WO2018196429A1 - 分布式天线系统的接入装置 - Google Patents
分布式天线系统的接入装置 Download PDFInfo
- Publication number
- WO2018196429A1 WO2018196429A1 PCT/CN2017/119481 CN2017119481W WO2018196429A1 WO 2018196429 A1 WO2018196429 A1 WO 2018196429A1 CN 2017119481 W CN2017119481 W CN 2017119481W WO 2018196429 A1 WO2018196429 A1 WO 2018196429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- attenuator
- antenna system
- duplexer
- distributed antenna
- access device
- Prior art date
Links
- 238000012806 monitoring device Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 description 9
- 230000002238 attenuated effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to an access device for a distributed antenna system.
- nonlinear products of the transmission link may fall into the receiving link, thereby interfering with the sensitivity of the receiving link and the demodulation index.
- DAS Distributed Antenna System
- the base station source access end of the distributed antenna system lower passive intermodulation products are required to meet the RF interface requirements.
- POI Point of Interface
- the most common method is to directly use the low intermodulation product Point of Interface (POI) to achieve power matching, or directly use the low intermodulation product duplexer to achieve signal power matching.
- POI Point of Interface
- the design and complexity of the various components of such equipment is high.
- An access device for a distributed antenna system comprising:
- a first attenuator a duplexer, a second attenuator and a third attenuator;
- An input end of the first attenuator is connected to a source device, an output end of the first attenuator is connected to a combined port of the duplexer, and a receiving port of the duplexer passes the
- the second attenuator is connected to the receiving end of the distributed antenna system, and the transmitting port of the duplexer is connected to the transmitting end of the distributed antenna system through the third attenuator;
- the first attenuator attenuates the first downlink signal transmitted by the source device, and outputs a first attenuation signal to the duplexer, where the duplexer filters the first attenuation signal and outputs the first downlink signal. a first filtered signal to the third attenuator, the third attenuator attenuating the first filtered signal, and outputting a second downlink signal to a transmitting end of the distributed antenna system;
- the second attenuator attenuates the first uplink signal received by the distributed antenna system, and outputs a second attenuation signal to the duplexer, and the duplexer filters the second attenuation signal and outputs the second attenuation signal.
- the second filtered signal is sent to the first attenuator, and the first attenuator attenuates the second filtered signal to output a second uplink signal to the source device.
- the first downlink signal transmitted by the source device is attenuated by the first attenuator, sent to the third attenuator via the duplexer, and then attenuated by the third attenuator and output to the distribution.
- the transmitting end of the antenna system the first uplink signal of the distributed antenna system is attenuated by the second attenuator, sent to the first attenuator via the duplexer, and then attenuated by the first attenuator and output to the source device. While effectively ensuring low intermodulation products, the technical difficulty and indicators of key components are reduced, and the hardware cost of the system is greatly reduced.
- FIG. 1 is a schematic structural diagram of an access device of a distributed antenna system according to an embodiment
- FIG. 2 is a schematic structural diagram of an access device of a distributed antenna system according to an embodiment.
- the present invention provides an access device for a distributed antenna system, which may include:
- a first attenuator a duplexer, a second attenuator and a third attenuator;
- An input end of the first attenuator is connected to a source device, an output end of the first attenuator is connected to a combined port of the duplexer, and a receiving port of the duplexer passes the
- the second attenuator is connected to the receiving end of the distributed antenna system, and the transmitting port of the duplexer is connected to the transmitting end of the distributed antenna system through the third attenuator;
- the first attenuator attenuates the first downlink signal transmitted by the source device, and outputs a first attenuation signal to the duplexer, where the duplexer filters the first attenuation signal and outputs the first downlink signal. a first filtered signal to the third attenuator, the third attenuator attenuating the first filtered signal, and outputting a second downlink signal to a transmitting end of the distributed antenna system;
- the second attenuator attenuates the first uplink signal received by the distributed antenna system, and outputs a second attenuation signal to the duplexer, and the duplexer filters the second attenuation signal and outputs the second attenuation signal.
- the second filtered signal is sent to the first attenuator, and the first attenuator attenuates the second filtered signal to output a second uplink signal to the source device.
- the source device of this embodiment may be, for example, a base station.
- the first attenuator of this embodiment may be a fixed attenuator.
- the first attenuator can be implemented based on a coaxial cable.
- the second attenuator of this embodiment is an uplink ATT (Attenuator) module, and may be an electrical attenuator.
- the second attenuator may include a radio frequency switch and a fixed attenuator; the fixed attenuator is connected to the duplexer through the radio frequency switch.
- the third attenuator of this embodiment is used as a downlink ATT module, and may also be an electrical attenuator.
- the third attenuator can be implemented with an integrated attenuator chip.
- the duplexer of this embodiment may be an air dielectric cavity duplexer or a large-sized dielectric duplexer.
- the first attenuator can be connected to the source device through a transceiver port (TX/RX).
- TX/RX transceiver port
- the second attenuator can be coupled to the receiving end of the distributed antenna system via a receive port (RX).
- RX receive port
- the third attenuator can be coupled to the transmitting end of the distributed antenna system via a transmit port (TX).
- the access device of the distributed antenna system may further include a connection with the control end of the second attenuator and the control end of the third attenuator, respectively.
- the monitoring device monitors the power value of the third attenuator output and the power value of the second attenuator input, and adjusts the third attenuator according to the power value of the third attenuator output Attenuating the value and adjusting the attenuation value of the second attenuator according to the power value of the second attenuator input.
- the monitoring device may be connected to a host provided in the control center; the monitoring device sends the power value of the second attenuator input end and the power value of the third attenuator output to the host, and Receiving an attenuation control signal returned by the host, and adjusting an attenuation value of the second attenuator and/or the third attenuator according to the attenuation control signal.
- remote monitoring can be realized, which further facilitates the user to adjust the attenuation values of the second attenuator and the third attenuator.
- the present invention has the following advantages and beneficial effects:
- Duplexer Since the high-power signal of the base station downlink is attenuated by the fixed attenuator, the power capacity of the duplexer is lower than the TX/RX port by a fixed attenuation value, and the passive intermodulation products of the duplexer follow As the input power decreases, the intermodulation products go low; while the intermodulation products produced by the duplexer return to the TX/RX port, they also pass a fixed attenuation value. Therefore, the main signal power value of the duplexer in the link is lower than the TX/RX port by a fixed attenuation value, and the passive intermodulation products of the duplexer port are reduced to the TX/RX port, which also reduces the fixed attenuation value.
- PIM Passive Inter-Modulation
- the software can control the attenuator method to realize signal control, thereby realizing remote control.
- the design requirements of the PIM of each device component in the device are greatly reduced.
- the 1800MHz mobile communication frequency band is taken as an example.
- the fixed attenuator of the low intermodulation product is implemented by a 50 ohm 18 meter RG402 coaxial cable or a 50 ohm 10.5 meter RG405 coaxial cable, and the duplexer uses a conventional air medium.
- the cavity duplexer or the large-size dielectric duplexer, the downlink ATT module is implemented by means of an RF switch and a fixed attenuator, and the uplink ATT module is implemented by an integrated ATT chip.
- the method of use in the present invention is implemented, but not limited to, the method in the examples. Refer to Figure 2. For the sake of narration, the parameters of the relevant components will be listed:
- the attenuation value of the fixed attenuator of the low intermodulation product is 10 dB, and the passive intermodulation is 165 dBc;
- the passive intermodulation product after calculating the TX/RX port is approximately 163.8 dBc.
- the parameters of the respective components are relatively easy to implement with respect to the current state of the art, and the cost is low.
- only a duplexer with a passive intermodulation of 150 dBc is needed, so that the passive intermodulation products can achieve a performance of 163.8 dBc.
- a 163.8 dBc duplexer must be used. It can be seen that in order to achieve the same technical effect as the present application, the design of the duplexer in the prior art is too difficult and the yield is low, resulting in high cost.
- the present application can achieve the same passive intermodulation performance as the prior art of devices with higher performance and design difficulty by using devices with lower performance and design difficulty. It can be seen that the technical solution of the embodiment effectively reduces the design difficulty and performance index requirements of the component, which is very advantageous for reducing complexity and saving cost.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
本发明涉及一种分布式天线系统的接入装置,包括第一衰减器,双工器,第二衰减器和第三衰减器;所述第一衰减器的输入端与信源设备相连接,所述第一衰减器的输出端与所述双工器的合路端口相连接,所述双工器的接收端口通过所述第二衰减器连接分布式天线系统的接收端,所述双工器的发射端口通过所述第三衰减器连接分布式天线系统的发射端。所述接入装置在有效保证低互调产物的同时,降低了关键部件的技术难度和指标,极大地降低了系统的硬件成本。
Description
本发明涉及无线通信技术领域,特别是涉及一种分布式天线系统的接入装置。
随着移动通信网络建设和客户应用需求的快速发展,移动通信设备也在高速地发展,设备网络对于多运营商的共享是目前网络建设的大趋势,因此网络中设备的性能较为关键,在射频发射和接收系统中,无源互调是大家关注的一个焦点。
在FDD(Frequency Divided Dual,频分双工)通信设备或一个FDD通信系统中,发射链路的非线性产物可能会落到接收链路中,从而干扰接收链路的灵敏度以及解调指标。目前分布式天线系统(Distributed Antenna System,DAS)在通信延伸覆盖中应用较为广泛,对于分布式天线系统的基站信源接入端来说,要求更低的无源互调产物来满足射频接口要求。目前最常用的方法是直接使用低互调产物多系统接入平台(Point of Interface,POI)实现功率匹配,或直接使用低互调产物双工器实现信号的功率匹配。然而,这类设备各个部件的设计复杂度和难度较高。
发明内容
基于此,有必要针对设计复杂度和难度较高的问题,提供一种分布式天线系统的接入装置。
一种分布式天线系统的接入装置,包括:
第一衰减器,双工器,第二衰减器和第三衰减器;
所述第一衰减器的输入端与信源设备相连接,所述第一衰减器的输出端与所述双工器的合路端口相连接,所述双工器的接收端口通过所述第二衰减器连接分布式天线系统的接收端,所述双工器的发射端口通过所述第三衰减器连接 分布式天线系统的发射端;
所述第一衰减器对所述信源设备发射的第一下行信号进行衰减后输出第一衰减信号至所述双工器,所述双工器对所述第一衰减信号进行滤波后输出第一滤波信号至所述第三衰减器,所述第三衰减器对所述第一滤波信号进行衰减后输出第二下行信号至所述分布式天线系统的发射端;
所述第二衰减器对所述分布式天线系统接收的第一上行信号进行衰减后输出第二衰减信号至所述双工器,所述双工器对所述第二衰减信号进行滤波后输出第二滤波信号至所述第一衰减器,所述第一衰减器对所述第二滤波信号进行衰减后输出第二上行信号至所述信源设备。
上述分布式天线系统的接入装置,信源设备发射的第一下行信号经第一衰减器衰减后,经双工器发送至第三衰减器,再经第三衰减器衰减后输出至分布式天线系统的发射端,分布式天线系统的第一上行信号经第二衰减器衰减后,经双工器发送至第一衰减器,再经第一衰减器衰减后输出至信源设备,在有效保证低互调产物的同时,降低了关键部件的技术难度和指标,极大地降低了系统的硬件成本。
图1为一个实施例的分布式天线系统的接入装置的结构示意图;
图2为一个具体实施例的分布式天线系统的接入装置的结构示意图。
下面结合附图对本发明的技术方案进行说明。
如图1所示,本发明提供一种分布式天线系统的接入装置,可包括:
第一衰减器,双工器,第二衰减器和第三衰减器;
所述第一衰减器的输入端与信源设备相连接,所述第一衰减器的输出端与所述双工器的合路端口相连接,所述双工器的接收端口通过所述第二衰减器连接分布式天线系统的接收端,所述双工器的发射端口通过所述第三衰减器连接分布式天线系统的发射端;
所述第一衰减器对所述信源设备发射的第一下行信号进行衰减后输出第一衰减信号至所述双工器,所述双工器对所述第一衰减信号进行滤波后输出第一滤波信号至所述第三衰减器,所述第三衰减器对所述第一滤波信号进行衰减后输出第二下行信号至所述分布式天线系统的发射端;
所述第二衰减器对所述分布式天线系统接收的第一上行信号进行衰减后输出第二衰减信号至所述双工器,所述双工器对所述第二衰减信号进行滤波后输出第二滤波信号至所述第一衰减器,所述第一衰减器对所述第二滤波信号进行衰减后输出第二上行信号至所述信源设备。
本实施例的信源设备可以是,例如,基站。本实施例的第一衰减器可以是固定衰减器。具体地,第一衰减器可基于同轴电缆实现。本实施例的第二衰减器作为上行ATT(Attenuator,衰减器)模块,可以是电调衰减器。具体地,所述第二衰减器可包括射频开关和固定衰减器;所述固定衰减器通过所述射频开关连接所述双工器。本实施例的第三衰减器作为下行ATT模块,也可以是电调衰减器。具体地,第三衰减器可采用集成的衰减器芯片实现。本实施例的双工器可以是空气介质腔体双工器或者大尺寸的介质双工器。
在一个具体实施例中,所述第一衰减器可通过收发端口(TX/RX)连接信源设备。在另一个具体实施例中,所述第二衰减器可通过接收端口(RX)连接分布式天线系统的接收端。在另一个具体实施例中,所述第三衰减器可通过发射端口(TX)连接分布式天线系统的发射端。
为了便于调整第二衰减器和第三衰减器的衰减值,所述分布式天线系统的接入装置还可包括分别与所述第二衰减器的控制端和第三衰减器的控制端相连接的监控装置;所述监控装置对所述第三衰减器输出端的功率值和第二衰减器输入端的功率值进行监控,根据所述第三衰减器输出端的功率值调整所述第三衰减器的衰减值,并根据所述第二衰减器输入端的功率值调整所述第二衰减器的衰减值。
可选地,所述监控装置可与设于控制中心的主机相连接;所述监控装置将所述第二衰减器输入端的功率值和第三衰减器输出端的功率值发送至所述主机,并接收所述主机返回的衰减控制信号,根据所述衰减控制信号调整所述第 二衰减器和/或所述第三衰减器的衰减值。通过这种方式,可以实现远程监控,进一步方便了用户对第二衰减器和第三衰减器的衰减值进行调整。
与现有技术相比,本发明具备如下优点和有益效果:
(1)双工器:由于基站下行的大功率信号通过固定衰减器衰减,所以双工器承受的功率容量较TX/RX端口低一个固定衰减值,双工器的无源互调产物随着输入功率的下降,互调产物变低;而双工器产生的互调产物返回到TX/RX端口时,也经过一个固定衰减值。因此双工器在链路中的主信号功率值比TX/RX端口降低了固定衰减值,而双工器合路端口的无源互调产物折算到TX/RX端口也降低了固定衰减值。这样双工器的PIM(Passive Inter-Modulation,无源互调)设计难度将大大降低了。
(2)下行ATT模块:由于下行ATT模块的互调产物会落到上行频段,它反射到TX/RX端口,需经过双工器TX滤波器的抑制和固定衰减器的衰减,因此折算到TX/RX端口的无源互调贡献比例大大减小。
(3)由于下行ATT模块PIM指标的难度降低,因此可以用软件控制衰减器的方法实现信号控制,从而实现远程控制。
综上,在本发明的装置中,通过改善信号的链路结构,大大降低了装置中各个器部件对PIM的设计要求。
下面结合实施例及附图对本发明作进一步详细说明,但本发明的实施方式不限于此列举的频段,对于不同频段的装置,只需调整装置中各个部件的参数即可。
本实施例中以1800MHz移动通信频段为例,低互调产物的固定衰减器采用50欧姆的18米RG402同轴电缆或50欧姆的10.5米RG405同轴电缆实现,双工器采用常规的空气介质腔体双工器或大尺寸的介质双工器,下行ATT模块采用射频开关加固定衰减器的方式实现,上行ATT模块采用集成的ATT芯片实现。但在本发明中的使用的方法实现但不限于实例中的方法。参照图2所示。为了叙述,将列举出相关部件的参数:
(1)低互调产物的固定衰减器的衰减值为10dB,无源互调为165dBc;
(2)双工器TX端口对RX频段的抑制为80dBc,双工器合路端口的无源 互调为150dBc(36dBm/CH),双工器的差损为1dB;
(3)下行ATT模块的无源互调为90dBc;
经过计算TX/RX端口的无源互调产物大约为163.8dBc。在上述实施例中,各个部件的参数相对于目前的技术水平,较易实现,同时成本较低。本实施例仅需采用无源互调为150dBc的双工器,即可使无源互调产物达到163.8dBc的性能。而现有技术如果要使无源互调产物达到163.8dBc的性能,则必须使用163.8dBc的双工器。可见,要达到与本申请同等的技术效果,现有技术中双工器的设计难度太大,成品率低,从而导致成本高。也就是说,本申请通过采用较低性能和设计难度的器件,即可实现与采用较高性能和设计难度的器件的现有技术相同的无源互调性能。可见,本实施例的技术方案有效地降低了元件的设计难度和性能指标要求,这对于降低复杂度,节约成本是非常有利的。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种分布式天线系统的接入装置,其特征在于,包括:第一衰减器,双工器,第二衰减器和第三衰减器;所述第一衰减器的输入端与信源设备相连接,所述第一衰减器的输出端与所述双工器的合路端口相连接,所述双工器的接收端口通过所述第二衰减器连接分布式天线系统的接收端,所述双工器的发射端口通过所述第三衰减器连接分布式天线系统的发射端;所述第一衰减器对所述信源设备发射的第一下行信号进行衰减后输出第一衰减信号至所述双工器,所述双工器对所述第一衰减信号进行滤波后输出第一滤波信号至所述第三衰减器,所述第三衰减器对所述第一滤波信号进行衰减后输出第二下行信号至所述分布式天线系统的发射端;所述第二衰减器对所述分布式天线系统接收的第一上行信号进行衰减后输出第二衰减信号至所述双工器,所述双工器对所述第二衰减信号进行滤波后输出第二滤波信号至所述第一衰减器,所述第一衰减器对所述第二滤波信号进行衰减后输出第二上行信号至所述信源设备。
- 根据权利要求1所述的分布式天线系统的接入装置,其特征在于,所述第一衰减器为固定衰减器。
- 根据权利要求2所述的分布式天线系统的接入装置,其特征在于,所述第二衰减器为电调衰减器;和/或所述第三衰减器为电调衰减器。
- 根据权利要求1所述的分布式天线系统的接入装置,其特征在于,还包括:分别与所述第二衰减器的控制端和第三衰减器的控制端相连接的监控装置;所述监控装置对所述第三衰减器输出端的功率值和第二衰减器输入端的功率值进行监控,根据所述第三衰减器输出端的功率值调整所述第三衰减器的衰减值,并根据所述第二衰减器输入端的功率值调整所述第二衰减器的衰减值。
- 根据权利要求4所述的分布式天线系统的接入装置,其特征在于,所述监控装置与设于控制中心的主机相连接;所述监控装置将所述第二衰减器输入端的功率值和第三衰减器输出端的功率值发送至所述主机,并接收所述主机返回的衰减控制信号,根据所述衰减控制信号调整所述第二衰减器和/或所述第三衰减器的衰减值。
- 根据权利要求1至5任意一项所述的分布式天线系统的接入装置,其特征在于,所述第一衰减器通过收发端口连接所述信源设备;所述第二衰减器通过接收端口连接所述分布式天线系统的接收端;和/或所述第三衰减器通过发射端口连接所述分布式天线系统的发射端。
- 根据权利要求1至5任意一项所述的分布式天线系统的接入装置,其特征在于,所述第二衰减器包括:射频开关和固定衰减器;所述固定衰减器通过所述射频开关连接所述双工器。
- 根据权利要求1至5任意一项所述的分布式天线系统的接入装置,其特征在于,所述第三衰减器采用集成的衰减器芯片实现。
- 根据权利要求1至5任意一项所述的分布式天线系统的接入装置,其特征在于,所述第一衰减器基于同轴电缆实现。
- 根据权利要求1至5任意一项所述的分布式天线系统的接入装置,其特征在于,所述双工器为空气介质腔体双工器;或者所述双工器为大尺寸的介质双工器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710270926.6 | 2017-04-24 | ||
CN201710270926.6A CN106941364A (zh) | 2017-04-24 | 2017-04-24 | 分布式天线系统的接入装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196429A1 true WO2018196429A1 (zh) | 2018-11-01 |
Family
ID=59463156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/119481 WO2018196429A1 (zh) | 2017-04-24 | 2017-12-28 | 分布式天线系统的接入装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106941364A (zh) |
WO (1) | WO2018196429A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106941364A (zh) * | 2017-04-24 | 2017-07-11 | 京信通信技术(广州)有限公司 | 分布式天线系统的接入装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030077704A (ko) * | 2002-03-26 | 2003-10-04 | 주식회사 현대시스콤 | 광대역-코드분할다중접속 기지국의 원격 안테나인터페이스 장치 |
CN102325332A (zh) * | 2011-07-25 | 2012-01-18 | 芯通科技(成都)有限公司 | 一种多载波基站延伸覆盖装置系统 |
CN202798729U (zh) * | 2012-10-17 | 2013-03-13 | 中国移动通信集团河南有限公司 | 基站与数字光纤直放站的连接装置 |
CN103857026A (zh) * | 2014-02-27 | 2014-06-11 | 京信通信系统(广州)有限公司 | 下行信号处理装置及方法、信号处理系统及信号处理方法 |
US20170041125A1 (en) * | 2015-08-03 | 2017-02-09 | Advanced Rf Technologies, Inc. | Distributed antenna system interface tray |
KR20170018559A (ko) * | 2015-08-10 | 2017-02-20 | 주식회사 에이디알에프코리아 | 멀티밴드, 멀티캐리어를 지원하는 기지국 인터페이스 장치 |
CN106941364A (zh) * | 2017-04-24 | 2017-07-11 | 京信通信技术(广州)有限公司 | 分布式天线系统的接入装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103187985B (zh) * | 2011-12-27 | 2015-05-27 | 中国移动通信集团公司 | 一种通信设备和通信系统 |
-
2017
- 2017-04-24 CN CN201710270926.6A patent/CN106941364A/zh active Pending
- 2017-12-28 WO PCT/CN2017/119481 patent/WO2018196429A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030077704A (ko) * | 2002-03-26 | 2003-10-04 | 주식회사 현대시스콤 | 광대역-코드분할다중접속 기지국의 원격 안테나인터페이스 장치 |
CN102325332A (zh) * | 2011-07-25 | 2012-01-18 | 芯通科技(成都)有限公司 | 一种多载波基站延伸覆盖装置系统 |
CN202798729U (zh) * | 2012-10-17 | 2013-03-13 | 中国移动通信集团河南有限公司 | 基站与数字光纤直放站的连接装置 |
CN103857026A (zh) * | 2014-02-27 | 2014-06-11 | 京信通信系统(广州)有限公司 | 下行信号处理装置及方法、信号处理系统及信号处理方法 |
US20170041125A1 (en) * | 2015-08-03 | 2017-02-09 | Advanced Rf Technologies, Inc. | Distributed antenna system interface tray |
KR20170018559A (ko) * | 2015-08-10 | 2017-02-20 | 주식회사 에이디알에프코리아 | 멀티밴드, 멀티캐리어를 지원하는 기지국 인터페이스 장치 |
CN106941364A (zh) * | 2017-04-24 | 2017-07-11 | 京信通信技术(广州)有限公司 | 分布式天线系统的接入装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106941364A (zh) | 2017-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10944378B2 (en) | Duplexer | |
TWI651940B (zh) | 干擾抑制系統及方法 | |
CN106209149B (zh) | 一种射频电路及移动终端 | |
US9559746B2 (en) | Systems and methods for multi-channel transceiver communications | |
US20120249263A1 (en) | Same-band combiner using dual-bandpass channel filters | |
CN109547038B (zh) | 一种带间上行载波聚合射频电路、天线装置和电子设备 | |
TW201803296A (zh) | 一種多業務數位光分佈系統及多業務容量調度方法 | |
US20200322066A1 (en) | Double-antenna radio frequency power detection circuit and apparatus, and mobile terminal | |
US10374687B2 (en) | Base station signal matching device and relay device including the same | |
CN102833010B (zh) | 一种移动通信系统基站信号的无源互调改善方法 | |
CN109756319B (zh) | 一种载波聚合装置及终端设备 | |
CN111726138B (zh) | 射频电路和电子设备 | |
WO2020220196A1 (zh) | 控制谐波干扰的方法和装置 | |
WO2018196429A1 (zh) | 分布式天线系统的接入装置 | |
CN210111991U (zh) | 一种零中频射频收发系统 | |
JP7367209B2 (ja) | コンバイナ | |
US10554246B2 (en) | Method and apparatus for broadband high-isolation circulator for simultaneous transmit and receive systems | |
WO2020113928A1 (zh) | 自适应抵消无源互调信号的装置及其方法 | |
CN110677168A (zh) | 5g终端信号收发装置、方法以及终端 | |
KR100340200B1 (ko) | 광중계기용 결합 및 분배 장치 | |
CN203801013U (zh) | 微波双平衡上变频混频器 | |
CN108400789A (zh) | 多系统合路平台及提高多系统合路平台互调的方法 | |
CN206294171U (zh) | 一种超宽带高性能频率扩展电路 | |
CN115333567B (zh) | 一种无人机目标模拟器变频及光纤模块 | |
CN203536544U (zh) | 一种应用于das中的高隔离度介质双工器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17908082 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/03/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17908082 Country of ref document: EP Kind code of ref document: A1 |