+

WO2018199237A1 - Thermal barrier coating formation method, thermal barrier coating, and high-temperature member - Google Patents

Thermal barrier coating formation method, thermal barrier coating, and high-temperature member Download PDF

Info

Publication number
WO2018199237A1
WO2018199237A1 PCT/JP2018/016998 JP2018016998W WO2018199237A1 WO 2018199237 A1 WO2018199237 A1 WO 2018199237A1 JP 2018016998 W JP2018016998 W JP 2018016998W WO 2018199237 A1 WO2018199237 A1 WO 2018199237A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier coating
thermal barrier
dense layer
dense
Prior art date
Application number
PCT/JP2018/016998
Other languages
French (fr)
Japanese (ja)
Inventor
芳史 岡嶋
鳥越 泰治
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017087472A external-priority patent/JP6821496B2/en
Priority claimed from JP2017087471A external-priority patent/JP6896498B2/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112018002221.8T priority Critical patent/DE112018002221T5/en
Priority to US16/607,196 priority patent/US20200048751A1/en
Priority to CN201880026963.5A priority patent/CN110546296A/en
Publication of WO2018199237A1 publication Critical patent/WO2018199237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/514Porosity

Definitions

  • the present invention relates to a method for forming a thermal barrier coating, a thermal barrier coating, and a high temperature member.
  • the present application claims priority based on Japanese Patent Application Nos. 2017-087472 and 2017-087471 filed in Japan on April 26, 2017, the contents of which are incorporated herein by reference.
  • the temperature of the gas used is set high in order to improve its efficiency.
  • a turbine member such as a moving blade or a stationary blade that is exposed to such high-temperature gas is provided with a thermal barrier coating (TBC) on the surface thereof.
  • TBC thermal barrier coating
  • the thermal barrier coating is a coating of a thermal spray material having a low thermal conductivity (for example, a ceramic material having a low thermal conductivity) by spraying on the surface of a turbine member that is a sprayed object.
  • Patent Document 1 describes a method using suspension plasma spraying as a method of forming a thermal barrier coating on a metal part of a gas turbine engine.
  • suspension plasma spraying plasma spraying is performed using a suspension in which microparticles are dispersed in water or an alcohol-based carrier.
  • microparticles melted by evaporation or combustion by a plasma jet are deposited on a contact surface. As a result, a homogeneous ceramic layer is formed on the substrate surface by the molten microparticles.
  • the thermal barrier coating As a dense ceramic layer in the thermal barrier coating, there is a case where a DVC (Dense Vertical Crack) coating having a vertical split is formed.
  • the erosion resistance is improved because the DVC coating has a dense structure having a vertically divided structure.
  • the DVC coating since the DVC coating has a dense structure, it is known that the porosity becomes small and the heat shielding property is lowered. In other words, in the thermal barrier coating, if the porosity is lowered in order to improve the erosion resistance, the thermal conductivity is increased and the thermal barrier performance is lowered.
  • An object of the present invention is to provide a thermal barrier coating forming method, a thermal barrier coating, and a high-temperature member capable of enhancing a thermal barrier effect while suppressing a decrease in erosion resistance.
  • the thermal barrier coating according to the first aspect of the present invention is formed on a heat-resistant alloy substrate and includes a ceramic layer containing ceramic, and the ceramic layer is laminated on the first dense layer and the first dense layer. And an intermediate pore layer having a larger density than the first dense layer and having a large number of pores formed thereon, and a second dense layer laminated on the intermediate pore layer and having a density smaller than that of the intermediate pore layer.
  • the intermediate pore layer is formed between the first dense layer and the second dense layer, so that heat input to the ceramic layer in the thickness direction is inhibited by the intermediate pore layer. .
  • the thermal conductivity as the ceramic layer can be reduced.
  • the adhesiveness with respect to a heat resistant alloy base material is securable by forming a 1st dense layer in the heat resistant alloy base material side in a ceramic layer.
  • erosion resistance can be ensured by forming the second dense layer on the surface side in the ceramic layer.
  • the first boundary part which is a boundary part between the intermediate pore layer and the first dense layer, the intermediate pore layer and the second dense layer.
  • the porosity may change continuously at the second boundary, which is the boundary with the layer.
  • the porosity of the intermediate pore layer may be 10% or more and 20% or less.
  • the effect of inhibiting heat input to the ceramic layer in the thickness direction is increased over a wide area in the surface direction.
  • the thermal conductivity in the topcoat layer can be greatly reduced without greatly reducing the erosion resistance in the intermediate pore layer.
  • the porosity of the first dense layer and the second dense layer is 10% or less and 5%. It may be the above.
  • the first dense layer has a first vertical split extending in the thickness direction dispersed in the surface direction.
  • the second vertical division extending in the thickness direction may be dispersed in the surface direction.
  • the first vertical split and the second vertical split may extend at an angle with respect to the surface of the ceramic layer.
  • an inclination angle with respect to the surface of the ceramic layer of the first vertical division, and the ceramic layer of the second vertical division may be different.
  • the thermal barrier coating forming method includes a ceramic layer forming step of forming a ceramic layer containing ceramic on the surface of the heat-resistant alloy substrate, and the ceramic layer forming step includes: A first dense layer forming step for forming a dense layer and an intermediate in which a large number of pores having a higher density than the first dense layer are formed on the first dense layer after the first dense layer forming step A pore layer forming step for forming a pore layer; and a second dense layer forming step that is performed after the pore layer forming step and forms a second dense layer having a lower density than the intermediate pore layer on the intermediate pore layer; Have.
  • the intermediate pore layer is formed between the first dense layer and the second dense layer, so that heat input to the ceramic layer in the thickness direction is inhibited by the intermediate pore layer.
  • the thermal conductivity as the ceramic layer can be reduced.
  • the adhesiveness with respect to a heat resistant alloy base material is securable by forming a 1st dense layer in the heat resistant alloy base material side in a ceramic layer.
  • erosion resistance can be ensured by forming the second dense layer on the surface side in the ceramic layer.
  • a spraying method is used for the ceramic layer forming step, and the distance between the spray hole of the spray gun and the surface of the spray target is The first dense layer forming step and the second dense layer forming step may be shorter than the pore layer forming step.
  • the first dense layer forming step is such that the first vertical split extending in the thickness direction is dispersed in the surface direction.
  • the first dense layer may be formed as described above, and in the second dense layer forming step, the second dense layer may be formed so that the second vertical division extending in the thickness direction is dispersed in the surface direction. .
  • the spray particles in any one of the eighth aspect to the tenth aspect, have a particle size of 0.1 ⁇ m or more and 1.0 ⁇ m or less. Also good.
  • the thermal barrier coating forming method according to the twelfth aspect of the present invention in any one of the eighth aspect to the eleventh aspect, at least a part of the ceramic layer forming step uses suspension plasma spraying. Also good.
  • the high temperature member according to the thirteenth aspect of the present invention includes a heat-resistant alloy base material and a ceramic layer formed on the heat-resistant alloy base material and containing ceramic, and the ceramic layer includes a first dense layer, An intermediate pore layer that is laminated on the first dense layer and has a higher density than the first dense layer and has a large number of pores, and an intermediate pore layer that is laminated on the intermediate pore layer and has a lower density than the intermediate pore layer A second dense layer.
  • the ceramic layer is divided in a longitudinal direction extending in a thickness direction in the plane direction, and the vertical split is formed on a surface of the ceramic layer. And may be inclined and extended.
  • the heat input in the thickness direction in the ceramic layer is hindered by the longitudinal split extending obliquely. Therefore, the thermal conductivity in the ceramic layer can be reduced by the vertical division. On the other hand, the erosion resistance can be prevented from decreasing by forming the ceramic layer so densely that the vertical split is formed.
  • the vertical inclination angle may be different between the surface side of the ceramic layer and the heat-resistant alloy substrate side.
  • the longitudinal split may have a distribution rate per 1 mm of 6 / mm to 12 / mm. Good.
  • the vertical split may extend intermittently.
  • all of the plurality of vertical divisions are directed toward the surface of the ceramic layer. You may incline toward the one side of a surface direction.
  • the vertical inclination angle is 45 ° or more with respect to the surface of the ceramic layer. It may be an angle of 80 ° or less.
  • the effect of inhibiting heat input in the thickness direction due to vertical splitting is increased by reducing the tilt angle.
  • the thermal conductivity in the ceramic layer can be greatly reduced.
  • it can suppress that it becomes difficult for a thermal spray particle to adhere to the surface at the time of forming a ceramic layer by making the vertical inclination angle into 45 degrees or more. Therefore, it is possible to suppress a decrease in the manufacturing efficiency of the ceramic layer.
  • the thermal barrier coating forming method according to the twentieth aspect of the present invention is the suspension according to the eighth aspect, wherein the thermal spray gun is inclined with respect to the surface of the heat-resistant alloy substrate by a predetermined inclination angle to disperse the spray particles.
  • Thermal spraying using a turbid liquid may be performed to form a ceramic layer that includes a ceramic that extends in the thickness direction on the heat-resistant alloy base material and that includes a ceramic in which longitudinal splits that are inclined by the inclination angle are dispersed in the plane direction. Good.
  • the heat input in the thickness direction in the ceramic layer is hindered by the longitudinal split extending obliquely. Therefore, the thermal conductivity in the ceramic layer can be reduced by the vertical division.
  • the erosion resistance can be prevented from decreasing by forming the ceramic layer so densely that the vertical split is formed.
  • the ceramic layer is formed by suspension plasma spraying, the particle size of the spray particles forming the ceramic layer is reduced. As a result, the ceramic layer can have a very dense structure. Thereby, the adhesiveness of the ceramic layer after formation can also be improved.
  • the thermal spraying may be suspension plasma thermal spraying.
  • the particle size of the sprayed particles may be 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the high-temperature member according to the twenty-third aspect of the present invention is the heat-resistant alloy substrate according to the thirteenth aspect, formed on the heat-resistant alloy substrate, and the vertical splits extending in the thickness direction are dispersed in the surface direction.
  • a ceramic layer including ceramics, and the longitudinal split may extend at an angle with respect to a surface of the ceramic layer.
  • thermal barrier coating formation method thermal barrier coating, and high temperature member, it is possible to enhance the thermal barrier effect while suppressing a decrease in erosion resistance.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention. It is a schematic structure perspective view of a moving blade concerning an embodiment of the present invention. It is a principal part cross-sectional enlarged view of the moving blade explaining the thermal barrier coating which concerns on embodiment of this invention. It is process drawing explaining the process of the thermal barrier coating formation method in 1st embodiment of this invention. It is the figure which calculated
  • the gas turbine 1 of the present embodiment includes a compressor 2, a combustor 3, a turbine body 4, and a rotor 5.
  • the compressor 2 takes in a large amount of air and compresses it.
  • the combustor 3 mixes fuel with the compressed air A compressed by the compressor 2 and burns it.
  • the turbine body 4 converts the thermal energy of the combustion gas G introduced from the combustor 3 into rotational energy.
  • the turbine body 4 generates power by converting the thermal energy of the combustion gas G into mechanical rotational energy by blowing the combustion gas G onto the rotor blades 7 provided in the rotor 5.
  • the turbine body 4 is provided with a plurality of stationary blades 8 in a casing 6 of the turbine body 4 in addition to the plurality of rotor blades 7 on the rotor 5 side.
  • the moving blades 7 and the stationary blades 8 are alternately arranged in the axial direction of the rotor 5.
  • the rotor 5 transmits a part of the rotating power of the turbine body 4 to the compressor 2 to rotate the compressor 2.
  • the moving blade 7 of the turbine body 4 will be described as an example of the high temperature member of the present invention.
  • the moving blade 7 includes a moving blade body 70 and a thermal barrier coating 100.
  • the rotor blade body 70 is a heat-resistant alloy base material formed of a well-known heat-resistant alloy material such as a Ni-based alloy, for example.
  • the rotor blade main body 70 of the present embodiment includes a blade main body portion 71, a platform portion 72, a blade root portion 73, and a shroud portion 74.
  • the wing body 71 has a wing shape in cross section.
  • the blade body 71 is disposed in the flow path of the combustion gas G in the casing 6 of the turbine body 4.
  • the platform portion 72 is provided at the proximal end of the wing body portion 71.
  • the platform portion 72 defines a flow path for the combustion gas G on the proximal end side of the blade body portion 71.
  • the blade root portion 73 is formed to protrude from the platform portion 72 to the opposite side of the blade body portion 71.
  • the shroud portion 74 is provided at the tip of the wing body portion 71.
  • the shroud portion 74 defines a flow path for the combustion gas G on the tip side of the blade body portion 71.
  • the thermal barrier coating 100 is formed on the surface of the rotor blade main body 70 which is a heat-resistant alloy substrate.
  • the thermal barrier coating 100 includes the surface of the blade main body 71, the surface of the platform 72 connected to the blade main body 71, and the blade main body 71 of the shroud 74. It is formed so as to cover the surface on the connected side.
  • the thermal barrier coating 100 of the present embodiment is formed by suspension plasma spraying described later.
  • the thermal barrier coating 100 of this embodiment includes a bond coat layer 110 and a top coat layer (ceramic layer) 120.
  • the bond coat layer 110 is directly formed on the surface of the rotor blade body 70.
  • the bond coat layer 110 suppresses the top coat layer 120 from peeling from the rotor blade body 70.
  • the bond coat layer 110 is a metal bonding layer having excellent corrosion resistance and oxidation resistance.
  • the bond coat layer 110 is formed, for example, by spraying a metal spray powder of MCrAlY alloy on the surface of the rotor blade body 70 as a spraying material.
  • “M” in the MCrAlY alloy constituting the bond coat layer 110 represents a metal element.
  • the metal element “M” is made of, for example, a single metal element such as Ni or Co, or a combination of two or more of these.
  • the top coat layer 120 is formed on the rotor blade main body 70 via the bond coat layer 110.
  • the topcoat layer 120 has a layer containing ceramic in which the longitudinal divisions C extending in the thickness direction are dispersed in the plane direction.
  • the surface direction is a direction along the surface of the topcoat layer 120.
  • the topcoat layer 120 of this embodiment is formed with a thickness of 0.3 mm or more and 1.5 mm or less.
  • the topcoat layer 120 has a first dense layer 121, an intermediate pore layer 122, and a second dense layer 123.
  • the first dense layer 121 is directly laminated on the bond coat layer 110.
  • the first vertical division C1 is dispersed as the vertical division C in the surface direction in which the surface spreads. Therefore, in the first dense layer 121, a plurality of the first vertical divisions C1 are formed apart in the surface direction.
  • the first dense layer 121 of the present embodiment is, for example, a dense DVC (Dense Vertical Crack) coating in which the first vertical divisions C1 are dispersed in the surface direction.
  • the first dense layer 121 is formed on the most heat-resistant alloy substrate side in the top coat layer 120.
  • the thermal spray material used when forming the first dense layer 121 is, for example, yttria-stabilized zirconia (YSZ) or ytterbia stable (ZrO 2 ) partially stabilized with ytterbium oxide (Yb 2 O 3 ). Zirconia fluoride (YbSZ) is used.
  • the first vertical split C1 extends with a predetermined inclination angle ⁇ with respect to the surface of the topcoat layer 120. Specifically, the first vertical split C1 extends in the extending direction of an imaginary straight line connecting the base end that is the surface side of the heat-resistant alloy base material in the thickness direction and the front end that is the surface side of the topcoat layer 120. The direction is assumed. In the first vertical split C1, the extending direction is inclined with respect to the surface direction in which the surface of the top coat layer 120 is spread. Therefore, the first vertical split C ⁇ b> 1 extends toward the one side in the surface direction with respect to the base end as it goes from the base end toward the surface of the top coat layer 120.
  • the inclination angle ⁇ in the present embodiment is an angle in the extending direction with respect to the surface direction.
  • the plurality of first vertical divisions C1 are all inclined toward the same direction. That is, all of the plurality of first vertical divisions C ⁇ b> 1 are inclined toward one side in the surface direction as they go to the surface of the top coat layer 120.
  • the first vertical division C1 is inclined over the entire region in the thickness direction as well as a part of the proximal end side and the distal end side.
  • the inclination angle ⁇ in the present embodiment is preferably an angle of 45 ° or more and 80 ° or less with respect to the surface of the topcoat layer 120.
  • the inclination angle ⁇ is more preferably an angle of 50 ° or more and 70 ° or less with respect to the surface of the top coat layer 120.
  • the inclination angle ⁇ is particularly preferably an angle of 55 ° to 65 ° with respect to the surface of the topcoat layer 120.
  • the distribution ratio of the first vertical division C1 per 1 mm is preferably 6 / mm or more and 12 / mm or less. In the first dense layer 121, it is more preferable that the distribution ratio of the first vertical division C1 per 1 mm is 8 pieces / mm or more and 10 pieces / mm or less.
  • the porosity of the first dense layer 121 is preferably in the range of 10% or less and 5% or more.
  • the porosity in this embodiment is not only the occupation rate of only the pores P per unit volume, but also the occupation rate of the vertical split C and the pores P combined.
  • the intermediate pore layer 122 is laminated on the first dense layer 121.
  • the intermediate pore layer 122 has a higher density than the first dense layer 121, and a large number of pores P are formed. Therefore, the intermediate pore layer 122 is a porous film formed with a larger porosity than the first dense layer 121, and has almost no vertical division C inside.
  • the intermediate pore layer 122 of the present embodiment is formed with the same thickness as the first dense layer 121.
  • the intermediate pore layer 122 of this embodiment is formed of the same thermal spray material as the first dense layer 121.
  • the porosity of the intermediate pore layer 122 of the present embodiment is preferably 10% or more and 20% or less.
  • the porosity of the intermediate pore layer 122 is more preferably 12% or more and 18% or less.
  • the porosity of the intermediate pore layer 122 is particularly preferably 14% or more and 16% or less.
  • the porosity is continuously changing at the first boundary, which is the boundary between the intermediate pore layer 122 and the first dense layer 121. Therefore, the porosity is formed so that the porosity gradually increases from the vicinity of the center in the thickness direction of the first dense layer 121 toward the vicinity of the center in the thickness direction of the intermediate pore layer 122.
  • the second dense layer 123 is directly laminated on the intermediate pore layer 122.
  • the second vertical division C ⁇ b> 2 is dispersed in the plane direction as the vertical division C. Therefore, in the second dense layer 123, a plurality of the second vertical divisions C2 are formed apart in the surface direction.
  • the second dense layer 123 has a higher density than the intermediate pore layer 122.
  • the second dense layer 123 is formed on the most surface side in the top coat layer 120. Therefore, the surface of the second dense layer 123 is the surface of the topcoat layer 120.
  • the second dense layer 123 of the present embodiment is, for example, a dense DVC coating in which the second vertical divisions C2 are dispersed in the surface direction.
  • the second dense layer 123 of this embodiment is a film having the same structure as the first dense layer 121. Therefore, the thermal spray material used when forming the second dense layer 123 is the same thermal spray material as the first dense layer 121.
  • the second vertical division C2 extends at an inclination angle ⁇ with respect to the surface of the topcoat layer 120, similarly to the first vertical division C1.
  • the second vertical split C2 extends in the extending direction of an imaginary straight line connecting the base end on the surface side of the heat-resistant alloy substrate in the thickness direction and the tip end on the surface side of the topcoat layer 120.
  • the direction. In the second vertical split C2 the extending direction is inclined with respect to the surface direction in which the surface of the top coat layer 120 is spread. Therefore, like the first vertical split C1, the second vertical split C2 extends toward one side in the surface direction with respect to the base end as it goes from the base end to the surface of the topcoat layer 120.
  • the second vertical division C2 of the present embodiment is inclined at the same angle in the same direction as the first vertical division C1.
  • the plurality of second vertical divisions C2 are all inclined in the same direction. That is, all of the plurality of second vertical divisions C ⁇ b> 2 are inclined toward one side in the surface direction as they go toward the surface of the top coat layer 120.
  • the second vertical division C2 is inclined over the entire region in the thickness direction, as well as part of the proximal end side and the distal end side.
  • the distribution ratio of the second longitudinal division C2 per 1 mm is 6 / mm or more and 12 / mm or less. In the second dense layer 123, it is more preferable that the distribution ratio of the second longitudinal division C2 per 1 mm is 8 / mm or more and 10 / mm or less.
  • the porosity of the second dense layer 123 is preferably within the range of 10% or less and 5% or more.
  • the distribution ratio of the second vertical division C2 per mm is preferably the same as the distribution ratio of the first vertical division C1 of the first dense layer 121.
  • the porosity of the second dense layer 123 is preferably the same as the porosity of the first dense layer 121.
  • the porosity is continuously changing at the second boundary, which is the boundary between the intermediate pore layer 122 and the second dense layer 123. Therefore, the porosity is formed so that the porosity gradually decreases from the vicinity of the center in the thickness direction of the intermediate pore layer 122 toward the vicinity of the center in the thickness direction of the second dense layer 123.
  • Manufacturing method S1 of the high temperature member of this embodiment is a manufacturing method of the moving blade 7 which manufactures the moving blade 7 mentioned above as a high temperature member.
  • the high-temperature member manufacturing method S ⁇ b> 1 of the present embodiment includes a rotor blade body preparation step S ⁇ b> 10 and a thermal barrier coating formation step S ⁇ b> 20.
  • a heat-resistant alloy base material is prepared as the blade main body 70 in advance.
  • the material is prepared by being formed into the shape of a target high-temperature member (for example, the rotor blade main body 70 in the present embodiment).
  • the thermal barrier coating 100 is formed on the surface of the rotor blade main body 70 prepared in the rotor blade main body preparing step S10 by the thermal barrier coating forming method S100.
  • the thermal barrier coating formation step S ⁇ b> 20 of the present embodiment the bond coat layer 110 and the top coat layer 120 are formed on the surface of the rotor blade main body 70.
  • Thermal barrier coating formation process S20 of this embodiment is implemented by the following thermal barrier coating formation method S100.
  • the thermal barrier coating 100 is formed on the rotor blade main body 70.
  • the thermal barrier coating forming method S100 of the present embodiment includes a bond coat layer forming step S110, a top coat layer forming step (ceramic layer forming step) S120, and an adjusting step S130.
  • the bond coat layer 110 is formed on the surface of the rotor blade body 70.
  • the bond coat layer forming step S110 is performed after the rotor blade main body preparing step S10.
  • the bond coat layer forming step S ⁇ b> 110 for example, the spray particles of the MCrAlY alloy are sprayed on the surface of the rotor blade main body 70 with a spray gun.
  • the spray gun is moved with the spray holes of the spray particles perpendicular to the surface of the rotor blade body 70.
  • the bond coat layer forming step S110 of the present embodiment forms the bond coat layer 110 by performing high-speed flame spraying (HVOF: High Velocity Oxygen Fuel) or low-pressure plasma spraying (LPPS: Low Pressure Plasma Spraying) with a spray gun. .
  • HVOF High Velocity Oxygen Fuel
  • LPPS Low Pressure Plasma Spraying
  • the top coat layer 120 containing ceramic is formed on the surface of the rotor blade body 70.
  • the top coat layer forming step S120 is performed after the bond coat layer forming step S110.
  • the top coat layer 120 is laminated on the bond coat layer 110 formed in the bond coat layer forming step S110.
  • a thermal spraying method is used. Accordingly, in the top coat layer forming step S120 of the present embodiment, the top coat layer 120 is formed by spraying the spray particles on the surface of the bond coat layer 110 formed on the rotor blade main body 70.
  • the topcoat layer forming step S120 includes a first dense layer forming step S121, a pore layer forming step S122, and a second dense layer forming step S123.
  • the first dense layer forming step S121 is performed after the bond coat layer forming step S110.
  • the first dense layer forming step S ⁇ b> 121 the first dense layer 121 is formed on the bond coat layer 110.
  • suspension plasma spraying is performed to form the first dense layer 121.
  • suspension plasma spraying is performed by inclining the thermal spray gun with respect to the surface of the rotor blade main body 70 by a predetermined inclination angle ⁇ .
  • Suspension plasma spraying is a spraying method in which a suspension in which fine spray particles are dispersed is supplied into a plasma jet to form a coating. Note that the distance between the spray hole of the spray gun and the surface of the rotor blade main body 70 to be sprayed is shorter in the first dense layer forming step S121 than in the pore layer forming step S122.
  • the fine spray particles preferably have a particle size of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the carrier used for the suspension include water and ethanol.
  • a suspension gun spraying system may use an axial flow internal supply spray gun or an external supply spray gun.
  • the pore layer forming step S122 is performed after the first dense layer forming step S121.
  • the intermediate pore layer 122 is formed on the first dense layer 121.
  • suspension plasma spraying is performed to form the intermediate pore layer 122.
  • the thermal spray gun is separated from the moving blade main body 70 to spray the thermal spray particles more than in the first dense layer forming step S121.
  • spraying is performed while moving the spray gun so as to gradually move away from the spraying distance in the first dense layer forming step S121.
  • the spray distance is gradually brought closer to the spray distance in the second dense layer forming step S123.
  • the spray gun is moved so that the spray distance matches the spray distance in the second dense layer forming step S123.
  • the second dense layer forming step S123 is performed after the pore layer forming step S122.
  • the second dense layer forming step S123 is formed on the intermediate pore layer 122.
  • suspension plasma spraying is performed to form the second dense layer 123.
  • the thermal spray gun is brought closer to the moving blade body 70 than in the pore layer forming step S122 to spray the thermal spray particles.
  • the second dense layer forming step S123 of the present embodiment is performed under the same conditions as the first dense layer forming step S121.
  • the thermal spray gun is inclined by a predetermined inclination angle ⁇ with respect to the surface of the rotor blade body 70 and sprayed by suspension plasma spraying.
  • the distance between the spray hole of the spray gun and the surface of the moving blade main body 70 that is the object of spraying is shorter in the second dense layer forming step S123 than in the pore layer forming step S122.
  • the adjusting step S130 is performed after the second dense layer forming step S123.
  • the adjustment step S130 adjusts the surface state of the thermal barrier coating 100. Specifically, in the adjustment step S130, the surface of the top coat layer 120 is slightly shaved to adjust the film thickness of the thermal barrier coating 100, or to make the surface smoother. By this adjustment process S130, the heat conductivity to the moving blade 7 can be reduced, for example.
  • the surface of the second dense layer 123 is shaved by several ⁇ m to smooth the surface of the topcoat layer 120 and adjust the film thickness.
  • the intermediate pore layer 122 is formed between the first dense layer 121 and the second dense layer 123. Heat input to the top coat layer 120 in the thickness direction is inhibited by the intermediate pore layer 122. As a result, the thermal conductivity as the top coat layer 120 can be further reduced.
  • the first dense layer 121 on the side of the top coat layer 120 that is in close contact with the bond coat layer 110 on the rotor blade main body 70 side, adhesion to the bond coat layer 110 can be ensured.
  • erosion resistance can be ensured by forming the second dense layer 123 on the surface side in the top coat layer 120. Accordingly, it is possible to enhance the heat shielding effect while suppressing a decrease in erosion resistance in the heat shielding coating 100.
  • FIG. 5 is a diagram in which the relationship between the thermal conductivity and the porosity in the topcoat layer 120 is obtained by simulation.
  • the thermal conductivity in the topcoat layer 120 decreases as the porosity increases. More specifically, when the porosity increases from 0% to 15%, the thermal conductivity decreases by about 10%. Therefore, it can be seen that the thermal conductivity of the topcoat layer 120 can be lowered by forming the intermediate porosity layer 122 having a high porosity between the first dense layer 121 and the second dense layer 123.
  • the thermal conductivity in the topcoat layer 120 can be greatly reduced without greatly reducing the erosion resistance in the intermediate pore layer 122.
  • the vertical division C formed diagonally in the topcoat layer 120 is formed like the first vertical division C1 and the second vertical division C2. Therefore, the heat input in the thickness direction in the first dense layer 121 is hindered by the first vertical split C1 extending obliquely. Similarly, the heat input in the thickness direction in the second dense layer 123 is hindered by the second vertical split C2 extending obliquely. Therefore, the thermal conductivity in the topcoat layer 120 can be reduced by the first vertical division C1 and the second vertical division C2.
  • the second dense layer 123 is formed on the surface side of the top coat layer 120. By forming the second dense layer 123 as densely as the vertical split C is formed, it is possible to suppress a decrease in erosion resistance. As a result, the heat shielding effect can be enhanced while suppressing a decrease in the erosion resistance on the surface side of the thermal barrier coating 100.
  • FIG. 6 is a diagram in which the relationship between the thermal conductivity in the top coat layer 120 in which the vertical division C is formed and the inclination angle ⁇ of the vertical division C is obtained by simulation.
  • the thermal conductivity in the top coat layer 120 is 25% or more when the inclination angle ⁇ of the vertical division C is 60 ° as compared to the state where the vertical division C is not inclined (when the inclination angle ⁇ is 90 °). descend. Therefore, it can be seen that the thermal conductivity in the topcoat layer 120 can be lowered by making the vertical division C oblique.
  • the topcoat layer 120 is formed by suspension plasma spraying, the particle size of the sprayed particles forming the topcoat layer 120 is smaller than that of atmospheric plasma spraying (APS).
  • APS atmospheric plasma spraying
  • the first dense layer 121 and the second dense layer 123 can have a very dense structure. Therefore, the adhesion between the first dense layer 121 and the bond coat layer 110 and the adhesion between the layers in the top coat layer 120 can be improved.
  • the first dense layer 121 and the second dense layer 123 extend in the thickness direction over a wide area in the surface direction. Heat input is hindered. As a result, the thermal conductivity in the topcoat layer 120 can be reduced over a wide range.
  • the inclination angle ⁇ of the first vertical division C1 and the second vertical division C2 is set to 45 ° or more and 80 ° or less.
  • the effect of inhibiting heat input in the thickness direction by the first vertical division C1 and the second vertical division C2 is increased.
  • the thermal conductivity in the top coat layer 120 can be significantly reduced.
  • the inclination angle ⁇ of the first vertical division C1 and the second vertical division C2 is set to 45 degrees or more, it becomes difficult for the spray particles to adhere to the surface when the first dense layer 121 and the second dense layer 123 are formed. Can be suppressed. Therefore, it is possible to further suppress a decrease in manufacturing efficiency of the topcoat layer 120.
  • the topcoat layer 120 is not limited to such a structure.
  • the top coat layer 120 ⁇ / b> A of the thermal barrier coating 100 ⁇ / b> A having a structure having a vertical division C (non-inclined vertical division) extending perpendicular to the surface direction may be formed.
  • the first vertical division C1 of the first dense layer 121A and the second vertical division C2 of the second dense layer 123A extend in a direction perpendicular to the surface of the topcoat layer 120A.
  • the top coat layer 120 has a multilayer structure in which the intermediate pore layer 122 is formed between the first dense layer 121 and the second dense layer 123.
  • the topcoat layer 120 is not limited to such a structure.
  • the top coat layer 120 ⁇ / b> A of the thermal barrier coating 100 ⁇ / b> A may be formed as a single-layer structure having an inclined vertical division C.
  • the bond coat layer forming step S110 may not be performed.
  • the bond coat layer 110 may be formed by another method, and the bond coat layer 110 itself may not be formed.
  • the ceramic layer may be formed directly on the surface of the rotor blade main body 70.
  • the high temperature member is not limited to the rotor blade 7 and may be any member that is exposed to high temperature.
  • the present invention may be applied to a member such as a nozzle or a cylinder constituting the stationary blade 8 of the gas turbine 1 or the combustor 3 as the high temperature member.
  • the high temperature member may be a member exposed to a high temperature other than the gas turbine 1.
  • the high temperature member may be a member exposed to a high temperature environment in a gas engine.
  • the intermediate pore layer 122 is not limited to a structure in which the vertical split C is not completely formed and only the pores P are formed. As long as the porosity of the intermediate pore layer 122 is sufficiently large, the vertical split C may be formed to some extent. Similarly, the first dense layer 121 and the second dense layer 123 may have some pores P as long as the longitudinal split C is formed.
  • the extending direction of the vertical divisions such as the first vertical division C1 and the second vertical division C2 is not limited to the extending direction of the virtual straight line connecting the base end and the distal end as described above. Absent.
  • the extending direction of the vertical division may be the direction in which the approximate straight line extends by obtaining an approximate straight line by image analysis or the like from the vertically bent vertical division.
  • the first vertical division C1 and the second vertical division C2 only need to be inclined, and are not limited to being inclined in the same direction over the entire area.
  • the inclination angle ⁇ of the longitudinal split C may be different between the surface side of the ceramic layer and the rotor blade body 70 side. That is, for example, if the vertical split is inclined in the same direction, it may be inclined at a different angle in the middle of the extending direction. Therefore, in the first vertical division C1 and the second vertical division C2, for example, the inclination angle ⁇ in the region near the surface of the topcoat layer 120 is larger than the inclination angle ⁇ in the region near the surface of the rotor blade body 70. It may be formed small.
  • the first dense layer 121 has the first vertical division C1 and the second dense layer 123 has the second vertical division C2 having the same inclination angle ⁇ .
  • the first dense layer 121 and the second dense layer 121 have the same inclination angle ⁇ .
  • the dense layer 123 is not limited to such a structure. Therefore, the inclination angle ⁇ with respect to the surface of the top coat layer 120 of the first vertical division C1 may be different from the inclination angle ⁇ with respect to the surface of the top coat layer 120 of the second vertical division C2. At this time, it is preferable that the inclination angle ⁇ of the first vertical division C1 is smaller than the inclination angle ⁇ of the second vertical division C2.
  • the distribution ratio of the vertical division C per mm of the first dense layer 121 and the second dense layer 123 is the same, but the first dense layer 121 and the second dense layer 123 have such a structure. It is not limited to.
  • the distribution ratio of the vertical division C per 1 mm of the second dense layer 123 may be made larger or smaller than the distribution ratio of the vertical division C per 1 mm of the first dense layer 121.
  • the porosity of the first dense layer 121 and the second dense layer 123 is the same, but the first dense layer 121 and the second dense layer 123 are not limited to such a structure. .
  • the porosity of the first dense layer 121 and the second dense layer 123 may be different from each other as long as it is lower than the porosity of the intermediate pore layer 122.
  • the longitudinal split C is not limited to a structure in which the ceramic layer is continuous from the surface facing the rotor blade main body 70 side to the surface. Therefore, the longitudinal split C may extend intermittently in the thickness direction within one ceramic layer. Therefore, the first vertical division C1 and the second vertical division C2 are not limited to the structure extending continuously as in this embodiment.
  • the first vertical divisions C1 may be formed in the first dense layer 121 at intervals in the thickness direction.
  • the second vertical divisions C ⁇ b> 2 may be formed in the second dense layer 123 with an interval in the thickness direction.
  • the spray gun is moved so as to gradually change (remove) the spray distance, but it is not limited to moving the spray gun in this way.
  • the spray gun may be moved so as to change rapidly from the spraying distance in the first dense layer forming step S121 to the target spraying distance in the pore layer forming step S122.
  • thermal spraying conditions mentioned in each process are only examples, and are not limited.
  • the thermal spraying conditions may be appropriately set according to the apparatus used, the type of the thermal spraying particles to be used, and the like.
  • the present invention can be applied to a thermal barrier coating forming method, a thermal barrier coating, and a high-temperature member, and can enhance a thermal barrier effect while suppressing a decrease in erosion resistance.
  • thermal barrier coating formation step S100 thermal barrier coating formation method S110 ... bond coat layer formation step S120 ... topcoat Layer formation step S121 ... First dense layer formation step S122 ... Porous layer formation step S 23 ... second dense layer forming step S130 ... adjusting step C ... vertical split

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

The thermal barrier coating is provided with a ceramic layer (120) formed on a heat-resistant alloy substrate and containing ceramic substance. The ceramic layer (120) has: a first dense layer (121); an intermediate porous layer (122) laminated on the first dense layer (121), having a higher density than the first dense layer (121), and in which many pores are formed; and a second dense layer (123) laminated on the intermediate porous layer (122) and having a lower density than the intermediate porous layer (122).

Description

遮熱コーティング形成方法、遮熱コーティング、及び高温部材Thermal barrier coating formation method, thermal barrier coating, and high temperature member
 本発明は、遮熱コーティング形成方法、遮熱コーティング、及び高温部材に関する。
 本願は、2017年4月26日に、日本に出願された特願2017-087472号及び特願2017-087471号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for forming a thermal barrier coating, a thermal barrier coating, and a high temperature member.
The present application claims priority based on Japanese Patent Application Nos. 2017-087472 and 2017-087471 filed in Japan on April 26, 2017, the contents of which are incorporated herein by reference.
 ガスタービンでは、その効率を向上させるために、使用するガスの温度を高く設定している。このような高温のガスに晒される動翼や静翼のようなタービン部材には、その表面に遮熱コーティング(Thermal Barrier Coating:TBC)が施されている。遮熱コーティングとは、被溶射物であるタービン部材の表面に、溶射により熱伝導率の小さい溶射材(例えば、熱伝導率の小さいセラミックス系材料)を被覆したものである。遮熱コーティングが表面に形成されることで、高温及び高圧の環境下に曝される高温部材の温度が下がり耐久性が向上する。 In gas turbines, the temperature of the gas used is set high in order to improve its efficiency. A turbine member such as a moving blade or a stationary blade that is exposed to such high-temperature gas is provided with a thermal barrier coating (TBC) on the surface thereof. The thermal barrier coating is a coating of a thermal spray material having a low thermal conductivity (for example, a ceramic material having a low thermal conductivity) by spraying on the surface of a turbine member that is a sprayed object. By forming the thermal barrier coating on the surface, the temperature of the high temperature member exposed to a high temperature and high pressure environment is lowered and durability is improved.
 特許文献1には、ガスタービンエンジンの金属部品に遮熱コーティングを形成する方法として、サスペンションプラズマ溶射を用いる方法が記載されている。サスペンションプラズマ溶射は、水又はアルコール系のキャリアにミクロ粒子を分散させた懸濁液を用いてプラズマ溶射する。サスペンションプラズマ溶射は、プラズマジェットによって蒸発または燃焼させることで溶融させたミクロ粒子を接触面に堆積させている。その結果、溶融したミクロ粒子によって均質なセラミック層が基材表面に形成される。 Patent Document 1 describes a method using suspension plasma spraying as a method of forming a thermal barrier coating on a metal part of a gas turbine engine. In suspension plasma spraying, plasma spraying is performed using a suspension in which microparticles are dispersed in water or an alcohol-based carrier. In suspension plasma spraying, microparticles melted by evaporation or combustion by a plasma jet are deposited on a contact surface. As a result, a homogeneous ceramic layer is formed on the substrate surface by the molten microparticles.
特開2015-166479号公報JP2015-166479A
 ところで、遮熱コーティングにおける緻密なセラミック層として、縦割を有するDVC(Dense Verticaly Crack)コーティングが形成される場合がある。DVCコーティングは、縦割構造を有する緻密な組織となっていることで耐エロージョン性が向上されている。しかしながら、DVCコーティングは組織が緻密であるために、気孔率が小さくなってしまい、遮熱性が低下してしまうことが知られている。つまり、遮熱コーティングにあっては、耐エロージョン性を向上させるために気孔率を低下させると、熱伝導率が上昇して遮熱性能が低下してしまう。 By the way, as a dense ceramic layer in the thermal barrier coating, there is a case where a DVC (Dense Vertical Crack) coating having a vertical split is formed. The erosion resistance is improved because the DVC coating has a dense structure having a vertically divided structure. However, since the DVC coating has a dense structure, it is known that the porosity becomes small and the heat shielding property is lowered. In other words, in the thermal barrier coating, if the porosity is lowered in order to improve the erosion resistance, the thermal conductivity is increased and the thermal barrier performance is lowered.
 本発明は、耐エロージョン性の低下を抑えつつ遮熱効果を高めることが可能な遮熱コーティング形成方法、遮熱コーティング、及び高温部材を提供することを目的とする。 An object of the present invention is to provide a thermal barrier coating forming method, a thermal barrier coating, and a high-temperature member capable of enhancing a thermal barrier effect while suppressing a decrease in erosion resistance.
 本発明の第一態様に係る遮熱コーティングは、耐熱合金基材上に形成され、セラミックを含むセラミック層を備え、前記セラミック層は、第一緻密層と、前記第一緻密層上に積層され、前記第一緻密層よりも密度が大きく多数の気孔が形成された中間気孔層と、前記中間気孔層上に積層され、前記中間気孔層よりも密度が小さい第二緻密層とを有する。 The thermal barrier coating according to the first aspect of the present invention is formed on a heat-resistant alloy substrate and includes a ceramic layer containing ceramic, and the ceramic layer is laminated on the first dense layer and the first dense layer. And an intermediate pore layer having a larger density than the first dense layer and having a large number of pores formed thereon, and a second dense layer laminated on the intermediate pore layer and having a density smaller than that of the intermediate pore layer.
 このような構成によれば、中間気孔層が第一緻密層と第二緻密層との間に形成されることで、厚さ方向へのセラミック層への入熱が中間気孔層で阻害される。その結果、セラミック層としての熱伝導率を低下させることができる。さらに、セラミック層の中で、耐熱合金基材側に第一緻密層が形成されることで、耐熱合金基材に対する密着性を確保することができる。さらに、セラミック層の中で、表面側に第二緻密層が形成されることで耐エロージョン性を確保することができる。 According to such a configuration, the intermediate pore layer is formed between the first dense layer and the second dense layer, so that heat input to the ceramic layer in the thickness direction is inhibited by the intermediate pore layer. . As a result, the thermal conductivity as the ceramic layer can be reduced. Furthermore, the adhesiveness with respect to a heat resistant alloy base material is securable by forming a 1st dense layer in the heat resistant alloy base material side in a ceramic layer. Furthermore, erosion resistance can be ensured by forming the second dense layer on the surface side in the ceramic layer.
 また、本発明の第二態様に係る遮熱コーティングでは、第一態様において、前記中間気孔層と前記第一緻密層との境界部である第一境界部及び前記中間気孔層と前記第二緻密層との境界部である第二境界部では、気孔率が連続的に変化してもよい。 Further, in the thermal barrier coating according to the second aspect of the present invention, in the first aspect, the first boundary part which is a boundary part between the intermediate pore layer and the first dense layer, the intermediate pore layer and the second dense layer. The porosity may change continuously at the second boundary, which is the boundary with the layer.
 また、本発明の第三態様に係る遮熱コーティングでは、第一態様又は第二態様において、前記中間気孔層の気孔率が、10%以上20%以下であってもよい。 Further, in the thermal barrier coating according to the third aspect of the present invention, in the first aspect or the second aspect, the porosity of the intermediate pore layer may be 10% or more and 20% or less.
 このような構成とすることで、面方向の広い領域にわたって、厚さ方向へのセラミック層への入熱を阻害する効果が大きくなる。その結果、中間気孔層における耐エロージョン性を大きく低下させることなく、トップコート層における熱伝導率を大きく低下させることができる。 With such a configuration, the effect of inhibiting heat input to the ceramic layer in the thickness direction is increased over a wide area in the surface direction. As a result, the thermal conductivity in the topcoat layer can be greatly reduced without greatly reducing the erosion resistance in the intermediate pore layer.
 また、本発明の第四態様に係る遮熱コーティングでは、第一態様から第三態様の何れか一つにおいて、前記第一緻密層及び前記第二緻密層の気孔率が、10%以下5%以上であってもよい。 In the thermal barrier coating according to the fourth aspect of the present invention, in any one of the first aspect to the third aspect, the porosity of the first dense layer and the second dense layer is 10% or less and 5%. It may be the above.
 また、本発明の第五態様に係る遮熱コーティングでは、第一態様から第四態様の何れか一つにおいて、前記第一緻密層は、厚さ方向に延びる第一縦割が面方向に分散され、前記第二緻密層は、厚さ方向に延びる第二縦割が面方向に分散されていてもよい。 Moreover, in the thermal barrier coating according to the fifth aspect of the present invention, in any one of the first aspect to the fourth aspect, the first dense layer has a first vertical split extending in the thickness direction dispersed in the surface direction. In the second dense layer, the second vertical division extending in the thickness direction may be dispersed in the surface direction.
 また、本発明の第六態様に係る遮熱コーティングでは、第五態様において、前記第一縦割及び前記第二縦割は、前記セラミック層の表面に対して、傾斜して延びていてもよい。 In the thermal barrier coating according to the sixth aspect of the present invention, in the fifth aspect, the first vertical split and the second vertical split may extend at an angle with respect to the surface of the ceramic layer. .
 このような構成とすることで、セラミック層における厚さ方向への入熱が斜めに延びる第一縦割及び第二縦割によって阻害される。したがって、第一縦割及び第二縦割によって、セラミック層における熱伝導率を低下させることができる。一方で、セラミック層を第一縦割及び第二縦割が形成されるほど緻密に形成することで、耐エロージョン性の低下を抑えることができる。 By adopting such a configuration, heat input in the thickness direction in the ceramic layer is hindered by the first vertical split and the second vertical split extending obliquely. Therefore, the thermal conductivity in the ceramic layer can be reduced by the first vertical split and the second vertical split. On the other hand, by forming the ceramic layer as densely as the first vertical split and the second vertical split are formed, it is possible to suppress a decrease in erosion resistance.
 また、本発明の第七態様に係る遮熱コーティングでは、第五態様又は第六態様において、前記第一縦割の前記セラミック層の表面に対する傾斜角度と、前記第二縦割の前記セラミック層の表面に対する傾斜角度とが異なっていてもよい。 Further, in the thermal barrier coating according to the seventh aspect of the present invention, in the fifth aspect or the sixth aspect, an inclination angle with respect to the surface of the ceramic layer of the first vertical division, and the ceramic layer of the second vertical division. The inclination angle with respect to the surface may be different.
 また、本発明の第八態様に係る遮熱コーティング形成方法は、耐熱合金基材の表面上に、セラミックを含むセラミック層を形成するセラミック層形成工程を含み、前記セラミック層形成工程は、第一緻密層を形成する第一緻密層形成工程と、前記第一緻密層形成工程の後に実施され、前記第一緻密層上に前記第一緻密層よりも密度が大きく多数の気孔が形成された中間気孔層を形成する気孔層形成工程と、前記気孔層形成工程の後に実施され、前記中間気孔層上に前記中間気孔層よりも密度が小さい第二緻密層を形成する第二緻密層形成工程と有する。 Moreover, the thermal barrier coating forming method according to the eighth aspect of the present invention includes a ceramic layer forming step of forming a ceramic layer containing ceramic on the surface of the heat-resistant alloy substrate, and the ceramic layer forming step includes: A first dense layer forming step for forming a dense layer and an intermediate in which a large number of pores having a higher density than the first dense layer are formed on the first dense layer after the first dense layer forming step A pore layer forming step for forming a pore layer; and a second dense layer forming step that is performed after the pore layer forming step and forms a second dense layer having a lower density than the intermediate pore layer on the intermediate pore layer; Have.
 このような構成とすることで、中間気孔層が第一緻密層と第二緻密層との間に形成されることで、厚さ方向へのセラミック層への入熱が中間気孔層で阻害される。その結果、セラミック層としての熱伝導率を低下させることができる。さらに、セラミック層の中で、耐熱合金基材側に第一緻密層が形成されることで、耐熱合金基材に対する密着性を確保することができる。さらに、セラミック層の中で、表面側に第二緻密層が形成されることで耐エロージョン性を確保することができる。 With this configuration, the intermediate pore layer is formed between the first dense layer and the second dense layer, so that heat input to the ceramic layer in the thickness direction is inhibited by the intermediate pore layer. The As a result, the thermal conductivity as the ceramic layer can be reduced. Furthermore, the adhesiveness with respect to a heat resistant alloy base material is securable by forming a 1st dense layer in the heat resistant alloy base material side in a ceramic layer. Furthermore, erosion resistance can be ensured by forming the second dense layer on the surface side in the ceramic layer.
 また、本発明の第九態様に係る遮熱コーティング形成方法では、第八態様において、前記セラミック層形成工程には溶射法が用いられ、溶射ガンの噴射孔と溶射対象の表面との距離は、前記気孔層形成工程より前記第一緻密層形成工程及び前記第二緻密層形成工程の方が短くてもよい。 Further, in the thermal barrier coating forming method according to the ninth aspect of the present invention, in the eighth aspect, a spraying method is used for the ceramic layer forming step, and the distance between the spray hole of the spray gun and the surface of the spray target is The first dense layer forming step and the second dense layer forming step may be shorter than the pore layer forming step.
 また、本発明の第十態様に係る遮熱コーティング形成方法では、第八態様又は第九態様において、前記第一緻密層形成工程は、厚さ方向に延びる第一縦割が面方向に分散されるように前記第一緻密層を形成し、前記第二緻密層形成工程は、厚さ方向に延びる第二縦割が面方向に分散されるように前記第二緻密層を形成してもよい。 Further, in the thermal barrier coating forming method according to the tenth aspect of the present invention, in the eighth aspect or the ninth aspect, the first dense layer forming step is such that the first vertical split extending in the thickness direction is dispersed in the surface direction. The first dense layer may be formed as described above, and in the second dense layer forming step, the second dense layer may be formed so that the second vertical division extending in the thickness direction is dispersed in the surface direction. .
 また、本発明の第十一態様に係る遮熱コーティング形成方法では、第八態様から第十態様の何れか一つにおいて、溶射粒子は、粒径が0.1μm以上1.0μm以下であってもよい。 Further, in the thermal barrier coating forming method according to the eleventh aspect of the present invention, in any one of the eighth aspect to the tenth aspect, the spray particles have a particle size of 0.1 μm or more and 1.0 μm or less. Also good.
 また、本発明の第十二態様に係る遮熱コーティング形成方法では、第八態様から第十一態様の何れか一つにおいて、前記セラミック層形成工程の少なくとも一部は、サスペンションプラズマ溶射を用いてもよい。 Moreover, in the thermal barrier coating forming method according to the twelfth aspect of the present invention, in any one of the eighth aspect to the eleventh aspect, at least a part of the ceramic layer forming step uses suspension plasma spraying. Also good.
 また、本発明の第十三態様に係る高温部材は、耐熱合金基材と、前記耐熱合金基材上に形成され、セラミックを含むセラミック層を備え、前記セラミック層は、第一緻密層と、前記第一緻密層上に積層され、前記第一緻密層よりも密度が大きく多数の気孔が形成された中間気孔層と、前記中間気孔層上に積層され、前記中間気孔層よりも密度が小さい第二緻密層とを有する。 Moreover, the high temperature member according to the thirteenth aspect of the present invention includes a heat-resistant alloy base material and a ceramic layer formed on the heat-resistant alloy base material and containing ceramic, and the ceramic layer includes a first dense layer, An intermediate pore layer that is laminated on the first dense layer and has a higher density than the first dense layer and has a large number of pores, and an intermediate pore layer that is laminated on the intermediate pore layer and has a lower density than the intermediate pore layer A second dense layer.
 本発明の第十四態様に係る遮熱コーティングでは、第一態様において、前記セラミック層は、厚さ方向に延びる縦割が面方向に分散され、前記縦割は、前記セラミック層の表面に対して、傾斜して延びていてもよい。 In the thermal barrier coating according to the fourteenth aspect of the present invention, in the first aspect, the ceramic layer is divided in a longitudinal direction extending in a thickness direction in the plane direction, and the vertical split is formed on a surface of the ceramic layer. And may be inclined and extended.
 このような構成によれば、セラミック層における厚さ方向への入熱が斜めに延びる縦割によって阻害される。したがって、縦割によって、セラミック層における熱伝導率を低下させることができる。一方で、セラミック層を縦割が形成されるほど緻密に形成することで、耐エロージョン性の低下を抑えることができる。 According to such a configuration, the heat input in the thickness direction in the ceramic layer is hindered by the longitudinal split extending obliquely. Therefore, the thermal conductivity in the ceramic layer can be reduced by the vertical division. On the other hand, the erosion resistance can be prevented from decreasing by forming the ceramic layer so densely that the vertical split is formed.
 本発明の第十五態様に係る遮熱コーティングでは、第十四態様において、前記縦割の傾斜角度は、前記セラミック層の表面側と耐熱合金基材側とで異なっていてもよい。 In the thermal barrier coating according to the fifteenth aspect of the present invention, in the fourteenth aspect, the vertical inclination angle may be different between the surface side of the ceramic layer and the heat-resistant alloy substrate side.
 本発明の第十六態様に係る遮熱コーティングでは、第十四態様又は第十五態様において、前記縦割は、1mm当たりの分布率が6本/mm以上12本/mm以下であってもよい。 In the thermal barrier coating according to the sixteenth aspect of the present invention, in the fourteenth aspect or the fifteenth aspect, the longitudinal split may have a distribution rate per 1 mm of 6 / mm to 12 / mm. Good.
 本発明の第十七態様に係る遮熱コーティングでは、第十四態様から第十六態様のいずれか一つにおいて、前記縦割は、断続的に延びていてもよい。 In the thermal barrier coating according to the seventeenth aspect of the present invention, in any one of the fourteenth aspect to the sixteenth aspect, the vertical split may extend intermittently.
 本発明の第十八態様に係る遮熱コーティングでは、第十四態様から第十七態様のいずれか一つにおいて、複数の前記縦割の全ては、前記セラミック層の表面に向かうにしたがって、前記面方向の一方側に向かって傾斜していてもよい。 In the thermal barrier coating according to the eighteenth aspect of the present invention, in any one of the fourteenth aspect to the seventeenth aspect, all of the plurality of vertical divisions are directed toward the surface of the ceramic layer. You may incline toward the one side of a surface direction.
 このような構成とすることで、セラミック層の面方向の広い領域にわたって、厚さ方向への入熱が阻害される。その結果、広い範囲にわたってセラミック層における熱伝導率を低下させることができる。 With such a configuration, heat input in the thickness direction is inhibited over a wide area in the surface direction of the ceramic layer. As a result, the thermal conductivity in the ceramic layer can be reduced over a wide range.
 本発明の第十九態様に係る遮熱コーティングでは、第十四態様から第十八態様のいずれか一つにおいて、前記縦割の傾斜角度は、前記セラミック層の表面に対して、45°以上80°以下の角度であってもよい。 In the thermal barrier coating according to the nineteenth aspect of the present invention, in any one of the fourteenth aspect to the eighteenth aspect, the vertical inclination angle is 45 ° or more with respect to the surface of the ceramic layer. It may be an angle of 80 ° or less.
 このような構成とすることで、傾斜角度が小さくなることで、縦割による厚さ方向への入熱を阻害する効果が大きくなる。その結果、セラミック層における熱伝導率を大幅に低下させることができる。また、縦割の傾斜角度を45度以上とすることで、セラミック層を形成時に溶射粒子が表面に付着しづらくなることを抑えられる。そのため、セラミック層の製造効率の低下を抑えることができる。 By adopting such a configuration, the effect of inhibiting heat input in the thickness direction due to vertical splitting is increased by reducing the tilt angle. As a result, the thermal conductivity in the ceramic layer can be greatly reduced. Moreover, it can suppress that it becomes difficult for a thermal spray particle to adhere to the surface at the time of forming a ceramic layer by making the vertical inclination angle into 45 degrees or more. Therefore, it is possible to suppress a decrease in the manufacturing efficiency of the ceramic layer.
 本発明の第二十態様に係る遮熱コーティング形成方法は、第八態様において、耐熱合金基材の表面に対して溶射ガンを予め定めた傾斜角度だけ傾斜させて、溶射粒子を分散させた懸濁液を用いて溶射し、前記耐熱合金基材上に厚さ方向に延びて前記傾斜角度だけ傾斜して延びる縦割が面方向に分散されたセラミックを含むセラミック層を形成するようにしてもよい。 The thermal barrier coating forming method according to the twentieth aspect of the present invention is the suspension according to the eighth aspect, wherein the thermal spray gun is inclined with respect to the surface of the heat-resistant alloy substrate by a predetermined inclination angle to disperse the spray particles. Thermal spraying using a turbid liquid may be performed to form a ceramic layer that includes a ceramic that extends in the thickness direction on the heat-resistant alloy base material and that includes a ceramic in which longitudinal splits that are inclined by the inclination angle are dispersed in the plane direction. Good.
 このような構成とすることで、セラミック層における厚さ方向への入熱が斜めに延びる縦割によって阻害される。したがって、縦割によって、セラミック層における熱伝導率を低下させることができる。一方で、セラミック層を縦割が形成されるほど緻密に形成することで、耐エロージョン性の低下を抑えることができる。また、サスペンションプラズマ溶射によってセラミック層が形成されることで、セラミック層を形成する溶射粒子の粒径が小さくなる。その結果、セラミック層を非常に密な構造とすることができる。これにより、形成後のセラミック層の密着性も向上させることができる。 With such a configuration, the heat input in the thickness direction in the ceramic layer is hindered by the longitudinal split extending obliquely. Therefore, the thermal conductivity in the ceramic layer can be reduced by the vertical division. On the other hand, the erosion resistance can be prevented from decreasing by forming the ceramic layer so densely that the vertical split is formed. In addition, since the ceramic layer is formed by suspension plasma spraying, the particle size of the spray particles forming the ceramic layer is reduced. As a result, the ceramic layer can have a very dense structure. Thereby, the adhesiveness of the ceramic layer after formation can also be improved.
 本発明の第二十一態様に係る遮熱コーティング形成方法では、第二十態様において、前記溶射はサスペンションプラズマ溶射であってもよい。 In the thermal barrier coating forming method according to the twenty-first aspect of the present invention, in the twentieth aspect, the thermal spraying may be suspension plasma thermal spraying.
 本発明の第二十二態様に係る遮熱コーティング形成方法は、第二十態様または第二十一態様において、前記溶射粒子の粒径が0.1μm以上1.0μm以下であってもよい。 In the thermal barrier coating forming method according to the twenty-second aspect of the present invention, in the twentieth aspect or the twenty-first aspect, the particle size of the sprayed particles may be 0.1 μm or more and 1.0 μm or less.
 本発明の第二十三態様に係る高温部材は、第十三態様において、耐熱合金基材と、前記耐熱合金基材上に形成され、厚さ方向に延びる縦割が面方向に分散されたセラミックを含むセラミック層とを備え、前記縦割は、前記セラミック層の表面に対して、傾斜して延びていてもよい。 The high-temperature member according to the twenty-third aspect of the present invention is the heat-resistant alloy substrate according to the thirteenth aspect, formed on the heat-resistant alloy substrate, and the vertical splits extending in the thickness direction are dispersed in the surface direction. A ceramic layer including ceramics, and the longitudinal split may extend at an angle with respect to a surface of the ceramic layer.
 上記遮熱コーティング形成方法、遮熱コーティング、及び高温部材によれば、耐エロージョン性の低下を抑えつつ遮熱効果を高めることができる。 According to the above thermal barrier coating formation method, thermal barrier coating, and high temperature member, it is possible to enhance the thermal barrier effect while suppressing a decrease in erosion resistance.
本発明の実施形態に係るガスタービンの概略構成図である。1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention. 本発明の実施形態に係る動翼の概略構成斜視図である。It is a schematic structure perspective view of a moving blade concerning an embodiment of the present invention. 本発明の実施形態に係る遮熱コーティングを説明する動翼の要部断面拡大図である。It is a principal part cross-sectional enlarged view of the moving blade explaining the thermal barrier coating which concerns on embodiment of this invention. 本発明の第一実施形態における遮熱コーティング形成方法の工程を説明する工程図である。It is process drawing explaining the process of the thermal barrier coating formation method in 1st embodiment of this invention. 本発明の実施形態におけるトップコート層における熱伝導率と気孔率との関係をシミュレーションにより求めた図である。It is the figure which calculated | required the relationship between the thermal conductivity and the porosity in the topcoat layer in embodiment of this invention by simulation. 本発明の実施形態における縦割が形成されたトップコート層における熱伝導率と縦割の傾斜角度との関係をシミュレーションにより求めた図である。It is the figure which calculated | required the relationship between the thermal conductivity in the topcoat layer in which the vertical division in embodiment of this invention was formed, and the inclination angle of vertical division by simulation. 本発明の変形例に係る遮熱コーティングを説明する動翼の要部断面拡大図である。It is a principal part cross-sectional enlarged view of the moving blade explaining the thermal barrier coating which concerns on the modification of this invention. 本発明の変形例に係る遮熱コーティングを説明する動翼の要部断面拡大図である。It is a principal part cross-sectional enlarged view of the moving blade explaining the thermal barrier coating which concerns on the modification of this invention.
 以下、本発明の実施形態について図1から図7を参照して説明する。
 図1に示すように、本実施形態のガスタービン1は、圧縮機2と、燃焼器3と、タービン本体4と、ロータ5と、を備えている。圧縮機2は、多量の空気を内部に取り入れて圧縮する。燃焼器3は、圧縮機2にて圧縮された圧縮空気Aに燃料を混合して燃焼させる。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the gas turbine 1 of the present embodiment includes a compressor 2, a combustor 3, a turbine body 4, and a rotor 5. The compressor 2 takes in a large amount of air and compresses it. The combustor 3 mixes fuel with the compressed air A compressed by the compressor 2 and burns it.
 タービン本体4は、燃焼器3から導入された燃焼ガスGの熱エネルギーを回転エネルギーに変換する。このタービン本体4は、ロータ5に設けられた動翼7に燃焼ガスGを吹き付けることで燃焼ガスGの熱エネルギーを機械的な回転エネルギーに変換して動力を発生させる。タービン本体4には、ロータ5側の複数の動翼7の他に、タービン本体4のケーシング6に複数の静翼8が設けられる。タービン本体4では、これら動翼7と静翼8とが、ロータ5の軸方向に交互に配列されている。ロータ5は、タービン本体4の回転する動力の一部を圧縮機2に伝達して圧縮機2を回転させる。 The turbine body 4 converts the thermal energy of the combustion gas G introduced from the combustor 3 into rotational energy. The turbine body 4 generates power by converting the thermal energy of the combustion gas G into mechanical rotational energy by blowing the combustion gas G onto the rotor blades 7 provided in the rotor 5. The turbine body 4 is provided with a plurality of stationary blades 8 in a casing 6 of the turbine body 4 in addition to the plurality of rotor blades 7 on the rotor 5 side. In the turbine body 4, the moving blades 7 and the stationary blades 8 are alternately arranged in the axial direction of the rotor 5. The rotor 5 transmits a part of the rotating power of the turbine body 4 to the compressor 2 to rotate the compressor 2.
 以下、この実施形態においては、タービン本体4の動翼7を、この発明の高温部材の一例として説明する。
 動翼7は、図2に示すように、動翼本体70と、遮熱コーティング100とを有している。動翼本体70は、例えば、Ni基合金等の周知の耐熱合金材料により形成されている耐熱合金基材である。本実施形態の動翼本体70は、翼本体部71と、プラットフォーム部72と、翼根部73と、シュラウド部74と、を備えている。
Hereinafter, in this embodiment, the moving blade 7 of the turbine body 4 will be described as an example of the high temperature member of the present invention.
As illustrated in FIG. 2, the moving blade 7 includes a moving blade body 70 and a thermal barrier coating 100. The rotor blade body 70 is a heat-resistant alloy base material formed of a well-known heat-resistant alloy material such as a Ni-based alloy, for example. The rotor blade main body 70 of the present embodiment includes a blade main body portion 71, a platform portion 72, a blade root portion 73, and a shroud portion 74.
 翼本体部71は、断面が翼形状をなしている。翼本体部71は、タービン本体4のケーシング6内の燃焼ガスGの流路内に配されている。プラットフォーム部72は、翼本体部71の基端に設けられている。このプラットフォーム部72は、翼本体部71の基端側において燃焼ガスGの流路を画成する。翼根部73は、プラットフォーム部72から翼本体部71と反対側へ突出して形成されている。シュラウド部74は、翼本体部71の先端に設けられている。このシュラウド部74は、翼本体部71の先端側において燃焼ガスGの流路を画成する。 The wing body 71 has a wing shape in cross section. The blade body 71 is disposed in the flow path of the combustion gas G in the casing 6 of the turbine body 4. The platform portion 72 is provided at the proximal end of the wing body portion 71. The platform portion 72 defines a flow path for the combustion gas G on the proximal end side of the blade body portion 71. The blade root portion 73 is formed to protrude from the platform portion 72 to the opposite side of the blade body portion 71. The shroud portion 74 is provided at the tip of the wing body portion 71. The shroud portion 74 defines a flow path for the combustion gas G on the tip side of the blade body portion 71.
 図3に示すように、遮熱コーティング100は、耐熱合金基材である動翼本体70の表面上に形成される。遮熱コーティング100は、動翼本体70の表面のうち、翼本体部71の表面と、プラットフォーム部72の翼本体部71と接続されている側の表面と、シュラウド部74の翼本体部71と接続されている側の表面とをそれぞれ覆うように形成されている。本実施形態の遮熱コーティング100は、後述するサスペンションプラズマ溶射で形成されている。本実施形態の遮熱コーティング100は、ボンドコート層110と、トップコート層(セラミック層)120とを備えている。 As shown in FIG. 3, the thermal barrier coating 100 is formed on the surface of the rotor blade main body 70 which is a heat-resistant alloy substrate. Among the surfaces of the rotor blade main body 70, the thermal barrier coating 100 includes the surface of the blade main body 71, the surface of the platform 72 connected to the blade main body 71, and the blade main body 71 of the shroud 74. It is formed so as to cover the surface on the connected side. The thermal barrier coating 100 of the present embodiment is formed by suspension plasma spraying described later. The thermal barrier coating 100 of this embodiment includes a bond coat layer 110 and a top coat layer (ceramic layer) 120.
 ボンドコート層110は、動翼本体70の表面に直接形成されている。ボンドコート層110は、動翼本体70からトップコート層120が剥離することを抑制する。このボンドコート層110は、耐食性および耐酸化性に優れた金属結合層である。ボンドコート層110は、例えば、溶射材としてMCrAlY合金の金属溶射粉を動翼本体70の表面に対して溶射して形成される。ここで、ボンドコート層110を構成するMCrAlY合金の「M」は、金属元素を示している。この金属元素「M」は、例えば、Ni、Co等の単独の金属元素、又は、これらのうち2種以上の組み合わせからなる。 The bond coat layer 110 is directly formed on the surface of the rotor blade body 70. The bond coat layer 110 suppresses the top coat layer 120 from peeling from the rotor blade body 70. The bond coat layer 110 is a metal bonding layer having excellent corrosion resistance and oxidation resistance. The bond coat layer 110 is formed, for example, by spraying a metal spray powder of MCrAlY alloy on the surface of the rotor blade body 70 as a spraying material. Here, “M” in the MCrAlY alloy constituting the bond coat layer 110 represents a metal element. The metal element “M” is made of, for example, a single metal element such as Ni or Co, or a combination of two or more of these.
 トップコート層120は、ボンドコート層110を介して動翼本体70上に形成されている。トップコート層120は、厚さ方向に延びる縦割Cが面方向に分散されたセラミックを含んだ層を有している。ここで、面方向とは、トップコート層120の表面に沿う方向である。本実施形態のトップコート層120は、0.3mm以上1.5mm以下の厚みで形成されている。トップコート層120は、第一緻密層121と、中間気孔層122と、第二緻密層123とを有している。 The top coat layer 120 is formed on the rotor blade main body 70 via the bond coat layer 110. The topcoat layer 120 has a layer containing ceramic in which the longitudinal divisions C extending in the thickness direction are dispersed in the plane direction. Here, the surface direction is a direction along the surface of the topcoat layer 120. The topcoat layer 120 of this embodiment is formed with a thickness of 0.3 mm or more and 1.5 mm or less. The topcoat layer 120 has a first dense layer 121, an intermediate pore layer 122, and a second dense layer 123.
 第一緻密層121は、ボンドコート層110上に直接積層されている。第一緻密層121は、縦割Cとして、第一縦割C1が表面の広がる面方向に分散されている。したがって、第一緻密層121では、第一縦割C1は面方向に離れて複数形成されている。本実施形態の第一緻密層121は、例えば、第一縦割C1が面方向に分散された緻密なDVC(Dense Vertical Crack)コーティングである。第一緻密層121は、トップコート層120の中で最も耐熱合金基材側に形成されている。第一緻密層121を形成する際に用いられる溶射材は、例えば、イットリア安定化ジルコニア(YSZ)や、酸化イッテルビウム(Yb)で部分安定化させたジルコニア(ZrO)であるイッテルビア安定化ジルコニア(YbSZ)が用いられる。 The first dense layer 121 is directly laminated on the bond coat layer 110. In the first dense layer 121, the first vertical division C1 is dispersed as the vertical division C in the surface direction in which the surface spreads. Therefore, in the first dense layer 121, a plurality of the first vertical divisions C1 are formed apart in the surface direction. The first dense layer 121 of the present embodiment is, for example, a dense DVC (Dense Vertical Crack) coating in which the first vertical divisions C1 are dispersed in the surface direction. The first dense layer 121 is formed on the most heat-resistant alloy substrate side in the top coat layer 120. The thermal spray material used when forming the first dense layer 121 is, for example, yttria-stabilized zirconia (YSZ) or ytterbia stable (ZrO 2 ) partially stabilized with ytterbium oxide (Yb 2 O 3 ). Zirconia fluoride (YbSZ) is used.
 第一縦割C1は、トップコート層120の表面に対して、所定の傾斜角度αだけ傾斜して延びている。具体的には、第一縦割C1は、厚さ方向における耐熱合金基材の表面側である基端と、トップコート層120の表面側である先端とを結んだ仮想直線の延びる方向を延在方向としている。第一縦割C1は、この延在方向がトップコート層120の表面が広がる面方向に対して傾斜している。したがって、第一縦割C1は、基端からトップコート層120の表面に向かうにしたがって、基端に対して面方向の一方側に向かって延びている。本実施形態における傾斜角度αは、面方向に対する延在方向の角度である。本実施形態では、複数の第一縦割C1は、全て同じ方向に向かって傾斜している。つまり、複数の第一縦割C1の全ては、トップコート層120の表面に向かうにしたがって、面方向の一方側に向かって傾斜している。また、第一縦割C1は、基端側や先端側の一部だけでなく、厚さ方向の全域にわたって傾斜している。 The first vertical split C1 extends with a predetermined inclination angle α with respect to the surface of the topcoat layer 120. Specifically, the first vertical split C1 extends in the extending direction of an imaginary straight line connecting the base end that is the surface side of the heat-resistant alloy base material in the thickness direction and the front end that is the surface side of the topcoat layer 120. The direction is assumed. In the first vertical split C1, the extending direction is inclined with respect to the surface direction in which the surface of the top coat layer 120 is spread. Therefore, the first vertical split C <b> 1 extends toward the one side in the surface direction with respect to the base end as it goes from the base end toward the surface of the top coat layer 120. The inclination angle α in the present embodiment is an angle in the extending direction with respect to the surface direction. In the present embodiment, the plurality of first vertical divisions C1 are all inclined toward the same direction. That is, all of the plurality of first vertical divisions C <b> 1 are inclined toward one side in the surface direction as they go to the surface of the top coat layer 120. In addition, the first vertical division C1 is inclined over the entire region in the thickness direction as well as a part of the proximal end side and the distal end side.
 本実施形態における傾斜角度αは、トップコート層120の表面に対して、45°以上80°以下の角度であることが好ましい。傾斜角度αは、トップコート層120の表面に対して、50°以上70°以下の角度であることがより好ましい。傾斜角度αは、トップコート層120の表面に対して、55°以上65°以下の角度であることが特に好ましい。 The inclination angle α in the present embodiment is preferably an angle of 45 ° or more and 80 ° or less with respect to the surface of the topcoat layer 120. The inclination angle α is more preferably an angle of 50 ° or more and 70 ° or less with respect to the surface of the top coat layer 120. The inclination angle α is particularly preferably an angle of 55 ° to 65 ° with respect to the surface of the topcoat layer 120.
 第一緻密層121では、1mm当たりの第一縦割C1の分布率が、6本/mm以上12本/mm以下であることが好ましい。第一緻密層121では、1mm当たりの第一縦割C1の分布率が、8本/mm以上10本/mm以下であることがより好ましい。 In the first dense layer 121, the distribution ratio of the first vertical division C1 per 1 mm is preferably 6 / mm or more and 12 / mm or less. In the first dense layer 121, it is more preferable that the distribution ratio of the first vertical division C1 per 1 mm is 8 pieces / mm or more and 10 pieces / mm or less.
 第一緻密層121の気孔率は、10%以下5%以上の範囲に収まっていることが好ましい。なお、本実施形態における気孔率とは、単位体積当たりの気孔Pのみの占有率だけでなく、縦割C及び気孔Pを合わせた占有率である。 The porosity of the first dense layer 121 is preferably in the range of 10% or less and 5% or more. In addition, the porosity in this embodiment is not only the occupation rate of only the pores P per unit volume, but also the occupation rate of the vertical split C and the pores P combined.
 中間気孔層122は、第一緻密層121上に積層されている。中間気孔層122は、第一緻密層121よりも密度が大きく、多数の気孔Pが形成されている。したがって、中間気孔層122は、第一緻密層121よりも大きな気孔率で形成されたポーラス膜であり、内部にほとんど縦割Cを有していない。本実施形態の中間気孔層122は、第一緻密層121と同じ厚みで形成されている。本実施形態の中間気孔層122は、第一緻密層121と同じ溶射材で形成されている。 The intermediate pore layer 122 is laminated on the first dense layer 121. The intermediate pore layer 122 has a higher density than the first dense layer 121, and a large number of pores P are formed. Therefore, the intermediate pore layer 122 is a porous film formed with a larger porosity than the first dense layer 121, and has almost no vertical division C inside. The intermediate pore layer 122 of the present embodiment is formed with the same thickness as the first dense layer 121. The intermediate pore layer 122 of this embodiment is formed of the same thermal spray material as the first dense layer 121.
 本実施形態の中間気孔層122の気孔率は、10%以上20%以下であることが好ましい。中間気孔層122の気孔率は、12%以上18%以下であることがより好ましい。中間気孔層122の気孔率は、14%以上16%以下であることが特に好ましい。 The porosity of the intermediate pore layer 122 of the present embodiment is preferably 10% or more and 20% or less. The porosity of the intermediate pore layer 122 is more preferably 12% or more and 18% or less. The porosity of the intermediate pore layer 122 is particularly preferably 14% or more and 16% or less.
 中間気孔層122と第一緻密層121との境界部である第一境界部では、気孔率が連続的に変化している。したがって、第一緻密層121の厚さ方向の中央付近から中間気孔層122の厚さ方向の中央付近に向かって気孔率が徐々に高くなるよう形成されている。 The porosity is continuously changing at the first boundary, which is the boundary between the intermediate pore layer 122 and the first dense layer 121. Therefore, the porosity is formed so that the porosity gradually increases from the vicinity of the center in the thickness direction of the first dense layer 121 toward the vicinity of the center in the thickness direction of the intermediate pore layer 122.
 第二緻密層123は、中間気孔層122上に直接積層されている。第二緻密層123は、縦割Cとして、第二縦割C2が面方向に分散されている。したがって、第二緻密層123では、第二縦割C2は面方向に離れて複数形成されている。第二緻密層123は、中間気孔層122よりも密度が大きい。第二緻密層123は、トップコート層120の中で最も表面側に形成されている。したがって、第二緻密層123の表面がトップコート層120の表面である。本実施形態の第二緻密層123は、例えば、第二縦割C2が面方向に分散された緻密なDVCコーティングである。本実施形態の第二緻密層123は、第一緻密層121と同じ構造を有する膜である。したがって、第二緻密層123を形成する際に用いられる溶射材は、第一緻密層121と同じ溶射材である。 The second dense layer 123 is directly laminated on the intermediate pore layer 122. In the second dense layer 123, the second vertical division C <b> 2 is dispersed in the plane direction as the vertical division C. Therefore, in the second dense layer 123, a plurality of the second vertical divisions C2 are formed apart in the surface direction. The second dense layer 123 has a higher density than the intermediate pore layer 122. The second dense layer 123 is formed on the most surface side in the top coat layer 120. Therefore, the surface of the second dense layer 123 is the surface of the topcoat layer 120. The second dense layer 123 of the present embodiment is, for example, a dense DVC coating in which the second vertical divisions C2 are dispersed in the surface direction. The second dense layer 123 of this embodiment is a film having the same structure as the first dense layer 121. Therefore, the thermal spray material used when forming the second dense layer 123 is the same thermal spray material as the first dense layer 121.
 第二縦割C2は、第一縦割C1と同様に、トップコート層120の表面に対して、傾斜角度αだけ傾斜して延びている。具体的には、第二縦割C2は、厚さ方向における耐熱合金基材の表面側で基端と、トップコート層120の表面側である先端とを結んだ仮想直線の延びる方向を延在方向としている。第二縦割C2は、この延在方向がトップコート層120の表面が広がる面方向に対して傾斜している。したがって、第二縦割C2は、第一縦割C1と同様に、基端からトップコート層120の表面に向かうにしたがって、基端に対して面方向の一方側に向かって延びている。本実施形態の第二縦割C2は、第一縦割C1と同じ方向に同じ角度をなして傾斜している。複数の第二縦割C2は、全て同じ方向に向かって傾斜している。つまり、複数の第二縦割C2の全ては、トップコート層120の表面に向かうにしたがって、面方向の一方側に向かって傾斜している。また、第二縦割C2は、基端側や先端側の一部だけでなく、厚さ方向の全域にわたって傾斜している。 The second vertical division C2 extends at an inclination angle α with respect to the surface of the topcoat layer 120, similarly to the first vertical division C1. Specifically, the second vertical split C2 extends in the extending direction of an imaginary straight line connecting the base end on the surface side of the heat-resistant alloy substrate in the thickness direction and the tip end on the surface side of the topcoat layer 120. The direction. In the second vertical split C2, the extending direction is inclined with respect to the surface direction in which the surface of the top coat layer 120 is spread. Therefore, like the first vertical split C1, the second vertical split C2 extends toward one side in the surface direction with respect to the base end as it goes from the base end to the surface of the topcoat layer 120. The second vertical division C2 of the present embodiment is inclined at the same angle in the same direction as the first vertical division C1. The plurality of second vertical divisions C2 are all inclined in the same direction. That is, all of the plurality of second vertical divisions C <b> 2 are inclined toward one side in the surface direction as they go toward the surface of the top coat layer 120. In addition, the second vertical division C2 is inclined over the entire region in the thickness direction, as well as part of the proximal end side and the distal end side.
 第二緻密層123では、1mm当たりの第二縦割C2の分布率が、6本/mm以上12本/mm以下であることが好ましい。第二緻密層123では、1mm当たりの第二縦割C2の分布率が、8本/mm以上10本/mm以下であることがより好ましい。第二緻密層123の気孔率は、10%以下5%以上の範囲に収まっていることが好ましい。第二緻密層123では、1mm当たりの第二縦割C2の分布率が、第一緻密層121の第一縦割C1の分布率と同じであることが好ましい。第二緻密層123の気孔率は、第一緻密層121の気孔率と同じであることが好ましい。 In the second dense layer 123, it is preferable that the distribution ratio of the second longitudinal division C2 per 1 mm is 6 / mm or more and 12 / mm or less. In the second dense layer 123, it is more preferable that the distribution ratio of the second longitudinal division C2 per 1 mm is 8 / mm or more and 10 / mm or less. The porosity of the second dense layer 123 is preferably within the range of 10% or less and 5% or more. In the second dense layer 123, the distribution ratio of the second vertical division C2 per mm is preferably the same as the distribution ratio of the first vertical division C1 of the first dense layer 121. The porosity of the second dense layer 123 is preferably the same as the porosity of the first dense layer 121.
 中間気孔層122と第二緻密層123との境界部である第二境界部では、気孔率が連続的に変化している。したがって、中間気孔層122の厚さ方向の中央付近から第二緻密層123の厚さ方向の中央付近に向かって気孔率が徐々に低くなるよう形成されている。 The porosity is continuously changing at the second boundary, which is the boundary between the intermediate pore layer 122 and the second dense layer 123. Therefore, the porosity is formed so that the porosity gradually decreases from the vicinity of the center in the thickness direction of the intermediate pore layer 122 toward the vicinity of the center in the thickness direction of the second dense layer 123.
 次に高温部材の製造方法S1を説明する。本実施形態の高温部材の製造方法S1は、上述した動翼7を高温部材として製造する動翼7の製造方法である。本実施形態の高温部材の製造方法S1は、図4に示すように、動翼本体準備工程S10と、遮熱コーティング形成工程S20とを含む。 Next, manufacturing method S1 of a high temperature member will be described. Manufacturing method S1 of the high temperature member of this embodiment is a manufacturing method of the moving blade 7 which manufactures the moving blade 7 mentioned above as a high temperature member. As shown in FIG. 4, the high-temperature member manufacturing method S <b> 1 of the present embodiment includes a rotor blade body preparation step S <b> 10 and a thermal barrier coating formation step S <b> 20.
 動翼本体準備工程S10は、事前に動翼本体70として耐熱合金基材を準備する。本実施形態の動翼本体準備工程S10では、材料を目的の高温部材(例えば、本実施形態では動翼本体70)の形状となるように形成して準備する。 In the blade main body preparation step S10, a heat-resistant alloy base material is prepared as the blade main body 70 in advance. In the rotor blade main body preparation step S10 of the present embodiment, the material is prepared by being formed into the shape of a target high-temperature member (for example, the rotor blade main body 70 in the present embodiment).
 遮熱コーティング形成工程S20は、動翼本体準備工程S10で準備された動翼本体70の表面に遮熱コーティング形成方法S100で遮熱コーティング100を形成する。本実施形態の遮熱コーティング形成工程S20では、動翼本体70の表面にボンドコート層110及びトップコート層120が形成される。本実施形態の遮熱コーティング形成工程S20は、以下の遮熱コーティング形成方法S100で実施される。 In the thermal barrier coating forming step S20, the thermal barrier coating 100 is formed on the surface of the rotor blade main body 70 prepared in the rotor blade main body preparing step S10 by the thermal barrier coating forming method S100. In the thermal barrier coating formation step S <b> 20 of the present embodiment, the bond coat layer 110 and the top coat layer 120 are formed on the surface of the rotor blade main body 70. Thermal barrier coating formation process S20 of this embodiment is implemented by the following thermal barrier coating formation method S100.
 遮熱コーティング形成方法S100は、動翼本体70に遮熱コーティング100を形成する。本実施形態の遮熱コーティング形成方法S100は、ボンドコート層形成工程S110と、トップコート層形成工程(セラミック層形成工程)S120と、調整工程S130とを含む。 In the thermal barrier coating forming method S100, the thermal barrier coating 100 is formed on the rotor blade main body 70. The thermal barrier coating forming method S100 of the present embodiment includes a bond coat layer forming step S110, a top coat layer forming step (ceramic layer forming step) S120, and an adjusting step S130.
 ボンドコート層形成工程S110は、動翼本体70の表面に対してボンドコート層110を形成する。ボンドコート層形成工程S110は、動翼本体準備工程S10の後に実施される。ボンドコート層形成工程S110は、例えば、溶射ガンでMCrAlY合金の溶射粒子が動翼本体70の表面に溶射される。ボンドコート層形成工程S110では、溶射ガンは、動翼本体70の表面に対して溶射粒子の噴射孔を垂直に向けて移動される。本実施形態のボンドコート層形成工程S110は、溶射ガンで高速フレーム溶射(HVOF:High Velocity Oxygen Fuel)や減圧プラズマ溶射(LPPS:Low Pressure Plasma Spraying)を実施することでボンドコート層110を形成する。 In the bond coat layer forming step S110, the bond coat layer 110 is formed on the surface of the rotor blade body 70. The bond coat layer forming step S110 is performed after the rotor blade main body preparing step S10. In the bond coat layer forming step S <b> 110, for example, the spray particles of the MCrAlY alloy are sprayed on the surface of the rotor blade main body 70 with a spray gun. In the bond coat layer forming step S <b> 110, the spray gun is moved with the spray holes of the spray particles perpendicular to the surface of the rotor blade body 70. The bond coat layer forming step S110 of the present embodiment forms the bond coat layer 110 by performing high-speed flame spraying (HVOF: High Velocity Oxygen Fuel) or low-pressure plasma spraying (LPPS: Low Pressure Plasma Spraying) with a spray gun. .
 トップコート層形成工程S120は、動翼本体70の表面上に、セラミックを含むトップコート層120を形成する。トップコート層形成工程S120は、ボンドコート層形成工程S110の後に実施される。トップコート層形成工程S120は、ボンドコート層形成工程S110で形成されたボンドコート層110上にトップコート層120を積層させる。トップコート層形成工程S120は、溶射法が用いられる。したがって、本実施形態のトップコート層形成工程S120は、動翼本体70に形成されたボンドコート層110の表面上に溶射粒子を溶射させてトップコート層120を形成する。トップコート層形成工程S120は、第一緻密層形成工程S121と、気孔層形成工程S122と、第二緻密層形成工程S123とを有している。 In the top coat layer forming step S120, the top coat layer 120 containing ceramic is formed on the surface of the rotor blade body 70. The top coat layer forming step S120 is performed after the bond coat layer forming step S110. In the top coat layer forming step S120, the top coat layer 120 is laminated on the bond coat layer 110 formed in the bond coat layer forming step S110. In the top coat layer forming step S120, a thermal spraying method is used. Accordingly, in the top coat layer forming step S120 of the present embodiment, the top coat layer 120 is formed by spraying the spray particles on the surface of the bond coat layer 110 formed on the rotor blade main body 70. The topcoat layer forming step S120 includes a first dense layer forming step S121, a pore layer forming step S122, and a second dense layer forming step S123.
 第一緻密層形成工程S121は、ボンドコート層形成工程S110の後に実施される。第一緻密層形成工程S121は、ボンドコート層110上に第一緻密層121を形成する。第一緻密層形成工程S121は、サスペンションプラズマ溶射を実施して第一緻密層121を形成する。第一緻密層形成工程S121は、動翼本体70の表面に対して溶射ガンを所定の傾斜角度αだけ傾斜させてサスペンションプラズマ溶射を実施する。サスペンションプラズマ溶射は、微細な溶射粒子を分散させた懸濁液をプラズマジェット中に供給して被膜を形成する溶射方法である。なお、溶射ガンの噴射孔と溶射対象である動翼本体70の表面との距離は、気孔層形成工程S122より第一緻密層形成工程S121の方が短くなっている。 The first dense layer forming step S121 is performed after the bond coat layer forming step S110. In the first dense layer forming step S <b> 121, the first dense layer 121 is formed on the bond coat layer 110. In the first dense layer forming step S121, suspension plasma spraying is performed to form the first dense layer 121. In the first dense layer forming step S121, suspension plasma spraying is performed by inclining the thermal spray gun with respect to the surface of the rotor blade main body 70 by a predetermined inclination angle α. Suspension plasma spraying is a spraying method in which a suspension in which fine spray particles are dispersed is supplied into a plasma jet to form a coating. Note that the distance between the spray hole of the spray gun and the surface of the rotor blade main body 70 to be sprayed is shorter in the first dense layer forming step S121 than in the pore layer forming step S122.
 微細な溶射粒子とは、粒径が0.1μm以上1.0μm以下であることが好ましい。懸濁液に使用されるキャリアは、例えば、水やエタノールが挙げられる。サスペンションプラズマ溶射は、プラズマジェットに対する懸濁液の供給方式が軸流内部供給方式の溶射ガンを用いてもよく、外部供給方式の溶射ガンを用いてもよい。 The fine spray particles preferably have a particle size of 0.1 μm or more and 1.0 μm or less. Examples of the carrier used for the suspension include water and ethanol. In suspension plasma spraying, a suspension gun spraying system may use an axial flow internal supply spray gun or an external supply spray gun.
 気孔層形成工程S122は、第一緻密層形成工程S121の後に実施される。気孔層形成工程S122は、第一緻密層121上に中間気孔層122を形成する。気孔層形成工程S122は、サスペンションプラズマ溶射を実施して中間気孔層122を形成する。気孔層形成工程S122は、第一緻密層形成工程S121よりも溶射ガンを動翼本体70から離して溶射粒子を溶射する。気孔層形成工程S122では、初めに、第一緻密層形成工程S121における溶射距離から徐々に遠ざけるように溶射ガンを移動させながら溶射を実施する。その後、中間気孔層122の所望の膜厚の半分程度まで、中間気孔層122が形成された時点で、溶射距離を第二緻密層形成工程S123における溶射距離に徐々に近づけていく。最終的に、所望の膜厚の中間気孔層122が形成された時点で、溶射距離が第二緻密層形成工程S123における溶射距離と一致させるように溶射ガンを移動させる。 The pore layer forming step S122 is performed after the first dense layer forming step S121. In the pore layer forming step S <b> 122, the intermediate pore layer 122 is formed on the first dense layer 121. In the pore layer forming step S122, suspension plasma spraying is performed to form the intermediate pore layer 122. In the pore layer forming step S122, the thermal spray gun is separated from the moving blade main body 70 to spray the thermal spray particles more than in the first dense layer forming step S121. In the pore layer forming step S122, first, spraying is performed while moving the spray gun so as to gradually move away from the spraying distance in the first dense layer forming step S121. Thereafter, when the intermediate pore layer 122 is formed to about half the desired film thickness of the intermediate pore layer 122, the spray distance is gradually brought closer to the spray distance in the second dense layer forming step S123. Finally, when the intermediate pore layer 122 having a desired thickness is formed, the spray gun is moved so that the spray distance matches the spray distance in the second dense layer forming step S123.
 第二緻密層形成工程S123は、気孔層形成工程S122の後に実施される。第二緻密層形成工程S123は、中間気孔層122上に第二緻密層123を形成する。第二緻密層形成工程S123は、サスペンションプラズマ溶射を実施して第二緻密層123を形成する。第二緻密層形成工程S123は、気孔層形成工程S122よりも溶射ガンを動翼本体70に近づけて溶射粒子を溶射する。本実施形態の第二緻密層形成工程S123は、第一緻密層形成工程S121と同じ条件で実施される。したがって、第二緻密層形成工程S123は、動翼本体70の表面に対して溶射ガンを予め定めた傾斜角度αだけ傾斜させてサスペンションプラズマ溶射で溶射する。なお、溶射ガンの噴射孔と溶射対象である動翼本体70の表面との距離は、気孔層形成工程S122より第二緻密層形成工程S123の方が短くなっている。 The second dense layer forming step S123 is performed after the pore layer forming step S122. In the second dense layer forming step S123, the second dense layer 123 is formed on the intermediate pore layer 122. In the second dense layer forming step S123, suspension plasma spraying is performed to form the second dense layer 123. In the second dense layer forming step S123, the thermal spray gun is brought closer to the moving blade body 70 than in the pore layer forming step S122 to spray the thermal spray particles. The second dense layer forming step S123 of the present embodiment is performed under the same conditions as the first dense layer forming step S121. Therefore, in the second dense layer forming step S123, the thermal spray gun is inclined by a predetermined inclination angle α with respect to the surface of the rotor blade body 70 and sprayed by suspension plasma spraying. The distance between the spray hole of the spray gun and the surface of the moving blade main body 70 that is the object of spraying is shorter in the second dense layer forming step S123 than in the pore layer forming step S122.
 調整工程S130は、第二緻密層形成工程S123の後に実施される。調整工程S130は、遮熱コーティング100の表面の状態を調整する。具体的には、調整工程S130においては、トップコート層120の表面を僅かに削って遮熱コーティング100の膜厚を調整したり、表面をより滑らかにしたりする。この調整工程S130により、例えば、動翼7への熱伝導率を低下させることができる。この実施形態の調整工程S130においては、第二緻密層123の表面を数μm削ることで、トップコート層120の表面を滑らかにするとともに膜厚を調整している。 The adjusting step S130 is performed after the second dense layer forming step S123. The adjustment step S130 adjusts the surface state of the thermal barrier coating 100. Specifically, in the adjustment step S130, the surface of the top coat layer 120 is slightly shaved to adjust the film thickness of the thermal barrier coating 100, or to make the surface smoother. By this adjustment process S130, the heat conductivity to the moving blade 7 can be reduced, for example. In the adjusting step S130 of this embodiment, the surface of the second dense layer 123 is shaved by several μm to smooth the surface of the topcoat layer 120 and adjust the film thickness.
 上記のような遮熱コーティング100、遮熱コーティング形成方法S100、及び動翼7によれば、中間気孔層122が第一緻密層121と第二緻密層123との間に形成されることで、厚さ方向へのトップコート層120への入熱が中間気孔層122で阻害される。その結果、トップコート層120としての熱伝導率をより一層低下させることができる。トップコート層120の中で、動翼本体70側であるボンドコート層110に密着する側に第一緻密層121が形成されることで、ボンドコート層110に対する密着性を確保することができる。さらに、トップコート層120の中で、表面側に第二緻密層123が形成されることで耐エロージョン性を確保することができる。これらにより、遮熱コーティング100での耐エロージョン性の低下を抑えつつ遮熱効果を高めることができる。 According to the thermal barrier coating 100, the thermal barrier coating formation method S100, and the rotor blade 7 as described above, the intermediate pore layer 122 is formed between the first dense layer 121 and the second dense layer 123. Heat input to the top coat layer 120 in the thickness direction is inhibited by the intermediate pore layer 122. As a result, the thermal conductivity as the top coat layer 120 can be further reduced. By forming the first dense layer 121 on the side of the top coat layer 120 that is in close contact with the bond coat layer 110 on the rotor blade main body 70 side, adhesion to the bond coat layer 110 can be ensured. Furthermore, erosion resistance can be ensured by forming the second dense layer 123 on the surface side in the top coat layer 120. Accordingly, it is possible to enhance the heat shielding effect while suppressing a decrease in erosion resistance in the heat shielding coating 100.
 具体的には、中間気孔層122があることで熱伝導率を低下する点について、図5を用いて説明する。図5は、トップコート層120における熱伝導率と気孔率との関係をシミュレーションにより求めた図である。図5に示すように、トップコート層120では、気孔率が大きくなるほど、トップコート層120における熱伝導率は小さくなる。より具体的には、気孔率が0%から15%まで上昇することで、熱伝導率が10%程度低下する。したがって、気孔率の高い中間気孔層122を第一緻密層121と第二緻密層123との間に形成することによって、トップコート層120における熱伝導率を低下させることができることがわかる。 Specifically, the point that the thermal conductivity is lowered due to the presence of the intermediate pore layer 122 will be described with reference to FIG. FIG. 5 is a diagram in which the relationship between the thermal conductivity and the porosity in the topcoat layer 120 is obtained by simulation. As shown in FIG. 5, in the topcoat layer 120, the thermal conductivity in the topcoat layer 120 decreases as the porosity increases. More specifically, when the porosity increases from 0% to 15%, the thermal conductivity decreases by about 10%. Therefore, it can be seen that the thermal conductivity of the topcoat layer 120 can be lowered by forming the intermediate porosity layer 122 having a high porosity between the first dense layer 121 and the second dense layer 123.
 また、中間気孔層122における気孔率を10%以上20%以下とすることで、第一縦割C1及び第二縦割C2による厚さ方向への入熱を阻害する効果が大きくなる。その結果、中間気孔層122における耐エロージョン性を大きく低下させることなく、トップコート層120における熱伝導率を大きく低下させることができる。 In addition, by setting the porosity in the intermediate pore layer 122 to 10% or more and 20% or less, the effect of inhibiting heat input in the thickness direction by the first vertical division C1 and the second vertical division C2 is increased. As a result, the thermal conductivity in the topcoat layer 120 can be greatly reduced without greatly reducing the erosion resistance in the intermediate pore layer 122.
 また、第一縦割C1や第二縦割C2のようにトップコート層120内に斜めに形成された縦割Cが形成される。そのため、第一緻密層121内における厚さ方向への入熱が斜めに延びる第一縦割C1によって阻害される。同様に、第二緻密層123内における厚さ方向への入熱が斜めに延びる第二縦割C2によって阻害される。したがって、第一縦割C1及び第二縦割C2によって、トップコート層120における熱伝導率を低下させることができる。一方で、トップコート層120における表面側に第二緻密層123が形成されている。第二緻密層123を縦割Cが形成されるほど緻密に形成することで、耐エロージョン性の低下を抑えることができる。これらにより、遮熱コーティング100の表面側の耐エロージョン性の低下を抑えつつ遮熱効果を高めることができる。 Moreover, the vertical division C formed diagonally in the topcoat layer 120 is formed like the first vertical division C1 and the second vertical division C2. Therefore, the heat input in the thickness direction in the first dense layer 121 is hindered by the first vertical split C1 extending obliquely. Similarly, the heat input in the thickness direction in the second dense layer 123 is hindered by the second vertical split C2 extending obliquely. Therefore, the thermal conductivity in the topcoat layer 120 can be reduced by the first vertical division C1 and the second vertical division C2. On the other hand, the second dense layer 123 is formed on the surface side of the top coat layer 120. By forming the second dense layer 123 as densely as the vertical split C is formed, it is possible to suppress a decrease in erosion resistance. As a result, the heat shielding effect can be enhanced while suppressing a decrease in the erosion resistance on the surface side of the thermal barrier coating 100.
 具体的には、縦割Cを傾斜させることで熱伝導率を低下する点について、図6を用いて説明する。図6は、縦割Cが形成されたトップコート層120における熱伝導率と縦割Cの傾斜角度αとの関係をシミュレーションにより求めた図である。図6に示すように、トップコート層120では、縦割Cの傾斜角度αが小さくなるほど、トップコート層120における熱伝導率は小さくなる。より具体的には、縦割Cが傾斜していない状態(傾斜角度αが90°の場合)に比べて、縦割Cの傾斜角度αを60°にした場合、熱伝導率が25%以上低下する。したがって、縦割Cを斜めにすることによって、トップコート層120における熱伝導率を低下させることができることがわかる。 Specifically, the point that the thermal conductivity is lowered by inclining the vertical split C will be described with reference to FIG. FIG. 6 is a diagram in which the relationship between the thermal conductivity in the top coat layer 120 in which the vertical division C is formed and the inclination angle α of the vertical division C is obtained by simulation. As shown in FIG. 6, in the top coat layer 120, the smaller the inclination angle α of the longitudinal split C, the smaller the thermal conductivity in the top coat layer 120. More specifically, the thermal conductivity is 25% or more when the inclination angle α of the vertical division C is 60 ° as compared to the state where the vertical division C is not inclined (when the inclination angle α is 90 °). descend. Therefore, it can be seen that the thermal conductivity in the topcoat layer 120 can be lowered by making the vertical division C oblique.
 また、サスペンションプラズマ溶射によってトップコート層120が形成されることで、大気プラズマ溶射(APS:atmospheric plasma spraying)に比べてトップコート層120を形成する溶射粒子の粒径が小さくなる。その結果、第一緻密層121や第二緻密層123を非常に密な構造とすることができる。そのため、第一緻密層121のボンドコート層110に対する密着性やトップコート層120における各層間の密着性を向上させることができる。 Further, since the topcoat layer 120 is formed by suspension plasma spraying, the particle size of the sprayed particles forming the topcoat layer 120 is smaller than that of atmospheric plasma spraying (APS). As a result, the first dense layer 121 and the second dense layer 123 can have a very dense structure. Therefore, the adhesion between the first dense layer 121 and the bond coat layer 110 and the adhesion between the layers in the top coat layer 120 can be improved.
 また、第一縦割C1及び第二縦割C2の全てが同じ方向に傾斜していることで、第一緻密層121及び第二緻密層123の面方向の広い領域にわたって、厚さ方向への入熱が阻害される。その結果、広い範囲にわたってトップコート層120における熱伝導率を低下させることができる。 Further, since all of the first vertical division C1 and the second vertical division C2 are inclined in the same direction, the first dense layer 121 and the second dense layer 123 extend in the thickness direction over a wide area in the surface direction. Heat input is hindered. As a result, the thermal conductivity in the topcoat layer 120 can be reduced over a wide range.
 また、第一縦割C1及び第二縦割C2の傾斜角度αが45°以上80°以下とされている。傾斜角度αが小さくなることで、第一縦割C1及び第二縦割C2による厚さ方向への入熱を阻害する効果が大きくなる。その結果、トップコート層120における熱伝導率を大幅に低下させることができる。また、第一縦割C1及び第二縦割C2の傾斜角度αを45度以上とすることで、第一緻密層121及び第二緻密層123の形成時に溶射粒子が表面に付着しづらくなることを抑えられる。そのため、トップコート層120の製造効率の低下をより抑えることができる。 Further, the inclination angle α of the first vertical division C1 and the second vertical division C2 is set to 45 ° or more and 80 ° or less. By decreasing the inclination angle α, the effect of inhibiting heat input in the thickness direction by the first vertical division C1 and the second vertical division C2 is increased. As a result, the thermal conductivity in the top coat layer 120 can be significantly reduced. In addition, by setting the inclination angle α of the first vertical division C1 and the second vertical division C2 to 45 degrees or more, it becomes difficult for the spray particles to adhere to the surface when the first dense layer 121 and the second dense layer 123 are formed. Can be suppressed. Therefore, it is possible to further suppress a decrease in manufacturing efficiency of the topcoat layer 120.
(実施形態の他の変形例)
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
(Other variations of the embodiment)
Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.
 なお、上記実施形態では、第一縦割C1及び第二縦割C2が傾斜した構造をなしているが、トップコート層120はこのような構造に限定されるものではない。例えば、図7に示すように、面方向に対して垂直に延在する縦割C(傾斜していない縦割)を有する構造の遮熱コーティング100Aのトップコート層120Aが形成されていてもよい。したがって、第一緻密層121Aの第一縦割C1及び第二緻密層123Aの第二縦割C2がトップコート層120Aの表面に対して垂直な方向に延びている。 In addition, in the said embodiment, although the 1st vertical division C1 and the 2nd vertical division C2 have comprised the structure, the topcoat layer 120 is not limited to such a structure. For example, as shown in FIG. 7, the top coat layer 120 </ b> A of the thermal barrier coating 100 </ b> A having a structure having a vertical division C (non-inclined vertical division) extending perpendicular to the surface direction may be formed. . Therefore, the first vertical division C1 of the first dense layer 121A and the second vertical division C2 of the second dense layer 123A extend in a direction perpendicular to the surface of the topcoat layer 120A.
 上記実施形態では、トップコート層120が第一緻密層121と第二緻密層123との間に中間気孔層122が形成された多層構造をなしている。しかし、トップコート層120はこのような構造に限定されるものではない。例えば、図8に示すように、遮熱コーティング100Aのトップコート層120Aが、傾斜した縦割Cを有する単層構造として形成されていてもよい。 In the above embodiment, the top coat layer 120 has a multilayer structure in which the intermediate pore layer 122 is formed between the first dense layer 121 and the second dense layer 123. However, the topcoat layer 120 is not limited to such a structure. For example, as shown in FIG. 8, the top coat layer 120 </ b> A of the thermal barrier coating 100 </ b> A may be formed as a single-layer structure having an inclined vertical division C.
 また、本実施形態の遮熱コーティング形成方法S100では、ボンドコート層形成工程S110は実施されなくてもよい。例えば、別の方法でボンドコート層110を形成してもよく、ボンドコート層110自体を形成しなくてもよい。ボンドコート層110を形成しない場合、セラミック層を動翼本体70の表面に直接形成してもよい。 Further, in the thermal barrier coating forming method S100 of the present embodiment, the bond coat layer forming step S110 may not be performed. For example, the bond coat layer 110 may be formed by another method, and the bond coat layer 110 itself may not be formed. When the bond coat layer 110 is not formed, the ceramic layer may be formed directly on the surface of the rotor blade main body 70.
 また、高温部材は、動翼7に限定されるものではなく、高温の曝される部材であればよい。高温部材は、例えば、ガスタービン1の静翼8や燃焼器3を構成するノズルや筒体等の部材に本発明を適用してもよい。また、高温部材は、ガスタービン1以外において高温に曝される部材であってもよい。例えば、高温部材は、ガスエンジンにおいて、高温の環境下に曝される部材であってもよい。 Further, the high temperature member is not limited to the rotor blade 7 and may be any member that is exposed to high temperature. For example, the present invention may be applied to a member such as a nozzle or a cylinder constituting the stationary blade 8 of the gas turbine 1 or the combustor 3 as the high temperature member. Further, the high temperature member may be a member exposed to a high temperature other than the gas turbine 1. For example, the high temperature member may be a member exposed to a high temperature environment in a gas engine.
 また、中間気孔層122は、完全に縦割Cが形成されておらず気孔Pのみが形成された構造に限定されるものではない。中間気孔層122は、気孔率が十分大きければ、縦割Cが多少形成されていても良い。同様に第一緻密層121や第二緻密層123は、縦割Cが形成されていれば、気孔Pが多少形成されていても良い。 Further, the intermediate pore layer 122 is not limited to a structure in which the vertical split C is not completely formed and only the pores P are formed. As long as the porosity of the intermediate pore layer 122 is sufficiently large, the vertical split C may be formed to some extent. Similarly, the first dense layer 121 and the second dense layer 123 may have some pores P as long as the longitudinal split C is formed.
 また、第一縦割C1及び第二縦割C2のような縦割の延在方向は、上述したように基端と先端とを結んだ仮想直線の延びる方向とすることに限定されるものではない。縦割の延在方向は、複雑に折れ曲がる縦割から画像解析等によって近似直線を取得し、この近似直線の延びる方向としてもよい。 Moreover, the extending direction of the vertical divisions such as the first vertical division C1 and the second vertical division C2 is not limited to the extending direction of the virtual straight line connecting the base end and the distal end as described above. Absent. The extending direction of the vertical division may be the direction in which the approximate straight line extends by obtaining an approximate straight line by image analysis or the like from the vertically bent vertical division.
 また、第一縦割C1及び第二縦割C2は、傾斜していればよく、全域にわたって同じ方向に傾斜していることに限定されるものではない。縦割Cの傾斜角度αは、セラミック層の表面側と動翼本体70側とで異なっていてもよい。即ち、縦割は、例えば、同じ方向に傾斜していれば、延在方向の途中で異なる角度で傾斜していても良い。したがって、第一縦割C1及び第二縦割C2は、例えば、トップコート層120の表面に近い側の領域における傾斜角度αが動翼本体70の表面に近い側の領域における傾斜角度αよりも小さく形成されていてもよい。 The first vertical division C1 and the second vertical division C2 only need to be inclined, and are not limited to being inclined in the same direction over the entire area. The inclination angle α of the longitudinal split C may be different between the surface side of the ceramic layer and the rotor blade body 70 side. That is, for example, if the vertical split is inclined in the same direction, it may be inclined at a different angle in the middle of the extending direction. Therefore, in the first vertical division C1 and the second vertical division C2, for example, the inclination angle α in the region near the surface of the topcoat layer 120 is larger than the inclination angle α in the region near the surface of the rotor blade body 70. It may be formed small.
 また、本実施形態では、第一緻密層121の第一縦割C1及び第二緻密層123の第二縦割C2の傾斜角度αが一致した構造としたが、第一緻密層121及び第二緻密層123はこのような構造に限定されるものではない。したがって、第一縦割C1のトップコート層120の表面に対する傾斜角度αと第二縦割C2のトップコート層120の表面に対する傾斜角度αとが異なっていてもよい。この際、第一縦割C1の傾斜角度αが第二縦割C2の傾斜角度αよりも小さいことが好ましい。 In the present embodiment, the first dense layer 121 has the first vertical division C1 and the second dense layer 123 has the second vertical division C2 having the same inclination angle α. However, the first dense layer 121 and the second dense layer 121 have the same inclination angle α. The dense layer 123 is not limited to such a structure. Therefore, the inclination angle α with respect to the surface of the top coat layer 120 of the first vertical division C1 may be different from the inclination angle α with respect to the surface of the top coat layer 120 of the second vertical division C2. At this time, it is preferable that the inclination angle α of the first vertical division C1 is smaller than the inclination angle α of the second vertical division C2.
 また、本実施形態では、第一緻密層121及び第二緻密層123の1mm当たりの縦割Cの分布率を同じとしたが、第一緻密層121及び第二緻密層123はこのような構造に限定されるものではない。例えば、第二緻密層123の1mm当たりの縦割Cの分布率を第一緻密層121の1mm当たりの縦割Cの分布率よりも大きくしたり、小さくしたりしてもよい。 In the present embodiment, the distribution ratio of the vertical division C per mm of the first dense layer 121 and the second dense layer 123 is the same, but the first dense layer 121 and the second dense layer 123 have such a structure. It is not limited to. For example, the distribution ratio of the vertical division C per 1 mm of the second dense layer 123 may be made larger or smaller than the distribution ratio of the vertical division C per 1 mm of the first dense layer 121.
 また、本実施形態では、第一緻密層121及び第二緻密層123の気孔率を同じとしたが、第一緻密層121及び第二緻密層123はこのような構造に限定されるものではない。例えば、第一緻密層121及び第二緻密層123の気孔率は、中間気孔層122の気孔率を下回っていれば、互いに異なっていてもよい。 In the present embodiment, the porosity of the first dense layer 121 and the second dense layer 123 is the same, but the first dense layer 121 and the second dense layer 123 are not limited to such a structure. . For example, the porosity of the first dense layer 121 and the second dense layer 123 may be different from each other as long as it is lower than the porosity of the intermediate pore layer 122.
 また、本実施形態の縦割Cは、第一縦割C1と第二縦割C2とのように一つのトップコート層120の中で厚さ方向の中間付近に中間気孔層122で間隔を設けるように形成されている。このように縦割Cは、セラミック層の動翼本体70側を向く面から表面まで連続している構造に限定されるものではない。したがって、縦割Cは、一つのセラミック層内で厚さ方向に断続的に延びていてもよい。そのため、第一縦割C1及び第二縦割C2も本実施形態のように連続して延びている構造に限定されるものではない。例えば、第一緻密層121内で第一縦割C1が厚さ方向に間隔を空けて形成されていてもよい。同様に、第二緻密層123内で第二縦割C2が厚さ方向に間隔を空けて形成されていてもよい。 Further, in the vertical division C of the present embodiment, an interval is provided in the middle pore layer 122 in the vicinity of the middle in the thickness direction in one top coat layer 120 as in the first vertical division C1 and the second vertical division C2. It is formed as follows. Thus, the longitudinal split C is not limited to a structure in which the ceramic layer is continuous from the surface facing the rotor blade main body 70 side to the surface. Therefore, the longitudinal split C may extend intermittently in the thickness direction within one ceramic layer. Therefore, the first vertical division C1 and the second vertical division C2 are not limited to the structure extending continuously as in this embodiment. For example, the first vertical divisions C1 may be formed in the first dense layer 121 at intervals in the thickness direction. Similarly, the second vertical divisions C <b> 2 may be formed in the second dense layer 123 with an interval in the thickness direction.
 また、本実施形態の気孔層形成工程S122では、徐々に溶射距離を変化(除変)させるように溶射ガンは移動されたが、このように溶射ガンを移動させることに限定されるものではない。例えば、気孔層形成工程S122では、第一緻密層形成工程S121における溶射距離から気孔層形成工程S122における目標とする溶射距離まで急激に変化させるように溶射ガンを移動させてもよい。 Further, in the pore layer forming step S122 of the present embodiment, the spray gun is moved so as to gradually change (remove) the spray distance, but it is not limited to moving the spray gun in this way. . For example, in the pore layer forming step S122, the spray gun may be moved so as to change rapidly from the spraying distance in the first dense layer forming step S121 to the target spraying distance in the pore layer forming step S122.
 また、各工程で挙げた溶射条件は一例であって、限定されるものではない。溶射条件は、使用される装置や対象とする溶射粒子の種類等に応じて適宜設定されればよい。 Moreover, the thermal spraying conditions mentioned in each process are only examples, and are not limited. The thermal spraying conditions may be appropriately set according to the apparatus used, the type of the thermal spraying particles to be used, and the like.
 この発明は、遮熱コーティング形成方法、遮熱コーティング、及び高温部材に適用でき、耐エロージョン性の低下を抑えつつ遮熱効果を高めることができる。 The present invention can be applied to a thermal barrier coating forming method, a thermal barrier coating, and a high-temperature member, and can enhance a thermal barrier effect while suppressing a decrease in erosion resistance.
1…ガスタービン 2…圧縮機 3…燃焼器 4…タービン本体 5…ロータ 6…ケーシング 7…動翼 70…動翼本体 71…翼本体部 72…プラットフォーム部 73…翼根部 74…シュラウド部 8…静翼 A…圧縮空気 G…燃焼ガス 100…遮熱コーティング 110…ボンドコート層 120…トップコート層 121…第一緻密層 C1…第一縦割 α…傾斜角度 122…中間気孔層 P…気孔 123…第二緻密層 C2…第二縦割 S1…高温部材の製造方法 S10…動翼本体準備工程 S20…遮熱コーティング形成工程 S100…遮熱コーティング形成方法 S110…ボンドコート層形成工程 S120…トップコート層形成工程 S121…第一緻密層形成工程 S122…気孔層形成工程 S123…第二緻密層形成工程 S130…調整工程 C…縦割 DESCRIPTION OF SYMBOLS 1 ... Gas turbine 2 ... Compressor 3 ... Combustor 4 ... Turbine body 5 ... Rotor 6 ... Casing 7 ... Rotor blade 70 ... Rotor blade body 71 ... Blade body portion 72 ... Platform portion 73 ... Blade root portion 74 ... Shroud portion 8 ... Stator blade A ... Compressed air G ... Combustion gas 100 ... Thermal barrier coating 110 ... Bond coat layer 120 ... Top coat layer 121 ... First dense layer C1 ... First vertical split α ... Inclination angle 122 ... Middle pore layer P ... Pore 123 ... second dense layer C2 ... second vertical split S1 ... high temperature member manufacturing method S10 ... blade body preparation step S20 ... thermal barrier coating formation step S100 ... thermal barrier coating formation method S110 ... bond coat layer formation step S120 ... topcoat Layer formation step S121 ... First dense layer formation step S122 ... Porous layer formation step S 23 ... second dense layer forming step S130 ... adjusting step C ... vertical split

Claims (23)

  1.  耐熱合金基材上に形成され、セラミックを含むセラミック層を備え、
     前記セラミック層は、
     第一緻密層と、
     前記第一緻密層上に積層され、前記第一緻密層よりも密度が大きく多数の気孔が形成された中間気孔層と、
     前記中間気孔層上に積層され、前記中間気孔層よりも密度が小さい第二緻密層と、
    を有する遮熱コーティング。
    Formed on a heat-resistant alloy substrate, comprising a ceramic layer containing ceramic,
    The ceramic layer is
    A first dense layer;
    An intermediate pore layer that is laminated on the first dense layer and has a larger number of pores than the first dense layer;
    A second dense layer laminated on the intermediate pore layer and having a lower density than the intermediate pore layer;
    Thermal barrier coating.
  2.  前記中間気孔層と前記第一緻密層との境界部である第一境界部及び前記中間気孔層と前記第二緻密層との境界部である第二境界部では、気孔率が連続的に変化する請求項1に記載の遮熱コーティング。 The porosity continuously changes at the first boundary portion, which is the boundary portion between the intermediate pore layer and the first dense layer, and at the second boundary portion, which is the boundary portion between the intermediate pore layer and the second dense layer. The thermal barrier coating according to claim 1.
  3.  前記中間気孔層の気孔率が、10%以上20%以下である請求項1又は請求項2に記載の遮熱コーティング。 The thermal barrier coating according to claim 1 or 2, wherein the porosity of the intermediate pore layer is 10% or more and 20% or less.
  4.  前記第一緻密層及び前記第二緻密層の気孔率が、10%以下5%以上である請求項1から請求項3のいずれか一項に記載の遮熱コーティング。 The thermal barrier coating according to any one of claims 1 to 3, wherein the porosity of the first dense layer and the second dense layer is 10% or less and 5% or more.
  5.  前記第一緻密層は、厚さ方向に延びる第一縦割が面方向に分散され、
     前記第二緻密層は、厚さ方向に延びる第二縦割が面方向に分散された請求項1から請求項4のいずれか一項に記載の遮熱コーティング。
    In the first dense layer, the first vertical split extending in the thickness direction is dispersed in the plane direction,
    The thermal barrier coating according to any one of claims 1 to 4, wherein the second dense layer has second longitudinal divisions extending in a thickness direction dispersed in a plane direction.
  6.  前記第一縦割及び前記第二縦割は、前記セラミック層の表面に対して、傾斜して延びている請求項5に記載の遮熱コーティング。 The thermal barrier coating according to claim 5, wherein the first vertical split and the second vertical split are inclined with respect to the surface of the ceramic layer.
  7.  前記第一縦割の前記セラミック層の表面に対する傾斜角度と、前記第二縦割の前記セラミック層の表面に対する傾斜角度とが異なる請求項5又は請求項6に記載の遮熱コーティング。 The thermal barrier coating according to claim 5 or 6, wherein an inclination angle with respect to a surface of the ceramic layer of the first vertical division is different from an inclination angle with respect to the surface of the ceramic layer of the second vertical division.
  8.  耐熱合金基材の表面上に、セラミックを含むセラミック層を形成するセラミック層形成工程を含み、
     前記セラミック層形成工程は、
     第一緻密層を形成する第一緻密層形成工程と、
     前記第一緻密層形成工程の後に実施され、前記第一緻密層上に前記第一緻密層よりも密度が大きく多数の気孔が形成された中間気孔層を形成する気孔層形成工程と、
     前記気孔層形成工程の後に実施され、前記中間気孔層上に前記中間気孔層よりも密度が小さい第二緻密層を形成する第二緻密層形成工程と有する遮熱コーティング形成方法。
    Including a ceramic layer forming step of forming a ceramic layer containing ceramic on the surface of the heat-resistant alloy substrate;
    The ceramic layer forming step includes
    A first dense layer forming step of forming a first dense layer;
    A pore layer forming step, which is performed after the first dense layer forming step, and forms an intermediate pore layer in which a large number of pores having a larger density than the first dense layer are formed on the first dense layer;
    A thermal barrier coating forming method comprising: a second dense layer forming step, which is performed after the pore layer forming step and forming a second dense layer having a density lower than that of the intermediate pore layer on the intermediate pore layer.
  9.  前記セラミック層形成工程には溶射法が用いられ、
     溶射ガンの噴射孔と溶射対象の表面との距離は、前記気孔層形成工程より前記第一緻密層形成工程及び前記第二緻密層形成工程の方が短い請求項8に記載の遮熱コーティング形成方法。
    Thermal spraying is used for the ceramic layer forming step,
    The thermal barrier coating formation according to claim 8, wherein the distance between the spray hole of the thermal spray gun and the surface of the thermal spray target is shorter in the first dense layer forming step and the second dense layer forming step than in the pore layer forming step. Method.
  10.  前記第一緻密層形成工程は、厚さ方向に延びる第一縦割が面方向に分散されるように前記第一緻密層を形成し、
     前記第二緻密層形成工程は、厚さ方向に延びる第二縦割が面方向に分散されるように前記第二緻密層を形成する請求項8又は請求項9に記載の遮熱コーティング形成方法。
    In the first dense layer forming step, the first dense layer is formed such that the first vertical split extending in the thickness direction is dispersed in the surface direction,
    10. The thermal barrier coating forming method according to claim 8, wherein in the second dense layer forming step, the second dense layer is formed such that the second vertical division extending in the thickness direction is dispersed in the surface direction. .
  11.  溶射粒子は、粒径が0.1μm以上1.0μm以下である請求項8から請求項10のいずれか一項に記載の遮熱コーティング形成方法。 The thermal barrier coating formation method according to any one of claims 8 to 10, wherein the sprayed particles have a particle size of 0.1 µm or more and 1.0 µm or less.
  12.  前記セラミック層形成工程の少なくとも一部は、サスペンションプラズマ溶射を用いる請求項8から請求項11のいずれか一項に記載の遮熱コーティング形成方法。 The thermal barrier coating forming method according to any one of claims 8 to 11, wherein at least a part of the ceramic layer forming step uses suspension plasma spraying.
  13.  耐熱合金基材と、
     前記耐熱合金基材上に形成され、セラミックを含むセラミック層を備え、
     前記セラミック層は、
     第一緻密層と、
     前記第一緻密層上に積層され、前記第一緻密層よりも密度が大きく多数の気孔が形成された中間気孔層と、
     前記中間気孔層上に積層され、前記中間気孔層よりも密度が小さい第二緻密層とを有する高温部材。
    A heat-resistant alloy substrate;
    A ceramic layer formed on the heat-resistant alloy substrate and including ceramic;
    The ceramic layer is
    A first dense layer;
    An intermediate pore layer that is laminated on the first dense layer and has a larger number of pores than the first dense layer;
    A high temperature member having a second dense layer laminated on the intermediate pore layer and having a density lower than that of the intermediate pore layer.
  14.  前記セラミック層は、厚さ方向に延びる縦割が面方向に分散され、
     前記縦割は、前記セラミック層の表面に対して、傾斜して延びている請求項1に記載の遮熱コーティング。
    In the ceramic layer, longitudinal splits extending in the thickness direction are dispersed in the plane direction,
    The thermal barrier coating according to claim 1, wherein the vertical split extends at an angle with respect to the surface of the ceramic layer.
  15.  前記縦割の傾斜角度は、前記セラミック層の表面側と耐熱合金基材側とで異なる請求項14に記載の遮熱コーティング。 The thermal barrier coating according to claim 14, wherein an inclination angle of the vertical division is different between the surface side of the ceramic layer and the heat-resistant alloy base material side.
  16.  前記縦割は、1mm当たりの分布率が6本/mm以上12本/mm以下である請求項14または請求項15に記載の遮熱コーティング。 The thermal barrier coating according to claim 14 or 15, wherein the vertical division has a distribution rate per mm of 6 / mm to 12 / mm.
  17.  前記縦割は、断続的に延びている請求項14から請求項16の何れか一項に記載の遮熱コーティング。 The thermal barrier coating according to any one of claims 14 to 16, wherein the longitudinal split extends intermittently.
  18.  複数の前記縦割の全ては、前記セラミック層の表面に向かうにしたがって、前記面方向の一方側に向かって傾斜している請求項14から請求項17の何れか一項に記載の遮熱コーティング。 The thermal barrier coating according to any one of claims 14 to 17, wherein all of the plurality of vertical divisions are inclined toward one side in the surface direction as they go toward the surface of the ceramic layer. .
  19.  前記縦割の傾斜角度は、前記セラミック層の表面に対して、45°以上80°以下の角度である請求項14から請求項18の何れか一項に記載の遮熱コーティング。 The thermal barrier coating according to any one of claims 14 to 18, wherein the vertical inclination angle is an angle of 45 ° to 80 ° with respect to the surface of the ceramic layer.
  20.  耐熱合金基材の表面に対して溶射ガンを予め定めた傾斜角度だけ傾斜させて、溶射粒子を分散させた懸濁液を用いて溶射し、前記耐熱合金基材上に厚さ方向に延びて前記傾斜角度だけ傾斜して延びる縦割が面方向に分散されたセラミックを含むセラミック層を形成する請求項8に記載の遮熱コーティング形成方法。 The thermal spray gun is inclined with respect to the surface of the heat-resistant alloy substrate by a predetermined inclination angle, sprayed using a suspension in which the spray particles are dispersed, and extends in the thickness direction on the heat-resistant alloy substrate. The method for forming a thermal barrier coating according to claim 8, wherein a ceramic layer including ceramic in which longitudinal divisions inclined at an inclination angle are dispersed in a plane direction is formed.
  21.  前記溶射はサスペンションプラズマ溶射である請求項20に記載の遮熱コーティング形成方法。 The thermal barrier coating formation method according to claim 20, wherein the thermal spraying is suspension plasma thermal spraying.
  22.  前記溶射粒子の粒径が0.1μm以上1.0μm以下である請求項20または請求項21に記載の遮熱コーティング形成方法。 The method for forming a thermal barrier coating according to claim 20 or 21, wherein a particle diameter of the sprayed particles is 0.1 µm or more and 1.0 µm or less.
  23.  耐熱合金基材と、
     前記耐熱合金基材上に形成され、厚さ方向に延びる縦割が面方向に分散されたセラミックを含むセラミック層とを備え、
     前記縦割は、前記セラミック層の表面に対して、傾斜して延びている請求項13に記載の高温部材。
    A heat-resistant alloy substrate;
    A ceramic layer that is formed on the heat-resistant alloy substrate and includes a ceramic in which longitudinal splits extending in the thickness direction are dispersed in the plane direction;
    The high-temperature member according to claim 13, wherein the vertical split extends obliquely with respect to the surface of the ceramic layer.
PCT/JP2018/016998 2017-04-26 2018-04-26 Thermal barrier coating formation method, thermal barrier coating, and high-temperature member WO2018199237A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018002221.8T DE112018002221T5 (en) 2017-04-26 2018-04-26 Process for the formation of thermal insulation layer, thermal insulation layer, and high temperature element
US16/607,196 US20200048751A1 (en) 2017-04-26 2018-04-26 Thermal barrier coating formation method, thermal barrier coating, and high-temperature member
CN201880026963.5A CN110546296A (en) 2017-04-26 2018-04-26 method for forming thermal barrier coating, and high-temperature member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-087471 2017-04-26
JP2017087472A JP6821496B2 (en) 2017-04-26 2017-04-26 Thermal barrier coating forming method, thermal barrier coating, and high temperature member
JP2017-087472 2017-04-26
JP2017087471A JP6896498B2 (en) 2017-04-26 2017-04-26 Thermal barrier coating forming method, thermal barrier coating, and high temperature member

Publications (1)

Publication Number Publication Date
WO2018199237A1 true WO2018199237A1 (en) 2018-11-01

Family

ID=63918983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016998 WO2018199237A1 (en) 2017-04-26 2018-04-26 Thermal barrier coating formation method, thermal barrier coating, and high-temperature member

Country Status (4)

Country Link
US (1) US20200048751A1 (en)
CN (1) CN110546296A (en)
DE (1) DE112018002221T5 (en)
WO (1) WO2018199237A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177492A1 (en) * 2022-03-15 2023-09-21 Applied Materials, Inc. Dense vertically segmented silicon coating for low defectivity in high-temperature rapid thermal processing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191723B2 (en) 2019-02-27 2022-12-19 三菱重工業株式会社 gas turbine combustor and gas turbine
JP7372866B2 (en) 2020-03-30 2023-11-01 三菱重工業株式会社 Ceramic coatings, turbine parts and gas turbines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197861A (en) * 1984-03-21 1985-10-07 Toyota Motor Corp Sliding member
JP2011140693A (en) * 2010-01-07 2011-07-21 Mitsubishi Heavy Ind Ltd Heat shielding coating, and turbine member and gas turbine equipped with the same
JP2014205913A (en) * 2013-04-10 2014-10-30 ゼネラル・エレクトリック・カンパニイ Structure of high-temperature tbc having ultra low thermal conductivity and abrasiveness, and manufacturing method
JP2016079457A (en) * 2014-10-16 2016-05-16 三菱重工業株式会社 Thermal barrier coating layer and thermal barrier coating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243018A (en) * 1994-03-08 1995-09-19 Mitsubishi Heavy Ind Ltd Surface modification method for heat insulating film
JP4645030B2 (en) * 2003-12-18 2011-03-09 株式会社日立製作所 Heat resistant member with thermal barrier coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197861A (en) * 1984-03-21 1985-10-07 Toyota Motor Corp Sliding member
JP2011140693A (en) * 2010-01-07 2011-07-21 Mitsubishi Heavy Ind Ltd Heat shielding coating, and turbine member and gas turbine equipped with the same
JP2014205913A (en) * 2013-04-10 2014-10-30 ゼネラル・エレクトリック・カンパニイ Structure of high-temperature tbc having ultra low thermal conductivity and abrasiveness, and manufacturing method
JP2016079457A (en) * 2014-10-16 2016-05-16 三菱重工業株式会社 Thermal barrier coating layer and thermal barrier coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177492A1 (en) * 2022-03-15 2023-09-21 Applied Materials, Inc. Dense vertically segmented silicon coating for low defectivity in high-temperature rapid thermal processing

Also Published As

Publication number Publication date
DE112018002221T5 (en) 2020-02-20
US20200048751A1 (en) 2020-02-13
CN110546296A (en) 2019-12-06

Similar Documents

Publication Publication Date Title
JP6908973B2 (en) Manufacturing methods for thermal barrier coatings, turbine components, gas turbines, and thermal barrier coatings
JP6365969B2 (en) Thermal barrier coating material, turbine member having the same, and thermal barrier coating method
JPH11267818A (en) Coated cast parts
JP2013515171A (en) Coating system and coating product for protecting substrates exposed to high temperatures and harsh environments
WO2018199237A1 (en) Thermal barrier coating formation method, thermal barrier coating, and high-temperature member
JP2008095193A (en) Segmented abradable coating and process for applying the same
JP2009108410A (en) Alumina-based protective coating for thermal barrier coating
JP6394927B2 (en) Thermal barrier coating and turbine component
WO2016129521A1 (en) Heat-shielding coating, turbine member, gas turbine, and manufacturing method for heat-shielding coating
JP2003160852A (en) Thermal insulating coating material, manufacturing method therefor, turbine member and gas turbine
JP5656528B2 (en) High temperature resistant member and gas turbine
JP2008064089A (en) Turbine engine component and manufacturing method
JP6607837B2 (en) Thermal barrier coating film, turbine member and thermal barrier coating method
JP5657048B2 (en) High temperature resistant member and gas turbine
WO2016147282A1 (en) Thermal barrier coating and power generation system
JP6896498B2 (en) Thermal barrier coating forming method, thermal barrier coating, and high temperature member
JPH09316622A (en) Gas turbine member and its thermal insulation coating method
JP6821496B2 (en) Thermal barrier coating forming method, thermal barrier coating, and high temperature member
JP5693631B2 (en) High temperature resistant member and gas turbine
JP2016079457A (en) Thermal barrier coating layer and thermal barrier coating method
JP2016148077A (en) Method for manufacturing spray particle and method for using spray particle
JP6856426B2 (en) Thermal barrier coating method, wing segment manufacturing method
JP2018172731A (en) Thermal barrier coating, turbine blade, and production method of thermal barrier coating
WO2017046942A1 (en) Thermal barrier coating and power generation system
EP3153602A1 (en) Dvc-ceramic layer with underlying porous ceramic sublayer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791385

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18791385

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载