WO2018198603A1 - Laminated balun - Google Patents
Laminated balun Download PDFInfo
- Publication number
- WO2018198603A1 WO2018198603A1 PCT/JP2018/010976 JP2018010976W WO2018198603A1 WO 2018198603 A1 WO2018198603 A1 WO 2018198603A1 JP 2018010976 W JP2018010976 W JP 2018010976W WO 2018198603 A1 WO2018198603 A1 WO 2018198603A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inductor
- terminal
- balanced
- electrode
- unbalanced
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims description 38
- 238000003475 lamination Methods 0.000 abstract description 3
- 239000003990 capacitor Substances 0.000 description 82
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/42—Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/46—Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
Definitions
- the present invention relates to a laminated balun that performs signal conversion between an unbalanced signal and a balanced signal.
- a balanced line may be used as a signal line in order to reduce the influence of external noise.
- the Rx signal may be input from the antenna to the RF circuit and the Tx signal may be output from the RF circuit to the antenna through a balanced line.
- FIG. 10 is an equivalent circuit diagram of the laminated balance filter 200 disclosed in Japanese Patent Laid-Open No. 2013-138410.
- the laminated balance filter 200 has one unbalanced terminal UB and a balanced terminal B composed of a first terminal B1 and a second terminal B2.
- the laminated balance filter 200 outputs the unbalanced signal input to the unbalanced terminal UB as a balanced signal from the balanced terminal B (first terminal B1 and second terminal B2), and the balanced terminal B (first terminal B1 and second terminal).
- the balanced signal input to the terminal B2) is output as an unbalanced signal from the unbalanced terminal UB.
- the laminated balance filter 200 is manufactured by forming an inductor conductor pattern, a capacitor conductor pattern, a ground conductor pattern, a via conductor pattern, and the like inside a laminate in which a plurality of dielectric layers are laminated. Between the unbalanced terminal UB and the balanced terminal B, band-pass filters LC1 and LC2 configured by LC parallel resonators are inserted. A mutual inductance M10 is generated between the inductor L10 of the bandpass filter LC1 and the inductor L20 of the bandpass filter LC2, and a mutual inductance M20 is generated between the inductor L20 and the balanced inductor L30.
- FIG. 11 is a diagram illustrating an example of a balanced / unbalanced conversion circuit configured by connecting one divider 300 and two stacked balanced filters 200.
- the divider 300 includes a first terminal 101, a second terminal 102, and a third terminal 103, distributes a signal input to the first terminal 101, outputs the signal from the second terminal 102 and the third terminal 103, and outputs a second terminal.
- the signals input to 102 and the third terminal 103 are combined and output from the first terminal 101.
- the antenna Ant and the first terminal 101 of the divider 300 are connected by an unbalanced line.
- the second terminal 102 of the divider 300 and the unbalanced terminal UB of one laminated balance filter 200 are connected by an unbalanced line
- the third terminal 103 of the divider 300 and the unbalanced terminal of the other laminated balance filter 200 are connected.
- UB is connected by an unbalanced line.
- a balanced line on the Tx side is connected to the balanced terminal B (first terminal B1 and second terminal B2) of one multilayer balanced filter 200, and the balanced terminal B (first terminal B1 and first terminal B1) of the other multilayer balanced filter 200 is connected.
- a balanced line on the Rx side is connected to the two terminals B2).
- the Tx signal is output from the RF circuit and the Rx signal is input to the RF circuit through a balanced line, and the Tx signal is transmitted and the Rx signal is received.
- the conventional method using one divider 300 and two laminated balance filters 200 in order to share one antenna Ant there are the following problems.
- the signal line connected to the antenna Ant is branched by the divider 300, there is a problem that insertion loss occurs in the signal.
- the Rx signal sent from the antenna Ant to the RF circuit has been attenuated by about 3 dB by passing through the divider.
- each insertion balance filter 200 also has an insertion loss, there is a problem that the total insertion loss becomes large.
- the present disclosure has been made to solve the above-described problem, and an object thereof is to provide a small-sized laminated balun including an unbalanced terminal and two pairs of balanced terminals and having a small signal insertion loss. To do.
- a laminated balun includes a laminated body in which a plurality of dielectric layers are laminated, a plurality of inductor conductor patterns formed between the layers of the laminated body, and a plurality of terminals formed on the surface of the laminated body.
- the plurality of terminals include an unbalanced terminal, a first balanced terminal, a second balanced terminal, and a ground terminal.
- Each of the first balanced terminal and the second balanced terminal has a first terminal and a second terminal.
- the plurality of inductor conductor patterns include an unbalanced inductor conductor pattern electrically connected between the unbalanced terminal and the ground terminal, a first terminal of the first balanced terminal, and a second terminal of the first balanced terminal.
- the unbalanced inductor conductor pattern is disposed between the first balanced side inductor conductor pattern and the second balanced side inductor conductor pattern.
- the plurality of dielectric layers include first to fourth dielectric layers that are sequentially stacked.
- the first balanced-side inductor conductor pattern is formed between the first dielectric layer and the second dielectric layer.
- the unbalanced inductor conductor pattern is formed between the second dielectric layer and the third dielectric layer.
- the second balanced-side inductor conductor pattern is formed between the third dielectric layer and the fourth dielectric layer.
- the multilayer balun of the present disclosure includes an unbalanced terminal and two pairs of balanced terminals, since no divider is used, there is no signal insertion loss due to passing through the divider, and overall insertion loss is reduced. small.
- the laminated balun of the present disclosure is configured such that the function conventionally performed by using one divider and two baluns is performed by one balun, and is downsized. Therefore, in a communication device in which the multilayer balun of the present disclosure is mounted, the space required for mounting can be reduced.
- FIG. 1 is an equivalent circuit diagram of a laminated balun according to an embodiment of the present invention. It is an external appearance perspective view of a laminated balun. It is a disassembled perspective view of the whole laminated balun. It is a disassembled perspective view which shows the dielectric material layer for eight layers from the bottom among several dielectric material layers which comprise a lamination
- FIG. 5 is an exploded perspective view showing eight dielectric layers stacked on the dielectric layer shown in FIG. 4.
- FIG. 6 is an exploded perspective view showing five dielectric layers stacked on the dielectric layer shown in FIG. 5. It is a figure which shows the frequency characteristic between the unbalanced terminal UB and 1st balanced terminal Tx (Tx1, Tx2).
- FIG. 6 is an equivalent circuit diagram of a multilayer balance filter described in Patent Document 1.
- FIG. It is an equivalent circuit diagram showing an example of a balun circuit configured by connecting one divider and two laminated balance filters.
- FIG. 1 to 6 show a laminated balun 100 according to an embodiment of the present invention.
- FIG. 1 is an equivalent circuit diagram of the laminated balun 100 according to the embodiment of the present invention.
- FIG. 2 is an external perspective view of the laminated balun 100.
- FIG. 3 is an exploded perspective view of the entire laminated balun 100.
- FIG. 4 is an exploded perspective view showing dielectric layers corresponding to eight layers from the bottom among the plurality of dielectric layers constituting the laminated balun 100.
- FIG. 5 is an exploded perspective view showing eight dielectric layers stacked on the dielectric layer shown in FIG.
- FIG. 6 is an exploded perspective view showing five dielectric layers stacked on the dielectric layer shown in FIG.
- the laminated balun 100 includes one unbalanced terminal UB.
- the laminated balun 100 includes a first balanced terminal Tx having a first terminal Tx1 and a second terminal Tx2, and a second balanced terminal Rx having a first terminal Rx1 and a second terminal Rx2.
- two pairs of balanced terminals are shown as a first balanced terminal Tx and a second balanced terminal Rx for convenience, but the usage of each balanced terminal is arbitrary, and the first balanced terminal is The Tx terminal is not limited to using the second balanced terminal as the Rx terminal.
- the laminated balun 100 includes a low-pass filter.
- the low-pass filter includes a first inductor L11 having one end connected to the unbalanced terminal UB, a second inductor L12 having one end connected to the first inductor L11, and a connection point between the first inductor L11 and the second inductor L12.
- the first capacitor C1 is inserted between the first capacitor C1 and the ground. With this low-pass filter, the laminated balun 100 can pass only signals in an arbitrarily selected frequency band.
- a T-type low-pass filter is used.
- the type of the low-pass filter is not limited to the T-type, and other types may be used.
- the multilayer balun 100 includes an unbalanced inductor L2.
- the unbalanced inductor L2 is connected in parallel with the second capacitor C2.
- the unbalanced inductor L2 and the second capacitor C2 connected in parallel constitute an LC parallel resonator.
- the multilayer balun 100 includes a first balanced-side inductor in which a first inductor portion L31, a second inductor portion L32, and a third inductor portion L33 are connected in series.
- the first balanced-side inductor is connected between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx.
- a DC feed terminal DCfeed is connected to an intermediate portion of the second inductor portion L32.
- the multilayer balun 100 includes a second balanced-side inductor in which a first inductor portion L41, a second inductor portion L42, and a third inductor portion L43 are connected in series.
- the second balanced-side inductor is connected between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
- the unbalanced inductor L2 is electromagnetically coupled to the first balanced inductor.
- the unbalanced inductor L2 is mainly electromagnetically coupled to the second inductor portion L32 of the first balanced inductor. That is, a mutual inductance M1 is generated between the unbalanced inductor L2 and the second inductor portion L32 of the first balanced inductor.
- the unbalanced inductor L2 is electromagnetically coupled to the second balanced inductor.
- the unbalanced inductor L2 is mainly electromagnetically coupled to the second inductor portion L42 of the second balanced inductor. That is, a mutual inductance M2 is generated between the unbalanced inductor L2 and the second inductor portion L42 of the second balanced inductor.
- the multilayer balun 100 further includes a third capacitor C3 inserted between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx.
- the third capacitor C3 forms an LC parallel resonator with the first balanced inductors (L31, L32, L33), and the LC parallel resonator formed with the unbalanced inductor L2 and the second capacitor C2 described above. Together, they constitute a first band pass filter.
- the first band pass filter passes only a signal in an arbitrarily selected frequency band between the unbalanced terminal UB and the first balanced terminal Tx.
- the impedance on the first balanced terminal Tx (Tx1, Tx2) side is adjusted by selecting the constants of the first balanced inductors (L31, L32, L33) and the third capacitor C3. Can do.
- the multilayer balun 100 further includes a fourth capacitor C4 inserted between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
- the fourth capacitor C4 forms an LC parallel resonator with the second balanced-side inductors (L41, L42, L43), and the LC parallel resonator formed with the unbalanced-side inductor L2 and the second capacitor C2 described above. Together, they constitute a second bandpass filter.
- the second band pass filter passes only a signal in an arbitrarily selected frequency band between the unbalanced terminal UB and the second balanced terminal Rx.
- the impedance on the second balanced terminal Rx (Rx1, Rx2) side is adjusted by selecting the constants of the second balanced inductors (L41, L42, L43) and the fourth capacitor C4. Can do.
- the laminated balun 100 composed of the above equivalent circuits can output the balanced signal input to the first balanced terminal Tx as an unbalanced signal from the unbalanced terminal UB. Note that if DC power is supplied to the DC feed terminal DCfeed, the strength of the unbalanced signal output from the unbalanced terminal UB can be increased. Furthermore, the unbalanced signal input to the unbalanced terminal UB can be output as a balanced signal from the second balanced terminal Rx.
- balanced signals having substantially the same amplitude and different phases are input to the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx. Furthermore, balanced signals having substantially the same amplitude and different phases are output from the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
- a laminated balun 100 composed of the above equivalent circuits can be constituted by, for example, a laminated body 1 shown in FIG. As shown in FIG. 2, the laminated balun 100 includes a laminated body 1 in which a plurality of dielectric layers are laminated, and a plurality of terminals formed on the surface of the laminated body 1. The plurality of terminals are formed on the side surfaces when the pair of main surfaces having the largest area of the rectangular parallelepiped laminated body 1 are the upper surface and the bottom surface.
- the ten terminals are an unbalanced terminal UB, a first terminal Tx1 and a second terminal Tx2 that the first balanced terminal Tx has, a first terminal Rx1 and a second terminal Rx2 that the second balanced terminal Rx has, and a first ground terminal G1.
- Second ground terminal G2 DC feed terminal DCfeed, first floating terminal F1, and second floating terminal F2.
- the first floating terminal F1, the first ground terminal G1, the unbalanced terminal UB, and the second ground terminal G2 are sequentially arranged on the front side surface of the multilayer body 1 in FIG. 2 in the clockwise direction. It is formed.
- a DC feed terminal DCfeed is formed on the left side surface of the laminate 1 in FIG.
- the second terminal Tx2 of the first balanced terminal Tx, the first terminal Tx1, the second terminal Rx2 of the second balanced terminal Rx, One terminal Rx1 is formed.
- the second floating terminal F2 is formed on the right side surface of the multilayer body 1 in FIG. Note that both ends of each terminal are formed to extend on the lower main surface and the upper main surface of the laminate 1, respectively.
- the first floating terminal F1 and the second floating terminal F2 are not connected to the circuit inside the stacked body 1, and are bonded to a land electrode such as a substrate when the stacked balun 100 is mounted to increase mounting strength. Used for.
- Unbalanced terminal UB first terminal Tx1 and second terminal Tx2 of first balanced terminal Tx, first terminal Rx1 and second terminal Rx2 of second balanced terminal Rx, first ground terminal G1, second ground terminal G2, DC
- the feed terminal DCfeed, the first floating terminal F1, and the second floating terminal F2 can be made of, for example, a metal mainly composed of Ag, Cu, or an alloy thereof.
- a plating layer containing Ni, Sn, Au or the like as a main component may be formed over one layer or a plurality of layers as necessary.
- the multilayer body 1 is formed by laminating dielectric layers 1a to 1u made of, for example, ceramics in order from the bottom.
- the laminated balun 100 includes capacitor conductor patterns (hereinafter simply referred to as “capacitor electrodes”) 2a to 2i and connection conductor patterns (hereinafter simply referred to as “connections”) formed between the layers of the multilayer body 1. Electrode 3) and inductor conductor patterns (hereinafter simply referred to as “inductor electrodes”) 4a to 4w.
- the laminated balun 100 includes via conductor patterns (hereinafter simply referred to as “via electrodes”) 5a to 5v formed in the laminated body 1 in the laminating direction of the dielectric layers 1a to 1u.
- connection electrode 3a is formed on the upper main surface of the dielectric layer 1b. One end of the connection electrode 3a is connected to the DC feed terminal DCfeed.
- Two capacitor electrodes 2a and 2b are formed on the upper main surface of the dielectric layer 1c.
- the capacitor electrode 2a is connected to the first ground terminal G1 and the second ground terminal G2.
- Capacitor electrodes 2c to 2h are formed on the upper main surface of the dielectric layer 1d. Capacitor electrodes 2c and 2d are formed at positions overlapping capacitor electrode 2a when viewed from the stacking direction of dielectric layers 1a to 1u.
- the capacitor electrode 2e is connected to the second terminal Tx2 of the first balanced terminal Tx
- the capacitor electrode 2f is connected to the first terminal Tx1 of the first balanced terminal Tx
- the capacitor electrode 2g is connected to the second terminal Rx2 of the second balanced terminal Rx.
- 2h is connected to the first terminal Rx1 of the second balanced terminal Rx.
- Capacitor electrodes 2e and 2f are formed at positions that overlap capacitor electrode 2b when viewed from the stacking direction of dielectric layers 1a to 1u.
- Two capacitor electrodes 2i and 2j are formed on the upper main surface of the dielectric layer 1e.
- the capacitor electrode 2i is formed at a position overlapping the capacitor electrodes 2e and 2f when viewed from the stacking direction of the dielectric layers 1a to 1u.
- the capacitor electrode 2j is formed at a position overlapping the capacitor electrodes 2g and 2h when viewed from the stacking direction of the dielectric layers 1a to 1u.
- An inductor electrode 4a is formed on the upper main surface of the dielectric layer 1f.
- Two inductor electrodes 4b and 4c are formed on the upper main surface of the dielectric layer 1g.
- Two inductor electrodes 4d and 4e are formed on the upper main surface of the dielectric layer 1h.
- Two inductor electrodes 4f and 4g are formed on the upper main surface of the dielectric layer 1i.
- One end of the inductor electrode 4f is connected to the unbalanced terminal UB, and one end of the inductor electrode 4g is connected to the second terminal Rx2 of the second balanced terminal Rx.
- Two inductor electrodes 4h and 4i are formed on the upper main surface of the dielectric layer 1j. One end of the inductor electrode 4h is connected to the second terminal Tx2 of the first balanced terminal Tx.
- Two inductor electrodes 4j and 4k are formed on the upper main surface of the dielectric layer 1k.
- Two inductor electrodes 4l and 4m are formed on the upper main surface of the dielectric layer 1l.
- the inductor electrode 4l has an open annular shape.
- An inductor electrode 4n is formed on the upper main surface of the dielectric layer 1m.
- An inductor electrode 4o is formed on the upper main surface of the dielectric layer 1n.
- An inductor electrode 4p is formed on the upper main surface of the dielectric layer 1o.
- the inductor electrodes 4n to 4p have an open ring shape. When viewed from the stacking direction of the dielectric layers 1a to 1u, at least a part of the region surrounded by any of the annular inductor electrodes 4n to 4p overlaps with the region surrounded by the annular inductor electrode 4l.
- An inductor electrode 4q is formed on the upper main surface of the dielectric layer 1p.
- the inductor electrode 4q is an open ring. When viewed from the stacking direction of the dielectric layers 1a to 1u, at least a part of the region surrounded by the annular inductor electrode 4q overlaps with the region surrounded by the annular inductor electrodes 4n to 4p.
- Two inductor electrodes 4r and 4s are formed on the upper main surface of the dielectric layer 1q.
- Two inductor electrodes 4t and 4u are formed on the upper main surface of the dielectric layer 1r.
- One end of the inductor electrode 4t is connected to the first terminal Tx1 of the first balanced terminal Tx.
- An inductor electrode 4v is formed on the upper main surface of the dielectric layer 1s.
- An inductor electrode 4w is formed on the upper main surface of the dielectric layer 1t. One end of the inductor electrode 4w is connected to the first terminal Rx1 of the second balanced terminal Rx.
- the via electrode 5a penetrates through the dielectric layers 1c to 1l and connects the other end of the connection electrode 3a and the intermediate part of the inductor electrode 4l.
- the via electrode 5b penetrates the dielectric layers 1e and 1f and connects the capacitor electrode 2c and the intermediate portion of the inductor electrode 4a.
- the via electrode 5c passes through the dielectric layers 1e to 1m, and connects the capacitor electrode 2d, one end of the inductor electrode 4d, and one end of the inductor electrode 4n.
- the via electrode 5d penetrates the dielectric layer 1g and connects one end of the inductor electrode 4a and one end of the inductor electrode 4b.
- the via electrode 5e penetrates the dielectric layer 1g and connects the other end of the inductor electrode 4a and one end of the inductor electrode 4c.
- the via electrode 5f penetrates the dielectric layer 1h and connects the other end of the inductor electrode 4b and the other end of the inductor electrode 4d.
- the via electrode 5g penetrates the dielectric layer 1h and connects the other end of the inductor electrode 4c and one end of the inductor electrode 4e.
- the via electrode 5h penetrates the dielectric layer 1i and connects the other end of the inductor electrode 4e and the other end of the inductor electrode 4f.
- the via electrode 5i passes through the dielectric layer 1j and connects the other end of the inductor electrode 4g and one end of the inductor electrode 4i.
- the via electrode 5j penetrates the dielectric layer 1k and connects the other end of the inductor electrode 4h and one end of the inductor electrode 4j.
- the via electrode 5k penetrates the dielectric layer 1k and connects the other end of the inductor electrode 4i and one end of the inductor electrode 4k.
- Via electrode 5l penetrates through dielectric layer 11 and connects the other end of inductor electrode 4j and one end of inductor electrode 4l.
- the via electrode 5m penetrates the dielectric layer 11 and connects the other end of the inductor electrode 4k and one end of the inductor electrode 4m.
- the via electrode 5n penetrates the dielectric layers 1m to 1p and connects the other end of the inductor electrode 4m and one end of the inductor electrode 4q.
- the via electrode 5o penetrates the dielectric layers 1m to 1q and connects the other end of the inductor electrode 4l and one end of the inductor electrode 4r.
- the via electrode 5p penetrates the dielectric layer 1n and connects the other end of the inductor electrode 4n and one end of the inductor electrode 4o.
- the via electrode 5q penetrates the dielectric layer 1o and connects the other end of the inductor electrode 4o and the other end of the inductor electrode 4p.
- Via electrode 5r penetrates through dielectric layer 1q and connects the other end of inductor electrode 4q and one end of inductor electrode 4s.
- the via electrode 5s penetrates the dielectric layer 1r and connects the other end of the inductor electrode 4r and the other end of the inductor electrode 4t.
- the via electrode 5t penetrates the dielectric layer 1r and connects the other end of the inductor electrode 4s and one end of the inductor electrode 4u.
- the via electrode 5u penetrates the dielectric layer 1s and connects the other end of the inductor electrode 4u and one end of the inductor electrode 4v.
- the via electrode 5v passes through the dielectric layer 1t and connects the other end of the inductor electrode 4v and the other end of the inductor electrode 4w.
- capacitor electrodes 2a to 2i, connection electrodes 3a, inductor electrodes 4a to 4w, and via electrodes 5a to 5v can be made of, for example, Ag, Cu, or a metal mainly composed of these alloys.
- the laminated balun 100 of the present embodiment configured by laminating dielectric layers having the above-described configuration can be manufactured by a general manufacturing method conventionally used for manufacturing laminated baluns. it can.
- the first inductor L11 of the low-pass filter starts from the unbalanced terminal UB, passes through the inductor electrode 4f, the via electrode 5h, the inductor electrode 4e, the via electrode 5g, the inductor electrode 4c, the via electrode 5e, and the inductor electrode 4a. It is formed by a line having the electrode 5b as an end point.
- the first capacitor C1 of the low-pass filter is between the capacitor electrode 2c connected to the via electrode 5b that is the end point of the first inductor L11, and the capacitor electrode 2a connected to the first ground terminal G1 and the second ground terminal G2. It is formed by the capacitance formed in
- the second inductor L12 of the low-pass filter starts from the via electrode 5b that is the end point of the first inductor L11, passes through the inductor electrode 4a, the via electrode 5d, the inductor electrode 4b, the via electrode 5f, and the inductor electrode 4d, and passes through the inductor electrode.
- 4d is formed by a line having one end as an end point.
- the unbalanced inductor L2 starts from one end of the inductor electrode 4d that is the end point of the second inductor L12, and passes through the via electrode 5c, the inductor electrode 4n, the via electrode 5p, the inductor electrode 4o, the via electrode 5q, and the inductor electrode 4p. In addition, it is formed by a line having the second ground terminal G2 as an end point.
- One end of the inductor electrode 4d is electrically connected to the unbalanced terminal UB via each electrode constituting the second inductor L12 and each electrode constituting the first inductor L11.
- each of the inductor electrodes 4n to 4p constituting the unbalanced inductor L2 is electrically connected between the unbalanced terminal UB and the second ground terminal G2.
- the state of being “electrically connected” indicates a state of being connected by a conductive path or a state of being connected through a capacitor, and is not limited to a state of being directly connected, but another member is interposed therebetween. It also includes a state of being indirectly connected.
- the second capacitor C2 connected in parallel with the unbalanced inductor L2 includes a capacitor electrode 2d connected to one end of the inductor electrode 4d, which is the end point of the second inductor L12, and the via electrode 5c, the first ground terminal G1, and the second capacitor C2.
- the capacitor is formed between the capacitor electrode 2a connected to the two ground terminals G2.
- the first balanced-side inductor starts from the first terminal Tx1 of the first balanced terminal Tx, and starts from the inductor electrode 4t, the via electrode 5s, the inductor electrode 4r, the via electrode 5o, the inductor electrode 41, the via electrode 51, the inductor electrode 4j, and the via.
- the line is formed by a line having the second terminal Tx2 of the first balanced terminal Tx as an end point via the electrode 5j and the inductor electrode 4h. That is, each of the inductor electrodes 4t, 4r, 4l, 4j, and 4h is electrically connected between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx.
- the inductor electrode 4l formed so as to surround a region overlapping at least a part of the region surrounded by any of the annular inductor electrodes 4n to 4p when viewed from the stacking direction is the first balanced-side inductor.
- 2nd inductor part L32 is comprised.
- the region surrounded by the inductor electrode 41 and the region surrounded by any one of the inductor electrodes 4n to 4p are overlapped, so that an unbalance formed by the second inductor portion L32 configured by the inductor electrode 4l and the inductor electrodes 4n to 4p.
- the side inductor L2 is electromagnetically coupled.
- the inductor electrode 4t, the via electrode 5s, the inductor electrode 4r, and the via electrode 5o that are electrically connected between the first terminal Tx1 of the first balanced terminal Tx and the inductor electrode 4l are the first inductor of the first balanced-side inductor.
- Part L31 is configured.
- the via electrode 51, the inductor electrode 4j, the via electrode 5j, and the inductor electrode 4h that are electrically connected between the inductor electrode 41 and the second terminal Tx2 of the first balanced terminal Tx are the third inductor of the first balanced-side inductor.
- Part L33 is configured.
- the intermediate portion of the inductor electrode 4l constituting the second inductor portion L32 of the first balanced inductor is connected to the DC feed terminal DCfeed via the via electrode 5a and the connection electrode 3a.
- the second balanced-side inductor starts from the first terminal Rx1 of the second balanced terminal Rx, and starts from the inductor electrode 4w, via electrode 5v, inductor electrode 4v, via electrode 5u, inductor electrode 4u, via electrode 5t, inductor electrode 4s, via The second balanced terminal Rx second through the electrode 5r, the inductor electrode 4q, the via electrode 5n, the inductor electrode 4m, the via electrode 5m, the inductor electrode 4k, the via electrode 5k, the inductor electrode 4i, the via electrode 5i, and the inductor electrode 4g. It is formed by a line having the terminal Rx2 as an end point.
- each of the inductor electrodes 4w, 4v, 4u, 4s, 4q, 4m, 4k, 4i, and 4g is electrically connected between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
- the inductor electrode 4q formed so as to surround at least a part of the region surrounded by any of the annular inductor electrodes 4n to 4p when viewed from the stacking direction is a second balanced-side inductor.
- the second inductor portion L42 is configured.
- the region surrounded by the inductor electrode 4q and the region surrounded by any one of the inductor electrodes 4n to 4p are overlapped, so that an unbalance formed by the second inductor portion L42 formed by the inductor electrode 4q and the inductor electrodes 4n to 4p is formed.
- the side inductor L2 is electromagnetically coupled.
- the inductor electrode 4w, the via electrode 5v, the inductor electrode 4v, the via electrode 5u, the inductor electrode 4u, the via electrode 5t, and the inductor electrode that are electrically connected between the first terminal Rx1 of the second balanced terminal Rx and the inductor electrode 4q. 4s and the via electrode 5r constitute the first inductor portion L41 of the second balanced-side inductor.
- inductor electrode 4m via electrode 5m, inductor electrode 4k, via electrode 5k, inductor electrode 4i, via electrode electrically connected between inductor electrode 4q and second terminal Rx2 of second balanced terminal Rx 5i and the inductor electrode 4g constitute a third inductor portion L43 of the second balanced-side inductor.
- the third capacitor C3 mainly includes a capacitor electrode 2f connected to the first terminal Tx1 of the first balanced terminal Tx via the capacitor electrodes 2b and 2i that are not connected to the terminals but are floating electrodes, The capacitor is formed by a capacitor formed between the balanced terminal Tx and the capacitor electrode 2e connected to the second terminal Tx2.
- the fourth capacitor C4 mainly includes a capacitor electrode 2h connected to the first terminal Rx1 of the second balanced terminal Rx via a capacitor electrode 2j that is not connected to a terminal but is a floating electrode, and a second balanced terminal.
- the capacitor is formed between the capacitor electrode 2g connected to the second terminal Rx2 of Rx.
- the inductor electrodes 4n, 4o, 4p constituting the unbalanced inductor L2 are in the first balanced direction in the stacking direction of the dielectric layers 1a-1u. It arrange
- the unbalanced inductor L2 and the second inductor portion L32 of the first balanced inductor are electromagnetically coupled.
- the unbalanced inductor L2 and the second inductor section L42 of the second balanced inductor are electromagnetically coupled.
- FIG. 7 is a diagram illustrating frequency characteristics between the unbalanced terminal UB and the first balanced terminal Tx (Tx1, Tx2) of the multilayer balun 100.
- FIG. FIG. 8 is a diagram illustrating a frequency characteristic between the unbalanced terminal UB and the second balanced terminal Rx (Rx1, Rx2).
- the laminated balun 100 of the present embodiment is suitable for use in TDD (Time Division Duplex) communication.
- TDD Time Division Duplex
- it is formed between the frequency of the pass band formed between the first balanced terminal Tx (Tx1, Tx2) and the unbalanced terminal UB and between the unbalanced terminal UB and the second balanced terminal Rx (Rx1, Rx2). It is not necessary for the frequency of the pass band to be the same, and it may be different.
- the laminated balun 100 of the present embodiment includes the laminated body 1 in which the plurality of dielectric layers 1a to 1u are laminated, the plurality of inductor electrodes formed between the layers of the laminated body 1, and the laminated body 1 And a plurality of terminals formed on the surface.
- the plurality of terminals include an unbalanced terminal UB, a first balanced terminal Tx, a second balanced terminal Rx, and a second ground terminal G2.
- the first balanced terminal Tx has a first terminal Tx1 and a second terminal Tx2.
- the second balanced terminal Rx has a first terminal Rx1 and a second terminal Rx2.
- the plurality of inductor electrodes include inductor electrodes (unbalanced side inductor conductor patterns) 4n to 4p electrically connected between the unbalanced terminal UB and the second ground terminal G2, and a first terminal of the first balanced terminal Tx. Between the inductor electrode (first balanced-side inductor conductor pattern) 4l electrically connected between Tx1 and the second terminal Tx2, and between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx. Connected inductor electrodes (second balanced-side inductor conductor pattern) 4q.
- the inductor electrodes 4n to 4p are arranged between the inductor electrode 4l and the inductor electrode 4q.
- the unbalanced inductor L2 constituted by the inductor electrodes 4n to 4p can be electromagnetically coupled to the second inductor portion L32 of the first balanced inductor constituted by the inductor electrode 4l, and the inductor electrode 4q.
- the second inductor portion L42 of the second balanced-side inductor constituted by the electromagnetic field coupling can also be performed.
- the stacked body 1 can be reduced in height by the above arrangement. Furthermore, since there is no need to use a divider, insertion loss due to passing through the divider can be suppressed, and the number of parts can be reduced. As a result, it is possible to realize a small-sized laminated balun including an unbalanced terminal and two pairs of balanced terminals and having a small signal insertion loss.
- the unbalanced-side inductor L2 is configured by the inductor electrodes 4n, 4o, 4p and the via electrodes 5p, 5q respectively formed on the upper main surfaces of the three dielectric layers 1m-1o.
- the number of dielectric layers on which the inductor electrode constituting the unbalanced inductor L2 is formed is not limited to this.
- FIG. 9 is an exploded perspective view showing a modified example of the laminated balun 100 of the present embodiment.
- the laminated balun according to the modification is different from the laminated balun 100 shown in FIGS. 4 to 6 only in that a dielectric layer 1v is provided instead of the dielectric layers 1m to 1o.
- An inductor electrode 4x is formed on the upper main surface of the dielectric layer 1v. One end of the inductor electrode 4x is connected to the second ground terminal G2, and the other end of the inductor electrode 4x is connected to the via electrode 5c.
- the unbalanced inductor L2 is connected to the second ground terminal G2 via the via electrode 5c and the inductor electrode 4x connected to one end of the inductor electrode 4d that is the end point of the second inductor L12. It is formed by the line.
- the inductor electrode 4x can be formed of, for example, Ag, Cu, or a metal mainly composed of these alloys.
- the dielectric layers 11, 1 v, 1 p, and 1 q are sequentially stacked.
- the inductor electrode 41 that constitutes the second inductor portion L32 of the first balanced inductor is formed between the dielectric layer 11 and the dielectric layer 1v.
- the inductor electrode 4x constituting the unbalanced inductor L2 is formed between the dielectric layer 1v and the dielectric layer 1p.
- the inductor electrode 4q constituting the second inductor portion L42 of the second balanced side inductor is formed between the dielectric layer 1p and the dielectric layer 1q. That is, the inductor electrode 4x constituting the unbalanced inductor L2 is formed only between one layer in the multilayer body 1. Thereby, the number of dielectric layers constituting the laminated balun can be reduced, and the laminated balun can be reduced in height.
- the unbalanced inductor L2 is connected in parallel with the second capacitor C2.
- the unbalanced inductor L2 may be connected in series with the second capacitor C2.
- the unbalanced inductor L2 and the second capacitor C2 constitute an LC series resonator.
- the unbalanced inductor L2 and the second capacitor C2 are connected in series in this order between the other end of the second inductor L12 and the ground.
- the laminated balun 100 can also be expressed as follows.
- the laminated balun 100 includes one unbalanced terminal UB, a first balanced terminal Tx having a first terminal Tx1 and a second terminal Tx2, and a second balanced terminal having a first terminal Rx1 and a second terminal Rx2. Rx.
- An unbalanced inductor L2 is inserted between the unbalanced terminal UB and the ground, a first balanced inductor is inserted between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx, A second balanced-side inductor is inserted between the first terminal Rx1 and the second terminal Rx2 of the two balanced terminals Rx.
- the unbalanced inductor L2 is electromagnetically coupled to both the first balanced inductor and the second balanced inductor.
- a low-pass filter is inserted between the unbalanced terminal UB and the unbalanced inductor L2.
- the frequency band of the signal passing between the unbalanced terminal UB and the first balanced terminal Tx and the signal passing between the unbalanced terminal UB and the second balanced terminal Rx by the low-pass filter can be adjusted.
- a third capacitor C3 is further inserted between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx, and between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx, Furthermore, it is preferable that the fourth capacitor C4 is inserted.
- an LC parallel resonator is configured by the first balanced inductor and the third capacitor C3.
- the second balanced-side inductor and the fourth capacitor C4 constitute an LC parallel resonator.
- the LC parallel resonator composed of the first balanced-side inductor and the fourth capacitor is the LC parallel resonator when the unbalanced-side inductor L2 and the second capacitor C2 constitute the LC parallel resonator.
- the first band-pass filter When the second capacitor C2 is omitted and the LC parallel resonator is not configured, the first band-pass filter is configured independently.
- the first band pass filter passes only a signal in an arbitrarily selected frequency band between the unbalanced terminal UB and the first balanced terminal Tx.
- the LC parallel resonator constituted by the second balanced-side inductor and the fourth capacitor C4 is the LC parallel resonance when the LC parallel resonator is constituted by the unbalanced-side inductor L2 and the second capacitor C2.
- the second bandpass filter When the second capacitor C2 is omitted and the LC parallel resonator is not configured, the second bandpass filter is configured independently.
- the second band pass filter passes only a signal in a frequency band selected arbitrarily between the unbalanced terminal and the second balanced terminal. Even when the third capacitor C3 and the fourth capacitor C4 are not inserted, the LC parallel resonator composed of the unbalanced inductor L2 and the second capacitor C2 described above is used as a bandpass filter or Functions as part of a bandpass filter.
- the first balanced-side inductor includes a first inductor portion L31, a second inductor portion L32, and a third inductor portion L33 that are sequentially connected in series.
- the unbalanced inductor L2 is electromagnetically coupled to the second inductor portion L32 of the first balanced inductor.
- the second balanced-side inductor includes a first inductor portion L41, a second inductor portion L42, and a third inductor portion L43 that are connected in series in order.
- the unbalanced inductor L2 is electromagnetically coupled to the second inductor portion L42 of the second balanced inductor.
- the second inductor unit is used for adjusting the electromagnetic field coupling with the unbalanced-side inductor L2.
- the first inductor unit and the third inductor unit are mainly used for adjusting the impedance of the first balanced terminal Tx or the second balanced terminal Rx, respectively.
- a DC feed terminal DCfeed is connected to an intermediate portion of the first balanced inductor.
- the strength of the Tx signal transmitted from the antenna can be increased by supplying DC power to the DC feed terminal Dcfeed.
- the impedance of the first balanced terminal Tx is different from the impedance of the second balanced terminal Rx.
- the laminated balun 100 can be connected as it is.
- the impedance of the first balanced terminal Tx and the impedance of the second balanced terminal Rx can be designed independently of each other.
- the frequency of the pass band formed between the unbalanced terminal UB and the first balanced terminal Tx is different from the frequency of the pass band formed between the unbalanced terminal UB and the second balanced terminal Rx. Also good.
- the frequency of the pass band formed between the unbalanced terminal UB and the first balanced terminal Tx is the same as the frequency of the pass band formed between the unbalanced terminal UB and the second balanced terminal Rx. It may be.
- the laminated balun 100 can be used for TDD (Time Division Duplex) communication.
- the laminated balun 100 includes any one of a laminated body 1 in which a plurality of dielectric layers 1a to 1u are laminated, a plurality of inductor electrodes laminated between the dielectric layers 1a to 1u, and the dielectric layers 1a to 1u. A plurality of via electrodes formed therethrough.
- the inductor electrode, or the inductor electrode and the via electrode form an unbalanced inductor L2, a first balanced inductor, and a second balanced inductor, respectively.
- the laminated balun 100 includes a plurality of capacitor electrodes laminated between the dielectric layers 1a to 1u.
- the first capacitor, the second capacitor, the third capacitor, and the fourth capacitor are formed by the capacitance formed between the plurality of capacitor electrodes.
- the inductor electrodes 4n to 4p that form the unbalanced inductor L2 are the inductor electrode 4l that forms the second inductor portion L32 of the first balanced side inductor and the second balanced side inductor. And the inductor electrode 4q forming the second inductor portion L42.
- the unbalanced inductor L2 and the first balanced inductor can be electromagnetically coupled, and at the same time, the unbalanced inductor L2 and the second balanced inductor can be electromagnetically coupled.
Landscapes
- Coils Or Transformers For Communication (AREA)
- Filters And Equalizers (AREA)
Abstract
A plurality of inductor electrodes formed between layers of a laminate include inductor electrodes (4n to 4p) that are electrically connected between an unbalanced terminal (UB) and a second ground terminal (G2), an inductor electrode (4l) electrically connected between a first terminal and a second terminal (Tx2) of a first balanced terminal, and an inductor electrode (4q) electrically connected between a first terminal and a second terminal (Rx2) of a second balanced terminal. The region surrounded by the inductor electrodes (4n to 4p) overlaps the region surrounded by the inductor electrode (4l) and the region surrounded by the inductor electrode (4q) when viewed from the direction of lamination of a dielectric layer. The inductor electrodes (4n to 4p) are disposed between the inductor electrode (4l) and the inductor electrode (4q).
Description
本発明は、不平衡信号と平衡信号との間の信号変換を行なう積層バランに関する。
The present invention relates to a laminated balun that performs signal conversion between an unbalanced signal and a balanced signal.
通信機器のRF(Radio Frequency)回路およびその周辺回路においては、外部からのノイズの影響を小さくするため、信号線路に平衡線路を用いる場合がある。たとえば、アンテナからRF回路へのRx信号の入力や、RF回路からアンテナへのTx信号の出力を、平衡線路により行なう場合がある。
In the RF (Radio Frequency) circuit of communication equipment and its peripheral circuits, a balanced line may be used as a signal line in order to reduce the influence of external noise. For example, the Rx signal may be input from the antenna to the RF circuit and the Tx signal may be output from the RF circuit to the antenna through a balanced line.
従来、この場合において、Tx信号の送信とRx信号の受信とを1つのアンテナで共用したい場合、アンテナからの不平衡線路を、ディバイダにより2つの不平衡線路に分岐する必要があった。そして、それぞれの不平衡線路に、たとえば特開2013-138410号公報(特許文献1)に開示されたような積層バランスフィルタを接続し、更に、それぞれの積層バランスフィルタを平衡線路によりRF回路に接続する。
Conventionally, in this case, when it is desired to share the transmission of the Tx signal and the reception of the Rx signal with one antenna, it is necessary to branch the unbalanced line from the antenna into two unbalanced lines by a divider. Then, a multilayer balance filter as disclosed in, for example, Japanese Patent Laid-Open No. 2013-138410 (Patent Document 1) is connected to each unbalanced line, and further, each multilayer balance filter is connected to an RF circuit via a balanced line. To do.
図10は、特開2013-138410号公報に開示された積層バランスフィルタ200の等価回路図である。積層バランスフィルタ200は、1つの不平衡端子UBと、第1端子B1と第2端子B2とからなる平衡端子Bとを有する。積層バランスフィルタ200は、不平衡端子UBに入力された不平衡信号を平衡端子B(第1端子B1および第2端子B2)から平衡信号として出力し、平衡端子B(第1端子B1および第2端子B2)に入力された平衡信号を不平衡端子UBから不平衡信号として出力する。なお、積層バランスフィルタ200は、複数の誘電体層が積層された積層体の内部にインダクタ導体パターン、キャパシタ導体パターン、グランド導体パターン、ビア導体パターンなどを形成して作製される。不平衡端子UBと平衡端子Bとの間に、LC並列共振器により構成されたバンドパスフィルタLC1,LC2が挿入される。バンドパスフィルタLC1のインダクタL10とバンドパスフィルタLC2のインダクタL20との間に相互インダクタンスM10が発生し、インダクタL20と平衡側のインダクタL30との間に相互インダクタンスM20が発生する。
FIG. 10 is an equivalent circuit diagram of the laminated balance filter 200 disclosed in Japanese Patent Laid-Open No. 2013-138410. The laminated balance filter 200 has one unbalanced terminal UB and a balanced terminal B composed of a first terminal B1 and a second terminal B2. The laminated balance filter 200 outputs the unbalanced signal input to the unbalanced terminal UB as a balanced signal from the balanced terminal B (first terminal B1 and second terminal B2), and the balanced terminal B (first terminal B1 and second terminal). The balanced signal input to the terminal B2) is output as an unbalanced signal from the unbalanced terminal UB. The laminated balance filter 200 is manufactured by forming an inductor conductor pattern, a capacitor conductor pattern, a ground conductor pattern, a via conductor pattern, and the like inside a laminate in which a plurality of dielectric layers are laminated. Between the unbalanced terminal UB and the balanced terminal B, band-pass filters LC1 and LC2 configured by LC parallel resonators are inserted. A mutual inductance M10 is generated between the inductor L10 of the bandpass filter LC1 and the inductor L20 of the bandpass filter LC2, and a mutual inductance M20 is generated between the inductor L20 and the balanced inductor L30.
図11は、1つのディバイダ300と、2つの積層バランスフィルタ200とを接続して構成した平衡不平衡変換回路の一例を示す図である。
FIG. 11 is a diagram illustrating an example of a balanced / unbalanced conversion circuit configured by connecting one divider 300 and two stacked balanced filters 200.
ディバイダ300は、第1端子101、第2端子102および第3端子103を備え、第1端子101に入力された信号を分配して第2端子102および第3端子103から出力し、第2端子102および第3端子103に入力された信号を合成して第1端子101から出力する。
The divider 300 includes a first terminal 101, a second terminal 102, and a third terminal 103, distributes a signal input to the first terminal 101, outputs the signal from the second terminal 102 and the third terminal 103, and outputs a second terminal. The signals input to 102 and the third terminal 103 are combined and output from the first terminal 101.
この平衡不平衡変換回路においては、アンテナAntとディバイダ300の第1端子101とが不平衡線路により接続される。また、ディバイダ300の第2端子102と一方の積層バランスフィルタ200の不平衡端子UBとが不平衡線路により接続されるとともに、ディバイダ300の第3端子103と他方の積層バランスフィルタ200の不平衡端子UBとが不平衡線路により接続される。更に、一方の積層バランスフィルタ200の平衡端子B(第1端子B1および第2端子B2)にTx側の平衡線路が接続され、他方の積層バランスフィルタ200の平衡端子B(第1端子B1および第2端子B2)にRx側の平衡線路が接続される。
In this balanced / unbalanced conversion circuit, the antenna Ant and the first terminal 101 of the divider 300 are connected by an unbalanced line. In addition, the second terminal 102 of the divider 300 and the unbalanced terminal UB of one laminated balance filter 200 are connected by an unbalanced line, and the third terminal 103 of the divider 300 and the unbalanced terminal of the other laminated balance filter 200 are connected. UB is connected by an unbalanced line. Further, a balanced line on the Tx side is connected to the balanced terminal B (first terminal B1 and second terminal B2) of one multilayer balanced filter 200, and the balanced terminal B (first terminal B1 and first terminal B1) of the other multilayer balanced filter 200 is connected. A balanced line on the Rx side is connected to the two terminals B2).
図11に示した平衡不平衡変換回路のように、Tx信号のRF回路からの出力とRx信号のRF回路への入力とを平衡線路により行ない、かつ、Tx信号の送信とRx信号の受信とを1つのアンテナAntで共用するために、1つのディバイダ300と2つの積層バランスフィルタ200とを使用する従来の方法には、次のような問題があった。
As in the balanced / unbalanced conversion circuit shown in FIG. 11, the Tx signal is output from the RF circuit and the Rx signal is input to the RF circuit through a balanced line, and the Tx signal is transmitted and the Rx signal is received. In the conventional method using one divider 300 and two laminated balance filters 200 in order to share one antenna Ant, there are the following problems.
まず、アンテナAntに接続された信号線路をディバイダ300により分岐しているため、信号に挿入損失が発生するという問題があった。たとえば、アンテナAntからRF回路に送られるRx信号は、ディバイダを通過することにより、約3dB減衰してしまっていた。更に、各積層バランスフィルタ200においても挿入損失が発生するため、総合的な挿入損失が大きくなってしまうという問題があった。
First, since the signal line connected to the antenna Ant is branched by the divider 300, there is a problem that insertion loss occurs in the signal. For example, the Rx signal sent from the antenna Ant to the RF circuit has been attenuated by about 3 dB by passing through the divider. Furthermore, since each insertion balance filter 200 also has an insertion loss, there is a problem that the total insertion loss becomes large.
また、1つのディバイダ300と2つの積層バランスフィルタ200を使用しなければならず、部品点数が多いため、通信機器内に大きな実装スペースを必要とし、通信機器が大きくなってしまうという問題があった。更に、部品点数が多いため、製造が煩雑化してしまうという問題があった。
In addition, since one divider 300 and two laminated balance filters 200 must be used and the number of parts is large, there is a problem that a large mounting space is required in the communication device and the communication device becomes large. . Furthermore, since there are many parts, there existed a problem that manufacture became complicated.
本開示は、上記課題を解決するためになされたものであって、不平衡端子と2対の平衡端子とを備えた、小型で、信号の挿入損失が小さい積層バランを提供することを目的とする。
The present disclosure has been made to solve the above-described problem, and an object thereof is to provide a small-sized laminated balun including an unbalanced terminal and two pairs of balanced terminals and having a small signal insertion loss. To do.
本開示のある局面に従う積層バランは、複数の誘電体層が積層された積層体と、積層体の層間に形成された複数のインダクタ導体パターンと、積層体の表面に形成された複数の端子とを備える。複数の端子は、不平衡端子と、第1平衡端子と、第2平衡端子と、グランド端子とを含む。第1平衡端子と第2平衡端子との各々は、第1端子と第2端子とを有する。複数のインダクタ導体パターンは、不平衡端子とグランド端子との間に電気的に接続された不平衡側インダクタ導体パターンと、第1平衡端子の第1端子と第1平衡端子の第2端子との間に電気的に接続された第1平衡側インダクタ導体パターンと、第2平衡端子の第1端子と第2平衡端子の第2端子との間に電気的に接続された第2平衡側インダクタ導体パターンとを含む。複数の誘電体層の積層方向から見たとき、第1平衡側インダクタ導体パターンによって囲まれた領域の少なくとも一部分は、不平衡側インダクタ導体パターンによって囲まれた領域と重なり、かつ第2平衡側インダクタ導体パターンによって囲まれた領域の少なくとも一部分は、不平衡側インダクタ導体パターンによって囲まれた領域と重なる。積層方向において、不平衡側インダクタ導体パターンは、第1平衡側インダクタ導体パターンと、第2平衡側インダクタ導体パターンとの間に配置される。
A laminated balun according to an aspect of the present disclosure includes a laminated body in which a plurality of dielectric layers are laminated, a plurality of inductor conductor patterns formed between the layers of the laminated body, and a plurality of terminals formed on the surface of the laminated body. Is provided. The plurality of terminals include an unbalanced terminal, a first balanced terminal, a second balanced terminal, and a ground terminal. Each of the first balanced terminal and the second balanced terminal has a first terminal and a second terminal. The plurality of inductor conductor patterns include an unbalanced inductor conductor pattern electrically connected between the unbalanced terminal and the ground terminal, a first terminal of the first balanced terminal, and a second terminal of the first balanced terminal. A first balanced-side inductor conductor pattern electrically connected in between, and a second balanced-side inductor conductor electrically connected between the first terminal of the second balanced terminal and the second terminal of the second balanced terminal Pattern. When viewed from the stacking direction of the plurality of dielectric layers, at least a part of the region surrounded by the first balanced-side inductor conductor pattern overlaps with the region surrounded by the unbalanced-side inductor conductive pattern, and the second balanced-side inductor. At least a part of the region surrounded by the conductor pattern overlaps the region surrounded by the unbalanced inductor conductor pattern. In the stacking direction, the unbalanced inductor conductor pattern is disposed between the first balanced side inductor conductor pattern and the second balanced side inductor conductor pattern.
好ましくは、複数の誘電体層は、連続して順に積層された第1~第4誘電体層を含む。第1平衡側インダクタ導体パターンは、第1誘電体層と第2誘電体層との間に形成される。不平衡側インダクタ導体パターンは、第2誘電体層と第3誘電体層との間に形成される。第2平衡側インダクタ導体パターンは、第3誘電体層と第4誘電体層との間に形成される。
Preferably, the plurality of dielectric layers include first to fourth dielectric layers that are sequentially stacked. The first balanced-side inductor conductor pattern is formed between the first dielectric layer and the second dielectric layer. The unbalanced inductor conductor pattern is formed between the second dielectric layer and the third dielectric layer. The second balanced-side inductor conductor pattern is formed between the third dielectric layer and the fourth dielectric layer.
本開示の積層バランは、不平衡端子と2対の平衡端子とを備えているが、ディバイダを使用していないため、ディバイダを通過することによる信号の挿入損失がなく、総合的な挿入損失が小さい。
Although the multilayer balun of the present disclosure includes an unbalanced terminal and two pairs of balanced terminals, since no divider is used, there is no signal insertion loss due to passing through the divider, and overall insertion loss is reduced. small.
また、本開示の積層バランは、従来、1つのディバイダと2つのバランを使用して果たしていた機能を、1つのバランで果たすようにしたものであり、小型化が図られている。したがって、本開示の積層バランが実装される通信機器においては、実装に要するスペースを小さくすることができる。
In addition, the laminated balun of the present disclosure is configured such that the function conventionally performed by using one divider and two baluns is performed by one balun, and is downsized. Therefore, in a communication device in which the multilayer balun of the present disclosure is mounted, the space required for mounting can be reduced.
本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。なお、各実施の形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施の形態の内容に限定されることはない。また、異なる実施の形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施の形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。
Embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated. Each embodiment shows an example of the embodiment of the present invention, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement the content described in different embodiments in combination, and the implementation content in that case is also included in the present invention. Further, the drawings are for helping understanding of the embodiments and may not necessarily be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
図1~図6に、本発明の実施の形態にかかる積層バラン100を示す。ただし、図1は、本発明の実施の形態にかかる積層バラン100の等価回路図である。図2は、積層バラン100の外観斜視図である。図3は、積層バラン100全体の分解斜視図である。図4は、積層バラン100を構成する複数の誘電体層のうちの下から8層分の誘電体層を示す分解斜視図である。図5は、図4に示す誘電体層の上に積層される8層分の誘電体層を示す分解斜視図である。図6は、図5に示す誘電体層の上に積層される5層分の誘電体層を示す分解斜視図である。
1 to 6 show a laminated balun 100 according to an embodiment of the present invention. However, FIG. 1 is an equivalent circuit diagram of the laminated balun 100 according to the embodiment of the present invention. FIG. 2 is an external perspective view of the laminated balun 100. FIG. 3 is an exploded perspective view of the entire laminated balun 100. FIG. 4 is an exploded perspective view showing dielectric layers corresponding to eight layers from the bottom among the plurality of dielectric layers constituting the laminated balun 100. FIG. 5 is an exploded perspective view showing eight dielectric layers stacked on the dielectric layer shown in FIG. FIG. 6 is an exploded perspective view showing five dielectric layers stacked on the dielectric layer shown in FIG.
まず、図1を参照して、積層バラン100の等価回路について説明する。積層バラン100は、1つの不平衡端子UBを備える。積層バラン100は、第1端子Tx1と第2端子Tx2とを有する第1平衡端子Txと、第1端子Rx1と第2端子Rx2とを有する第2平衡端子Rxとを備える。なお、本実施の形態においては、2対の平衡端子を、便宜上、第1平衡端子Txと第2平衡端子Rxとして示しているが、各平衡端子の用途は任意であり、第1平衡端子をTx端子として、第2平衡端子をRx端子として使用することに限定されるものではない。
First, an equivalent circuit of the laminated balun 100 will be described with reference to FIG. The laminated balun 100 includes one unbalanced terminal UB. The laminated balun 100 includes a first balanced terminal Tx having a first terminal Tx1 and a second terminal Tx2, and a second balanced terminal Rx having a first terminal Rx1 and a second terminal Rx2. In the present embodiment, two pairs of balanced terminals are shown as a first balanced terminal Tx and a second balanced terminal Rx for convenience, but the usage of each balanced terminal is arbitrary, and the first balanced terminal is The Tx terminal is not limited to using the second balanced terminal as the Rx terminal.
積層バラン100は、ローパスフィルタを備える。ローパスフィルタは、一端が不平衡端子UBに接続された第1インダクタL11と、一端が第1インダクタL11に接続された第2インダクタL12と、第1インダクタL11と第2インダクタL12との接続点とグランドとの間に挿入された第1キャパシタC1とから構成される。このローパスフィルタにより、積層バラン100は、任意に選択した周波数帯の信号のみを通過させることができる。
The laminated balun 100 includes a low-pass filter. The low-pass filter includes a first inductor L11 having one end connected to the unbalanced terminal UB, a second inductor L12 having one end connected to the first inductor L11, and a connection point between the first inductor L11 and the second inductor L12. The first capacitor C1 is inserted between the first capacitor C1 and the ground. With this low-pass filter, the laminated balun 100 can pass only signals in an arbitrarily selected frequency band.
なお、本実施の形態においてはT型のローパスフィルタを採用したが、ローパスフィルタの種類はT型には限られず、他の種類のものであっても良い。
In this embodiment, a T-type low-pass filter is used. However, the type of the low-pass filter is not limited to the T-type, and other types may be used.
積層バラン100は、不平衡側インダクタL2を備える。不平衡側インダクタL2は、第2キャパシタC2と並列に接続される。そして、並列に接続された不平衡側インダクタL2と第2キャパシタC2とは、LC並列共振器を構成する。
The multilayer balun 100 includes an unbalanced inductor L2. The unbalanced inductor L2 is connected in parallel with the second capacitor C2. The unbalanced inductor L2 and the second capacitor C2 connected in parallel constitute an LC parallel resonator.
積層バラン100は、第1インダクタ部L31、第2インダクタ部L32および第3インダクタ部L33が直列に接続された、第1平衡側インダクタを備える。第1平衡側インダクタは、第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に接続される。なお、本実施の形態においては、第2インダクタ部L32の中間部分に、DCフィード端子DCfeedが接続される。
The multilayer balun 100 includes a first balanced-side inductor in which a first inductor portion L31, a second inductor portion L32, and a third inductor portion L33 are connected in series. The first balanced-side inductor is connected between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx. In the present embodiment, a DC feed terminal DCfeed is connected to an intermediate portion of the second inductor portion L32.
更に、積層バラン100は、第1インダクタ部L41、第2インダクタ部L42および第3インダクタ部L43が直列に接続された、第2平衡側インダクタを備える。第2平衡側インダクタは、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に接続される。
Furthermore, the multilayer balun 100 includes a second balanced-side inductor in which a first inductor portion L41, a second inductor portion L42, and a third inductor portion L43 are connected in series. The second balanced-side inductor is connected between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
不平衡側インダクタL2は、第1平衡側インダクタと電磁界結合している。不平衡側インダクタL2は、主に、第1平衡側インダクタの第2インダクタ部L32と電磁界結合している。すなわち、不平衡側インダクタL2と第1平衡側インダクタの第2インダクタ部L32との間には相互インダクタンスM1が発生する。
The unbalanced inductor L2 is electromagnetically coupled to the first balanced inductor. The unbalanced inductor L2 is mainly electromagnetically coupled to the second inductor portion L32 of the first balanced inductor. That is, a mutual inductance M1 is generated between the unbalanced inductor L2 and the second inductor portion L32 of the first balanced inductor.
更に、不平衡側インダクタL2は、第2平衡側インダクタと電磁界結合している。不平衡側インダクタL2は、主に、第2平衡側インダクタの第2インダクタ部L42と電磁界結合している。すなわち、不平衡側インダクタL2と第2平衡側インダクタの第2インダクタ部L42との間には相互インダクタンスM2が発生する。
Furthermore, the unbalanced inductor L2 is electromagnetically coupled to the second balanced inductor. The unbalanced inductor L2 is mainly electromagnetically coupled to the second inductor portion L42 of the second balanced inductor. That is, a mutual inductance M2 is generated between the unbalanced inductor L2 and the second inductor portion L42 of the second balanced inductor.
積層バラン100は、更に、第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に挿入された第3キャパシタC3を備える。
The multilayer balun 100 further includes a third capacitor C3 inserted between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx.
第3キャパシタC3は、第1平衡側インダクタ(L31,L32,L33)とでLC並列共振器を構成し、上述した不平衡側インダクタL2と第2キャパシタC2とで構成されたLC並列共振器と共働して、第1バンドパスフィルタを構成している。第1バンドパスフィルタは、任意に選択した周波数帯の信号のみを、不平衡端子UBと第1平衡端子Txとの間に通過させる。
The third capacitor C3 forms an LC parallel resonator with the first balanced inductors (L31, L32, L33), and the LC parallel resonator formed with the unbalanced inductor L2 and the second capacitor C2 described above. Together, they constitute a first band pass filter. The first band pass filter passes only a signal in an arbitrarily selected frequency band between the unbalanced terminal UB and the first balanced terminal Tx.
なお、積層バラン100においては、第1平衡側インダクタ(L31,L32,L33)および第3キャパシタC3の定数を選定することにより、第1平衡端子Tx(Tx1,Tx2)側のインピーダンスを調整することができる。
In the multilayer balun 100, the impedance on the first balanced terminal Tx (Tx1, Tx2) side is adjusted by selecting the constants of the first balanced inductors (L31, L32, L33) and the third capacitor C3. Can do.
積層バラン100は、更に、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に挿入された第4キャパシタC4を備える。
The multilayer balun 100 further includes a fourth capacitor C4 inserted between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
第4キャパシタC4は、第2平衡側インダクタ(L41,L42,L43)とでLC並列共振器を構成し、上述した不平衡側インダクタL2と第2キャパシタC2とで構成されたLC並列共振器と共働して、第2バンドパスフィルタを構成している。第2バンドパスフィルタは、任意に選択した周波数帯の信号のみを、不平衡端子UBと第2平衡端子Rxとの間に通過させる。
The fourth capacitor C4 forms an LC parallel resonator with the second balanced-side inductors (L41, L42, L43), and the LC parallel resonator formed with the unbalanced-side inductor L2 and the second capacitor C2 described above. Together, they constitute a second bandpass filter. The second band pass filter passes only a signal in an arbitrarily selected frequency band between the unbalanced terminal UB and the second balanced terminal Rx.
なお、積層バラン100においては、第2平衡側インダクタ(L41,L42,L43)および第4キャパシタC4の定数を選定することにより、第2平衡端子Rx(Rx1,Rx2)側のインピーダンスを調整することができる。
In the multilayer balun 100, the impedance on the second balanced terminal Rx (Rx1, Rx2) side is adjusted by selecting the constants of the second balanced inductors (L41, L42, L43) and the fourth capacitor C4. Can do.
以上の等価回路からなる積層バラン100は、第1平衡端子Txに入力された平衡信号を、不平衡端子UBから不平衡信号として出力することができる。なお、DCフィード端子DCfeedに直流電力を供給すれば、不平衡端子UBから出力される不平衡信号の強度を高めることができる。更に、不平衡端子UBに入力された不平衡信号を、第2平衡端子Rxから平衡信号として出力することができる。
The laminated balun 100 composed of the above equivalent circuits can output the balanced signal input to the first balanced terminal Tx as an unbalanced signal from the unbalanced terminal UB. Note that if DC power is supplied to the DC feed terminal DCfeed, the strength of the unbalanced signal output from the unbalanced terminal UB can be increased. Furthermore, the unbalanced signal input to the unbalanced terminal UB can be output as a balanced signal from the second balanced terminal Rx.
なお、第1平衡端子Txの第1端子Tx1と第2端子Tx2とには、相互に位相が180度異なり、振幅がほぼ等しい平衡信号が入力される。更に、第2平衡端子Rxの第1端子Rx1と第2端子Rx2からは、相互に位相が180度異なり、振幅がほぼ等しい平衡信号が出力される。
Note that balanced signals having substantially the same amplitude and different phases are input to the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx. Furthermore, balanced signals having substantially the same amplitude and different phases are output from the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx.
以上の等価回路からなる積層バラン100は、たとえば図2に示す積層体1により構成することができる。図2に示すように、積層バラン100は、複数の誘電体層が積層された積層体1と、積層体1の表面に形成された複数の端子とを備える。複数の端子は、直方体形状の積層体1の最も面積の大きい一対の主面を上面および底面としたときの側面に形成される。
A laminated balun 100 composed of the above equivalent circuits can be constituted by, for example, a laminated body 1 shown in FIG. As shown in FIG. 2, the laminated balun 100 includes a laminated body 1 in which a plurality of dielectric layers are laminated, and a plurality of terminals formed on the surface of the laminated body 1. The plurality of terminals are formed on the side surfaces when the pair of main surfaces having the largest area of the rectangular parallelepiped laminated body 1 are the upper surface and the bottom surface.
10個の端子は、不平衡端子UB、第1平衡端子Txが有する第1端子Tx1および第2端子Tx2、第2平衡端子Rxが有する第1端子Rx1および第2端子Rx2、第1グランド端子G1、第2グランド端子G2、DCフィード端子DCfeed、第1浮遊端子F1、第2浮遊端子F2である。具体的には、図2における積層体1の手前側の側面に、時計回り方向に見て、順に、第1浮遊端子F1、第1グランド端子G1、不平衡端子UB、第2グランド端子G2が形成される。図2における積層体1の左側の側面にDCフィード端子DCfeedが形成される。図2における積層体1の奥側の側面に、時計回り方向に見て、順に、第1平衡端子Txの第2端子Tx2、第1端子Tx1、第2平衡端子Rxの第2端子Rx2、第1端子Rx1が形成される。図2における積層体1の右側の側面に第2浮遊端子F2が形成される。なお、各端子の両端は、積層体1の下側の主面および上側の主面に、それぞれ延出して形成される。
The ten terminals are an unbalanced terminal UB, a first terminal Tx1 and a second terminal Tx2 that the first balanced terminal Tx has, a first terminal Rx1 and a second terminal Rx2 that the second balanced terminal Rx has, and a first ground terminal G1. , Second ground terminal G2, DC feed terminal DCfeed, first floating terminal F1, and second floating terminal F2. Specifically, the first floating terminal F1, the first ground terminal G1, the unbalanced terminal UB, and the second ground terminal G2 are sequentially arranged on the front side surface of the multilayer body 1 in FIG. 2 in the clockwise direction. It is formed. A DC feed terminal DCfeed is formed on the left side surface of the laminate 1 in FIG. 2, the second terminal Tx2 of the first balanced terminal Tx, the first terminal Tx1, the second terminal Rx2 of the second balanced terminal Rx, One terminal Rx1 is formed. The second floating terminal F2 is formed on the right side surface of the multilayer body 1 in FIG. Note that both ends of each terminal are formed to extend on the lower main surface and the upper main surface of the laminate 1, respectively.
第1浮遊端子F1および第2浮遊端子F2は、積層体1の内部において回路には接続されておらず、積層バラン100を実装する際に、基板などのランド電極に接合され、実装強度を高めるために利用される。
The first floating terminal F1 and the second floating terminal F2 are not connected to the circuit inside the stacked body 1, and are bonded to a land electrode such as a substrate when the stacked balun 100 is mounted to increase mounting strength. Used for.
不平衡端子UB、第1平衡端子Txの第1端子Tx1および第2端子Tx2、第2平衡端子Rxの第1端子Rx1および第2端子Rx2、第1グランド端子G1、第2グランド端子G2、DCフィード端子DCfeed、第1浮遊端子F1および第2浮遊端子F2は、それぞれ、たとえば、Ag、Cuや、これらの合金などを主成分とする金属により形成することができる。これらの端子の表面には、必要に応じて、Ni、Sn、Auなどを主成分にするめっき層を、1層または複数層にわたって形成しても良い。
Unbalanced terminal UB, first terminal Tx1 and second terminal Tx2 of first balanced terminal Tx, first terminal Rx1 and second terminal Rx2 of second balanced terminal Rx, first ground terminal G1, second ground terminal G2, DC The feed terminal DCfeed, the first floating terminal F1, and the second floating terminal F2 can be made of, for example, a metal mainly composed of Ag, Cu, or an alloy thereof. On the surface of these terminals, a plating layer containing Ni, Sn, Au or the like as a main component may be formed over one layer or a plurality of layers as necessary.
図3に示すように、積層体1は、下から順に、たとえばセラミックからなる誘電体層1a~1uが積層されたものからなる。図4~6に示すように、積層バラン100は、積層体1の層間に形成された、キャパシタ導体パターン(以下、単に「キャパシタ電極」という)2a~2i、接続導体パターン(以下、単に「接続電極」という)3a、インダクタ導体パターン(以下、単に「インダクタ電極」という)4a~4wを備える。更に、積層バラン100は、積層体1の内部において誘電体層1a~1uの積層方向に形成されたビア導体パターン(以下、単に「ビア電極」という)5a~5vを備える。
As shown in FIG. 3, the multilayer body 1 is formed by laminating dielectric layers 1a to 1u made of, for example, ceramics in order from the bottom. As shown in FIGS. 4 to 6, the laminated balun 100 includes capacitor conductor patterns (hereinafter simply referred to as “capacitor electrodes”) 2a to 2i and connection conductor patterns (hereinafter simply referred to as “connections”) formed between the layers of the multilayer body 1. Electrode 3) and inductor conductor patterns (hereinafter simply referred to as “inductor electrodes”) 4a to 4w. Furthermore, the laminated balun 100 includes via conductor patterns (hereinafter simply referred to as “via electrodes”) 5a to 5v formed in the laminated body 1 in the laminating direction of the dielectric layers 1a to 1u.
具体的には、誘電体層1bの上側の主面には接続電極3aが形成される。接続電極3aの一端は、DCフィード端子DCfeedに接続される。
Specifically, the connection electrode 3a is formed on the upper main surface of the dielectric layer 1b. One end of the connection electrode 3a is connected to the DC feed terminal DCfeed.
誘電体層1cの上側の主面には、2つのキャパシタ電極2a,2bが形成される。キャパシタ電極2aは、第1グランド端子G1および第2グランド端子G2に接続される。
Two capacitor electrodes 2a and 2b are formed on the upper main surface of the dielectric layer 1c. The capacitor electrode 2a is connected to the first ground terminal G1 and the second ground terminal G2.
誘電体層1dの上側の主面には、6つのキャパシタ電極2c~2hが形成される。キャパシタ電極2c,2dは、誘電体層1a~1uの積層方向から見たときにキャパシタ電極2aと重なる位置に形成される。キャパシタ電極2eは第1平衡端子Txの第2端子Tx2に、キャパシタ電極2fは第1平衡端子Txの第1端子Tx1に、キャパシタ電極2gは第2平衡端子Rxの第2端子Rx2に、キャパシタ電極2hは第2平衡端子Rxの第1端子Rx1に、それぞれ接続される。キャパシタ電極2e,2fは、誘電体層1a~1uの積層方向から見たときにキャパシタ電極2bと重なる位置に形成される。
Six capacitor electrodes 2c to 2h are formed on the upper main surface of the dielectric layer 1d. Capacitor electrodes 2c and 2d are formed at positions overlapping capacitor electrode 2a when viewed from the stacking direction of dielectric layers 1a to 1u. The capacitor electrode 2e is connected to the second terminal Tx2 of the first balanced terminal Tx, the capacitor electrode 2f is connected to the first terminal Tx1 of the first balanced terminal Tx, and the capacitor electrode 2g is connected to the second terminal Rx2 of the second balanced terminal Rx. 2h is connected to the first terminal Rx1 of the second balanced terminal Rx. Capacitor electrodes 2e and 2f are formed at positions that overlap capacitor electrode 2b when viewed from the stacking direction of dielectric layers 1a to 1u.
誘電体層1eの上側の主面には、2つのキャパシタ電極2i,2jが形成される。キャパシタ電極2iは、誘電体層1a~1uの積層方向から見たときにキャパシタ電極2e,2fと重なる位置に形成される。キャパシタ電極2jは、誘電体層1a~1uの積層方向から見たときにキャパシタ電極2g,2hと重なる位置に形成される。
Two capacitor electrodes 2i and 2j are formed on the upper main surface of the dielectric layer 1e. The capacitor electrode 2i is formed at a position overlapping the capacitor electrodes 2e and 2f when viewed from the stacking direction of the dielectric layers 1a to 1u. The capacitor electrode 2j is formed at a position overlapping the capacitor electrodes 2g and 2h when viewed from the stacking direction of the dielectric layers 1a to 1u.
誘電体層1fの上側の主面には、インダクタ電極4aが形成される。
誘電体層1gの上側の主面には、2つのインダクタ電極4b,4cが形成される。 Aninductor electrode 4a is formed on the upper main surface of the dielectric layer 1f.
Twoinductor electrodes 4b and 4c are formed on the upper main surface of the dielectric layer 1g.
誘電体層1gの上側の主面には、2つのインダクタ電極4b,4cが形成される。 An
Two
誘電体層1hの上側の主面には、2つのインダクタ電極4d,4eが形成される。
誘電体層1iの上側の主面には、2つのインダクタ電極4f,4gが形成される。インダクタ電極4fの一端が不平衡端子UBに、インダクタ電極4gの一端が第2平衡端子Rxの第2端子Rx2に、それぞれ接続される。 Two inductor electrodes 4d and 4e are formed on the upper main surface of the dielectric layer 1h.
Two inductor electrodes 4f and 4g are formed on the upper main surface of the dielectric layer 1i. One end of the inductor electrode 4f is connected to the unbalanced terminal UB, and one end of the inductor electrode 4g is connected to the second terminal Rx2 of the second balanced terminal Rx.
誘電体層1iの上側の主面には、2つのインダクタ電極4f,4gが形成される。インダクタ電極4fの一端が不平衡端子UBに、インダクタ電極4gの一端が第2平衡端子Rxの第2端子Rx2に、それぞれ接続される。 Two
Two
誘電体層1jの上側の主面には、2つのインダクタ電極4h,4iが形成される。インダクタ電極4hの一端は、第1平衡端子Txの第2端子Tx2に接続される。
Two inductor electrodes 4h and 4i are formed on the upper main surface of the dielectric layer 1j. One end of the inductor electrode 4h is connected to the second terminal Tx2 of the first balanced terminal Tx.
誘電体層1kの上側の主面には、2つのインダクタ電極4j,4kが形成される。
誘電体層1lの上側の主面には、2つのインダクタ電極4l,4mが形成される。インダクタ電極4lは開いた環状である。 Two inductor electrodes 4j and 4k are formed on the upper main surface of the dielectric layer 1k.
Twoinductor electrodes 4l and 4m are formed on the upper main surface of the dielectric layer 1l. The inductor electrode 4l has an open annular shape.
誘電体層1lの上側の主面には、2つのインダクタ電極4l,4mが形成される。インダクタ電極4lは開いた環状である。 Two
Two
誘電体層1mの上側の主面にはインダクタ電極4nが形成される。誘電体層1nの上側の主面にはインダクタ電極4oが形成される。誘電体層1oの上側の主面にはインダクタ電極4pが形成される。インダクタ電極4n~4pは開いた環状である。誘電体層1a~1uの積層方向から見たときに、環状のインダクタ電極4n~4pのいずれかによって囲まれる領域の少なくとも一部は、環状のインダクタ電極4lによって囲まれる領域と重なる。
An inductor electrode 4n is formed on the upper main surface of the dielectric layer 1m. An inductor electrode 4o is formed on the upper main surface of the dielectric layer 1n. An inductor electrode 4p is formed on the upper main surface of the dielectric layer 1o. The inductor electrodes 4n to 4p have an open ring shape. When viewed from the stacking direction of the dielectric layers 1a to 1u, at least a part of the region surrounded by any of the annular inductor electrodes 4n to 4p overlaps with the region surrounded by the annular inductor electrode 4l.
誘電体層1pの上側の主面にはインダクタ電極4qが形成される。インダクタ電極4qは開いた環状である。誘電体層1a~1uの積層方向から見たときに、環状のインダクタ電極4qによって囲まれる領域の少なくとも一部は、環状のインダクタ電極4n~4pによって囲まれる領域と重なる。
An inductor electrode 4q is formed on the upper main surface of the dielectric layer 1p. The inductor electrode 4q is an open ring. When viewed from the stacking direction of the dielectric layers 1a to 1u, at least a part of the region surrounded by the annular inductor electrode 4q overlaps with the region surrounded by the annular inductor electrodes 4n to 4p.
誘電体層1qの上側の主面には、2つのインダクタ電極4r,4sが形成される。
誘電体層1rの上側の主面には、2つのインダクタ電極4t,4uが形成される。インダクタ電極4tの一端は、第1平衡端子Txの第1端子Tx1に接続される。 Two inductor electrodes 4r and 4s are formed on the upper main surface of the dielectric layer 1q.
Two inductor electrodes 4t and 4u are formed on the upper main surface of the dielectric layer 1r. One end of the inductor electrode 4t is connected to the first terminal Tx1 of the first balanced terminal Tx.
誘電体層1rの上側の主面には、2つのインダクタ電極4t,4uが形成される。インダクタ電極4tの一端は、第1平衡端子Txの第1端子Tx1に接続される。 Two
Two
誘電体層1sの上側の主面にはインダクタ電極4vが形成される。
誘電体層1tの上側の主面にはインダクタ電極4wが形成される。インダクタ電極4wの一端は、第2平衡端子Rxの第1端子Rx1に接続される。 Aninductor electrode 4v is formed on the upper main surface of the dielectric layer 1s.
Aninductor electrode 4w is formed on the upper main surface of the dielectric layer 1t. One end of the inductor electrode 4w is connected to the first terminal Rx1 of the second balanced terminal Rx.
誘電体層1tの上側の主面にはインダクタ電極4wが形成される。インダクタ電極4wの一端は、第2平衡端子Rxの第1端子Rx1に接続される。 An
An
ビア電極5aは、誘電体層1c~1lを貫通して、接続電極3aの他端とインダクタ電極4lの中間部とを接続する。
The via electrode 5a penetrates through the dielectric layers 1c to 1l and connects the other end of the connection electrode 3a and the intermediate part of the inductor electrode 4l.
ビア電極5bは、誘電体層1e,1fを貫通して、キャパシタ電極2cとインダクタ電極4aの中間部とを接続する。
The via electrode 5b penetrates the dielectric layers 1e and 1f and connects the capacitor electrode 2c and the intermediate portion of the inductor electrode 4a.
ビア電極5cは、誘電体層1e~1mを貫通して、キャパシタ電極2dとインダクタ電極4dの一端とインダクタ電極4nの一端とを接続する。
The via electrode 5c passes through the dielectric layers 1e to 1m, and connects the capacitor electrode 2d, one end of the inductor electrode 4d, and one end of the inductor electrode 4n.
ビア電極5dは、誘電体層1gを貫通して、インダクタ電極4aの一端とインダクタ電極4bの一端とを接続する。
The via electrode 5d penetrates the dielectric layer 1g and connects one end of the inductor electrode 4a and one end of the inductor electrode 4b.
ビア電極5eは、誘電体層1gを貫通して、インダクタ電極4aの他端とインダクタ電極4cの一端とを接続する。
The via electrode 5e penetrates the dielectric layer 1g and connects the other end of the inductor electrode 4a and one end of the inductor electrode 4c.
ビア電極5fは、誘電体層1hを貫通して、インダクタ電極4bの他端とインダクタ電極4dの他端とを接続する。
The via electrode 5f penetrates the dielectric layer 1h and connects the other end of the inductor electrode 4b and the other end of the inductor electrode 4d.
ビア電極5gは、誘電体層1hを貫通して、インダクタ電極4cの他端とインダクタ電極4eの一端とを接続する。
The via electrode 5g penetrates the dielectric layer 1h and connects the other end of the inductor electrode 4c and one end of the inductor electrode 4e.
ビア電極5hは、誘電体層1iを貫通して、インダクタ電極4eの他端とインダクタ電極4fの他端とを接続する。
The via electrode 5h penetrates the dielectric layer 1i and connects the other end of the inductor electrode 4e and the other end of the inductor electrode 4f.
ビア電極5iは、誘電体層1jを貫通して、インダクタ電極4gの他端とインダクタ電極4iの一端とを接続する。
The via electrode 5i passes through the dielectric layer 1j and connects the other end of the inductor electrode 4g and one end of the inductor electrode 4i.
ビア電極5jは、誘電体層1kを貫通して、インダクタ電極4hの他端とインダクタ電極4jの一端とを接続する。
The via electrode 5j penetrates the dielectric layer 1k and connects the other end of the inductor electrode 4h and one end of the inductor electrode 4j.
ビア電極5kは、誘電体層1kを貫通して、インダクタ電極4iの他端とインダクタ電極4kの一端とを接続する。
The via electrode 5k penetrates the dielectric layer 1k and connects the other end of the inductor electrode 4i and one end of the inductor electrode 4k.
ビア電極5lは、誘電体層1lを貫通して、インダクタ電極4jの他端とインダクタ電極4lの一端とを接続する。
Via electrode 5l penetrates through dielectric layer 11 and connects the other end of inductor electrode 4j and one end of inductor electrode 4l.
ビア電極5mは、誘電体層1lを貫通して、インダクタ電極4kの他端とインダクタ電極4mの一端とを接続する。
The via electrode 5m penetrates the dielectric layer 11 and connects the other end of the inductor electrode 4k and one end of the inductor electrode 4m.
ビア電極5nは、誘電体層1m~1pを貫通して、インダクタ電極4mの他端とインダクタ電極4qの一端とを接続する。
The via electrode 5n penetrates the dielectric layers 1m to 1p and connects the other end of the inductor electrode 4m and one end of the inductor electrode 4q.
ビア電極5oは、誘電体層1m~1qを貫通して、インダクタ電極4lの他端とインダクタ電極4rの一端とを接続する。
The via electrode 5o penetrates the dielectric layers 1m to 1q and connects the other end of the inductor electrode 4l and one end of the inductor electrode 4r.
ビア電極5pは、誘電体層1nを貫通して、インダクタ電極4nの他端とインダクタ電極4oの一端とを接続する。
The via electrode 5p penetrates the dielectric layer 1n and connects the other end of the inductor electrode 4n and one end of the inductor electrode 4o.
ビア電極5qは、誘電体層1oを貫通して、インダクタ電極4oの他端とインダクタ電極4pの他端とを接続する。
The via electrode 5q penetrates the dielectric layer 1o and connects the other end of the inductor electrode 4o and the other end of the inductor electrode 4p.
ビア電極5rは、誘電体層1qを貫通して、インダクタ電極4qの他端とインダクタ電極4sの一端とを接続する。
Via electrode 5r penetrates through dielectric layer 1q and connects the other end of inductor electrode 4q and one end of inductor electrode 4s.
ビア電極5sは、誘電体層1rを貫通して、インダクタ電極4rの他端とインダクタ電極4tの他端とを接続する。
The via electrode 5s penetrates the dielectric layer 1r and connects the other end of the inductor electrode 4r and the other end of the inductor electrode 4t.
ビア電極5tは、誘電体層1rを貫通して、インダクタ電極4sの他端とインダクタ電極4uの一端とを接続する。
The via electrode 5t penetrates the dielectric layer 1r and connects the other end of the inductor electrode 4s and one end of the inductor electrode 4u.
ビア電極5uは、誘電体層1sを貫通して、インダクタ電極4uの他端とインダクタ電極4vの一端とを接続する。
The via electrode 5u penetrates the dielectric layer 1s and connects the other end of the inductor electrode 4u and one end of the inductor electrode 4v.
ビア電極5vは、誘電体層1tを貫通して、インダクタ電極4vの他端とインダクタ電極4wの他端とを接続する。
The via electrode 5v passes through the dielectric layer 1t and connects the other end of the inductor electrode 4v and the other end of the inductor electrode 4w.
上述した、キャパシタ電極2a~2i、接続電極3a、インダクタ電極4a~4wおよびビア電極5a~5vは、たとえば、Ag、Cuや、これらの合金を主成分とする金属により形成することができる。
The above-described capacitor electrodes 2a to 2i, connection electrodes 3a, inductor electrodes 4a to 4w, and via electrodes 5a to 5v can be made of, for example, Ag, Cu, or a metal mainly composed of these alloys.
以上の構成からなる、誘電体層の積層により構成された本実施の形態の積層バラン100は、従来から、積層バランを製造するのに使用されている一般的な製造方法により、製造することができる。
The laminated balun 100 of the present embodiment configured by laminating dielectric layers having the above-described configuration can be manufactured by a general manufacturing method conventionally used for manufacturing laminated baluns. it can.
次に、図1と図4~6とを対比しながら、積層バラン100の等価回路と、誘電体層1a~1uの層間に形成されたキャパシタ電極2a~2i、接続電極3a、インダクタ電極4a~4w、および誘電体層1a~1uのいずれかを貫通するビア電極5a~5vとの関係について説明する。
Next, while comparing FIG. 1 with FIGS. 4 to 6, the equivalent circuit of the laminated balun 100 and the capacitor electrodes 2a to 2i, the connection electrodes 3a, and the inductor electrodes 4a to 4a formed between the dielectric layers 1a to 1u. 4w and the relationship with via electrodes 5a to 5v penetrating any one of dielectric layers 1a to 1u will be described.
ローパスフィルタの第1インダクタL11は、不平衡端子UBを起点にして、インダクタ電極4f、ビア電極5h、インダクタ電極4e、ビア電極5g、インダクタ電極4c、ビア電極5e、インダクタ電極4aを経由し、ビア電極5bを終点とする線路により形成される。
The first inductor L11 of the low-pass filter starts from the unbalanced terminal UB, passes through the inductor electrode 4f, the via electrode 5h, the inductor electrode 4e, the via electrode 5g, the inductor electrode 4c, the via electrode 5e, and the inductor electrode 4a. It is formed by a line having the electrode 5b as an end point.
ローパスフィルタの第1キャパシタC1は、第1インダクタL11の終点であるビア電極5bに接続されたキャパシタ電極2cと、第1グランド端子G1および第2グランド端子G2に接続されたキャパシタ電極2aとの間に形成される容量により形成される。
The first capacitor C1 of the low-pass filter is between the capacitor electrode 2c connected to the via electrode 5b that is the end point of the first inductor L11, and the capacitor electrode 2a connected to the first ground terminal G1 and the second ground terminal G2. It is formed by the capacitance formed in
ローパスフィルタの第2インダクタL12は、第1インダクタL11の終点であるビア電極5bを起点にして、インダクタ電極4a、ビア電極5d、インダクタ電極4b、ビア電極5f、インダクタ電極4dを経由し、インダクタ電極4dの一端を終点とする線路により形成される。
The second inductor L12 of the low-pass filter starts from the via electrode 5b that is the end point of the first inductor L11, passes through the inductor electrode 4a, the via electrode 5d, the inductor electrode 4b, the via electrode 5f, and the inductor electrode 4d, and passes through the inductor electrode. 4d is formed by a line having one end as an end point.
不平衡側インダクタL2は、第2インダクタL12の終点であるインダクタ電極4dの一端を起点にして、ビア電極5c、インダクタ電極4n、ビア電極5p、インダクタ電極4o、ビア電極5q、インダクタ電極4pを経由し、第2グランド端子G2を終点とする線路により形成される。インダクタ電極4dの一端は、第2インダクタL12を構成する各電極と、第1インダクタL11を構成する各電極とを介して、不平衡端子UBに電気的に接続される。そのため、不平衡側インダクタL2を構成するインダクタ電極4n~4pの各々は、不平衡端子UBと第2グランド端子G2との間に電気的に接続される。ここで、「電気的に接続」された状態とは、導電路により接続された状態またはキャパシタを通じて接続された状態を示し、直接的に接続される状態に限らず、別の部材を間に介在させて間接的に接続される状態も含む。
The unbalanced inductor L2 starts from one end of the inductor electrode 4d that is the end point of the second inductor L12, and passes through the via electrode 5c, the inductor electrode 4n, the via electrode 5p, the inductor electrode 4o, the via electrode 5q, and the inductor electrode 4p. In addition, it is formed by a line having the second ground terminal G2 as an end point. One end of the inductor electrode 4d is electrically connected to the unbalanced terminal UB via each electrode constituting the second inductor L12 and each electrode constituting the first inductor L11. Therefore, each of the inductor electrodes 4n to 4p constituting the unbalanced inductor L2 is electrically connected between the unbalanced terminal UB and the second ground terminal G2. Here, the state of being “electrically connected” indicates a state of being connected by a conductive path or a state of being connected through a capacitor, and is not limited to a state of being directly connected, but another member is interposed therebetween. It also includes a state of being indirectly connected.
不平衡側インダクタL2と並列に接続された第2キャパシタC2は、第2インダクタL12の終点であるインダクタ電極4dの一端とビア電極5cにより接続されたキャパシタ電極2dと、第1グランド端子G1および第2グランド端子G2に接続されたキャパシタ電極2aとの間に形成される容量により形成される。
The second capacitor C2 connected in parallel with the unbalanced inductor L2 includes a capacitor electrode 2d connected to one end of the inductor electrode 4d, which is the end point of the second inductor L12, and the via electrode 5c, the first ground terminal G1, and the second capacitor C2. The capacitor is formed between the capacitor electrode 2a connected to the two ground terminals G2.
第1平衡側インダクタは、第1平衡端子Txの第1端子Tx1を起点として、インダクタ電極4t、ビア電極5s、インダクタ電極4r、ビア電極5o、インダクタ電極4l、ビア電極5l、インダクタ電極4j、ビア電極5j、インダクタ電極4hを経由し、第1平衡端子Txの第2端子Tx2を終点とする線路により形成される。すなわち、インダクタ電極4t,4r,4l,4j,4hの各々は、第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に電気的に接続される。これらのうち、積層方向から見たときに、環状のインダクタ電極4n~4pのいずれかによって囲まれる領域の少なくとも一部と重なる領域を囲むように形成されたインダクタ電極4lが、第1平衡側インダクタの第2インダクタ部L32を構成する。インダクタ電極4lによって囲まれる領域とインダクタ電極4n~4pのいずれかによって囲まれる領域とが重なり合うことにより、インダクタ電極4lによって構成される第2インダクタ部L32とインダクタ電極4n~4pによって構成される不平衡側インダクタL2とが電磁界結合する。
The first balanced-side inductor starts from the first terminal Tx1 of the first balanced terminal Tx, and starts from the inductor electrode 4t, the via electrode 5s, the inductor electrode 4r, the via electrode 5o, the inductor electrode 41, the via electrode 51, the inductor electrode 4j, and the via. The line is formed by a line having the second terminal Tx2 of the first balanced terminal Tx as an end point via the electrode 5j and the inductor electrode 4h. That is, each of the inductor electrodes 4t, 4r, 4l, 4j, and 4h is electrically connected between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx. Among these, the inductor electrode 4l formed so as to surround a region overlapping at least a part of the region surrounded by any of the annular inductor electrodes 4n to 4p when viewed from the stacking direction is the first balanced-side inductor. 2nd inductor part L32 is comprised. The region surrounded by the inductor electrode 41 and the region surrounded by any one of the inductor electrodes 4n to 4p are overlapped, so that an unbalance formed by the second inductor portion L32 configured by the inductor electrode 4l and the inductor electrodes 4n to 4p. The side inductor L2 is electromagnetically coupled.
第1平衡端子Txの第1端子Tx1とインダクタ電極4lとの間に電気的に接続されるインダクタ電極4t、ビア電極5s、インダクタ電極4rおよびビア電極5oは、第1平衡側インダクタの第1インダクタ部L31を構成する。インダクタ電極4lと第1平衡端子Txの第2端子Tx2との間に電気的に接続されるビア電極5l、インダクタ電極4j、ビア電極5j、インダクタ電極4hは、第1平衡側インダクタの第3インダクタ部L33を構成する。
The inductor electrode 4t, the via electrode 5s, the inductor electrode 4r, and the via electrode 5o that are electrically connected between the first terminal Tx1 of the first balanced terminal Tx and the inductor electrode 4l are the first inductor of the first balanced-side inductor. Part L31 is configured. The via electrode 51, the inductor electrode 4j, the via electrode 5j, and the inductor electrode 4h that are electrically connected between the inductor electrode 41 and the second terminal Tx2 of the first balanced terminal Tx are the third inductor of the first balanced-side inductor. Part L33 is configured.
なお、第1平衡側インダクタの第2インダクタ部L32を構成するインダクタ電極4lの中間部は、ビア電極5a、接続電極3aを経由して、DCフィード端子DCfeedに接続される。
Note that the intermediate portion of the inductor electrode 4l constituting the second inductor portion L32 of the first balanced inductor is connected to the DC feed terminal DCfeed via the via electrode 5a and the connection electrode 3a.
第2平衡側インダクタは、第2平衡端子Rxの第1端子Rx1を起点として、インダクタ電極4w、ビア電極5v、インダクタ電極4v、ビア電極5u、インダクタ電極4u、ビア電極5t、インダクタ電極4s、ビア電極5r、インダクタ電極4q、ビア電極5n、インダクタ電極4m、ビア電極5m、インダクタ電極4k、ビア電極5k、インダクタ電極4i、ビア電極5i、インダクタ電極4gを経由し、第2平衡端子Rxの第2端子Rx2を終点とする線路により形成される。すなわち、インダクタ電極4w,4v,4u,4s,4q,4m,4k,4i,4gの各々は、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に電気的に接続される。これらのうち、積層方向から見たときに、環状のインダクタ電極4n~4pのいずれかによって囲まれる領域の少なくとも一部と重なる領域を囲むように形成されたインダクタ電極4qが、第2平衡側インダクタの第2インダクタ部L42を構成する。インダクタ電極4qによって囲まれる領域とインダクタ電極4n~4pのいずれかによって囲まれる領域とが重なり合うことにより、インダクタ電極4qによって構成される第2インダクタ部L42とインダクタ電極4n~4pによって構成される不平衡側インダクタL2とが電磁界結合する。
The second balanced-side inductor starts from the first terminal Rx1 of the second balanced terminal Rx, and starts from the inductor electrode 4w, via electrode 5v, inductor electrode 4v, via electrode 5u, inductor electrode 4u, via electrode 5t, inductor electrode 4s, via The second balanced terminal Rx second through the electrode 5r, the inductor electrode 4q, the via electrode 5n, the inductor electrode 4m, the via electrode 5m, the inductor electrode 4k, the via electrode 5k, the inductor electrode 4i, the via electrode 5i, and the inductor electrode 4g. It is formed by a line having the terminal Rx2 as an end point. That is, each of the inductor electrodes 4w, 4v, 4u, 4s, 4q, 4m, 4k, 4i, and 4g is electrically connected between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx. . Among these, the inductor electrode 4q formed so as to surround at least a part of the region surrounded by any of the annular inductor electrodes 4n to 4p when viewed from the stacking direction is a second balanced-side inductor. The second inductor portion L42 is configured. The region surrounded by the inductor electrode 4q and the region surrounded by any one of the inductor electrodes 4n to 4p are overlapped, so that an unbalance formed by the second inductor portion L42 formed by the inductor electrode 4q and the inductor electrodes 4n to 4p is formed. The side inductor L2 is electromagnetically coupled.
第2平衡端子Rxの第1端子Rx1とインダクタ電極4qとの間に電気的に接続されるインダクタ電極4w、ビア電極5v、インダクタ電極4v、ビア電極5u、インダクタ電極4u、ビア電極5t、インダクタ電極4s、ビア電極5rは、第2平衡側インダクタの第1インダクタ部L41を構成する。インダクタ電極4qと第2平衡端子Rxの第2端子Rx2との間に電気的に接続されるビア電極5n、インダクタ電極4m、ビア電極5m、インダクタ電極4k、ビア電極5k、インダクタ電極4i、ビア電極5i、インダクタ電極4gは、第2平衡側インダクタの第3インダクタ部L43を構成する。
The inductor electrode 4w, the via electrode 5v, the inductor electrode 4v, the via electrode 5u, the inductor electrode 4u, the via electrode 5t, and the inductor electrode that are electrically connected between the first terminal Rx1 of the second balanced terminal Rx and the inductor electrode 4q. 4s and the via electrode 5r constitute the first inductor portion L41 of the second balanced-side inductor. Via electrode 5n, inductor electrode 4m, via electrode 5m, inductor electrode 4k, via electrode 5k, inductor electrode 4i, via electrode electrically connected between inductor electrode 4q and second terminal Rx2 of second balanced terminal Rx 5i and the inductor electrode 4g constitute a third inductor portion L43 of the second balanced-side inductor.
第3キャパシタC3は、主に、端子には接続されず浮き電極となったキャパシタ電極2b,2iを介して、第1平衡端子Txの第1端子Tx1に接続されたキャパシタ電極2fと、第1平衡端子Txの第2端子Tx2に接続されたキャパシタ電極2eとの間に形成される容量により形成されている。
The third capacitor C3 mainly includes a capacitor electrode 2f connected to the first terminal Tx1 of the first balanced terminal Tx via the capacitor electrodes 2b and 2i that are not connected to the terminals but are floating electrodes, The capacitor is formed by a capacitor formed between the balanced terminal Tx and the capacitor electrode 2e connected to the second terminal Tx2.
第4キャパシタC4は、主に、端子には接続されず浮き電極となったキャパシタ電極2jを介して、第2平衡端子Rxの第1端子Rx1に接続されたキャパシタ電極2hと、第2平衡端子Rxの第2端子Rx2に接続されたキャパシタ電極2gとの間に形成される容量により形成されている。
The fourth capacitor C4 mainly includes a capacitor electrode 2h connected to the first terminal Rx1 of the second balanced terminal Rx via a capacitor electrode 2j that is not connected to a terminal but is a floating electrode, and a second balanced terminal. The capacitor is formed between the capacitor electrode 2g connected to the second terminal Rx2 of Rx.
以上の等価回路および構成からなる本実施の形態の積層バラン100においては、誘電体層1a~1uの積層方向において、不平衡側インダクタL2を構成するインダクタ電極4n,4o,4pは、第1平衡側インダクタの第2インダクタ部L32を構成するインダクタ電極4lと、第2平衡側インダクタの第2インダクタ部L42を構成するインダクタ電極4qとの間に配置される。
In the multilayer balun 100 of the present embodiment having the above equivalent circuit and configuration, the inductor electrodes 4n, 4o, 4p constituting the unbalanced inductor L2 are in the first balanced direction in the stacking direction of the dielectric layers 1a-1u. It arrange | positions between the inductor electrode 4l which comprises the 2nd inductor part L32 of a side inductor, and the inductor electrode 4q which comprises the 2nd inductor part L42 of a 2nd balanced side inductor.
この結果、積層バラン100の使用時には、不平衡側インダクタL2と、第1平衡側インダクタの第2インダクタ部L32とが電磁界結合する。更に、不平衡側インダクタL2と、第2平衡側インダクタの第2インダクタ部L42とが電磁界結合する。
As a result, when the multilayer balun 100 is used, the unbalanced inductor L2 and the second inductor portion L32 of the first balanced inductor are electromagnetically coupled. Further, the unbalanced inductor L2 and the second inductor section L42 of the second balanced inductor are electromagnetically coupled.
図7は、積層バラン100の不平衡端子UBと第1平衡端子Tx(Tx1,Tx2)との間の周波数特性を示す図である。図8は、不平衡端子UBと第2平衡端子Rx(Rx1,Rx2)との間の周波数特性を示す図である。図7と図8とを比較して分かるように、両者は、ほぼ同じ周波数の通過帯域を備える。したがって、本実施の形態の積層バラン100は、TDD(Time Division Duplex)方式の通信に使用するのに適している。ただし、第1平衡端子Tx(Tx1,Tx2)と不平衡端子UBとの間に形成される通過帯域の周波数と、不平衡端子UBと第2平衡端子Rx(Rx1,Rx2)との間に形成される通過帯域の周波数とは同じである必要はなく、異なっていても良い。
FIG. 7 is a diagram illustrating frequency characteristics between the unbalanced terminal UB and the first balanced terminal Tx (Tx1, Tx2) of the multilayer balun 100. FIG. FIG. 8 is a diagram illustrating a frequency characteristic between the unbalanced terminal UB and the second balanced terminal Rx (Rx1, Rx2). As can be seen by comparing FIG. 7 and FIG. 8, both have passbands of substantially the same frequency. Therefore, the laminated balun 100 of the present embodiment is suitable for use in TDD (Time Division Duplex) communication. However, it is formed between the frequency of the pass band formed between the first balanced terminal Tx (Tx1, Tx2) and the unbalanced terminal UB and between the unbalanced terminal UB and the second balanced terminal Rx (Rx1, Rx2). It is not necessary for the frequency of the pass band to be the same, and it may be different.
以上のように、本実施の形態の積層バラン100は、複数の誘電体層1a~1uが積層された積層体1と、積層体1の層間に形成された複数のインダクタ電極と、積層体1の表面に形成された複数の端子とを備える。
As described above, the laminated balun 100 of the present embodiment includes the laminated body 1 in which the plurality of dielectric layers 1a to 1u are laminated, the plurality of inductor electrodes formed between the layers of the laminated body 1, and the laminated body 1 And a plurality of terminals formed on the surface.
複数の端子は、不平衡端子UBと、第1平衡端子Txと、第2平衡端子Rxと、第2グランド端子G2とを含む。第1平衡端子Txは、第1端子Tx1と第2端子Tx2とを有する。第2平衡端子Rxは、第1端子Rx1と第2端子Rx2とを有する。
The plurality of terminals include an unbalanced terminal UB, a first balanced terminal Tx, a second balanced terminal Rx, and a second ground terminal G2. The first balanced terminal Tx has a first terminal Tx1 and a second terminal Tx2. The second balanced terminal Rx has a first terminal Rx1 and a second terminal Rx2.
複数のインダクタ電極は、不平衡端子UBと第2グランド端子G2との間に電気的に接続されたインダクタ電極(不平衡側インダクタ導体パターン)4n~4pと、第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に電気的に接続されたインダクタ電極(第1平衡側インダクタ導体パターン)4lと、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に電気的に接続されたインダクタ電極(第2平衡側インダクタ導体パターン)4qとを含む。
The plurality of inductor electrodes include inductor electrodes (unbalanced side inductor conductor patterns) 4n to 4p electrically connected between the unbalanced terminal UB and the second ground terminal G2, and a first terminal of the first balanced terminal Tx. Between the inductor electrode (first balanced-side inductor conductor pattern) 4l electrically connected between Tx1 and the second terminal Tx2, and between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx. Connected inductor electrodes (second balanced-side inductor conductor pattern) 4q.
複数の誘電体層1a~1uの積層方向から見たとき、インダクタ電極4lによって囲まれた領域の少なくとも一部分は、インダクタ電極4n~4pによって囲まれた領域と重なる。更に、インダクタ電極4qによって囲まれた領域の少なくとも一部分は、インダクタ電極4n~4pによって囲まれた領域と重なる。積層方向において、インダクタ電極4n~4pは、インダクタ電極4lとインダクタ電極4qとの間に配置される。
When viewed from the stacking direction of the plurality of dielectric layers 1a to 1u, at least a part of the region surrounded by the inductor electrode 4l overlaps the region surrounded by the inductor electrodes 4n to 4p. Further, at least a part of the region surrounded by the inductor electrode 4q overlaps with the region surrounded by the inductor electrodes 4n to 4p. In the stacking direction, the inductor electrodes 4n to 4p are arranged between the inductor electrode 4l and the inductor electrode 4q.
このような配置により、インダクタ電極4n~4pによって構成される不平衡側インダクタL2は、インダクタ電極4lによって構成される第1平衡側インダクタの第2インダクタ部L32と電磁界結合できるとともに、インダクタ電極4qによって構成される第2平衡側インダクタの第2インダクタ部L42とも電磁界結合できる。更に上記の配置により、積層体1を低背化することができる。更に、ディバイダを使用する必要がないため、ディバイダを通過することによる挿入損失を抑制できるとともに、部品点数を減らすことができる。その結果、不平衡端子と2対の平衡端子とを備えた、小型で、信号の挿入損失が小さい積層バランを実現できる。
With such an arrangement, the unbalanced inductor L2 constituted by the inductor electrodes 4n to 4p can be electromagnetically coupled to the second inductor portion L32 of the first balanced inductor constituted by the inductor electrode 4l, and the inductor electrode 4q. The second inductor portion L42 of the second balanced-side inductor constituted by the electromagnetic field coupling can also be performed. Furthermore, the stacked body 1 can be reduced in height by the above arrangement. Furthermore, since there is no need to use a divider, insertion loss due to passing through the divider can be suppressed, and the number of parts can be reduced. As a result, it is possible to realize a small-sized laminated balun including an unbalanced terminal and two pairs of balanced terminals and having a small signal insertion loss.
上記の説明では、3つの誘電体層1m~1oの上側の主面にそれぞれ形成されたインダクタ電極4n,4o,4pとビア電極5p,5qとによって不平衡側インダクタL2を構成した。しかしながら、不平衡側インダクタL2を構成するインダクタ電極が形成される誘電体層の数はこれに限定されない。
In the above description, the unbalanced-side inductor L2 is configured by the inductor electrodes 4n, 4o, 4p and the via electrodes 5p, 5q respectively formed on the upper main surfaces of the three dielectric layers 1m-1o. However, the number of dielectric layers on which the inductor electrode constituting the unbalanced inductor L2 is formed is not limited to this.
図9は、本実施の形態の積層バラン100の変形例を示す分解斜視図である。なお、図9では、積層バランを構成する誘電体層のうちの一部の誘電体層のみが示される。変形例に係る積層バランは、図4~図6に示す積層バラン100と比較して、誘電体層1m~1oの代わりに誘電体層1vを備える点でのみ相違する。
FIG. 9 is an exploded perspective view showing a modified example of the laminated balun 100 of the present embodiment. In FIG. 9, only a part of the dielectric layers constituting the laminated balun is shown. The laminated balun according to the modification is different from the laminated balun 100 shown in FIGS. 4 to 6 only in that a dielectric layer 1v is provided instead of the dielectric layers 1m to 1o.
誘電体層1vの上側の主面にはインダクタ電極4xが形成される。インダクタ電極4xの一端は第2グランド端子G2に接続され、インダクタ電極4xの他端はビア電極5cに接続される。
An inductor electrode 4x is formed on the upper main surface of the dielectric layer 1v. One end of the inductor electrode 4x is connected to the second ground terminal G2, and the other end of the inductor electrode 4x is connected to the via electrode 5c.
図9に示す変形例において、不平衡側インダクタL2は、第2インダクタL12の終点であるインダクタ電極4dの一端に接続されたビア電極5c、インダクタ電極4xを経由し、第2グランド端子G2を終点とする線路により形成される。インダクタ電極4xは、たとえば、Ag、Cuや、これらの合金を主成分とする金属により形成することができる。
In the modification shown in FIG. 9, the unbalanced inductor L2 is connected to the second ground terminal G2 via the via electrode 5c and the inductor electrode 4x connected to one end of the inductor electrode 4d that is the end point of the second inductor L12. It is formed by the line. The inductor electrode 4x can be formed of, for example, Ag, Cu, or a metal mainly composed of these alloys.
本変形例では、誘電体層1l,1v,1p,1qが連続して順に積層される。そして、第1平衡側インダクタの第2インダクタ部L32を構成するインダクタ電極4lは、誘電体層1lと誘電体層1vとの間に形成される。不平衡側インダクタL2を構成するインダクタ電極4xは、誘電体層1vと誘電体層1pとの間に形成される。第2平衡側インダクタの第2インダクタ部L42を構成するインダクタ電極4qは、誘電体層1pと誘電体層1qとの間に形成される。つまり、不平衡側インダクタL2を構成するインダクタ電極4xは、積層体1における1つの層間にのみ形成される。これにより、積層バランを構成する誘電体層の数を減らすことができ、積層バランを低背化することができる。
In this modification, the dielectric layers 11, 1 v, 1 p, and 1 q are sequentially stacked. The inductor electrode 41 that constitutes the second inductor portion L32 of the first balanced inductor is formed between the dielectric layer 11 and the dielectric layer 1v. The inductor electrode 4x constituting the unbalanced inductor L2 is formed between the dielectric layer 1v and the dielectric layer 1p. The inductor electrode 4q constituting the second inductor portion L42 of the second balanced side inductor is formed between the dielectric layer 1p and the dielectric layer 1q. That is, the inductor electrode 4x constituting the unbalanced inductor L2 is formed only between one layer in the multilayer body 1. Thereby, the number of dielectric layers constituting the laminated balun can be reduced, and the laminated balun can be reduced in height.
上記の説明では、不平衡側インダクタL2は、第2キャパシタC2と並列に接続されるものとした。しかしながら、不平衡側インダクタL2は、第2キャパシタC2と直列に接続されてもよい。この場合、不平衡側インダクタL2と第2キャパシタC2とは、LC直列共振器を構成する。たとえば、第2インダクタL12の他端とグランドとの間に、不平衡側インダクタL2と第2キャパシタC2とがこの順に直列に接続される。
In the above description, it is assumed that the unbalanced inductor L2 is connected in parallel with the second capacitor C2. However, the unbalanced inductor L2 may be connected in series with the second capacitor C2. In this case, the unbalanced inductor L2 and the second capacitor C2 constitute an LC series resonator. For example, the unbalanced inductor L2 and the second capacitor C2 are connected in series in this order between the other end of the second inductor L12 and the ground.
上記の実施の形態に係る積層バラン100は、以下のようにも表現できる。
積層バラン100は、1つの不平衡端子UBと、第1端子Tx1と第2端子Tx2とを備えた第1平衡端子Txと、第1端子Rx1と第2端子Rx2とを備えた第2平衡端子Rxとを備える。不平衡端子UBとグランドとの間に、不平衡側インダクタL2が挿入され、第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に、第1平衡側インダクタが挿入され、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に、第2平衡側インダクタが挿入される。不平衡側インダクタL2は、第1平衡側インダクタおよび第2平衡側インダクタの双方と、それぞれ電磁界結合される。 Thelaminated balun 100 according to the above embodiment can also be expressed as follows.
Thelaminated balun 100 includes one unbalanced terminal UB, a first balanced terminal Tx having a first terminal Tx1 and a second terminal Tx2, and a second balanced terminal having a first terminal Rx1 and a second terminal Rx2. Rx. An unbalanced inductor L2 is inserted between the unbalanced terminal UB and the ground, a first balanced inductor is inserted between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx, A second balanced-side inductor is inserted between the first terminal Rx1 and the second terminal Rx2 of the two balanced terminals Rx. The unbalanced inductor L2 is electromagnetically coupled to both the first balanced inductor and the second balanced inductor.
積層バラン100は、1つの不平衡端子UBと、第1端子Tx1と第2端子Tx2とを備えた第1平衡端子Txと、第1端子Rx1と第2端子Rx2とを備えた第2平衡端子Rxとを備える。不平衡端子UBとグランドとの間に、不平衡側インダクタL2が挿入され、第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に、第1平衡側インダクタが挿入され、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に、第2平衡側インダクタが挿入される。不平衡側インダクタL2は、第1平衡側インダクタおよび第2平衡側インダクタの双方と、それぞれ電磁界結合される。 The
The
不平衡端子UBと不平衡側インダクタL2との間に、ローパスフィルタが挿入されることが好ましい。この場合には、ローパスフィルタにより、不平衡端子UBと第1平衡端子Txとの間を通過する信号の周波数帯、および、不平衡端子UBと第2平衡端子Rxとの間を通過する信号の周波数帯を調整することができる。
It is preferable that a low-pass filter is inserted between the unbalanced terminal UB and the unbalanced inductor L2. In this case, the frequency band of the signal passing between the unbalanced terminal UB and the first balanced terminal Tx and the signal passing between the unbalanced terminal UB and the second balanced terminal Rx by the low-pass filter. The frequency band can be adjusted.
第1平衡端子Txの第1端子Tx1と第2端子Tx2との間に、更に、第3キャパシタC3が挿入され、第2平衡端子Rxの第1端子Rx1と第2端子Rx2との間に、更に、第4キャパシタC4が挿入されたものとすることが好ましい。この場合には、第1平衡側インダクタと第3キャパシタC3とでLC並列共振器が構成される。また、第2平衡側インダクタと第4キャパシタC4とでLC並列共振器が構成される。そして、第1平衡側インダクタと第4キャパシタとで構成されたLC並列共振器は、不平衡側インダクタL2と第2キャパシタC2とでLC並列共振器が構成されている場合はそのLC並列共振器と共働で、第2キャパシタC2が省略されていてそのLC並列共振器が構成されていない場合は独自に、第1バンドパスフィルタを構成する。第1バンドパスフィルタは、任意に選択した周波数帯の信号のみを不平衡端子UBと第1平衡端子Txとの間に通過させる。更に、第2平衡側インダクタと第4キャパシタC4とで構成されたLC並列共振器は、不平衡側インダクタL2と第2キャパシタC2とでLC並列共振器が構成されている場合はそのLC並列共振器と共働で、第2キャパシタC2が省略されていてそのLC並列共振器が構成されていない場合は独自に、第2バンドパスフィルタを構成する。第2バンドパスフィルタは、任意に選択した周波数帯の信号のみを不平衡端子と第2平衡端子との間に通過させる。なお、第3キャパシタC3と第4キャパシタC4とが挿入されていない場合においても、上述した不平衡側インダクタL2と第2キャパシタC2とで構成されるLC並列共振器は、バンドパスフィルタとして、あるいはバンドパスフィルタの一部として機能する。
A third capacitor C3 is further inserted between the first terminal Tx1 and the second terminal Tx2 of the first balanced terminal Tx, and between the first terminal Rx1 and the second terminal Rx2 of the second balanced terminal Rx, Furthermore, it is preferable that the fourth capacitor C4 is inserted. In this case, an LC parallel resonator is configured by the first balanced inductor and the third capacitor C3. Further, the second balanced-side inductor and the fourth capacitor C4 constitute an LC parallel resonator. The LC parallel resonator composed of the first balanced-side inductor and the fourth capacitor is the LC parallel resonator when the unbalanced-side inductor L2 and the second capacitor C2 constitute the LC parallel resonator. When the second capacitor C2 is omitted and the LC parallel resonator is not configured, the first band-pass filter is configured independently. The first band pass filter passes only a signal in an arbitrarily selected frequency band between the unbalanced terminal UB and the first balanced terminal Tx. Further, the LC parallel resonator constituted by the second balanced-side inductor and the fourth capacitor C4 is the LC parallel resonance when the LC parallel resonator is constituted by the unbalanced-side inductor L2 and the second capacitor C2. When the second capacitor C2 is omitted and the LC parallel resonator is not configured, the second bandpass filter is configured independently. The second band pass filter passes only a signal in a frequency band selected arbitrarily between the unbalanced terminal and the second balanced terminal. Even when the third capacitor C3 and the fourth capacitor C4 are not inserted, the LC parallel resonator composed of the unbalanced inductor L2 and the second capacitor C2 described above is used as a bandpass filter or Functions as part of a bandpass filter.
第1平衡側インダクタは、順に直列に接続された、第1インダクタ部L31、第2インダクタ部L32、第3インダクタ部L33を備える。不平衡側インダクタL2は、第1平衡側インダクタの第2インダクタ部L32と電磁界結合される。第2平衡側インダクタは、順に直列に接続された、第1インダクタ部L41、第2インダクタ部L42、第3インダクタ部L43を備える。不平衡側インダクタL2は、第2平衡側インダクタの第2インダクタ部L42と電磁界結合される。この場合には、不平衡側インダクタL2と第1平衡側インダクタとの電磁界結合の強さの調整が容易になるとともに、不平衡側インダクタL2と第2平衡側インダクタとの電磁界結合の強さの調整が容易になる。すなわち、第1平衡側インダクタおよび第2平衡側インダクタにおいて、それぞれ、第2インダクタ部が、不平衡側インダクタL2との電磁界結合の調整に用いられる。一方、第1平衡側インダクタおよび第2平衡側インダクタにおいて、それぞれ、主に第1インダクタ部および第3インダクタ部が、第1平衡端子Txまたは第2平衡端子Rxのインピーダンスの調整に用いられる。
The first balanced-side inductor includes a first inductor portion L31, a second inductor portion L32, and a third inductor portion L33 that are sequentially connected in series. The unbalanced inductor L2 is electromagnetically coupled to the second inductor portion L32 of the first balanced inductor. The second balanced-side inductor includes a first inductor portion L41, a second inductor portion L42, and a third inductor portion L43 that are connected in series in order. The unbalanced inductor L2 is electromagnetically coupled to the second inductor portion L42 of the second balanced inductor. In this case, it is easy to adjust the strength of electromagnetic coupling between the unbalanced inductor L2 and the first balanced inductor, and strong electromagnetic coupling between the unbalanced inductor L2 and the second balanced inductor. Adjustment of the thickness becomes easy. That is, in the first balanced-side inductor and the second balanced-side inductor, the second inductor unit is used for adjusting the electromagnetic field coupling with the unbalanced-side inductor L2. On the other hand, in the first balanced side inductor and the second balanced side inductor, the first inductor unit and the third inductor unit are mainly used for adjusting the impedance of the first balanced terminal Tx or the second balanced terminal Rx, respectively.
第1平衡側インダクタの中間部分に、DCフィード端子DCfeedが接続されたものとすることが好ましい。この場合には、DCフィード端子Dcfeedに直流電力を供給することにより、たとえば、アンテナから送信されるTx信号の強度を高めることができる。
It is preferable that a DC feed terminal DCfeed is connected to an intermediate portion of the first balanced inductor. In this case, for example, the strength of the Tx signal transmitted from the antenna can be increased by supplying DC power to the DC feed terminal Dcfeed.
第1平衡端子Txのインピーダンスと、第2平衡端子Rxのインピーダンスとは、異なったものとすることが好ましい。この場合には、たとえば、接続されるRF回路のRx側のインピーダンスとTx側のインピーダンスとが異なっていても、積層バラン100をそのまま接続することができる。更に、第1平衡端子Txのインピーダンスと第2平衡端子Rxのインピーダンスとを、相互に独立して設計することができる。
It is preferable that the impedance of the first balanced terminal Tx is different from the impedance of the second balanced terminal Rx. In this case, for example, even when the impedance on the Rx side and the impedance on the Tx side of the RF circuit to be connected are different, the laminated balun 100 can be connected as it is. Furthermore, the impedance of the first balanced terminal Tx and the impedance of the second balanced terminal Rx can be designed independently of each other.
不平衡端子UBと第1平衡端子Txとの間に形成される通過帯域の周波数と、不平衡端子UBと第2平衡端子Rxとの間に形成される通過帯域の周波数とは、異なっていても良い。
The frequency of the pass band formed between the unbalanced terminal UB and the first balanced terminal Tx is different from the frequency of the pass band formed between the unbalanced terminal UB and the second balanced terminal Rx. Also good.
あるいは、不平衡端子UBと第1平衡端子Txとの間に形成される通過帯域の周波数と、不平衡端子UBと第2平衡端子Rxとの間に形成される通過帯域の周波数とは、同じであっても良い。この場合には、たとえば、TDD(Time Division Duplex)方式の通信に、積層バラン100を使用することができる。
Alternatively, the frequency of the pass band formed between the unbalanced terminal UB and the first balanced terminal Tx is the same as the frequency of the pass band formed between the unbalanced terminal UB and the second balanced terminal Rx. It may be. In this case, for example, the laminated balun 100 can be used for TDD (Time Division Duplex) communication.
積層バラン100は、複数の誘電体層1a~1uが積層された積層体1と、誘電体層1a~1uの層間に積層された複数のインダクタ電極と、誘電体層1a~1uのいずれかを貫通して形成された複数のビア電極とを備える。インダクタ電極により、または、インダクタ電極とビア電極とにより、不平衡側インダクタL2、第1平衡側インダクタ、第2平衡側インダクタがそれぞれ形成される。
The laminated balun 100 includes any one of a laminated body 1 in which a plurality of dielectric layers 1a to 1u are laminated, a plurality of inductor electrodes laminated between the dielectric layers 1a to 1u, and the dielectric layers 1a to 1u. A plurality of via electrodes formed therethrough. The inductor electrode, or the inductor electrode and the via electrode form an unbalanced inductor L2, a first balanced inductor, and a second balanced inductor, respectively.
更に、積層バラン100は、誘電体層1a~1uの層間に積層された複数のキャパシタ電極を備える。複数のキャパシタ電極間に形成される容量により、第1キャパシタ、第2キャパシタ、第3キャパシタ、第4キャパシタが形成される。
Furthermore, the laminated balun 100 includes a plurality of capacitor electrodes laminated between the dielectric layers 1a to 1u. The first capacitor, the second capacitor, the third capacitor, and the fourth capacitor are formed by the capacitance formed between the plurality of capacitor electrodes.
誘電体層1a~1uの積層方向において、不平衡側インダクタL2を形成するインダクタ電極4n~4pは、第1平衡側インダクタの第2インダクタ部L32を形成するインダクタ電極4lと、第2平衡側インダクタの第2インダクタ部L42を形成するインダクタ電極4qとの間に配置される。これにより、不平衡側インダクタL2と第1平衡側インダクタとを電磁界結合させ、同時に、不平衡側インダクタL2と第2平衡側インダクタとを電磁界結合させることができる。
In the stacking direction of the dielectric layers 1a to 1u, the inductor electrodes 4n to 4p that form the unbalanced inductor L2 are the inductor electrode 4l that forms the second inductor portion L32 of the first balanced side inductor and the second balanced side inductor. And the inductor electrode 4q forming the second inductor portion L42. As a result, the unbalanced inductor L2 and the first balanced inductor can be electromagnetically coupled, and at the same time, the unbalanced inductor L2 and the second balanced inductor can be electromagnetically coupled.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 積層体、1a~1v 誘電体層、2a~2j キャパシタ電極、3a 接続電極、4a~4x インダクタ電極、5a~5v ビア電極、100 積層バラン、C1 第1キャパシタ、C2 第2キャパシタ、C3 第3キャパシタ、C4 第4キャパシタ、DCfeed DCフィード端子、F1 第1浮遊端子、F2 第2浮遊端子、G1 第1グランド端子、G2 第2グランド端子、L2 不平衡側インダクタ、L11 第1インダクタ、L12 第2インダクタ、L31,L41 第1インダクタ部、L32,L42 第2インダクタ部、L33,L43 第3インダクタ部、Rx 第2平衡端子、Tx 第1平衡端子、UB 不平衡端子。
1 laminated body, 1a-1v dielectric layer, 2a-2j capacitor electrode, 3a connection electrode, 4a-4x inductor electrode, 5a-5v via electrode, 100 laminated balun, C1 first capacitor, C2 second capacitor, C3 third Capacitor, C4 fourth capacitor, DCfeed DC feed terminal, F1 first floating terminal, F2 second floating terminal, G1 first ground terminal, G2 second ground terminal, L2 unbalanced side inductor, L11 first inductor, L12 second Inductor, L31, L41, first inductor section, L32, L42, second inductor section, L33, L43, third inductor section, Rx second balanced terminal, Tx first balanced terminal, UB unbalanced terminal.
Claims (2)
- 複数の誘電体層が積層された積層体と、
前記積層体の層間に形成された複数のインダクタ導体パターンと、
前記積層体の表面に形成された複数の端子とを備えた積層バランであって、
前記複数の端子は、不平衡端子と、第1平衡端子と、第2平衡端子と、グランド端子とを含み、
前記第1平衡端子と前記第2平衡端子との各々は、第1端子と第2端子とを有し、
前記複数のインダクタ導体パターンは、
前記不平衡端子と前記グランド端子との間に電気的に接続された不平衡側インダクタ導体パターンと、
前記第1平衡端子の前記第1端子と前記第1平衡端子の前記第2端子との間に電気的に接続された第1平衡側インダクタ導体パターンと、
前記第2平衡端子の前記第1端子と前記第2平衡端子の前記第2端子との間に電気的に接続された第2平衡側インダクタ導体パターンとを含み、
前記複数の誘電体層の積層方向から見たとき、前記第1平衡側インダクタ導体パターンによって囲まれた領域の少なくとも一部分は、前記不平衡側インダクタ導体パターンによって囲まれた領域と重なり、かつ前記第2平衡側インダクタ導体パターンによって囲まれた領域の少なくとも一部分は、前記不平衡側インダクタ導体パターンによって囲まれた領域と重なり、
前記積層方向において、前記不平衡側インダクタ導体パターンは、前記第1平衡側インダクタ導体パターンと、前記第2平衡側インダクタ導体パターンとの間に配置される、積層バラン。 A laminate in which a plurality of dielectric layers are laminated;
A plurality of inductor conductor patterns formed between the layers of the laminate;
A laminated balun comprising a plurality of terminals formed on the surface of the laminated body,
The plurality of terminals include an unbalanced terminal, a first balanced terminal, a second balanced terminal, and a ground terminal,
Each of the first balanced terminal and the second balanced terminal has a first terminal and a second terminal;
The plurality of inductor conductor patterns are:
An unbalanced inductor conductor pattern electrically connected between the unbalanced terminal and the ground terminal;
A first balanced-side inductor conductor pattern electrically connected between the first terminal of the first balanced terminal and the second terminal of the first balanced terminal;
A second balanced-side inductor conductor pattern electrically connected between the first terminal of the second balanced terminal and the second terminal of the second balanced terminal;
When viewed from the stacking direction of the plurality of dielectric layers, at least a part of the region surrounded by the first balanced-side inductor conductor pattern overlaps with the region surrounded by the unbalanced-side inductor conductive pattern, and the first At least a portion of the region surrounded by the two balanced inductor conductor patterns overlaps with the region surrounded by the unbalanced inductor conductor pattern;
The multilayer balun, wherein the unbalanced inductor conductor pattern is disposed between the first balanced inductor inductor pattern and the second balanced inductor conductor pattern in the stacking direction. - 前記複数の誘電体層は、連続して順に積層された第1~第4誘電体層を含み、 前記第1平衡側インダクタ導体パターンは、前記第1誘電体層と前記第2誘電体層との間に形成され、
前記不平衡側インダクタ導体パターンは、前記第2誘電体層と前記第3誘電体層との間に形成され、
前記第2平衡側インダクタ導体パターンは、前記第3誘電体層と前記第4誘電体層との間に形成される、請求項1に記載の積層バラン。 The plurality of dielectric layers include first to fourth dielectric layers stacked sequentially in sequence, and the first balanced-side inductor conductor pattern includes the first dielectric layer, the second dielectric layer, Formed between
The unbalanced inductor conductor pattern is formed between the second dielectric layer and the third dielectric layer,
The multilayer balun according to claim 1, wherein the second balanced-side inductor conductor pattern is formed between the third dielectric layer and the fourth dielectric layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107112980A TWI654838B (en) | 2017-04-26 | 2018-04-17 | Stacked balanced-unbalanced converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-087007 | 2017-04-26 | ||
JP2017087007 | 2017-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198603A1 true WO2018198603A1 (en) | 2018-11-01 |
Family
ID=63918867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010976 WO2018198603A1 (en) | 2017-04-26 | 2018-03-20 | Laminated balun |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI654838B (en) |
WO (1) | WO2018198603A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005076404A1 (en) * | 2004-02-06 | 2005-08-18 | Murata Manufacturing Co., Ltd. | Balanced distributor |
-
2018
- 2018-03-20 WO PCT/JP2018/010976 patent/WO2018198603A1/en active Application Filing
- 2018-04-17 TW TW107112980A patent/TWI654838B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005076404A1 (en) * | 2004-02-06 | 2005-08-18 | Murata Manufacturing Co., Ltd. | Balanced distributor |
Also Published As
Publication number | Publication date |
---|---|
TWI654838B (en) | 2019-03-21 |
TW201843930A (en) | 2018-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6658765B2 (en) | Balance filter | |
JP2008527808A (en) | Multiplexer using bandpass filter structure | |
US9071227B2 (en) | High-frequency module | |
JP4442056B2 (en) | Composite LC filter parts | |
GB2380879A (en) | Laminated LC low-pass filter with trap circuit | |
JP2010141859A (en) | Diplexer and multiplexer | |
TWI484753B (en) | High frequency module | |
JP5041285B2 (en) | High frequency components | |
WO2013047358A1 (en) | High-frequency module | |
CN114175396B (en) | Balance converter | |
WO2018198604A1 (en) | Laminated balun | |
WO2018198603A1 (en) | Laminated balun | |
US7965989B2 (en) | High frequency module | |
JP4936119B2 (en) | Multilayer balun transformer and high frequency components | |
JP2002217036A (en) | High frequency composite circuit and component | |
JP2003087076A (en) | Chip-like lc composite component and circuit using the same | |
JP7420250B2 (en) | Filter devices and multiplexers | |
JP5874501B2 (en) | High frequency module | |
JP3766262B2 (en) | Balun transformer | |
JP4678572B2 (en) | Multilayer balun transformer and high-frequency switch module using the same | |
JP4678571B2 (en) | Multilayer balun transformer and high-frequency switch module using the same | |
CN101142741A (en) | filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18790193 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18790193 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |