WO2018196185A1 - 一种激光喷丸变刚度轻量化方法 - Google Patents
一种激光喷丸变刚度轻量化方法 Download PDFInfo
- Publication number
- WO2018196185A1 WO2018196185A1 PCT/CN2017/094099 CN2017094099W WO2018196185A1 WO 2018196185 A1 WO2018196185 A1 WO 2018196185A1 CN 2017094099 W CN2017094099 W CN 2017094099W WO 2018196185 A1 WO2018196185 A1 WO 2018196185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- shot peening
- laser shot
- design
- rigidity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000013461 design Methods 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 37
- 238000005457 optimization Methods 0.000 claims abstract description 30
- 230000006872 improvement Effects 0.000 claims abstract description 20
- 238000005728 strengthening Methods 0.000 claims abstract description 17
- 230000003068 static effect Effects 0.000 claims abstract description 6
- 238000005480 shot peening Methods 0.000 claims description 57
- 238000004458 analytical method Methods 0.000 claims description 14
- 229910000838 Al alloy Inorganic materials 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 10
- 238000004088 simulation Methods 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 238000013178 mathematical model Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 8
- 239000013585 weight reducing agent Substances 0.000 abstract description 6
- 230000007774 longterm Effects 0.000 abstract description 3
- 238000011056 performance test Methods 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 abstract 1
- 230000001737 promoting effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/20—Configuration CAD, e.g. designing by assembling or positioning modules selected from libraries of predesigned modules
Definitions
- the invention relates to the field of aerospace component design, and in particular to a laser shot peening stiffness lightweighting method.
- Optimum Structural Design refers to the best design for a given target (such as the lightest weight, lowest cost, maximum stiffness, etc.) under a given constraint. It was once called the optimal design or structure of the structure.
- the optimal design also referred to as "structural synthesis” relative to “structural analysis”, for example, with the goal of minimizing the weight of the structure, is called the minimum weight design.
- structural weight is related to key parameters such as payload ratio and fuel consumption rate.
- Lightweight design plays a crucial role in structural optimization.
- the structure optimization design is based on the multi-disciplinary comprehensive design concept of numerical simulation technology.
- the advanced algorithms such as genetic algorithm, neural network and parallel computing are used to optimize the size, shape optimization and topology optimization of the components.
- the lightweight design of the structure widely used in the aerospace and aerospace fields mainly includes: 1) a sandwich structure, the basic structural form of which is composed of two thin and strong panels and light weights filled in and firmly connected to the panel.
- the core material is composed;
- the sandwich structure is characterized by high bending rigidity, can improve the effective utilization rate of the material, and can reduce the weight;
- the grid structure also called the material grid structure, the basic configuration is a polygon composed of the reinforcing ribs Grid; characteristics of the grid structure: high self-stability, strong buckling resistance, high specific strength and specific stiffness, easy detection and repair, etc.;
- lattice structure its configuration is the pole of the node and the connecting node
- the unit consists of a three-dimensional periodic structure similar to the truss system;
- the lattice structure is characterized by high self-stability, strong buckling resistance, high bearing capacity and high material utilization efficiency;
- truss structure its configuration is characterized by An axisymmetric
- the current lightweight design of the structure mainly focuses on the theoretical direction of the algorithm such as topology optimization and size optimization of the component space structure, lack of information feedback during the design phase and the manufacturing phase, and the component is lightweight.
- the potential of the design has not been fully developed.
- the object of the present invention is to provide a laser shot peening rigidity lightening method, which can further improve the weight reduction efficiency and improve the weight reduction efficiency of the aerospace integral component which has been lightweight design by using laser shot peening and structural optimization design. , increase the payload.
- the present invention provides the following technical solutions:
- a laser shot peening stiffness lightweighting method includes the following steps:
- Step S1 structurally designing the component to determine the limit size of the component
- Step S2 intercepting the member by using materials of the same grade and heat treatment state, and performing laser shot peening test on the member, and setting multiple sets of strengthening parameters;
- Step S3 performing material property testing on the component to obtain material performance improvement data
- Step S4 determining a topology optimization enhancement region, establishing a mathematical model, setting an objective function and a constraint condition, and using a finite element to solve an area, a quantity, and a layout form of the laser shot peening area;
- Step S5 optimizing the cross-sectional dimension of the member according to the material performance improvement data
- Step S6 evaluating the static/dynamic strength, rigidity, bearing capacity, and reliability index of the component after optimization, and determining whether the design requirement is met. If not, repeating the step S4; if yes, completing the component design.
- the step S1 includes:
- Step S11 establishing a model of the component to obtain a geometric shape of the component
- Step S12 determining an external load and a boundary condition of the component
- Step S13 Perform structural stress and strain analysis according to the geometric shape, external load and boundary conditions of the member, and determine the limit size of the member according to the analysis result.
- the step S11 is specifically: using the CATIA software to establish an aluminum alloy single skin grille integral wall panel model.
- the step S13 is specifically: determining the limit size of each part of the component by theoretical analysis and numerical simulation, and performing structural instability analysis to determine the limit aspect ratio of the grid structure.
- the material performance improvement data includes material tensile strength, Young's modulus, and fatigue life improvement data
- the method further comprises: designing different forms of laser shot peening treatment, and obtaining structural stress characteristics in different forms.
- the laser shot peening treatment method comprises an outer skin full treatment, an area equal interval treatment or an area unequal interval treatment of the aluminum alloy single skin grid integral wall panel.
- step S5 is specifically:
- the objective function and constraints are set to target the minimum mass.
- the constraint condition is that the structural strength and the stiffness variation are less than 0.01%.
- Parallel calculation and numerical simulation are used to optimize the section size of the component.
- the laser shot peening rigidity lightweight method comprises the following steps: structural design of the component to determine the limit size of the component; the component is cut by the same grade and heat treated state, and the component is Perform laser shot peening test, set multiple sets of strengthening parameters; perform material performance test on the components, obtain material performance improvement data; determine topological optimization strengthening area, establish mathematical model, set objective function and constraint conditions, solve by finite element method
- the area, quantity and layout form of the laser shot peening area; the cross-sectional dimensions of the member are optimized according to the material performance improvement data; the static/dynamic strength, rigidity, carrying capacity, reliability index of the member after the optimization is evaluated, And determining whether the design requirements are met, and if not, repeating the step of determining the topology optimization enhancement region; if so, completing the design of the component.
- the laser shot peening stiffness and lightening method utilizes laser shot peening technology to improve parameters such as strength, stiffness and fatigue life of the material, which belongs to the cold processing without heat effect damage, and the component processing reliability is strong; meanwhile, the laser shot peening and structural optimization design are utilized. It can further improve the high-performance and lightweight of the aerospace integral components that have been lightweight, improve the weight-reducing efficiency and increase the payload. At the same time, using the laser shot peening to process the components, the fatigue life of the components can be improved, not only The aerospace monolithic components for single missions are also suitable for the treatment of long-term aviation service components and automotive lightweight components.
- FIG. 1 is a flow chart of a specific embodiment of a laser shot peening stiffness lightening method provided by the present invention
- FIG. 2 is a schematic diagram of a specific embodiment of a laser shot peening stiffness lightening method provided by the present invention
- FIG. 3 is a schematic structural view of an aluminum alloy single skinned grating integral wall panel of a spacecraft according to the present invention
- Figure 4 is a cross-sectional view of the aluminum alloy single skin grille integral wall panel of the spacecraft shown in Figure 3;
- 1-outer skin 2-grid part, 3-laser shot peening layer, 4-origin material layer.
- the core of the present invention is to provide a laser shot peening stiffness lightweighting method for improving the performance of a component, realizing the weight reduction of the component, and thereby improving the overall performance of the spacecraft or the aircraft.
- FIG. 1 is a flow chart of a specific embodiment of a laser shot peening stiffness reduction method according to the present invention
- FIG. 2 is a schematic diagram of a laser shot peening stiffness lightweight method provided by the present invention
- FIG. 3 is a schematic structural view of an aluminum alloy single skinned grating integral wall panel of a spacecraft provided by the present invention
- FIG. 4 is a single wall of an aluminum alloy single skinned grille of the spacecraft shown in FIG. A cross-sectional view of the board.
- the laser shot peening stiffness lightweighting method comprises the following steps:
- Step S1 structural design of the component to determine the limit size of the component
- Step S2 intercepting the member with the same grade and the heat-treated state, and performing laser shot peening test on the member, and setting multiple sets of strengthening parameters;
- Step S3 performing material property testing on the component to obtain material performance improvement data
- Step S4 determining a topology optimization enhancement region, establishing a mathematical model, setting an objective function, and Beam conditions, using finite element to solve the area, quantity and layout of the laser shot peening area;
- Step S5 optimizing the cross-sectional dimension of the component according to the material performance improvement data
- Step S6 evaluating the static/dynamic strength, rigidity, bearing capacity, and reliability index of the optimized component, and determining whether the design requirements are met. If not, repeating step S4; if yes, completing the component design.
- the laser shot peening stiffness and lightening method utilizes laser shot peening technology to improve parameters such as strength, stiffness and fatigue life of the material, which belongs to the cold processing without heat effect damage, and the component processing reliability is strong; meanwhile, the laser shot peening and structural optimization design are utilized. It can further improve the high-performance and lightweight of the aerospace integral components that have been lightweight, improve the weight-reducing efficiency and increase the payload. At the same time, using the laser shot peening to process the components, the fatigue life of the components can be improved, not only The aerospace monolithic components for single missions are also suitable for the treatment of long-term aviation service components and automotive lightweight components.
- the method mainly uses laser shot peening to improve the strength, stiffness and fatigue life of the material, and realizes the regulation of the stiffness gradient of the component and the reduction of the structural weight by optimizing the distributed strengthening treatment area, and is suitable for the weight reduction of the aerospace integral component.
- step S1 structural design of the component to determine the limit size of the component, specifically including:
- Step S11 establishing a model of the component to obtain the geometric shape of the component; more specifically, establishing a model of the component, specifically, the CATIA software is used to establish an aluminum alloy single skin grille integral wall panel model, as shown in FIG.
- the structure 2 is located at the inner circumference of the outer skin 1.
- the CATIA software is a preferred software, and software can be built using other forms of models.
- Step S12 determining the external load and boundary conditions of the component; specifically, the cylindrical integral wall plate mainly plays the role of maintaining the shape and stability of the structure, and the bearing mode is mainly based on the axial load, and the inertia is determined according to the design of the spacecraft design. Force, the boundary condition is axially limited displacement.
- Step S13 performing structural stress and strain analysis according to the geometric shape, external load and boundary conditions of the component, and determining the limit size of the component according to the analysis result.
- step S13 may be: determining the various parts of the component by theoretical analysis and numerical simulation. The ultimate dimensions, and structural instability analysis, determine the ultimate aspect ratio of the grid structure.
- step S2 the material is intercepted by using the same grade and the heat-treated state, and the component is subjected to a laser shot peening test to set a plurality of sets of strengthening parameters;
- the number is finally selected to select the parameters with the best strengthening effect among the multiple sets of strengthening parameters to process the product and improve the processing precision of the product.
- the material performance test is performed on the components after the laser shot peening test to obtain the material performance improvement data; preferably, the material performance improvement data includes data such as tensile strength, Young's modulus, fatigue life improvement data, and the like; After laser shot peening, the Young's modulus, tensile strength and yield strength are increased by 12% on average.
- the stiffness improvement ratio can be calculated from the structural geometry, ie the material performance improvement data, as shown in Figure 4, the laser After shot peening, the laser shot peening layer 4 is firmly bonded to the original material layer 3.
- step S4 determining a topology optimization enhancement region, establishing a mathematical model, setting an objective function and a constraint condition, and using finite element to solve the area, quantity and layout form of the laser shot peening area; specifically, designing different forms of laser shot peening Strengthen the treatment and obtain structural stress characteristics in different forms.
- step S6 is performed: evaluating the static/dynamic strength, rigidity, bearing capacity, reliability index of the optimized component, and judging whether the design requirement is met, and if not, Steps S4 and S5 are repeated to re-optimize the laser shot peening area and cross-sectional dimensions until the design meets the requirements; if so, the design of the components is completed.
- step S6 includes:
- Step S61 evaluating the performance of the component
- Step S62 judging whether the performance of the component is up to standard, if not, repeating step S4 and step S5, and if so, completing the design of the component.
- the laser shot peening treatment method includes the outer skin processing, the area equal interval treatment or the regional unequal spacing treatment of the aluminum alloy single skin grille integral wall panel.
- step S5 is specifically:
- the objective function and constraints are set to target the minimum mass.
- the constraint condition is that the structural strength and the stiffness variation are less than 0.01%.
- Parallel calculation and numerical simulation are used to optimize the section size of the component.
- the laser shot peening rigidity reduction method provided by the embodiment includes three parts: structural design, process design and optimization design, and establishes information exchange between design and manufacture, wherein the structural design includes: component geometric construction Modulus, external load, boundary condition determination, structural stress, Strain analysis; process design includes: laser shot peening test of components and obtaining material performance improvement data; optimization design includes: topology optimization strengthening area and size optimization section size. After the above two optimizations are completed, it is judged whether the performance of the component is up to standard, and if so, the design is completed, and if not, the above two optimization methods are continued until the performance of the component reaches the standard, and the design is completed, and the optimal strengthening parameter is obtained.
- the structural design includes: component geometric construction Modulus, external load, boundary condition determination, structural stress, Strain analysis
- process design includes: laser shot peening test of components and obtaining material performance improvement data
- optimization design includes: topology optimization strengthening area and size optimization section size.
- the process design after obtaining the enhanced material performance improvement data, it can be used for structural stress and strain analysis, and can quantitatively measure the effect of laser shot peening on component performance, and realize process design and structure. Interconnection in design.
- the laser shot peening rigidity and light weight method in order to realize the high performance and lightweight design of aerospace and aerospace components, further reduce the weight of the components and improve the performance of the spacecraft and the aircraft based on the existing lightweight design.
- the invention utilizes laser shot peening technology to improve the strength and fatigue performance of the material, and rationally arranges the strengthening treatment area by means of the topology optimization method, so that the member has varying section stiffness and tensile strength.
- the size optimization method is used to apply the laser shot peening gain to two aspects.
- the first guarantee member has constant design performance
- the second is used for lightweight design of the member, which reduces the cross-sectional dimension of the member, and finally realizes further weight reduction of the member. Design to improve the overall performance of spacecraft and aircraft.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Laser Beam Processing (AREA)
Abstract
本发明公开了一种激光喷丸变刚度轻量化方法,包括以下步骤:确定构件的极限尺寸;对构件进行激光喷丸强化试验,设置多组强化参数;对构件进行材料性能测试,获取材料性能提升数据;确定拓扑优化强化区域;根据材料性能提升数据对构件的截面尺寸进行优化;评估优化后构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复确定拓扑优化强化区域步骤;如果是,则完成构件的设计。本发明所提供的激光喷丸变刚度轻量化方法,构件处理可靠性强,利用激光喷丸强化和结构优化设计,对已经轻量化设计的航天整体构件进一步的轻量化改进,提升减重效率,增大有效载荷,适用于航空长期服役构件和汽车轻量化构件的处理。
Description
本发明涉及航天构件设计领域,特别是涉及一种激光喷丸变刚度轻量化方法。
结构优化设计(Optimum Structural Design)指在给定约束条件下,按某种目标(如重量最轻、成本最低、刚度最大等)求出最好的设计方案,曾称为结构最佳设计或结构最优设计,相对于“结构分析”而言,又称“结构综合”,例如,以结构的重量最小为目标,则称为最小重量设计。
在航天、航空及汽车工业中,结构重量关系到有效载荷比、燃油消耗率等关键性参数,轻量化设计在结构优化中占有至关重要的地位。结构优化设计的特点是基于数值仿真技术的多学科综合设计理念,采用遗传算法、神经网络、并行计算等先进算法,对构件进行尺寸优化、形状优化和拓扑优化。
目前,航天、航空领域中,广泛采用的结构轻量化设计主要有:1)夹层结构,其基本构造形式是由上下两块薄而强的面板和填在其中并与面板牢固连接起来的轻质芯材所组成;夹层结构的特点是抗弯刚度大、可提高材料有效利用率、可减轻重量;2)格栅结构,又称材料网格结构,其基本构型是由加强筋构成的多边形网格;格栅结构的特点:自稳定性高,结构抗屈曲能力强,比强度和比刚度高,检测和修补方便等;3)点阵结构,其构型是由节点和连接节点的杆单元组成的类似于桁架体系的三维空间周期性结构;点阵结构特点是:自稳定性高,结构抗屈曲能力强,承载力高,材料利用效率高;4)桁架结构,其构型特点是由平行于桁架纵向中心轴的纵向肋条和围绕中心轴均匀布置的螺旋向肋条相互交织构成的一种轴对称桁架结构;桁架结构特点是结构减重高,整体性强,承载能高等。
然而,目前的结构轻量化设计,主要集中于构件空间结构的拓扑优化、尺寸优化等算法理论方向,设计阶段与制造阶段缺乏信息反馈,构件轻量
化设计的潜力还未完全开发。
因此,如何在保证构件性能的同时,实现构件的轻量化设计,是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种激光喷丸变刚度轻量化方法,利用激光喷丸强化和结构优化设计,可以对已经轻量化设计的航天整体构件进行进一步的高性能轻量化改进,提升减重效率,增大有效载荷。
为实现上述目的,本发明提供如下技术方案:
一种激光喷丸变刚度轻量化方法,包括以下步骤:
步骤S1:对构件进行结构设计,确定所述构件的极限尺寸;
步骤S2:采用相同牌号和热处理状态的材料截取所述构件,并对所述构件进行激光喷丸强化试验,设置多组强化参数;
步骤S3:对所述构件进行材料性能测试,获取材料性能提升数据;
步骤S4:确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;
步骤S5:根据所述材料性能提升数据对所述构件的截面尺寸进行优化;
步骤S6:评估优化后所述构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复所述步骤S4;如果是,则完成所述构件的设计。
优选的,所述步骤S1包括:
步骤S11:建立所述构件的模型,获得所述构件的几何外形;
步骤S12:确定所述构件的外载荷和边界条件;
步骤S13:根据所述构件的几何外形、外载荷和边界条件进行结构应力、应变分析,并根据分析结果确定所述构件的极限尺寸。
优选的,所述步骤S11具体为:采用CATIA软件建立铝合金单蒙皮格栅整体壁板模型。
优选的,所述步骤S13具体为:由理论分析和数值仿真可确定构件各个部分的极限尺寸,并进行结构失稳分析,确定格栅结构极限深宽比。
优选的,所述步骤S3中,所述材料性能提升数据包括材料拉伸强度、杨氏模量、疲劳寿命提升数据;
优选的,所述步骤S4中,还包括:设计不同形式的激光喷丸强化处理方式,并获得不同形式下的结构应力特性。
优选的,所述激光喷丸强化处理方式包括铝合金单蒙皮格栅整体壁板的外蒙皮全处理、区域等间隔处理或区域不等间隔处理。
优选的,所述步骤S5具体为:
设置目标函数和约束条件,以最小质量为目标,约束条件为结构强度、刚度变化量小于0.01%,采用并行计算和数值仿真方法进行所述构件的截面尺寸优化。
本发明所提供的激光喷丸变刚度轻量化方法,包括以下步骤:对构件进行结构设计,确定所述构件的极限尺寸;采用相同牌号和热处理状态的材料截取所述构件,并对所述构件进行激光喷丸强化试验,设置多组强化参数;对所述构件进行材料性能测试,获取材料性能提升数据;确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;根据所述材料性能提升数据对所述构件的截面尺寸进行优化;评估优化后所述构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复所述确定拓扑优化强化区域步骤;如果是,则完成所述构件的设计。该激光喷丸变刚度轻量化方法,利用激光喷丸强化技术提升材料强度、刚度和疲劳寿命等参数,属于冷加工无热效应损伤,构件处理可靠性强;同时,利用激光喷丸强化和结构优化设计,可以对已经轻量化设计的航天整体构件进行进一步的高性能轻量化改进,提升减重效率,增大有效载荷;同时,利用激光喷丸强化处理构件,可以实现构件疲劳寿命的提升,不仅仅适用于单次任务的航天整体构件,也适用于航空长期服役构件和汽车轻量化构件的处理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对
实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的流程图;
图2为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的原理图;
图3为本发明所提供的航天器铝合金单蒙皮格栅整体壁板的结构示意图;
图4为图3所示航天器铝合金单蒙皮格栅整体壁板的截面图;
其中:1-外蒙皮、2-格栅部分、3-激光喷丸强化层、4-原始材料层。
本发明的核心是提供一种激光喷丸变刚度轻量化方法,用于提升构件的性能,实现构件的轻量化,进而提升航天器或飞行器的综合性能。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1至图4,图1为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的流程图;图2为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的原理图;图3为本发明所提供的航天器铝合金单蒙皮格栅整体壁板的结构示意图;图4为图3所示航天器铝合金单蒙皮格栅整体壁板的截面图。
在该实施方式中,激光喷丸变刚度轻量化方法包括以下步骤:
步骤S1:对构件进行结构设计,确定构件的极限尺寸;
步骤S2:采用相同牌号和热处理状态的材料截取构件,并对构件进行激光喷丸强化试验,设置多组强化参数;
步骤S3:对构件进行材料性能测试,获取材料性能提升数据;
步骤S4:确定拓扑优化强化区域,建立数学模型、设定目标函数和约
束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;
步骤S5:根据材料性能提升数据对构件的截面尺寸进行优化;
步骤S6:评估优化后构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复步骤S4;如果是,则完成构件的设计。
该激光喷丸变刚度轻量化方法,利用激光喷丸强化技术提升材料强度、刚度和疲劳寿命等参数,属于冷加工无热效应损伤,构件处理可靠性强;同时,利用激光喷丸强化和结构优化设计,可以对已经轻量化设计的航天整体构件进行进一步的高性能轻量化改进,提升减重效率,增大有效载荷;同时,利用激光喷丸强化处理构件,可以实现构件疲劳寿命的提升,不仅仅适用于单次任务的航天整体构件,也适用于航空长期服役构件和汽车轻量化构件的处理。该方法主要利用激光喷丸强化提升材料强度、刚度和疲劳寿命,通过优化分布强化处理区域实现构件刚度梯度的调控和结构重量的降低,适用于航天整体构件的减重。
进一步,步骤S1:对构件进行结构设计,确定构件的极限尺寸,具体包括:
步骤S11:建立构件的模型,获得构件的几何外形;更具体的,建立构件的模型,可以具体为采用CATIA软件建立铝合金单蒙皮格栅整体壁板模型,如图3所示,格栅结构2位于外蒙皮1的内周部,当然,CATIA软件为优选软件,采用其他形式的模型建立软件亦可。
步骤S12:确定构件的外载荷和边界条件;具体的,圆柱形整体壁板主要起到保持结构外形和稳定性的作用,承载方式以轴向载荷为主,根据航天器设计运动姿态设计确定惯性力,边界条件为轴向限制位移。
步骤S13:根据构件的几何外形、外载荷和边界条件进行结构应力、应变分析,并根据分析结果确定构件的极限尺寸,具体的,步骤S13可以为:由理论分析和数值仿真可确定构件各个部分的极限尺寸,并进行结构失稳分析,确定格栅结构极限深宽比。
具体的,步骤S2中,采用相同牌号和热处理状态的材料截取构件,并对构件进行激光喷丸强化试验,设置多组强化参数;通过设置多组强化参
数作为备选,最终选取多组强化参数中强化效果最优的参数对产品进行加工,提高产品加工精度。
步骤S3中,对激光喷丸强化试验后的构件进行材料性能测试,获取材料性能提升数据;优选的,材料性能提升数据包括材料拉伸强度、杨氏模量、疲劳寿命提升数据等数据;铝合金材料经激光喷丸强化处理后,杨氏模量、抗拉强度、屈服强度平均提升12%,由结构几何特性可计算出刚度提升比率,即材料性能提升数据,如图4所示,激光喷丸强化后,激光喷丸强化层4与原始材料层3牢固结合。
步骤S4中,对确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;具体还包括:设计不同形式的激光喷丸强化处理方式,并获得不同形式下的结构应力特性。
在经过了步骤S4与步骤S5的两个步骤的优化后,进行步骤S6:评估优化后构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复步骤S4和步骤S5,重新优化激光喷丸强化区域和截面尺寸,直至设计符合要求;如果是,则完成构件的设计。
具体的,步骤S6包括:
步骤S61:对构件的性能进行评估;
步骤S62:判断构件的性能是否达标,如果否,则重复步骤S4和步骤S5,如果是,则完成构件的设计。
进一步,激光喷丸强化处理方式包括铝合金单蒙皮格栅整体壁板的外蒙皮全处理、区域等间隔处理或区域不等间隔处理。
在上述各实施方式的基础上,步骤S5具体为:
设置目标函数和约束条件,以最小质量为目标,约束条件为结构强度、刚度变化量小于0.01%,采用并行计算和数值仿真方法进行构件的截面尺寸优化。
具体的,本实施例所提供的激光喷丸变刚度轻量化方法,包含结构设计、工艺设计和优化设计三大部分,建立了设计与制造的信息交流,其中,结构设计依次包括:构件几何建模,外载荷、边界条件确定,结构应力、
应变分析;工艺设计中包括:对构件进行激光喷丸强化试验和获取材料性能提升数据;优化设计包括:拓扑优化强化区域和尺寸优化截面尺寸。完成上述两种优化后,判断构件的性能是否达标,如果是,则完成设计,如果否,则继续进行上述两种优化方式,直至构件的性能达标,则完成设计,得到最佳强化参数。
在上述各实施方式的基础上,工艺设计中,在获得强化后材料性能提升数据后,可用于结构应力、应变分析,可定量衡量激光喷丸强化对构件性能的提升效果,实现工艺设计与结构设计中的相互联系。
该激光喷丸变刚度轻量化方法,为了实现航天、航空构件高性能轻量化设计,在已有的轻量化设计基础上进一步降低构件重量,提升航天器、飞行器的性能。本发明利用激光喷丸强化技术提升材料的强度、疲劳性能,借助拓扑优化方法合理布局强化处理区域,使得构件具有变化的截面刚度、抗拉强度。采用尺寸优化方法,将激光喷丸强化增益用于两个方面,第一保证构件设计性能恒定不变,第二用于构件的轻量化设计,降低构件的截面尺寸,最终实现构件进一步的轻量化设计,提升航天器、飞行器的综合性能。
以上对本发明所提供的激光喷丸变刚度轻量化方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
Claims (8)
- 一种激光喷丸变刚度轻量化方法,其特征在于,包括以下步骤:步骤S1:对构件进行结构设计,确定所述构件的极限尺寸;步骤S2:采用相同牌号和热处理状态的材料截取所述构件,并对所述构件进行激光喷丸强化试验,设置多组强化参数;步骤S3:对所述构件进行材料性能测试,获取材料性能提升数据;步骤S4:确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;步骤S5:根据所述材料性能提升数据对所述构件的截面尺寸进行优化;步骤S6:评估优化后所述构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复所述步骤S4;如果是,则完成所述构件的设计。
- 根据权利要求1所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S1包括:步骤S11:建立所述构件的模型,获得所述构件的几何外形;步骤S12:确定所述构件的外载荷和边界条件;步骤S13:根据所述构件的几何外形、外载荷和边界条件进行结构应力、应变分析,并根据分析结果确定所述构件的极限尺寸。
- 根据权利要求2所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S11具体为:采用CATIA软件建立铝合金单蒙皮格栅整体壁板模型。
- 根据权利要求3所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S13具体为:由理论分析和数值仿真可确定构件各个部分的极限尺寸,并进行结构失稳分析,确定格栅结构极限深宽比。
- 根据权利要求1所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S3中,所述材料性能提升数据包括材料拉伸强度、杨氏模量、疲劳寿命提升数据;
- 根据权利要求1所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S4中,还包括:设计不同形式的激光喷丸强化处理方式,并获得不同形式下的结构应力特性。
- 根据权利要求6所述的激光喷丸变刚度轻量化方法,其特征在于,所述激光喷丸强化处理方式包括铝合金单蒙皮格栅整体壁板的外蒙皮全处理、区域等间隔处理或区域不等间隔处理。
- 根据权利要求1至7任意一项所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S5具体为:设置目标函数和约束条件,以最小质量为目标,约束条件为结构强度、刚度变化量小于0.01%,采用并行计算和数值仿真方法进行所述构件的截面尺寸优化。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/153,717 US10909282B2 (en) | 2017-04-25 | 2018-10-06 | Method for rigidity enhancement and weight reduction using laser peening |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710285284.7 | 2017-04-25 | ||
CN201710285284.7A CN107103138B (zh) | 2017-04-25 | 2017-04-25 | 一种激光喷丸变刚度轻量化方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/153,717 Continuation US10909282B2 (en) | 2017-04-25 | 2018-10-06 | Method for rigidity enhancement and weight reduction using laser peening |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196185A1 true WO2018196185A1 (zh) | 2018-11-01 |
Family
ID=59657331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/094099 WO2018196185A1 (zh) | 2017-04-25 | 2017-07-24 | 一种激光喷丸变刚度轻量化方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10909282B2 (zh) |
CN (1) | CN107103138B (zh) |
WO (1) | WO2018196185A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109766638A (zh) * | 2019-01-11 | 2019-05-17 | 中国科学院工程热物理研究所 | 一种燃油喷嘴及其轻量化设计方法 |
CN110826222A (zh) * | 2019-11-05 | 2020-02-21 | 上海波客实业有限公司 | 一种汽车碳纤维增强复合材料覆盖件正向开发方法 |
CN110837682A (zh) * | 2019-11-11 | 2020-02-25 | 江苏科技大学 | 一种基于正交试验的工业机器人大臂的结构优化方法 |
CN110884531A (zh) * | 2019-11-28 | 2020-03-17 | 卡斯柯信号有限公司 | 一种用于应答器天线的轻量化外壳装置 |
CN111159943A (zh) * | 2019-12-25 | 2020-05-15 | 中国航空工业集团公司西安飞机设计研究所 | 一种动翼面封严结构的屈曲处理方法 |
CN111177861A (zh) * | 2019-12-12 | 2020-05-19 | 西安航天发动机有限公司 | 适用于增材制造成形技术的常平环结构轻量化设计方法 |
CN114486518A (zh) * | 2021-12-31 | 2022-05-13 | 中国航空工业集团公司西安飞机设计研究所 | 一种结构复合材料选用效果评估方法 |
CN115048612A (zh) * | 2022-08-15 | 2022-09-13 | 季华实验室 | 激光喷丸固有应变确定方法、装置、设备及存储介质 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108707744B (zh) * | 2018-06-19 | 2020-04-28 | 广东工业大学 | 一种轻量化骨科支架的加工方法 |
CN109003753A (zh) * | 2018-06-27 | 2018-12-14 | 中国电力科学研究院有限公司 | 一种t型截面柱式复合绝缘子装置及其最优截面尺寸计算方法 |
CN109359321B (zh) * | 2018-08-24 | 2022-09-13 | 南京理工大学 | 一种拓扑优化与点阵结构结合的轻量化连接铰优化方法 |
CN110377952A (zh) * | 2019-06-13 | 2019-10-25 | 潍柴动力股份有限公司 | 客车底架轻量化设计的cae分析方法及分析系统 |
CN111062094B (zh) * | 2019-10-08 | 2021-06-18 | 珠海格力电器股份有限公司 | 一种加工中心主轴箱的拓扑优化设计方法 |
CN110765681B (zh) * | 2019-10-10 | 2023-06-13 | 陕西理工大学 | 一种基于有限元分析的磨粉机机座的轻量化设计方法 |
CN111222264B (zh) * | 2019-11-01 | 2023-03-03 | 长春英利汽车工业股份有限公司 | 一种复合连续玻璃纤维增强前端模块的制造方法 |
CN112100885B (zh) * | 2020-08-28 | 2022-08-16 | 北京航空航天大学 | 一种高能喷丸表面硬度数值模拟方法 |
CN112287469A (zh) * | 2020-08-31 | 2021-01-29 | 北京工业大学 | 一种基于三维拓扑优化的激光追踪测量系统机械结构减重优化方法 |
CN112597610B (zh) * | 2020-12-28 | 2024-02-13 | 优必康(青岛)科技有限公司 | 机械臂结构轻量化设计的优化方法、装置及设备 |
CN112733267A (zh) * | 2020-12-30 | 2021-04-30 | 中国特种飞行器研究所 | 一种先进增强结构部件级试验件的设计方法和装置 |
CN112906269B (zh) * | 2021-02-08 | 2023-09-26 | 南通中远海运船务工程有限公司 | 一种提高原油转驳船复杂结构疲劳寿命的方法 |
CN114912209B (zh) * | 2021-02-08 | 2024-03-22 | 广汽埃安新能源汽车有限公司 | 一种电池模组端板设计方法 |
CN113255057B (zh) * | 2021-05-17 | 2022-06-17 | 中国第一汽车股份有限公司 | 一种针对狭长类斜楔翻边整形镶块结构刚度验证方法 |
CN113312825B (zh) * | 2021-06-18 | 2022-03-22 | 广东工业大学 | 一种激光喷丸强化效果监测方法及装置 |
CN113821872B (zh) * | 2021-08-31 | 2024-11-01 | 重庆长安汽车股份有限公司 | 一种隔音垫轻量化优化方法 |
CN113636098B (zh) * | 2021-10-18 | 2022-01-25 | 成都飞机工业(集团)有限责任公司 | 一种飞机部件用工艺增刚件的设计方法 |
CN114692330B (zh) * | 2022-03-15 | 2025-01-28 | 中国空间技术研究院 | 一种卫星波导开关抗弯刚度增强结构 |
CN114861337B (zh) * | 2022-03-25 | 2025-04-08 | 东北大学 | 一种选区激光熔化沉积制备轻量化高铁制动盘的方法 |
CN117973104B (zh) * | 2023-11-29 | 2025-04-29 | 南京航空航天大学 | 一种平面靶材多弹丸喷丸有限元模型的快速建模方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070068605A1 (en) * | 2005-09-23 | 2007-03-29 | U.I.T., Llc | Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact |
CN105528503A (zh) * | 2016-02-17 | 2016-04-27 | 中国科学院沈阳自动化研究所 | 一种基于结构分解的大型构件动态优化设计方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6203633B1 (en) * | 1998-08-14 | 2001-03-20 | Lsp Technologies, Inc. | Laser peening at elevated temperatures |
US6852179B1 (en) * | 2000-06-09 | 2005-02-08 | Lsp Technologies Inc. | Method of modifying a workpiece following laser shock processing |
US6914215B2 (en) * | 2003-06-27 | 2005-07-05 | General Electric Company | Real time laser shock peening quality assurance by natural frequency analysis |
CN101275177A (zh) * | 2007-11-30 | 2008-10-01 | 江苏大学 | 一种面向抗疲劳制造的受控激光喷丸强化方法和装置 |
CN103255268B (zh) * | 2013-06-07 | 2014-08-20 | 江苏大学 | 一种优化双面激光同时冲击合金厚度的方法 |
CN103920999B (zh) * | 2013-12-24 | 2015-11-18 | 江苏大学 | 一种磁控激光仿生复合强化方法 |
CN105184390A (zh) * | 2015-08-12 | 2015-12-23 | 中国运载火箭技术研究院 | 一种壁板结构静强度、刚度、稳定性的综合优化方法 |
CN105975734A (zh) * | 2016-07-12 | 2016-09-28 | 中国航空工业集团公司沈阳发动机设计研究所 | 一种发动机外部支架优化设计方法 |
-
2017
- 2017-04-25 CN CN201710285284.7A patent/CN107103138B/zh not_active Expired - Fee Related
- 2017-07-24 WO PCT/CN2017/094099 patent/WO2018196185A1/zh active Application Filing
-
2018
- 2018-10-06 US US16/153,717 patent/US10909282B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070068605A1 (en) * | 2005-09-23 | 2007-03-29 | U.I.T., Llc | Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact |
CN105528503A (zh) * | 2016-02-17 | 2016-04-27 | 中国科学院沈阳自动化研究所 | 一种基于结构分解的大型构件动态优化设计方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109766638A (zh) * | 2019-01-11 | 2019-05-17 | 中国科学院工程热物理研究所 | 一种燃油喷嘴及其轻量化设计方法 |
CN109766638B (zh) * | 2019-01-11 | 2023-03-24 | 中国科学院工程热物理研究所 | 一种燃油喷嘴及其轻量化设计方法 |
CN110826222A (zh) * | 2019-11-05 | 2020-02-21 | 上海波客实业有限公司 | 一种汽车碳纤维增强复合材料覆盖件正向开发方法 |
CN110826222B (zh) * | 2019-11-05 | 2023-03-24 | 上海波客实业有限公司 | 一种汽车碳纤维增强复合材料覆盖件正向开发方法 |
CN110837682A (zh) * | 2019-11-11 | 2020-02-25 | 江苏科技大学 | 一种基于正交试验的工业机器人大臂的结构优化方法 |
CN110884531A (zh) * | 2019-11-28 | 2020-03-17 | 卡斯柯信号有限公司 | 一种用于应答器天线的轻量化外壳装置 |
CN111177861A (zh) * | 2019-12-12 | 2020-05-19 | 西安航天发动机有限公司 | 适用于增材制造成形技术的常平环结构轻量化设计方法 |
CN111177861B (zh) * | 2019-12-12 | 2023-05-05 | 西安航天发动机有限公司 | 适用于增材制造成形技术的常平环结构轻量化设计方法 |
CN111159943A (zh) * | 2019-12-25 | 2020-05-15 | 中国航空工业集团公司西安飞机设计研究所 | 一种动翼面封严结构的屈曲处理方法 |
CN114486518A (zh) * | 2021-12-31 | 2022-05-13 | 中国航空工业集团公司西安飞机设计研究所 | 一种结构复合材料选用效果评估方法 |
CN114486518B (zh) * | 2021-12-31 | 2024-06-11 | 中国航空工业集团公司西安飞机设计研究所 | 一种结构复合材料选用效果评估方法 |
CN115048612A (zh) * | 2022-08-15 | 2022-09-13 | 季华实验室 | 激光喷丸固有应变确定方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN107103138B (zh) | 2021-01-26 |
US10909282B2 (en) | 2021-02-02 |
CN107103138A (zh) | 2017-08-29 |
US20190042680A1 (en) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018196185A1 (zh) | 一种激光喷丸变刚度轻量化方法 | |
JP6235060B2 (ja) | 軸方向圧力補強リブ円筒殻における開口補強設計方法 | |
Barnes et al. | Structural optimisation of composite wind turbine blade structures with variations of internal geometry configuration | |
Bottasso et al. | Integrated aero-structural optimization of wind turbines | |
Tort et al. | Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER | |
CN110222356B (zh) | 综合考虑稳定性与振动特性的板/壳结构轻量化拓扑优化设计方法 | |
CN111177861B (zh) | 适用于增材制造成形技术的常平环结构轻量化设计方法 | |
Polynkin et al. | Mid-range metamodel assembly building based on linear regression for large scale optimization problems | |
CN107766683A (zh) | 一种厢式车车厢底部波纹横梁结构轻量化优化设计方法 | |
Ho-Huu et al. | An efficient procedure for lightweight optimal design of composite laminated beams | |
Moors et al. | Weight trades in the design of a composite wing box: effect of various design choices | |
Cheng et al. | Topology optimization of turbine disk considering maximum stress prediction and constraints | |
Wu et al. | Lightweight design of control arm combining load path analysis and biological characteristics | |
Olympio et al. | Optimal cellular core topologies for one-dimensional morphing aircraft structures | |
Yang et al. | Research on comparative of multi-surrogate models to optimize complex truss structures | |
Gokyer et al. | Topology optimization of cylindrical shells with cutouts for maximum buckling strength | |
CN111737908B (zh) | 一种基于动载荷静力等效的蒙皮桁条结构快速动态优化设计方法 | |
Bhadra et al. | Aeroelastic optimization of a helicopter rotor using orthogonal array-based metamodels | |
Jiang et al. | Multi-objective optimization design for steel-aluminum lightweight body of pure electric bus based on RBF model and genetic algorithm. | |
Singh et al. | Optimal design of curvilinearly stiffened shells | |
CN115563781A (zh) | 应用模式搜索法在地震作用下线性结构最优设计方法 | |
Kapania et al. | EBF3PanelOpt: a computational design environment for panels fabricated by additive manufacturing | |
Gontarovskyi et al. | Three-dimensional stress-strain state analysis of the bimetallic launch vehicle propellant tank shell | |
Isakson et al. | ASOP-3: A program for optimum structural design to satisfy strength and deflection constraints | |
Dellaroza et al. | Surrogate-based optimization of the layup of a laminated composite wind turbine blade for an improved power coefficient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907634 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907634 Country of ref document: EP Kind code of ref document: A1 |