+

WO2018199188A1 - スケール組成判定システム、スケール組成判定方法、およびプログラム - Google Patents

スケール組成判定システム、スケール組成判定方法、およびプログラム Download PDF

Info

Publication number
WO2018199188A1
WO2018199188A1 PCT/JP2018/016868 JP2018016868W WO2018199188A1 WO 2018199188 A1 WO2018199188 A1 WO 2018199188A1 JP 2018016868 W JP2018016868 W JP 2018016868W WO 2018199188 A1 WO2018199188 A1 WO 2018199188A1
Authority
WO
WIPO (PCT)
Prior art keywords
hematite
scale
temperature
wavelength
steel material
Prior art date
Application number
PCT/JP2018/016868
Other languages
English (en)
French (fr)
Inventor
寛志 多根井
杉浦 雅人
山崎 修一
近藤 泰光
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112019019166-6A priority Critical patent/BR112019019166B1/pt
Priority to EP18790375.2A priority patent/EP3616802B1/en
Priority to CA3057055A priority patent/CA3057055C/en
Priority to US16/499,812 priority patent/US11029212B2/en
Priority to JP2018542800A priority patent/JP6477984B1/ja
Priority to CN201880020984.6A priority patent/CN110536760B/zh
Priority to KR1020197025561A priority patent/KR102286817B1/ko
Publication of WO2018199188A1 publication Critical patent/WO2018199188A1/ja
Priority to US17/243,875 priority patent/US11454542B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J2005/0029Sheet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile

Definitions

  • the present invention relates to a scale composition determination system, a scale composition determination method, and a program, and is particularly suitable for use in determining the composition of scale generated on the surface of a steel material.
  • the scale generated on the surface of the steel material includes a single-layer scale and a multi-layer scale.
  • the single layer scale is a scale composed only of wustite (FeO).
  • the multi-layer scale is a scale composed of hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and wustite (FeO). In the multilayer scale, hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and wustite (FeO) are arranged in this order from the surface layer.
  • the scale is a single-layer scale or a multi-layer scale is determined by the temperature of the steel material, the oxygen concentration in the atmosphere around the steel material, or the like. Also, the adhesion of the scale is related to its composition. For example, in the hot rolling process, the frequency of scale peeling caused by blistering or the like dramatically increases when Fe 2 O 3 is present on the outermost layer of the scale.
  • X-ray diffraction measurement can be considered as a technique for discriminating the composition of the scale.
  • a test piece obtained by cutting a steel material with a growing scale into a size of about several centimeters is produced, and the X-ray diffraction pattern of the test piece is measured.
  • Different X-ray diffraction patterns are obtained depending on the crystal structure of the scale. Therefore, it can be determined from the X-ray diffraction pattern whether Fe 2 O 3 is present on the outermost layer of the scale (that is, whether the scale is the single-layer scale or the multi-layer scale described above).
  • the rate-limiting process of oxidation on the surface of the steel material includes a process in which oxygen molecules are supplied to the oxide film on the surface of the steel sheet and a process in which iron atoms are oxidized on the surface of the steel material. Whether or not Fe 2 O 3 is present on the outermost surface layer of the scale is determined depending on which rate is determined.
  • the present invention has been made in view of the above problems, and an object of the present invention is to be able to accurately discriminate on-line the composition of the scale generated on the surface of the steel material in operation.
  • a first example of the scale composition determination system of the present invention is a scale composition determination system that determines the composition of a scale generated on the surface of a steel material, and the temperature of the steel material at two different wavelengths is measured by radiation.
  • the thickness of the hematite at the intersection of the hematite curve at the first wavelength of the two wavelengths and the hematite curve at the second wavelength is the thickness of the hematite generated on the outermost layer of the scale.
  • the hematite curve is a curve showing the relationship between the thickness of the hematite and the temperature of the hematite. And characterized in that.
  • a second example of the scale composition determination system of the present invention is a scale composition determination system for determining the composition of a scale generated on the surface of a steel material, and the temperature of the steel material at N different wavelengths is measured by radiometry.
  • hematite (Fe 2 O 3 ) is generated on the outermost layer of the scale based on the difference between two of the temperature of the measuring means measured by the temperature method and the temperature of the steel material measured by the measuring means
  • the hematite curve is a curve showing the relationship between the thickness of the hematite and the temperature of the hematite, and the N is an integer of 3 or more.
  • a first example of the scale composition determination method of the present invention is a scale composition determination method for determining the composition of a scale generated on the surface of a steel material, and the temperature of the steel material at two different wavelengths is measured by radiation temperature measurement. And a determination step of determining whether hematite (Fe 2 O 3 ) is generated on the outermost layer of the scale based on a difference in temperature of the steel material measured in the measurement step And the thickness of the hematite at the intersection of the hematite curve at the first wavelength of the two wavelengths and the hematite curve at the second wavelength is the thickness of the hematite generated on the outermost layer of the scale.
  • hematite Fe 2 O 3
  • the hematite curve is a curve indicating the relationship between the thickness of the hematite and the temperature of the hematite. And wherein the door.
  • a second example of the scale composition determination method of the present invention is a scale composition determination method for determining the composition of a scale generated on the surface of a steel material, wherein the temperature of the steel material at N different wavelengths is measured by radiometry.
  • hematite (Fe 2 O 3 ) is generated in the outermost layer of the scale based on the difference between two of the temperature measured by the temperature method and the temperature of the steel material measured by the measurement step
  • the hematite curve is a curve showing the relationship between the thickness of the hematite and the temperature of the hematite, and the N is an integer of 3 or more.
  • a first example of the program of the present invention is a program for causing a computer to determine the composition of a scale generated on the surface of a steel material, which is different from each other measured by a radiation temperature measurement method. Whether or not hematite (Fe 2 O 3 ) is generated in the outermost layer of the scale based on the difference between the acquisition step of acquiring the temperature of the steel material at one wavelength and the temperature of the steel material acquired by the acquisition step A determination step for determining whether the hematite thickness at the intersection of the hematite curve at the first wavelength and the hematite curve at the second wavelength of the two wavelengths is the maximum of the scale.
  • hematite Fe 2 O 3
  • a second example of the program of the present invention is a program for causing a computer to determine the composition of the scale generated on the surface of a steel material, which is different from each other measured by a radiation temperature measurement method.
  • the hematite (Fe 2 O 3) is formed on the outermost layer of the scale based on a difference between two of the temperature of the steel material acquired in the acquisition step and the temperature of the steel material acquired in the acquisition step.
  • the hematite curve is determined so that there is no intersection where all of the hematite curves intersect.
  • the hematite curve is a curve showing the relationship between the thickness of the hematite and the temperature of the hematite, and the N is 3 or more. Wherein the of an integer.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a hot rolling line.
  • FIG. 2 is a diagram illustrating a first example of the configuration of the scale composition determination system.
  • FIG. 3 is a diagram illustrating an example of the relationship between the temperature of the steel material and the thickness of the single-layer scale.
  • FIG. 4 is a diagram showing an example of the relationship between the temperature of the steel material and the thickness of the outermost layer Fe 2 O 3 of the multilayer scale.
  • FIG. 5 is a diagram illustrating an example of the relationship between the time during which Fe 2 O 3 is generated and the temperature of the steel material.
  • FIG. 6 is a flowchart for explaining an example of the operation of the scale composition determination apparatus.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the scale composition determination apparatus.
  • FIG. 8 is a diagram illustrating a second example of the configuration of the scale composition determination system.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a hot rolling line which is an example of an application destination of the scale composition determination apparatus 10.
  • a hot rolling line includes a heating furnace 11, descalers 12a to 12f, a width direction rolling mill 13, a rough rolling mill 14, a finishing rolling mill 15, a cooling device (runout table) 16, a winding machine.
  • the heating furnace 11 heats a slab (steel material) S.
  • the descalers 12a to 12f remove scales generated on the surface of the steel material. The thickness of the scale is, for example, 10 [ ⁇ m] to 100 [ ⁇ m].
  • the descalers 12a to 12f perform descaling (removal of scale), for example, by spraying pressurized water onto the surface of the steel material.
  • descalers 12a to 12f perform descaling (removal of scale), for example, by spraying pressurized water onto the surface of the steel material.
  • the steel materials are high temperature, even if scales are removed, the steel materials are immediately reoxidized. Therefore, the steel material is always rolled with the scale existing on the surface.
  • the width direction rolling mill 13 rolls the slab S heated in the heating furnace 11 in the width direction.
  • the rough rolling machine 14 rolls the slab S rolled in the width direction by the width direction rolling machine 13 from the upper and lower directions into a rough bar.
  • the roughing mill 14 has a rolling stand 14a composed of only work rolls, and rolling stands 14b to 14e each having a work roll and a backup roll.
  • the finish rolling mill 15 performs hot finish rolling on the rough bar produced by the rough rolling mill 14 continuously to a predetermined thickness.
  • the finishing mill 15 has seven rolling stands 15a to 15g.
  • the cooling device 16 cools the hot-rolled steel sheet H that has been hot finish-rolled by the finish rolling mill 15 with cooling water.
  • the winding device 17 winds the hot rolled steel sheet H cooled by the cooling device 16 in a coil shape.
  • a hot rolling line can be implement
  • the descaler is arranged between the upstream rolling stands (for example, between the rolling stands 15a and 15b and between the rolling stands 15b and 15c). good.
  • At least one set of radiation thermometers including two radiation thermometers is arranged on the hot rolling line.
  • a radiation thermometer measures the temperature of a steel material in a non-contact manner by a radiation thermometry method.
  • the scale composition determination apparatus 10 shown in FIG. 2 inputs the temperature of the steel material SM measured by the radiation thermometers 20a and 20b.
  • the scale composition determination apparatus 10 determines whether a scale SC of a single-layer scale or a multi-layer scale is generated on the surface of the steel material SM based on the input temperature of the steel material SM.
  • the single layer scale is a scale composed of FeO only.
  • the multilayer scale is a scale composed of hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and wustite (FeO).
  • hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and wustite (FeO) are arranged in this order from the surface layer.
  • FIG. 2 is a diagram illustrating an example of the configuration of the scale composition determination system.
  • FIG. 2 shows an example of the arrangement of the radiation thermometers 20a and 20b and the functional configuration of the scale composition determination apparatus 10.
  • ⁇ Radiation thermometers 20a, 20b> First, an example of the arrangement of the radiation thermometers 20a and 20b will be described.
  • FIG. 2 the case where the direction of the arrow line attached to the side of steel material SM is a conveyance direction of steel material SM is mentioned as an example, and it shows. Further, it is assumed that the scale SC is generated on the surface of the steel material SM.
  • the radiation thermometers 20a and 20b are arranged so that the intersections of the axes of the radiation thermometers 20a and 20b (the optical axis of the light receiving lens) and the passing position of the steel material SM (the surface thereof) substantially coincide.
  • FIG. 2 shows an example in which the radiation thermometers 20a and 20b are arranged in the conveying direction of the steel material SM.
  • the radiation thermometers 20a and 20b can be made like this There is no need to place it.
  • the radiation thermometers 20a and 20b may be arranged in the width direction of the steel material SM.
  • wavelengths detected by the radiation thermometers 20a and 20b will be described.
  • a gas such as water vapor (H 2 O) or carbon dioxide (CO 2 ).
  • the light (infrared rays) emitted from the scale SC has a wavelength band that is absorbed by this gas.
  • the inventors investigated the relationship between the presence or absence of attenuation of radiated light in the optical path from the measurement object to the radiation thermometer and the wavelength ⁇ detected by the radiation thermometer in the environment of the hot rolling process. As a result, if the present inventors select the wavelength ⁇ detected by the radiation thermometers 20a and 20b from any of the wavelength bands (a1) to (c1) below, the radiation thermometers 20a and 20b It was confirmed that the spectral radiance can be measured without being greatly affected by the gas in the atmosphere.
  • the wavelength ⁇ detected by the radiation thermometers 20a and 20b is selected from the [ ⁇ m] wavelength band. In this way, the radiation thermometers 20a and 20b can measure the spectral radiance without being greatly affected by the gas in the atmosphere.
  • the spectral radiance is the radiant flux [W ⁇ ⁇ m ⁇ 1 ⁇ sr ⁇ 1 ⁇ m ⁇ 2 ] per unit wavelength, per unit area and per unit solid angle at the wavelength ⁇ [ ⁇ m].
  • the wavelength ⁇ detected by each of the radiation thermometers 20a and 20b is selected from different wavelength bands.
  • the wavelength ⁇ measured by the radiation thermometer 20a is selected from the wavelength band (a1)
  • the wavelength ⁇ measured by the radiation thermometer 20b is selected from either (b1) or (c1).
  • the lower limit value of (a1) described above is determined from the lower limit value of the wavelength ⁇ (the lower limit value of the temperature of the steel material SM to be measured) at which the spectral radiance can be measured with a radiation thermometer.
  • the lower limit value of the wavelength ⁇ at which this spectral radiance can be measured is determined according to the temperature of the steel material SM to be measured. For example, when a temperature of 900 [° C.] or higher is measured as the temperature of the steel material SM to be measured, the lower limit of the wavelength ⁇ at which the spectral radiance can be measured with a radiation thermometer is 0.6 [ ⁇ m. ]become. Therefore, here, the lower limit of (a1) is set to 0.6 [ ⁇ m].
  • the lower limit value of the temperature of the steel material SM to be measured is 600 [° C.]
  • the lower limit value of (a1) described above is 0.9 [ ⁇ m].
  • the upper limit value of (c1) is determined by the restriction of the performance of the light detection element in the radiation thermometer (detection ability of long wavelength infrared rays).
  • FIG. 3 is a diagram illustrating an example of the relationship between the measured value of the temperature of the steel material SM and the thickness of the single-layer scale. As shown in FIG. 3, here, a steel material SM having a temperature of 900 [° C.] is taken as an example for examination.
  • the temperature of the single layer scale (FeO) is used regardless of the thickness of the single layer scale (FeO). It can be seen that a certain temperature is measured by the radiation thermometer as a measured value. Moreover, it turns out that the temperature of the same value is measured with a radiation thermometer as temperature of a single layer scale (FeO) irrespective of wavelength (lambda). This is because FeO is opaque and the spectral emissivity does not change with its thickness.
  • the spectral emissivity ⁇ w of FeO can be determined experimentally or by referring to an optical constant database.
  • the present inventors show the relationship between the temperature of the steel material SM having a multilayer scale on the surface and the thickness of the outermost layer Fe 2 O 3 of the multilayer scale, (a1), (b1), (c1). ) Investigation was performed at each wavelength ⁇ belonging to each wavelength band. As described above, the wavelength ⁇ is a wavelength detected by the radiation thermometer.
  • FIG. 4 shows an example of the relationship between the measured value of the temperature of the steel material SM having a multilayer scale on the surface and the thickness of the outermost layer Fe 2 O 3 of the multilayer scale at each wavelength ⁇ . As described above, Fe 2 O 3 exists in the outermost layer of the multilayer scale.
  • the Fe 2 O 3 thickness refers to the outermost layer of the thickness of the Fe 2 O 3 multilayer scale. Further, when deriving the temperature of the steel material at each wavelength ⁇ , the above-described spectral emissivity ⁇ w of FeO at the wavelength ⁇ was used.
  • curves 401, 402, and 403 indicate the measured values of the temperature of the steel material SM and the Fe 2 O 3 thickness when the wavelength ⁇ belongs to the wavelength bands of (a1), (b1), and (c1), respectively.
  • the relationship with (the thickness of the outermost layer Fe 2 O 3 of the multilayer scale) is shown.
  • a curve indicating the relationship between the measured value of the temperature of the steel material SM and the hematite (Fe 2 O 3 thickness) at each wavelength ⁇ is referred to as a “hematite curve” as necessary.
  • the measured value of the temperature of the steel material SM having a multilayer scale on the surface by a radiation thermometer varies depending on the thickness of Fe 2 O 3 .
  • This is due to the influence of interference of light due to Fe 2 O 3, Fe by the thickness of the 2 O 3, Fe 2 O spectral emissivity of 3 changes, also the waveform (the thickness of the spectral emissivity and Fe 2 O 3 It is considered that this is also due to the difference in wavelength ⁇ .
  • the influence of interference of light by the Fe 2 O 3, the thickness of the Fe 2 O 3, the phenomenon itself that the spectral emissivity of the Fe 2 O 3 is changed is described in Patent Document 1.
  • a novel finding that the change in spectral emissivity due to the thickness of Fe 2 O 3 varies depending on the wavelength is used.
  • FIG. 4 specifically shows the following (a2) to (c2).
  • the thickness of Fe 2 O 3 produced on the outermost layer of the scale SC is determined as follows. First, using the temperature of the steel material SM at the time of scale removal by descaling and the elapsed time thereafter, the thickness of the entire scale SC is obtained from a known scale thickness calculation formula.
  • the scale thickness calculation formula is an equation for obtaining the entire thickness of the scale SC from a function of temperature and time. Then, as the thickness of the Fe 2 O 3 to be generated in the hot-rolling line is assumed to determine the thickness of 1 [%] of the total thickness of the scale SC. In the present embodiment, a case where the thickness of Fe 2 O 3 is estimated in this way will be described as an example.
  • the estimated thickness of the Fe 2 O 3 may be obtained by conducting a laboratory experiment for generating a scale assuming an actual temperature history.
  • the estimated thickness of Fe 2 O 3 generated on the outermost layer of the scale SC is 0.50 at most. [ ⁇ m].
  • the thickness of Fe 2 O 3 generated in the outermost layer of the scale SC is 0.18 [ ⁇ m] even if it is thick.
  • the upper limit of the estimated thickness of Fe 2 O 3 in the description of (a2) described above is the hematite curve (first hematite curve) obtained from the wavelength ⁇ selected from the wavelength band of (a1), ( It is calculated from the intersection with the hematite curve (second hematite curve) obtained from the wavelength ⁇ selected from the wavelength band a2). Then, the larger one of the estimated thicknesses of Fe 2 O 3 of 1.5 [ ⁇ m] and the thickness calculated from the intersection of the first hematite curve and the second hematite curve is the first thickness. The minimum thickness is the second thickness.
  • the upper limit (0.86 [ ⁇ m] in the example shown in FIG. 4) of (b2) “the hematite curve 401 and the hematite curve 402 do not intersect and the hematite curve 401 and the hematite curve 403 do not intersect”.
  • the hematite curves 401 to 403 are calculated and adopted according to the selected wavelength ⁇ .
  • the upper limit (0.29 [ ⁇ m] in the example shown in FIG. 4) is determined from the intersection of the hematite curve 402 and the hematite curve 403. You just have to decide.
  • the steel material SM having a temperature in the range of 600 [° C.] to 1200 [° C.] is conveyed in the hot rolling line.
  • the thickness of Fe 2 O 3 employed instead of the upper limit of 1.5 [ ⁇ m] in (a2) does not change significantly with respect to 1.5 [ ⁇ m].
  • the thickness of Fe 2 O 3 in the description of (b2) to (c2) does not change greatly from the upper limit and the lower limit shown in FIG.
  • (A3) estimating the thickness of the Fe 2 O 3 is (less than or 1.5 as previously described [[mu] m], Fe second thickness of 2 O 3) 1.5 [ ⁇ m] of less than, the above-mentioned One wavelength ⁇ is selected from each of the wavelength bands (a1) and (c1). In this way, when there is a difference between the first temperature and the second temperature measured by the radiation thermometers 20a and 20b at those wavelengths ⁇ , Fe 2 O 3 is formed on the outermost layer of the scale SC. If there is no difference between the first temperature and the second temperature as shown in FIG. 3, it can be determined that there is no Fe 2 O 3 because FeO is in the outermost layer.
  • the upper limit value (second thickness) of the estimated thickness of Fe 2 O 3 to be determined two wavelength bands are selected from the wavelength bands (a1) to (c1) described above. select.
  • the upper limit value of the estimated thickness of Fe 2 O 3 to be judged is the uppermost Fe 2 O 3 of the scale SC generated on the surface of the steel material SM that is hot-rolled in the hot rolling line. This is the maximum thickness assumed as the estimated thickness.
  • different wavelengths ⁇ (the first wavelength ⁇ and the second wavelength ⁇ ) each selected from the two wavelength bands selected from the wavelength bands (a1) to (c1) are measured.
  • the target wavelength In the measurement of each wavelength, radiation thermometers 20a and 20b are used.
  • the spectral emissivity of FeO at the selected wavelength ⁇ is set in the radiation thermometers 20a and 20b.
  • the radiation thermometers 20a and 20b are configured.
  • the measurement value of the steel material temperature (first steel material temperature) measured by the radiation thermometer 20a corresponding to the first wavelength and the measurement of the steel material temperature measured by the radiation thermometer 20b corresponding to the second wavelength If there is a difference between the value (second steel material temperature), it is determined that Fe 2 O 3 is generated in the outermost layer of the scale SM generated on the surface of the steel material SM.
  • the outermost layer of the scale SC is FeO and that Fe 2 O 3 is not generated.
  • FIG. 5 is a diagram illustrating an example of the relationship between the time during which Fe 2 O 3 is generated and the temperature of the steel material SM.
  • the temperature in FIG. 5 shows the temperature of the steel material SM when it is descaled.
  • the temperature of the steel material SM at the time of descaling is 1000 [° C.], 1050 [° C.], 1100 [° C.], 1150 [° C.], and 1200 [° C.]
  • the time until the thickness of Fe 2 O 3 of the outermost layer of the scale SC generated on the surface of the SM reached 1.5 [ ⁇ m] was derived.
  • the values are plotted in FIG.
  • the formula used for derivation is described in Non-Patent Document 1, detailed description thereof is omitted here.
  • the thickness of Fe 2 O 3 is 1% of the thickness of the scale SC.
  • T s is the temperature [° C.] of the steel material SM.
  • t B ⁇ 2.978 ⁇ 10 ⁇ 5 ⁇ T s 3 + 1.069 ⁇ 10 ⁇ 1 ⁇ T s 2 ⁇ 1.281 ⁇ 10 2 ⁇ T s + 5.128 ⁇ 10 4 (1)
  • the wavelength ⁇ detected by the radiation thermometers 20a and 20b and the radiation are as described above.
  • the spectral emissivity to be set in the thermometers 20a and 20b it is possible to determine whether or not Fe 2 O 3 is generated on the outermost layer of the scale SC (the above (a3) to (c3)). See).
  • the time interval at which descaling is performed is often shorter than the time t B shown in the equation (1).
  • the method for determining whether or not Fe 2 O 3 is generated on the outermost layer of the scale SC is the time interval at which descaling is performed in the hot rolling line is expressed by the equation (1). It can be applied to a place shorter than the time t B shown in FIG.
  • the temperature is low, continuous rolling, and cooling water is sprayed on the outermost layer of the scale SC.
  • the thickness of the produced Fe 2 O 3 is 0.1 [ ⁇ m] even if it is thick. Therefore, the location where the radiation thermometers 20a and 20b are arranged can be determined on the downstream side of the finish rolling mill 15 regardless of the time t B shown in the equation (1).
  • the hardware of the scale composition determination apparatus 10 can be realized by using, for example, an information processing apparatus including a CPU, ROM, RAM, HDD, and various interfaces, or dedicated hardware.
  • FIG. 6 is a flowchart for explaining an example of the operation of the scale composition determination apparatus 10. An example of the function of the scale composition determination apparatus 10 will be described with reference to FIGS. 2 and 6. 6 is executed every time the temperature of the steel material SM is measured by the radiation thermometers 20a and 20b.
  • step S601 the temperature acquisition unit 201 acquires the temperature of the steel material SM measured by the radiation thermometers 20a and 20b.
  • step S602 the determination unit 202 determines whether or not the absolute value of the temperature difference of the steel material SM acquired in step S601 is equal to or higher than a predetermined temperature.
  • the predetermined temperature is set in the scale composition determination apparatus 10 before the execution of the flowchart of FIG. 6 is started. As described above, for example, when the temperature variation is ⁇ 10 [° C.], 20 [° C.] can be adopted as the predetermined value.
  • step S603 the output unit 203 outputs information indicating that Fe 2 O 3 is generated on the outermost layer of the scale SC (a multilayer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 6 is complete
  • step S604 the output unit 203 outputs information indicating that Fe 2 O 3 is not generated on the outermost layer of the scale SC (a single-layer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 6 is complete
  • the output form of the information by the output unit 203 is, for example, at least one of display on a computer display, transmission to an external device, and storage in a storage medium inside or outside the scale composition determination device 10. Can be adopted.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the scale composition determination apparatus 10.
  • the scale composition determination apparatus 10 includes a CPU 701, a main storage device 702, an auxiliary storage device 703, a communication circuit 704, a signal processing circuit 705, an image processing circuit 706, an I / F circuit 707, a user interface 708, a display 709, And a bus 710.
  • the CPU 701 performs overall control of the entire scale composition determination apparatus 10.
  • the CPU 701 executes a program stored in the auxiliary storage device 703 using the main storage device 702 as a work area.
  • the main storage device 702 temporarily stores data.
  • the auxiliary storage device 703 stores various data in addition to the program executed by the CPU 701.
  • the auxiliary storage device 703 stores information necessary for the processing of the flowchart shown in FIG. 6 such as the predetermined temperature described above.
  • the communication circuit 704 is a circuit for performing communication with the outside of the scale composition determination apparatus 10.
  • the signal processing circuit 705 performs various types of signal processing on the signal received by the communication circuit 704 and the signal input in accordance with control by the CPU 701.
  • the temperature acquisition unit 201 exhibits its function by using, for example, the CPU 701, the communication circuit 704, and the signal processing circuit 705.
  • the determination part 202 exhibits the function by using CPU701 and the signal processing circuit 705, for example.
  • the image processing circuit 706 performs various kinds of image processing on the input signal according to the control by the CPU 701.
  • the signal subjected to the image processing is output to the display 709.
  • the user interface 708 is a part where the operator gives an instruction to the scale composition determination apparatus 10.
  • the user interface 708 includes, for example, buttons, switches, and dials. Further, the user interface 708 may have a graphical user interface using the display 709.
  • the display 709 displays an image based on the signal output from the image processing circuit 706.
  • the I / F circuit 707 exchanges data with a device connected to the I / F circuit 707.
  • a user interface 708 and a display 709 are shown as devices connected to the I / F circuit 707.
  • the device connected to the I / F circuit 707 is not limited to these.
  • a portable storage medium may be connected to the I / F circuit 707.
  • at least part of the user interface 708 and the display 709 may be outside the scale composition determination apparatus 10.
  • the output unit 203 exhibits its function by using, for example, at least one of the communication circuit 704, the signal processing circuit 705, the image processing circuit 706, the I / F circuit 707, and the display 709.
  • the CPU 701, main storage device 702, auxiliary storage device 703, signal processing circuit 705, image processing circuit 706, and I / F circuit 707 are connected to the bus 710. Communication between these components is performed via a bus 710. Further, the hardware of the scale composition determination apparatus 10 is not limited to that shown in FIG. 7 as long as the function of the scale composition determination apparatus 10 described above can be realized.
  • the scale composition determination device 10 uses the outermost layer of the scale SC when the absolute value of the temperature difference of the steel material SM measured by the radiation thermometers 20a and 20b is equal to or higher than a predetermined temperature. to determine the Fe 2 O 3 is generated, otherwise, determines that the Fe 2 O 3 as the outermost layer of the scale SC is not generated. At that time, a hematite curve is obtained in advance for each wavelength ⁇ selected from a wavelength band that is not affected by the gas in the atmosphere when measured by the radiation thermometers 20a and 20b.
  • the hematite curve is a curve showing the relationship between the temperature of the steel material SM (temperature of Fe 2 O 3 ) measured by a radiation thermometer in which the spectral emissivity of FeO is set and the thickness of Fe 2 O 3. It is. Then, a set of wavelengths ⁇ is obtained such that the upper limit value of the thickness of Fe 2 O 3 to be measured is less than the thickness of Fe 2 O 3 at the intersection of these curves. Then, the wavelength ⁇ detected by the radiation thermometers 20a and 20b and the spectral emissivity set in the radiation thermometers 20a and 20b are set as the obtained wavelength ⁇ and the spectral emissivity of FeO at the wavelength ⁇ , respectively.
  • a set of radiation thermometers may be arranged at a plurality of positions in such a place (that is, a plurality of sets of radiation thermometers may be arranged).
  • the scale composition determination apparatus 10 performs the flowchart shown in FIG. 6 for each set of radiation thermometers, and in each place where the set of radiation thermometers is arranged, Fe 2 O is formed on the outermost layer of the scale SC. It is determined whether 3 is generated.
  • the case where the scale composition determination apparatus 10 is applied to a thin hot rolling line has been described as an example.
  • the application destination of the scale composition determination apparatus 10 is not limited to a thin hot rolling line.
  • the contents of the wavelength range defined in the above (a1) to (c1) are contents according to the application destination of the scale composition determination apparatus 10.
  • the contents specified in the above (a3) to (c3), such as the thickness of Fe 2 O 3 are also contents corresponding to the application destination of the scale composition determination apparatus 10.
  • the temperature of the steel material SM (the temperature of Fe 2 O 3 ) obtained by the radiation temperature measurement method at two different wavelengths ⁇ , and Fe 2 the thickness of the Fe 2 O 3 at the intersection of the two curves showing the relationship between the thickness of the O 3 is, two wavelengths ⁇ as the upper limit of the thickness of the Fe 2 O 3 to be measured, the radiation thermometer 20a , 20b is the wavelength ⁇ to be detected.
  • a heating furnace described in Patent Document 1 can be cited.
  • the case where the temperature is measured by the radiation thermometers 20a and 20b has been described as an example. However, it is not always necessary to obtain the temperature with the radiation thermometers 20a and 20b.
  • the spectral radiance may be detected by a radiometer, and the temperature may be measured (derived) by the scale composition determination device 10 based on the detected spectral radiance. If there is no risk of damage to the thermometer, a contact-type thermometer may be used.
  • FIG. 8 is a diagram illustrating an example of the configuration of the scale composition determination system.
  • FIG. 8 shows an example of the arrangement of the radiation thermometers 20a, 20b, and 20c and the functional configuration of the scale composition determination apparatus 10.
  • FIG. 8 is a diagram corresponding to FIG. ⁇ Radiation thermometers 20a, 20b, 20c>
  • the radiation thermometers 20a, 20b, and 20c are arranged so that the intersections of the axes of the radiation thermometers 20a, 20b, and 20c (the optical axis of the light receiving lens) and the passing position of the steel material SM (the surface thereof) substantially coincide. Place.
  • FIG. 8 it shows as an example the case where the radiation thermometers 20a, 20b, and 20c are arranged in the conveyance direction of the steel material SM.
  • the radiation thermometers 20a, 20b, and 20c need not be arranged in this way.
  • the radiation thermometers 20a, 20b, and 20c may be arranged in the width direction of the steel material SM.
  • the radiation thermometer 20a is a radiation thermometer having a wavelength ⁇ selected from the wavelength band (a1) described in the first embodiment as a wavelength to be measured.
  • the radiation thermometer 20b is a radiation thermometer having a wavelength ⁇ selected from the wavelength band (b1) described in the first embodiment as a wavelength to be measured.
  • the radiation thermometer 20c is a radiation thermometer having a wavelength ⁇ selected from the wavelength band (c1) described in the first embodiment as a wavelength to be measured.
  • the spectral emissivity ⁇ w of FeO corresponding to the wavelength ⁇ is set in the radiation thermometers 20a, 20b, and 20c.
  • the hematite curves 401, 402, and 403 in FIG. 4 can be obtained.
  • the thickness of the outermost layer of Fe 2 O 3 on the multilayer scale is 1.5 [ ⁇ m] or less, there is no intersection where all of the curves 401, 402, and 403 intersect. Therefore, a difference occurs in the temperature in at least one combination among a plurality of combinations of two temperatures measured by the radiation thermometers 20a, 20b, and 20c. Therefore, when there is a difference in temperature in at least one of a plurality of combinations of two temperatures measured by the radiation thermometers 20a, 20b, and 20c, Fe 2 O is formed on the outermost layer of the scale SC. 3 it can be determined that there is, if there is no difference in all combinations, it can be determined that there is no Fe 2 O 3. In this way, it is possible to expand the range of the estimated thickness of Fe 2 O 3 to be determined. Also, the estimated thickness of Fe 2 O 3 eliminates the need to replace the radiation thermometer.
  • the steel material SM It is preferable to determine that Fe 2 O 3 is generated in the outermost layer of the scale SM generated on the surface of the material, and to determine that Fe 2 O 3 is not generated otherwise. For example, when the temperature variation is ⁇ 10 [° C.], 20 [° C.] can be adopted as the predetermined value. Further, the locations where the radiation thermometers 20a, 20b, and 20c are arranged are the same as those described in the first embodiment.
  • ⁇ Scale composition determination apparatus 10> The configuration of the scale composition determination apparatus 10 is the same as that of the scale composition determination apparatus 10 of the first embodiment. An example of the function of the scale composition determination apparatus 10 of this embodiment will be described with reference to the flowchart of FIG. 6 is executed every time the temperature of the steel material SM is measured by the radiation thermometers 20a, 20b, and 20c.
  • step S601 the temperature acquisition unit 201 acquires the temperature of the steel material SM measured by the radiation thermometers 20a, 20b, and 20c.
  • step S602 the determination unit 202 determines that the absolute value of the temperature difference in at least one combination among the plurality of combinations of the two temperatures of the steel material SM acquired in step S601 is a predetermined temperature. It is determined whether it is above.
  • step S603 the output unit 203 outputs information indicating that Fe 2 O 3 is generated on the outermost layer of the scale SC (a multilayer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 6 is complete
  • the scale SC has the highest value. It is determined that Fe 2 O 3 is not generated on the surface layer (that is, it is determined that a single-layer scale is generated on the surface of the steel material SM). Therefore, in step S604, the output unit 203 outputs information indicating that Fe 2 O 3 is not generated on the outermost layer of the scale SC (a single-layer scale is generated on the surface of the steel material SM). And the process by the flowchart of FIG. 6 is complete
  • the wavelength ⁇ selected from the wavelength band of (a1) is the measurement wavelength in the radiation thermometer 20a. Further, the spectral emissivity of FeO corresponding to the wavelength ⁇ is set in the radiation thermometer 20a. The wavelength ⁇ selected from the wavelength band of (b1) is set as the measurement wavelength in the radiation thermometer 20b. Further, the spectral emissivity of FeO corresponding to the wavelength ⁇ is set in the radiation thermometer 20b. The wavelength ⁇ selected from the wavelength band of (c1) is set as the measurement wavelength in the radiation thermometer 20c. Further, the spectral emissivity of FeO corresponding to the wavelength ⁇ is set in the radiation thermometer 20c.
  • a hematite curve indicating the relationship between the temperature of the steel material SM (the temperature of Fe 2 O 3 ) measured by the above radiation thermometers 20a, 20b, and 20c and the estimated thickness of Fe 2 O 3 is created. Then, it is determined whether or not there is an intersection where three hematite curves intersect within the estimated thickness range of Fe 2 O 3 . When there is an intersection where three hematite curves intersect, at least one of the measurement wavelengths in the radiation thermometers 20a, 20b, and 20c is changed. Then, as described above, it is determined whether or not there is an intersection where three hematite curves intersect within the estimated thickness range of Fe 2 O 3 .
  • the above process is performed until there is no intersection where three hematite curves intersect within the estimated thickness range of Fe 2 O 3 . If there is no intersection where the three hematite curves intersect within the estimated thickness range of Fe 2 O 3 , the measurement wavelengths of the radiation thermometers 20a, 20b, and 20c when the three hematite curves are created are employed.
  • the scale composition determination device 10 includes at least one combination among a plurality of combinations of two temperatures of the temperatures of the steel materials SM measured by the radiation thermometers 20a, 20b, and 20c. If the absolute value of the difference in temperature is equal to or higher than a predetermined temperature, when the outermost layer of the scale SC determines that Fe 2 O 3 is generated, otherwise, Fe 2 O 3 as the outermost layer of the scale SC Is determined not to be generated. Therefore, in addition to the effects described in the first embodiment, the following effects can be obtained. That is, the estimated thickness range of Fe 2 O 3 to be determined can be expanded. Moreover, it is not necessary to replace the radiation thermometer depending on the estimated thickness of Fe 2 O 3 .
  • the number of radiation thermometers is two.
  • the number of radiation thermometers is three.
  • the system of the first embodiment can be configured at a lower cost than the second embodiment.
  • the installation space for the radiation thermometer can be made more compact in the first embodiment than in the second embodiment.
  • the second embodiment even when the estimated estimated thickness of Fe 2 O 3 is changed, it can be reliably determined whether or not Fe 2 O 3 is present on the outermost layer of the scale SC. For example, in consideration of the above points, it is possible to determine which one of the first embodiment and the second embodiment is adopted.
  • the number of wavelengths ⁇ detected by the radiation thermometer is three has been described as an example.
  • the number of wavelengths ⁇ detected by the radiation thermometer may be three or more.
  • the wavelength ⁇ detected by the radiation thermometer is selected from two or more wavelength bands among the wavelength bands (a1), (b1), and (c1) described in the first embodiment. Also good. However, at this time, a total of three or more wavelengths are selected. Thus, it is not necessary to select the wavelength ⁇ from all the wavelength bands of (a1), (b1), and (c1).
  • the method of this embodiment can be employed. In this case, there should be no intersection where all of the two curves showing the relationship between the temperature of the steel material SM (Fe 2 O 3 temperature) measured by the two radiation thermometers and the thickness of the Fe 2 O 3 intersect.
  • the wavelength ⁇ detected by the two radiation thermometers is selected. In the example shown in FIG. 4, selecting the hematite curves 401 and 403 corresponds to this. For example, a total of two wavelengths may be selected as the wavelength ⁇ detected by the radiation thermometer from two wavelength bands among the wavelength bands (a1), (b1), and (c1).
  • the wavelength ⁇ detected by the radiation thermometer is equal to the wavelength bands (a1), (b1), and (c1). Of these, the wavelengths are in two or more wavelength bands.
  • the temperature of the steel material SM to be measured by the N radiation thermometer (the temperature of the Fe 2 O 3)
  • the thickness of the Fe 2 O 3 The wavelength ⁇ to be detected by the N radiation thermometers is selected so that there is no intersection where all of the N hematite curves indicating the relationship with Specifically, N wavelengths are defined as a first wavelength to an Nth wavelength, and wavelengths selected one by one from the first wavelength to the Nth wavelength are defined as an nth wavelength (nth wavelength). The first wavelength to the Nth wavelength are selected one by one as the first wavelength).
  • the hematite curve at the nth wavelength shows the thickness of the hematite and the temperature of the hematite obtained by the radiation temperature measurement method at the nth wavelength, assuming that the spectral emissivity is the spectral emissivity of wustite (FeO). It becomes a curve showing the relationship.
  • the first wavelength to the Nth wavelength are within the range of the assumed thickness of hematite (Fe 2 O 3 ), and there is an intersection where all the hematite curves at the first wavelength to the Nth wavelength intersect. It is determined not to.
  • the spectral emissivity is measured as the spectral emissivity of wustite at the nth wavelength, and the temperature of the steel material at the nth wavelength is measured by a radiation temperature measurement method. Such measurement is performed for each of the first to Nth wavelengths.
  • N is preferably an integer of 3 or more, but may be an integer of 2 or more.
  • the embodiment of the present invention described above can be realized by a computer executing a program. Further, a computer-readable recording medium in which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
  • the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
  • the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
  • the present invention can be used for manufacturing steel materials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Radiation Pyrometers (AREA)

Abstract

スケール組成判定装置(10)は、放射温度計(20a、20b)により測定された鋼材SMの温度の差の絶対値が所定の温度以上である場合に、スケール(SC)の最表層にFe2O3が生成されていると判定し、そうでない場合に、スケール(SC)の最表層にFe2O3が生成されていないと判定する。

Description

スケール組成判定システム、スケール組成判定方法、およびプログラム
 本発明は、スケール組成判定システム、スケール組成判定方法、およびプログラムに関し、特に、鋼材の表面に生成されるスケールの組成を判定するために用いて好適なものである。
 鋼材を加熱すると表面にスケール(鉄酸化物の皮膜)ができる。鋼材の表面に生成されるスケールには、単層スケールと、複層スケールとがある。単層スケールとは、ウスタイト(FeO)のみからなるスケールである。複層スケールとは、ヘマタイト(Fe2O3)、マグネタイト(Fe3O4)、およびウスタイト(FeO)からなるスケールである。複層スケールでは、表層から、ヘマタイト(Fe2O3)、マグネタイト(Fe3O4)、およびウスタイト(FeO)がこの順で配置される。特許文献1に記載されているように、単層スケールおよび複層スケールの何れのスケールになるのかは、鋼材の温度や、鋼材の周囲の雰囲気中の酸素濃度等によって定まる。また、スケールの密着性はその組成に関係している。例えば、熱間圧延工程において、ブリスタリング等により生じるスケールの剥離の発生頻度は、スケールの最表層にFe2O3が存在すると飛躍的に上がる。
 熱間圧延工程においてスケールが剥離すると、その後の圧延で、剥離したスケールが鋼材に押し込まれることにより鋼材の表面に疵が形成される虞がある。また、剥離したスケールが鋼材に押し込まれない場合でも、酸洗後、鋼材の表面にスケールの模様が生じる虞がある。従って、スケールの組成を判別し、その結果を、操業に活用することが望まれる。
 スケールの組成を判別する手法として、X線回折測定が考えられる。X線回折測定では、スケールが成長している鋼材を数cm程度の大きさに切断した試験片を作製し、この試験片のX線回折パターンを測定する。スケールの結晶構造により異なるX線回折パターンが得られる。従って、X線回折パターンから、スケールの最表層にFe2O3があるか否か(即ち、前述した単層スケールであるか、複層スケールであるか)を判別することができる。
 しかしながら、X線回折測定では、鋼材を切断して試験片を作製する必要がある。また、鋼材が冷えた後でしかX線回折パターンを測定することができない。従って、操業中の鋼材の表面に生成されているスケールの組成をオンライン(リアルタイム)で判別することができない。
 そこで、特許文献1に記載の技術では、鋼材の表面における酸化の律速過程が、酸素分子が鋼板の表面の酸化膜へ供給される過程と、鉄原子が鋼材の表面で酸化する過程とのうち、何れに律速されているかによって、スケールの最表層にFe2O3があるか否かを判別する。
特開2012-93177号公報
斎藤安俊、阿竹徹、丸山俊夫編訳、「金属の高温酸化」、内田老鶴圃、p.32~p.34、2013年
 しかしながら、特許文献1に記載の技術では、鋼材の表面における酸化の律速過程を判別するためにモデル式を用いる必要がある。従って、判別の精度はモデル式の精度に依存する。また、初期の酸化層の厚みを仮定する必要がある。更に、複数のモデル定数をモデル式に設定する必要がある。このため、モデル定数を精度よく定める必要がある。従って、操業中の鋼材の表面に生成されているスケールの組成を精度良くオンライン(リアルタイム)で判別することが容易ではないという問題点がある。
 本発明は、以上の問題点に鑑みてなされたものであり、操業中の鋼材の表面に生成されているスケールの組成をオンラインで精度良く判別できるようにすることを目的とする。
 本発明のスケール組成判定システムの第1の例は、鋼材の表面に生成されるスケールの組成を判定するスケール組成判定システムであって、相互に異なる2つの波長における前記鋼材の温度を放射測温法により測定する測定手段と、前記測定手段により測定された前記鋼材の温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定手段と、を有し、前記2つの波長のうち第1の波長におけるヘマタイト曲線と、第2の波長における前記ヘマタイト曲線との交点におけるヘマタイトの厚みが、前記スケールの最表層に生成されるヘマタイトの厚みとして想定される厚みの上限値を上回るように定められており、前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であることを特徴とする。
 本発明のスケール組成判定システムの第2の例は、鋼材の表面に生成されるスケールの組成を判定するスケール組成判定システムであって、相互に異なるN個の波長における前記鋼材の温度を放射測温法により測定する測定手段と、前記測定手段により測定された前記鋼材の温度のうちの2つの温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定手段と、を有し、前記N個の波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記N個の波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められており、前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であり、前記Nは、3以上の整数であることを特徴とする。
 本発明のスケール組成判定方法の第1の例は、鋼材の表面に生成されるスケールの組成を判定するスケール組成判定方法であって、相互に異なる2つの波長における前記鋼材の温度を放射測温法により測定する測定工程と、前記測定工程により測定された前記鋼材の温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、を有し、前記2つの波長のうち第1の波長におけるヘマタイト曲線と、第2の波長における前記ヘマタイト曲線との交点におけるヘマタイトの厚みが、前記スケールの最表層に生成されるヘマタイトの厚みとして想定される厚みの上限値を上回るように定められており、前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であることを特徴とする。
 本発明のスケール組成判定方法の第2の例は、鋼材の表面に生成されるスケールの組成を判定するスケール組成判定方法であって、相互に異なるN個の波長における前記鋼材の温度を放射測温法により測定する測定工程と、前記測定工程により測定された前記鋼材の温度のうちの2つの温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、を有し、前記N個の波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記N個の波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められており、前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であり、前記Nは、3以上の整数であることを特徴とする。
 本発明のプログラムの第1の例は、鋼材の表面に生成されるスケールの組成を判定することをコンピュータに実行させるためのプログラムであって、放射測温法により測定された、相互に異なる2つの波長における前記鋼材の温度を取得する取得工程と、前記取得工程により取得された前記鋼材の温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、をコンピュータに実行させ、前記2つの波長のうち第1の波長におけるヘマタイト曲線と、第2の波長における前記ヘマタイト曲線との交点におけるヘマタイトの厚みが、前記スケールの最表層に生成されるヘマタイトの厚みとして想定される厚みの上限値を上回るように定められており、前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であることを特徴とする。
 本発明のプログラムの第2の例は、鋼材の表面に生成されるスケールの組成を判定することをコンピュータに実行させるためのプログラムであって、放射測温法により測定された、相互に異なるN個の波長における前記鋼材の温度を取得する取得工程と、前記取得工程により取得された前記鋼材の温度のうちの2つの温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、をコンピュータに実行させ、前記N個の波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記N個の波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められており、前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であり、前記Nは、3以上の整数であることを特徴とする。
図1は、熱間圧延ラインの概略構成の一例を示す図である。 図2は、スケール組成判定システムの構成の第1の例を示す図である。 図3は、鋼材の温度と、単層スケールの厚みとの関係の一例を示す図である。 図4は、鋼材の温度と、複層スケールの最表層のFe2O3の厚みとの関係の一例を示す図である。 図5は、Fe2O3が生成される時間と、鋼材の温度との関係の一例を示す図である。 図6は、スケール組成判定装置の動作の一例を説明するフローチャートである。 図7は、スケール組成判定装置のハードウェアの構成の一例を示す図である。 図8は、スケール組成判定システムの構成の第2の例を示す図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
(第1の実施形態)
 まず、第1の実施形態を説明する。
<熱間圧延ラインの構成の概略>
 図1は、スケール組成判定装置10の適用先の一例である熱間圧延ラインの概略構成の一例を示す図である。
 図1において、熱間圧延ラインは、加熱炉11と、デスケーラ12a~12fと、幅方向圧延機13と、粗圧延機14と、仕上圧延機15と、冷却装置(ランアウトテーブル)16と、巻取装置(コイラー)17とを有する。
 加熱炉11は、スラブ(鋼材)Sを加熱する。
 デスケーラ12a~12fは、鋼材の表面に生成されているスケールを除去する。スケールの厚みは、例えば10[μm]~100[μm]である。デスケーラ12a~12fは、例えば、加圧水を鋼材の表面に吹き付けることにより、デスケーリング(スケールの除去)を行う。尚、鋼材は高温であるため、スケールを除去しても鋼材は直ちに再酸化する。従って、鋼材は、常にスケールが表面に存在した状態で圧延される。
 幅方向圧延機13は、加熱炉11で加熱されたスラブSを幅方向に圧延する。
 粗圧延機14は、幅方向圧延機13で幅方向に圧延されたスラブSを上下方向から圧延して粗バーにする。図1に示す例では、粗圧延機14は、ワークロールのみからなる圧延スタンド14aと、ワークロールとバックアップロールとを有する圧延スタンド14b~14eとを有する。
 仕上圧延機15は、粗圧延機14で製造された粗バーをさらに所定の厚みまで連続して熱間仕上圧延を行う。図1に示す例では、仕上圧延機15は、7つの圧延スタンド15a~15gを有する。
 冷却装置16は、仕上圧延機15により熱間仕上圧延が行われた熱延鋼板Hを冷却水により冷却する。
 巻取装置17は、冷却装置16により冷却された熱延鋼板Hをコイル状に巻き取る。
 尚、熱間圧延ラインは、公知の技術で実現することができ、図1に示す構成に限定されるものではない。例えば、仕上圧延機15の7つの圧延スタンド15a~15gのうち、上流側の圧延スタンドの間(例えば、圧延スタンド15a、15bの間および圧延スタンド15b、15cの間)にデスケーラを配置しても良い。
 本実施形態では、熱間圧延ラインに対し、2つの放射温度計を一組とする放射温度計の組を少なくとも1つ配置する。放射温度計は、放射測温法により、鋼材の温度を非接触で測定する。
 図1に示す例では、デスケーラ12bと、圧延スタンド14bとの間の領域に一組の放射温度計20a、20bを配置する場合を示す。圧延スタンド14bは、ワークロールとバックアップロールとを有する圧延スタンドのうち最上流に設けられた圧延スタンドである。
 図2に示すスケール組成判定装置10は、放射温度計20a、20bで測定された鋼材SMの温度を入力する。スケール組成判定装置10は、入力した鋼材SMの温度に基づいて、当該鋼材SMの表面に、単層スケールおよび複層スケールの何れのスケールSCが生成されているのかを判定する。前述したように、単層スケールは、FeOのみからなるスケールである。複層スケールは、ヘマタイト(Fe2O3)、マグネタイト(Fe3O4)、およびウスタイト(FeO)からなるスケールである。複層スケールでは、表層から、ヘマタイト(Fe2O3)、マグネタイト(Fe3O4)、およびウスタイト(FeO)が、この順で配置される。
 図2は、スケール組成判定システムの構成の一例を示す図である。図2では、放射温度計20a、20bの配置と、スケール組成判定装置10の機能的な構成の一例を示す。
<放射温度計20a、20b>
 まず、放射温度計20a、20bの配置の一例について説明する。図2では、鋼材SMの傍らに付している矢印線の方向が鋼材SMの搬送方向である場合を例に挙げて示す。また、鋼材SMの表面にはスケールSCが生成されているものとする。
 図2において、放射温度計20a、20bの軸(受光レンズの光軸)の、鋼材SM(の表面)の通過位置との交点が略一致するように、放射温度計20a、20bを配置する。尚、図2では、鋼材SMの搬送方向に放射温度計20a、20bを並べる場合を例に挙げて示す。しかしながら、放射温度計20a、20bの軸(受光レンズの光軸)の、鋼材SM(の表面)の通過位置との交点が略一致するようにしていれば、放射温度計20a、20bをこのように配置する必要はない。例えば、鋼材SMの幅方向に放射温度計20a、20bを並べても良い。
 次に、放射温度計20a、20bにおいて検出する波長の一例について説明する。
 放射温度計20a、20bと鋼材SMとの間の領域(雰囲気)には、水蒸気(H2O)や二酸化炭素(CO2)等のガスがある。スケールSCから放射される光(赤外線)には、このガスにより、吸収される波長帯域がある。
 本発明者らは、熱間圧延工程の環境下において、測定対象から放射温度計までの光路における放射光の減衰の有無と、当該放射温度計で検出する波長λとの関係を調査した。その結果、本発明者らは、放射温度計20a、20bで検出する波長λを、以下(a1)~(c1)の波長帯域のいずれかの中から選択すれば、放射温度計20a、20bは、雰囲気中のガスに大きな影響を受けずに分光放射輝度を測定することができることを確認した。即ち、(a1)0.6[μm]~1.6[μm]、(b1)3.3[μm]~5.0[μm]、および(c1)8.0[μm]~14.0[μm]の波長帯域の中から、放射温度計20a、20bで検出する波長λを選択する。このようにすれば、放射温度計20a、20bは、雰囲気中のガスに大きな影響を受けずに分光放射輝度を測定することができる。尚、分光放射輝度は、波長λ[μm]における、単位波長あたり、単位面積あたり、単位立体角あたりの放射束[W・μm-1・sr-1・m-2]である。また、放射温度計20a、20bそれぞれで検出する波長λは、相互に異なる波長帯域から選択するものとする。たとえば放射温度計20aで計測する波長λを(a1)の波長帯域から選択した場合は、放射温度計20bで計測する波長λを(b1)か(c1)のいずれかから選択する。
 ここで、前述した(a1)の下限値は、放射温度計において分光放射輝度を測定することが可能な波長λの下限値(測定対象の鋼材SMの温度の下限値)から定まる。この分光放射輝度を測定することが可能な波長λの下限値は、測定対象の鋼材SMの温度に応じて定まる。例えば、測定対象の鋼材SMの温度として900[℃]以上の温度を測定するものとした場合、放射温度計において分光放射輝度を測定することが可能な波長λの下限値は0.6[μm]になる。そこで、ここでは、(a1)の下限値を0.6[μm]とした。尚、測定対象の鋼材SMの温度の下限値を600[℃]とする場合には、前述した(a1)の下限値は0.9[μm]になる。また、(c1)の上限値は、放射温度計における光検出素子の性能(長波長の赤外線の検出能力)の制約から定まる。
 次に、本発明者らは、前述した(a1)~(c1)の波長帯域に属する波長λにおいて、以下の検討を行った。
 図3は、鋼材SMの温度の測定値と、単層スケールの厚みとの関係の一例を示す図である。図3に示すように、ここでは、温度が900[℃]の鋼材SMを例に挙げて検討する。
 図3に示すように、波長λに応じたFeOの分光放射率εwを放射温度計に設定することにより、単層スケール(FeO)の温度として、単層スケール(FeO)の厚みに関わらず一定の温度が測定値として放射温度計により測定されることが分かる。また、波長λに関わらず、単層スケール(FeO)の温度として、同じ値の温度が放射温度計により測定されることが分かる。これは、FeOが不透明であり、分光放射率がその厚みによって変化することがないためである。尚、FeOの分光放射率εwは、実験的に測定したり、光学定数データベースを参照したりすることによって求めることができる。
 また、本発明者らは、表面に複層スケールを有する鋼材SMの温度と、当該複層スケールの最表層のFe2O3の厚みとの関係を、(a1)、(b1)、(c1)それぞれの波長帯域に属する各波長λにおいて調査した。前述したように、波長λは、放射温度計で検出する波長である。
 各波長λにおける、表面に複層スケールを有する鋼材SMの温度の測定値と、当該複層スケールの最表層のFe2O3の厚みとの関係の一例を図4に示す。前述したように、複層スケールの最表層には、Fe2O3が存在する。図4において、Fe2O3厚とは、複層スケールの最表層のFe2O3の厚みを指す。また、各波長λにおける鋼材の温度を導出する際には、当該波長λにおける前述したFeOの分光放射率εwを用いた。
 図4において、曲線401、402、403は、波長λが、それぞれ(a1)、(b1)、(c1)の波長帯域に属する場合の、鋼材SMの温度の測定値と、Fe2O3厚(複層スケールの最表層のFe2O3の厚み)との関係を示す。本実施形態においては、このように、各波長λにおける、鋼材SMの温度の測定値とヘマタイト(Fe2O3厚)との関係を示す曲線を必要に応じて「ヘマタイト曲線」と称する。 
 図4に示すように、表面に複層スケールを有する鋼材SMの温度の放射温度計による測定値は、Fe2O3の厚みにより異なる。これは、Fe2O3による光の干渉の影響により、Fe2O3の厚みによって、Fe2O3の分光放射率が変化し、また、その波形(分光放射率とFe2O3の厚みとの関係を示す波形)も、波長λにより異なるためであると考えられる。尚、Fe2O3による光の干渉の影響により、Fe2O3の厚みによって、Fe2O3の分光放射率が変化するという現象自体は、特許文献1に記載されている。本実施形態では、Fe2O3の厚みによる分光放射率の変化が波長によって異なるという新規知見を利用する。
 図4に示す結果から、Fe2O3の厚みが少なくとも1.5[μm]以下の場合、ヘマタイト曲線401、402、403すべてが1点で交わることがないことがわかる。このためFe2O3の厚みが少なくとも1.5[μm]以下の場合は、ヘマタイト曲線401、402、403のうちの2つの曲線の組であって、相互に交わらない2つの曲線の組が少なくとも1つ存在する。図4からは具体的に、以下の(a2)~(c2)のことが分かる。
 (a2)Fe2O3の厚みが1.5[μm]以下の場合、ヘマタイト曲線401とヘマタイト曲線403とが交わらない。
 (b2)Fe2O3の厚みが0.86[μm]未満の場合、ヘマタイト曲線401とヘマタイト曲線402とが交わらず、かつ、ヘマタイト曲線401とヘマタイト曲線403とが交わらない。
 (c2)Fe2O3の厚みが0.29[μm]未満の場合、いずれのヘマタイト曲線401~403も交わらない。
 尚、スケールSCの最表層に生成されるFe2O3の厚みは、以下のようにして求められる。まず、デスケーリングによるスケール除去時の鋼材SMの温度とその後の経過時間とを用いて、公知のスケール厚計算式からスケールSC全体の厚みを求める。スケール厚計算式は、温度と時間との関数からスケールSCの全体の厚みを求める式である。そして、熱間圧延ラインにおいて生成されることが想定されるFe2O3の厚みとして、スケールSCの全体の厚みの1[%]の厚みを求める。本実施形態では、このようにして、Fe2O3の厚みが推定される場合を例に挙げて説明する。以下の説明では、このようにして推定されるFe2O3の厚みを必要に応じてFe2O3の推定厚みと称する。尚、実際の温度履歴を想定したスケール生成のラボ実験を行うことによって、Fe2O3の推定厚みを求めても良い。本実施形態において想定している鋼材SMの温度(600[℃]~1200[℃])の範囲では、スケールSCの最表層に生成されるFe2O3の推定厚みは厚くても0.50[μm]である。仕上圧延機15を通過中の鋼材SMにおいては、スケールSCの最表層に生成されるFe2O3の厚みは厚くても0.18[μm]である。
 本実施形態において想定している鋼材SMの温度(600[℃]~1200[℃])の範囲においては、以上の「Fe2O3の推定厚みと、相互に交わらない2つのヘマタイト曲線の組み合わせの関係」を示す(a2)~(c2)は、前述した(a1)~(c1)の波長帯域のその他の波長の組み合わせでも同様であった。ただし、その他の波長の組み合わせにおいては、ヘマタイト曲線401、402、403それぞれの交わる点が、上述した図4、および(a2)~(c2)に例示した交点とは異なる。
 たとえば、前述した(a2)の説明におけるFe2O3の推定厚みの上限は(a1)の波長帯域の中から選択された波長λから求められたヘマタイト曲線(第1のヘマタイト曲線)と、(a2)の波長帯域の中から選択された波長λから求められたヘマタイト曲線(第2のヘマタイト曲線)との交点から算出される。
 そして、Fe2O3の推定厚みである1.5[μm]と、第1のヘマタイト曲線と第2のヘマタイト曲線との交点から算出された厚みとのうち、大きい方の厚みを第1の厚みとし、最小の厚みを第2の厚みとする。
 第1の厚みと第2の厚みとの間に差がある場合は、小さい方の厚みである第2の厚みを(a2)の「ヘマタイト曲線401とヘマタイト曲線403とが交わらない」場合の上限として採用する。
 同様に、(b2)の「ヘマタイト曲線401とヘマタイト曲線402とが交わらず、ヘマタイト曲線401とヘマタイト曲線403とが交わらない」領域の上限(図4に示す例では0.86[μm])も、選択した波長λに応じて各ヘマタイト曲線401~403を算出して採用する。
 (c2)の「いずれのヘマタイト曲線401~403も交わらない」領域についても同様に、ヘマタイト曲線402とヘマタイト曲線403の交点から、その上限(図4に示す例では0.29[μm])を定めればよい。尚、前述したように本実施形態では、熱間圧延ラインにおいて、温度が600[℃]~1200[℃]の範囲の鋼材SMが搬送されることを想定している。このような温度範囲では、(a2)における上限1.5[μm]の代わりに採用されるFe2O3の厚みは、1.5[μm]に対し大きく変わることはない。(b2)~(c2)の説明におけるFe2O3の厚みについても同様に、図4に示した上限および下限から大きく変わることはない。
 以上のことから、以下の(a3)~(c3)のことが言える。
 (a3)Fe2O3の推定厚みが1.5[μm](または前述したようにして1.5[μm]よりも小さい、Fe2O3の第2の厚み)未満の場合、前述した(a1)および(c1)の波長帯域の中からそれぞれ1つずつ波長λを選択する。このようにすれば、それらの波長λにおいて放射温度計20a、20bにより測定される第1の温度と第2の温度との間に差がある場合に、スケールSCの最表層にFe2O3があると判定でき、図3に示すように第1の温度と第2の温度との間に差がない場合はFeOが最表層にあるため、Fe2O3がないと判定できる。
 (b3)Fe2O3の推定厚みが0.86[μm](または前述したようにして0.86[μm]の代わりに採用されるFe2O3の厚み)未満の場合、前述した(a1)および(c1)の波長帯域の中からそれぞれ1つずつ波長λを選択することと、前述した(a1)および(b1)の波長帯域の中から1つずつ波長λを選択することとの何れか一方を採用する。このようにすれば、それらの波長λにおいて放射温度計20a、20bにより測定される温度の差がある場合に、スケールSCの最表層にFe2O3があると判定でき、差がない場合に、Fe2O3がないと判定できる。
 (c3)Fe2O3の推定厚みが0.29[μm](または前述したようにして0.29[μm]の代わりに採用されるFe2O3の厚み)未満の場合、前述した(a1)~(c1)の何れか2つの波長帯域の中からそれぞれ1つずつ波長λを選択する。このようにすれば、それらの波長λにおいて放射温度計20a、20bにより測定される温度の差がある場合に、スケールSCの最表層にFe2O3があると判定でき、差がない場合に、Fe2O3がないと判定できる。
 以上のように、判定の対象となるFe2O3の推定厚みの上限値(第2の厚み)に応じて、前述した(a1)~(c1)の波長帯域の中から2つの波長帯域を選択する。ここで、判定の対象となるFe2O3の推定厚みの上限値とは、熱間圧延ラインで熱間圧延が行われる鋼材SMの表面に生成されるスケールSCの最表層のFe2O3の推定厚みとして想定される厚みの最大値である。そして、(a1)~(c1)の波長帯域の中から選択した2つの波長帯域の中からそれぞれ1つずつ選択した相互に異なる波長λ(第1の波長λと第2の波長λ)を測定対象の波長とする。この各波長の測定においては、放射温度計20a、20bをそれぞれ用いる。そして、選択した波長λにおけるFeOの分光放射率を放射温度計20a、20bに設定する。このようにして放射温度計20a、20bを構成する。そうすると、第1の波長に対応する放射温度計20aにより測定される鋼材温度の測定値(第1の鋼材温度)と、第2の波長に対応する放射温度計20bにより測定される鋼材温度の測定値(第2の鋼材温度)との間に差があれば、鋼材SMの表面に生成されているスケールSMの最表層にFe2O3が生成されていると判定される。それに対し、第1の鋼材温度と第2の鋼材温度との間に差がなければ、スケールSCの最表層はFeOであり、Fe2O3が生成されていないと判定することができる。
 ただし、実際の放射温度計では、測定にばらつきが生じる(公差等がある)ため、スケールSCの最表層がFeOであっても、第1の鋼材温度と第2の鋼材温度とが完全に一致しない場合がある。従って、放射温度計20a、20bにより測定される第1の鋼材温度と第2の鋼材温度との差の絶対値が所定の値以上であれば、鋼材SMの表面に生成されているスケールSMの最表層にFe2O3が生成されていると判定し、そうでなければ、Fe2O3が生成されていないと判定するのが好ましい。例えば、温度のばらつきが±10[℃]である場合、第1の鋼材温度と第2の鋼材温度との差の絶対値として20[℃]を採用することができる。
 図5は、Fe2O3が生成される時間と、鋼材SMの温度との関係の一例を示す図である。
 図5における温度は、デスケーリングされたときの鋼材SMの温度を示す。ここでは、デスケーリングされたときの鋼材SMの温度が1000[℃]、1050[℃]、1100[℃]、1150[℃]、1200[℃]のときに、デスケーリングを行ってから、鋼材SMの表面に生成されるスケールSCの最表層のFe2O3の厚みが1.5[μm]になるまでの時間をそれぞれ導出した。その値が、図5に示すプロットである。尚、導出に用いた式は、非特許文献1に記載されているので、ここでは、その詳細な説明を省略する。また、ここでは、Fe2O3の厚みが、スケールSCの厚みの1[%]であると仮定した。
 デスケーリングを行ってからスケールSCの最表層に生成されるFe2O3の厚みが1.5[μm]になるまでの時間をtB[秒]とし、3次式で近似すると、以下の(1)式になる。ここで、Tsは、鋼材SMの温度[℃]である。
 tB=-2.978×10-5×Ts 3+1.069×10-1×Ts 2-1.281×102×Ts+5.128×104 ・・・(1)
 図4を参照しながら説明したように、Fe2O3の推定厚みが1.5[μm]以下であれば、前述したようにして、放射温度計20a、20bで検出する波長λと、放射温度計20a、20bに設定する分光放射率とを定めることにより、スケールSCの最表層にFe2O3が生成されているか否かを判定することができる(前述した(a3)~(c3)を参照)。そして、実際の熱間圧延工程では、デスケーリングが行われる時間間隔は、(1)式に示す時間tBよりも短い時間で行われることが多い。従って、前述したようにしてスケールSCの最表層にFe2O3が生成されているか否かを判定する手法を、熱間圧延ラインのうち、デスケーリングが行われる時間間隔が、(1)式に示す時間tBよりも短い箇所に適用することができる。
 ただし、仕上圧延機15よりも下流側を搬送中の鋼材SMにおいては、温度が低くなっていることと、連続圧延されることと、冷却水が吹き付けられることとから、スケールSCの最表層に生成されるFe2O3の厚みは厚くても0.1[μm]である。従って、仕上圧延機15よりも下流側においては、(1)式に示す時間tBとは無関係に、放射温度計20a、20bを配置する場所を決定することができる。
<スケール組成判定装置10>
 次に、スケール組成判定装置10の詳細の一例について説明する。スケール組成判定装置10のハードウェアは、例えば、CPU、ROM、RAM、HDD、および各種のインターフェースを備える情報処理装置、または、専用のハードウェアを用いることにより実現することができる。
 図6は、スケール組成判定装置10の動作の一例を説明するフローチャートである。図2および図6を参照しながら、スケール組成判定装置10の機能の一例を説明する。尚、図6のフローチャートは、放射温度計20a、20bにより鋼材SMの温度が測定される度に実行される。
 ステップS601において、温度取得部201は、放射温度計20a、20bで測定された鋼材SMの温度を取得する。
 次に、ステップS602において、判定部202は、ステップS601で取得された鋼材SMの温度の差の絶対値が所定の温度以上であるか否かを判定する。所定の温度は、図6のフローチャートの実行を開始する前に、スケール組成判定装置10に設定されている。また、前述したように、例えば、温度のばらつきが±10[℃]である場合、所定の値として20[℃]を採用することができる。
 この判定の結果、鋼材SMの温度の差の絶対値が所定の温度以上である場合には、スケールSCの最表層にFe2O3が生成されていると判断される(即ち、鋼材SMの表面に複層スケールが生成されていると判断される)。そこで、ステップS603において、出力部203は、スケールSCの最表層にFe2O3が生成されている(鋼材SMの表面に複層スケールが生成されている)ことを示す情報を出力する。そして、図6のフローチャートによる処理を終了する。
 一方、鋼材SMの温度の差の絶対値が所定の温度以上でない場合には、スケールSCの最表層にFe2O3が生成されていないと判断される(即ち、鋼材SMの表面に単層スケールが生成されていると判断される)。そこで、ステップS604において、出力部203は、スケールSCの最表層にFe2O3が生成されていない(鋼材SMの表面に単層スケールが生成されている)ことを示す情報を出力する。そして、図6のフローチャートによる処理を終了する。
 尚、出力部203による前記情報の出力形態としては、例えば、コンピュータディスプレイへの表示、外部装置への送信、およびスケール組成判定装置10の内部または外部の記憶媒体への記憶の少なくとも何れか1つを採用することができる。
 図7は、スケール組成判定装置10のハードウェアの構成の一例を示す図である。
 図7において、スケール組成判定装置10は、CPU701、主記憶装置702、補助記憶装置703、通信回路704、信号処理回路705、画像処理回路706、I/F回路707、ユーザインターフェース708、ディスプレイ709、およびバス710を有する。
 CPU701は、スケール組成判定装置10の全体を統括制御する。CPU701は、主記憶装置702をワークエリアとして用いて、補助記憶装置703に記憶されているプログラムを実行する。主記憶装置702は、データを一時的に格納する。補助記憶装置703は、CPU701によって実行されるプログラムの他、各種のデータを記憶する。補助記憶装置703は、前述した所定の温度等、図6に示したフローチャートの処理に必要な情報を記憶する。
 通信回路704は、スケール組成判定装置10の外部との通信を行うための回路である。
 信号処理回路705は、通信回路704で受信された信号や、CPU701による制御に従って入力した信号に対し、各種の信号処理を行う。温度取得部201は、例えば、CPU701、通信回路704、および信号処理回路705を用いることによりその機能を発揮する。また、判定部202は、例えば、CPU701および信号処理回路705を用いることによりその機能を発揮する。
 画像処理回路706は、CPU701による制御に従って入力した信号に対し、各種の画像処理を行う。この画像処理が行われた信号は、ディスプレイ709に出力される。
 ユーザインターフェース708は、オペレータがスケール組成判定装置10に対して指示を行う部分である。ユーザインターフェース708は、例えば、ボタン、スイッチ、およびダイヤル等を有する。また、ユーザインターフェース708は、ディスプレイ709を用いたグラフィカルユーザインターフェースを有していても良い。
 ディスプレイ709は、画像処理回路706から出力された信号に基づく画像を表示する。I/F回路707は、I/F回路707に接続される装置との間でデータのやり取りを行う。図7では、I/F回路707に接続される装置として、ユーザインターフェース708およびディスプレイ709を示す。しかしながら、I/F回路707に接続される装置は、これらに限定されない。例えば、可搬型の記憶媒体がI/F回路707に接続されても良い。また、ユーザインターフェース708の少なくとも一部およびディスプレイ709は、スケール組成判定装置10の外部にあっても良い。
 出力部203は、例えば、通信回路704および信号処理回路705と、画像処理回路706、I/F回路707、およびディスプレイ709との少なくとも何れか一方を用いることによりその機能を発揮する 。
 尚、CPU701、主記憶装置702、補助記憶装置703、信号処理回路705、画像処理回路706、およびI/F回路707は、バス710に接続される。これらの構成要素間の通信は、バス710を介して行われる。また、スケール組成判定装置10のハードウェアは、前述したスケール組成判定装置10の機能を実現することができれば、図7に示すものに限定されない。
 以上のように本実施形態では、スケール組成判定装置10は、放射温度計20a、20bにより測定された鋼材SMの温度の差の絶対値が所定の温度以上である場合に、スケールSCの最表層にFe2O3が生成されていると判定し、そうでない場合に、スケールSCの最表層にFe2O3が生成されていないと判定する。その際、放射温度計20a、20bによる測定に雰囲気中のガスの影響を受けない波長帯域の中から選択した波長λのそれぞれについて、ヘマタイト曲線を事前に求めておく。本実施形態では、ヘマタイト曲線は、FeOの分光放射率を設定した放射温度計で測定される鋼材SMの温度(Fe2O3の温度)と、Fe2O3の厚みとの関係を示す曲線である。そして、測定対象のFe2O3の厚みの上限値が、それらの曲線の交点でのFe2O3の厚み未満になるような波長λの組を求める。そして、放射温度計20a、20bで検出する波長λ、放射温度計20a、20bに設定する分光放射率を、それぞれ、求めた波長λ、当該波長λにおけるFeOの分光放射率とする。従って、2つの放射測温を行うことにより、操業中の鋼材SMの表面に生成されているスケールSCが単層スケールであるか複層スケールであるかをオンラインで正確に判別することができる。これにより、例えば、操業上の管理を迅速に且つ正確に行ったり、スケールSCの組成の判別結果を操業に迅速に且つ正確に反映させたりすることができる。
<変形例>
[変形例1]
 本実施形態では、2つの放射温度計20a、20bを用いる場合を例に挙げて説明した。しかしながら、2つの異なる波長で放射測温法による温度を測定するようにしていれば、必ずしもこのようにする必要はない。例えば、2色温度計における光学系の部分を用いて1台の放射温度計としても良い。具体的に説明すると、例えば、同一の受光レンズから入光した光をハーフミラーにより2つに分光する。そして、分光した光を、相互に異なる波長の光のみを通過する2つの波長選択フィルタの何れか一方に通す。この波長選択フィルタを通過した光について放射測温法により温度を測定する。このようにすれば、放射温度計の省スペース化を図ることができる。
[変形例2]
 本実施形態では、デスケーラ12bと、ワークロールとバックアップロールとを有する圧延スタンドのうち最上流に設けられた圧延スタンド14bとの間の領域に一組の放射温度計20a、20bを配置する場合を例に挙げて示した。しかしながら、熱間圧延工程の、最上流のデスケーラ12aよりも下流側の場所であれば(加熱炉11から抽出され、少なくとも1回のデスケーリングが行われた鋼板の温度を測定していれば)、放射温度計の組を配置する場所は、この場所に限定されない。例えば、デスケーラと、当該デスケーラに対し下流側において最も近い位置にある圧延スタンドとの間の場所に、放射温度計の組を配置することができる。また、このような場所の複数の位置に、放射温度計の組をそれぞれ配置しても良い(即ち、放射温度計の組を複数配置しても良い)。この場合、スケール組成判定装置10は、それぞれの放射温度計の組について、図6に示すフローチャートを行い、放射温度計の組が配置されるそれぞれの場所において、スケールSCの最表層にFe2O3が生成されているか否かを判定する。
[変形例3]
 本実施形態では、放射温度計20a、20bに設定する分光放射率として、放射温度計20a、20bで検出する波長λに応じたFeOの分光放射率を設定する場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。例えば、放射温度計20a、20bの分光放射率として、波長λに関わらず同じ値を設定しても良い(例えば、何れの波長λにおいても0.78にしたり、初期設定値にしたりしても良い)。このようにする場合、本来のFeOの分光放射率と異なる分光放射率が放射温度計20a、20bに設定される。従って、その分だけ、放射温度計20a、20bにより測定される温度も変化する。そこで、この温度の変化の分も考慮して、放射温度計20a、20bにより測定される温度の差の絶対値と比較する所定の値の大きさを決定する。
[変形例4]
 本実施形態では、スケール組成判定装置10を薄板の熱間圧延ラインに適用する場合を例に挙げて説明した。しかしながら、スケール組成判定装置10の適用先は薄板の熱間圧延ラインに限定されない。この場合、前述した(a1)~(c1)に規定する波長範囲の内容は、スケール組成判定装置10の適用先に応じた内容になる。また、Fe2O3の厚み等、前述した(a3)~(c3)に規定する内容も、スケール組成判定装置10の適用先に応じた内容になる。ただし、この場合でも、図4に示した曲線401、403のように、相互に異なる2つの波長λにおいて放射測温法により得られる鋼材SMの温度(Fe2O3の温度)と、Fe2O3の厚みとの関係を示す2つの曲線の交点でのFe2O3の厚みが、測定対象のFe2O3の厚みの上限値を上回るような2つの波長λを、放射温度計20a、20bで検出する波長λとする。スケール組成判定装置10の他の適用先としては、例えば、特許文献1に記載の加熱炉が挙げられる。
[変形例5]
 本実施形態では、放射温度計20a、20bで温度を測定する場合を例に挙げて説明した。しかしながら、必ずしも放射温度計20a、20bで温度まで求める必要はない。例えば、放射計により分光放射輝度を検出し、検出した分光放射輝度に基づいてスケール組成判定装置10で温度を測定(導出)しても良い。温度計に破損の虞がなければ、接触式の温度計を用いても良い。
(第2の実施形態)
 次に、第2の実施形態について説明する。第1の実施形態では、2つの放射温度計20a、20bを用いる場合を例に挙げて説明した。これに対し、本実施形態では、3つ以上の放射温度計を用いる場合について説明する。このように本実施形態と第1の実施形態とは、放射温度計の数が異なることと、放射温度計の数が異なることによるスケール組成判定装置10の処理の一部とが主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1~図7に付した符号と同一の符号を付す等して詳細な説明を省略する。
 図8は、スケール組成判定システムの構成の一例を示す図である。図8では、放射温度計20a、20b、20cの配置と、スケール組成判定装置10の機能的な構成の一例を示す。図8は、図2に対応する図である。
<放射温度計20a、20b、20c>
 まず、放射温度計20a、20b、20cの配置の一例について説明する。図8において、放射温度計20a、20b、20cの軸(受光レンズの光軸)の、鋼材SM(の表面)の通過位置との交点が略一致するように、放射温度計20a、20b、20cを配置する。尚、図8では、鋼材SMの搬送方向に放射温度計20a、20b、20cを並べる場合を例に挙げて示す。しかしながら、放射温度計20a、20b、20cの軸(受光レンズの光軸)の、鋼材SM(の表面)の通過位置との交点が略一致するようにしていれば、放射温度計20a、20b、20cをこのように配置する必要はない。例えば、鋼材SMの幅方向に放射温度計20a、20b、20cを並べても良い。
 次に、放射温度計20a、20b、20cにおいて検出する波長の一例について説明する。
 放射温度計20aは、第1の実施形態で説明した(a1)の波長帯域の中から選択された波長λを測定対象の波長とする放射温度計である。放射温度計20bは、第1の実施形態で説明した(b1)の波長帯域の中から選択された波長λを測定対象の波長とする放射温度計である。放射温度計20cは、第1の実施形態で説明した(c1)の波長帯域の中から選択された波長λを測定対象の波長とする放射温度計である。
 また、波長λに応じたFeOの分光放射率εwを放射温度計20a、20b、20cに設定する。
 以上のような放射温度計20a、20b、20cを用いることにより、表面に複層スケールを有する鋼材SMの温度と、当該複層スケールの最表層のFe2O3の厚みとの関係の一例として、図4のヘマタイト曲線401、402、403を得ることができる。
 図4に示す例では、複層スケールの最表層のFe2O3の厚みが1.5[μm]以下であれば、曲線401、402、403の全てが交わる交点は存在しない。従って、放射温度計20a、20b、20cにより測定される温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度に差が生じる。よって、放射温度計20a、20b、20cにより測定される温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度に差がある場合に、スケールSCの最表層にFe2O3があると判定でき、全ての組み合わせにおいて差がない場合に、Fe2O3がないと判定できる。このようにすれば、判定対象のFe2O3の推定厚みの範囲を拡大することができる。また、Fe2O3の推定厚みによって、放射温度計を取り替える必要がなくなる。
 ただし、第1の実施形態で説明したように、実際の放射温度計では、測定にばらつきが生じる(公差等がある)。従って、放射温度計20a、20b、20cにより測定される温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度の差の絶対値が所定の値以上であれば、鋼材SMの表面に生成されているスケールSMの最表層にFe2O3が生成されていると判定し、そうでなければ、Fe2O3が生成されていないと判定するのが好ましい。例えば、温度のばらつきが±10[℃]である場合、所定の値として20[℃]を採用することができる。
 また、放射温度計20a、20b、20cを配置する箇所は、第1の実施形態で説明した箇所と同じである。
<スケール組成判定装置10>
 スケール組成判定装置10の構成は、第1の実施形態のスケール組成判定装置10と同じである。図6のフローチャートを参照しながら、本実施形態のスケール組成判定装置10の機能の一例を説明する。尚、図6のフローチャートは、放射温度計20a、20b、20cにより鋼材SMの温度が測定される度に実行される。
 ステップS601において、温度取得部201は、放射温度計20a、20b、20cで測定された鋼材SMの温度を取得する。
 次に、ステップS602において、判定部202は、ステップS601で取得された鋼材SMの温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度の差の絶対値が所定の温度以上であるか否かを判定する。
 この判定の結果、ステップS601で取得された鋼材SMの温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度の差の絶対値が所定の温度以上である場合には、スケールSCの最表層にFe2O3が生成されていると判断される(即ち、鋼材SMの表面に複層スケールが生成されていると判断される)。そこで、ステップS603において、出力部203は、スケールSCの最表層にFe2O3が生成されている(鋼材SMの表面に複層スケールが生成されている)ことを示す情報を出力する。そして、図6のフローチャートによる処理を終了する。
 一方、ステップS601で取得された鋼材SMの温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度の差の絶対値が所定の温度以上でない場合には、スケールSCの最表層にFe2O3が生成されていないと判断される(即ち、鋼材SMの表面に単層スケールが生成されていると判断される)。そこで、ステップS604において、出力部203は、スケールSCの最表層にFe2O3が生成されていない(鋼材SMの表面に単層スケールが生成されている)ことを示す情報を出力する。そして、図6のフローチャートによる処理を終了する。
 図4に示す例では、曲線401、402、403の全てが交わる交点は存在しない。しかしながら、例えば、スケール組成判定装置10の適用先によっては、鋼材SMの温度と、当該複層スケールの最表層のFe2O3の厚みとの関係を示す3つの曲線が交わる交点が生じ得る。従って、第1の実施形態と同様に、このような交点が生じないことを事前に確認する。具体的には、以下のようにする。
 (a1)の波長帯域の中から選択した波長λを放射温度計20aにおける測定波長とする。また、この波長λに応じたFeOの分光放射率を放射温度計20aに設定する。(b1)の波長帯域の中から選択した波長λを放射温度計20bにおける測定波長とする。また、この波長λに応じたFeOの分光放射率を放射温度計20bに設定する。(c1)の波長帯域の中から選択した波長λを放射温度計20cにおける測定波長とする。また、この波長λに応じたFeOの分光放射率を放射温度計20cに設定する。
 以上の放射温度計20a、20b、20cで測定される鋼材SMの温度(Fe2O3の温度)と、Fe2O3の推定厚みとの関係を示すヘマタイト曲線をそれぞれ作成する。そして、Fe2O3の推定厚みの範囲内で、3つのヘマタイト曲線が交わる交点があるか否かを判定する。3つのヘマタイト曲線が交わる交点がある場合には、放射温度計20a、20b、20cにおける測定波長の少なくとも1つを変更する。そして、前述したのと同様に、Fe2O3の推定厚みの範囲内で、3つのヘマタイト曲線が交わる交点があるか否かを判定する。以上の工程を、Fe2O3の推定厚みの範囲内で、3つのヘマタイト曲線が交わる交点がなくなるまで行う。そして、Fe2O3の推定厚みの範囲内で、3つのヘマタイト曲線が交わる交点がない場合、当該3つのヘマタイト曲線を作成した際の放射温度計20a、20b、20cの測定波長を採用する。
 以上のように本実施形態では、スケール組成判定装置10は、放射温度計20a、20b、20cにより測定された鋼材SMの温度のうちの2つの温度の複数の組み合わせのうち、少なくとも1つの組み合わせにおける温度の差の絶対値が所定の温度以上である場合に、スケールSCの最表層にFe2O3が生成されていると判定し、そうでない場合に、スケールSCの最表層にFe2O3が生成されていないと判定する。従って、第1の実施形態で説明した効果に加え、以下の効果が得られる。即ち、判定対象のFe2O3の推定厚みの範囲を拡大することができる。また、想定されるFe2O3の推定厚みによって、放射温度計を取り替える必要がなくなる。
 第1の実施形態では、放射温度計の数は2つである。これに対し、本実施形態では、放射温度計の数は3つである。このため、第1の実施形態の方が、第2の実施形態よりも、システムを安価に構成することができる。また、第1の実施形態の方が、第2の実施形態よりも、放射温度計の設置スペースをコンパクトにすることができる。一方、第2の実施形態では、想定されるFe2O3の推定厚みが変更される場合でも、スケールSCの最表層にFe2O3があるか否かを確実に判定することができる。例えば、以上の点を考慮して、第1の実施形態および第2の実施形態のうちの何れの形態を採用するのかを決定することができる。
<変形例>
[変形例6]
 本実施形態では、放射温度計で検出する波長λの数が3つの場合を例に挙げて説明した。しかしながら、放射温度計で検出する波長λの数は、3つ以上であればよい。例えば、第1の実施形態で説明した(a1)、(b1)、および(c1)の波長帯域のうち、2つ以上の波長帯域の中から、放射温度計で検出する波長λを選択しても良い。ただし、このとき、合計3つ以上の波長を選択する。このように、(a1)、(b1)、および(c1)の波長帯域の全てから波長λを選択しなくても良い。
 また、放射温度計で検出する波長λの数が2つの場合でも、本実施形態の手法を採用することができる。この場合、2つの放射温度計で測定される鋼材SMの温度(Fe2O3の温度)と、Fe2O3の厚みとの関係を示す2つの曲線の全てが交わる交点が存在しないように、2つの放射温度計で検出する波長λを選択する。図4に示す例では、ヘマタイト曲線401、403を選択することが、このことに対応する。例えば、(a1)、(b1)、および(c1)の波長帯域のうち、2つの波長帯域の中から、放射温度計で検出する波長λとして、合計2つの波長を選択しても良い。
 以上のことから、(a1)、(b1)、および(c1)の波長帯域を用いる場合、放射温度計で検出する波長λは、(a1)、(b1)、および(c1)の波長帯域のうち、2つ以上の波長帯域の波長になる。
 以上のことを一般化すると、Fe2O3の推定厚みの範囲内で、N個の放射温度計で測定される鋼材SMの温度(Fe2O3の温度)と、Fe2O3の厚みとの関係を示すN個のヘマタイト曲線の全てが交わる交点が存在しないように、N個の放射温度計で検出する波長λを選択する。
 具体的には、N個の波長を、第1の波長~第Nの波長とし、これら第1の波長~第Nの波長から1つずつ選択された波長を第nの波長とする(第nの波長として、第1の波長~第Nの波長を1つずつ順番に選択する)。そうすると、第nの波長における前記ヘマタイト曲線は、ヘマタイトの厚みと、分光放射率がウスタイト(FeO)の分光放射率であるとして当該第nの波長において放射測温法により得られるヘマタイトの温度との関係を示す曲線になる。ここで、第1の波長~第Nの波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、第1の波長~第Nの波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められる。そして、分光放射率を当該第nの波長におけるウスタイトの分光放射率として当該第nの波長における前記鋼材の温度を放射測温法により測定する。このような測定を第1の波長~第Nの波長のそれぞれについて行う。
 以上の説明において、Nは、3以上の整数であるのが好ましいが、2以上の整数でも良い。
[変形例7]
 本実施形態でも、第1の実施形態で説明した変形例を採用することができる。
[その他の変形例]
 尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
 また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本発明は、鋼材を製造すること等に利用できる。

Claims (17)

  1.  鋼材の表面に生成されるスケールの組成を判定するスケール組成判定システムであって、
     相互に異なる2つの波長における前記鋼材の温度を放射測温法により測定する測定手段と、
     前記測定手段により測定された前記鋼材の温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定手段と、を有し、
     前記2つの波長のうち第1の波長におけるヘマタイト曲線と、第2の波長における前記ヘマタイト曲線との交点におけるヘマタイトの厚みが、前記スケールの最表層に生成されるヘマタイトの厚みとして想定される厚みの上限値を上回るように定められており、
     前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であることを特徴とするスケール組成判定システム。
  2.  前記第1の波長における前記ヘマタイト曲線は、ヘマタイトの厚みと、分光放射率がウスタイト(FeO)の分光放射率であるとして前記第1の波長において放射測温法により得られるヘマタイトの温度との関係を示す曲線であり、
     前記第2の波長における前記ヘマタイト曲線は、ヘマタイトの厚みと、分光放射率がウスタイト(FeO)の分光放射率であるとして前記第2の波長において放射測温法により得られるヘマタイトの温度との関係を示す曲線であり、
     前記測定手段は、分光放射率を前記第1の波長におけるウスタイトの分光放射率として前記第1の波長における前記鋼材の温度を放射測温法により測定することと、分光放射率を前記第2の波長におけるウスタイトの分光放射率として前記第2の波長における前記鋼材の温度を放射測温法により測定することとを行うことを特徴とする請求項1に記載のスケール組成判定システム。
  3.  前記判定手段は、前記測定手段により測定された前記鋼材の温度の差の絶対値が所定の値以上である場合に、前記スケールの最表層にヘマタイトが生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイトが生成されていないと判定することを特徴とする請求項1または2に記載のスケール組成判定システム。
  4.  前記温度の測定対象である前記鋼材は、熱間圧延工程における加熱炉で抽出され、且つ、少なくとも1回のデスケーリングが行われた後の鋼材であることを特徴とする請求項1~3の何れか1項に記載のスケール組成判定システム。
  5.  前記2つの波長は、0.6[μm]~1.6[μm]の範囲内の波長と、3.3[μm]~5.0[μm]の範囲内の波長と、8.0[μm]~14.0[μm]の範囲内の波長の何れか2つであることを特徴とする請求項4に記載のスケール組成判定システム。
  6.  前記測定手段は、受光レンズと、前記受光レンズを介して入光した光を2つに分光する分光手段と、前記分光手段により分光された光から前記2つの波長の光を抽出する抽出手段と、を有し、前記抽出手段により抽出された前記2つの波長における前記鋼材の温度を放射測温法により測定することを特徴とする請求項1~5の何れか1項に記載のスケール組成判定システム。
  7.  鋼材の表面に生成されるスケールの組成を判定するスケール組成判定システムであって、
     相互に異なるN個の波長における前記鋼材の温度を放射測温法により測定する測定手段と、
     前記測定手段により測定された前記鋼材の温度のうちの2つの温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定手段と、を有し、
     前記N個の波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記N個の波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められており、
     前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であり、
     前記Nは、3以上の整数であることを特徴とするスケール組成判定システム。
  8.  前記N個の波長は、第1の波長~第Nの波長であり、
     前記第1の波長~第Nの波長から1つずつ選択された波長を第nの波長とし、
     前記第nの波長における前記ヘマタイト曲線は、ヘマタイトの厚みと、分光放射率がウスタイト(FeO)の分光放射率であるとして前記第nの波長において放射測温法により得られるヘマタイトの温度との関係を示す曲線であり、
     前記測定手段は、分光放射率を前記第nの波長におけるウスタイトの分光放射率として前記第nの波長における前記鋼材の温度を放射測温法により測定し、
     前記第1の波長~第Nの波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記第1の波長~第Nの波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められていることを特徴とする請求項7に記載のスケール組成判定システム。
  9.  前記判定手段は、前記測定手段により測定された前記鋼材の温度のうちの2つの温度の組み合わせのうち、少なくとも1つの組み合わせにおける温度の差の絶対値が所定の値以上である場合に、前記スケールの最表層にヘマタイトが生成されていると判定し、そうでない場合に、前記スケールの最表層にヘマタイトが生成されていないと判定することを特徴とする請求項7または8に記載のスケール組成判定システム。
  10.  前記温度の測定対象である前記鋼材は、熱間圧延工程における加熱炉で抽出され、且つ、少なくとも1回のデスケーリングが行われた後の鋼材であることを特徴とする請求項7~9の何れか1項に記載のスケール組成判定システム。
  11.  前記N個の波長は、0.6[μm]~1.6[μm]の範囲内の波長と、3.3[μm]~5.0[μm]の範囲内の波長と、8.0[μm]~14.0[μm]の範囲内の波長とのうち、何れか2つ以上の範囲内の波長であることを特徴とする請求項10に記載のスケール組成判定システム。
  12.  前記測定手段は、受光レンズと、前記受光レンズを介して入光した光をN個に分光する分光手段と、前記分光手段により分光された光から前記N個の波長の光を抽出する抽出手段と、を有し、前記抽出手段により抽出された前記N個の波長における前記鋼材の温度を放射測温法により測定することを特徴とする請求項7~11の何れか1項に記載のスケール組成判定システム。
  13.  前記Nは、3以上の整数であることを特徴とする請求項7~12の何れか1項に記載のスケール組成判定システム。
  14.  鋼材の表面に生成されるスケールの組成を判定するスケール組成判定方法であって、
     相互に異なる2つの波長における前記鋼材の温度を放射測温法により測定する測定工程と、
     前記測定工程により測定された前記鋼材の温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、を有し、
     前記2つの波長のうち第1の波長におけるヘマタイト曲線と、第2の波長における前記ヘマタイト曲線との交点におけるヘマタイトの厚みが、前記スケールの最表層に生成されるヘマタイトの厚みとして想定される厚みの上限値を上回るように定められており、
     前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であることを特徴とするスケール組成判定方法。
  15.  鋼材の表面に生成されるスケールの組成を判定するスケール組成判定方法であって、
     相互に異なるN個の波長における前記鋼材の温度を放射測温法により測定する測定工程と、
     前記測定工程により測定された前記鋼材の温度のうちの2つの温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、を有し、
     前記N個の波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記N個の波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められており、
     前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であり、
     前記Nは、3以上の整数であることを特徴とするスケール組成判定方法。
  16.  鋼材の表面に生成されるスケールの組成を判定することをコンピュータに実行させるためのプログラムであって、
     放射測温法により測定された、相互に異なる2つの波長における前記鋼材の温度を取得する取得工程と、
     前記取得工程により取得された前記鋼材の温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、をコンピュータに実行させ、
     前記2つの波長のうち第1の波長におけるヘマタイト曲線と、第2の波長における前記ヘマタイト曲線との交点におけるヘマタイトの厚みが、前記スケールの最表層に生成されるヘマタイトの厚みとして想定される厚みの上限値を上回るように定められており、
     前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であることを特徴とするプログラム。
  17.  鋼材の表面に生成されるスケールの組成を判定することをコンピュータに実行させるためのプログラムであって、
     放射測温法により測定された、相互に異なるN個の波長における前記鋼材の温度を取得する取得工程と、
     前記取得工程により取得された前記鋼材の温度のうちの2つの温度の差に基づいて、前記スケールの最表層にヘマタイト(Fe2O3)が生成されているか否かを判定する判定工程と、をコンピュータに実行させ、
     前記N個の波長は、想定されるヘマタイト(Fe2O3)の厚みの範囲内で、前記N個の波長におけるヘマタイト曲線の全てが交わる交点が存在しないように定められており、
     前記ヘマタイト曲線は、ヘマタイトの厚みとヘマタイトの温度との関係を示す曲線であり、
     前記Nは、3以上の整数であることを特徴とするプログラム。
PCT/JP2018/016868 2017-04-25 2018-04-25 スケール組成判定システム、スケール組成判定方法、およびプログラム WO2018199188A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112019019166-6A BR112019019166B1 (pt) 2017-04-25 2018-04-25 Sistema de determinação de composição de carepa, método de determinação de composição de carepa, e meio de armazenamento legível por computador para determinação de composição de carepa
EP18790375.2A EP3616802B1 (en) 2017-04-25 2018-04-25 Scale composition determination system, scale composition determination method, and program
CA3057055A CA3057055C (en) 2017-04-25 2018-04-25 Scale composition determination system, scale composition determination method, and program
US16/499,812 US11029212B2 (en) 2017-04-25 2018-04-25 Scale composition determination system, scale composition determination method, and program
JP2018542800A JP6477984B1 (ja) 2017-04-25 2018-04-25 スケール組成判定システム、スケール組成判定方法、およびプログラム
CN201880020984.6A CN110536760B (zh) 2017-04-25 2018-04-25 氧化皮组成判定系统、氧化皮组成判定方法以及程序
KR1020197025561A KR102286817B1 (ko) 2017-04-25 2018-04-25 스케일 조성 판정 시스템, 스케일 조성 판정 방법, 및 프로그램
US17/243,875 US11454542B2 (en) 2017-04-25 2021-04-29 Scale composition determination system, scale composition determination method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-086161 2017-04-25
JP2017086161 2017-04-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/499,812 A-371-Of-International US11029212B2 (en) 2017-04-25 2018-04-25 Scale composition determination system, scale composition determination method, and program
US17/243,875 Division US11454542B2 (en) 2017-04-25 2021-04-29 Scale composition determination system, scale composition determination method, and program

Publications (1)

Publication Number Publication Date
WO2018199188A1 true WO2018199188A1 (ja) 2018-11-01

Family

ID=63918423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016868 WO2018199188A1 (ja) 2017-04-25 2018-04-25 スケール組成判定システム、スケール組成判定方法、およびプログラム

Country Status (9)

Country Link
US (2) US11029212B2 (ja)
EP (1) EP3616802B1 (ja)
JP (1) JP6477984B1 (ja)
KR (1) KR102286817B1 (ja)
CN (1) CN110536760B (ja)
BR (1) BR112019019166B1 (ja)
CA (1) CA3057055C (ja)
TW (1) TWI665432B (ja)
WO (1) WO2018199188A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617693B1 (en) * 2017-04-25 2021-11-24 Nippon Steel Corporation Scale composition determining system, scale composition determining method, and computer program
TWI728743B (zh) * 2020-03-12 2021-05-21 中國鋼鐵股份有限公司 高爐內壁結塊之監視方法
CN111678478B (zh) * 2020-05-11 2022-05-17 首钢集团有限公司 一种高强钢镀锌产线氧化膜厚度检测方法
CN113848233B (zh) * 2020-06-28 2023-11-14 宝山钢铁股份有限公司 熔态铸余渣氧化性测定装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235840A (en) * 1991-12-23 1993-08-17 Hot Rolling Consultants, Ltd. Process to control scale growth and minimize roll wear
JPH10282020A (ja) * 1997-04-02 1998-10-23 Kawasaki Steel Corp 鋼板の酸化スケールの組成・厚さの測定方法とその装置
JPH11325839A (ja) * 1998-05-13 1999-11-26 Kawasaki Steel Corp 鋼板表面の酸化膜厚測定方法及び装置
JP2012093177A (ja) 2010-10-26 2012-05-17 Nippon Steel Corp 炉内における鋼材の表面温度測定方法および表面温度測定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002164A1 (en) * 1984-10-05 1986-04-10 Kawasaki Steel Corporation Method of determining thickness and composition of alloy film
US5314249A (en) * 1991-11-19 1994-05-24 Kawasaki Steel Corporation Surface condition measurement apparatus
JPH05142051A (ja) * 1991-11-19 1993-06-08 Kawasaki Steel Corp 2色多重式放射温度計
JPH0777465A (ja) * 1993-09-08 1995-03-20 Sumitomo Metal Ind Ltd 表層部平均温度および厚さ方向温度分布測定方法
JPH07270130A (ja) 1994-03-31 1995-10-20 Nippon Steel Corp 酸化膜厚さ測定方法
JPH0933464A (ja) 1995-07-21 1997-02-07 Kawasaki Steel Corp 鋼板の表面スケール測定方法及び材質測定方法
WO2003073055A1 (fr) * 2002-02-28 2003-09-04 Shin-Etsu Handotai Co., Ltd. Systeme de mesure de la temperature, dispositif de chauffage utilisant le systeme, procede de production d'une plaquette a semi-conducteurs, element translucide de protection contre les rayons calorifiques, element reflechissant la lumiere visible, miroir reflechissant utilisant un systeme d'exposition, dispositif a semi-co
JP2007010476A (ja) * 2005-06-30 2007-01-18 Jfe Steel Kk 鋼板温度計測方法及び装置
JP2008233020A (ja) * 2007-03-23 2008-10-02 Nippon Steel Corp 表面温度測定システム、加熱炉、表面温度測定方法、及びコンピュータプログラム
CN201072410Y (zh) * 2007-08-17 2008-06-11 南京钢铁股份有限公司 板坯炉生氧化皮在线监测装置
JP4846741B2 (ja) * 2008-02-06 2011-12-28 新日本製鐵株式会社 酸化膜厚測定方法及び酸化膜厚測定装置
CN101879530B (zh) * 2010-06-25 2013-03-13 东北大学 热连轧带钢表面氧化铁皮厚度软测量方法
JP5777881B2 (ja) * 2010-12-31 2015-09-09 株式会社Sumco シリカガラスルツボの製造方法
CN103028608A (zh) * 2011-09-30 2013-04-10 鞍钢股份有限公司 一种热轧带钢表面氧化铁皮组分和厚度控制方法
RU2593923C1 (ru) * 2012-08-22 2016-08-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Устройство измерения температуры поверхности и способ измерения температуры поверхности

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235840A (en) * 1991-12-23 1993-08-17 Hot Rolling Consultants, Ltd. Process to control scale growth and minimize roll wear
JPH10282020A (ja) * 1997-04-02 1998-10-23 Kawasaki Steel Corp 鋼板の酸化スケールの組成・厚さの測定方法とその装置
JPH11325839A (ja) * 1998-05-13 1999-11-26 Kawasaki Steel Corp 鋼板表面の酸化膜厚測定方法及び装置
JP2012093177A (ja) 2010-10-26 2012-05-17 Nippon Steel Corp 炉内における鋼材の表面温度測定方法および表面温度測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"High Temperature Oxidation of Metals", 2013, UCHIDA ROKAKUHO PUBLISHING CO., LTD., pages: 32 - 34
See also references of EP3616802A4

Also Published As

Publication number Publication date
BR112019019166B1 (pt) 2023-10-24
JPWO2018199188A1 (ja) 2019-06-27
JP6477984B1 (ja) 2019-03-06
TWI665432B (zh) 2019-07-11
CN110536760B (zh) 2021-10-01
EP3616802A1 (en) 2020-03-04
CN110536760A (zh) 2019-12-03
US20210247235A1 (en) 2021-08-12
US11029212B2 (en) 2021-06-08
TW201842311A (zh) 2018-12-01
CA3057055C (en) 2021-11-16
BR112019019166A2 (pt) 2020-04-14
KR20190113883A (ko) 2019-10-08
CA3057055A1 (en) 2018-11-01
KR102286817B1 (ko) 2021-08-09
EP3616802B1 (en) 2021-12-29
EP3616802A4 (en) 2021-01-27
US11454542B2 (en) 2022-09-27
US20200103285A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US11454542B2 (en) Scale composition determination system, scale composition determination method, and program
JP6424998B1 (ja) スケール組成判定システム、スケール組成判定方法、およびプログラム
JPH0285730A (ja) 表面状態が変化する物体に対する放射測温法及び放射測温装置
JP2018505783A (ja) 冶金設備の開ループ制御及び/又は閉ループ制御をするための方法
JP2786386B2 (ja) 熱延鋼材の冷却制御方法および冷却制御装置
JP6493315B2 (ja) 圧下レベリング制御装置および圧下レベリング制御方法
JP7328548B2 (ja) 測温システム及び測温方法
JPH1068705A (ja) 鋼材の変態率測定方法および装置
JPH07270130A (ja) 酸化膜厚さ測定方法
Haapamäki et al. Data Mining Methods in Hot Steel Rolling for Scale Defect Prediction.
BR112019016687B1 (pt) Sistema e método de determinação de composição de incrustação, e meio de armazenamento legível por computador
CN112828053B (zh) 一种冷却后带钢全长板形的检测方法
JP4597006B2 (ja) 圧延材の探傷方法
JPH03258407A (ja) ホットストリップミルの設定方法および装置
JPH04143016A (ja) 圧延方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542800

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025561

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3057055

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019166

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018790375

Country of ref document: EP

Effective date: 20191125

ENP Entry into the national phase

Ref document number: 112019019166

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190916

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载