+

WO2018198794A1 - Sealant film and packaging material - Google Patents

Sealant film and packaging material Download PDF

Info

Publication number
WO2018198794A1
WO2018198794A1 PCT/JP2018/015358 JP2018015358W WO2018198794A1 WO 2018198794 A1 WO2018198794 A1 WO 2018198794A1 JP 2018015358 W JP2018015358 W JP 2018015358W WO 2018198794 A1 WO2018198794 A1 WO 2018198794A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
sealant film
layer
intermediate layer
film
Prior art date
Application number
PCT/JP2018/015358
Other languages
French (fr)
Japanese (ja)
Inventor
桂輔 浜崎
達彦 薄井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018545398A priority Critical patent/JP6424997B1/en
Priority to KR1020197022725A priority patent/KR102654522B1/en
Publication of WO2018198794A1 publication Critical patent/WO2018198794A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • B29C48/495Feedblocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1084Laminates

Definitions

  • the present invention relates to a sealant film used for retort packaging that can be sterilized and cooked by heating or pressurization in a state where food or the like is packaged, and a packaging material using the sealant film.
  • Retort food can be distributed at room temperature, and is easy to handle and easy to handle in distribution, and is expected to expand into areas where cold chain development is insufficient.
  • a film for retort having easy tearability for example, a propylene film in which a resin in which a low crystalline ethylene elastomer is blended with a propylene-ethylene block copolymer is used and the birefringence is controlled within a specific range is disclosed. (See Patent Document 1).
  • a packaging material having easy cutability a cyclic olefin-based resin and a linear low-density polyethylene resin are contained as a packaging material used for a soft bag filled with a chemical solution such as physiological saline or an electrolytic solution.
  • a packaging material having an intermediate layer and an inner layer and an outer layer of a linear low-density polyethylene resin is disclosed (see Patent Document 2).
  • the propylene-based film that promotes the above birefringence has a reduction in tear strength due to the improved rigidity of the film, but the direction of tearing is not sufficiently controlled, and the straight cut ability to tear straight There was a need for improvement.
  • packaging materials using an ethylene-propylene copolymer as a sealant for heavy loads for business use or distribution in cold regions, etc. are not sufficient in impact resistance and may cause bag breakage accidents.
  • the packaging material used for the above-mentioned soft bag has easy-cutting properties and straight-cutting properties, it has been desired to further improve the cutting properties when applied to retort applications.
  • the problem to be solved by the present invention is to provide a sealant film and a packaging material having suitable bag breaking resistance and excellent in easy tearability and straight cut ability.
  • this invention makes it a subject to provide the sealant film which has suitable sealing performance. Furthermore, in the present invention, in addition to the above-described problems, it is an object to provide a sealant film that does not cause inner surface fusion or appearance unevenness of a packaging material during high-temperature processing.
  • the present invention comprises a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated, the outer layer (A) and the inner layer (C) contain a polyethylene resin, and the intermediate layer (B) Contains linear low density polyethylene (b1) and cyclic olefin resin (b2), and the content of the cyclic olefin resin (b2) in the resin component contained in the intermediate layer (B) is 20
  • a sealant film having a normalized molecular orientation MORc value of 1.025 or more when the reference thickness measured by a microwave molecular orientation meter is 60 ⁇ m and is 40 mass%. is there.
  • the present invention is a method for producing a sealant film comprising a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated by a coextrusion inflation method, wherein the outer layer (A)
  • the outer layer resin to be formed and the inner layer resin to form the inner layer (C) contain a polyethylene resin
  • the intermediate layer resin to form the intermediate layer (B) is linear low density polyethylene (b1) and cyclic
  • the olefin resin (b2) is contained, and the content of the cyclic olefin resin (b2) in the resin component contained in the intermediate layer resin is 20 to 40% by mass, and 1.0 to 2.3.
  • the above-described problems are solved by a method for producing a sealant film which is co-extrusion blow molded at a blow ratio of 20 to 60 and a drawdown ratio of 20 to 60.
  • the packaging bag using the sealant film of the present invention is spilled from the contents at the time of opening or after opening has started to occur. And scattering is difficult to occur.
  • it is possible to cut with simple and suitable straightness.
  • it can implement
  • the sealant film of the present invention easily realizes a packaging material that does not cause inner surface fusion or appearance irregularity during high-temperature treatment such as retort sterilization treatment while achieving suitable tearability.
  • the sealant film of the present invention can be suitably applied to high-temperature processing packaging materials such as retort food packaging materials that require high-temperature sterilization.
  • the sealant film of the present invention is suitable for these packaging materials because it can easily achieve suitable sealing properties.
  • the sealant film of the present invention comprises a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated in order, and the outer layer (A) and the inner layer (C) contain a polyethylene resin,
  • the intermediate layer (B) between the outer layer (A) and the inner layer (C) contains the linear low density polyethylene (b1) and the cyclic olefin resin (b2), and the resin component contained in the intermediate layer (B)
  • the content of the cyclic olefin resin (b2) in the sealant film is 20 to 40% by mass.
  • the normalized molecular orientation MORc value is 1.025 or more when the reference thickness measured by the microwave molecular orientation meter is 60 ⁇ m.
  • the outer layer (A) of the sealant film of the present invention contains a polyethylene resin.
  • the polyethylene resin include very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), linear medium density polyethylene (LMDPE), and medium density polyethylene (MDPE).
  • Polyethylene resin ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene Ethylene copolymers such as ethyl acrylate-maleic anhydride copolymer (E-EA-MAH), ethylene-acrylic acid copolymer (EAA), ethylene-methacrylic acid copolymer (EMAA); -Acrylic acid copolymer ionomer, ethylene Ionomers of acrylic acid copolymer can be exemplified.
  • EVA ethylene-vinyl acetate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • E-EA-MAH eth
  • polyethylene resins may be used alone or in combination of two or more.
  • ultra-low density polyethylene, linear low density polyethylene, low density polyethylene, linear medium density polyethylene can be preferably used, and linear low density polyethylene is particularly preferable.
  • HDPE high density polyethylene
  • linear low density polyethylene an ethylene monomer is a main component by a low-pressure radical polymerization method using a single site catalyst, and butene-1, hexene-1, octene-1, 4-methylpentene, etc. are used as comonomers.
  • the ⁇ -olefin was copolymerized.
  • the comonomer content in LLDPE is preferably in the range of 0.5 to 20 mol%, more preferably in the range of 1 to 18 mol%.
  • the single site catalyst examples include various single site catalysts such as a metallocene catalyst system such as a combination of a metallocene compound of Group IV or V transition metal of the periodic table and an organoaluminum compound and / or an ionic compound.
  • the single-site catalyst has a uniform active site, so the molecular weight distribution of the resulting resin is sharper than a multi-site catalyst with a non-uniform active site. This is preferable because a resin having physical properties excellent in stability of seal strength and impact resistance can be obtained.
  • the polyethylene resin is preferably contained in an amount of 60% by mass or more with respect to the total amount of the resin components forming the layer, and 80% by mass or more. It is more preferable to contain, and it is further more preferable to contain 90 mass% or more. Among them, it contains only a polyethylene resin as a resin component, and preferably 60% by mass or more in the resin component is a linear low density polyethylene, more preferably 80% by mass or more, and 90% by mass or more. More preferably.
  • other resins of the above polyethylene resin may be used in combination as long as the effects of the present invention are not impaired.
  • examples of other resin types that can be used in combination include polyolefin resins other than the above polyethylene resins, and include propylene homopolymers, propylene-ethylene copolymers, propylene-butene-1 copolymers, propylene-ethylene- Examples include polypropylene resins such as butene-1 copolymer and metallocene catalyst polypropylene.
  • the lower limit is not particularly limited, but may be appropriately used at a content of 1% by mass or more according to desired properties.
  • the average density of the resin component used in the layer is preferably 0.940 g / cm 3 or more, more preferably 0.940 to 0.945 g / cm 3 layer.
  • the density of each resin used in the outer layer (A) is not particularly limited as long as the average density of the resin components used is within the above range, but in the polyethylene resin, it is preferably 0.880 g / cm 3 or more, It is more preferably 0.920 g / cm 3 or more, particularly preferably 0.940 to 0.950 g / cm 3 . In addition, it is preferable to use other resins having 0.920 g / cm 3 or more.
  • the MFR of the resin component used for the outer layer (A) is 0.1 to 20 g / 10 minutes (190 ° C., 21.18 N), preferably 0.3 to 10 g / 10 minutes (190 ° C., 21.18 N), 0.5 to 5 g / 10 min (190 ° C., 21.18 N) is preferable. MFR within this range is preferable in that good film formability can be obtained in various multilayer film forming methods.
  • the intermediate layer (B) of the sealant film of the present invention contains linear low density polyethylene (b1).
  • the density of the linear low density polyethylene (b1) is preferably 0.937 g / cm 3 or more, more preferably 0.940 g / cm 3 or more, and even more preferably 0, because it is particularly preferable to suppress unevenness in appearance. 940 to 0.945 g / cm 3 . It is preferable that the average density of the resin component in the layer of the intermediate layer (B) is 0.940 g / cm 3 or more, and more preferably a layer of 0.940 ⁇ 0.945g / cm 3.
  • the MFR of the linear low density polyethylene (b1) is 0.1 to 20 g / 10 min (190 ° C., 21.18 N), preferably 0.3 to 10 g / 10 min (190 ° C., 21.18 N), and more 0.5 to 5 g / 10 min (190 ° C., 21.18 N) is preferable.
  • the compatibility with the cyclic olefin-based resin (b2) is excellent, and preferable film forming properties can be obtained in various multilayer film forming methods.
  • the content of the linear low density polyethylene (b1) in the intermediate layer (B) is easy to obtain suitable impact resistance and heat resistance during high-temperature treatment. It is preferably 60 to 80% by mass, and more preferably 65 to 75% by mass.
  • the intermediate layer (B) of the sealant film of the present invention contains the cyclic olefin resin (b2), so that excellent easy tearability and straight cut ability can be realized.
  • the cyclic olefin-based resin (b2) include norbornene-based polymers, vinyl alicyclic hydrocarbon polymers, and cyclic conjugated diene polymers. Among these, norbornene-based polymers are preferable.
  • the norbornene-based polymer includes a ring-opening polymer of a norbornene-based monomer (hereinafter referred to as “COP”), a norbornene-based copolymer obtained by copolymerizing a norbornene-based monomer and an olefin such as ethylene (hereinafter, referred to as “COP”). , “COC”). Also particularly preferred are hydrogenated products of COP and COC.
  • the weight average molecular weight of the cyclic olefin resin is preferably 5,000 to 500,000, more preferably 7,000 to 300,000.
  • the norbornene polymer and the norbornene monomer used as a raw material are alicyclic monomers having a norbornene ring.
  • Examples of such norbornene-based monomers include norbornene, tetracyclododecene, ethylidene norbornene, vinyl norbornene, ethylidetetracyclododecene, dicyclopentadiene, dimethanotetrahydrofluorene, phenyl norbornene, methoxycarbonyl norbornene, methoxy And carbonyltetracyclododecene.
  • These norbornene monomers may be used alone or in combination of two or more.
  • the norbornene-based copolymer is a copolymer of the norbornene-based monomer and an olefin copolymerizable with the norbornene-based monomer.
  • olefin include the number of carbon atoms such as ethylene, propylene, and 1-butene.
  • examples thereof include olefins having 2 to 20; cycloolefins such as cyclobutene, cyclopentene, and cyclohexene; and non-conjugated dienes such as 1,4-hexadiene.
  • the content of the cyclic olefin-based resin (b2) contained in the intermediate layer (B) is preferably 20 to 40% by mass, and 25 to 35% by mass in the resin component contained in the intermediate layer (B). More preferably.
  • the cyclic olefin resin (b2) used in the intermediate layer (B) preferably has a glass transition temperature of 140 ° C. or lower, more preferably 50 to 140 ° C., and 70 to 120 ° C. More preferably it is.
  • the glass transition temperature (Tg) is a value obtained by measurement by DSC.
  • the MFR of the cyclic olefin resin (b2) is 0.2 to 17 g / 10 min (230 ° C., 21.18 N), preferably 3 to 15 g / 10 min (230 ° C., 21.18 N), more preferably 5 to 13 g / 10 min (230 ° C., 21.18 N).
  • An MFR within this range is preferable in terms of excellent compatibility with the linear low-density polyethylene (b1) and good film formability in various multilayer film formation methods.
  • a ring-opening polymer (COP) of a norbornene monomer for example, “ZEONOR” manufactured by Nippon Zeon Co., Ltd.
  • COP ring-opening polymer
  • Examples of the copolymer (COC) include “Appel” manufactured by Mitsui Chemicals, Inc. and “TOPAS” manufactured by Polyplastics.
  • the resin component in the intermediate layer (B) it is preferable to contain only the linear low-density polyethylene (b1) and the cyclic olefin-based resin (b2), but within the range not impairing the effects of the present invention.
  • Other resins other than the resin component may be used in combination.
  • Other resin types that can be used in combination include, for example, the polyethylene-based resin and the polypropylene-based resin exemplified in the outer layer (A).
  • the content is preferably 20% by mass or less, more preferably 10% by mass or less, in the resin component contained in the intermediate layer (B).
  • the lower limit is not particularly limited, but may be appropriately used at a content of 1% by mass or more according to desired properties.
  • the inner layer (C) in the sealant film of the present invention is a layer containing a polyethylene resin, preferably a layer having an average density of resin components in the layer of 0.940 g / cm 3 or more.
  • the said inner layer (C) is a layer used as the heat seal layer of a sealant film.
  • Examples of the polyethylene resin used for the inner layer (C) and the resin that can be used in combination with the polyethylene resin can be the same as those of the outer layer (A), and preferable ones are also the same.
  • the range similar to the said outer layer (A) can be illustrated as a preferable range.
  • high density polyethylene is used in combination with medium / low density polyethylene such as ultra low density polyethylene, linear low density polyethylene, low density polyethylene, linear medium density polyethylene, etc. It is also preferable to do.
  • medium / low density polyethylene and high density polyethylene are used in combination, the content of medium / low density polyethylene in the resin component used in the inner layer (C) is 40 to 80% by mass, and the content of high density polyethylene. Is preferably 20 to 60% by mass, more preferably 45 to 75% by mass of medium / low density polyethylene and 25 to 55% by mass of high density polyethylene.
  • the sealant film of the present invention is a laminated film in which the outer layer (A), the intermediate layer (B), and the inner layer (C) are laminated in order.
  • the sealant film of the present invention can realize a packaging material that does not cause inner surface fusion or appearance irregularity during high-temperature processing such as retort sterilization processing, while having suitable easy tearability and straight cut ability.
  • achieve suitable sealing performance and bag breaking resistance it is suitable for a retort packaging material use.
  • the sealant film of the present invention has a normalized molecular orientation MORc value of 1.025 or more, preferably 1.030 or more, more preferably when the reference thickness measured with a microwave molecular orientation meter is 60 ⁇ m. Is 1.035 or more.
  • the upper limit is not particularly limited, but is preferably 1.20 or less, more preferably 1.080 or less. In the present invention, by setting the MORc value of the sealant film within the above range, it is possible to realize excellent easy tearability and straight cut ability along with suitable bag breaking resistance.
  • the MORc value is a value indicating the degree of molecular orientation, and is measured by the following measurement method. It arrange
  • the degree of molecular orientation MOR is determined by measuring the strength.
  • MORc (tc / t) ⁇ (MOR-1) +1
  • Tc reference thickness to be corrected
  • t sample thickness
  • the normalized molecular orientation MORc can be measured with a known molecular orientation meter, for example, a microwave molecular orientation meter MOA-2000A or MOA-2012A manufactured by Oji Scientific Instruments Co., Ltd. at a resonance frequency near 4 GHz.
  • the thickness of the sealant film of the present invention may be appropriately adjusted according to the application and mode to be used, but the total thickness is 20 from the viewpoint of heat resistance in packaging applications, resistance to bag breakage during distribution, heat sealability and the like. It is preferably ⁇ 150 ⁇ m, more preferably 40 to 100 ⁇ m.
  • the thickness ratio of the outer layer (A) is preferably in the range of 10 to 40% of the total thickness of the sealant film, from the viewpoints of sealing properties, easy tearing properties, and laminating properties. % Is more preferable.
  • the thickness ratio of the inner layer (C) is preferably in the range of 10 to 40%, more preferably in the range of 15 to 30%.
  • the thickness ratio of the intermediate layer (B) is preferably 10 to 80%, more preferably 15 to 60%, and particularly preferably 20 to 50%.
  • the sealant film of the present invention since it is possible to realize suitable cut properties even when the thickness ratio of the intermediate layer (B) is low (for example, 40% or less, more preferably 30% or less), it is preferable. A cut sealant film can be obtained at low cost.
  • the thickness of the outer layer (A) is preferably 2 to 60 ⁇ m, more preferably 3 to 45 ⁇ m.
  • the thickness of the intermediate layer (B1) is preferably 4 to 120 ⁇ m, and more preferably 8 to 100 ⁇ m.
  • the thickness of the inner layer (C) is preferably 2 to 60 ⁇ m, and more preferably 3 to 45 ⁇ m.
  • the sealant film of the present invention is a laminated film in which the outer layer (A), the intermediate layer (B), and the inner layer (C) are laminated in this order, but the gas barrier layer is within the range that does not impair the effects of the present invention.
  • any other layer such as an easy adhesion layer may be provided.
  • the sealant film of the present invention preferably has an average density of the resin component in the layer of all layers is 0.940 g / cm 3 or more, more be a layer of 0.940 ⁇ 0.945g / cm 3 preferable. For this reason, when providing another layer, it is preferable that the average density of the resin component in the layer of the said other layer is also the said range.
  • additives may be blended in each layer of the sealant film of the present invention as long as the effects of the present invention are not impaired.
  • the additive include an antioxidant, a weather resistance stabilizer, an antistatic agent, an antifogging agent, an antiblocking agent, a lubricant, a nucleating agent, and a pigment.
  • a resin including a resin mixture containing two or more kinds of resins and additives used for each layer of a multilayer film is heated and melted with a separate extruder.
  • a coextrusion method in which a film is laminated in a molten state by a method such as an extrusion multilayer die method or a feed block method and then formed into a film shape by an inflation method.
  • This coextrusion method is preferable because the thickness ratio of each layer can be adjusted relatively freely, and a film having excellent hygiene and cost effectiveness can be obtained.
  • an air-cooled inflation method is preferable, and an upward air-cooled inflation method can be particularly preferably used.
  • the cylindrical molten resin can be set as a multilayer film by using several extruders and a multilayer circular die. After extruding the cylindrical molten resin upward using these, the cylindrical molten resin is expanded and taken out as necessary, and after cooling and solidifying the molten resin by air cooling, it is appropriately cut and cut as desired. A film can be obtained.
  • the blow ratio during the coextrusion inflation molding is 1.0 to 2.3 and the drawdown ratio to 20 to 60. Easy to cut.
  • the drawdown ratio in the inflation method corresponds to the ratio between the line speed V L (m / min) and the die outlet speed V 0 (m / min), and is calculated as V L / V 0 .
  • the blow ratio corresponds to the ratio between the diameter D0 of the die and the final diameter D L of the bubble, and is calculated from D L / D 0 .
  • the drawdown ratio is 20 to 60, preferably 25 to 50, and more preferably 30 to 40.
  • the blow ratio is preferably 1.0 to 2.3, more preferably 1.1 to 2.0, and still more preferably 1.2 to 1.5.
  • the temperature of the extruder and the die is preferably 180 to 220 ° C.
  • the diameter of the die is preferably 100 to 1200 mm, more preferably 100 to 800 mm, and even more preferably 150 to 500 mm.
  • the lip opening of the die is preferably 0.5 to 5 mm, more preferably 1.5 to 4.5 mm, and further preferably 2.0 to 4.0 mm.
  • the discharge amount is preferably 10 to 400 Kg / h, more preferably 20 to 300 Kg / h, and still more preferably 50 to 250 Kg / h.
  • the line speed varies depending on the diameter of the die, the blow ratio, and the discharge amount, but is preferably 10 to 150 m / min, and more preferably 20 to 100 m / min.
  • the sealant film of the present invention When the sealant film of the present invention is used as a packaging material for retort, it can be used by bonding another base film to the outer layer (A) side surface of the sealant film. Although it does not specifically limit as another base film, From a viewpoint of making the effect of this invention express easily, it is preferable to use the plastic base material, especially the resin film stretched biaxially. For applications that do not require transparency, aluminum foil can be used in combination.
  • stretched resin film examples include coextrusion using, as a central layer, biaxially stretched polyester (PET), biaxially stretched polypropylene (OPP), biaxially stretched polyamide (PA), and ethylene vinyl alcohol copolymer (EVOH).
  • PET biaxially stretched polyester
  • OPP biaxially stretched polypropylene
  • PA biaxially stretched polyamide
  • EVOH ethylene vinyl alcohol copolymer
  • Biaxially stretched polypropylene, biaxially stretched ethylene vinyl alcohol copolymer (EVOH) alumina-deposited PET, silica-deposited PET, alumina-silica binary-deposited PET, silica-deposited PA, alumina-deposited PA and the like can be mentioned. These may be used alone or in combination.
  • two processing methods are mainly used.
  • One is to apply an anchor coating agent on the laminate surface of the sealant film of the present invention or the base film, if necessary, and to heat and melt the polymer film (polyethylene, polypropylene, etc.) with the sealant film of the present invention.
  • This is an extrusion laminating method in which a thin film is extruded between the laminate surfaces of the material film, and is pressed and laminated.
  • the other is a dry laminating method in which an adhesive is applied to the laminating surface of the base film, and then the sealant film of the present invention and the base film are pressure-bonded and laminated. preferable.
  • the adhesive for laminating is generally cured by polyol / isocyanate, and is widely used for high-functional applications such as retort applications.
  • the combination of the aluminum foil and the sealant film was generally used for pasting, but various transparent vapor deposition films have come to be marketed. From the demand for improving the visibility of the contents, the transparent vapor deposition film and Bonding of sealant film is also increasing.
  • a polyol used for the adhesive for laminating for example, a polyol itself described later, or a polyester polyol obtained by reacting a polyol with a polycarboxylic acid described later, or ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, Ethylene oxide, propylene oxide, butylene starting from compounds having two active hydrogen atoms such as trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, etc.
  • polyethers obtained by addition polymerization of monomers such as oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and cyclohexylene.
  • polyol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6-hexane.
  • polycarboxylic acids examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid.
  • Acid isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p , P'-dicarboxylic acids and anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, ester-forming derivatives of these dihydroxycarboxylic acids, dimer acids, etc. Of the polybasic acids.
  • polyisocyanate examples include organic compounds having at least two isocyanate groups in the molecule.
  • organic polyisocyanate examples include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), lysine diisocyanate, trimethylhexamethylene diisocyanate, 1 , 3- (isocyanatomethyl) cyclohexane, 1,5-naphthalene diisocyanate, polyisocyanate such as triphenylmethane triisocyanate; adducts of these polyisocyanates, burettes of these polyisocyanates, or of these polyisocyanates Derivatives (modified products) of polyisocyanates such as isocyanurates are exemplified.
  • a product obtained by reacting the isocyanate and the polyol with a mixing ratio in which an isocyanate group becomes excessive may be used.
  • the equivalent ratio polyol / isocyanate of the hydroxyl group equivalent of the polyol and the isocyanate equivalent of the polyisocyanate is preferably 0.5 to 5.0.
  • the packaging material of the present invention uses the above-mentioned sealant film as a sealant, and laminates a base film on the outer layer (A) side of the sealant film, thereby realizing good sealing properties and good tearability due to suitable tearing properties. it can.
  • suitable heat resistance and resistance to bag breakage can be realized, it is possible to suppress fusion between the inner layers (C) serving as a heat seal layer and uneven appearance even during high-temperature sterilization treatment.
  • the packaging material formed by laminating the sealant film of the present invention with various base materials can be suitably applied as a packaging material for retort food.
  • the packaging material of the present invention can be suitably used as a packaging bag by making bags into various shapes such as a flat bag type, a self-supporting packaging bag (standing pouch) type, and a tube type.
  • a flat bag type a self-supporting packaging bag (standing pouch) type
  • a tube type a tube type.
  • one film-like packaging material is folded so that the sealant layers face each other, or two film-like packaging materials of the present invention are piled so that the sealant layers face each other,
  • the peripheral edge part can be heat-sealed to form a bag for a retort food or the like (retort pouch).
  • the packaging material of the present invention and the packaging bag for retort foods using the packaging material can be suitably used for packaging foods that require treatment under high-temperature hot water conditions such as boiling and retort sterilization, such as curry, It can be suitably applied to various retort food packaging applications such as stew, soup, and cooking sauces.
  • Example 1 The resin mixture which forms each layer was prepared using the following resin as a resin component which forms each layer of an outer layer, an intermediate
  • LLC (1) linear low density polyethylene having an MFR of 0.5 g / 10 min (190 ° C., 21.18 N) and a density of 0.944 g / cm 3 .
  • LLDPE LidPE (1) 70% by mass, glass transition temperature (Tg) 78 ° C., MFR 10 g / 10 min (230 ° C., 21.18 N) norbornene copolymer (hereinafter referred to as “COC”) 30 Mass% resin mixture
  • Inner layer LLDPE (1) 50 mass%, MFR 1 g / 10 min (190 ° C., 21.18 N), density 0.960 g / cm 3 high density polyethylene (hereinafter referred to as “HDPE”) 50 mass % Mixed resin.
  • HDPE high density polyethylene
  • Example 2 A laminated film was obtained in the same manner as in Example 1 except that the blow ratio was 1.5 and the drawdown ratio was 27.
  • Example 3 A laminated film was obtained in the same manner as in Example 1 except that the blow ratio was 1.8 and the drawdown ratio was 23.
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the outer layer / intermediate layer / inner layer thickness ratio (%) was 40/25/35, the blow ratio was 1.2, and the drawdown ratio was 35.
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that the thickness ratio (%) of the outer layer / intermediate layer / inner layer was 35/30/35.
  • Example 6 A laminated film was obtained in the same manner as in Example 2 except that the resin components used for the outer layer and inner layer were as follows. Outer layer: MFR 0.9 g / 10 min (190 ° C., 21.18 N), linear low density polyethylene (hereinafter referred to as “LLDPE (2)”) having a density of 0.929 g / cm 3 , 60% by mass, HDPE 40 Mixed resin material of mass% Inner layer: Mixed resin material of 50% by mass of LLDPE (2) and 50% by mass of HDPE.
  • Example 7 A precision layer film was obtained in the same manner as in Example 2 except that the resin component used in the outer layer and the inner layer was LLDPE (2).
  • Example 8 A laminated film was obtained in the same manner as in Example 2 except that the resin component used in the intermediate layer was LLDPE (2) 70 mass% and COC 30 mass%.
  • Example 1 A laminated film was obtained in the same manner as in Example 1 except that the blow ratio was 2.5 and the drawdown ratio was 15.
  • Comparative Example 2 A laminated film was obtained in the same manner as in Example 2 except that the resin component used for the intermediate layer was LLDPE (1).
  • Example 3 The resin components forming the outer layer, the intermediate layer, and the inner layer were the same as in Example 1, and these resin mixtures were respectively supplied to three extruders and melted at 250 ° C.
  • the melted resin is supplied to a co-extruded multilayer film production apparatus (feed block and T-die temperature: 250 ° C.) using a T-die / chill roll method having a feed block, and co-melt extrusion is performed.
  • a sealant film having a total thickness of 50 ⁇ m was obtained with a three-layer structure of / intermediate layer / inner layer and a thickness ratio of each layer of 25/50/25%.
  • the attached polyester sheet is folded back in the direction of 180 °, the test piece excluding the notch on the side opposite to the tip is attached to a tensile tester, and it is torn 100 mm at a speed of 300 mm / min, and the width of the end point (W 1 ) Is actually measured.
  • Appearance unevenness A laminate film was obtained in the same manner as in (3). Using the obtained film, the bag was processed so that the inner size was 100 mm ⁇ 150 mm (heat seal width 10 mm), and 200 ml of water was sealed. After the bag-making product enclosing water was retorted at 121 ° C. for 30 minutes, the appearance unevenness was visually evaluated.
  • the sealant films of the present invention of Examples 1 to 8 had tear strength that was easy to tear and good straight-cut properties.
  • the sealant films of Examples 1 to 6 and 8 all had a peel strength of 1 N / 15 mm or less in the evaluation of inner surface fusion. Further, the sealant films of Examples 1 to 6 were not visually recognized even in appearance evaluation.
  • the sealant film of the comparative example did not have easy tearability and good straight cut property, and did not have suitable tear property.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a sealant film, characterized in that: the sealant film comprises a laminated film in which an outer layer, an intermediate layer, and an inner layer are laminated; the outer layer and the inner layer contain a polyethylene-based resin; the intermediate layer contains a straight-chain low-density polyethylene and a cyclic olefin-based resin; the cyclic olefin-based resin content in the resin constituents contained in the intermediate layer is 20–40% by mass; and the standardized molecular orientation Morc value, when the reference thickness measured using a microwave molecule orientation meter is 60 µm, is at least 1.025. Through the use of the sealant film, outstanding ease of tearing and straight cutting properties can be achieved, and during high-temperature processing, inner-surface fusion of a packaging material and an uneven exterior-appearance thereof can be suppressed.

Description

シーラントフィルム及び包装材Sealant film and packaging material
 本発明は、食品等を包装した状態で加熱や加圧による殺菌、調理が可能なレトルト包装等に使用するシーラントフィルム及び該シーラントフィルムを使用した包装材に関する。 The present invention relates to a sealant film used for retort packaging that can be sterilized and cooked by heating or pressurization in a state where food or the like is packaged, and a packaging material using the sealant film.
 食品の包装材として、プラスチック素材を使用したフレキシブルパッケージングが世界的に使用されており、新興国への広がりとともに益々増大傾向を示している。こうした中、高温で加圧・加熱殺菌(レトルト殺菌)されたレトルト食品は、その利便性から今後の食品包装市場での需要の高まりが見込まれている。レトルト食品は常温流通が可能であり、食べる際の手軽さに加え、流通における取り扱いのしやすさも有り、コールドチェーンの発達が不十分な地域への拡大も期待される。 Flexible packaging using plastic materials is used worldwide as a packaging material for food, and it is showing an increasing trend as it spreads to emerging countries. Under such circumstances, the demand for retort food that has been pressurized and heat sterilized (retort sterilization) at high temperatures is expected to increase in the future food packaging market due to its convenience. Retort food can be distributed at room temperature, and is easy to handle and easy to handle in distribution, and is expected to expand into areas where cold chain development is insufficient.
 レトルト食品を食する際には、一般的に熱湯で湯煎して温める場合が多く、加熱後、包装袋の上端に設けられたノッチからフィルムを引き裂いて開封する。このため、レトルト包装に使用する樹脂フィルムには易引き裂き性が求められる。易引き裂き性を有するレトルト用フィルムとしては、例えば、プロピレン-エチレンブロック共重合体に低結晶性エチレン系エラストマーを配合した樹脂を使用し、複屈折率を特定範囲に制御したプロピレン系フィルムが開示されている(特許文献1参照)。 ∙ When eating retort food, it is often heated in hot water, and after heating, the film is torn and opened from the notch provided at the upper end of the packaging bag. For this reason, the easy tear property is calculated | required by the resin film used for retort packaging. As a film for retort having easy tearability, for example, a propylene film in which a resin in which a low crystalline ethylene elastomer is blended with a propylene-ethylene block copolymer is used and the birefringence is controlled within a specific range is disclosed. (See Patent Document 1).
 また、易カット性を有する包装材料としては、生理食塩水や電解液などの薬液の充填されたソフトバッグに使用する包装材料として、環状オレフィン系樹脂と直鎖状低密度ポリエチレン樹脂とを含有する中間層と、直鎖状低密度ポリエチレン樹脂の内層及び外層を有する包装材料が開示されている(特許文献2参照)。 In addition, as a packaging material having easy cutability, a cyclic olefin-based resin and a linear low-density polyethylene resin are contained as a packaging material used for a soft bag filled with a chemical solution such as physiological saline or an electrolytic solution. A packaging material having an intermediate layer and an inner layer and an outer layer of a linear low-density polyethylene resin is disclosed (see Patent Document 2).
特開2011-162667号JP 2011-162667 A 特開2009-172902号JP 2009-172902 A
 上記の複屈折率を促進させたプロピレン系フィルムは、フィルムの剛性が向上することで引き裂き強度の低下は認められるが、引き裂きの方向性の制御が十分でなく、直進的に引き裂ける直進カット性の向上が求められていた。また、業務用途向けの重量物や寒冷地における流通等において、エチレン-プロピレン共重合体をシーラントとする包装材では耐衝撃性が十分ではなく、破袋事故を起こす場合があった。 The propylene-based film that promotes the above birefringence has a reduction in tear strength due to the improved rigidity of the film, but the direction of tearing is not sufficiently controlled, and the straight cut ability to tear straight There was a need for improvement. In addition, packaging materials using an ethylene-propylene copolymer as a sealant for heavy loads for business use or distribution in cold regions, etc., are not sufficient in impact resistance and may cause bag breakage accidents.
 上記のソフトバッグに使用する包装材料は、易カット性や直進カット性は有するもののレトルト用途への適用に際しては、さらなるカット性の向上が望まれていた。 Although the packaging material used for the above-mentioned soft bag has easy-cutting properties and straight-cutting properties, it has been desired to further improve the cutting properties when applied to retort applications.
 本発明が解決しようとする課題は、好適な耐破袋性を有し、易引き裂き性や直進カット性に優れたシーラントフィルム及び包装材を提供することにある。 The problem to be solved by the present invention is to provide a sealant film and a packaging material having suitable bag breaking resistance and excellent in easy tearability and straight cut ability.
 さらに、本発明においては、上記課題に加え、好適なシール性を有するシーラントフィルムを提供することを課題とする。
さらに、本発明においては、上記課題に加え、高温処理時に包装材の内面融着や外観ムラが生じないシーラントフィルムを提供することを課題とする。
Furthermore, in addition to the said subject, in this invention, it makes it a subject to provide the sealant film which has suitable sealing performance.
Furthermore, in the present invention, in addition to the above-described problems, it is an object to provide a sealant film that does not cause inner surface fusion or appearance unevenness of a packaging material during high-temperature processing.
 本発明は、外層(A)、中間層(B)及び内層(C)が積層された積層フィルムからなり、外層(A)及び内層(C)がポリエチレン系樹脂を含有し、中間層(B)が、直鎖状低密度ポリエチレン(b1)及び環状オレフィン系樹脂(b2)を含有し、前記中間層(B)中に含まれる樹脂成分中の前記環状オレフィン系樹脂(b2)の含有量が20~40質量%であり、マイクロ波方式分子配向計にて測定される基準厚さを60μmとしたときの規格化分子配向MORc値が1.025以上であるシーラントフィルムにより上記課題を解決するものである。 The present invention comprises a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated, the outer layer (A) and the inner layer (C) contain a polyethylene resin, and the intermediate layer (B) Contains linear low density polyethylene (b1) and cyclic olefin resin (b2), and the content of the cyclic olefin resin (b2) in the resin component contained in the intermediate layer (B) is 20 The above-mentioned problem is solved by a sealant film having a normalized molecular orientation MORc value of 1.025 or more when the reference thickness measured by a microwave molecular orientation meter is 60 μm and is 40 mass%. is there.
 また、本発明は、外層(A)、中間層(B)及び内層(C)が積層された積層フィルムからなるシーラントフィルムを共押出インフレーション法により製造する方法であって、前記外層(A)を形成する外層用樹脂及び内層(C)を形成する内層用樹脂が、ポリエチレン系樹脂を含有し、前記中間層(B)を形成する中間層用樹脂が直鎖状低密度ポリエチレン(b1)及び環状オレフィン系樹脂(b2)を含有し、前記中間層用樹脂中に含まれる樹脂成分中の前記環状オレフィン系樹脂(b2)の含有量が20~40質量%であり、1.0~2.3のブロー比かつ20~60のドローダウン比で共押出インフレーション成形するシーラントフィルムの製造方法により上記課題を解決するものである。 Further, the present invention is a method for producing a sealant film comprising a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated by a coextrusion inflation method, wherein the outer layer (A) The outer layer resin to be formed and the inner layer resin to form the inner layer (C) contain a polyethylene resin, and the intermediate layer resin to form the intermediate layer (B) is linear low density polyethylene (b1) and cyclic The olefin resin (b2) is contained, and the content of the cyclic olefin resin (b2) in the resin component contained in the intermediate layer resin is 20 to 40% by mass, and 1.0 to 2.3. The above-described problems are solved by a method for producing a sealant film which is co-extrusion blow molded at a blow ratio of 20 to 60 and a drawdown ratio of 20 to 60.
 本発明のシーラントフィルムは、上記構成により好適な易引き裂き性及び直進カット性を有することから、本発明のシーラントフィルムを使用した包装袋は、開封時や開封が生じ始めた後の内容物のこぼれや飛散が生じにくい。特にレトルト包装用途に適用した際にも、簡易かつ好適な直進性でカットが可能となる。また、好適な耐破袋性、特に低温下での好適な耐破袋性を実現でき、好適な流通適性を有する。 Since the sealant film of the present invention has a suitable easy tearing property and straight cut ability due to the above-described configuration, the packaging bag using the sealant film of the present invention is spilled from the contents at the time of opening or after opening has started to occur. And scattering is difficult to occur. In particular, when applied to retort packaging applications, it is possible to cut with simple and suitable straightness. Moreover, it can implement | achieve suitable bag-breaking resistance, especially the bag-breaking resistance suitable under low temperature, and has suitable distribution | circulation aptitude.
 また、本発明のシーラントフィルムは、好適な裂け性を実現しながらも、レトルト殺菌処理等の高温処理時に内面融着や外観ムラが生じない包装材を実現しやすい。このため、本発明のシーラントフィルムは、高温殺菌が必要となるレトルト食品包装材等の高温処理用包装材に好適に適用できる。さらに、本発明のシーラントフィルムは、好適なシール性も実現しやすいことから、これら包装材用途に好適である。 In addition, the sealant film of the present invention easily realizes a packaging material that does not cause inner surface fusion or appearance irregularity during high-temperature treatment such as retort sterilization treatment while achieving suitable tearability. For this reason, the sealant film of the present invention can be suitably applied to high-temperature processing packaging materials such as retort food packaging materials that require high-temperature sterilization. Furthermore, the sealant film of the present invention is suitable for these packaging materials because it can easily achieve suitable sealing properties.
 本発明のシーラントフィルムは、外層(A)、中間層(B)及び内層(C)が順に積層された積層フィルムからなり、その外層(A)及び内層(C)がポリエチレン系樹脂を含有し、外層(A)及び内層(C)間の中間層(B)が、直鎖状低密度ポリエチレン(b1)及び環状オレフィン系樹脂(b2)を含有し、中間層(B)中に含まれる樹脂成分中の前記環状オレフィン系樹脂(b2)の含有量が20~40質量%のシーラントフィルムである。また、マイクロ波方式分子配向計にて測定される基準厚さを60μmとしたときの規格化分子配向MORc値が1.025以上である。 The sealant film of the present invention comprises a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated in order, and the outer layer (A) and the inner layer (C) contain a polyethylene resin, The intermediate layer (B) between the outer layer (A) and the inner layer (C) contains the linear low density polyethylene (b1) and the cyclic olefin resin (b2), and the resin component contained in the intermediate layer (B) The content of the cyclic olefin resin (b2) in the sealant film is 20 to 40% by mass. Further, the normalized molecular orientation MORc value is 1.025 or more when the reference thickness measured by the microwave molecular orientation meter is 60 μm.
[外層(A)]
 本発明のシーラントフィルムの外層(A)はポリエチレン系樹脂を含有する。当該ポリエチレン系樹脂としては、超低密度ポリエチレン(VLDPE)、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、直鎖状中密度ポリエチレン(LMDPE)、中密度ポリエチレン(MDPE)等のポリエチレン樹脂や、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルメタアクリレート共重合体(EMMA)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-メチルアクリレート(EMA)共重合体、エチレン-エチルアクリレート-無水マレイン酸共重合体(E-EA-MAH)、エチレン-アクリル酸共重合体(EAA)、エチレン-メタクリル酸共重合体(EMAA)等のエチレン系共重合体;更にはエチレン-アクリル酸共重合体のアイオノマー、エチレン-メタクリル酸共重合体のアイオノマー等が例示できる。これらポリエチレン系樹脂は、単独でも、2種以上を混合して使用しても良い。これらの中でも好適な耐衝撃性を得やすいことから、超低密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、直鎖状中密度ポリエチレンを好ましく使用でき、直鎖状低密度ポリエチレンが特に好ましい。また、これら中・低密度ポリエチレンに併用して高密度ポリエチレン(HDPE)を使用することも好ましい。
[Outer layer (A)]
The outer layer (A) of the sealant film of the present invention contains a polyethylene resin. Examples of the polyethylene resin include very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), linear medium density polyethylene (LMDPE), and medium density polyethylene (MDPE). Polyethylene resin, ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene Ethylene copolymers such as ethyl acrylate-maleic anhydride copolymer (E-EA-MAH), ethylene-acrylic acid copolymer (EAA), ethylene-methacrylic acid copolymer (EMAA); -Acrylic acid copolymer ionomer, ethylene Ionomers of acrylic acid copolymer can be exemplified. These polyethylene resins may be used alone or in combination of two or more. Among these, since it is easy to obtain suitable impact resistance, ultra-low density polyethylene, linear low density polyethylene, low density polyethylene, linear medium density polyethylene can be preferably used, and linear low density polyethylene is particularly preferable. . It is also preferable to use high density polyethylene (HDPE) in combination with these medium / low density polyethylene.
 直鎖低密度ポリエチレンとしては、シングルサイト触媒を用いた低圧ラジカル重合法により、エチレン単量体を主成分として、これにコモノマーとしてブテン-1、ヘキセン-1、オクテン-1、4-メチルペンテン等のα-オレフィンを共重合したものである。LLDPE中のコモノマー含有率としては、0.5~20モル%の範囲であることが好ましく、1~18モル%の範囲であることがより好ましい。 As the linear low density polyethylene, an ethylene monomer is a main component by a low-pressure radical polymerization method using a single site catalyst, and butene-1, hexene-1, octene-1, 4-methylpentene, etc. are used as comonomers. The α-olefin was copolymerized. The comonomer content in LLDPE is preferably in the range of 0.5 to 20 mol%, more preferably in the range of 1 to 18 mol%.
 前記シングルサイト触媒としては、周期律表第IV又はV族遷移金属のメタロセン化合物と、有機アルミニウム化合物及び/又はイオン性化合物の組合せ等のメタロセン触媒系などの種々のシングルサイト触媒が挙げられる。また、シングルサイト触媒は活性点が均一であるため、活性点が不均一なマルチサイト触媒と比較して、得られる樹脂の分子量分布がシャープになるため、フィルムに成膜した際に低分子量成分の析出が少なく、シール強度の安定性や耐衝撃性に優れた物性の樹脂が得られるので好ましい。 Examples of the single site catalyst include various single site catalysts such as a metallocene catalyst system such as a combination of a metallocene compound of Group IV or V transition metal of the periodic table and an organoaluminum compound and / or an ionic compound. In addition, the single-site catalyst has a uniform active site, so the molecular weight distribution of the resulting resin is sharper than a multi-site catalyst with a non-uniform active site. This is preferable because a resin having physical properties excellent in stability of seal strength and impact resistance can be obtained.
 外層(A)中には、好適な耐衝撃性を得やすいことから、当該層を形成する樹脂成分全量に対してポリエチレン系樹脂を60質量%以上で含有することが好ましく、80質量%以上で含有することがより好ましく、90質量%以上で含有することがさらに好ましい。なかでも樹脂成分としてポリエチレン系樹脂のみを含有し、当該樹脂成分中の60質量%以上を直鎖状低密度ポリエチレンとすることが好ましく、80質量%以上とすることがより好ましく、90質量%以上とすることがさらに好ましい。 In the outer layer (A), since it is easy to obtain suitable impact resistance, the polyethylene resin is preferably contained in an amount of 60% by mass or more with respect to the total amount of the resin components forming the layer, and 80% by mass or more. It is more preferable to contain, and it is further more preferable to contain 90 mass% or more. Among them, it contains only a polyethylene resin as a resin component, and preferably 60% by mass or more in the resin component is a linear low density polyethylene, more preferably 80% by mass or more, and 90% by mass or more. More preferably.
 また、外層(A)中には、本発明の効果を損なわない範囲で、上記ポリエチレン系樹脂の他の樹脂を併用してもよい。その他の併用できる樹脂種としては、例えば、上記ポリエチレン系樹脂以外のポリオレフィン系樹脂等を例示でき、プロピレン単独重合体、プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体、メタロセン触媒系ポリプロピレン等のポリプロピレン系樹脂を例示できる。 In the outer layer (A), other resins of the above polyethylene resin may be used in combination as long as the effects of the present invention are not impaired. Examples of other resin types that can be used in combination include polyolefin resins other than the above polyethylene resins, and include propylene homopolymers, propylene-ethylene copolymers, propylene-butene-1 copolymers, propylene-ethylene- Examples include polypropylene resins such as butene-1 copolymer and metallocene catalyst polypropylene.
 これら他の樹脂を使用する場合には、外層(A)に含まれる樹脂成分中の40質量%以下とすることが好ましく、20質量%以下とすることがより好ましく、10質量%以下とすることがより好ましい。また下限は特に制限されるものではないが、所望する特性に応じて1質量%以上の含有量にて適宜使用すればよい。 When these other resins are used, it is preferably 40% by mass or less, more preferably 20% by mass or less in the resin component contained in the outer layer (A), and 10% by mass or less. Is more preferable. The lower limit is not particularly limited, but may be appropriately used at a content of 1% by mass or more according to desired properties.
 本発明のシーラントフィルムに使用する外層(A)は、その層中に使用する樹脂成分の平均密度が0.940g/cm以上であることが好ましく、より好ましくは0.940~0.945g/cmの層である。樹脂成分の平均密度を当該範囲とすることで、レトルト殺菌処理等の高温処理時の外観ムラを好適に抑制できる。当該平均密度は、当該層に使用する樹脂が樹脂a、樹脂b、樹脂c・・・である場合に、これら樹脂の密度をd、d、d・・・、層中に使用する樹脂の質量をW、W、W・・・とした際に、(d+d+d・・・)/(W+W+W・・・)で算出される密度である。 In the outer layer (A) used in the sealant film of the present invention, the average density of the resin component used in the layer is preferably 0.940 g / cm 3 or more, more preferably 0.940 to 0.945 g / cm 3 layer. By setting the average density of the resin component in the above range, appearance unevenness during high-temperature treatment such as retort sterilization treatment can be suitably suppressed. The average density resin used for the layer of the resin a, resin b, and when a resin c · · ·, using the density of these resins d a, d b, d c ···, in the layer the mass of the resin W a, W b, upon the W c · · ·, in (d a W a + d b W b + d c W c ···) / (W a + W b + W c ···) This is the calculated density.
 外層(A)に使用する各樹脂の密度は、使用する樹脂成分の平均密度が上記範囲となれば特に制限されないが、ポリエチレン系樹脂においては、0.880g/cm以上であることが好ましく、0.920g/cm以上であることがより好ましく、0.940~0.950g/cmであることが特に好ましい。また、他の樹脂についても、0.920g/cm以上のものを使用することが好ましい。 The density of each resin used in the outer layer (A) is not particularly limited as long as the average density of the resin components used is within the above range, but in the polyethylene resin, it is preferably 0.880 g / cm 3 or more, It is more preferably 0.920 g / cm 3 or more, particularly preferably 0.940 to 0.950 g / cm 3 . In addition, it is preferable to use other resins having 0.920 g / cm 3 or more.
 外層(A)に使用する樹脂成分のMFRは、0.1~20g/10分(190℃、21.18N)、好ましくは0.3~10g/10分(190℃、21.18N)、より好ましくは0.5~5g/10分(190℃、21.18N)である。MFRがこの範囲であると、各種の多層成膜法において良好な成膜性が得られる点で好ましい。 The MFR of the resin component used for the outer layer (A) is 0.1 to 20 g / 10 minutes (190 ° C., 21.18 N), preferably 0.3 to 10 g / 10 minutes (190 ° C., 21.18 N), 0.5 to 5 g / 10 min (190 ° C., 21.18 N) is preferable. MFR within this range is preferable in that good film formability can be obtained in various multilayer film forming methods.
[中間層(B)]
 本発明のシーラントフィルムの中間層(B)は、直鎖状低密度ポリエチレン(b1)を含有する。当該直鎖状低密度ポリエチレンを含有することで、好適な耐衝撃性と共に、高温処理時のレトルト殺菌処理時の外観ムラを好適に抑制しやすくなる。直鎖状低密度ポリエチレン(b1)の密度は、外観ムラを特に好適に抑制しやすいことから、好ましくは0.937g/cm以上、より好ましくは0.940g/cm以上、さらに好ましくは0.940~0.945g/cmである。また、中間層(B)の層中の樹脂成分の平均密度は0.940g/cm以上であることが好ましく、0.940~0.945g/cmの層であることがより好ましい。
[Intermediate layer (B)]
The intermediate layer (B) of the sealant film of the present invention contains linear low density polyethylene (b1). By including the linear low-density polyethylene, it becomes easy to suitably suppress the appearance unevenness during the retort sterilization treatment during the high-temperature treatment as well as suitable impact resistance. The density of the linear low density polyethylene (b1) is preferably 0.937 g / cm 3 or more, more preferably 0.940 g / cm 3 or more, and even more preferably 0, because it is particularly preferable to suppress unevenness in appearance. 940 to 0.945 g / cm 3 . It is preferable that the average density of the resin component in the layer of the intermediate layer (B) is 0.940 g / cm 3 or more, and more preferably a layer of 0.940 ~ 0.945g / cm 3.
 直鎖状低密度ポリエチレン(b1)のMFRは、0.1~20g/10分(190℃、21.18N)、好ましくは0.3~10g/10分(190℃、21.18N)、より好ましくは0.5~5g/10分(190℃、21.18N)である。MFRがこの範囲であると、環状オレフィン系樹脂(b2)との相溶性に優れ、なおかつ各種の多層成膜法において良好な成膜性が得られる点で好ましい。 The MFR of the linear low density polyethylene (b1) is 0.1 to 20 g / 10 min (190 ° C., 21.18 N), preferably 0.3 to 10 g / 10 min (190 ° C., 21.18 N), and more 0.5 to 5 g / 10 min (190 ° C., 21.18 N) is preferable. When the MFR is within this range, the compatibility with the cyclic olefin-based resin (b2) is excellent, and preferable film forming properties can be obtained in various multilayer film forming methods.
 中間層(B)中の直鎖状低密度ポリエチレン(b1)の含有量は、好適な耐衝撃性や高温処理時の耐熱性を得やすいことから、中間層(B)に含まれる樹脂成分中の60~80質量%であることが好ましく、65~75質量%であることがより好ましい。 In the resin component contained in the intermediate layer (B), the content of the linear low density polyethylene (b1) in the intermediate layer (B) is easy to obtain suitable impact resistance and heat resistance during high-temperature treatment. It is preferably 60 to 80% by mass, and more preferably 65 to 75% by mass.
 本発明のシーラントフィルムの中間層(B)には環状オレフィン系樹脂(b2)を含有することで、優れた易引き裂き性や直進カット性を実現できる。当該環状オレフィン系樹脂(b2)としては、例えば、ノルボルネン系重合体、ビニル脂環式炭化水素重合体、環状共役ジエン重合体等が挙げられる。これらの中でも、ノルボルネン系重合体が好ましい。また、ノルボルネン系重合体としては、ノルボルネン系単量体の開環重合体(以下、「COP」という。)、ノルボルネン系単量体とエチレン等のオレフィンを共重合したノルボルネン系共重合体(以下、「COC」という。)等が挙げられる。また、COP及びCOCの水素添加物も、特に好ましい。また、環状オレフィン系樹脂の重量平均分子量は、5,000~500,000が好ましく、より好ましくは7,000~300,000である。 The intermediate layer (B) of the sealant film of the present invention contains the cyclic olefin resin (b2), so that excellent easy tearability and straight cut ability can be realized. Examples of the cyclic olefin-based resin (b2) include norbornene-based polymers, vinyl alicyclic hydrocarbon polymers, and cyclic conjugated diene polymers. Among these, norbornene-based polymers are preferable. The norbornene-based polymer includes a ring-opening polymer of a norbornene-based monomer (hereinafter referred to as “COP”), a norbornene-based copolymer obtained by copolymerizing a norbornene-based monomer and an olefin such as ethylene (hereinafter, referred to as “COP”). , “COC”). Also particularly preferred are hydrogenated products of COP and COC. In addition, the weight average molecular weight of the cyclic olefin resin is preferably 5,000 to 500,000, more preferably 7,000 to 300,000.
 前記ノルボルネン系重合体と原料となるノルボルネン系単量体は、ノルボルネン環を有する脂環族系単量体である。このようなノルボルネン系単量体としては、例えば、ノルボルネン、テトラシクロドデセン、エチリデンノルボルネン、ビニルノルボルネン、エチリデテトラシクロドデセン、ジシクロペンタジエン、ジメタノテトラヒドロフルオレン、フェニルノルボルネン、メトキシカルボニルノルボルネン、メトキシカルボニルテトラシクロドデセン等が挙げられる。これらのノルボルネン系単量体は、単独で用いても、2種以上を併用しても良い。 The norbornene polymer and the norbornene monomer used as a raw material are alicyclic monomers having a norbornene ring. Examples of such norbornene-based monomers include norbornene, tetracyclododecene, ethylidene norbornene, vinyl norbornene, ethylidetetracyclododecene, dicyclopentadiene, dimethanotetrahydrofluorene, phenyl norbornene, methoxycarbonyl norbornene, methoxy And carbonyltetracyclododecene. These norbornene monomers may be used alone or in combination of two or more.
 前記ノルボルネン系共重合体は、前記ノルボルネン系単量体と共重合可能なオレフィンとを共重合したものであり、このようなオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン等の炭素原子数2~20個を有するオレフィン;シクロブテン、シクロペンテン、シクロヘキセン等のシクロオレフィン;1,4-ヘキサジエン等の非共役ジエンなどが挙げられる。 The norbornene-based copolymer is a copolymer of the norbornene-based monomer and an olefin copolymerizable with the norbornene-based monomer. Examples of such olefin include the number of carbon atoms such as ethylene, propylene, and 1-butene. Examples thereof include olefins having 2 to 20; cycloolefins such as cyclobutene, cyclopentene, and cyclohexene; and non-conjugated dienes such as 1,4-hexadiene.
 中間層(B)中に含まれる環状オレフィン系樹脂(b2)の含有量は、中間層(B)に含まれる樹脂成分中の20~40質量%であることが好ましく、25~35質量%であることがより好ましい。環状オレフィン系樹脂(b2)の含有量を当該範囲とすることで、耐衝撃性を損なうことなく、好適な易引き裂き性や直進カット性を実現できる。 The content of the cyclic olefin-based resin (b2) contained in the intermediate layer (B) is preferably 20 to 40% by mass, and 25 to 35% by mass in the resin component contained in the intermediate layer (B). More preferably. By setting the content of the cyclic olefin-based resin (b2) in the above range, it is possible to realize suitable easy tearability and straight cut performance without impairing impact resistance.
 また、中間層(B)中に使用する環状オレフィン系樹脂(b2)は、そのガラス転移温度が140℃以下であることが好ましく、50~140℃であることがより好ましく、70~120℃であることがさらに好ましい。環状オレフィン系樹脂(b2)として当該ガラス転移温度のものを使用することで、良好な耐熱性や剛性を得やすく、また、落下等に対する耐破袋性を向上させやすくなる。また、良好な相溶性を得やすくなり、外観ムラを抑制しやすくなる。ガラス転移温度(Tg)は、DSCにより測定して得られる値である。 Further, the cyclic olefin resin (b2) used in the intermediate layer (B) preferably has a glass transition temperature of 140 ° C. or lower, more preferably 50 to 140 ° C., and 70 to 120 ° C. More preferably it is. By using the cyclic olefin resin (b2) having the glass transition temperature, it is easy to obtain good heat resistance and rigidity, and it is easy to improve the bag breaking resistance against dropping and the like. Moreover, it becomes easy to obtain good compatibility, and it becomes easy to suppress the appearance unevenness. The glass transition temperature (Tg) is a value obtained by measurement by DSC.
 環状オレフィン系樹脂(b2)のMFRは、0.2~17g/10分(230℃、21.18N)、好ましくは3~15g/10分(230℃、21.18N)、より好ましくは5~13g/10分(230℃、21.18N)である。MFRがこの範囲であると、直鎖状低密度ポリエチレン(b1)との相溶性に優れ、なおかつ各種の多層成膜法において良好な成膜性が得られる点で好ましい。 The MFR of the cyclic olefin resin (b2) is 0.2 to 17 g / 10 min (230 ° C., 21.18 N), preferably 3 to 15 g / 10 min (230 ° C., 21.18 N), more preferably 5 to 13 g / 10 min (230 ° C., 21.18 N). An MFR within this range is preferable in terms of excellent compatibility with the linear low-density polyethylene (b1) and good film formability in various multilayer film formation methods.
 本発明に使用する環状オレフィン系樹脂として使用できる市販品として、ノルボルネン系モノマーの開環重合体(COP)としては、例えば、日本ゼオン株式会社製「ゼオノア(ZEONOR)」等が挙げられ、ノルボルネン系共重合体(COC)としては、例えば、三井化学株式会社製「アペル」、ポリプラスチックス社製「トパス(TOPAS)」等が挙げられる。 As a commercially available product that can be used as the cyclic olefin resin used in the present invention, as a ring-opening polymer (COP) of a norbornene monomer, for example, “ZEONOR” manufactured by Nippon Zeon Co., Ltd. can be mentioned. Examples of the copolymer (COC) include “Appel” manufactured by Mitsui Chemicals, Inc. and “TOPAS” manufactured by Polyplastics.
 中間層(B)中の樹脂成分としては、上記直鎖状低密度ポリエチレン(b1)と環状オレフィン系樹脂(b2)のみを含有することも好ましいが、本発明の効果を損なわない範囲で、これら樹脂成分以外の他の樹脂を併用してもよい。その他の併用できる樹脂種としては、例えば、上記外層(A)にて、例示したポリエチレン系樹脂や、ポリプロピレン系樹脂等を例示できる。 As the resin component in the intermediate layer (B), it is preferable to contain only the linear low-density polyethylene (b1) and the cyclic olefin-based resin (b2), but within the range not impairing the effects of the present invention. Other resins other than the resin component may be used in combination. Other resin types that can be used in combination include, for example, the polyethylene-based resin and the polypropylene-based resin exemplified in the outer layer (A).
 これら他の樹脂を使用する場合には、中間層(B)に含まれる樹脂成分中の20質量%以下とすることが好ましく、10質量%以下とすることがより好ましい。また下限は特に制限されるものではないが、所望する特性に応じて1質量%以上の含有量にて適宜使用すればよい。 When these other resins are used, the content is preferably 20% by mass or less, more preferably 10% by mass or less, in the resin component contained in the intermediate layer (B). The lower limit is not particularly limited, but may be appropriately used at a content of 1% by mass or more according to desired properties.
[内層(C)]
 本発明のシーラントフィルムにおける内層(C)は、ポリエチレン系樹脂を含有する層であり、好ましくは、層中の樹脂成分の平均密度が0.940g/cm以上の層である。当該内層(C)はシーラントフィルムのヒートシール層となる層である。
[Inner layer (C)]
The inner layer (C) in the sealant film of the present invention is a layer containing a polyethylene resin, preferably a layer having an average density of resin components in the layer of 0.940 g / cm 3 or more. The said inner layer (C) is a layer used as the heat seal layer of a sealant film.
 内層(C)に使用するポリエチレン系樹脂や、当該ポリエチレン系樹脂に併用可能な樹脂等は、上記外層(A)と同様のものを例示でき、好ましいものも同様である。また、当該ポリエチレン系樹脂や他の樹脂の含有量、内層中の樹脂成分の密度や平均密度についても、上記外層(A)と同様の範囲を好ましい範囲として例示できる。 Examples of the polyethylene resin used for the inner layer (C) and the resin that can be used in combination with the polyethylene resin can be the same as those of the outer layer (A), and preferable ones are also the same. Moreover, about the content of the said polyethylene-type resin and other resin, and the density and average density of the resin component in an inner layer, the range similar to the said outer layer (A) can be illustrated as a preferable range.
 また、内層(C)においては、超低密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、直鎖状中密度ポリエチレン等の中・低密度ポリエチレンに併用して高密度ポリエチレン(HDPE)を使用することも好ましい。中・低密度ポリエチレンと、高密度ポリエチレンとを併用する場合には、内層(C)に使用する樹脂成分中の中・低密度ポリエチレンの含有量を40~80質量%、高密度ポリエチレンの含有量を20~60質量%とすることが好ましく、中・低密度ポリエチレンの含有量を45~75質量%、高密度ポリエチレンの含有量を25~55質量%とすることがより好ましい。 In the inner layer (C), high density polyethylene (HDPE) is used in combination with medium / low density polyethylene such as ultra low density polyethylene, linear low density polyethylene, low density polyethylene, linear medium density polyethylene, etc. It is also preferable to do. When medium / low density polyethylene and high density polyethylene are used in combination, the content of medium / low density polyethylene in the resin component used in the inner layer (C) is 40 to 80% by mass, and the content of high density polyethylene. Is preferably 20 to 60% by mass, more preferably 45 to 75% by mass of medium / low density polyethylene and 25 to 55% by mass of high density polyethylene.
[シーラントフィルム]
 本発明のシーラントフィルムは、上記外層(A)、中間層(B)及び内層(C)が順に積層された積層フィルムである。本発明のシーラントフィルムは、当該構成により、好適な易引き裂き性及び直進カット性を有しながらも、レトルト殺菌処理等の高温処理時に内面融着や外観ムラが生じない包装材を実現できる。また、好適なシール性や耐破袋性も実現しやすいことから、レトルト包装材用途に好適である。
[Sealant film]
The sealant film of the present invention is a laminated film in which the outer layer (A), the intermediate layer (B), and the inner layer (C) are laminated in order. With this configuration, the sealant film of the present invention can realize a packaging material that does not cause inner surface fusion or appearance irregularity during high-temperature processing such as retort sterilization processing, while having suitable easy tearability and straight cut ability. Moreover, since it is easy to implement | achieve suitable sealing performance and bag breaking resistance, it is suitable for a retort packaging material use.
 本発明のシーラントフィルムは、マイクロ波方式分子配向計にて測定される基準厚さを60μmとしたときの規格化分子配向MORc値が1.025以上であり、好ましくは1.030以上、より好ましくは1.035以上である。また上限値は、特に制限されないが、好ましくは1.20以下、より好ましくは1.080以下である。本発明においては、シーラントフィルムのMORc値を当該範囲とすることで、好適な耐破袋性と共に、優れた易引き裂き性及び直進カット性を実現できる。 The sealant film of the present invention has a normalized molecular orientation MORc value of 1.025 or more, preferably 1.030 or more, more preferably when the reference thickness measured with a microwave molecular orientation meter is 60 μm. Is 1.035 or more. The upper limit is not particularly limited, but is preferably 1.20 or less, more preferably 1.080 or less. In the present invention, by setting the MORc value of the sealant film within the above range, it is possible to realize excellent easy tearability and straight cut ability along with suitable bag breaking resistance.
 当該MORc値は、分子配向の度合いを示す値であり、以下の測定法によって測定される。
 周知のマイクロ波方式分子配向計のマイクロ波共振導波管中に、マイクロ波の進行方向に前記試料面(フィルム面)が垂直になるように配置する。そして、振動方向が一方向に偏ったマイクロ波を試料に連続的に照射した状態で、試料をマイクロ波の進行方向と垂直な面内で0~360°回転させて、試料を透過したマイクロ波強度を測定することにより分子配向度MORを求める。
 本実施形態における規格化分子配向MORcとは、基準厚さをtcとしたときのMOR値であって、下記式により求めることができる。
 MORc = (tc/t)×(MOR-1)+1
(tc:補正したい基準厚さ、t:試料厚さ)
 ここで、MORc値が1.000に近いほど等方的フィルムであることを表す。
 規格化分子配向MORcは、公知の分子配向計、例えば、王子計測機器株式会社製マイクロ波方式分子配向計MOA-2000AやMOA-2012A等により、4GHz近傍の共振周波数で測定することができる。
The MORc value is a value indicating the degree of molecular orientation, and is measured by the following measurement method.
It arrange | positions so that the said sample surface (film surface) may become perpendicular | vertical to the advancing direction of a microwave in the microwave resonant waveguide of a known microwave type | system | group molecular orientation meter. Then, in a state where the sample is continuously irradiated with the microwave whose vibration direction is biased in one direction, the sample is rotated 0 to 360 ° in a plane perpendicular to the traveling direction of the microwave, and the microwave transmitted through the sample is transmitted. The degree of molecular orientation MOR is determined by measuring the strength.
The normalized molecular orientation MORc in the present embodiment is a MOR value when the reference thickness is tc, and can be obtained by the following equation.
MORc = (tc / t) × (MOR-1) +1
(Tc: reference thickness to be corrected, t: sample thickness)
Here, the closer the MORc value is to 1.000, the more isotropic film is represented.
The normalized molecular orientation MORc can be measured with a known molecular orientation meter, for example, a microwave molecular orientation meter MOA-2000A or MOA-2012A manufactured by Oji Scientific Instruments Co., Ltd. at a resonance frequency near 4 GHz.
 本発明のシーラントフィルムの厚みは使用する用途や態様に応じて適宜調整すればよいが、包装用途における耐熱性や流通時の耐破袋性、ヒートシール性等の観点から、その総厚みが20~150μmであることが好ましく、40~100μmであることがより好ましい。 The thickness of the sealant film of the present invention may be appropriately adjusted according to the application and mode to be used, but the total thickness is 20 from the viewpoint of heat resistance in packaging applications, resistance to bag breakage during distribution, heat sealability and the like. It is preferably ˜150 μm, more preferably 40 to 100 μm.
 各層の厚み比率としては、シール性、易引き裂き性、及びラミネート性の観点より、外層(A)の厚み比率がシーラントフィルムの総厚の10~40%の範囲であることが好ましく、15~30%であることがより好ましい。また、内層(C)の厚み比率は10~40%の範囲であることが好ましく、15~30%の範囲であることがより好ましい。 As the thickness ratio of each layer, the thickness ratio of the outer layer (A) is preferably in the range of 10 to 40% of the total thickness of the sealant film, from the viewpoints of sealing properties, easy tearing properties, and laminating properties. % Is more preferable. The thickness ratio of the inner layer (C) is preferably in the range of 10 to 40%, more preferably in the range of 15 to 30%.
 また、中間層(B)の厚み比率としては10~80%であることが好ましく、15~60%であることがより好ましく、20~50%であることが特に好ましい。なお、本発明のシーラントフィルムにおいては、中間層(B)の厚み比率が低い場合(例えば40%以下、より好ましくは30%以下)とした場合にも好適なカット性を実現できることから、好適なカット性のシーラントフィルムを低コストで得ることができる。 Also, the thickness ratio of the intermediate layer (B) is preferably 10 to 80%, more preferably 15 to 60%, and particularly preferably 20 to 50%. In addition, in the sealant film of the present invention, since it is possible to realize suitable cut properties even when the thickness ratio of the intermediate layer (B) is low (for example, 40% or less, more preferably 30% or less), it is preferable. A cut sealant film can be obtained at low cost.
 具体的な厚みとしては、外層(A)の厚みとしては、2~60μmであることが好ましく、3~45μmであることがより好ましい。中間層(B1)の厚みは4~120μmであることが好ましく、8~100μmであることがより好ましい。内層(C)の厚みは2~60μmであることが好ましく、3~45μmであることがより好ましい。 Specifically, the thickness of the outer layer (A) is preferably 2 to 60 μm, more preferably 3 to 45 μm. The thickness of the intermediate layer (B1) is preferably 4 to 120 μm, and more preferably 8 to 100 μm. The thickness of the inner layer (C) is preferably 2 to 60 μm, and more preferably 3 to 45 μm.
 本発明のシーラントフィルムは、上記外層(A)、中間層(B)及び内層(C)が順に積層された積層フィルムであるが、当該層間には本発明の効果を損なわない範囲で、ガスバリア層や易接着層等の他の任意の層を設けてもよい。なお、本発明のシーラントフィルムは全層の層中の樹脂成分の平均密度が0.940g/cm以上であることが好ましく、0.940~0.945g/cmの層であることがより好ましい。このため、他の層を設ける場合には、当該他の層の層中の樹脂成分の平均密度も上記範囲であることが好ましい。 The sealant film of the present invention is a laminated film in which the outer layer (A), the intermediate layer (B), and the inner layer (C) are laminated in this order, but the gas barrier layer is within the range that does not impair the effects of the present invention. Alternatively, any other layer such as an easy adhesion layer may be provided. Incidentally, the sealant film of the present invention preferably has an average density of the resin component in the layer of all layers is 0.940 g / cm 3 or more, more be a layer of 0.940 ~ 0.945g / cm 3 preferable. For this reason, when providing another layer, it is preferable that the average density of the resin component in the layer of the said other layer is also the said range.
 本発明のシーラントフィルムの各層中には、本発明の効果を損なわない範囲で各種の添加剤を配合してもよい。当該添加剤としては、酸化防止剤、耐候安定剤、帯電防止剤、防曇剤、アンチブロッキング剤、滑剤、核剤、顔料等を例示できる。 Various additives may be blended in each layer of the sealant film of the present invention as long as the effects of the present invention are not impaired. Examples of the additive include an antioxidant, a weather resistance stabilizer, an antistatic agent, an antifogging agent, an antiblocking agent, a lubricant, a nucleating agent, and a pigment.
[製造方法]
 本発明のシーラントフィルムの製造方法としては、例えば、多層フィルムの各層に用いる樹脂(二種以上の樹脂や添加剤を含有する樹脂混合物を含む)を、それぞれ別々の押出機で加熱溶融させ、共押出多層ダイス法やフィードブロック法等の方法により溶融状態で積層した後、インフレーション法によりフィルム状に成形する共押出法が挙げられる。この共押出法は、各層の厚さの比率を比較的自由に調整することが可能で、衛生性に優れ、費用対効果にも優れたフィルムが得られるので好ましい。インフレーション法としては、空冷インフレーション法が好ましく、上向きの空冷インフレーション法を特に好ましく使用できる。また、複数台の押出機と多層サーキュラーダイを使用することで多層フィルムとすることができる。これらを用いて円筒状の溶融樹脂を上向きに押し出したのち、必要に応じて円筒状の溶融樹脂を膨張させて引き取ると共に、空冷にて溶融樹脂を冷却固化させた後、適宜裁断して所望のフィルムを得ることができる。
[Production method]
As a method for producing the sealant film of the present invention, for example, a resin (including a resin mixture containing two or more kinds of resins and additives) used for each layer of a multilayer film is heated and melted with a separate extruder. Examples include a coextrusion method in which a film is laminated in a molten state by a method such as an extrusion multilayer die method or a feed block method and then formed into a film shape by an inflation method. This coextrusion method is preferable because the thickness ratio of each layer can be adjusted relatively freely, and a film having excellent hygiene and cost effectiveness can be obtained. As the inflation method, an air-cooled inflation method is preferable, and an upward air-cooled inflation method can be particularly preferably used. Moreover, it can be set as a multilayer film by using several extruders and a multilayer circular die. After extruding the cylindrical molten resin upward using these, the cylindrical molten resin is expanded and taken out as necessary, and after cooling and solidifying the molten resin by air cooling, it is appropriately cut and cut as desired. A film can be obtained.
 本発明においては、特定の配向性を有するシーラントフィルムを得やすいことから、当該共押出インフレーション成形時のブロー比を1.0~2.3、ドローダウン比を20~60とすることで、好適な易カット性を実現できる。 In the present invention, since it is easy to obtain a sealant film having a specific orientation, it is preferable to set the blow ratio during the coextrusion inflation molding to 1.0 to 2.3 and the drawdown ratio to 20 to 60. Easy to cut.
 インフレーション法におけるドローダウン比とは、ラインスピードV(m/min)とダイス出口速度V(m/min)の比に相当し、V/Vで算出される。またブロー比とは、ダイスの直径D0とバブルの最終径Dの比に相当し、D/Dから算出される。本発明においてドローダウン比は、20~60とするが、25~50とすることが好ましく、30~40とすることがより好ましい。また、ブロー比は、1.0~2.3とすることが好ましく、1.1~2.0とすることがより好ましく、1.2~1.5とすることがさらに好ましい。これらの値を上記範囲に調整することで、ダイから吐出された樹脂が流れ方向に支配的に引き伸ばされ、優れた引き裂き性及び直進的な引き裂き性が発現し易くなる。 The drawdown ratio in the inflation method corresponds to the ratio between the line speed V L (m / min) and the die outlet speed V 0 (m / min), and is calculated as V L / V 0 . The blow ratio corresponds to the ratio between the diameter D0 of the die and the final diameter D L of the bubble, and is calculated from D L / D 0 . In the present invention, the drawdown ratio is 20 to 60, preferably 25 to 50, and more preferably 30 to 40. The blow ratio is preferably 1.0 to 2.3, more preferably 1.1 to 2.0, and still more preferably 1.2 to 1.5. By adjusting these values within the above-mentioned range, the resin discharged from the die is stretched predominantly in the flow direction, and excellent tearability and straight tearability are easily exhibited.
 インフレーション法において、押出機及びダイスの温度は、180~220℃であることが好ましい。ダイスの直径は、100~1200mmであることが好ましく、100~800mmであることがより好ましく、150~500mmであることがさらに好ましい。ダイスのリップ開度は0.5~5mmであることが好ましく、1.5~4.5mmであることがより好ましく、2.0~4.0mmであることがさらに好ましい。吐出量は10~400Kg/hであることが好ましく、20~300Kg/hであることがより好ましく、50~250Kg/hであることがさらに好ましい。ラインスピードは、ダイスの直径、ブロー比、及び吐出量によって異なるが、10~150m/minであることが好ましく、20~100m/minであることがさらに好ましい。 In the inflation method, the temperature of the extruder and the die is preferably 180 to 220 ° C. The diameter of the die is preferably 100 to 1200 mm, more preferably 100 to 800 mm, and even more preferably 150 to 500 mm. The lip opening of the die is preferably 0.5 to 5 mm, more preferably 1.5 to 4.5 mm, and further preferably 2.0 to 4.0 mm. The discharge amount is preferably 10 to 400 Kg / h, more preferably 20 to 300 Kg / h, and still more preferably 50 to 250 Kg / h. The line speed varies depending on the diameter of the die, the blow ratio, and the discharge amount, but is preferably 10 to 150 m / min, and more preferably 20 to 100 m / min.
[レトルト用包装材]
 本発明のシーラントフィルムは、レトルト用包装材として使用する場合、シーラントフィルムの外層(A)側表面に、他の基材フィルムを貼りあわせて使用できる。他の基材フィルムとしては、特に限定されるものではないが、本発明の効果を容易に発現させる観点から、プラスチック基材、特には二軸延伸された樹脂フィルムを用いることが好ましい。また透明性を必要としない用途の場合はアルミ箔を組み合わせて使用することもできる。
[Retort packaging materials]
When the sealant film of the present invention is used as a packaging material for retort, it can be used by bonding another base film to the outer layer (A) side surface of the sealant film. Although it does not specifically limit as another base film, From a viewpoint of making the effect of this invention express easily, it is preferable to use the plastic base material, especially the resin film stretched biaxially. For applications that do not require transparency, aluminum foil can be used in combination.
 延伸された樹脂フィルムとしては、例えば、二軸延伸ポリエステル(PET)、二軸延伸ポリプロピレン(OPP)、二軸延伸ポリアミド(PA)、エチレンビニルアルコール共重合体(EVOH)を中心層とした共押出二軸延伸ポリプロピレン、二軸延伸エチレンビニルアルコール共重合体(EVOH)、アルミナ蒸着PET、シリカ蒸着PET、アルミナ・シリカ二元蒸着PET、シリカ蒸着PA、アルミナ蒸着PA等が挙げられる。これらは、単独あるいは複合化して使用しても良い。 Examples of the stretched resin film include coextrusion using, as a central layer, biaxially stretched polyester (PET), biaxially stretched polypropylene (OPP), biaxially stretched polyamide (PA), and ethylene vinyl alcohol copolymer (EVOH). Biaxially stretched polypropylene, biaxially stretched ethylene vinyl alcohol copolymer (EVOH), alumina-deposited PET, silica-deposited PET, alumina-silica binary-deposited PET, silica-deposited PA, alumina-deposited PA and the like can be mentioned. These may be used alone or in combination.
 本発明のシーラントフィルムと、延伸された各種の基材フィルムを貼りあわせる方法としては、主に二つの加工方法が使用されている。一つは、本発明のシーラントフィルム、又は基材フィルムのラミネート面に必要に応じてアンカーコート剤を塗布し、加熱溶融されたポリマー膜(ポリエチレン、ポリプロピレンなど)を、本発明のシーラントフィルムと基材フィルムのラミネート面の間に薄膜状に押し出して圧着、積層させる、押出ラミネート法である。もう一つは、基材フィルムのラミネート面に接着剤を塗布した後、本発明のシーラントフィルムと基材フィルムを圧着、積層させるドライラミネート法であるが、レトルト包装に使用する場合ドライラミネート法が好ましい。 As a method for bonding the sealant film of the present invention and various stretched base film, two processing methods are mainly used. One is to apply an anchor coating agent on the laminate surface of the sealant film of the present invention or the base film, if necessary, and to heat and melt the polymer film (polyethylene, polypropylene, etc.) with the sealant film of the present invention. This is an extrusion laminating method in which a thin film is extruded between the laminate surfaces of the material film, and is pressed and laminated. The other is a dry laminating method in which an adhesive is applied to the laminating surface of the base film, and then the sealant film of the present invention and the base film are pressure-bonded and laminated. preferable.
 ラミネート用の接着剤は、ポリオール/イソシアネートによる硬化が一般的であり、レトルト用途等の高機能用途には多く利用されている。また従来、貼り合わせはアルミ箔とシーラントフィルムの組み合わせが一般的であったが、各種の透明蒸着フィルムが市販されるようになっており、内容物の視認性向上の要求から、透明蒸着フィルムとシーラントフィルムの貼り合わせも多くなっている。 The adhesive for laminating is generally cured by polyol / isocyanate, and is widely used for high-functional applications such as retort applications. Conventionally, the combination of the aluminum foil and the sealant film was generally used for pasting, but various transparent vapor deposition films have come to be marketed. From the demand for improving the visibility of the contents, the transparent vapor deposition film and Bonding of sealant film is also increasing.
 ラミネート用接着剤に用いられるポリオールとしては、例えば、後述するポリオールそのもの、或いはポリオールと後述するポリカルボン酸類とを反応させて得られるポリエステルポリオール、或いは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等の活性水素原子を2個有する化合物類を開始剤としてエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン、シクロヘキシレン等のモノマー類を付加重合したポリエーテル類等が挙げられる。 As a polyol used for the adhesive for laminating, for example, a polyol itself described later, or a polyester polyol obtained by reacting a polyol with a polycarboxylic acid described later, or ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, Ethylene oxide, propylene oxide, butylene starting from compounds having two active hydrogen atoms such as trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, etc. Examples thereof include polyethers obtained by addition polymerization of monomers such as oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and cyclohexylene.
 前記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ビスヒドロキシエトキシベンゼン、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリカプロラクトンジオール、ダイマージオール、ビスフェノールA、水素添加ビスフェノールA等のグリコール類、プロピオラクトン、ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン等の環状エステル化合物の開環重合反応によって得られるポリエステル類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等の活性水素原子を2個有する化合物類を開始剤としてエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン、シクロヘキシレン等のモノマー類を付加重合したポリエーテル類等が挙げられる。 Examples of the polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6-hexane. Diol, neopentyl glycol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, bishydroxyethoxybenzene, 1,4-cyclohexanediol, 1 , 4-cyclohexanedimethanol, triethylene glycol, polycaprolactone diol, dimer diol, bisphenol A, hydrogenated bisphenol A, and other glycols Polyesters obtained by ring-opening polymerization reaction of cyclic ester compounds such as propiolactone, butyrolactone, ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone, ethylene glycol, diethylene glycol, triethylene glycol, propylene Ethylene oxide, propylene oxide starting with compounds having two active hydrogen atoms such as glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, etc. , Polyethers obtained by addition polymerization of monomers such as butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, and cyclohexylene.
 前記ポリカルボン酸類としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物あるいはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体、ダイマー酸等の多塩基酸類が挙げられる。 Examples of the polycarboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid. Acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p , P'-dicarboxylic acids and anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, ester-forming derivatives of these dihydroxycarboxylic acids, dimer acids, etc. Of the polybasic acids.
 前記ポリイソシアネートとしては、例えば、イソシアネート基を分子内に少なくとも2つ有する有機化合物が挙げられる。有機ポリイソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3-(イソシアナートメチル)シクロヘキサン、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネートなどのポリイソシアネート;これらのポリイソシアネートのアダクト体、これらのポリイソシアネートのビュレット体、または、これらのポリイソシアネートのイソシアヌレート体などのポリイソシアネートの誘導体(変性物)などが挙げられる。 Examples of the polyisocyanate include organic compounds having at least two isocyanate groups in the molecule. Examples of the organic polyisocyanate include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), lysine diisocyanate, trimethylhexamethylene diisocyanate, 1 , 3- (isocyanatomethyl) cyclohexane, 1,5-naphthalene diisocyanate, polyisocyanate such as triphenylmethane triisocyanate; adducts of these polyisocyanates, burettes of these polyisocyanates, or of these polyisocyanates Derivatives (modified products) of polyisocyanates such as isocyanurates are exemplified.
 また、前記イソシアネートと前記ポリオールとをイソシアネート基が過剰となる混合比で反応したものを用いてもよい。 Further, a product obtained by reacting the isocyanate and the polyol with a mixing ratio in which an isocyanate group becomes excessive may be used.
 接着剤において、前記ポリオールの水酸基当量と前記ポリイソシアネートのイソシアネート当量との当量比ポリオール/イソシアネートが0.5~5.0であることが好ましい。 In the adhesive, the equivalent ratio polyol / isocyanate of the hydroxyl group equivalent of the polyol and the isocyanate equivalent of the polyisocyanate is preferably 0.5 to 5.0.
 本発明の包装材は、上記シーラントフィルムをシーラントとし、当該シーラントフィルムの外層(A)側に基材フィルムをラミネートする構成により、良好なシール性と、好適な裂け性による良好な開封性を実現できる。また、好適な耐熱性や耐破袋性を実現できることから、高温殺菌処理時にもヒートシール層となる内層(C)同士の融着や、外観ムラを抑制できる。このため、本発明のシーラントフィルムを各種基材と積層して形成される包装材は、レトルト食品用の包装材として好適に適用できる。 The packaging material of the present invention uses the above-mentioned sealant film as a sealant, and laminates a base film on the outer layer (A) side of the sealant film, thereby realizing good sealing properties and good tearability due to suitable tearing properties. it can. In addition, since suitable heat resistance and resistance to bag breakage can be realized, it is possible to suppress fusion between the inner layers (C) serving as a heat seal layer and uneven appearance even during high-temperature sterilization treatment. For this reason, the packaging material formed by laminating the sealant film of the present invention with various base materials can be suitably applied as a packaging material for retort food.
 本発明の包装材は、平袋型、自立性包装袋(スタンディングパウチ)型、チュ-ブ型等の各種形状への製袋して包装袋として好適に使用できる。具体的には、例えば、フィルム状の包装材1枚をシーラント層同士が対向するように折り重ね、または、本発明のフィルム状の包装材2枚をシーラント層同士が対向するように重ね合わせ、その周辺端部をヒートシールして、レトルト食品等の包装袋(レトルトパウチ)に製袋できる。また、必要に応じて、VノッチやIノッチ等の開封開始部を設けてもよい。 The packaging material of the present invention can be suitably used as a packaging bag by making bags into various shapes such as a flat bag type, a self-supporting packaging bag (standing pouch) type, and a tube type. Specifically, for example, one film-like packaging material is folded so that the sealant layers face each other, or two film-like packaging materials of the present invention are piled so that the sealant layers face each other, The peripheral edge part can be heat-sealed to form a bag for a retort food or the like (retort pouch). Moreover, you may provide opening start parts, such as V notch and I notch, as needed.
 本発明の包装材及び当該包装材を使用したレトルト食品用包装袋は、ボイル、レトルト殺菌等の高温熱水条件下での処理を必要とする食品の包装に好適に使用でき、例えば、カレー、シチュー、スープ、調理用ソース等の各種のレトルト食品包装用途に好適に適用できる。 The packaging material of the present invention and the packaging bag for retort foods using the packaging material can be suitably used for packaging foods that require treatment under high-temperature hot water conditions such as boiling and retort sterilization, such as curry, It can be suitably applied to various retort food packaging applications such as stew, soup, and cooking sauces.
(実施例1)
 外層、中間層及び内層の各層を形成する樹脂成分として、各々下記の樹脂を使用して、各層を形成する樹脂混合物を調整した。これら混合物を3台の押出機に各々供給して250℃で溶融した。溶融した樹脂をスパイラル型3層ダイを備えた空冷インフレーション法の共押出多層フィルム製造装置(ダイ温度:200℃)にそれぞれ供給して共溶融押出を行って、フィルムの層構成が、外層/中間層/内層の3層構成で、各層の厚み比率(%)が30/40/30の総厚60μmの積層フィルムを得た。成形時のブロー比は1.3、ドローダウン比は30とした。
Example 1
The resin mixture which forms each layer was prepared using the following resin as a resin component which forms each layer of an outer layer, an intermediate | middle layer, and an inner layer, respectively. These mixtures were each fed to three extruders and melted at 250 ° C. The melted resin is supplied to an air-cooled inflation co-extrusion multi-layer film production apparatus (die temperature: 200 ° C.) equipped with a spiral three-layer die, and co-melt extrusion is performed. A laminated film having a total thickness of 60 μm was obtained with a three-layer constitution of layer / inner layer and a thickness ratio (%) of each layer of 30/40/30. The blow ratio during molding was 1.3 and the drawdown ratio was 30.
 外層:MFR0.5g/10分(190℃、21.18N)、密度0.944g/cmの直鎖状低密度ポリエチレン(以下「LLDPE(1)」と称する。)
 中間層:LLDPE(1)70質量%と、ガラス転移温度(Tg)78℃、MFR10g/10分(230℃、21.18N)のノルボルネン系共重合体(以下、「COC」と称する。)30質量%の樹脂混合物
 内層:LLDPE(1)50質量%、MFR1g/10分(190℃、21.18N)、密度0.960g/cmの高密度ポリエチレン(以下、「HDPE」と称する)50質量%の混合樹脂物。
Outer layer: linear low density polyethylene (hereinafter referred to as “LLDPE (1)”) having an MFR of 0.5 g / 10 min (190 ° C., 21.18 N) and a density of 0.944 g / cm 3 .
Intermediate layer: LLDPE (1) 70% by mass, glass transition temperature (Tg) 78 ° C., MFR 10 g / 10 min (230 ° C., 21.18 N) norbornene copolymer (hereinafter referred to as “COC”) 30 Mass% resin mixture Inner layer: LLDPE (1) 50 mass%, MFR 1 g / 10 min (190 ° C., 21.18 N), density 0.960 g / cm 3 high density polyethylene (hereinafter referred to as “HDPE”) 50 mass % Mixed resin.
(実施例2)
 ブロー比を1.5、ドローダウン比を27とした以外は実施例1と同様にして積層フィルムを得た。
(Example 2)
A laminated film was obtained in the same manner as in Example 1 except that the blow ratio was 1.5 and the drawdown ratio was 27.
(実施例3)
 ブロー比を1.8、ドローダウン比を23とした以外は実施例1と同様にして積層フィルムを得た。
(Example 3)
A laminated film was obtained in the same manner as in Example 1 except that the blow ratio was 1.8 and the drawdown ratio was 23.
(実施例4)
 外層/中間層/内層の厚み比率(%)を40/25/35、ブロー比を1.2、ドローダウン比を35とした以外は実施例1と同様にして積層フィルムを得た。
Example 4
A laminated film was obtained in the same manner as in Example 1 except that the outer layer / intermediate layer / inner layer thickness ratio (%) was 40/25/35, the blow ratio was 1.2, and the drawdown ratio was 35.
(実施例5)
 外層/中間層/内層の厚み比率(%)を35/30/35とした以外は実施例1と同様にして積層フィルムを得た。
(Example 5)
A laminated film was obtained in the same manner as in Example 1 except that the thickness ratio (%) of the outer layer / intermediate layer / inner layer was 35/30/35.
(実施例6)
 外層、内層に使用する樹脂成分を下記とした以外は実施例2と同様にして積層フィルムを得た。
 外層:MFR0.9g/10分(190℃、21.18N)、密度0.929g/cmの直鎖状低密度ポリエチレン(以下、「LLDPE(2)」と称する。)60質量%と、HDPE40質量%の混合樹脂物
 内層:LLDPE(2)50質量%と、HDPE50質量%の混合樹脂物。
(Example 6)
A laminated film was obtained in the same manner as in Example 2 except that the resin components used for the outer layer and inner layer were as follows.
Outer layer: MFR 0.9 g / 10 min (190 ° C., 21.18 N), linear low density polyethylene (hereinafter referred to as “LLDPE (2)”) having a density of 0.929 g / cm 3 , 60% by mass, HDPE 40 Mixed resin material of mass% Inner layer: Mixed resin material of 50% by mass of LLDPE (2) and 50% by mass of HDPE.
(実施例7)
 外層及び内層に使用する樹脂成分をLLDPE(2)とした以外は実施例2と同様にして精機層フィルムを得た。
(Example 7)
A precision layer film was obtained in the same manner as in Example 2 except that the resin component used in the outer layer and the inner layer was LLDPE (2).
(実施例8)
 中間層に使用する樹脂成分をLLDPE(2)70質量%、COC30質量%とした以外は実施例2と同様にして積層フィルムを得た。
(Example 8)
A laminated film was obtained in the same manner as in Example 2 except that the resin component used in the intermediate layer was LLDPE (2) 70 mass% and COC 30 mass%.
(比較例1)
 ブロー比を2.5、ドローダウン比を15とした以外は実施例1と同様にして積層フィルムを得た。
(Comparative Example 1)
A laminated film was obtained in the same manner as in Example 1 except that the blow ratio was 2.5 and the drawdown ratio was 15.
(比較例2)
 中間層に使用する樹脂成分をLLDPE(1)とした以外は実施例2と同様にして積層フィルムを得た。
(Comparative Example 2)
A laminated film was obtained in the same manner as in Example 2 except that the resin component used for the intermediate layer was LLDPE (1).
(比較例3)
 外層、中間層及び内層の各層を形成する樹脂成分としては実施例1と同様とし、これら樹脂混合物を3台の押出機に各々供給して250℃で溶融した。溶融した樹脂をフィードブロックを有するTダイ・チルロール法の共押出多層フィルム製造装置(フィードブロック及びTダイ温度:250℃)にそれぞれ供給して共溶融押出を行って、フィルムの層構成が、外層/中間層/内層の3層構成で、各層の厚み比率が25/50/25%の総厚50μmのシーラントフィルムを得た。
(Comparative Example 3)
The resin components forming the outer layer, the intermediate layer, and the inner layer were the same as in Example 1, and these resin mixtures were respectively supplied to three extruders and melted at 250 ° C. The melted resin is supplied to a co-extruded multilayer film production apparatus (feed block and T-die temperature: 250 ° C.) using a T-die / chill roll method having a feed block, and co-melt extrusion is performed. A sealant film having a total thickness of 50 μm was obtained with a three-layer structure of / intermediate layer / inner layer and a thickness ratio of each layer of 25/50/25%.
 上記実施例及び比較例にて得られた積層フィルム(シーラントフィルム)につき、以下の評価を行った。得られた結果は下表に示した。 The following evaluation was performed on the laminated films (sealant films) obtained in the above examples and comparative examples. The results obtained are shown in the table below.
(1)規格化分子配向MORc
 実施例および比較例の各フィルムについて、規格化分子配向MORcを、王子計測機器株式会社製マイクロ波方式分子配向計MOA-2000により測定した。基準厚さtcは、60μmに設定した。
(1) Normalized molecular orientation MORc
For each film of Examples and Comparative Examples, the normalized molecular orientation MORc was measured with a microwave molecular orientation meter MOA-2000 manufactured by Oji Scientific Instruments. The reference thickness tc was set to 60 μm.
(2)引き裂き強度
 JIS K7128-1(トラウザー法)に従い、23℃、50%Rhの恒温室内にて流れ方向の引き裂き強度を測定した。
  1N以下 :〇(引き裂き性に優れる)
  1N超  :×(引き裂き性が劣る)
(2) Tear Strength Tear strength in the flow direction was measured in a constant temperature room at 23 ° C. and 50% Rh according to JIS K7128-1 (trouser method).
1N or less: 〇 (Excellent tearability)
Over 1N: × (Tearability is inferior)
(2)直進カット性
 フィルムの流れ方向の長さが150mm、幅方向の長さが50mmの試験片を用い、幅方向の中央に15mm幅の切れ込みを10mm入れ、切れ込みの先端の幅(W)を実測する。切れ込みの先端部に、予め用意した厚み0.3mm、幅15mm、長さ160mmのポリエステルシートをテープで貼り付ける。貼り付けたポリエステルシートを180°方向に折り返し、その先端部と反対側の切れ込み部を除いた試験片を引っ張り試験機に取り付け、300mm/minのスピードで、100mm引き裂き、その終点の幅(W)を実測する。この時、以下の式から保持率を求め、直進カット性の指標とした。
         保持率[%]= W/W×100
  100±10%  :〇(直進カット性に優れる)
  100±10%超 :×(直進性が乏しい)
(2) Straight-cutting property Using a test piece having a length of 150 mm in the flow direction of the film and a length of 50 mm in the width direction, 10 mm of a 15 mm wide cut is made at the center in the width direction, and the width of the tip of the cut (W 0 ) Is actually measured. A polyester sheet having a thickness of 0.3 mm, a width of 15 mm, and a length of 160 mm prepared in advance is attached to the tip of the cut with a tape. The attached polyester sheet is folded back in the direction of 180 °, the test piece excluding the notch on the side opposite to the tip is attached to a tensile tester, and it is torn 100 mm at a speed of 300 mm / min, and the width of the end point (W 1 ) Is actually measured. At this time, the retention rate was obtained from the following equation, and used as an index of straight cut property.
Retention rate [%] = W 1 / W 0 × 100
100 ± 10%: 〇 (Excellent straight cut performance)
More than 100 ± 10%: × (poor straightness is poor)
(3)シール強度
 厚さ25μmの二軸延伸ポリアミドフィルム上に、ワイヤーバーを用いて、塗布厚みが3.5g/mとなるようにポリエステル系接着剤を塗布する。接着剤を乾燥後、シーラントフィルムを貼り合わせ、40℃で24時間乾燥し、ヒートシール試験用ラミネートフィルムを得た。得られたフィルムを用いて、160℃、0.2MPa、1秒の条件でヒートシールした試験片を作成し、オートクレーブを用いて、121℃、30分の加熱処理を施した。加熱処理後の試験片を15mm幅に裁断し、引張試験機にて、シール強度を測定した。40N/15mm以上であれば、通常に使用できる。
(3) Seal strength A polyester adhesive is applied onto a biaxially stretched polyamide film having a thickness of 25 μm using a wire bar so that the applied thickness is 3.5 g / m 2 . After drying the adhesive, the sealant film was bonded and dried at 40 ° C. for 24 hours to obtain a heat seal test laminate film. Using the obtained film, a test piece heat-sealed under conditions of 160 ° C., 0.2 MPa, and 1 second was prepared, and heat treatment was performed at 121 ° C. for 30 minutes using an autoclave. The test piece after the heat treatment was cut into a width of 15 mm, and the seal strength was measured with a tensile tester. If it is 40 N / 15 mm or more, it can be used normally.
(4)内面融着
 (3)と同様にしてラミネートフィルムを得た。得られたフィルムのシールどうしを重ねて、オートクレーブを用いて、121℃、30分の加熱処理を施した。加熱処理後の試験片を常温まで冷却した後15mm幅に裁断し、引張試験機にて剥離強度を測定した。剥離強度が1N/15mm以下のものは耐熱性に優れるものと評価した。
(4) Inner surface fusion A laminate film was obtained in the same manner as in (3). The obtained film seals were overlapped and heat-treated at 121 ° C. for 30 minutes using an autoclave. The heat-treated test piece was cooled to room temperature and then cut into a width of 15 mm, and the peel strength was measured with a tensile tester. Those having a peel strength of 1 N / 15 mm or less were evaluated as excellent in heat resistance.
(5)外観ムラ
 (3)と同様にしてラミネートフィルムを得た。得られたフィルムを用いて、内寸が100mm×150mm(ヒートシール幅10mm)となるように製袋加工し、水200mlを密封した。水を封入した製袋品を121℃、30分レトルト処理した後、外観ムラの状態を目視で評価した。
(5) Appearance unevenness A laminate film was obtained in the same manner as in (3). Using the obtained film, the bag was processed so that the inner size was 100 mm × 150 mm (heat seal width 10 mm), and 200 ml of water was sealed. After the bag-making product enclosing water was retorted at 121 ° C. for 30 minutes, the appearance unevenness was visually evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表より明らかなとおり、実施例1~8の本願発明のシーラントフィルムは、引き裂きが容易な引き裂き強度と良好な直進カット性を有するものであった。また、実施例1~6、8のシーラントフィルムは、いずれも内面融着評価における剥離強度が1N/15mm以下であった。さらに、実施例1~6のシーラントフィルムは、外観評価においても外観ムラが視認されないものであった。一方、比較例のシーラントフィルムは、引き裂き容易性や良好な直進カット性が得られず、好適な引き裂き性を有さないものであった。 As is clear from the above table, the sealant films of the present invention of Examples 1 to 8 had tear strength that was easy to tear and good straight-cut properties. The sealant films of Examples 1 to 6 and 8 all had a peel strength of 1 N / 15 mm or less in the evaluation of inner surface fusion. Further, the sealant films of Examples 1 to 6 were not visually recognized even in appearance evaluation. On the other hand, the sealant film of the comparative example did not have easy tearability and good straight cut property, and did not have suitable tear property.

Claims (15)

  1.  外層(A)、中間層(B)及び内層(C)が積層された積層フィルムからなり、
     外層(A)及び内層(C)がポリエチレン系樹脂を含有し、
     中間層(B)が、直鎖状低密度ポリエチレン(b1)及び環状オレフィン系樹脂(b2)を含有し、前記中間層(B)に含まれる樹脂成分中の前記環状オレフィン系樹脂(b2)の含有量が20~40質量%であり、
     マイクロ波方式分子配向計にて測定される基準厚さを60μmとしたときの規格化分子配向MORc値が1.025以上であることを特徴とするシーラントフィルム。
    It consists of a laminated film in which the outer layer (A), the intermediate layer (B) and the inner layer (C) are laminated,
    The outer layer (A) and the inner layer (C) contain a polyethylene resin,
    The intermediate layer (B) contains linear low density polyethylene (b1) and a cyclic olefin resin (b2), and the cyclic olefin resin (b2) in the resin component contained in the intermediate layer (B). The content is 20 to 40% by mass,
    A sealant film having a normalized molecular orientation MORc value of 1.025 or more when a reference thickness measured by a microwave molecular orientation meter is 60 μm.
  2.  前記中間層(B)の厚みが、積層フィルムの総厚みの10~50%である請求項1に記載のシーラントフィルム。 The sealant film according to claim 1, wherein the thickness of the intermediate layer (B) is 10 to 50% of the total thickness of the laminated film.
  3.  前記外層(A)及び内層(C)中の樹脂成分の平均密度が0.940g/cm以上であり、前記直鎖状低密度ポリエチレン(b1)の密度が0.937g/cm以上である請求項1又は2に記載のシーラントフィルム。 The average density of the resin component in the outer layer (A) and the inner layer (C) is 0.940 g / cm 3 or more, and the density of the linear low density polyethylene (b1) is 0.937 g / cm 3 or more. The sealant film according to claim 1 or 2.
  4.  前記中間層(B)に含まれる樹脂成分中の前記直鎖状低密度ポリエチレン(b1)の含有量が60~80質量%である請求項1~3のいずれかに記載のシーラントフィルム。 The sealant film according to any one of claims 1 to 3, wherein the content of the linear low-density polyethylene (b1) in the resin component contained in the intermediate layer (B) is 60 to 80% by mass.
  5.  前記環状オレフィン系樹脂(b2)のガラス転移温度が140℃以下である請求項1~4のいずれかに記載のシーラントフィルム。 The sealant film according to any one of claims 1 to 4, wherein the cyclic olefin resin (b2) has a glass transition temperature of 140 ° C or lower.
  6.  総厚みが20~150μmである請求項1~5のいずれかに記載のシーラントフィルム。 The sealant film according to any one of claims 1 to 5, having a total thickness of 20 to 150 µm.
  7.  前記直鎖状低密度ポリエチレン(b1)のMFRが0.1~20g/10分、前記環状オレフィン系樹脂(b2)のMFRが0.2~17g/10分である請求項1~6のいずれかに記載のシーラントフィルム。 7. The MFR of the linear low density polyethylene (b1) is 0.1 to 20 g / 10 minutes, and the MFR of the cyclic olefin resin (b2) is 0.2 to 17 g / 10 minutes. The sealant film according to crab.
  8.  請求項1~7の何れかに記載のシーラントフィルムを使用した包装材。 A packaging material using the sealant film according to any one of claims 1 to 7.
  9.  外層(A)、中間層(B)及び内層(C)が積層された積層フィルムからなるシーラントフィルムを共押出インフレーション法により製造する方法であって、
     前記外層(A)を形成する外層用樹脂及び内層(C)を形成する内層用樹脂が、ポリエチレン系樹脂を含有し、前記中間層(B)を形成する中間層用樹脂が直鎖状低密度ポリエチレン(b1)及び環状オレフィン系樹脂(b2)を含有し、前記中間層用樹脂中に含まれる樹脂成分中の前記環状オレフィン系樹脂(b2)の含有量が20~40質量%であり、
    1.0~2.3のブロー比かつ20~60のドローダウン比で共押出インフレーション成形することを特徴とするシーラントフィルムの製造方法
    A method for producing a sealant film comprising a laminated film in which an outer layer (A), an intermediate layer (B) and an inner layer (C) are laminated by a coextrusion inflation method,
    The outer layer resin forming the outer layer (A) and the inner layer resin forming the inner layer (C) contain a polyethylene resin, and the intermediate layer resin forming the intermediate layer (B) is a linear low density. Containing polyethylene (b1) and a cyclic olefin resin (b2), and the content of the cyclic olefin resin (b2) in the resin component contained in the resin for the intermediate layer is 20 to 40% by mass,
    A method for producing a sealant film, comprising coextrusion inflation molding at a blow ratio of 1.0 to 2.3 and a draw down ratio of 20 to 60
  10.  前記積層フィルムのMORc値が1.025以上である請求項9に記載のシーラントフィルムの製造方法。 The method for producing a sealant film according to claim 9, wherein the MORc value of the laminated film is 1.025 or more.
  11.  前記積層フィルムの中間層(B)の厚みが、積層フィルムの総厚みの10~50%である請求項9又は10に記載のシーラントフィルムの製造方法。 The method for producing a sealant film according to claim 9 or 10, wherein the thickness of the intermediate layer (B) of the laminated film is 10 to 50% of the total thickness of the laminated film.
  12.  前記外層(A)及び内層(C)中の樹脂成分の平均密度が0.940g/cm以上であり、前記直鎖状低密度ポリエチレン(b1)の密度が0.937g/cm以上である請求項9~11のいずれかに記載のシーラントフィルムの製造方法。 The average density of the resin component in the outer layer (A) and the inner layer (C) is 0.940 g / cm 3 or more, and the density of the linear low density polyethylene (b1) is 0.937 g / cm 3 or more. The method for producing a sealant film according to any one of claims 9 to 11.
  13.  前記環状オレフィン系樹脂(b2)のガラス転移温度が140℃以下である請求項9~12のいずれかに記載のシーラントフィルムの製造方法。 The process for producing a sealant film according to any one of claims 9 to 12, wherein the cyclic olefin resin (b2) has a glass transition temperature of 140 ° C or lower.
  14.  総厚みが20~150μmである請求項9~13のいずれかに記載のシーラントフィルムの製造方法。 14. The method for producing a sealant film according to claim 9, wherein the total thickness is 20 to 150 μm.
  15.  前記直鎖状低密度ポリエチレン(b1)のMFRが0.1~20g/10分、前記環状オレフィン系樹脂(b2)のMFRが0.2~17g/10分である請求項9~14のいずれかに記載のシーラントフィルムの製造方法。 The MFR of the linear low-density polyethylene (b1) is 0.1 to 20 g / 10 minutes, and the MFR of the cyclic olefin resin (b2) is 0.2 to 17 g / 10 minutes. A method for producing a sealant film according to claim 1.
PCT/JP2018/015358 2017-04-26 2018-04-12 Sealant film and packaging material WO2018198794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018545398A JP6424997B1 (en) 2017-04-26 2018-04-12 Sealant film and packaging material
KR1020197022725A KR102654522B1 (en) 2017-04-26 2018-04-12 Sealant films and packaging materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087170 2017-04-26
JP2017087170 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018198794A1 true WO2018198794A1 (en) 2018-11-01

Family

ID=63919887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015358 WO2018198794A1 (en) 2017-04-26 2018-04-12 Sealant film and packaging material

Country Status (3)

Country Link
JP (1) JP6424997B1 (en)
KR (1) KR102654522B1 (en)
WO (1) WO2018198794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102300A (en) * 2019-12-25 2021-07-15 Dic株式会社 Laminate film and packaging bag

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220220A (en) * 1992-11-06 1994-08-09 Daicel Chem Ind Ltd Easily tearable film and its production
JP2000199939A (en) * 1999-01-04 2000-07-18 Fuji Photo Film Co Ltd Packaging material for photosensitive material and photosensitive material packaged body using the same
WO2004063273A1 (en) * 2003-01-10 2004-07-29 Amcor Flexibles Winterbourne Ltd Polymeric films and packages produced therefrom
JP2004284351A (en) * 2003-03-06 2004-10-14 Toyobo Co Ltd Laminated polyolefin film excellent in transparency and laminated packaging material
JP2009172902A (en) * 2008-01-25 2009-08-06 Toppan Printing Co Ltd Barrier packaging material and packaging bag having straight cut characteristics
US20090285511A1 (en) * 2008-03-07 2009-11-19 Pliant Corporation Cross Direction Tear Film and Package
JP2012030555A (en) * 2010-08-02 2012-02-16 Mitsubishi Plastics Inc Multilayered film
JP2014529520A (en) * 2011-08-23 2014-11-13 フータマキ フィルムズ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Multilayer film with linear tear propagation
JP2015199797A (en) * 2014-04-04 2015-11-12 積水フィルム株式会社 Heat shrinkable film
JP2016117160A (en) * 2014-12-18 2016-06-30 大日本印刷株式会社 Sealant film
JP2017024181A (en) * 2015-07-15 2017-02-02 積水フィルム株式会社 Laminated sheet having easy cutability in a specific direction and package using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510710B2 (en) 2010-02-10 2014-06-04 東レフィルム加工株式会社 Easy tear polypropylene-based unstretched film and laminate thereof
JP6241112B2 (en) 2013-07-31 2017-12-06 大日本印刷株式会社 Sealant film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220220A (en) * 1992-11-06 1994-08-09 Daicel Chem Ind Ltd Easily tearable film and its production
JP2000199939A (en) * 1999-01-04 2000-07-18 Fuji Photo Film Co Ltd Packaging material for photosensitive material and photosensitive material packaged body using the same
WO2004063273A1 (en) * 2003-01-10 2004-07-29 Amcor Flexibles Winterbourne Ltd Polymeric films and packages produced therefrom
JP2004284351A (en) * 2003-03-06 2004-10-14 Toyobo Co Ltd Laminated polyolefin film excellent in transparency and laminated packaging material
JP2009172902A (en) * 2008-01-25 2009-08-06 Toppan Printing Co Ltd Barrier packaging material and packaging bag having straight cut characteristics
US20090285511A1 (en) * 2008-03-07 2009-11-19 Pliant Corporation Cross Direction Tear Film and Package
JP2012030555A (en) * 2010-08-02 2012-02-16 Mitsubishi Plastics Inc Multilayered film
JP2014529520A (en) * 2011-08-23 2014-11-13 フータマキ フィルムズ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Multilayer film with linear tear propagation
JP2015199797A (en) * 2014-04-04 2015-11-12 積水フィルム株式会社 Heat shrinkable film
JP2016117160A (en) * 2014-12-18 2016-06-30 大日本印刷株式会社 Sealant film
JP2017024181A (en) * 2015-07-15 2017-02-02 積水フィルム株式会社 Laminated sheet having easy cutability in a specific direction and package using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102300A (en) * 2019-12-25 2021-07-15 Dic株式会社 Laminate film and packaging bag
JP7342694B2 (en) 2019-12-25 2023-09-12 Dic株式会社 Laminated films and packaging materials

Also Published As

Publication number Publication date
KR102654522B1 (en) 2024-04-08
KR20190139833A (en) 2019-12-18
JPWO2018198794A1 (en) 2019-06-27
JP6424997B1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6341340B2 (en) Sealant film and packaging material
EP3434469B1 (en) Multilayer laminate film assembly and standing pouch
TW201607751A (en) Multilayer sealant film
JP5582669B2 (en) SEALANT RESIN COMPOSITION, SEALANT FILM AND USE THEREOF
PL201650B1 (en) Multilayer thermoplastic structure
JP6057040B1 (en) Sealant film and laminate film
JP5991504B2 (en) Easy-penetrating lid
JP6863085B2 (en) Sealant film and packaging material
JP6988082B2 (en) Sealant film and packaging material
JP6520104B2 (en) Sealant film
JP6424997B1 (en) Sealant film and packaging material
JP6355007B1 (en) Method for producing sealant film
JP6477985B2 (en) Laminated film, laminated film and packaging container
JP2018030317A (en) Coextruded film and multilayer coextruded laminate
JP2018062073A (en) Laminated film with heat-sealing property, rigidity and impact resistance
JP2018062072A (en) Laminated film with rigidity and impact resistance
JP7464034B2 (en) Multilayer film, packaging material and packaging body
JPH11235799A (en) Composite polyolefin film
JP6168255B2 (en) Sealant film and laminate film
JP2020015221A (en) Sealant film, packaging material and package
JP6398841B2 (en) Packaging film
JP6511794B2 (en) Sealant film
JP2017132134A (en) Laminate and method for manufacturing the same, and liquid packaging bag
JP7657834B2 (en) Sealant film and its uses
JP7537235B2 (en) Polypropylene multi-layer film, packaging material and package using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545398

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022725

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790037

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载