+

WO2018198245A1 - 逆浸透膜プラント及び逆浸透膜プラントの運転方法 - Google Patents

逆浸透膜プラント及び逆浸透膜プラントの運転方法 Download PDF

Info

Publication number
WO2018198245A1
WO2018198245A1 PCT/JP2017/016612 JP2017016612W WO2018198245A1 WO 2018198245 A1 WO2018198245 A1 WO 2018198245A1 JP 2017016612 W JP2017016612 W JP 2017016612W WO 2018198245 A1 WO2018198245 A1 WO 2018198245A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
osmosis membrane
biofilm
inspection
Prior art date
Application number
PCT/JP2017/016612
Other languages
English (en)
French (fr)
Inventor
嘉晃 伊藤
竹内 和久
英夫 鈴木
岳 近藤
みよ子 田島
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to PCT/JP2017/016612 priority Critical patent/WO2018198245A1/ja
Priority to JP2019514534A priority patent/JPWO2018199093A1/ja
Priority to PCT/JP2018/016614 priority patent/WO2018199093A1/ja
Publication of WO2018198245A1 publication Critical patent/WO2018198245A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating

Definitions

  • the present invention relates to a reverse osmosis membrane plant and a method for operating a reverse osmosis membrane plant.
  • RO membrane reverse osmosis membrane
  • RO membrane reverse osmosis membrane
  • biofilm adhesion when evaluating biofilm adhesion using the technique of Patent Document 1, even if biofilm adhesion is confirmed after measurement of at least about 30 days (1.5 months in the examples), the actual machine Since biofilm adhesion has already started on the reverse osmosis membrane of the plant, it can be used as an index for cleaning, but it is not an index for preventing biofilm from adhering to the reverse osmosis membrane of the actual plant. It was.
  • an object of the present invention is to provide a reverse osmosis membrane plant and a method of operating a reverse osmosis membrane plant that can more quickly grasp the trend of biofilm adhesion to a reverse osmosis membrane.
  • the first invention of the present invention for solving the above-mentioned problem is that an inflow water line for inflowing inflow water is connected, and the permeated water from which the salinity is removed from the inflow water and the salinity in the inflow water are concentrated.
  • a reverse osmosis membrane device having a reverse osmosis membrane for obtaining concentrated water, a branch line branched from the inflow water line and branching a part of the inflow water as test water, the branch line is connected, and the inside At least one or more test containers for passing test water and the test container are attached, the biofilm derived from the test water adheres, and the biofilm adheres more than the material of the reverse osmosis membrane
  • An inspection carrier made of a material, and a biofilm inspection device that stops the passage of the inspection water to the inspection container and inspects the amount of biofilm attached to the inspection carrier. In the reverse osmosis membrane plant to be.
  • the second invention is characterized in that, in the first invention, the biofilm adhesion of the test carrier is evaluated by comparing the amount of biofilm deposited with the material of the reverse osmosis membrane. Located in reverse osmosis membrane plant.
  • the biofilm inspection apparatus performs the inspection on the test carrier at a predetermined time or a predetermined number of times less than one day from the beginning of passing the inspection water. It exists in the reverse osmosis membrane plant characterized by evaluating the adhesion amount of a film.
  • a fourth invention is the reverse osmosis membrane plant according to any one of the first to third inventions, wherein the test carrier has flexibility.
  • the fifth invention is the reverse osmosis membrane plant according to any one of the first to fourth inventions, wherein the evaluation of the adhesion of the biofilm is evaluated by an ATP measurement method.
  • the flow of the inspection water is equivalent to the linear velocity of the inflow water on the membrane surface of the reverse osmosis membrane. Located in the osmosis membrane plant.
  • the seventh invention is the reverse osmosis membrane plant according to any one of the first to sixth inventions, further comprising a pretreatment unit for removing turbid components in the inflow water.
  • the eighth invention includes a reverse osmosis membrane step of separating by a reverse osmosis membrane to obtain permeated water from which salinity has been removed from inflow water and concentrated water in which the salinity in the inflow water is concentrated, and a part of the inflow water.
  • a test water flow process for branching as test water and allowing the test water to flow inside the test container; and at least one of the test water is stored in the test container, and the biofilm adheres more than the material of the reverse osmosis membrane
  • a biofilm adhering step for adhering the biofilm derived from the test water to the test carrier made of a high-quality material, and stopping the water flow of the test water to the test container and attaching the biofilm adhering to the test carrier
  • the biofilm adhesion amount measuring step for measuring the film adhesion amount
  • the biofilm adhesion amount measurement step the biofilm adhesion amount is evaluated for a predetermined time or a predetermined number of times less than a day from the beginning of water flow. That has a biofilm adhered evaluation step, and based on the evaluation, in an operating method of the reverse osmosis membrane plant and controls the operation of the reverse osmosis membrane process.
  • the biofilm adhesion of the test carrier is evaluated by comparing the amount of biofilm deposited with the material of the reverse osmosis membrane.
  • a tenth aspect of the invention is the reverse osmosis membrane plant according to the eighth or ninth aspect, wherein the water flow of the inspection water is equivalent to the linear velocity of the inflow water on the membrane surface of the reverse osmosis membrane. It is in the driving method.
  • the material for the test carrier is a material having higher biofilm adhesion than the material of the reverse osmosis membrane used in the actual machine. The presence or absence of biofilm adhesion can be confirmed. As a result, it is possible to quickly predict the trend of adhesion of the reverse osmosis membrane device of the actual plant to the reverse osmosis membrane.
  • FIG. 1 is a schematic diagram of a reverse osmosis membrane plant according to a first embodiment.
  • FIG. 2 is a configuration diagram of the test container and the test carrier according to the first embodiment.
  • FIG. 3 is a configuration diagram of another test container and a test carrier according to the first embodiment.
  • FIG. 4 is a configuration diagram of another test container and a test carrier according to the first embodiment.
  • FIG. 5 is a schematic diagram of a material evaluation test apparatus for a test carrier.
  • FIG. 6 is a schematic diagram of a simple material evaluation test apparatus for a test carrier.
  • FIG. 7 is a graph of the material evaluation test result of the test carrier.
  • FIG. 8 is a bar graph showing the result of the material evaluation test of the test carrier.
  • FIG. 9 is a schematic diagram of a reverse osmosis membrane plant according to the second embodiment.
  • FIG. 10 is a flowchart of evaluation.
  • FIG. 11 is a schematic diagram of a reverse osmosis membrane plant according to
  • FIG. 1 is a schematic diagram of a reverse osmosis membrane plant according to a first embodiment.
  • a reverse osmosis membrane plant 100 ⁇ / b> A according to the present embodiment is connected to an inflow water line L 1 for flowing in inflow water 11, and permeated water 12 and inflow water 11 from which salinity has been removed.
  • a reverse osmosis membrane device 15 having a reverse osmosis membrane 14 for obtaining concentrated water 13 in which the salt content is concentrated, and a branch line branched from the inflow water line L 1 and branching a part of the inflow water 11 as the inspection water 21.
  • L 11 is connected to the branch line L 11 , and at least one or more inspection containers 22 for passing the inspection water 21 therein are accommodated in the inspection container 22, and a biofilm derived from the inspection water 21 adheres thereto.
  • the flow of the test carrier 23 made of a material having higher biofilm adhesion than the material of the reverse osmosis membrane 14 and the test water 21 to the test container 22 is stopped, and the bio adheres to the test carrier 23.
  • Reference numeral 31 is the drug
  • 32 illustrates a drug supply unit for supplying a drug 31 by the drug supply line L 21.
  • a pre-processing unit such as a sand filtration device, a UF membrane (ultrafiltration membrane) or an MF membrane (microfiltration membrane) for removing turbid components in seawater is used as in the conventional case. It may be preprocessed by using (omitted in the first embodiment).
  • NF membrane 14 of the reverse osmosis membrane device 15 in addition to general reverse osmosis, an NF (Nano Filtration) membrane (hereinafter also referred to as “NF membrane”) or the like can be used.
  • the reverse osmosis membrane is mostly made of aromatic polyamide.
  • the influent water 11 as raw water is processed by the reverse osmosis membrane device 15 to obtain the permeated water 12 which is fresh water and the concentrated water 13 in which the salinity is concentrated.
  • water other than seawater may be used as raw water.
  • the inflow water 11 for example, pumped seawater, seawater once used in the plant as a refrigerant, or the like can be used, and it is not limited.
  • the inspection container 22 is interposed in a branch line L 11 branched from the inflow water line L 1, and a part of the inflow water 11 is passed therethrough as inspection water 21.
  • An inspection carrier 23 is accommodated in the inspection container 22.
  • the test carrier 23 is made of a material having higher biofilm adhesion than the material of the reverse osmosis membrane 14 used in the reverse osmosis membrane device 15 (for example, a polyamide-based composite material).
  • FIG. 2 is a configuration diagram of the test container and the test carrier according to the first embodiment. As shown in FIG. 2, the outer surface 23 a of the test carrier 23 and the inner surface 22 a of the test container are arranged in the test container 22 so as to be in close contact with each other. Then, the inspection water 21 flowing into the inspection container 22 is passed through the inner surface 23b of the inspection carrier 23, and a biofilm is adhered to the inner surface 23b.
  • the inspection container 22 is sealed with a removable lid 24 after the inspection carrier 23 is accommodated therein.
  • a connecting jig 25 connected to the branch line L 11 is provided on the bottom side of the inspection container 22 and the upper side of the lid body 24.
  • a flow rate adjustment valve (not shown) for adjusting the inflow amount is provided on the inlet side of the inspection container 22.
  • the water flow of the inspection water 21 is equal to the linear velocity of the inflow water 11 on the membrane surface of the reverse osmosis membrane 14 installed in the reverse osmosis membrane device 15 of the actual machine. Thereby, it will be set as the conditions similar to the adhesion environment of the biofilm in an actual machine.
  • the typical linear velocity is preferably in the range of 50 to 350 mm / sec.
  • test carriers 23 are accommodated in the test container 22, and the test carriers 23 are taken out every predetermined time or every predetermined number of times in a day. You may make it confirm adhesion of a film.
  • the plurality of inspection carriers 23 are not limited to cylindrical ones.
  • a flexible film-like one is rolled and stored in the inspection container 22. You may make it do.
  • the biofilm inspection apparatus performs the amount of biofilm adhering to the inspection carrier 23 using an inspection apparatus that measures the amount of ATP per unit area.
  • This inspection device collects an attached biofilm and reacts with a coloring reagent to indirectly determine the ATP amount from the coloring amount of the reagent, and a commercially available measuring instrument can be used.
  • a commercially available measuring instrument can be used.
  • ATP wiping inspection kit manufactured by Nitta)” and the like can be exemplified.
  • ATP Addenosine tri-phosphate: adenosine triphosphate
  • the bioluminescence principle is applied. ATP is reacted with a coloring reagent, and the amount of ATP is determined by a fluorescence measuring instrument.
  • the amount of biofilm adhered to the inner surface 23b of the test carrier 23 is evaluated by the ATP measurement method, and the slope of the time-dependent graph of the amount of ATP per unit area is determined as a biofilm formation rate (BFR). You may make it ask as.
  • the material of the test carrier 23 used in this evaluation is a material (for example, PP, polyvinyl chloride, or the like) that has higher biofilm adhesion than the material of the reverse osmosis membrane 14 (for example, polyamide-based composite material), as shown in the following test examples. Silicone) is used, so every predetermined time (for example, 1, 2, 3 hours) less than one day from the beginning (0 hour) of the start of the test water 21 or every predetermined number of times (at least every 1 to 6 hours) The amount of biofilm attached to the test carrier 23 is evaluated in one unit.
  • a material for example, PP, polyvinyl chloride, or the like
  • Silicone silicone
  • the reverse osmosis of the reverse osmosis membrane device 15 of the actual plant since the presence or absence of biofilm adhesion can be confirmed within a few hours (for example, 2 to 8 hours) less than a day from the start of evaluation, the reverse osmosis of the reverse osmosis membrane device 15 of the actual plant. The trend of adhesion to the film 14 can be predicted quickly.
  • SDI Silicon Density Index
  • FI value the fouling index
  • the evaluation can be completed in less than one day, and an operation that does not cause biofilm adhesion can be performed in accordance with the evaluation result. Specifically, when adhesion is expected, measures such as changing the pretreatment mode, changing the type and amount of the sterilizing agent, and adjusting the frequency of the agent treatment are performed to form a biofilm. Can be blocked.
  • the trend of adhesion is less than a day. It can be evaluated quickly in an extremely short time. And according to the degree of adhesion of this biofilm, measures such as pretreatment and sterilization treatment can be taken. As a result, the RO membrane plant can be operated stably.
  • FIG. 5 is a schematic diagram of a material evaluation test apparatus for a test carrier.
  • a plurality of inspection carriers 23-1 to 23-4 of the same type are stored in the inspection container 22.
  • the test apparatus 50 includes a seawater tank 52 for storing the sea water 51, through the supply pump 53 from the seawater tank 52, a circulation line L 51 that circulates the seawater 51 is interposed the circulation line L 51 And an inspection container 22.
  • a flow rate adjusting valve 54 is installed on the downstream side of the supply pump 53, thereby adjusting the flow rate of the seawater 51 to the inspection container 22, and part of the seawater whose flow rate has been adjusted is contained in the seawater tank 52. It is returning.
  • test carrier 23 (1) polypropylene (PP), (2) polyvinyl chloride (PVC), and (3) silicone are selected for the test carrier 23, and (4) reverse osmosis membrane (RO A polyamide-based composite material as the material of the film 14 was used.
  • the shape of the test carrier 23 was a cylindrical tube having an outer diameter of 15 mm, an inner diameter of 12 mm, and a length of 20 mm.
  • the seawater 51 for testing was pH 8.0 and EC 4.5 S / m.
  • filtered water obtained by filtering seawater through a filter having a pore diameter of 0.75 ⁇ m was used.
  • the linear velocity of the flowing seawater 51 in the inspection container 22 was set to 250 mm / sec.
  • the measurement of the test carrier 23 was performed using a biomass measurement kit “Lucipak II (trade name: manufactured by Kikkoman Biochemifa)”. Specifically, the inner peripheral surface 23b of the test carrier 23 was wiped off with an attached cotton swab, and then the cotton swab was returned to the measuring device main body, mixed with the reagent, the measurement tube was removed, and the amount of luminescence was measured. That is, the amount of biofilm adhered to the test carrier 23 was periodically evaluated by the ATP measurement method. Then, the attached ATP amount was divided by the wiped area, the ATP amount per unit area was calculated, and the change with time of the ATP amount per unit area was confirmed.
  • Lucipak II trade name: manufactured by Kikkoman Biochemifa
  • This time course graph was defined as BFR (ATP (pg) / cm 2 / d).
  • This ATP adenosine triphosphate
  • This ATP is a chemical substance that exists as an energy source for all living organisms, and by measuring the amount of ATP, the amount of “existence of organisms or traces of organisms” can be measured.
  • FIGS. Table 1 shows the BFR results for the carrier material.
  • FIG. 7 is a graph of the material evaluation test result of the test carrier
  • FIG. 8 is a bar graph of the material evaluation test result of the test carrier (FIG. 8 shows an error range of three times. )
  • each material of polypropylene (PP) and polyvinyl chloride (PVC) becomes remarkable after 2 hours from the start of evaluation, and further after 4 hours and after 6 hours. Became prominent. It has been found that each material of polypropylene (PP), polyvinyl chloride (PVC), and silicone has higher adhesive properties than the material of the RO membrane.
  • test carrier 23 is performed by simple evaluation using a beaker in addition to storing the test carrier 23 in a test container 22 as shown in FIG. be able to.
  • FIG. 6 is a schematic diagram of a simple material evaluation test apparatus for a test carrier.
  • the simple test is performed by putting seawater 51 into a beaker container 61 and placing the test carrier 23 to be evaluated on an indicator member 62 such as a wire mesh. Then, the seawater is gently stirred at a predetermined rotation using the stirring blades 63 of the stirrer, and the adhesion of the biofilm to the test carrier 23 is confirmed.
  • the evaluation of the material is performed by measuring the amount of biofilm attached at regular intervals (for example: at least once every 1, 2, 3 hours) from the beginning of the evaluation (0 hours). Then, it is evaluated in comparison with the amount of biofilm deposited on the reverse osmosis membrane material.
  • an evaluation material having an amount of adhesion earlier than the material of the reverse osmosis membrane of the reverse osmosis membrane device it is possible to confirm the biofilm adhesion earlier than the adhesion to the reverse osmosis membrane.
  • the same material as the reverse osmosis membrane 14 used in the actual reverse osmosis membrane device 15 as a basis for comparison, further objective evaluation can be performed.
  • it is comparative evaluation of a material it is not limited to less than one day, You may make it confirm by performing evaluation more than one day.
  • FIG. 9 is a schematic diagram of a reverse osmosis membrane plant according to the second embodiment.
  • symbol is attached
  • the worker stores the inspection carrier 23 in the inspection container 22.
  • the number of inspection carriers 23 in the storage container 22 may be one or plural.
  • when one is stored it is confirmed once a day.
  • confirmation is made several times a day (once every predetermined time (for example, 2 to 3 hours)).
  • a plurality of test carriers may be accommodated, and a plurality of test carriers may be extracted at the same time, and the ATP amount and the like may be confirmed by a plurality, and the average value may be calculated.
  • the extracted test carrier 23 is brought into the biofilm evaluation apparatus 35, where biofilm adhesion is confirmed.
  • the amount of ATP itself may be confirmed using the above-described commercially available test kit, or the slope by BFR may be obtained.
  • the determination is made by comparing the threshold value of the ATP amount or the threshold value of BFR set in advance with the measurement data.
  • the actual plant uses the reverse osmosis membrane device 15 to continuously produce water except for the maintenance period.
  • the evaluation starts from a specific time (for example, 10 o'clock) within one day operation (S10).
  • a specific time for example, 10 o'clock
  • S10 one day operation
  • FIG. 10 is a flowchart of evaluation. As shown in FIG. 10, it is determined whether or not the first measurement data exceeds the threshold in advance by comparing with the threshold for the ATP amount and the threshold for BFR (S11). When the threshold value is not exceeded (No), it is determined that the reverse osmosis membrane 14 of the actual machine has no biofilm attached and is in a healthy operating state. Then, after the next 2 hours, the second measurement data is compared with the threshold of ATP amount or the threshold of BFR in advance to determine whether or not it exceeds the threshold (S12). If the threshold is not exceeded (No), the inspection for that day ends (S13). Note that the same evaluation operation is repeated at the same time on and after the next day.
  • the biofilm adhesion prevention measures are taken (S20).
  • a biofilm adhesion prevention measure a treatment for increasing the supply amount of the drug 31 from the drug supply unit 32 is performed. After a predetermined time has elapsed after this drug increase, evaluation after the drug mode change is started (S21).
  • This evaluation is the first re-evaluation after 2 hours from the start of the re-evaluation (S22).
  • S22 when the threshold value is exceeded (Yes), it is determined that the measures for preventing the biofilm from adhering to the reverse osmosis membrane 14 of the actual machine are not good, and another measure (change of the type of drug) Etc.).
  • the threshold value when the threshold value is not exceeded (No), it is determined that the reverse osmosis membrane 14 of the actual machine has no biofilm attached and is in a healthy operating state.
  • the measurement data of the second time is compared with the threshold value of the ATP amount or the threshold value of BFR in advance, and it is determined whether or not it exceeds the threshold value (S23).
  • S23 when the threshold value is not exceeded (No), the inspection for that day ends (S24). Repeat the same evaluation operation at the same time on the next day.
  • the first evaluation (S11) and the second evaluation (S23) after the medicine mode (S20) are described as cases where the threshold is not exceeded (No). If it exceeds (Yes), the medicine mode (S20) may be performed.
  • the operator can visually check the inspection data and change the operation mode.
  • the operation data is processed by the control device and the operation mode is changed by automatic control. Good.
  • FIG. 11 is a schematic diagram of a reverse osmosis membrane plant according to a third embodiment.
  • the reverse osmosis membrane plant 100 ⁇ / b> C according to the present embodiment includes, as the pretreatment unit 41 illustrated in FIG.
  • a first pretreatment unit 41 ⁇ / b> A that is a sand filtration unit in the influent water line L 1
  • a second pretreatment unit 41B which is a UF (or MF) membrane treatment unit, is installed on the downstream side of the first pretreatment unit 41A.
  • the inflow water line L 1 between the first pretreatment unit 41A and the second pretreatment unit 41B is connected to the inflow water line L 1 downstream of the second pretreatment unit 41B.
  • a bypass line L 4 that bypasses the processing unit 41B is provided.
  • a part of the sand filtration treated water subjected to the sand filtration of the first pretreatment unit 41A from a portion between the first pretreatment unit 41A and the second pretreatment unit 41B is used as the inspection water 21-1 and the branch line L 11.
  • the biofilm is attached to the test carrier 23 in the test container 22-1.
  • the evaluation biofilm is inspected in the inspection container 22-1 every predetermined time (or a predetermined number of times), and the inspection water 21-1 partially branched from the sand filtrate is evaluated.
  • pretreatment in the second pretreatment unit 41B of the UF (or MF) membrane treatment unit is unnecessary. to decide.
  • the flow channel switching valve 42 switches the second pre-processing Bypass to the downstream side of the portion 41B.
  • the biofilm installed between the second pretreatment unit 41B and the reverse osmosis membrane device 15 is evaluated at least once a day using the test container 22-2. This evaluation is performed by branching a part of the inflow water by the sand filtrate after bypassing the second pretreatment part 41B as the inspection water 21-2. As a result of the evaluation of the test water 21-2 using the sand filtrate as the influent water 11, when it is determined that there is no biofilm attached to the test water 21-2, the bypass of the second pretreatment unit 41B is continued. to decide.
  • the second pretreatment unit 41B of the UF (or MF) membrane treatment unit It is determined that the processing in is necessary. And in order to perform the pre-processing in the second pre-processing section 41B, it switches the channel switching valve 42 to stop the bypass of the bypass line L 4, passed through a sand filter water to the second pre-processing section 41B Then, pre-processing is performed. Thereafter, evaluation is performed and the same judgment is made.
  • the biofilm adhesion factor of the raw water 40 is very small.
  • a material having higher biofilm adhesion than a reverse osmosis membrane used in an actual machine is used.
  • the presence or absence of the biofilm can be confirmed at a predetermined time or a predetermined number of days less than one day.
  • the first preprocessing unit 41A and the second preprocessing unit 41B are different types of preprocessing devices, but the present invention is not limited to this, and the first preprocessing unit 41A and The same type of pre-processing apparatus may be used for the second pre-processing unit 41B.
  • the first pretreatment unit 41A may be a front-stage sand filtration unit
  • the second pretreatment unit 41B may be a two-stage process of the rear-stage sand filtration unit.
  • the flow path switching valve 42 is switched so that the sand filtered water flows into the bypass line L 4 to be bypassed to the downstream side of the second pretreatment unit 41B. Thereby, reduction of the running cost by bypassing the 2nd pre-processing part 41B can be aimed at.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

流入水11を流入する流入水ラインL1が接続され、流入水11から塩分が除去された透過水12と流入水11中の塩分が濃縮された濃縮水13とを得る逆浸透膜14を有する逆浸透膜装置15と、流入水ラインL1から分岐され、流入水11の一部を検査水21として分岐する分岐ラインL11と、分岐ラインL11が接続され、内部に検査水21を通水する検査用容器22と、検査用容器22内に少なくとも1以上収納され、検査水21由来のバイオフィルムが付着すると共に、逆浸透膜14の材質よりもバイオフィルムの付着性が高い材質からなる検査用担体23と、検査用容器22への検査水21の通水を停止し、検査用担体23に付着したバイオフィルム付着量を検査するバイオフィルム検査装置と、を具備する。

Description

逆浸透膜プラント及び逆浸透膜プラントの運転方法
 本発明は、逆浸透膜プラント及び逆浸透膜プラントの運転方法に関するものである。
 従来より海水から真水を得る方法として、海水を蒸発させる蒸発法と、海水に圧力をかけて逆浸透膜(RO膜:Reverse Osmosis Membrane)と呼ばれる濾過膜の一種に通し、海水の塩分を濃縮して捨て、淡水を漉し出す逆浸透法とがある。後者の逆浸透法は、蒸発法よりエネルギ効率に優れている反面、RO膜が海水中の微生物の析出物(又はバイオフィルムともいう)で目詰まり(又はバイオファウリングともいう)は、透過水量の低下等の原因となるので、入念に前処理する必要がある。この前処理の一例としては、原水である海水中の濁質分を除去する砂ろ過処理、UF膜(限外濾過膜)処理又はMF膜(精密濾過膜)処理等の前処理、薬剤による洗浄等が提案されている。
 また、この前処理等が適切であるかを判断する技術として、逆浸透膜装置で用いる逆浸透膜を評価容器内に収容し、逆浸透膜供給水の一部を分岐して、濾過しない態様で評価用の逆浸透膜に供給し、該逆浸透膜へのバイオフィルムの付着量をATP測定で評価し、単位面積当たりのATP量の経時変化グラフの傾きをバイオフィルム形成速度(Biofilm Formation Rate:BFR)として求め、バイオフィルム量を定量的に監視することが提案されている(例えば特許文献1参照)。
特許5600864号公報
 しかしながら、特許文献1の技術では、逆浸透膜装置の逆浸透膜と同じ材質を評価用逆浸透膜として用いているので、逆浸透膜と同じ動向を把握する観点からは優れているが、評価用逆浸透膜の表面にバイオフィルムが付着するまでに評価開始から、リードタイムが15-20日とかかると共に、その後バイオフィルムの付着が増加し、その傾きを求めて、BFRを計測するには、このリードタイム経過後、さらに15-30日が必要(合計少なくとも30日以上はかかる)となる、という問題がある。この結果、評価がなされる30日の間に、実機プラントの逆浸透膜装置の逆浸透膜へのバイオフィルムの形成が進行する場合には、例えば薬品洗浄等の対策が後手となる、という問題がある。すなわち、実機プラントの逆浸透膜装置の逆浸透膜と同じ材質で評価しているので、バイオフィルムの付着状態の動向については評価できるものの、実機プラントに先行して、逆浸透膜へのバイオフィルムの付着の動向を予想できるものではなかった。
 このように、特許文献1の技術を用いてバイオフィルムの付着を評価する場合、少なくとも約30日(実施例では1.5か月)の計測後にバイオフィルムの付着が確認されたとしても、実機プラントの逆浸透膜にはすでにバイオフィルムの付着が開始しているので、洗浄を行うことの指標にはなるが、実機プラントの逆浸透膜にバイオフィルム付着をさせないための指標となるものではなかった。
 よって、実機プラントの逆浸透膜へのバイオフィルムの付着に先行して、逆浸透膜へのバイオフィルムの付着の動向をより迅速に把握できる技術の出現が切望されている。
 本発明は、前記問題に鑑み、逆浸透膜へのバイオフィルムの付着の動向をより迅速に把握できる逆浸透膜プラント及び逆浸透膜プラントの運転方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、流入水を流入する流入水ラインが接続され、前記流入水から塩分が除去された透過水と前記流入水中の塩分が濃縮された濃縮水とを得る逆浸透膜を有する逆浸透膜装置と、前記流入水ラインから分岐され、前記流入水の一部を検査水として分岐する分岐ラインと、前記分岐ラインが接続され、内部に前記検査水を通水する検査用容器と、前記検査用容器内に少なくとも1以上収納され、前記検査水由来のバイオフィルムが付着すると共に、前記逆浸透膜の材質よりもバイオフィルムの付着性が高い材質からなる検査用担体と、前記検査用容器への前記検査水の通水を停止し、前記検査用担体に付着したバイオフィルム付着量を検査するバイオフィルム検査装置と、を具備することを特徴とする逆浸透膜プラントにある。
 第2の発明は、第1の発明において、前記検査用担体のバイオフィルムの付着性の評価は、バイオフィルムの付着量を、前記逆浸透膜の材質と比較して評価することを特徴とする逆浸透膜プラントにある。
 第3の発明は、第1又は2の発明において、前記バイオフィルム検査装置の検査は、前記検査水の通水開始初期からの一日未満の所定時間又は所定回数で、前記検査担体へのバイオフィルムの付着量を評価することを特徴とする逆浸透膜プラントにある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記検査用担体が可撓性を備えることを特徴とする逆浸透膜プラントにある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記バイオフィルムの付着性の評価は、ATP測定法により評価されることを特徴とする逆浸透膜プラントにある。
 第6の発明は、第1乃至5のいずれか一つの発明において、前記検査水の通水は、前記逆浸透膜の膜面の前記流入水の線速度と同等であることを特徴とする逆浸透膜プラントにある。
 第7の発明は、第1乃至6のいずれか一つの発明において、前記流入水中の濁質分を除去する前処理部を備えることを特徴とする逆浸透膜プラントにある。
 第8の発明は、流入水から塩分が除去された透過水と前記流入水中の塩分が濃縮された濃縮水とを得る逆浸透膜により分離する逆浸透膜工程と、前記流入水の一部を検査水として分岐し、検査容器の内部に前記検査水を通水する検査水通水工程と、前記検査用容器内に少なくとも1以上収納され、前記逆浸透膜の材質よりもバイオフィルムの付着性が高い材質からなる検査用担体に、前記検査水由来のバイオフィルムを付着させるバイオフィルム付着工程と、前記検査用容器への前記検査水の通水を停止し、前記検査用担体に付着したバイオフィルム付着量を計測するバイオフィルム付着量計測工程と、前記バイオフィルム付着量計測工程において、通水開始初期からの一日未満の一所定時間又は所定回数でバイオフィルムの付着量を評価するバイオフィルム付着評価工程と、を有し、前記評価に基づき、前記逆浸透膜工程の運転を制御することを特徴とする逆浸透膜プラントの運転方法にある。
 第9の発明は、第8の発明において、前記検査用担体のバイオフィルムの付着性の評価は、バイオフィルムの付着量を前記逆浸透膜の材質と比較して評価することを特徴とする逆浸透膜プラントの運転方法にある。
 第10の発明は、第8又は9の発明において、前記検査水の通水は、前記逆浸透膜の膜面の前記流入水の線速度と同等であることを特徴とする逆浸透膜プラントの運転方法にある。
 本発明によれば、検査用担体の材質は、実機で用いる逆浸透膜の材質よりもバイオフィルムの付着性が高い材質を用いているので、評価開始から一日未満の所定時間又は所定回数で、バイオフィルムの付着の有無を確認することができる。この結果、実機プラントの逆浸透膜装置の逆浸透膜への付着の動向を迅速に予想することができる。
図1は、実施例1に係る逆浸透膜プラントの概略図である。 図2は、実施例1に係る検査用容器と検査用担体との構成図である。 図3は、実施例1に係る他の検査用容器と検査用担体との構成図である。 図4は、実施例1に係る他の検査用容器と検査用担体との構成図である。 図5は、検査用担体の材質評価試験装置の模式図である。 図6は、検査用担体の簡易な材質評価試験装置の模式図である。 図7は、検査用担体の材質評価試験結果のグラフである。 図8は、検査用担体の材質評価試験結果の棒グラフである。 図9は、実施例2に係る逆浸透膜プラントの概略図である。 図10は、評価のフローチャート図である。 図11は、実施例3に係る逆浸透膜プラントの概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、実施例1に係る逆浸透膜プラントの概略図である。図1に示すように、本実施例に係る逆浸透膜プラント100Aは、流入水11を流入する流入水ラインL1が接続され、流入水11から塩分が除去された透過水12と流入水11中の塩分が濃縮された濃縮水13とを得る逆浸透膜14を有する逆浸透膜装置15と、流入水ラインL1から分岐され、流入水11の一部を検査水21として分岐する分岐ラインL11と、分岐ラインL11が接続され、内部に前記検査水21を通水する検査用容器22と、検査用容器22内に少なくとも1以上収納され、検査水21由来のバイオフィルムが付着すると共に、逆浸透膜14の材質よりもバイオフィルムの付着性が高い材質からなる検査用担体23と、検査用容器22への検査水21の通水を停止し、検査用担体23に付着したバイオフィルム付着量を検査するバイオフィルム検査装置と、を具備する。なお、符号31は薬剤、32は薬剤31を薬剤供給ラインL21により供給する薬剤供給部を図示する。なお、原水を濾過する場合には、従来と同様に、海水中の濁質分を除去する砂ろ過装置、UF膜(限外濾過膜)又はMF膜(精密濾過膜)等の前処理部を用いて前処理するようにすればよい(実施例1では省略)。
 逆浸透膜装置15の逆浸透膜14としては、一般的な逆浸透以外に、NF(Nano Filtration)膜(以下「NF膜」ともいう)などを用いることができる。逆浸透膜の材質は多くが芳香族ポリアミドである。
 また、本実施例では、原水としての流入水11を逆浸透膜装置15で処理し、淡水である透過水12と塩分が濃縮された濃縮水13とを得ているが、流入水11としては、塩分を含むものであれば海水以外の水を原水として用いてもよい。また流入水11としては、例えば、くみ上げた海水や、一度冷媒としてプラント内で使用された後の海水等を用いることもでき、限定されるものではない。
 検査用容器22は、流入水ラインL1から分岐された分岐ラインL11に介装されており、その内部に流入水11の一部を検査水21として通水する。この検査用容器22内には、検査用担体23が収納される。この検査用担体23は、逆浸透膜装置15で用いる逆浸透膜14の材質(例えばポリアミド系複合材)よりもバイオフィルムの付着性が高い材質から構成されている。
 図2は、実施例1に係る検査用容器と検査用担体との構成図である。図2に示すように、検査用容器22内には、検査用担体23の外表面23aと検査容器内壁面22aとが密着するように配置されている。そして検査用容器22内に流入する検査水21は、検査用担体23の内表面23bに通水され、この内表面23bにバイオフィルムを付着させている。
 検査用容器22は、検査用担体23を内部に収納後、着脱自在の蓋体24により内部を密閉する。なお、検査用容器22の底部側、蓋体24の上部側には、分岐ラインL11と接続する接続治具25が設けられている。また、検査用容器22の入口側において流入量を調整する図示しない流量調整弁が備えられている。ここで、検査水21の通水は、実機の逆浸透膜装置15に設置する逆浸透膜14の膜面の流入水11の線速度と同等とするのが好ましい。これにより実機でのバイオフィルムの付着環境と同様の条件とすることとなる。ここで、代表的な線速度は50~350mm/secの範囲とするのが好ましい。
 また、図3に示すように、検査用容器22内には、複数の検査用担体23を収納して、一日の内で、所定時間又は所定回数毎に、検査用担体23を取り出し、バイオフィルムの付着を確認するようにしてもよい。
 また、図4に示すように、複数の検査用担体23は筒状のものに限定されるものではなく、例えば可撓性を備えたフィルム状のものを丸めて、検査用容器22内に収納するようにしてもよい。
 バイオフィルム検査装置は、検査用担体23に付着したバイオフィルムの付着量を、単位面積あたりのATP量を計測する検査装置を用いて行う。この検査装置は、付着したバイオフィルムを採取し、発色試薬と反応させて、試薬の発色量からATP量を間接的に求めるものであり、市販の計測機器を用いることができる。例えば「ルシパック II(キッコーマンバイオケミファ社製)」、「ATPふき取り検査キット(ニッタ社製)」等を例示することができる。ここで、ATP(Adenosine tri-phosphate:アデノシン三リン酸)とは、すべての植物、動物および微生物の細胞内に存在するエネルギ分子であり、このATP検査では、生物発光原理を応用して、このATPと発色試薬とを反応させ、蛍光測定機器によりATP量を求めるものである。
 また、検査用担体23の内表面23bに付着したバイオフィルムの付着量をATP測定法で評価し、単位面積当たりのATP量の経時変化グラフの傾きをバイオフィルム形成速度(Biofilm Formation Rate:BFR)として求めるようにしても良い。
 本評価に用いる検査用担体23の材質は、後述の試験例に示すように、逆浸透膜14の材質(例えばポリアミド系複合材)よりもバイオフィルムの付着性が高い材質(例えばPP、塩ビ、シリコーン)を用いているので、検査水21の通水開始初期(0時間)からの一日未満の所定時間(例えば1、2、3時間)毎、又は所定回数(少なくとも1~6時間毎に一回の単位)で、検査用担体23へのバイオフィルムの付着量を評価する。
 本発明によれば、評価開始から一日未満の数時間(例えば2~8時間)以内で、バイオフィルムの付着の有無を確認することができるので、実機プラントの逆浸透膜装置15の逆浸透膜14への付着の動向を迅速に予想することができることとなる。
 これは、現在逆浸透膜装置を用いて造水する際の検査指標として用いているSDIやFIの測定は、一般的に一日一回計測することとなっており、この評価と併用して、本バイオフィルムの付着量の評価を一日未満で行うことで、ファウリング対策の精度が飛躍的に向上する。
 ここで、SDI(Silt Density Index)とは、水に含まれる微量の濁質成分量の指標の一つであり、逆浸透膜処理を行おうとする流入水が、逆浸透膜にどの程度ファウリングを起こさせるかを示す半定量的な指標の一つであり、通常、SDIが3~4以下となるように前処理する事が必要とされている(ASTMD4189参照)。また、ファウリングインデックス(FI値)は、JISK3802で定義されており、逆浸透膜処理を行おうとする流入水が、逆浸透膜にどの程度ファウリングを起こさせるかを示す半定量的な指標の一つであり、通常、FI値が3~4以下となるように前処理する事が必要とされている。
 すなわち前述の特許文献1に示すように、実機の逆浸透膜装置15に用いる逆浸透膜14の材質を評価担体として用いる場合、1か月のリードタイムの後にバイオフィルムの付着の増加量を計測するので、付着が計測された場合、実機の逆浸透膜装置15の逆浸透膜14にはすでに微生物が付着している結果、直ちに洗浄を行うことの指標にはなるが、実機プラントに付着させないための指標にはならない。
 これに対して、本発明によれば、評価は一日未満で完了することができ、その評価結果に即して、バイオフィルムの付着が発生しないような運転をすることができる。具体的には、付着が予想される場合に、前処理のモードの変更、殺菌処理の薬剤の種類や薬剤の量の変更や薬剤処理頻度の調整等の対策を実行し、バイオフィルムの形成を阻止することができる。
 すなわち、本発明によれば、逆浸透膜よりも付着性の良好な材質の付着担体を選定し、この選定した検査用担体を用いて通水試験をする際、付着性の動向を一日以下という極めて短時間で迅速に評価することができる。そして、このバイオフィルムの付着の度合いに応じて、前処理、殺菌処理等の対策を講じることができる。これにより安定してRO膜プラントを連続して運転することができる。
 次に、逆浸透膜14の材質(例えばポリアミド系複合材)よりもバイオフィルムの付着性が高い材質を選定する試験について、説明する。
 図5は、検査用担体の材質評価試験装置の模式図である。図5に示すように、検査用容器22に同種類からなる複数(本試験では4ケ)の検査用担体23-1~23-4を収納する。ここで、試験装置50は、海水51を貯留する海水タンク52と、この海水タンク52から供給ポンプ53を介して、海水51を循環させる循環ラインL51と、この循環ラインL51に介装される検査用容器22とを備えている。なお、供給ポンプ53の後流側には流量調整バルブ54を設置し、これにより海水51の検査用容器22への通水流量を調整し、流量調整した一部の海水は海水タンク52内に戻している。
 検査用担体23の材質は、本試験では(1)ポリプロピレン(PP)、(2)ポリ塩化ビニル(PVC)、(3)シリコーンを選定し、比較対象としては、(4)逆浸透膜(RO膜)14の材質であるポリアミド系複合材とした。また、検査用担体23の形状は、外径15mm、内径12mm、長さ20mmの円筒状チューブとした。
 試験用の海水51はpH8.0、EC4.5S/mのものを用いた。なお、試験に際しては、孔径0.75μmのフィルタに海水を濾過した濾過水を用いた。検査用容器22内の流入する海水51の線速度は250mm/secとした。
 検査は通水開始から1時間経過した後、海水51の通水を停止し、蓋体24を開けて、第1検査用担体23-1を取り出した。次いで蓋体24を閉じて、さらに1時間経過(合計2時間)した後、同様にして、第2検査用担体23-2を取り出した。次いで蓋体24を閉じて、さらに2時間経過(合計4時間)後同様にして、第3検査用担体23-3を取り出した。次いで蓋体24を閉じて、さらに2時間経過(合計6時間)後同様にして、第4検査用担体23-4を取り出した。同様な試験操作を各材料、3回行った。なお、検査用担体23の取出しには、例えばピンセット等の取出し治具を用いた。
 検査用担体23の計測は、生物量測定キット『ルシパックII(商品名:キッコーマンバイオケミファ社製)』により行った。具体的には、検査用担体23の内周面23bを付属の綿棒で拭き取り、その後測定装置本体へ綿棒を戻し、試薬と混合し、測定チューブを外して、発光量測定した。すなわち、検査用担体23に付着したバイオフィルム量を定期的にATP測定法で評価した。そして、付着ATP量を拭き取った面積で割り、単位面積当たりのATP量を算出し、単位面積当たりATP量の経時変化を確認した。この経時変化グラフの傾きをBFR(ATP(pg)/cm/d)とした。このATP(アデノシン三リン酸)は、全生物のエネルギ源として存在する化学物質であり、このATP量を測定することで「生物の存在、あるいは生物の痕跡」の量が測定可能となる。
 n=3で測定を行った結果の平均を求め図7及び図8に示す。下記表1は、担体の材質に対するBFRの結果である。ここで、図7は、検査用担体の材質評価試験結果のグラフであり、図8は、検査用担体の材質評価試験結果の棒グラフである(図8には、3回の誤差範囲を示している)。
Figure JPOXMLDOC01-appb-T000001
 
 図7及び図8に示すように、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)の各材質は、評価開始から2時間経過後で付着が顕著となり、4時間経過後、6時間経過後はさらに顕著となった。ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、シリコーンの各材質は、いずれもRO膜の材質よりも高い付着性の特性を備えるものであることが判明した。
 また、表1に示すように、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、シリコーンをはいずれもRO膜の材質よりもBFR(傾き)が大きいことが判明した。
 また、検査用担体23の材質の評価は、図5に示すような検査用容器22に検査用担体23を収納して通水して試験する以外に、ビーカを用いた簡易な評価によっても行うことができる。
 図6は、検査用担体の簡易な材質評価試験装置の模式図である。図6に示すように、簡易試験は、ビーカ容器61内に海水51を投入し、例えば金網等の指示部材62の上に評価対象の検査用担体23を載置して行う。そして、攪拌機の攪拌翼63を用いて所定回転で海水を穏やかに撹拌して、検査用担体23へのバイオフィルムの付着の確認を行う。
 ここで、材質の評価は、評価開始初期(0時間)からの一日未満の一定間隔(例えば:少なくとも1、2、3時間毎に一回計測する)で、バイオフィルムの付着量を、計測し、逆浸透膜の材質のバイオフィルムの付着量と比較して評価する。逆浸透膜装置の逆浸透膜の材質よりも付着量が早い評価材質を用いることにより、逆浸透膜に付着するよりも早く先行してバイオフィルムの付着を確認することができる。特に、実機の逆浸透膜装置15で用いる逆浸透膜14と同じ材質を比較の基礎とすることで、さらに客観的評価を行うことができる。なお、材質の比較評価であるので、一日未満には限定されず、一日以上の評価を行って確認するようにしてもよい。
 本実施例では、本検査用容器を用いて、バイオフィルムの付着の動向を確認する方法について説明する。図9は、実施例2に係る逆浸透膜プラントの概略図である。なお、実施例1の逆浸透膜プラントと重複する部材については、同一符号を付して重複する説明は省略する。図9に示すように、作業員は、検査用容器22内に検査用担体23を収納する。なお、前述したように、収納容器22内への検査用担体23の本数は、1本でも良いし、複数本でもよい。ここで、1本を収納する場合には、一日一回の確認となる。2本以上を収納する場合には、一日複数回(所定時間(例えば2~3時間)毎に1回)の確認となる。また、複数本を収納して、同じ時間において、複数検査用担体を抜出、複数でATP量等を確認し、その平均値として算出するようにしてもよい。
 そして、抜出した検査用担体23はバイオフィルム評価装置35に持ち込まれ、ここで、バイオフィルムの付着の確認を行う。バイオフィルムの付着の確認としては、前述した市販の検査キットを用いて、ATP量そのものを確認してもよいし、BFRによる傾きを求めるようにしても良い。いずれにしても、予め設定したATP量の閾値やBFRの閾値と計測データとを比較して、判断を行う。
 以下に判断工程の一例を説明する。実機プラントは、逆浸透膜装置15を用いてメンテナンス期間を除いては連続して造水を行っている。
 本評価工程例では一日2回での計測の場合について説明する。評価は、一日の操業内で特定の時間(例えば10時)から開始する(S10)。2時間毎に評価を行う場合、2時間経過後の12時に1回目の評価を行う。
 図10は、評価のフローチャート図である。図10に示すように、1回目の計測データが、予めATP量の閾値やBFRの閾値と比較し、閾値を超えているか否かを判断する(S11)。閾値を超えていない場合(No)には、実機の逆浸透膜14にはバイオフィルムの付着がなく、健全な運転状態であると判断する。そして、次の2時間経過後に、2回目の計測データが、予めATP量の閾値やBFRの閾値と比較し、閾値を超えているか否かを判断する(S12)。閾値を超えていない場合(No)には、その日の検査は終了する(S13)。なお、翌日以降も同様な時間に同様な評価操作を繰り返す。
 なお、2回目の評価(S12)において、閾値を超えている場合(Yes)には、実機の逆浸透膜14にバイオフィルムの付着のおそれがあると判断する。
 この場合、バイオフィルムの付着防止対策を講じる(S20)。ここでバイオフィルムの付着防止対策の一例として、薬剤供給部32からの薬剤31の供給量を増加させる処置を行う。この薬剤増加後、所定時間経過した後、薬剤モード変更後の評価を開始する(S21)。
 この評価は、再評価の開始から2時間経過後に1回目の再評価を行う(S22)。この評価(S22)において、閾値を超えている場合(Yes)には、実機の逆浸透膜14にバイオフィルムの付着の防止対策が良好でないと判断し、さらに別の対策(薬剤の種類の変更等)を講じる。
 これに対して、閾値を超えていない場合(No)には、実機の逆浸透膜14にはバイオフィルムの付着がなく、健全な運転状態であると判断し、次の2時間経過後に、2回目の計測データが、予めATP量の閾値やBFRの閾値と比較し、閾値を超えているか否かを判断する(S23)。この工程S23の評価において、閾値を超えていない場合(No)には、その日の検査は終了する(S24)。翌日も同様な時間に同様な評価操作を繰り返す。
 本工程例では、1回目の評価(S11)、薬剤モード(S20)後の2回目の評価(S23)では、閾値を超えていない場合(No)として説明しているが、これらの評価において閾値を超えている場合(Yes)には、薬剤モード(S20)を実施するようにすればよい。
 バイオフィルムの付着の防止対策としては、ATP量の増加の程度に応じて、例えば前処理条件の変更、薬剤(殺菌剤を含む)の添加モード(薬剤の種類の変更、薬剤の濃度の変更、薬剤の添加回数の変更)の変更、実機逆浸透膜装置の回収率の変更、逆浸透膜装置15への流入水11の供給を停止し、逆浸透膜装置15の逆浸透膜14の逆洗浄モードへの変更等、前処理モードの変更等を実施する。この対策を講じた後、検査モードを再開する。
 これらの操作は、作業員が目視により検査データを確認して、運転モードを変更することもできるが、制御装置で検査データを演算処理して、自動制御により運転モードを変更するようにしてもよい。
 本実施例では、本検査用容器を用いて、前処理装置についてバイオフィルムの付着の動向を確認する方法について説明する。図11は、実施例3に係る逆浸透膜プラントの概略図である。なお、実施例1、2の逆浸透膜プラントと重複する部材については、同一符号を付して重複する説明は省略する。図11に示すように、本実施例に係る逆浸透膜プラント100Cは、図9に示す前処理部41として、流入水ラインL1に砂ろ過部である第1前処理部41Aと、この第1前処理部41Aの後流側に、UF(又はMF)膜処理部である第2前処理部41Bとを設置している。そして、第1前処理部41Aと第2前処理部41Bとの間の流入水ラインL1と、第2前処理部41Bの後流の流入水ラインL1とを接続し、この第2前処理部41Bを迂回するバイパスラインL4を設置している。
 そして、第1前処理部41Aと第2前処理部41Bとの間から、第1前処理部41Aの砂ろ過処理した砂ろ過処理水の一部を、検査水21-1として分岐ラインL11により分岐し、検査用容器22-1内で検査用担体23にバイオフィルムを付着させる。
 所定時間(又は所定回数)毎に評価バイオフィルムの検査を検査用容器22-1で行い、砂ろ過水から一部分岐した検査水21-1の評価を行う。この検査水21-1の評価の結果、砂ろ過水におけるバイオフィルムの付着が無いと判断した際には、UF(又はMF)膜処理部の第2前処理部41Bでの前処理が不要と判断する。そして、第2前処理部41Bの処理をバイパスすべく、第2前処理部41Bを迂回させるバイパスラインL4に砂ろ過水が流入するように、流路切替弁42を切替え、第2前処理部41Bの後流側へバイパスさせる。
 この結果、UF(又はMF)膜処理部の第2前処理部41Bをバイパスさせることにより、UF(又はMF)膜処理部による処理の負荷が軽減され、淡水化プラントのランニングコストの低減を図ることができる。
 そして、第2前処理部41Bと逆浸透膜装置15との間に設置したバイオフィルムの検査を検査用容器22-2で評価を一日最低一回は行う。この評価は、第2前処理部41Bをバイパスした後の砂ろ過水による流入水の一部を検査水21-2として分岐して行う。この砂ろ過水を流入水11とした検査水21-2の評価の結果、検査水21-2におけるバイオフィルムの付着が無いと判断した際には、第2前処理部41Bのバイパスを継続すると判断する。
 これに対し、この検査水21-2の評価の結果、砂ろ過水におけるバイオフィルムの付着が閾値以上であると判断した際には、UF(又はMF)膜処理部の第2前処理部41Bでの処理が必要であると判断する。そして第2前処理部41Bでの前処理を実行すべく、流路切替弁42の切替えを行い、バイパスラインL4へのバイパスを停止し、砂ろ過水を第2前処理部41Bに通水して、前処理を行う。その後、評価を行い、同様な判断を行う。本実施例によれば、砂ろ過部の第1前処理部41AとUF(又はMF)膜処理部の第2前処理部41Bとを設置した場合、原水40のバイオフィルムの付着因子が微量の場合には、砂ろ過部の第1前処理部41Aのみで可能であることの判断を、実機で用いる逆浸透膜の材質よりもバイオフィルムの付着性が高い材質を用いているので、評価開始から一日未満の所定時間又は所定回数で、バイオフィルムの付着の有無を確認することができる。確認の結果、第2前処理部41Bでの処理が不要と判断した場合には、第2前処理部41Bをバイパスさせることで、第2前処理部41Bでの負荷が軽減され、淡水化プラントのランニングコストの低減を図ることができる。
 本実施例においては、第1前処理部41Aと第2前処理部41Bとを異なる種類の前処理装置としているが、本発明はこれに限定されるものではなく、第1前処理部41Aと第2前処理部41Bとを同じ種類の前処理装置を用いてもよい。例えば第1前処理部41Aを前段砂ろ過部とし、第2前処理部41Bを後段砂ろ過部の2段処理とするようにしてもよい。これにより第1前処理部41Aの前段砂ろ過部で十分BFR値が小さくなれば、第2前処理部41Bの後段の砂ろ過部での処理をバイパスすべく、第2前処理部41Bを迂回させるバイパスラインL4に砂ろ過水が流入するように、流路切替弁42を切替え、第2前処理部41Bの後流側へバイパスさせる。これにより、第2前処理部41Bをバイパスすることによるランニングコストの低減を図ることができる。
 100A~100C 逆浸透膜プラント
 11 流入水
 12 透過水
 13 濃縮水
 14 逆浸透膜
 15 逆浸透膜装置
 21 検査水
 22 検査用容器
 23 検査用担体
 24 蓋体
 L1 流入水ライン
 L11 分岐ライン
 

Claims (10)

  1.  流入水を流入する流入水ラインが接続され、前記流入水から塩分が除去された透過水と前記流入水中の塩分が濃縮された濃縮水とを得る逆浸透膜を有する逆浸透膜装置と、
     前記流入水ラインから分岐され、前記流入水の一部を検査水として分岐する分岐ラインと、
     前記分岐ラインが接続され、内部に前記検査水を通水する検査用容器と、
     前記検査用容器内に少なくとも1以上収納され、前記検査水由来のバイオフィルムが付着すると共に、前記逆浸透膜の材質よりもバイオフィルムの付着性が高い材質からなる検査用担体と、
     前記検査用容器への前記検査水の通水を停止し、前記検査用担体に付着したバイオフィルム付着量を検査するバイオフィルム検査装置と、を具備することを特徴とする逆浸透膜プラント。
  2.  請求項1において、
     前記検査用担体のバイオフィルムの付着性の評価は、バイオフィルムの付着量を、前記逆浸透膜の材質と比較して評価することを特徴とする逆浸透膜プラント。
  3.  請求項1又は2において、
     前記バイオフィルム検査装置の検査は、前記検査水の通水開始初期からの一日未満の所定時間又は所定回数で、前記検査担体へのバイオフィルムの付着量を評価することを特徴とする逆浸透膜プラント。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記検査用担体が可撓性を備えることを特徴とする逆浸透膜プラント。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記バイオフィルムの付着性の評価は、ATP測定法により評価されることを特徴とする逆浸透膜プラント。
  6.  請求項1乃至5のいずれか一つにおいて、
     前記検査水の通水は、前記逆浸透膜の膜面の前記流入水の線速度と同等であることを特徴とする逆浸透膜プラント。
  7.  請求項1乃至6のいずれか一つにおいて、
     前記流入水中の濁質分を除去する前処理部を備えることを特徴とする逆浸透膜プラント。
  8.  流入水から塩分が除去された透過水と前記流入水中の塩分が濃縮された濃縮水とを得る逆浸透膜により分離する逆浸透膜工程と、
     前記流入水の一部を検査水として分岐し、検査容器の内部に前記検査水を通水する検査水通水工程と、
     前記検査用容器内に少なくとも1以上収納され、前記逆浸透膜の材質よりもバイオフィルムの付着性が高い材質からなる検査用担体に、前記検査水由来のバイオフィルムを付着させるバイオフィルム付着工程と、
     前記検査用容器への前記検査水の通水を停止し、前記検査用担体に付着したバイオフィルム付着量を計測するバイオフィルム付着量計測工程と、
     前記バイオフィルム付着量計測工程において、通水開始初期からの一日未満の一所定時間又は所定回数でバイオフィルムの付着量を評価するバイオフィルム付着評価工程と、を有し、
     前記評価に基づき、前記逆浸透膜工程の運転を制御することを特徴とする逆浸透膜プラントの運転方法。
  9.  請求項8において、
     前記検査用担体のバイオフィルムの付着性の評価は、バイオフィルムの付着量を前記逆浸透膜の材質と比較して評価することを特徴とする逆浸透膜プラントの運転方法。
  10.  請求項8又は9において、
     前記検査水の通水は、前記逆浸透膜の膜面の前記流入水の線速度と同等であることを特徴とする逆浸透膜プラントの運転方法。
PCT/JP2017/016612 2017-04-26 2017-04-26 逆浸透膜プラント及び逆浸透膜プラントの運転方法 WO2018198245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/016612 WO2018198245A1 (ja) 2017-04-26 2017-04-26 逆浸透膜プラント及び逆浸透膜プラントの運転方法
JP2019514534A JPWO2018199093A1 (ja) 2017-04-26 2018-04-24 逆浸透膜プラント及び逆浸透膜プラントの運転方法
PCT/JP2018/016614 WO2018199093A1 (ja) 2017-04-26 2018-04-24 逆浸透膜プラント及び逆浸透膜プラントの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016612 WO2018198245A1 (ja) 2017-04-26 2017-04-26 逆浸透膜プラント及び逆浸透膜プラントの運転方法

Publications (1)

Publication Number Publication Date
WO2018198245A1 true WO2018198245A1 (ja) 2018-11-01

Family

ID=63918086

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/016612 WO2018198245A1 (ja) 2017-04-26 2017-04-26 逆浸透膜プラント及び逆浸透膜プラントの運転方法
PCT/JP2018/016614 WO2018199093A1 (ja) 2017-04-26 2018-04-24 逆浸透膜プラント及び逆浸透膜プラントの運転方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016614 WO2018199093A1 (ja) 2017-04-26 2018-04-24 逆浸透膜プラント及び逆浸透膜プラントの運転方法

Country Status (2)

Country Link
JP (1) JPWO2018199093A1 (ja)
WO (2) WO2018198245A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038575A1 (fr) * 2006-09-25 2008-04-03 Toray Industries, Inc. PROCÉDÉ DE FONCTIONNEMENT D'Une installation DE FILTRATION suR MEMBRANE D'OSMOSE INVERSE, ET installation DE FILTRATION sur MEMBRANE D'OSMOSE INVERSE
JP2008107330A (ja) * 2006-09-25 2008-05-08 Toray Ind Inc バイオファウリング発生リスク評価装置
JP2011255301A (ja) * 2010-06-08 2011-12-22 Japan Organo Co Ltd 分離膜の汚染評価方法、これを利用した分離膜運転管理方法及びろ過装置
JP2014211327A (ja) * 2013-04-17 2014-11-13 栗田工業株式会社 水系のスライム付着状況のモニタリング方法及びモニタリング装置
JP2015009174A (ja) * 2013-06-27 2015-01-19 株式会社日立製作所 水処理システムおよび水処理システムの水処理方法
JP2015134327A (ja) * 2014-01-17 2015-07-27 株式会社日立製作所 分離膜面評価方法、水処理システムの制御方法、および水処理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250506B2 (ja) * 1997-11-19 2002-01-28 栗田工業株式会社 スライム又はスケール付着検知装置
JPWO2013129111A1 (ja) * 2012-02-29 2015-07-30 東レ株式会社 造水方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038575A1 (fr) * 2006-09-25 2008-04-03 Toray Industries, Inc. PROCÉDÉ DE FONCTIONNEMENT D'Une installation DE FILTRATION suR MEMBRANE D'OSMOSE INVERSE, ET installation DE FILTRATION sur MEMBRANE D'OSMOSE INVERSE
JP2008107330A (ja) * 2006-09-25 2008-05-08 Toray Ind Inc バイオファウリング発生リスク評価装置
JP2011255301A (ja) * 2010-06-08 2011-12-22 Japan Organo Co Ltd 分離膜の汚染評価方法、これを利用した分離膜運転管理方法及びろ過装置
JP2014211327A (ja) * 2013-04-17 2014-11-13 栗田工業株式会社 水系のスライム付着状況のモニタリング方法及びモニタリング装置
JP2015009174A (ja) * 2013-06-27 2015-01-19 株式会社日立製作所 水処理システムおよび水処理システムの水処理方法
JP2015134327A (ja) * 2014-01-17 2015-07-27 株式会社日立製作所 分離膜面評価方法、水処理システムの制御方法、および水処理システム

Also Published As

Publication number Publication date
JPWO2018199093A1 (ja) 2019-11-14
WO2018199093A1 (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
TWI400120B (zh) Reverse osmosis membrane filtration equipment operation method and reverse osmosis membrane filtration equipment
KR101181549B1 (ko) 여과막 오염 지수 예측 장치
US20150001151A1 (en) Water treatment system, and water treating method in water treatment system
JP2009240902A (ja) 水処理方法および水処理装置
JP6679439B2 (ja) 逆浸透膜供給水の膜閉塞性評価方法、及び膜閉塞性評価装置、その膜閉塞性評価方法を用いた水処理装置の運転管理方法
Kim et al. A two-fiber, bench-scale test of ultrafiltration (UF) for investigation of fouling rate and characteristics
JP6056869B2 (ja) 逆浸透膜ろ過プラントの運転方法およびバイオフィルム形成モニタリング装置
WO2022201978A1 (ja) フィルタ評価装置、浄化装置、及びフィルタ評価方法
JP6183213B2 (ja) 造水方法および造水装置
JP2011255301A (ja) 分離膜の汚染評価方法、これを利用した分離膜運転管理方法及びろ過装置
WO2018198245A1 (ja) 逆浸透膜プラント及び逆浸透膜プラントの運転方法
JP2021006335A (ja) 分離膜プラントにおける分離膜の酸化リスク評価方法および造水装置
Kim et al. Comparative analysis of fouling mechanisms of ceramic and polymeric micro-filtration membrane for algae harvesting
JP2016190212A (ja) 分離膜ろ過プラントにおける分離膜の酸化リスク評価方法
JP2016221427A (ja) 水処理装置の運転方法
JP2018012061A (ja) 逆浸透膜供給水の膜閉塞性評価方法及びその膜閉塞性評価方法を用いた水処理装置の運転管理方法
JP2018008192A (ja) ファウラントの定量方法
WO2013129111A1 (ja) 造水方法
JP2015163869A (ja) バイオフィルム形成ポテンシャル評価用装置
KR101766457B1 (ko) 막오염 지수 측정 장치
JPS62163707A (ja) 膜モジユ−ル汚染防止方法
JP7387560B2 (ja) 中空糸膜の膜汚染速度推定方法および中空糸膜を有する浸漬型膜モジュールの薬品洗浄間隔推定方法
JP2014121667A (ja) バイオフィルム形成ポテンシャル評価用装置およびこれを用いた逆浸透膜ろ過プラントの運転方法
Nakanishi et al. Pilot studies on the river water treatment using coagulation-UF membrane filtration and direct UF membrane filtration
TWI757581B (zh) 水處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载