 includes one GI fiber 12-1 and six GI fibers 12-2 to 12-7 arranged so as to surround the GI fiber 12-1. Consists of.
  • the incident end face of each GI fiber 12-i is connected (for example, fusion spliced) to the outgoing end face of the corresponding input fiber 11-i.
  • the incident end face of the GI fiber 12-1 is connected to the outgoing end face of the corresponding input fiber 11-1.
  • Each GI fiber 12-i functions as a GRIN lens that reduces the divergence angle of the beam incident from the corresponding input fiber 11-i.
  • each GI fiber 12-i In order to cause each GI fiber 12-i to function as a GRIN lens that reduces the divergence angle of the incident beam, if the beam is considered as a standing wave, it becomes a “node” of the beam that becomes a “node” at the incident end.
  • the length L0 of the GI fiber 12-i may be set to a value other than m ⁇ P0 / 2 (m is an arbitrary integer equal to or greater than 1) so that the emission end is not located.
  • P0 is the pitch length of the GI fiber 12-i (beam diameter fluctuation period ⁇ 2).
  • the bridge fiber 13 includes a GI fiber portion 131 and an SI fiber portion 132.
  • the GI fiber portion 131 has a cylindrical shape whose diameter is larger than the diameter D of the circumscribed circle of the emission end faces of the GI fibers 12-1 to 12-7.
  • the exit end faces of the GI fibers 12-1 to 12-7 are connected to the incident end face of the GI fiber portion 131 (for example, fusion splicing).
  • the GI fiber portion 131 functions as a GRIN lens that focuses the beam bundle incident from the GI fiber bundle 12.
  • the length L1 of 131 may be set to m ⁇ P1 / 2 ⁇ L1 ⁇ m ⁇ P1 / 2 + P1 / 4 (m is an arbitrary natural number greater than or equal to 0).
  • P1 is the pitch length of the GI fiber portion 131.
  • the SI fiber portion 132 is an SI fiber having a diameter of the incident end face equal to that of the GI fiber portion 131 and a diameter of the exit end face smaller than the diameter of the GI fiber portion 131, and a core 132a having a circular cross section and a core 132a. And a clad 132b having an annular cross section.
  • the core 132a and the clad 132b are mainly composed of quartz glass, and the refractive index difference between the core 132a and the clad 132b is given by an updopant added to the core 132a or a downdopant added to the clad 132b. ing.
  • the section 132c including the incident end face has a cylindrical shape with a constant core diameter and cladding diameter
  • the section 132d including the output end face has a core diameter as it approaches the output end face. And it has a truncated cone shape in which the cladding diameter becomes gradually smaller.
  • the section 132d may be referred to as a “reduced diameter portion”.
  • the incident end face of the SI fiber portion 132 is connected to the outgoing end face of the GI fiber portion 131 (for example, fusion splicing).
  • the cladding 132b may be omitted.
  • the air covering the outer surface of the core 132a functions as a clad (air clad).
  • the output fiber 14 is an SI fiber, and includes a columnar core 14a and a cylindrical clad 14b that covers the outer surface of the core 14a.
  • the core 14a and the clad 14b are mainly composed of quartz glass, and the refractive index difference between the core 14a and the clad 14b is given by an updopant added to the core 14a or a downdopant added to the clad 14b. ing.
  • the core diameter of the output fiber 14 is equal to the core diameter of the bridge fiber 13 at the exit end face.
  • the core 14 a at the incident end face of the output fiber 14 is connected (for example, fusion spliced) to the core 132 a at the outgoing end face of the bridge fiber 13, and the cladding 14 b at the incident end face of the output fiber 14 is connected to the outgoing end face of the bridge fiber 13. Is connected (for example, fusion spliced) to the clad 132b.
  • the output fiber 14 may further include a cylindrical resin coating (not shown) that covers the outer surface of the clad 14b. However, in the vicinity of the incident end face of the output fiber 14, as shown in FIG. 1, the resin coating is removed, and the outer surface of the clad 14b is exposed. This is because the incident end face of the output fiber 14 is fused to the outgoing end face of the corresponding bridge fiber 13.
  • the bridge fiber 13 includes the GI fiber portion 131 that focuses the beam bundle incident from the GI fiber bundle 12.
  • the GI fiber part 131 has a property that its refractive index increases as it goes inward of the GI fiber part 131 and its refractive index decreases as it goes out of the GI fiber part 131.
  • the GI fiber portion 131 has a property that the rate of change (inclination) of the refractive index in the inner and outer directions increases as it goes to the outside of the GI fiber portion 131.
  • the beam is bent relatively smaller with respect to the propagation direction of the beam toward the inner side of the GI fiber portion 131, and the beam is bent relatively larger with respect to the propagation direction of the beam toward the outer side of the GI fiber portion 131.
  • the plurality of beams constituting the beam bundle are propagated as follows after entering the GI fiber portion 131. That is, among the GI fibers 12-1 to 12-7 constituting the GI fiber bundle 12, the beam incident on the bridge fiber 13 from the GI fibers 12-2 to 12-7 arranged in the peripheral portion is the GI fiber portion 131. In the inside, after being bent largely relative to the propagation direction of the beam toward the inside of the bridge fiber 13, it propagates linearly toward the incident end face of the output fiber 14.
  • the beam incident on the bridge fiber 13 from the GI fiber 12-1 arranged at the center is bridged in the GI fiber unit 131.
  • the beam 13 is bent to be relatively small with respect to the propagation direction of the beam toward the inside of the fiber 13 or is propagated linearly, and then propagates linearly toward the incident end face of the output fiber 14.
  • the plurality of beams constituting the beam bundle are output so as not to reach the core-cladding boundary of the bridge fiber 13 after being emitted from the GI fiber portion 131 by the above-described photorefractive action in the GI fiber portion 131. It becomes easy to propagate linearly toward the incident end face of the fiber 14.
  • the combiner 1 that is excellent in low loss and reliability as compared with the case where the bridge fiber 13 does not include the GI fiber portion 131.
  • the GI fiber portion 131 of the bridge fiber 13 has a beam bundle so that a plurality of beams incident from the GI fiber bundle 12 intersect at the center of the exit end face of the bridge fiber 13. Focusing is preferred. As a result, the plurality of beams constituting the beam bundle are more difficult to be reflected at the core-cladding boundary of the bridge fiber 13, and the propagation angle of the plurality of beams constituting the beam bundle is a process of propagating through the bridge fiber 13. It becomes difficult to increase further. For this reason, in the synthesized light incident on the output fiber 14 from the bridge fiber 13, a high NA component is further hardly generated.
  • n is a relative refractive index of the central portion of the GI fiber portion 131 with respect to the SI fiber portion 132
  • g is a gradient coefficient of the GI fiber portion 131.
  • L2 1 / (g ⁇ tan (g ⁇ L1)).
  • P1 40 mm
  • the following configuration is adopted instead of the configuration for converging the beam bundle so that a plurality of beams incident on the bridge fiber 13 from the GI fiber bundle 12 intersect at the center of the exit end face of the bridge fiber 13.
  • the same effect can be obtained.
  • the vicinity of the center of the incident end face of the output fiber 14 is a point where the distance from the center of the incident end face at the incident end face of the output fiber 14 is sufficiently smaller than the radius of the incident end face (for example, 1/10 or less).
  • the GI fiber 12-i for reducing the divergence angle of the beam incident from the input fiber 11-i is interposed between each input fiber 11-i and the bridge fiber 13. is doing. Therefore, the beam bundle incident on the bridge fiber 13 from the GI fiber bundle 12 is difficult to spread in the process of propagating through the bridge fiber 13. As a result, the plurality of beams constituting the beam bundle are less likely to be reflected at the core-cladding boundary of the bridge fiber 13, and the propagation angle of the plurality of beams constituting the beam bundle is a process of propagating through the bridge fiber 13. It becomes difficult to increase further. For this reason, in the synthesized light incident on the output fiber 14 from the bridge fiber 13, a high NA component is further hardly generated.
  • the GI fiber 12-i interposed between each input fiber 11-i and the bridge fiber 13 collimates the beam incident from the input fiber 11-i (divergence angle). Is preferably 0 °).
  • the beam bundle incident on the bridge fiber 13 from the GI fiber bundle 12 reaches the exit end face of the bridge fiber 13 without spreading the divergence angle in the process of propagating through the bridge fiber 13.
  • the plurality of beams constituting the beam bundle are more difficult to be reflected at the core-cladding boundary of the bridge fiber 13, and the propagation angles of the plurality of beams constituting the beam bundle propagate through the bridge fiber 13. It becomes more difficult to increase in the process. For this reason, in the synthesized light incident on the output fiber 14 from the bridge fiber 13, a high NA component becomes even less likely to occur.
  • the GI fiber 12- In order to collimate the beam incident on the GI fiber 12-i from the input fiber 11-i, when the beam is focused near the center of the incident end face of the GI fiber 12-i, the GI fiber 12- The length L0 of i may be set to k ⁇ P0 / 4 (k is an arbitrary odd number).
  • P0 is the pitch length of the GI fiber 12-i.
  • the combiner 1 (1) a configuration in which a beam incident on the GI fiber 12-i from the input fiber 11-i is collimated by the GI fiber 12-i, and (2) the GI fiber of the bridge fiber 13 is used.
  • a configuration in which the beam bundle is focused by the unit 131 so that a plurality of beams incident on the bridge fiber 13 from the GI fiber bundle 12 intersect at the center of the emission end face of the bridge fiber 13 is used in combination. Therefore, the plurality of beams constituting the beam bundle can reach the center of the exit end face of the bridge fiber 13 without being reflected at the core-cladding boundary of the bridge fiber 13.
  • the incident angle when the plurality of beams constituting the beam bundle is incident on the output fiber 14 from the bridge fiber 13 is smaller than tan ⁇ 1 ((D / 2) / L2).
  • D is a circle circumscribing the outer periphery of the cross section of the input fiber farthest from the center of the bridge fiber 13 to be connected among the input fibers 11-1 to 11-7, and the center of this circle is The diameter of a circle that coincides with the center position of the input fiber 11-1 (GI fiber 12-1) connected to a position at least overlapping with a portion near the center of the GI fiber portion 131, and L2 is the SI of the bridge fiber 13. This is the length of the fiber part 132.
  • the vicinity of the center of the GI fiber portion 131 refers to a position shifted from the center position of the GI fiber portion 131 and the center position of the GI fiber portion 131 by a value within ⁇ 5% of D / 2.
  • the incident angle when a plurality of beams constituting the beam bundle are incident on the output fiber 14 from the bridge fiber 13 is tan ⁇ 1 (0.2 / 40) ⁇ less than 0.3 °.
  • the refractive index is approximately 1.45
  • the bridge fiber 13 to the output fiber 14 Can be confined in the core 14a of the output fiber 14 without any leakage.
  • FIG. 2A is a perspective view of the combiner 2
  • FIG. 2B is a cross-sectional view of the combiner 2.
  • the combiner 2 is an optical component for generating combined light by combining light output from each of a plurality of light sources (not shown). As shown in FIG. A fiber 23 and an output fiber 24 are provided.
  • each input fiber 11-i constituting the input fiber bundle 11 is connected to the incident end face of the bridge fiber 13 via the GI fiber 12-i.
  • each input fiber 21-i constituting the input fiber bundle 21 is directly connected to the incident end face of the bridge fiber 23 (not via the GI fiber 12-i). Yes.
  • the combiner 2 is configured in the same manner as the combiner 1 according to the first embodiment except for the above differences. That is, the input fiber bundle 21, the bridge fiber 23, and the output fiber 24 included in the combiner 2 are the same as the input fiber bundle 11, the bridge fiber 13, and the output fiber 14 included in the combiner 1 according to the first embodiment, respectively. It is configured.
  • the bridge fiber 23 includes a GI fiber portion 231 that focuses the beam bundle incident from the input fiber bundle 21. Accordingly, the plurality of beams constituting the beam bundle are hardly reflected at the core-cladding boundary of the bridge fiber 23, and the propagation angles of the plurality of beams constituting the beam bundle increase in the process of propagating through the bridge fiber 23. It becomes difficult to do. For this reason, it is difficult for a high NA component to occur in the combined light incident on the output fiber 24 from the bridge fiber 23. That is, according to the present embodiment, it is possible to realize the combiner 2 that is excellent in low loss and reliability as compared with the case where the bridge fiber 23 does not include the GI fiber portion 231.
  • the combiners 1 and 2 which concern on each embodiment mentioned above can be utilized in various laser apparatuses.
  • the combiners 1 and 2 according to the above-described embodiments each include the plurality of pump lights as the excitation light. It can be used as an excitation combiner PC for synthesizing laser beams output from each of the laser diodes LD1 to LD6.
  • the combiners 1 and 2 according to the above-described embodiments each output the plurality of fiber lasers FL1 to FL6 as output light.
  • the combiner according to the present embodiment has an input fiber bundle composed of a plurality of input fibers, and a GI fiber portion on which the beam bundle emitted from the input fiber bundle is incident, and the diameter of the exit end face is smaller than the diameter of the entrance end face A bridge fiber, and the GI fiber portion focuses the beam bundle emitted from the input fiber bundle.
  • the GI fiber portion focuses the beam bundle so that a plurality of beams emitted from the input fiber bundle intersect at or near the center of the exit end face of the bridge fiber. It is preferable.
  • the combiner according to the present embodiment further includes an output fiber on which the beam bundle emitted from the bridge fiber is incident, and the GI fiber portion has the input fiber at or near the center of the incident end face of the output fiber. It is preferable to focus the beam bundle so that a plurality of beams emitted from the bundle intersect.
  • the output fiber includes a core and a clad covering the outer surface of the core, and at least the core at the incident end surface of the output fiber and the core at the output end surface of the bridge fiber are fused. It is preferable that it is worn.
  • the bridge fiber further includes an SI fiber portion whose incident end face is connected to the exit end face of the GI fiber portion, and the SI fiber section gradually increases as the core diameter approaches the exit end face. It is preferable that the beam bundle including the reduced diameter portion and focused by the GI fiber portion propagates through the core of the SI fiber portion.
  • the exit end face of the GI fiber portion and the entrance end face of the SI fiber portion are fusion-connected.
  • the combiner according to the present embodiment is a GI fiber interposed between at least one input fiber constituting the input fiber bundle and the bridge fiber, and reduces a divergence angle of a beam emitted from the input fiber.
  • the GI fiber collimates a beam emitted from the at least one input fiber.
  • the bridge fiber further includes an SI fiber portion whose incident end face is connected to the exit end face of the GI fiber portion, and the SI fiber section gradually increases as the core diameter approaches the exit end face.
  • the beam bundle including the reduced diameter portion and focused by the GI fiber portion propagates through the core of the SI fiber portion, and the maximum incident angle that can be received by the output fiber is tan ⁇ 1 ((( It is preferred that it is larger than D / 2) / L).
  • D is a circle circumscribing the outer periphery of the cross section of the input fiber furthest away from the center of the bridge fiber, and the input is connected to a position where the center at least overlaps with a part near the center of the GI fiber portion.
  • the diameter of the circle coincident with the center position of the fiber, and L is the length of the SI fiber portion of the bridge fiber.
  • the combiner according to the present embodiment further includes an output fiber on which the beam bundle emitted from the bridge fiber is incident, and the bridge fiber further includes an SI fiber portion having an incident end face connected to the exit end face of the GI fiber portion.
  • the SI fiber part includes a reduced diameter part that gradually decreases as the core diameter approaches the output end face, and the beam bundle focused by the GI fiber part propagates through the core of the SI fiber part,
  • the maximum value of the incident angle that can be received by the output fiber is preferably larger than tan ⁇ 1 ((D / 2) / L).
  • D is a circle circumscribing the outer periphery of the cross section of the input fiber furthest away from the center of the bridge fiber, and the input is connected to a position where the center at least overlaps with a part near the center of the GI fiber portion
  • the diameter of the circle coincident with the center position of the fiber, and L is the length of the SI fiber portion of the bridge fiber.
  • another optical fiber is fused and connected to the exit end face of the bridge fiber, or the exit end face of the bridge fiber is flat.
  • a laser apparatus including the combiner and a plurality of laser light sources, and combining the laser beams output from the plurality of laser light sources by the combiner is also included in the category of the present embodiment.
  • a laser device for example, (1) a fiber that includes the combiner (excitation combiner) and a plurality of laser diodes, and combines the laser light output from the plurality of laser diodes as excitation light by the combiner.
  • a laser or (2) a fiber laser system that includes the combiner (output combiner) and a plurality of fiber lasers, and synthesizes laser light output from the plurality of fiber lasers as output light by the combiner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

従来よりも低損失性及び信頼性に優れたコンバイナを実現する。コンバイナ(1)は、入力ファイバ束(11)と、ブリッジファイバ(13)と、出力ファイバ(14)と、を備えている。ブリッジファイバ(13)は、入力ファイバ束(11)から出射したビーム束を集束するGIファイバ部(131)を含んでいる。

Description

コンバイナ、及び、レーザ装置
 本発明は、複数の光源の各々から出力された光を合成するコンバイナに関する。また、そのようなコンバイナを備えたレーザ装置に関する。
 複数のレーザ光を合成することによって、ハイパワーなレーザ光を得るための光部品として、コンバイナが広く用いられている。例えば、複数のレーザダイオードを備えたファイバレーザにおいては、各レーザダイオードから出力されたレーザ光を合成するために、コンバイナ(励起コンバイナ)が用いられる。この場合、コンバイナにて得られた合成光は、励起光としてファイバ共振器に入力される。また、複数のファイバレーザを備えたファイバレーザシステムにおいては、各ファイバレーザから出力されたレーザ光を合成するために、コンバイナ(出力コンバイナ)が用いられている。この場合、コンバイナにて得られた合成光は、出力光として加工対象物に照射される。
 ファイバレーザシステムの出力コンバイナは、パワーの高いレーザ光を合成することから、発熱を抑制するために、光損失が小さいことが要求される。また、出力コンバイナにて得られる合成光についても、発散角が小さくビームプロファイルが良好であることなどが求められる。
 ファイバレーザシステムの出力コンバイナとして利用される従来のコンバイナ4を図4に示す。図4において、(a)は、コンバイナ4の斜視図であり、(b)は、コンバイナ4の断面図である。コンバイナ4は、複数の入力ファイバ41-1~41-7からなる入力ファイバ束41と、ブリッジファイバ43と、出力ファイバ44とを備えている。入力ファイバ束41を介してコンバイナ4に入力されたレーザ光は、ブリッジファイバ43において合成され、出力ファイバ44を介して外部に出力される。
 ブリッジファイバ43においては、出力ファイバ44が接続される出射端面におけるコア径を、入力ファイバ束41が接続される入射端面におけるコア径よりも小さくする必要がある。このため、ブリッジファイバ43には、出射端面に近づくに従ってコア径が次第に小さくなる縮径部が設けられる。ブリッジファイバ43の縮径比=(入射端面におけるコア径)/(出射端面におけるコア径)を大きくするほど、ブリッジファイバ43から出力ファイバ44に入射する合成光のパワー密度を大きくすることができる。その結果、より加工能力の高いファイバレーザシステムを実現することが可能になる。
 ただし、入力ファイバ束41を構成する各入力ファイバ束からブリッジファイバ43に入射したビームは、ブリッジファイバ43の縮径部を伝播する過程で、ブリッジファイバ43のコア-クラッド境界にて反射され、その伝播角を増大させる。このとき、ブリッジファイバ43の縮径比を大きくするほど、伝播角の増大度が大きくなる。したがって、ブリッジファイバ43の縮径比を大きくするほど、ブリッジファイバ43から出力ファイバ44に入射する合成光における高NA(Numerical Aperture)成分が増加する。ブリッジファイバ43から出力ファイバ44に入射する合成光のうち、出力ファイバ44のNAを超えるNAを持つ成分は、出力ファイバ44のコア44aに閉じ込めることができないので、出力ファイバ44のコア44aから漏出して、出力ファイバ44の被覆等を発熱させる。その結果、コンバイナ4の低損失性及び信頼性が損なわれる。
 このような問題を解消することを目的として開発されたコンバイナとして、特許文献1に記載の光ファイバコンバイナ(以下、「コンバイナ5」と記載)が知られている。特許文献1に記載のコンバイナ5を図5に示す。図5において、(a)は、コンバイナ5の斜視図であり、(b)は、コンバイナ5の断面図である。コンバイナ5は、複数の入力ファイバ51-1~51~7からなる入力ファイバ束51と、複数のGI(Graded Index)ファイバ52-1~52-7からなるGIファイバ束52と、ブリッジファイバ53と、出力ファイバ54とを備えている。従来のコンバイナ4との相違点は、入力ファイバ束51を構成する各入力ファイバとブリッジファイバ53との間にGIファイバが挿入されている点である。このGIファイバは、入力ファイバから入射したビームの発散角を低下させるGRINレンズとして機能する。これにより、ブリッジファイバ53から出力ファイバ54に入射する合成光のパワー密度を低下させることなく、ブリッジファイバ53から出力ファイバ54に入射する合成光における高NA成分を減少させることができる。
日本国公開特許公報「特開2013-190714号」
 しかしながら、特許文献1に記載のコンバイナ5においても、GIファイバ束52を構成する各GIファイバからブリッジファイバ53に入射したビームが、ブリッジファイバ53の縮径部を伝播する過程で伝播角を増大させる点に変わりはない。特に、GIファイバ束52を構成するGIファイバ52-1~52-7のうち、周辺部に配置されたGIファイバ52-2~52-7(中心部に配置されたGIファイバ52-1の周囲に配置されたGIファイバ52-2~52-7)からブリッジファイバ53に入射したビームは、図5に示したように、ブリッジファイバ53のコア-クラッド境界において繰り返し反射されるため、ブリッジファイバ53から出力ファイバ54に入射する合成光において高NA成分を増加させる要因となる。ブリッジファイバ53から出力ファイバ54に入射する合成光において高NA成分が増加すると、コンバイナ5の低損失性及び信頼性が損なわれることは上述した通りである。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、従来よりも低損失性及び信頼性に優れたコンバイナを実現することにある。
 上記の課題を解決するために、本発明の一態様に係るコンバイナは、複数の入力ファイバからなる入力ファイバ束と、上記入力ファイバ束から出射したビーム束が入射するGIファイバ部を有し、出射端面の直径が入射端面の直径よりも小さいブリッジファイバと、を備え、上記GIファイバ部は、上記入力ファイバ束から出射したビーム束を集束する、ことを特徴とする。
 本発明の一態様によれば、従来のコンバイナと比べて、ブリッジファイバから出力ファイバに入射する合成光における高NA成分が生じ難くなる。したがって、従来のコンバイナよりも低損失性及び信頼性に優れたコンバイナを実現することができる。
本発明の第1の実施形態に係るコンバイナの構成を示す図である。(a)は、そのコンバイナの斜視図であり、(b)は、そのコンバイナの断面図である。 本発明の第2の実施形態に係るコンバイナの構成を示す図である。(a)は、そのコンバイナの斜視図であり、(b)は、そのコンバイナの断面図である。 図1又は図2に示すコンバイナの利用例を示す図である。(a)は、そのコンバイナを励起コンバイナとして備えたファイバレーザのブロック図であり、(b)は、そのコンバイナを出力コンバイナとして備えたファイバレーザシステムのブロック図である。 従来のコンバイナの構成を示す図である。(a)は、そのコンバイナの斜視図であり、(b)は、そのコンバイナの断面図である。 従来のコンバイナの構成を示す図である。(a)は、そのコンバイナの斜視図であり、(b)は、そのコンバイナの断面図である。
 本発明の実施形態について、図面に基づいて説明すれば、以下のとおりである。なお、以下の説明において、GIファイバは、GI(Graded Index)型の光ファイバのことを指し、SIファイバは、SI(Step Index)型の光ファイバのことを指す。
 〔第1の実施形態〕
 本発明の第1の実施形態に係るコンバイナ1の構成について、図1を参照して説明する。図1において、(a)は、コンバイナ1の斜視図であり、(b)は、コンバイナ1の断面図である。
 コンバイナ1は、複数の光源(不図示)の各々から出力された光を合成することによって、合成光を生成するための光部品であり、図1に示すように、入力ファイバ束11と、GIファイバ束12と、ブリッジファイバ13と、出力ファイバ14と、を備えている。
 入力ファイバ束11は、複数の入力ファイバ11-1~11-nからなる(nは、2以上の自然数)。特に、本実施形態においては、入力ファイバ束11が、1つの入力ファイバ11-1と、入力ファイバ11-1の周りを取り囲むように配置された6つの入力ファイバ11-2~11-7と、からなる。各入力ファイバ11-i(i=1~7)は、SIファイバであり、円柱状のコア11aと、コア11aの外側面を覆う円筒状のクラッド11bと、を備えている。コア11a及びクラッド11bは、石英ガラスを主成分として構成されており、コア11aとクラッド11bとの屈折率差は、コア11aに添加されたアップドーパント(屈折率を上昇させるためのドーパント)及びクラッド11bに添加されたダウンドーパント(屈折率を低下させるためのドーパント)の一方又は両方により与えられている。
 なお、各入力ファイバ11-iは、更に、クラッド11bの外側面を覆う円筒状の樹脂被覆(不図示)を備えていてもよい。ただし、各入力ファイバ11-iの出射端面近傍においては、図1に示すように、樹脂被覆が除去されており、クラッド11-ibの外側面が露出している。これは、各入力ファイバ11-iの出射端面を対応するGIファイバ12-iの入射端面に融着するためである。
 GIファイバ束12は、複数のGIファイバ12-1~12-nからなる。特に、本実施形態においては、GIファイバ束12が、1つのGIファイバ12-1と、GIファイバ12-1の周りを取り囲むように配置された6つのGIファイバ12-2~12-7と、からなる。各GIファイバ12-i(i=1~7)は、直径が対応する入力ファイバ11-iの直径と等しい円柱形状を有する。各GIファイバ12-iの入射端面は、対応する入力ファイバ11-iの出射端面に接続(例えば、融着接続)されている。例えば、GIファイバ12-1の入射端面は、対応する入力ファイバ11-1の出射端面に接続されている。各GIファイバ12-iは、対応する入力ファイバ11-iから入射したビームの発散角を小さくするGRINレンズとして機能する。なお、各GIファイバ12-iを、入射したビームの発散角を小さくするGRINレンズとして機能させるためには、仮にビームを定常波として考えると、入射端において「節」となるビームの「節」に出射端が位置しないように、GIファイバ12-iの長さL0を、m×P0/2(mは1以上の任意の整数)以外の値に設定すればよい。ここで、P0は、GIファイバ12-iのピッチ長(ビーム径変動周期×2)である。
 ブリッジファイバ13は、GIファイバ部131とSIファイバ部132とを備えている。GIファイバ部131は、直径がGIファイバ12-1~12-7の出射端面の外接円の直径Dよりも大きい円柱形状を有する。GIファイバ部131の入射端面には、GIファイバ12-1~12-7の出射端面が接続(例えば、融着接続)されている。GIファイバ部131は、GIファイバ束12から入射したビーム束を集束するGRINレンズとして機能する。なお、GIファイバ部131を、入射したビーム束を集束する(入射したビームの発散角を大きくする)GRINレンズとして機能させるためには、入射端において平行束であるビーム束が出射端において収斂束となるように(換言すれば、仮にビームを定常波として考えると、入射端において「腹」となるビームの「腹」から「節」までの区間に出射端が位置するように)、GIファイバ部131の長さL1を、m×P1/2<L1<m×P1/2+P1/4(mは0以上の任意の自然数)に設定すればよい。ここで、P1は、GIファイバ部131のピッチ長である。
 SIファイバ部132は、入射端面の直径がGIファイバ部131の直径と等しく、出射端面の直径がGIファイバ部131の直径よりも小さいSIファイバであり、断面が円形状のコア132aと、コア132aの外側面を覆う、断面が円環形状のクラッド132bと、を備えている。コア132a及びクラッド132bは、石英ガラスを主成分として構成されており、コア132aとクラッド132bとの屈折率差は、コア132aに添加されたアップドーパント又はクラッド132bに添加されたダウンドーパントにより与えられている。SIファイバ部132のうち、入射端面を含む区間132cは、コア径及びクラッド径が一定の円柱形状を有しているのに対して、出射端面を含む区間132dは、出射端面に近づくに従ってコア径及びクラッド径が次第に小さくなる円錐台形状を有している。区間132dは、「縮径部」と呼ばれることもある。SIファイバ部132の入射端面は、GIファイバ部131の出射端面と接続(例えば、融着接続)されている。なお、クラッド132bは、省略されていてもよい。この場合、コア132aの外側面を覆う空気がクラッド(エアクラッド)として機能する。
 出力ファイバ14は、SIファイバであり、円柱状のコア14aと、コア14aの外側面を覆う円筒状のクラッド14bと、を備えている。コア14a及びクラッド14bは、石英ガラスを主成分として構成されており、コア14aとクラッド14bとの屈折率差は、コア14aに添加されたアップドーパント又はクラッド14bに添加されたダウンドーパントにより与えられている。出力ファイバ14のコア径は、出射端面におけるブリッジファイバ13のコア径と等しい。出力ファイバ14の入射端面におけるコア14aは、ブリッジファイバ13の出射端面におけるコア132aに接続(例えば、融着接続)されており、出力ファイバ14の入射端面におけるクラッド14bは、ブリッジファイバ13の出射端面におけるクラッド132bに接続(例えば、融着接続)されている。
 なお、出力ファイバ14は、更に、クラッド14bの外側面を覆う円筒状の樹脂被覆(不図示)を備えていてもよい。ただし、出力ファイバ14の入射端面近傍においては、図1に示すように、樹脂被覆が除去されており、クラッド14bの外側面が露出している。これは、出力ファイバ14の入射端面を対応するブリッジファイバ13の出射端面に融着するためである。
 以上のように、本実施形態に係るコンバイナ1において、ブリッジファイバ13は、GIファイバ束12から入射したビーム束を集束するGIファイバ部131を含んでいる。GIファイバ部131は、その屈折率がGIファイバ部131の内側に向かうにつれて大きくなり、その屈折率がGIファイバ部131の外側に向かうにつれて小さくなるという性質を有する。また、GIファイバ部131は、その内外方向における屈折率の変化率(傾き)がGIファイバ部131の外側に向かうにつれ大きくなるという性質を有する。このため、GIファイバ部131の内側ほどビームが該ビームの伝搬方向に対して相対的に小さく曲げられ、GIファイバ部131の外側ほどビームが該ビームの伝搬方向に対して相対的に大きく曲げられる。したがって、上記ビーム束を構成する複数のビームは、GIファイバ部131に入射した後、以下の通り伝搬する。すなわち、GIファイバ束12を構成するGIファイバ12-1~12-7のうち、周辺部に配置されたGIファイバ12-2~12-7からブリッジファイバ13に入射したビームは、GIファイバ部131内において、ブリッジファイバ13の内側に向かって該ビームの伝搬方向に対して相対的に大きく曲げられた後、出力ファイバ14の入射端面に向かって直線状に伝搬する。また、GIファイバ束12を構成するGIファイバ12-1~12-7のうち、中心部に配置されたGIファイバ12-1からブリッジファイバ13に入射したビームは、GIファイバ部131内において、ブリッジファイバ13の内側に向かって該ビームの伝搬方向に対して相対的に小さく曲げられるか、もしくは直線状に伝搬された後、出力ファイバ14の入射端面に向かって直線状に伝搬する。以上より、上記ビーム束を構成する複数のビームは、GIファイバ部131における上記の光屈折作用によって、GIファイバ部131から出射した後は、ブリッジファイバ13のコア-クラッド境界に到達しない様、出力ファイバ14の入射端面に向かって直線状に伝搬し易くなる。このため、ブリッジファイバ13のコア-クラッド境界で反射され難くなり、上記ビーム束を構成する複数のビームの伝搬角は、ブリッジファイバ13を伝搬する過程で増加し難くなる。このため、ブリッジファイバ13から出力ファイバ14に入射する合成光において、高NA成分が生じ難くなる。すなわち、本実施形態によれば、ブリッジファイバ13がGIファイバ部131を含んでいない場合と比べて、低損失性及び信頼性に優れたコンバイナ1を実現することができる。
 なお、本実施形態に係るコンバイナ1において、ブリッジファイバ13のGIファイバ部131は、ブリッジファイバ13の出射端面の中心において、GIファイバ束12から入射した複数のビームが交差するように、ビーム束を集束させることが好ましい。これにより、上記ビーム束を構成する複数のビームは、ブリッジファイバ13のコア-クラッド境界で更に反射され難くなり、上記ビーム束を構成する複数のビームの伝搬角は、ブリッジファイバ13を伝搬する過程で更に増加し難くなる。このため、ブリッジファイバ13から出力ファイバ14に入射する合成光において、高NA成分が更に生じ難くなる。
 なお、ブリッジファイバ13の出射端面の中心において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束させるためには、GIファイバ部131の長さL1及びSIファイバ部132の長さL2を、関係式L2=1/(n・g・tan(g・L1))を満たすように設定すればよい。ここで、nは、SIファイバ部132に対するGIファイバ部131の中心部の比屈折率であり、gは、GIファイバ部131の勾配係数である。GIファイバ部131の勾配係数gは、GIファイバ部131のピッチ長P1を用いてg=2π/P1により定義される。また、ここでは、n≒1とすることもできるので、上記関係式は、L2=1/(g・tan(g・L1))と簡単化することもできる。例えば、P1=40mmの場合、g=0.157となるので、L1=2mm、L2=19.6mmとすれば、簡単化した関係式が満たされる。すなわち、ブリッジファイバ13の出射端面の中心において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束させることができる。
 なお、ブリッジファイバ13の出射端面の中心において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束する構成に代えて、以下のような構成を採用しても同様の効果が得られる。(1)ブリッジファイバ13の出射端面の中心近傍において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束する構成。(2)出力ファイバ14の入射端面の中心において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束する構成。(3)出力ファイバ14の入射端面の中心近傍において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束する構成。ここで、ブリッジファイバ13の出射端面の中心近傍とは、当該中心からの距離が、ブリッジファイバ13の径方向に関して、ブリッジファイバ13の入射端面(又はブリッジファイバ13の最大径部分)の半径と比べて十分に小さく(例えば、1/10以下)、ブリッジファイバ13の軸方向に関して、ブリッジファイバ13のSIファイバ部132の長さL2と比べて十分に小さい(例えば、1/10以下)点の集合のことを指す。また、出力ファイバ14の入射端面の中心近傍とは、出力ファイバ14の入射端面において該入射端面の中心からの距離が該入射端面の半径と比べて十分に小さい(例えば、1/10以下)点の集合のことを指す。
 また、本実施形態に係るコンバイナ1においては、各入力ファイバ11-iとブリッジファイバ13との間に、該入力ファイバ11-iから入射したビームの発散角を小さくするGIファイバ12-iが介在している。したがって、GIファイバ束12からブリッジファイバ13に入射したビーム束は、ブリッジファイバ13を伝搬する過程で広がり難くなる。その結果、上記ビーム束を構成する複数のビームは、ブリッジファイバ13のコア-クラッド境界で更に反射され難くなり、上記ビーム束を構成する複数のビームの伝搬角は、ブリッジファイバ13を伝搬する過程で更に増加し難くなる。このため、ブリッジファイバ13から出力ファイバ14に入射する合成光において、高NA成分が更に生じ難くなる。
 なお、本実施形態に係るコンバイナ1において、各入力ファイバ11-iとブリッジファイバ13との間に介在するGIファイバ12-iは、該入力ファイバ11-iから入射したビームをコリメートする(発散角を0°にする)ことが好ましい。これにより、GIファイバ束12からブリッジファイバ13に入射したビーム束は、ブリッジファイバ13を伝搬する過程で発散角が広がることなくブリッジファイバ13の出射端面に到達する。その結果、上記ビーム束を構成する複数のビームは、ブリッジファイバ13のコア-クラッド境界でより一層反射され難くなり、上記ビーム束を構成する複数のビームの伝搬角は、ブリッジファイバ13を伝搬する過程でより一層増加し難くなる。このため、ブリッジファイバ13から出力ファイバ14に入射する合成光において、高NA成分がより一層生じ難くなる。
 なお、入力ファイバ11-iからGIファイバ12-iに入射したビームをコリメートするためには、当該ビームがGIファイバ12-iの入射端面の中心付近に集光されている場合、GIファイバ12-iの長さL0を、k×P0/4(kは任意の奇数)に設定すればよい。ここで、P0は、GIファイバ12-iのピッチ長である。
 本実施形態に係るコンバイナ1においては、(1)GIファイバ12-iによって、入力ファイバ11-iからGIファイバ12-iに入射したビームをコリメートする構成と、(2)ブリッジファイバ13のGIファイバ部131によって、ブリッジファイバ13の出射端面の中心において、GIファイバ束12からブリッジファイバ13に入射した複数のビームが交差するように、ビーム束を集束する構成と、が併用されている。したがって、上記ビーム束を構成する複数のビームを、ブリッジファイバ13のコア-クラッド境界で反射されることなく、ブリッジファイバ13の出射端面の中心に到達させることができる。この場合、上記ビーム束を構成する複数のビームがブリッジファイバ13から出力ファイバ14に入射する際の入射角は、tan-1((D/2)/L2)よりも小さくなる。ここで、Dは、入力ファイバ11-1~11-7のうち、接続されるブリッジファイバ13の中心から最も離れた入力ファイバの断面の外周に外接する円であって、この円の中心が、GIファイバ部131の中心近傍の一部と少なくとも重なる位置に接続される入力ファイバ11-1(GIファイバ12-1)の中心位置と一致する円の直径であり、L2は、ブリッジファイバ13のSIファイバ部132の長さである。ここで、GIファイバ部131の中心近傍とは、GIファイバ部131の中心位置およびGIファイバ部131の中心位置から、D/2の±5%以内の値だけずれた位置を指す。例えば、D/2=0.2mm、L2=40mmである場合、上記ビーム束を構成する複数のビームがブリッジファイバ13から出力ファイバ14に入射する際の入射角は、tan-1(0.2/40)≒0.3°よりも小さくなる。屈折率≒1.45とした場合、この入射角0.3°は、NA=1.45・sin(0.3°)≒0.007に相当し、通常のSIファイバのNAと比べて十分に小さい。この場合、出力ファイバ14が、受光可能な(閉じ込め可能な)入射角の最大値がtan-1((D/2)/L2)よりも大きいSIファイバであれば、ブリッジファイバ13から出力ファイバ14に入射したビームを、もれなく出力ファイバ14のコア14aに閉じ込めることができる。
 〔第2の実施形態〕
 本発明の第2の実施形態に係るコンバイナ2の構成について、図2を参照して説明する。図2において、(a)は、コンバイナ2の斜視図であり、(b)は、コンバイナ2の断面図である。
 コンバイナ2は、複数の光源(不図示)の各々から出力された光を合成することによって、合成光を生成するための光部品であり、図2に示すように、入力ファイバ束21と、ブリッジファイバ23と、出力ファイバ24と、を備えている。
 第1の実施形態に係るコンバイナ1と第2の実施形態に係るコンバイナ2との相違点は、以下のとおりである。すなわち、第1の実施形態に係るコンバイナ1においては、入力ファイバ束11を構成する各入力ファイバ11-iがGIファイバ12-iを介してブリッジファイバ13の入射端面に接続されているのに対して、第2の実施形態に係るコンバイナ2においては、入力ファイバ束21を構成する各入力ファイバ21-iが直接(GIファイバ12-iを介さずに)ブリッジファイバ23の入射端面に接続されている。
 コンバイナ2は、上記の相違点を除いて第1の実施形態に係るコンバイナ1と同様に構成されている。すなわち、コンバイナ2が備える入力ファイバ束21、ブリッジファイバ23、及び出力ファイバ24は、それぞれ、第1の実施形態に係るコンバイナ1が備える入力ファイバ束11、ブリッジファイバ13、及び出力ファイバ14と同様に構成されている。
 本実施形態に係るコンバイナ2においても、ブリッジファイバ23は、入力ファイバ束21から入射したビーム束を集束するGIファイバ部231を含んでいる。したがって、上記ビーム束を構成する複数のビームは、ブリッジファイバ23のコア-クラッド境界で反射され難くなり、上記ビーム束を構成する複数のビームの伝搬角は、ブリッジファイバ23を伝搬する過程で増加し難くなる。このため、ブリッジファイバ23から出力ファイバ24に入射する合成光において、高NA成分が生じ難くなる。すなわち、本実施形態によれば、ブリッジファイバ23がGIファイバ部231を含んでいない場合と比べて、低損失性及び信頼性に優れたコンバイナ2を実現することができる。
 〔利用例〕
 上述した各実施形態に係るコンバイナ1,2は、各種レーザ装置において利用することができる。例えば、図3の(a)に示す複数のレーザダイオードLD1~LD6を備えたファイバレーザFLをレーザ装置として用いた場合において、上述した各実施形態に係るコンバイナ1,2は、励起光として上記複数のレーザダイオードLD1~LD6の各々から出力されたレーザ光を合成する励起コンバイナPCとして利用することができる。また、図3の(b)に示す複数のファイバレーザFL1~FL6を備えたファイバレーザシステムFLSにおいて、上述した各実施形態に係るコンバイナ1,2は、出力光として上記複数のファイバレーザFL1~FL6の各々から出力されたレーザ光を合成する出力コンバイナOCとして利用することができる。
 〔まとめ〕
 本実施形態に係るコンバイナは、複数の入力ファイバからなる入力ファイバ束と、上記入力ファイバ束から出射したビーム束が入射するGIファイバ部を有し、出射端面の直径が入射端面の直径よりも小さいブリッジファイバと、を備え、上記GIファイバ部は、上記入力ファイバ束から出射したビーム束を集束する、ことを特徴とする。
 本実施形態に係るコンバイナにおいて、上記GIファイバ部は、上記ブリッジファイバの出射端面の中心又は中心近傍において、上記入力ファイバ束から出射した複数のビームが交差するように、上記ビーム束を集束する、ことが好ましい。また、本実施形態に係るコンバイナは、上記ブリッジファイバから出射した上記ビーム束が入射する出力ファイバを更に備え、上記GIファイバ部は、上記出力ファイバの入射端面の中心又は中心近傍において、上記入力ファイバ束から出射した複数のビームが交差するように、上記ビーム束を集束する、ことが好ましい。
 本実施形態に係るコンバイナにおいて、上記出力ファイバは、コアと、上記コアの外側面を覆うクラッドとを備え、上記出力ファイバの入射端面におけるコアと、上記ブリッジファイバの出射端面におけるコアとが少なくとも融着されている、ことが好ましい。
 本実施形態に係るコンバイナにおいて、上記ブリッジファイバは、入射端面が上記GIファイバ部の出射端面に接続されたSIファイバ部を更に有し、上記SIファイバ部は、コア径が出射端面に近づくに従い次第に小さくなる縮径部を含み、上記GIファイバ部にて集束されたビーム束は、上記SIファイバ部のコアを伝搬する、ことが好ましい。
 本実施形態に係るコンバイナにおいて、上記GIファイバ部の出射端面と上記SIファイバ部の入射端面とが融着接続されている、ことが好ましい。
 本実施形態に係るコンバイナは、上記入力ファイバ束を構成する少なくとも1つの入力ファイバと上記ブリッジファイバとの間に介在するGIファイバであって、該入力ファイバから出射されるビームの発散角を小さくするGIファイバを更に備えている、ことが好ましい。
 本実施形態に係るコンバイナにおいて、上記GIファイバは、上記少なくとも1つの入力ファイバから出射されるビームをコリメートする、ことが好ましい。
 本実施形態に係るコンバイナにおいて、上記ブリッジファイバは、入射端面が上記GIファイバ部の出射端面に接続されたSIファイバ部を更に有し、上記SIファイバ部は、コア径が出射端面に近づくに従い次第に小さくなる縮径部を含み、上記GIファイバ部にて集束されたビーム束は、上記SIファイバ部のコアを伝搬し、上記出力ファイバが受光可能な入射角の最大値は、tan-1((D/2)/L)よりも大きい、ことが好ましい。ここで、Dは、上記ブリッジファイバの中心から最も離れた入力ファイバの断面の外周に外接する円であって、中心が上記GIファイバ部の中心近傍の一部と少なくとも重なる位置に接続される入力ファイバの中心位置と一致する円の直径であり、L(発明を実施するための形態における「L2」に相当)は、上記ブリッジファイバのSIファイバ部の長さである。
 本実施形態に係るコンバイナにおいて、上記ブリッジファイバから出射した上記ビーム束が入射する出力ファイバを更に備え、上記ブリッジファイバは、入射端面が上記GIファイバ部の出射端面に接続されたSIファイバ部を更に有し、上記SIファイバ部は、コア径が出射端面に近づくに従い次第に小さくなる縮径部を含み、上記GIファイバ部にて集束されたビーム束は、上記SIファイバ部のコアを伝搬し、上記出力ファイバが受光可能な入射角の最大値は、tan-1((D/2)/L)よりも大きい、ことが好ましい。ここで、Dは、上記ブリッジファイバの中心から最も離れた入力ファイバの断面の外周に外接する円であって、中心が上記GIファイバ部の中心近傍の一部と少なくとも重なる位置に接続される入力ファイバの中心位置と一致する円の直径であり、L(発明を実施するための形態における「L2」に相当)は、上記ブリッジファイバのSIファイバ部の長さである。
 本実施形態に係るコンバイナにおいて、上記ブリッジファイバの出射端面に他の光ファイバが融着接続されているか、又は、上記ブリッジファイバの出射端面が平坦である、ことが好ましい。
 なお、上記コンバイナと、複数のレーザ光源とを備え、上記複数のレーザ光源から出力されたレーザ光を上記コンバイナにて合成する、ことを特徴とするレーザ装置も本実施形態の範疇に含まれる。このようなレーザ装置としては、例えば、(1)上記コンバイナ(励起コンバイナ)と、複数のレーザダイオードを備え、励起光として上記複数のレーザダイオードから出力されたレーザ光を上記コンバイナにて合成するファイバレーザ、又は、(2)上記コンバイナ(出力コンバイナ)と、複数のファイバレーザを備え、出力光として上記複数のファイバレーザから出力されたレーザ光を上記コンバイナにて合成するファイバレーザシステムが挙げられる。
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 1    コンバイナ(第1の実施形態)
 11    入力ファイバ束
 11-1~11-7 入力ファイバ
 12    GIファイバ束
 12-1~12-7 GIファイバ
 13    ブリッジファイバ
 131    GIファイバ部
 132    SIファイバ部
 14    出力ファイバ
 2    コンバイナ(第2の実施形態)
 21    入力ファイバ束
 21-1~21-7 入力ファイバ
 23    ブリッジファイバ
 231    GIファイバ部
 232    SIファイバ部
 24    出力ファイバ

Claims (12)

  1.  複数の入力ファイバからなる入力ファイバ束と、
     上記入力ファイバ束から出射したビーム束が入射するGIファイバ部を有し、出射端面の直径が入射端面の直径よりも小さいブリッジファイバと、を備え、
     上記GIファイバ部は、上記入力ファイバ束から出射したビーム束を集束する、
    ことを特徴とするコンバイナ。
  2.  上記GIファイバ部は、上記ブリッジファイバの出射端面の中心又は中心近傍において、上記入力ファイバ束から出射した複数のビームが交差するように、上記ビーム束を集束する、
    ことを特徴とする請求項1に記載のコンバイナ。
  3.  上記ブリッジファイバから出射した上記ビーム束が入射する出力ファイバを更に備え、
     上記GIファイバ部は、上記出力ファイバの入射端面の中心又は中心近傍において、上記入力ファイバ束から出射した複数のビームが交差するように、上記ビーム束を集束する、
    ことを特徴とする請求項1に記載のコンバイナ。
  4.  上記出力ファイバは、コアと、上記コアの外側面を覆うクラッドとを備え、
     上記出力ファイバの入射端面におけるコアと、上記ブリッジファイバの出射端面におけるコアとが少なくとも融着されている、
    ことを特徴とする請求項3に記載のコンバイナ。
  5.  上記ブリッジファイバは、入射端面が上記GIファイバ部の出射端面に接続されたSIファイバ部を更に有し、
     上記SIファイバ部は、コア径が出射端面に近づくに従い次第に小さくなる縮径部を含み、
     上記GIファイバ部にて集束されたビーム束は、上記SIファイバ部のコアを伝搬する、
    ことを特徴とする請求項1~4の何れか1項に記載のコンバイナ。
  6.  上記GIファイバ部の出射端面と上記SIファイバ部の入射端面とが融着接続されている、
    ことを特徴とする請求項5に記載のコンバイナ。
  7.  上記入力ファイバ束を構成する少なくとも1つの入力ファイバと上記ブリッジファイバとの間に介在するGIファイバであって、該入力ファイバから出射されるビームの発散角を小さくするGIファイバを更に備えている、
    ことを特徴とする請求項1~6の何れか1項に記載のコンバイナ。
  8.  上記GIファイバは、上記少なくとも1つの入力ファイバから出射されるビームをコリメートする、
    ことを特徴とする請求項7に記載のコンバイナ。
  9.  上記ブリッジファイバは、入射端面が上記GIファイバ部の出射端面に接続されたSIファイバ部を更に有し、
     上記SIファイバ部は、コア径が出射端面に近づくに従い次第に小さくなる縮径部を含み、
     上記GIファイバ部にて集束されたビーム束は、上記SIファイバ部のコアを伝搬し、
     上記入力ファイバ束を構成する入力ファイバのうち、上記ブリッジファイバの中心から最も離れた入力ファイバの断面の外周に外接する円であって、中心が上記GIファイバ部の中心近傍の一部と少なくとも重なる位置に接続される入力ファイバの中心位置と一致する円の直径をD、上記ブリッジファイバの上記SIファイバ部の長さをLとして、上記出力ファイバが受光可能な入射角の最大値は、tan-1((D/2)/L)よりも大きい、
    ことを特徴とする請求項3又は4に記載のコンバイナ。
  10.  上記ブリッジファイバから出射した上記ビーム束が入射する出力ファイバを更に備え、
     上記ブリッジファイバは、入射端面が上記GIファイバ部の出射端面に接続されたSIファイバ部を更に有し、
     上記SIファイバ部は、コア径が出射端面に近づくに従い次第に小さくなる縮径部を含み、
     上記GIファイバ部にて集束されたビーム束は、上記SIファイバ部のコアを伝搬し、
     上記入力ファイバ束を構成する入力ファイバのうち、上記ブリッジファイバの中心から最も離れた入力ファイバの断面の外周に外接する円であって、中心が上記GIファイバ部の中心近傍の一部と少なくとも重なる位置に接続される入力ファイバの中心位置と一致する円の直径をD、上記ブリッジファイバの上記SIファイバ部の長さをLとして、上記出力ファイバが受光可能な入射角の最大値は、tan-1((D/2)/L)よりも大きい、
    ことを特徴とする請求項1又は2に記載のコンバイナ。
  11.  上記ブリッジファイバの出射端面に他の光ファイバが融着接続されているか、又は、上記ブリッジファイバの出射端面が平坦である、
    ことを特徴とする請求項1~10の何れか1項に記載のコンバイナ。
  12.  請求項1~11の何れか1項に記載のコンバイナと、複数のレーザ光源とを備え、上記複数のレーザ光源から出力されたレーザ光を上記コンバイナにて合成する、
    ことを特徴とするレーザ装置。
PCT/JP2018/017450 2017-04-28 2018-05-01 コンバイナ、及び、レーザ装置 WO2018199339A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/608,004 US20210103101A1 (en) 2017-04-28 2018-05-01 Combiner and laser device
CN201880027210.6A CN110546540A (zh) 2017-04-28 2018-05-01 合成器以及激光装置
EP18791488.2A EP3617760A4 (en) 2017-04-28 2018-05-01 COMBINATOR AND LASER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089538 2017-04-28
JP2017089538A JP6456427B2 (ja) 2017-04-28 2017-04-28 コンバイナ、及び、レーザ装置

Publications (1)

Publication Number Publication Date
WO2018199339A1 true WO2018199339A1 (ja) 2018-11-01

Family

ID=63918929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017450 WO2018199339A1 (ja) 2017-04-28 2018-05-01 コンバイナ、及び、レーザ装置

Country Status (5)

Country Link
US (1) US20210103101A1 (ja)
EP (1) EP3617760A4 (ja)
JP (1) JP6456427B2 (ja)
CN (1) CN110546540A (ja)
WO (1) WO2018199339A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922395A4 (en) * 2019-02-05 2022-11-02 Fujikura Ltd. Structure, method for manufacturing structure, laser device, and laser system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892868A (en) * 1997-04-24 1999-04-06 Boeing North American, Inc. Fiber optic coupler combiner and process using same
JPH11121843A (ja) * 1997-10-20 1999-04-30 Mitsubishi Electric Corp 半導体レーザ励起固体レーザ増幅装置及び固体レーザ発振装置
JP2009271108A (ja) * 2008-04-30 2009-11-19 Mitsubishi Cable Ind Ltd 光コンバイナ及びその製造方法
JP2013190714A (ja) 2012-03-15 2013-09-26 Fujikura Ltd 光ファイバコンバイナ、及び、それを用いたレーザ装置
WO2014077069A1 (ja) * 2012-11-19 2014-05-22 富士電機株式会社 光合波装置
JP2017028185A (ja) * 2015-07-27 2017-02-02 株式会社フジクラ ファイバレーザ用光回路装置およびファイバレーザ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778729B (zh) * 2012-07-31 2014-10-22 清华大学 高光束质量信号光光纤合束器及其制作方法
GB2510370A (en) * 2013-01-31 2014-08-06 Gsi Group Ltd Fibre Optical Laser Combiner
JP5814314B2 (ja) * 2013-08-09 2015-11-17 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法
JP5908559B1 (ja) * 2014-10-17 2016-04-26 株式会社フジクラ 光カプラ、レーザ装置、及びテーパファイバ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892868A (en) * 1997-04-24 1999-04-06 Boeing North American, Inc. Fiber optic coupler combiner and process using same
JPH11121843A (ja) * 1997-10-20 1999-04-30 Mitsubishi Electric Corp 半導体レーザ励起固体レーザ増幅装置及び固体レーザ発振装置
JP2009271108A (ja) * 2008-04-30 2009-11-19 Mitsubishi Cable Ind Ltd 光コンバイナ及びその製造方法
JP2013190714A (ja) 2012-03-15 2013-09-26 Fujikura Ltd 光ファイバコンバイナ、及び、それを用いたレーザ装置
WO2014077069A1 (ja) * 2012-11-19 2014-05-22 富士電機株式会社 光合波装置
JP2017028185A (ja) * 2015-07-27 2017-02-02 株式会社フジクラ ファイバレーザ用光回路装置およびファイバレーザ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617760A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922395A4 (en) * 2019-02-05 2022-11-02 Fujikura Ltd. Structure, method for manufacturing structure, laser device, and laser system
US12288958B2 (en) 2019-02-05 2025-04-29 Fujikura Ltd. Structure, method for manufacturing structure, laser device, and laser system

Also Published As

Publication number Publication date
EP3617760A1 (en) 2020-03-04
JP2018189696A (ja) 2018-11-29
CN110546540A (zh) 2019-12-06
JP6456427B2 (ja) 2019-01-23
US20210103101A1 (en) 2021-04-08
EP3617760A4 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5814315B2 (ja) 光コンバイナ、及び、それを用いたレーザ装置
JP5908559B1 (ja) 光カプラ、レーザ装置、及びテーパファイバ
JP2013506866A (ja) マルチモード帯域幅を向上させる光ファイバ端部構造体並びに関連システム及び方法
KR102103867B1 (ko) 고출력 공간필터
JP6356856B1 (ja) クラッドモード光除去構造及びレーザ装置
US9110246B2 (en) High power spatial filter
US20060209909A1 (en) Fiber laser oscillator
WO2017212711A1 (ja) 光学デバイス、レーザシステム及び光学デバイスの製造方法
JP7213499B2 (ja) 光結合器
JP2019061277A (ja) コンバイナ、及び、レーザ装置
WO2018199339A1 (ja) コンバイナ、及び、レーザ装置
US20190229489A1 (en) Optical fiber and fiber laser
JP6778633B2 (ja) コンバイナ、光デバイス、及び製造方法
CN114270235B (zh) 光合并器以及激光装置
JP6540310B2 (ja) 光ファイバ端末
JP2016189406A (ja) 光増幅器
US10466426B2 (en) Optical fiber drawer structure and optical module
RU2714781C1 (ru) Способ поперечной накачки рабочей среды лазера
WO2020184358A1 (ja) レンズ部材、導光部材、及びレーザ装置
JP2014081503A (ja) レーザモジュール
JP2019158934A (ja) 余剰光除去装置及びファイバレーザ
JP2014165401A (ja) 光ファイバ、ポンプコンバイナ、および光増幅デバイス
JP2020201420A (ja) 導光部材及びレーザ装置
CN116990908A (zh) 基于自聚焦光纤式反射镜的多芯光纤芯间交换耦合器
JP2020008617A (ja) 光デバイス、コンバイナ及びレーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018791488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018791488

Country of ref document: EP

Effective date: 20191128

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载