+

WO2018196848A1 - 同步信号块的传输方法、网络设备及用户设备 - Google Patents

同步信号块的传输方法、网络设备及用户设备 Download PDF

Info

Publication number
WO2018196848A1
WO2018196848A1 PCT/CN2018/084813 CN2018084813W WO2018196848A1 WO 2018196848 A1 WO2018196848 A1 WO 2018196848A1 CN 2018084813 W CN2018084813 W CN 2018084813W WO 2018196848 A1 WO2018196848 A1 WO 2018196848A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
frequency domain
frequency
time domain
synchronization signal
Prior art date
Application number
PCT/CN2018/084813
Other languages
English (en)
French (fr)
Inventor
李娜
吴凯
沈晓冬
丁昱
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/608,961 priority Critical patent/US11343782B2/en
Priority to EP18790501.3A priority patent/EP3618528B1/en
Priority to ES18790501T priority patent/ES2991959T3/es
Publication of WO2018196848A1 publication Critical patent/WO2018196848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method for transmitting a synchronization signal block, a network device, and a user equipment.
  • the terminal Before the terminal communicates with the core network, it needs to perform cell search, find the cell to which the terminal is located, synchronize with the cell, and receive and decode necessary information for communication and normal work with the cell. Specifically, the terminal obtains downlink synchronization and physical layer cell identity information of the cell by detecting a primary synchronization signal (Priss Synchronized Signal, PSS) and a secondary synchronization signal (SSS) at a specific location ( Cell ID), and then obtains necessary cell system information by receiving a Physical Broadcast Channel (PBCH) signal.
  • PSS Primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • LTE Long Term Evolution
  • PSS Physical Resource Blocks
  • SSS Similar to PSS, SSS also occupies the middle of six PRBs.
  • the PBCH is used to transmit the limited necessary cell system information. Since the terminal may not know the bandwidth of the downlink cell when receiving the PBCH, the PBCH transmission is limited to the intermediate 72 subcarriers regardless of the cell bandwidth.
  • the PSS/SSS and the PBCH occupy the same number of resource blocks in the frequency domain and are mapped to the same frequency domain location.
  • the PSS In the time domain direction, in the FDD mode, the PSS is in the last symbol of the first slot of the 0th subframe and the 5th subframe, and the SSS is immediately adjacent to the last symbol in the same time slot.
  • the upper transmission, that is, the SSS is located on the symbol before the PSS; in the TDD mode, the PSS is transmitted on the third symbol of the first subframe and the sixth subframe, that is, in the downlink pilot DwPTS domain, and the SSS is in the 0th subframe.
  • both FDD and TDD are transmitted on the first 4 symbols of the 2nd slot of the 0th subframe. Therefore, in FDD, the PBCH follows the PSS and SSS of the 0th subframe.
  • NR-PSS and NR-SSS are used to assist cell search, and NR-PBCH is used to transmit necessary system information.
  • the sequence length of NR-PSS and NR-SSS is 127, and the frequency domain resource to be occupied is 12 NR-PRBs.
  • the frequency domain resource mapping relationship in the LTE system cannot be applied to the NR system.
  • the embodiments of the present disclosure provide a method for transmitting a synchronization signal block, a network device, and a user equipment, so as to solve the problem that the frequency domain resource mapping relationship in the LTE system cannot be applied to the NR system.
  • an embodiment of the present disclosure provides a method for transmitting a synchronization signal block, which is applied to a network device side, where the synchronization signal block includes a new air interface primary synchronization signal NR-PSS, a new air interface secondary synchronization signal NR-SSS, and a new air interface physics.
  • the synchronization signal block includes a new air interface primary synchronization signal NR-PSS, a new air interface secondary synchronization signal NR-SSS, and a new air interface physics.
  • Broadcast channel NR-PBCH signal the method includes the following steps:
  • the NR-PSS is sent by the first frequency domain resource
  • the NR-SSS is sent by the second frequency domain resource
  • the NR-PBCH signal is sent by the third frequency domain resource, where the first frequency domain resource, the second frequency domain resource, and the third The positional relationship between the frequency domain resources satisfies the preset condition.
  • the embodiment of the present disclosure further provides a method for transmitting a synchronization signal block, which is applied to a user equipment side, where the synchronization signal block includes a new air interface primary synchronization signal NR-PSS, a new air interface secondary synchronization signal NR-SSS, and a new air interface.
  • the physical broadcast channel NR-PBCH signal the method comprises the following steps:
  • an embodiment of the present disclosure provides a network device, including:
  • a sending module configured to send a new air interface primary synchronization signal NR-PSS in the synchronization signal block by using the first frequency domain resource, and send a new air interface secondary synchronization signal NR-SSS in the synchronization signal block through the second frequency domain resource, and pass the third
  • the frequency domain resource sends a new air interface physical broadcast channel NR-PBCH signal in the synchronization signal block, where a positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition.
  • an embodiment of the present disclosure provides a user equipment, including:
  • a receiving module configured to receive a new air interface primary synchronization signal NR-PSS in the synchronization signal block by using the first frequency domain resource, and receive a new air interface secondary synchronization signal NR-SSS in the synchronization signal block by using the second frequency domain resource, and pass the third
  • the frequency domain resource receives the new air interface physical broadcast channel NR-PBCH signal in the synchronization signal block, where the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition.
  • an embodiment of the present disclosure provides a network device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor executes the computer program The steps of the method of transmitting the sync signal block as described in the first aspect above are implemented.
  • a user equipment including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor executes the computer program The steps of the method of transmitting the synchronization signal block as described in the second aspect above are implemented.
  • an embodiment of the present disclosure provides a computer readable storage medium having stored thereon a computer program, where the program is executed by a processor, and the steps of the method for transmitting a synchronization signal block according to the first aspect are implemented. And/or the steps of the method of transmitting the synchronization signal block described in the second aspect above.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, and the NR-PSS is transmitted through the first frequency domain resource, and the second frequency domain is used.
  • the resource transmission NR-SSS and the third frequency domain resource transmit the NR-PBCH signal, and the transmission of the synchronization signal block can be realized in the NR system through the above-mentioned frequency domain resource mapping relationship.
  • FIG. 1 is a flowchart showing a method for transmitting a network device side synchronization signal block in an embodiment of the present disclosure
  • FIGS. 2a to 2l are diagrams showing resource mapping of a synchronization signal block of scene 1 in the embodiment of the present disclosure
  • 3a-3l are schematic diagrams showing resource mapping of a synchronization signal block of scenario 2 in the embodiment of the present disclosure
  • 4a to 4l are diagrams showing resource mapping of a synchronization signal block of scene 3 in the embodiment of the present disclosure
  • 5a to 5l are diagrams showing a resource mapping diagram of a synchronization signal block of scene 4 in the embodiment of the present disclosure
  • 6a-6l are schematic diagrams showing the resource mapping of the synchronization signal block of the scene 4 in the embodiment of the present disclosure
  • FIG. 7 is a block diagram showing a network device of an embodiment of the present disclosure.
  • Figure 8 is a block diagram showing a network device of an embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a method for transmitting a user equipment side synchronization signal block in an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of interaction between a network device and a user equipment in an embodiment of the present disclosure
  • FIG. 11 is a block diagram showing a user equipment according to an embodiment of the present disclosure.
  • Figure 12 shows a block diagram of a user equipment in accordance with an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for transmitting a synchronization signal block, which is applied to a network device side, as shown in FIG. 1 , and specifically includes the following steps:
  • Step 101 Send the NR-PSS through the first frequency domain resource.
  • Step 102 Send the NR-SSS by using the second frequency domain resource.
  • Step 103 Send an NR-PBCH signal by using a third frequency domain resource, where a location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition.
  • steps 101 to 103 are only one transmission timing of the NR-PSS, NR-SSS and NR-PBCH signals in the present disclosure, and other transmission timings may be adopted in other embodiments of the present disclosure.
  • the Synchronized Signal Block includes NR-PSS, NR-SSS, and NR-PBCH signals.
  • the network device transmits frame synchronization information and cell identity ID information through the NR-PSS and the NR-SSS, and transmits limited system information necessary for communication and normal operation with the cell through the NR-PBCH signal.
  • the bandwidth of the first frequency domain resource and/or the bandwidth of the second frequency domain resource and the bandwidth of the third frequency domain resource are different, and the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource is satisfied. Preset conditions.
  • the bandwidth of the first frequency domain resource is the same as the bandwidth of the second frequency domain resource, and the bandwidth of the third frequency domain resource is twice the bandwidth of the first frequency domain resource or the second frequency domain resource.
  • the bandwidth of the first frequency domain resource and the bandwidth of the second frequency domain resource are both 2.16M, that is, the bandwidths of the NR-PSS and the NR-SSS are both 2.16M, occupying 127 subcarriers respectively; the third frequency domain resource
  • the bandwidth is 4.32M, that is, the bandwidth of the NR-PBCH signal is 4.32M, occupying 288 subcarriers.
  • the present disclosure may also perform mapping of time domain resources on transmission resources of the transmission synchronization signal block.
  • the NR-PSS is sent on the first time domain resource by using the first frequency domain resource
  • the NR-SSS is sent on the second time domain resource by using the second frequency domain resource
  • the third frequency domain resource is used by the third frequency domain resource.
  • the NR-PBCH signal is transmitted on the three time domain resources.
  • the synchronization signal block includes four consecutive time domain symbols, wherein the NR-PSS and the NR-SSS respectively occupy one time domain symbol, and the NR-PBCH signal occupies two time domain symbols, the first time domain resource and the second time.
  • the location relationship between the domain resource and the third time domain resource also needs to meet the preset conditions.
  • the following is a description of the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource, and the first time domain resource, the second time domain resource, and the third time domain according to the specific application scenario and the drawing.
  • the positional relationship between resources is further explained.
  • the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource needs to meet a preset condition, as shown in FIG. 2a to FIG.
  • the preset condition for the resource to be satisfied is that the center frequency of the first frequency domain resource, the center frequency of the second frequency domain resource, and the center frequency of the third frequency domain resource are aligned.
  • the center frequency of the first frequency domain resource, the center frequency of the second frequency domain resource, and the center frequency of the third frequency domain resource are consistent, and the NR-PBCH signal is mapped to the 24 physical resource blocks NR- located at the center.
  • NR-PSS and NR-SSS are respectively mapped to the 12 physical resource blocks NR-PRB located at the center.
  • the third time domain resource transmitting the NR-PBCH signal is a continuous time domain symbol, that is, the NR-PBCH signal is mapped to two consecutive time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS. That is to say, the time domain symbols mapped by the NR-PBCH signals in the same sync signal block are continuous, and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS signal map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS signal, that is, the time domain mapped by the NR-PBCH signal in the same synchronization signal block.
  • the symbols are contiguous and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the third time domain resource that transmits the NR-PBCH signal is a non-contiguous time domain symbol, that is, the NR-PBCH signal is mapped to two non-contiguous time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the physical broadcast channel signal mapped in the same synchronization signal block.
  • the time domain symbols are not continuous, and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Discontinuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource needs to meet a preset condition, as shown in FIG. 3a to FIG.
  • the preset condition for the resource to be satisfied is that the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a high frequency.
  • the central frequency point of the first frequency domain resource and the central frequency point of the second frequency domain resource are inconsistent with the central frequency point of the third frequency domain resource, and the NR-PBCH signal is mapped to the 24 physical resource blocks NR- located at the center.
  • NR-PSS and NR-SSS are located on 12 physical resource blocks NR-PRB whose center frequency is extended to a high frequency.
  • the third time domain resource transmitting the NR-PBCH signal is a continuous time domain symbol, that is, the NR-PBCH signal is mapped to two consecutive time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are contiguous and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Continuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the third time domain resource for transmitting the NR-PBCH signal is a non-contiguous time domain symbol, that is, the NR-PBCH signal is mapped to two non-contiguous time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are not continuous, and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Discontinuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource needs to meet a preset condition, as shown in FIG. 4a to FIG.
  • the preset condition for the resource to be satisfied is that the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a low frequency.
  • the central frequency point of the first frequency domain resource and the central frequency point of the second frequency domain resource are inconsistent with the central frequency point of the third frequency domain resource, and the NR-PBCH signal is mapped to the 24 physical resource blocks NR- located at the center.
  • the NR-PSS and the NR-SSS are located on the 12 physical resource blocks NR-PRB whose center frequency is extended to the low frequency.
  • the third time domain resource of the NR-PBCH channel signal is a continuous time domain symbol, that is, the NR-PBCH signal is mapped to two consecutive time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, when the NR-PBCH is mapped in the same synchronization signal block.
  • the domain symbols are contiguous and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Continuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol, that is, the NR-PBCH signal is mapped to two non-contiguous time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are not continuous, and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Discontinuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource needs to meet a preset condition, and the preset condition that the frequency domain resource satisfies is: One of the first frequency domain resource and the second frequency domain resource is aligned with the third frequency domain resource at a low frequency, and the other of the first frequency domain resource and the second frequency domain resource is aligned with the third frequency domain resource at a high frequency.
  • the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource is aligned with the third frequency domain resource at a high frequency; or the second frequency domain resource and the third frequency domain resource are aligned at a low frequency, A frequency domain resource is aligned with the third frequency domain resource at a high frequency. That is, as shown in FIG. 5a to FIG.
  • the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource and the third frequency domain resource are aligned at a high frequency; specifically, the first frequency domain
  • the center frequency of the resource and the center frequency of the second frequency domain resource are inconsistent with the center frequency of the third frequency domain resource
  • the NR-PBCH signal is mapped to the central physical resource block NR-PRB, and the NR-PSS is located.
  • the NR-SSS is located on the 12 physical resource blocks NR-PRB whose center frequency is extended to the low frequency
  • the NR-SSS is located on the 12 physical resource blocks NR-PRB whose center frequency is extended to the high frequency.
  • the second frequency domain resource and the third frequency domain resource are aligned at a low frequency
  • the first frequency domain resource and the third frequency domain resource are aligned at a high frequency.
  • the NR-SSS is located on 12 physical resource blocks NR-PRB whose center frequency is extended to a low frequency
  • the NR-PSS is located on 12 physical resource blocks NR-PRB whose center frequency is extended to a high frequency.
  • the third time domain resource of the NR-PBCH signal is a continuous time domain symbol, that is, the NR-PBCH signal is mapped to two consecutive time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are contiguous and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block.
  • the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map. Specifically, as shown in FIGS.
  • the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol, that is, the NR-PBCH signal is mapped to two non-contiguous time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are not continuous, and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Discontinuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the first frequency domain resource and the third frequency domain resource are aligned at a high frequency, and the second frequency domain resource and the third frequency domain resource are aligned at a low frequency.
  • the third time domain resource of the NR-PBCH channel signal is a continuous time domain symbol, that is, the NR-PBCH signal is mapped to two consecutive time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are contiguous and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block.
  • the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map. Specifically, as shown in FIGS.
  • the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol, that is, the NR-PBCH signal is mapped to two non-contiguous time domain symbols.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, that is, the NR-PBCH signal mapped in the same synchronization signal block.
  • the time domain symbols are not continuous, and the time domain symbols of the NR-PSS mapping are located before the time domain symbols of the NR-SSS map.
  • the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS, that is, the time domain symbol mapped by the NR-PBCH signal in the same synchronization signal block. Discontinuous, and the time domain symbols of the NR-PSS mapping are located after the time domain symbols of the NR-SSS map.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, and the NR-PSS is sent by the first frequency domain resource, and the NR is sent by the second frequency domain resource.
  • -SSS the third frequency domain resource sends the NR-PBCH signal, and through the above-mentioned frequency domain resource mapping relationship, the synchronization signal block can be transmitted in the NR system, which is convenient for the user equipment to receive the synchronization signal block.
  • the network device 700 of the embodiment of the present disclosure can implement the NR-PSS transmission by using the first frequency domain resource, the NR-SSS by the second frequency domain resource, and the third frequency domain resource transmission.
  • An NR-PBCH signal wherein a positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies details of a preset condition method, and achieves the same effect, wherein the synchronization signal block includes NR -PSS, NR-SSS and NR-PBCH signals.
  • the network device 700 specifically includes the following functional modules:
  • the sending module 710 is configured to send, by using the first frequency domain resource, the NR-PSS in the synchronization signal block, send the NR-SSS in the synchronization signal block by using the second frequency domain resource, and send the synchronization signal block in the third frequency domain resource.
  • an NR-PBCH signal where a positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the center frequency of the first frequency domain resource, the center frequency of the second frequency domain resource, and the center frequency of the third frequency domain resource are aligned.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a high frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a low frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource is aligned with the third frequency domain resource at a high frequency; or the second frequency domain resource and the third frequency domain resource are aligned at a low frequency, first The frequency domain resources are aligned with the third frequency domain resources at high frequencies.
  • the sending module 710 includes:
  • the first sending submodule 711 is configured to send the NR-PSS on the first time domain resource by using the first frequency domain resource;
  • the second sending sub-module 712 is configured to send the NR-SSS on the second time domain resource by using the second frequency domain resource;
  • the third sending submodule 713 is configured to send the NR-PBCH signal on the third time domain resource by using the third frequency domain resource.
  • the third time domain resource may be a continuous time domain symbol or a non-contiguous time domain symbol.
  • the first time domain resource is located before the second time domain resource.
  • the second time domain resource is located before the first time domain resource.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition, and the NR-PSS is sent through the first frequency domain resource, and the second The frequency domain resource sends the NR-SSS, and the third frequency domain resource sends the NR-PBCH signal.
  • the synchronization signal block can be transmitted in the NR system, which is convenient for the user equipment to receive the synchronization signal block.
  • an embodiment of the present disclosure further provides a network device, where the network device includes: a processor 800; and a memory 820 connected to the processor 800 through a bus interface. And a transceiver 810 coupled to the processor 800 via a bus interface; the memory 820 for storing programs and data used by the processor in performing operations; transmitting data information or pilots through the transceiver 810 Receiving, by the transceiver 810, an uplink control channel; when the processor 800 calls and executes the programs and data stored in the memory 820, specifically,
  • the processor 800 is for reading and executing programs in the memory 820.
  • the transceiver 810 is configured to receive and send data under the control of the processor 800, specifically for performing the following functions: sending NR-PSS through the first frequency domain resource, sending NR-SSS through the second frequency domain resource, and passing the third The frequency domain resource sends an NR-PBCH signal, where the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition.
  • the sync signal block includes NR-PSS, NR-SSS, and NR-PBCH signals.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 820.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 810 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 in performing operations.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the center frequency of the first frequency domain resource, the center frequency of the second frequency domain resource, and the center frequency of the third frequency domain resource are aligned.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a high frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a low frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource is aligned with the third frequency domain resource at a high frequency; or the second frequency domain resource and the third frequency domain resource are aligned at a low frequency, first The frequency domain resources are aligned with the third frequency domain resources at high frequencies.
  • the processor 800 is further configured to control the transceiver 810 to: send the NR-PSS on the first time domain resource by using the first frequency domain resource, and send the NR on the second time domain resource by using the second frequency domain resource.
  • -SSS transmitting the NR-PBCH signal on the third time domain resource through the third frequency domain resource.
  • the third time domain resource may be a continuous time domain symbol or a non-contiguous time domain symbol.
  • the first time domain resource is located before the second time domain resource.
  • the second time domain resource is located before the first time domain resource.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition
  • the NR-PSS is sent by the first frequency domain resource
  • the NR-SSS is sent by the second frequency domain resource.
  • the third frequency domain resource sends the NR-PBCH signal, and through the above-mentioned frequency domain resource mapping relationship, the synchronization signal block can be transmitted in the NR system, which is convenient for the user equipment to receive the synchronization signal block.
  • the above embodiment introduces the transmission method and the network device of the synchronization signal block of the present disclosure from the network device side.
  • the following embodiment will further introduce the transmission method of the synchronization signal block on the user equipment side with reference to the accompanying drawings.
  • the method for transmitting a synchronization signal block in the embodiment of the present disclosure is applied to the user equipment side, and specifically includes the following steps:
  • Step 901 Receive an NR-PSS by using the first frequency domain resource.
  • Step 902 Receive NR-SSS by using the second frequency domain resource.
  • Step 903 Receive an NR-PBCH signal by using a third frequency domain resource, where a location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition.
  • steps 901 to 903 are only one receiving timing of the NR-PSS, NR-SSS, and NR-PBCH signals in the present disclosure, and other receiving timings may be adopted in other embodiments of the present disclosure.
  • the sync signal block includes NR-PSS, NR-SSS, and NR-PBCH signals.
  • the user equipment receives the frame synchronization information and the cell identity ID information of the network device through the NR-PSS and the NR-SSS, and receives limited system information necessary for communication and normal operation with the cell through the NR-PBCH signal.
  • the bandwidth of the first frequency domain resource and/or the bandwidth of the second frequency domain resource and the bandwidth of the third frequency domain resource are different, and the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource is satisfied. Preset conditions.
  • the network device sends the NR-PSS through the first frequency domain resource, the NR-SSS through the second frequency domain resource, and the NR through the third frequency domain resource.
  • the PBCH signal, the user equipment receives the NR-PSS through the first frequency domain resource, receives the NR-SSS through the second frequency domain resource, and receives the NR-PBCH signal through the third frequency domain resource.
  • the present disclosure may also perform mapping of time domain resources on transmission resources of the transmission synchronization signal block.
  • the NR-PSS is received on the first time domain resource by using the first frequency domain resource
  • the NR-SSS is received on the second time domain resource by the second frequency domain resource
  • the third frequency domain resource is used by the third frequency domain resource.
  • the NR-PBCH signal is received on the three time domain resources.
  • the following is a description of the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource, and the first time domain resource, the second time domain resource, and the third time domain according to the specific application scenario and the drawing.
  • the positional relationship between resources is further explained.
  • the preset condition that the frequency domain resource satisfies is: the center frequency point of the first frequency domain resource, the center frequency point of the second frequency domain resource, and the center frequency point of the third frequency domain resource are aligned.
  • the third time domain resource transmitting the NR-PBCH signal is a continuous time domain symbol, or the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, or the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS. Any of the above combinations of time domain resource location relationships can satisfy the transmission of the synchronization signal block in the NR system.
  • the preset condition that the frequency domain resource meets is: the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a high frequency.
  • the third time domain resource transmitting the NR-PBCH signal is a continuous time domain symbol, or the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, or the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS. Any of the above combinations of time domain resource location relationships can satisfy the transmission of the synchronization signal block in the NR system.
  • the preset condition that the frequency domain resource meets is: the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a low frequency.
  • the third time domain resource transmitting the NR-PBCH signal is a continuous time domain symbol, or the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, or the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS. Any of the above combinations of time domain resource location relationships can satisfy the transmission of the synchronization signal block in the NR system.
  • the preset condition that the frequency domain resource meets is: one of the first frequency domain resource and the second frequency domain resource is aligned with the third frequency domain resource at a low frequency, and the first frequency domain resource and the second frequency domain are The other of the resources is aligned with the third frequency domain resource at a high frequency. That is, the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource and the third frequency domain resource are aligned at a high frequency; or, the second frequency domain resource and the third frequency domain resource are at a low frequency Align, the first frequency domain resource and the third frequency domain resource are aligned at a high frequency.
  • the third time domain resource transmitting the NR-PBCH signal is a continuous time domain symbol, or the third time domain resource transmitting the NR-PBCH signal is a non-contiguous time domain symbol.
  • the first time domain resource for transmitting the NR-PSS is located before the second time domain resource for transmitting the NR-SSS, or the second time domain resource for transmitting the NR-SSS is located before the first time domain resource for transmitting the NR-PSS.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition
  • the first time domain resource, the second time domain resource, and the third time domain resource The positional relationship between the two also meets the preset condition
  • the NR-PSS is transmitted on the first time domain resource through the first frequency domain resource
  • the NR-SSS is transmitted on the second time domain resource through the second frequency domain resource
  • the first The tri-frequency domain resource transmits the NR-PBCH signal on the third time domain resource, and through the above-mentioned frequency domain resource mapping relationship, the synchronization signal block can be transmitted in the NR system, which is convenient for the user equipment to receive the synchronization signal block.
  • the user equipment 1100 of the embodiment of the present disclosure can implement the NR-PSS received by the first frequency domain resource in the foregoing embodiment, and the NR-SSS is received by the second frequency domain resource, and the third frequency domain resource is received.
  • the NR-PBCH signal method has the same effect and achieves the same effect, wherein the synchronization signal block includes NR-PSS, NR-SSS and NR-PBCH signals, first frequency domain resources, second frequency domain resources and third frequency domain resources The positional relationship between the two meets the preset conditions.
  • the user equipment 1100 specifically includes the following functional modules:
  • the receiving module 1110 is configured to receive, by using the first frequency domain resource, the NR-PSS in the synchronization signal block, receive the NR-SSS in the synchronization signal block by using the second frequency domain resource, and receive the synchronization signal block in the third frequency domain resource. And an NR-PBCH signal, where a positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the center frequency of the first frequency domain resource, the center frequency of the second frequency domain resource, and the center frequency of the third frequency domain resource are aligned.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a high frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a low frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource is aligned with the third frequency domain resource at a high frequency; or the second frequency domain resource and the third frequency domain resource are aligned at a low frequency, first The frequency domain resources are aligned with the third frequency domain resources at high frequencies.
  • the receiving module 1110 includes:
  • the first receiving submodule 1111 is configured to receive the NR-PSS on the first time domain resource by using the first frequency domain resource;
  • the second receiving sub-module 1112 is configured to receive the NR-SSS on the second time domain resource by using the second frequency domain resource;
  • the third receiving submodule 1113 is configured to receive the NR-PBCH signal on the third time domain resource by using the third frequency domain resource.
  • the third time domain resource may be a continuous time domain symbol or a non-contiguous time domain symbol.
  • the first time domain resource is located before the second time domain resource.
  • the second time domain resource is located before the first time domain resource.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource satisfies a preset condition, and the NR-PSS is transmitted through the first frequency domain resource, and the second The frequency domain resource transmits NR-SSS, and the third frequency domain resource transmits the NR-PBCH signal.
  • the synchronization signal block can be transmitted in the NR system, which is convenient for the user equipment to receive the synchronization signal block.
  • FIG. 12 is a schematic structural diagram of a user equipment according to another embodiment of the present disclosure.
  • the user equipment 1200 in FIG. 12 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or a vehicle-mounted computer.
  • PDA personal digital assistant
  • the user equipment 1200 in FIG. 12 includes a power source 1210, a memory 1220, an input unit 1230, a display unit 1240, a processor 1250, a WIFI (Wireless Fidelity) module 1260, an audio circuit 1270, and an RF circuit 1280.
  • a power source 1210 a memory 1220, an input unit 1230, a display unit 1240, a processor 1250, a WIFI (Wireless Fidelity) module 1260, an audio circuit 1270, and an RF circuit 1280.
  • a WIFI Wireless Fidelity
  • the input unit 1230 can be configured to receive information input by the user, and generate signal input related to user settings and function control of the user equipment 1200.
  • the input unit 1230 may include a touch panel 1231.
  • the touch panel 1231 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 1231), and according to the preset
  • the programmed program drives the corresponding connection device.
  • the touch panel 1231 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1250 is provided and can receive commands from the processor 1250 and execute them.
  • the touch panel 1231 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1230 may further include other input devices 1232.
  • the other input devices 1232 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, a joystick, and the like. One or more of them.
  • the display unit 1240 can be used to display information input by the user or information provided to the user and various menu interfaces of the user equipment.
  • the display unit 1240 can include a display panel 1241.
  • the display panel 1241 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 1231 may cover the display panel 1241 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 1250 to determine the type of the touch event, and then the processor The 1250 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 1250 is a control center of the user equipment, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 1221, and calling the second memory.
  • the data in 1222 performs various functions and processing data of the user equipment, thereby performing overall monitoring on the user equipment.
  • the processor 1250 can include one or more processing units.
  • the processor 1250 by calling a software program and/or module stored in the first memory 1221 and/or data in the second memory 1222, the processor 1250 is configured to: receive the NR-PSS through the first frequency domain resource. Receiving, by the second frequency domain resource, the NR-SSS, and receiving the NR-PBCH signal by using the third frequency domain resource, where the synchronization signal block includes the NR-PSS, the NR-SSS, and the NR-PBCH signal, and the first frequency domain resource, The positional relationship between the second frequency domain resource and the third frequency domain resource satisfies a preset condition.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the center frequency of the first frequency domain resource, the center frequency of the second frequency domain resource, and the center frequency of the third frequency domain resource are aligned.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a high frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets preset conditions, including:
  • the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource are aligned at a low frequency.
  • the location relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource meets a preset condition, including:
  • the first frequency domain resource and the third frequency domain resource are aligned at a low frequency, and the second frequency domain resource is aligned with the third frequency domain resource at a high frequency; or the second frequency domain resource and the third frequency domain resource are aligned at a low frequency, first The frequency domain resources are aligned with the third frequency domain resources at high frequencies.
  • the processor 1250 is further configured to: receive the NR-PSS on the first time domain resource by using the first frequency domain resource, and receive the NR-SSS on the second time domain resource by using the second frequency domain resource;
  • the tri-frequency domain resource receives the NR-PBCH signal on the third time domain resource.
  • the third time domain resource may be a continuous time domain symbol or a non-contiguous time domain symbol.
  • the first time domain resource is located before the second time domain resource.
  • the second time domain resource is located before the first time domain resource.
  • the positional relationship between the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource in the embodiment of the present disclosure satisfies a preset condition, and the NR-PSS is transmitted through the first frequency domain resource, and the NR is transmitted in the second frequency domain resource.
  • -SSS the third frequency domain resource transmits the NR-PBCH signal, and through the above-mentioned frequency domain resource mapping relationship, the synchronization signal block can be transmitted in the NR system, which is convenient for the user equipment to receive the synchronization signal block.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种同步信号块的传输方法、网络设备及用户设备,同步信号块包括新空口主同步信号NR-PSS、新空口辅同步信号NR-SSS和新空口物理广播信道NR-PBCH信号,其方法包括:网络设备通过第一频域资源发送NR-PSS,第二频域资源发送NR-SSS,第三频域资源发送NR-PBCH信号,用户设备通过第一频域资源接收NR-PSS,第二频域资源接收NR-SSS,第三频域资源接收NR-PBCH信号。第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。

Description

同步信号块的传输方法、网络设备及用户设备
相关申请的交叉引用
本申请主张在2017年4月28日在中国提交的中国专利申请No.201710296851.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种同步信号块的传输方法、网络设备及用户设备。
背景技术
终端在与核心网进行通信之前,需要进行小区搜索,找到终端所处位置所属的小区,并与该小区进行同步,接收并解码与该小区进行通信和正常工作的必要信息。具体地,终端通过检测在特定位置的主同步信号(Primary Synchronized Signal,以下简称:PSS)和辅同步信号(Secondary Synchronized Signal,以下简称:SSS),获得下行同步和小区的物理层小区身份信息(Cell ID),然后通过接收物理广播信道(Physical Broadcast Channel,以下简称:PBCH)信号,获取必要的小区系统信息。
在长期演进(Long Term Evolution,以下简称:LTE)系统中,为了辅助小区搜索,每个下行分量载波上都有两个特殊的信号PSS和SSS,PSS由长度为63的Zadoff-Chu序列在两端以5个零进行扩展,最后映射到中间6个物理资源块(Physical Resource Block,以下简称:PRB)上得到。与PSS类似,SSS也是占据了中间的6个PRB。PBCH用于传输有限的必要小区系统信息,由于接收PBCH时,终端可能还不知道下行小区的带宽,因此,无论小区带宽为多少,PBCH传输均限定在中间的72个子载波上。也就是说,PSS/SSS和PBCH在频域上所占资源块数目一样,被映射到相同的频域位置。在时域方向,FDD模式下,PSS在第0子帧和第5子帧的第一个时隙(slot)的最后一个符号(symbol),SSS则在同一时隙上紧邻最后那个符号的位置上传输,即SSS位于PSS之前的那个符号上;TDD模式下,PSS在第1子帧和第6子 帧的第三个符号上传输,即下行导频DwPTS域内,SSS则在第0子帧和第五子帧的最后一个符号上传输,即SSS位于PSS之前三个符号位置上传输。而对于PBCH,无论是FDD还是TDD,均在第0子帧第2个时隙的前4个符号上传输。因此,在FDD中,PBCH紧跟在第0子帧的PSS和SSS之后。
在新空口(New Radio,以下简称:NR)系统的设计中,使用NR-PSS和NR-SSS辅助小区搜索,使用NR-PBCH发送必要的系统信息。NR-PSS和NR-SSS的序列长度均为127,需要占用的频域资源为12个NR-PRB,NR-PBCH的带宽是288个子载波,即288/12=24个PRB,因此,NR-PSS/NR-SSS在频域上所占的资源块数目与NR-PBCH不同,LTE系统中的频域资源映射关系无法适用于NR系统。
发明内容
本公开实施例提供了一种同步信号块的传输方法、网络设备及用户设备,以解决LTE系统中的频域资源映射关系无法适用于NR系统的问题。
第一方面,本公开实施例提供了一种同步信号块的传输方法,应用于网络设备侧,同步信号块包括新空口主同步信号NR-PSS、新空口辅同步信号NR-SSS和新空口物理广播信道NR-PBCH信号,方法包括以下步骤:
通过第一频域资源发送NR-PSS,通过第二频域资源发送NR-SSS,通过第三频域资源发送NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
第二方面,本公开实施例还提供了一种同步信号块的传输方法,应用于用户设备侧,同步信号块包括新空口主同步信号NR-PSS、新空口辅同步信号NR-SSS和新空口物理广播信道NR-PBCH信号,方法包括以下步骤:
通过第一频域资源接收NR-PSS,通过第二频域资源接收NR-SSS,通过第三频域资源接收NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
第三方面,本公开实施例提供了一种网络设备,包括:
发送模块,用于通过第一频域资源发送同步信号块中的新空口主同步信号NR-PSS,通过第二频域资源发送同步信号块中的新空口辅同步信号 NR-SSS,通过第三频域资源发送同步信号块中的新空口物理广播信道NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
第四方面,本公开实施例提供了一种用户设备,包括:
接收模块,用于通过第一频域资源接收同步信号块中的新空口主同步信号NR-PSS,通过第二频域资源接收同步信号块中的新空口辅同步信号NR-SSS,通过第三频域资源接收同步信号块中的新空口物理广播信道NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
第五方面,本公开实施例提供了一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的同步信号块的传输方法的步骤。第六方面,本公开实施例提供了一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第二方面所述的同步信号块的传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时,实现上述第一方面所述的同步信号块的传输方法的步骤,和/或上述第二方面所述的同步信号块的传输方法的步骤。
这样,本公开实施例中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,通过第一频域资源传输NR-PSS,第二频域资源传输NR-SSS,第三频域资源传输NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例中网络设备侧同步信号块的传输方法的流程图;
图2a~2l表示本公开实施例中场景一的同步信号块的资源映射示意图;
图3a~3l表示本公开实施例中场景二的同步信号块的资源映射示意图;
图4a~4l表示本公开实施例中场景三的同步信号块的资源映射示意图;
图5a~5l表示本公开实施例中场景四的同步信号块的资源映射示意图一;
图6a~6l表示本公开实施例中场景四的同步信号块的资源映射示意图二;
图7表示本公开实施例的网络设备的模块示意图;
图8表示本公开实施例的网络设备框图;
图9表示本公开实施例中用户设备侧同步信号块的传输方法的流程图;
图10表示本公开实施例中网络设备和用户设备的交互流程图;
图11表示本公开实施例的用户设备的模块示意图;
图12表示本公开实施例的用户设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开实施例提供了一种同步信号块的传输方法,应用于网络设备侧,如图1所示,具体包括以下步骤:
步骤101:通过第一频域资源发送NR-PSS。
步骤102:通过第二频域资源发送NR-SSS。
步骤103:通过第三频域资源发送NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
需要说明的是,上述步骤101至步骤103仅为本公开中的NR-PSS、NR-SSS和NR-PBCH信号的一种发送时序,在本公开的其他实施例中,还可以采用其他发送时序,发送NR-PSS、NR-SSS和NR-PBCH信号。
其中,同步信号块(Synchronized Signal Block,以下简称:SS Block)包 括NR-PSS、NR-SSS和NR-PBCH信号。网络设备通过NR-PSS和NR-SSS发送帧同步信息和小区身份ID信息,通过NR-PBCH信号发送与小区进行通信及正常工作所必要的有限的系统信息。第一频域资源的带宽和/或第二频域资源的带宽和第三频域资源的带宽不同,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
可选地,第一频域资源的带宽和第二频域资源的带宽相同,第三频域资源的带宽为第一频域资源或第二频域资源带宽的两倍。具体地,第一频域资源的带宽和第二频域资源的带宽均为2.16M,即,NR-PSS和NR-SSS的带宽均为2.16M,分别占用127个子载波;第三频域资源的带宽为4.32M,即,NR-PBCH信号的带宽为4.32M,占用288个子载波。
可选地,本公开还可以对传输同步信号块的传输资源进行时域资源的映射。具体地,通过第一频域资源,在第一时域资源上发送NR-PSS;通过第二频域资源,在第二时域资源上发送NR-SSS;通过第三频域资源,在第三时域资源上发送NR-PBCH信号。
其中,同步信号块包括4个连续的时域符号,其中,NR-PSS和NR-SSS分别占用一个时域符号,NR-PBCH信号占用两个时域符号,第一时域资源、第二时域资源和第三时域资源之间的位置关系也需要满足预设条件。
下面将结合具体应用场景和附图对第一频域资源、第二频域资源和第三频域资源之间的位置关系、以及第一时域资源、第二时域资源和第三时域资源之间的位置关系做进一步说明。
场景一:
具体地,为保证同步信号块的正常传输,第一频域资源、第二频域资源和第三频域资源之间的位置关系需要满足预设条件,如图2a~2l所示,频域资源满足的预设条件为:第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点对齐。具体地,第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点一致,NR-PBCH信号映射至位于中心的24个物理资源块NR-PRB上,NR-PSS和NR-SSS分别映射至位于中心的12个物理资源块NR-PRB上。
具体地,如图2a~2f所示,传输NR-PBCH信号的第三时域资源为连续的 时域符号,也就是说NR-PBCH信号映射至连续的两个时域符号上。进一步地,如图2a~2c所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前。也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS信号映射的时域符号之前。如图2d~2f所示,传输NR-SSS的第二时域资源位于传输NR-PSS信号的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
具体地,如图2g~2l所示,传输NR-PBCH信号的第三时域资源为非连续的时域符号,也就是说NR-PBCH信号映射至非连续的两个时域符号上。进一步地,如图2g~2i所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中物理广播信道信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图2j~2l所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
场景二:
具体地,为保证同步信号块的正常传输,第一频域资源、第二频域资源和第三频域资源之间的位置关系需要满足预设条件,如图3a~3l所示,频域资源满足的预设条件为:第一频域资源、第二频域资源和第三频域资源在高频对齐。具体地,第一频域资源的中心频点和第二频域资源的中心频点与第三频域资源的中心频点不一致,NR-PBCH信号映射至位于中心的24个物理资源块NR-PRB上,NR-PSS和NR-SSS位于中心频率向高频扩展的12个物理资源块NR-PRB上。
具体地,如图3a~3f所示,传输NR-PBCH信号的第三时域资源为连续的时域符号,也就是说NR-PBCH信号映射至连续的两个时域符号上。进一步地,如图3a~3c所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时 域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图3d~3f所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
具体地,如图3g~3l所示,传输NR-PBCH信号的第三时域资源为非连续的时域符号,也就是说NR-PBCH信号映射至非连续的两个时域符号上。进一步地,如图3g~3i所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图3j~3l所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
场景三:
具体地,为保证同步信号块的正常传输,第一频域资源、第二频域资源和第三频域资源之间的位置关系需要满足预设条件,如图4a~4l所示,频域资源满足的预设条件为:第一频域资源、第二频域资源和第三频域资源在低频对齐。具体地,第一频域资源的中心频点和第二频域资源的中心频点与第三频域资源的中心频点不一致,NR-PBCH信号映射至位于中心的24个物理资源块NR-PRB上,NR-PSS和NR-SSS位于中心频率向低频扩展的12个物理资源块NR-PRB上。
具体地,如图4a~4f所示,NR-PBCH信道信号的第三时域资源为连续的时域符号,也就是说NR-PBCH信号映射至连续的两个时域符号上。进一步地,如图4a~4c所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图4d~4f所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
具体地,如图4g~4l所示,传输NR-PBCH信号的第三时域资源为非连续的时域符号,也就是说NR-PBCH信号映射至非连续的两个时域符号上。进一步地,如图4g~4i所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图4j~4l所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
场景四:
具体地,为保证同步信号块的正常传输,第一频域资源、第二频域资源和第三频域资源之间的位置关系需要满足预设条件,频域资源满足的预设条件为:第一频域资源和第二频域资源中的一个与第三频域资源在低频对齐,第一频域资源和第二频域资源中的另一个与第三频域资源在高频对齐,即第一频域资源与第三频域资源在低频对齐,第二频域资源与第三频域资源在高频对齐;或者,第二频域资源与第三频域资源在低频对齐,第一频域资源与第三频域资源在高频对齐。也就是说,如图5a~5l所示,第一频域资源和第三频域资源在低频对齐,第二频域资源和第三频域资源在高频对齐;具体地,第一频域资源的中心频点和第二频域资源的中心频点与第三频域资源的中心频点不一致,NR-PBCH信号映射至位于中心的24个物理资源块NR-PRB上,NR-PSS位于中心频率向低频扩展的12个物理资源块NR-PRB上,NR-SSS位于中心频率向高频扩展的12个物理资源块NR-PRB上。或者,如图6a~6l所示,第二频域资源和第三频域资源在低频对齐,第一频域资源和第三频域资源在高频对齐。具体地,NR-SSS位于中心频率向低频扩展的12个物理资源块NR-PRB上,NR-PSS位于中心频率向高频扩展的12个物理资源块NR-PRB上。
具体地,假设第一频域资源和第三频域资源在低频对齐,第二频域资源和第三频域资源在高频对齐。如图5a~5f所示,NR-PBCH信号的第三时域资源为连续的时域符号,也就是说NR-PBCH信号映射至连续的两个时域符号 上。进一步地,如图5a~5c所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图5d~5f所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。具体地,如图5g~5l所示,传输NR-PBCH信号的第三时域资源为非连续的时域符号,也就是说NR-PBCH信号映射至非连续的两个时域符号上。进一步地,如图5g~5i所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图5j~5l所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
具体地,假设第一频域资源和第三频域资源在高频对齐,第二频域资源和第三频域资源在低频对齐。如图6a~6f所示,NR-PBCH信道信号的第三时域资源为连续的时域符号,也就是说NR-PBCH信号映射至连续的两个时域符号上。进一步地,如图6a~6c所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之前。如图6d~6f所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。具体地,如图6g~6l所示,传输NR-PBCH信号的第三时域资源为非连续的时域符号,也就是说NR-PBCH信号映射至非连续的两个时域符号上。进一步地,如图6g~6i所示,传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的 时域符号之前。如图6j~6l所示,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前,也就是说,同一同步信号块中NR-PBCH信号所映射的时域符号不连续,且NR-PSS映射的时域符号位于NR-SSS映射的时域符号之后。
本公开实施例中第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,通过第一频域资源发送NR-PSS,第二频域资源发送NR-SSS,第三频域资源发送NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输,便于用户设备接收同步信号块。
以上实施例分别详细介绍了不同场景下的同步信号块的传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图7所示,本公开实施例的网络设备700,能实现上述实施例中通过第一频域资源发送NR-PSS,通过第二频域资源发送NR-SSS,通过第三频域资源发送NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件方法的细节,并达到相同的效果,其中,同步信号块包括NR-PSS、NR-SSS和NR-PBCH信号。该网络设备700具体包括以下功能模块:
发送模块710,用于通过第一频域资源发送同步信号块中的NR-PSS,通过第二频域资源发送同步信号块中的NR-SSS,通过第三频域资源发送同步信号块中的NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在高频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在低频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源与第三频域资源在低频对齐,第二频域资源与第三频域资源在高频对齐;或者,第二频域资源与第三频域资源在低频对齐,第一频域资源与第三频域资源在高频对齐。
可选地,发送模块710包括:
第一发送子模块711,用于通过第一频域资源,在第一时域资源上发送NR-PSS;
第二发送子模块712,用于通过第二频域资源,在第二时域资源上发送NR-SSS;
第三发送子模块713,用于通过第三频域资源,在第三时域资源上发送NR-PBCH信号。
可选地,第三时域资源可以为连续的时域符号,也可以为非连续的时域符号。
本公开的一种实现方式中,第一时域资源位于第二时域资源之前。本公开的另一种实现方式中,第二时域资源位于第一时域资源之前。
值得指出的是,本公开实施例中第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,通过第一频域资源发送NR-PSS,第二频域资源发送NR-SSS,第三频域资源发送NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输,便于用户设备接收同步信号块。
为了更好的实现上述目的,如图8所示,本公开的实施例还提供了一种网络设备,该网络设备包括:处理器800;通过总线接口与所述处理器800相连接的存储器820,以及通过总线接口与处理器800相连接的收发机810;所述存储器820用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机810发送数据信息或者导频,还通过所述收发机810接收上行控制信道;当处理器800调用并执行所述存储器820中所存储的程序和数据,具体地,
处理器800用于读取并执行存储器820中的程序。
收发机810,用于在处理器800的控制下接收和发送数据,具体用于执行以下功能:通过第一频域资源发送NR-PSS,通过第二频域资源发送NR-SSS,通过第三频域资源发送NR-PBCH信号,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件。其中,同步信号块包括NR-PSS、NR-SSS和NR-PBCH信号。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在高频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在低频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源与第三频域资源在低频对齐,第二频域资源与第三频域资源在高频对齐;或者,第二频域资源与第三频域资源在低频对齐,第一频域资源与第三频域资源在高频对齐。
具体地,处理器800还用于控制收发机810执行:通过第一频域资源,在第一时域资源上发送NR-PSS;通过第二频域资源,在第二时域资源上发送NR-SSS;通过第三频域资源,在第三时域资源上发送NR-PBCH信号。
可选地,第三时域资源可以为连续的时域符号,也可以为非连续的时域符号。
本公开的一种实现方式中,第一时域资源位于第二时域资源之前。本公开的另一种实现方式中,第二时域资源位于第一时域资源之前。
这样,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,通过第一频域资源发送NR-PSS,第二频域资源发送NR-SSS,第三频域资源发送NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输,便于用户设备接收同步信号块。
以上实施例从网络设备侧介绍了本公开的同步信号块的传输方法及网络设备,下面本实施例将结合附图对用户设备侧的同步信号块的传输方法做进一步介绍。
如图9所示,本公开实施例的同步信号块的传输方法,应用于用户设备侧,具体包括以下步骤:
步骤901:通过第一频域资源接收NR-PSS。
步骤902:通过第二频域资源接收NR-SSS。
步骤903:通过第三频域资源接收NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
需要说明的是,上述步骤901至步骤903仅为本公开中的NR-PSS、NR-SSS和NR-PBCH信号的一种接收时序,在本公开的其他实施例中,还可以采用其他接收时序,接收NR-PSS、NR-SSS和NR-PBCH信号。
其中,同步信号块包括NR-PSS、NR-SSS和NR-PBCH信号。用户设备通过NR-PSS和NR-SSS接收网络设备的帧同步信息和小区身份ID信息,通过NR-PBCH信号接收与小区进行通信及正常工作所必要的有限的系统信息。第一频域资源的带宽和/或第二频域资源的带宽和第三频域资源的带宽不同,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
从网络设备和用户设备组成的系统来看,如图10所示,网络设备通过第 一频域资源发送NR-PSS,通过第二频域资源发送NR-SSS,通过第三频域资源发送NR-PBCH信号,用户设备通过第一频域资源接收NR-PSS,通过第二频域资源接收NR-SSS,通过第三频域资源接收NR-PBCH信号。
可选地,本公开还可以对传输同步信号块的传输资源进行时域资源的映射。具体地,通过第一频域资源,在第一时域资源上接收NR-PSS;通过第二频域资源,在第二时域资源上接收NR-SSS;通过第三频域资源,在第三时域资源上接收NR-PBCH信号。
下面将结合具体应用场景和附图对第一频域资源、第二频域资源和第三频域资源之间的位置关系、以及第一时域资源、第二时域资源和第三时域资源之间的位置关系做进一步说明。
对应于上述场景一,频域资源满足的预设条件为:第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点对齐。在该场景下,传输NR-PBCH信号的第三时域资源为连续的时域符号,或者,传输NR-PBCH信号的第三时域资源为非连续的时域符号。传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,或者,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前。以上时域资源位置关系全部组合中的任意一种均可满足NR系统中同步信号块的传输。
对应于上述场景二,频域资源满足的预设条件为:第一频域资源、第二频域资源和第三频域资源在高频对齐。在该场景下,传输NR-PBCH信号的第三时域资源为连续的时域符号,或者,传输NR-PBCH信号的第三时域资源为非连续的时域符号。传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,或者,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前。以上时域资源位置关系全部组合中的任意一种均可满足NR系统中同步信号块的传输。
对应于上述场景三,频域资源满足的预设条件为:第一频域资源、第二频域资源和第三频域资源在低频对齐。在该场景下,传输NR-PBCH信号的第三时域资源为连续的时域符号,或者,传输NR-PBCH信号的第三时域资源为非连续的时域符号。传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,或者,传输NR-SSS的第二时域资源位于传输NR-PSS 的第一时域资源之前。以上时域资源位置关系全部组合中的任意一种均可满足NR系统中同步信号块的传输。
对应于上述场景四,频域资源满足的预设条件为:第一频域资源和第二频域资源中的一个与第三频域资源在低频对齐,第一频域资源和第二频域资源中的另一个与第三频域资源在高频对齐。也就是说,第一频域资源和第三频域资源在低频对齐,第二频域资源和第三频域资源在高频对齐;或者,第二频域资源和第三频域资源在低频对齐,第一频域资源和第三频域资源在高频对齐。在这两种场景下,传输NR-PBCH信号的第三时域资源为连续的时域符号,或者,传输NR-PBCH信号的第三时域资源为非连续的时域符号。传输NR-PSS的第一时域资源位于传输NR-SSS的第二时域资源之前,或者,传输NR-SSS的第二时域资源位于传输NR-PSS的第一时域资源之前。以上时域资源位置关系全部组合中的任意一种均可满足NR系统中同步信号块的传输。
本公开实施例中第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,第一时域资源、第二时域资源和第三时域资源之间的位置关系亦满足预设条件,通过第一频域资源、在第一时域资源上传输NR-PSS,通过第二频域资源、在第二时域资源上传输NR-SSS,通过第三频域资源、在第三时域资源上传输NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输,便于用户设备接收同步信号块。
以上实施例介绍了不同场景下的同步信号块的传输方法,下面将结合附图对与其对应的用户设备做进一步介绍。
如图11所示,本公开实施例的用户设备1100,能实现上述实施例中通过第一频域资源接收NR-PSS,通过第二频域资源接收NR-SSS,通过第三频域资源接收NR-PBCH信号方法的细节,并达到相同的效果,其中,同步信号块包括NR-PSS、NR-SSS和NR-PBCH信号,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。该用户设备1100具体包括以下功能模块:
接收模块1110,用于通过第一频域资源接收同步信号块中的NR-PSS, 通过第二频域资源接收同步信号块中的NR-SSS,通过第三频域资源接收同步信号块中的NR-PBCH信号,其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在高频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在低频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源与第三频域资源在低频对齐,第二频域资源与第三频域资源在高频对齐;或者,第二频域资源与第三频域资源在低频对齐,第一频域资源与第三频域资源在高频对齐。
可选地,接收模块1110包括:
第一接收子模块1111,用于通过第一频域资源,在第一时域资源上接收NR-PSS;
第二接收子模块1112,用于通过第二频域资源,在第二时域资源上接收NR-SSS;
第三接收子模块1113,用于通过第三频域资源,在第三时域资源上接收NR-PBCH信号。
可选地,第三时域资源可以为连续的时域符号,也可以为非连续的时域符号。
本公开的一种实现方式中,第一时域资源位于第二时域资源之前。本公开的另一种实现方式中,第二时域资源位于第一时域资源之前。
值得指出的是,本公开实施例中第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,通过第一频域资源传输NR-PSS,第二频域资源传输NR-SSS,第三频域资源传输NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输,便于用户设备接收同步信号块。
图12是本公开另一个实施例的用户设备的结构示意图。具体地,图12中的用户设备1200可以是手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图12中的用户设备1200包括电源1210、存储器1220、输入单元1230、显示单元1240、处理器1250、WIFI(Wireless Fidelity)模块1260、音频电路1270和RF电路1280。
其中,输入单元1230可用于接收用户输入的信息,以及产生与用户设备1200的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元1230可以包括触控面板1231。触控面板1231,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1231上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1231可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器1250,并能接收处理器1250发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1231。除了触控面板1231,输入单元1230还可以包括其他输入设备1232,其他输入设备1232可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元1240可用于显示由用户输入的信息或提供给用户的信息以及用户设备的各种菜单界面。显示单元1240可包括显示面板1241,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1241。
应注意,触控面板1231可以覆盖显示面板1241,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器1250以确定触摸事件的类型,随后处理器1250根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器1250是用户设备的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器1221内的软件程序和/或模块,以及调用存储在第二存储器1222内的数据,执行用户设备的各种功能和处理数据,从而对用户设备进行整体监控。可选的,处理器1250可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器1221内的软件程序和/或模块和/给第二存储器1222内的数据,处理器1250用于:通过第一频域资源接收NR-PSS,通过第二频域资源接收NR-SSS,通过第三频域资源接收NR-PBCH信号,其中,同步信号块包括NR-PSS、NR-SSS和NR-PBCH信号,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源的中心频点、第二频域资源的中心频点和第三频域资源的中心频点对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在高频对齐。
可选地,第一频域资源、第二频域资源和第三频域资源之间的位置关系 满足预设条件,包括:
第一频域资源、第二频域资源和第三频域资源在低频对齐。
其中,第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,包括:
第一频域资源与第三频域资源在低频对齐,第二频域资源与第三频域资源在高频对齐;或者,第二频域资源与第三频域资源在低频对齐,第一频域资源与第三频域资源在高频对齐。
具体地,处理器1250还用于:通过第一频域资源,在第一时域资源上接收NR-PSS;通过第二频域资源,在第二时域资源上接收NR-SSS;通过第三频域资源,在第三时域资源上接收NR-PBCH信号。
其中,第三时域资源可以为连续的时域符号,也可以为非连续的时域符号。
本公开的一种实现方式中,第一时域资源位于第二时域资源之前。本公开的另一种实现方式中,第二时域资源位于第一时域资源之前。
本公开实施例的第一频域资源、第二频域资源和第三频域资源之间的位置关系满足预设条件,通过第一频域资源传输NR-PSS,第二频域资源传输NR-SSS,第三频域资源传输NR-PBCH信号,通过上述频域资源映射关系,能够在NR系统中实现同步信号块的传输,便于用户设备接收同步信号块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的 划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一 组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (43)

  1. 一种同步信号块的传输方法,应用于网络设备侧,其中,所述同步信号块包括新空口主同步信号NR-PSS、新空口辅同步信号NR-SSS和新空口物理广播信道NR-PBCH信号,所述方法包括以下步骤:
    通过第一频域资源发送NR-PSS,通过第二频域资源发送NR-SSS,通过第三频域资源发送NR-PBCH信号,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件。
  2. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源的中心频点、所述第二频域资源的中心频点和所述第三频域资源的中心频点对齐。
  3. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在高频对齐。
  4. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在低频对齐。
  5. 根据权利要求1所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源与所述第三频域资源在低频对齐,所述第二频域资源与所述第三频域资源在高频对齐;
    或者,
    所述第二频域资源与所述第三频域资源在低频对齐,所述第一频域资源与所述第三频域资源在高频对齐。
  6. 根据权利要求1所述的同步信号块的传输方法,其中,所述通过第一频域资源发送NR-PSS,通过第二频域资源发送NR-SSS,通过第三频域资源发送NR-PBCH信号,包括:
    通过第一频域资源,在第一时域资源上发送NR-PSS;通过第二频域资源,在第二时域资源上发送NR-SSS;通过第三频域资源,在第三时域资源上发送NR-PBCH信号。
  7. 根据权利要求6所述的同步信号块的传输方法,其中,所述第三时域资源为连续的时域符号。
  8. 根据权利要求6所述的同步信号块的传输方法,其中,所述第三时域资源为非连续的时域符号。
  9. 根据权利要求6至8任一项所述的同步信号块的传输方法,其中,所述第一时域资源位于所述第二时域资源之前。
  10. 根据权利要求6至8任一项所述的同步信号块的传输方法,其中,所述第二时域资源位于所述第一时域资源之前。
  11. 一种同步信号块的传输方法,应用于用户设备侧,其中,所述同步信号块包括NR-PSS、NR-SSS和NR-PBCH信号,所述方法包括以下步骤:
    通过第一频域资源接收NR-PSS,通过第二频域资源接收NR-SSS,通过第三频域资源接收NR-PBCH信号,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件。
  12. 根据权利要求11所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源的中心频点、所述第二频域资源的中心频点和所述第三频域资源的中心频点对齐。
  13. 根据权利要求11所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在高频对齐。
  14. 根据权利要求11所述的同步信号块的传输方法,其中,所述第一频 域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在低频对齐。
  15. 根据权利要求11所述的同步信号块的传输方法,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源与所述第三频域资源在低频对齐,所述第二频域资源与所述第三频域资源在高频对齐;
    或者,
    所述第二频域资源与所述第三频域资源在低频对齐,所述第一频域资源与所述第三频域资源在高频对齐。
  16. 根据权利要求11所述的同步信号块的传输方法,其中,所述通过第一频域资源接收NR-PSS,通过第二频域资源接收NR-SSS,通过第三频域资源接收NR-PBCH信号的步骤,包括:
    通过第一频域资源,在第一时域资源上接收NR-PSS;通过第二频域资源,在第二时域资源上接收NR-SSS;通过第三频域资源,在第三时域资源上接收NR-PBCH信号。
  17. 根据权利要求16所述的同步信号块的传输方法,其中,所述第三时域资源为连续的时域符号。
  18. 根据权利要求16所述的同步信号块的传输方法,其中,所述第三时域资源为非连续的时域符号。
  19. 根据权利要求16至18任一项所述的同步信号块的传输方法,其中,所述第一时域资源位于所述第二时域资源之前。
  20. 根据权利要求16至18任一项所述的同步信号块的传输方法,其中,所述第二时域资源位于所述第一时域资源之前。
  21. 一种网络设备,包括:
    发送模块,用于通过第一频域资源发送同步信号块中的新空口主同步信号NR-PSS,通过第二频域资源发送同步信号块中的新空口辅同步信号NR-SSS,通过第三频域资源发送同步信号块中的新空口物理广播信道 NR-PBCH信号,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件。
  22. 根据权利要求21所述的网络设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源的中心频点、所述第二频域资源的中心频点和所述第三频域资源的中心频点对齐。
  23. 根据权利要求21所述的网络设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在高频对齐。
  24. 根据权利要求21所述的网络设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在低频对齐。
  25. 根据权利要求21所述的网络设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源与所述第三频域资源在低频对齐,所述第二频域资源与所述第三频域资源在高频对齐;
    或者,
    所述第二频域资源与所述第三频域资源在低频对齐,所述第一频域资源与所述第三频域资源在高频对齐。
  26. 根据权利要求21所述的网络设备,其中,所述发送模块包括:
    第一发送子模块,用于通过第一频域资源,在第一时域资源上发送NR-PSS;
    第二发送子模块,用于通过第二频域资源,在第二时域资源上发送NR-SSS;
    第三发送子模块,用于通过第三频域资源,在第三时域资源上发送NR-PBCH信号。
  27. 根据权利要求26所述的网络设备,其中,所述第三时域资源为连续的时域符号。
  28. 根据权利要求26所述的网络设备,其中,所述第三时域资源为非连 续的时域符号。
  29. 根据权利要求26至28任一项所述的网络设备,其中,所述第一时域资源位于所述第二时域资源之前。
  30. 根据权利要求26至28任一项所述的网络设备,其中,所述第二时域资源位于所述第一时域资源之前。
  31. 一种用户设备,包括:
    接收模块,用于通过第一频域资源接收同步信号块中的NR-PSS,通过第二频域资源接收同步信号块中的NR-SSS,通过第三频域资源接收同步信号块中的NR-PBCH信号,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件。
  32. 根据权利要求31所述的用户设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源的中心频点、所述第二频域资源的中心频点和所述第三频域资源的中心频点对齐。
  33. 根据权利要求31所述的用户设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在高频对齐。
  34. 根据权利要求31所述的用户设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源、所述第二频域资源和所述第三频域资源在低频对齐。
  35. 根据权利要求31所述的用户设备,其中,所述第一频域资源、所述第二频域资源和所述第三频域资源之间的位置关系满足预设条件,包括:
    所述第一频域资源与所述第三频域资源在低频对齐,所述第二频域资源与所述第三频域资源在高频对齐;
    或者,
    所述第二频域资源与所述第三频域资源在低频对齐,所述第一频域资源与所述第三频域资源在高频对齐。
  36. 根据权利要求31所述的用户设备,其中,所述接收模块包括:
    第一接收子模块,用于通过第一频域资源,在第一时域资源上接收 NR-PSS;
    第二接收子模块,用于通过第二频域资源,在第二时域资源上接收NR-SSS;
    第三接收子模块,用于通过第三频域资源,在第三时域资源上接收NR-PBCH信号。
  37. 根据权利要求36所述的用户设备,其中,所述第三时域资源为连续的时域符号。
  38. 根据权利要求36所述的用户设备,其中,所述第三时域资源为非连续的时域符号。
  39. 根据权利要求36至38任一项所述的用户设备,其中,所述第一时域资源位于所述第二时域资源之前。
  40. 根据权利要求36至38任一项所述的用户设备,其中,所述第二时域资源位于所述第一时域资源之前。
  41. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至10中任一项所述的同步信号块的传输方法的步骤。
  42. 一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求11至20中任一项所述的同步信号块的传输方法的步骤。
  43. 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时,实现如权利要求1至10中任一项所述的同步信号块的传输方法的步骤,和/或实现如权利要求11至20中任一项所述的同步信号块的传输方法的步骤。
PCT/CN2018/084813 2017-04-28 2018-04-27 同步信号块的传输方法、网络设备及用户设备 WO2018196848A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/608,961 US11343782B2 (en) 2017-04-28 2018-04-27 Method of transmitting synchronized signal block, network equipment, and user equipment
EP18790501.3A EP3618528B1 (en) 2017-04-28 2018-04-27 Method for transmitting synchronizing signal block, network device and user equipment
ES18790501T ES2991959T3 (es) 2017-04-28 2018-04-27 Método para transmitir un bloque de señal sincronizada, dispositivo de red y equipo de usuario

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710296851.9A CN108809561B (zh) 2017-04-28 2017-04-28 一种同步信号块的传输方法、网络设备及用户设备
CN201710296851.9 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018196848A1 true WO2018196848A1 (zh) 2018-11-01

Family

ID=63918079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084813 WO2018196848A1 (zh) 2017-04-28 2018-04-27 同步信号块的传输方法、网络设备及用户设备

Country Status (5)

Country Link
US (1) US11343782B2 (zh)
EP (1) EP3618528B1 (zh)
CN (1) CN108809561B (zh)
ES (1) ES2991959T3 (zh)
WO (1) WO2018196848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261258A (zh) * 2019-01-10 2021-08-13 华为技术有限公司 传输信号的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175433A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Enhanced cell search and system information acquisition
JP7039571B2 (ja) * 2017-04-28 2022-03-22 株式会社Nttドコモ 端末
CN111465092B (zh) * 2019-01-18 2022-03-29 华为技术有限公司 一种通信方法及装置
CN111526578B (zh) * 2019-02-03 2021-06-22 华为技术有限公司 一种传输同步信号的方法及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096329A (zh) * 2011-11-02 2013-05-08 中兴通讯股份有限公司 一种载波配置方法及系统
CN104104636A (zh) * 2013-04-02 2014-10-15 上海贝尔股份有限公司 为基于dm-rs解调的pbch配置物理资源的方法
US20150023263A1 (en) * 2011-12-15 2015-01-22 Lg Electronics Inc. Method for reducing interference of user equipment in wireless access system, and the user equipment for the same
WO2017039373A1 (en) * 2015-09-02 2017-03-09 Lg Electronics Inc. Method and apparatus for indicating center frequency offset for narrowband ue in wireless communication system
CN106507439A (zh) * 2016-10-28 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507354B (zh) * 2016-01-11 2024-08-02 苹果公司 用于IoT控制信道的装置和方法
US10512061B2 (en) * 2016-04-28 2019-12-17 Qualcomm Incorporated Bandwidth agnostic tone mapping
US10512046B2 (en) * 2016-06-09 2019-12-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal and synchronization
KR102329949B1 (ko) * 2016-07-05 2021-11-23 한국전자통신연구원 뉴머롤러지를 이용한 전송 방법 및 장치, 그리고 뉴머롤러지를 이용한 스케줄링 방법 및 장치
US10362610B2 (en) * 2016-09-19 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for mapping initial access signals in wireless systems
US10425264B2 (en) * 2017-01-09 2019-09-24 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
PL3577828T3 (pl) * 2017-02-03 2023-03-13 Idac Holdings, Inc. Transmisja i demodulacja kanału rozgłoszeniowego
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
RU2762242C2 (ru) * 2017-05-04 2021-12-16 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для передачи и приема восходящей линии связи в системе беспроводной связи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096329A (zh) * 2011-11-02 2013-05-08 中兴通讯股份有限公司 一种载波配置方法及系统
US20150023263A1 (en) * 2011-12-15 2015-01-22 Lg Electronics Inc. Method for reducing interference of user equipment in wireless access system, and the user equipment for the same
CN104104636A (zh) * 2013-04-02 2014-10-15 上海贝尔股份有限公司 为基于dm-rs解调的pbch配置物理资源的方法
WO2017039373A1 (en) * 2015-09-02 2017-03-09 Lg Electronics Inc. Method and apparatus for indicating center frequency offset for narrowband ue in wireless communication system
CN106507439A (zh) * 2016-10-28 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618528A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261258A (zh) * 2019-01-10 2021-08-13 华为技术有限公司 传输信号的方法和装置

Also Published As

Publication number Publication date
CN108809561A (zh) 2018-11-13
US20200196260A1 (en) 2020-06-18
EP3618528B1 (en) 2024-10-09
ES2991959T3 (es) 2024-12-05
US11343782B2 (en) 2022-05-24
EP3618528A4 (en) 2020-04-01
CN108809561B (zh) 2020-11-03
EP3618528A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2018196848A1 (zh) 同步信号块的传输方法、网络设备及用户设备
US11973620B2 (en) Downlink control channel detection method, terminal and base station
WO2018153206A1 (zh) 一种资源分配指示方法、基站及终端
WO2018082543A1 (zh) 下行控制信道的检测方法、指示方法、终端及网络侧设备
CN109842917B (zh) 系统信息块的传输方法和用户终端
CN109286968B (zh) 一种盲检测参数获取方法、相关设备及系统
KR102750975B1 (ko) 확정 방법, 단말 및 네트워크 기기
CN113163491B (zh) 频域资源处理方法、频域资源配置方法及相关设备
CN113037449B (zh) 信道资源确定方法、信道检测方法及终端
WO2018103577A1 (zh) 一种终端调度方法、终端及基站
WO2020088387A1 (zh) 上行传输方法、用户设备和网络侧设备
CN110636538A (zh) 波束测量方法、网络侧设备、终端设备及存储介质
CN108243501A (zh) 一种传输资源的调度方法、网络设备及终端设备
CN108667572A (zh) 一种业务数据传输方法、基站及终端
CN108809558B (zh) 一种同步信号块的传输方法、网络设备及用户设备
US11910235B2 (en) Data processing method, information configuration method, terminal, and network device
WO2018113721A1 (zh) 一种参考信号配置方法、网络侧设备和用户设备
WO2018192522A1 (zh) 一种信息传输方法、终端及网络侧设备
JP7367035B2 (ja) ランダムアクセス伝送方法及び端末
KR102589486B1 (ko) 업링크 전송 방법 및 단말
KR102390301B1 (ko) 통신 방법 및 관련 기기
WO2018201988A1 (zh) 系统信息传输方法、终端及基站
CN112769528B (zh) 上行探测导频发送方法、接收方法及相关设备
CN108811103A (zh) 一种系统信息传输方法、基站及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018790501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018790501

Country of ref document: EP

Effective date: 20191128

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载