+

WO2018193833A1 - Exhaust treatment device for internal combustion engine - Google Patents

Exhaust treatment device for internal combustion engine Download PDF

Info

Publication number
WO2018193833A1
WO2018193833A1 PCT/JP2018/014255 JP2018014255W WO2018193833A1 WO 2018193833 A1 WO2018193833 A1 WO 2018193833A1 JP 2018014255 W JP2018014255 W JP 2018014255W WO 2018193833 A1 WO2018193833 A1 WO 2018193833A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
exhaust
Prior art date
Application number
PCT/JP2018/014255
Other languages
French (fr)
Japanese (ja)
Inventor
まりえ 堀川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018002095.9T priority Critical patent/DE112018002095T5/en
Publication of WO2018193833A1 publication Critical patent/WO2018193833A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust treatment device for an internal combustion engine, and more particularly, to an exhaust treatment device for an internal combustion engine including a three-way catalyst and a particle filter as an exhaust purification device for purifying exhaust gas.
  • Patent Document 1 discloses that lean combustion is performed for regeneration of a particle filter in a stoichiometric engine. During stoichiometric combustion, the amount of oxygen contained in the exhaust of the engine is very small. Therefore, in the one described in Patent Document 1, oxygen necessary for combustion removal of PM is supplied to the particle filter by performing lean combustion. Like to do.
  • the present disclosure has been made in view of the above problems, and provides an exhaust treatment device for an internal combustion engine capable of burning and removing particulate matter collected by a particle filter while suppressing deterioration of exhaust emission.
  • an exhaust treatment device for an internal combustion engine capable of burning and removing particulate matter collected by a particle filter while suppressing deterioration of exhaust emission.
  • the present disclosure employs the following means in order to solve the above problems.
  • the present disclosure is applied to an internal combustion engine in which an exhaust passage is provided with a three-way catalyst that oxidizes or reduces components contained in exhaust and a particulate filter that collects particulate matter contained in the exhaust.
  • the present invention relates to an exhaust treatment device that burns and removes the particulate matter collected by the particle filter when a condition is satisfied.
  • the amount of nitrogen oxides discharged from the internal combustion engine is equal to or less than a predetermined allowable emission value during the period of combustion removal of the particulate matter collected by the particle filter.
  • An air-fuel ratio control unit that controls the air-fuel ratio of the internal combustion engine is provided.
  • the air-fuel ratio is controlled so that the amount of nitrogen oxides discharged from the internal combustion engine is less than or equal to the allowable emission value.
  • the emission of nitrogen oxides can be suppressed. Thereby, it is possible to burn and remove the particulate matter collected by the particle filter while suppressing the deterioration of the exhaust emission.
  • FIG. 1 is an overall schematic configuration diagram of an engine control system
  • FIG. 2 is a diagram showing the relationship between the engine exhaust NOx amount and the air-fuel ratio
  • FIG. 3 is a diagram illustrating a method for setting the combustion A / F value during regeneration.
  • FIG. 4 is a flowchart showing a processing procedure of the filter regeneration processing according to the first embodiment.
  • FIG. 5 is a diagram showing an engine operation region in which filter regeneration can be performed.
  • FIG. 6 is a diagram showing the engine exhaust NOx amount according to the engine load.
  • FIG. 7 is a diagram showing the relationship between the oxygen concentration and the PM combustion rate, FIG.
  • FIG. 8 is a time chart showing a specific aspect of the filter regeneration processing of the first embodiment.
  • FIG. 9 is a flowchart showing a post-injection control process.
  • FIG. 10 is a flowchart illustrating a processing procedure of the filter regeneration processing according to the second embodiment.
  • FIG. 11 is a time chart showing a specific aspect of the filter regeneration processing of the second embodiment.
  • FIG. 12 is a flowchart showing the processing procedure of the filter regeneration processing of the third embodiment.
  • FIG. 13 is a time chart showing the processing procedure of the filter regeneration processing of the third embodiment.
  • FIG. 14 is a diagram for explaining the maximum injection amount in the post injection,
  • FIG. 15 is a flowchart illustrating a processing procedure of the filter regeneration processing according to the fourth embodiment.
  • FIG. 16 is a time chart showing the processing procedure of the filter regeneration processing of the fourth embodiment.
  • the present embodiment is an in-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine, and an engine control system is constructed for an in-cylinder injection and spark ignition engine.
  • an electronic control unit hereinafter referred to as ECU
  • FIG. 1 shows an overall schematic configuration diagram of the engine control system.
  • the intake pipe 11 is provided with a throttle valve 14 whose opening degree is adjusted by a throttle actuator 13 such as a DC motor.
  • the opening of the throttle valve 14 (throttle opening) is detected by a throttle opening sensor built in the throttle actuator 13.
  • a surge tank 15 is provided on the downstream side of the throttle valve 14, and an intake pipe pressure sensor 16 for detecting the intake pipe pressure is provided in the surge tank 15.
  • An intake manifold 17 that introduces air into each cylinder of the engine 10 is connected to the surge tank 15.
  • the intake manifold 17 is connected to the intake port of each cylinder.
  • the intake port 18 and the exhaust port 19 of the engine 10 are provided with an intake valve 18 and an exhaust valve 19, respectively.
  • the air in the surge tank 15 is introduced into the combustion chamber 21 by the opening operation of the intake valve 18, and the exhaust gas after combustion is discharged to the exhaust pipe 22 by the opening operation of the exhaust valve 19.
  • the opening / closing timing (valve timing) of the intake valve 18 and the exhaust valve 19 is variably controlled by the variable valve timing device 20.
  • a fuel injection valve 23 for directly supplying fuel into the combustion chamber 21 is attached to the upper part of each cylinder of the engine 10.
  • the fuel injection valve 23 is connected to the fuel tank via a fuel pipe (not shown).
  • the fuel in the fuel tank is supplied to the fuel injection valve 23 of each cylinder, and is injected from the fuel injection valve 23 into the combustion chamber 21.
  • a spark plug 24 is attached to the cylinder head of the engine 10.
  • a high voltage is applied to the ignition plug 24 at a desired ignition timing through an ignition device 25 including an ignition coil.
  • an ignition device 25 including an ignition coil.
  • a spark discharge is generated between the opposing electrodes of each spark plug 24, and the mixture of fuel and intake air in the combustion chamber 21 is ignited and used for combustion.
  • the combustion control of the engine 10 is performed with an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke as one combustion cycle.
  • the exhaust pipe 22 is provided with a three-way catalyst 26 and a GPF (gasoline particulate filter) 27 as an exhaust purification device for purifying exhaust.
  • the three-way catalyst 26 is a catalyst for oxidizing or reducing carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx), which are components in the exhaust.
  • the GPF 27 is a filter device that collects particulate matter (PM) in the exhaust gas, and is provided on the downstream side of the three-way catalyst 26.
  • the GPF 27 is a filter with a catalyst coat on which an oxidation catalyst (for example, Pt) is coated.
  • upstream and downstream of the three-way catalyst 26 are provided oxygen concentration sensors that detect the oxygen concentration of the air-fuel mixture using exhaust as a detection target.
  • a linear detection type A / F sensor 28 is arranged upstream of the three-way catalyst 26, and a binary detection type O2 sensor 29 is arranged downstream of the three-way catalyst 26.
  • the exhaust pipe 22 is provided with a differential pressure sensor 31 that detects a differential pressure between the upstream side and the downstream side of the GPF 27. The PM amount accumulated on the GPF 27 can be detected by the differential pressure sensor 31.
  • An exhaust temperature sensor 32 for detecting the exhaust temperature is provided on the exhaust pipe 22 downstream of the three-way catalyst 26 and upstream of the GPF 27.
  • the supercharger includes an intake compressor 33 disposed on the upstream side of the throttle valve 14 in the intake pipe 11, and an exhaust turbine 34 disposed on the upstream side of the three-way catalyst 26 near the outlet of the exhaust port in the exhaust pipe 22. And.
  • the intake compressor 33 and the exhaust turbine 34 are connected by a rotating shaft 35.
  • the intake compressor 33 is rotated along with the rotation.
  • the intake air in the intake pipe 11 is compressed by the centrifugal force generated by the rotation of the intake compressor 33.
  • an intercooler 12 as a heat exchanger is disposed downstream of the intake compressor 33. Since the supercharged intake air is cooled by the intercooler 12, a decrease in compression efficiency is suppressed.
  • the engine 10 is provided with a coolant temperature sensor 41 that detects the coolant temperature, a crank angle sensor 42 that outputs a rectangular crank angle signal for each predetermined crank angle of the engine 10, and the like.
  • the ECU 50 is mainly composed of a microcomputer (hereinafter referred to as a microcomputer) composed of a CPU, ROM, RAM, etc., and executes various control programs stored in the ROM, so that the ECU 50 responds to each engine operating state.
  • a microcomputer composed of a CPU, ROM, RAM, etc.
  • the ECU 50 inputs detection signals from the various sensors described above, calculates the fuel injection amount, fuel injection timing, ignition timing, etc. based on the input various detection signals, and calculates the fuel injection valve 23 and the ignition device. 25 drive and the like are controlled.
  • the ECU 50 calculates the injection timing and the injection amount based on the engine operating state (for example, engine speed and engine load). Further, the driving of the fuel injection valve 23 is controlled so that a desired injection amount of fuel is injected at the calculated injection timing.
  • the ECU 50 performs air-fuel ratio control by adjusting the opening of the throttle valve 14 (hereinafter also referred to as “throttle opening”) and the amount of fuel injected from the fuel injection valve 23 into the combustion chamber 21. ing. Specifically, at the normal time, stoichiometric operation is performed to control the throttle opening and the fuel injection amount so that the air-fuel ratio of the engine 10 becomes the stoichiometric air-fuel ratio (A / F ⁇ 14.7).
  • the engine 10 is a stoichiometric engine, but can be operated even with a lean air-fuel ratio. Specifically, when the excess air amount of lean combustion is replaced with the EGR rate, in the entire operation region of the engine 10, when only the temperature rise is performed, the engine 10 can be operated at an EGR rate of 18% or more. When performing filter regeneration, it is possible to operate at an EGR rate of 25% or more.
  • the ECU 50 determines that a predetermined amount or more of PM has accumulated on the GPF 27, the ECU 50 performs filter regeneration control for burning and removing the PM accumulated on the GPF 27. Thereby, regeneration (filter regeneration) of the PM collection function of the GPF 27 is performed.
  • filter temperature the temperature of the GPF 27
  • oxygen is present in the GPF 27.
  • the amount of NOx in the exhaust discharged from the engine 10 due to the combustion of fuel varies depending on the air-fuel ratio. Specifically, as shown in FIG. 2, when the air-fuel ratio is brought closer to the lean limit from stoichiometry, the NOx amount once increases and then gradually decreases as it becomes leaner. Further, when the air-fuel ratio is brought closer to the rich limit from stoichiometry, the NOx amount gradually decreases as it becomes richer. Focusing on this point, in the present embodiment, the amount of NOx discharged from the engine 10 (hereinafter also referred to as “engine exhausted NOx amount”) during the period in which the PM collected by the GPF 27 is burned and removed.
  • engine exhausted NOx amount the amount of NOx discharged from the engine 10
  • the air-fuel ratio is controlled so as to be equal to or less than a predetermined value (hereinafter referred to as “emission allowable value NOth”) as a value allowing discharge from the engine 10.
  • NOth a predetermined value as a value allowing discharge from the engine 10.
  • the air-fuel ratio at the time of combustion of the engine 10 is controlled to be leaner than the stoichiometric air-fuel ratio, so that the engine exhaust NOx amount becomes equal to or less than the allowable emission value NOth during the PM combustion removal period.
  • the A / F lower limit value Amin (for example, A / F ⁇ 19) that is the lower limit value of the air-fuel ratio range in which the engine exhaust NOx amount is equal to or less than the allowable discharge value NOth.
  • an A / F upper limit value Amax (for example, A / F ⁇ 23) that is a limit (lean limit) of an air-fuel ratio at which normal combustion is possible in the engine 10 is defined as a NOx suppression range Raf.
  • Amax for example, A / F ⁇ 23
  • a limit (lean limit) of an air-fuel ratio at which normal combustion is possible in the engine 10 is defined as a NOx suppression range Raf.
  • the combustion A / F is controlled to be within the NOx suppression range Raf.
  • the filter regeneration processing of this embodiment will be described with reference to FIG.
  • the oxygen concentration in the exhaust gas supplied to the GPF 27 satisfies the demand for the combustion rate of PM while ensuring the oxygen concentration in the exhaust gas so that the NOx emission can be suppressed to the emission allowable value NOth or less.
  • the air-fuel ratio is controlled so as to be equal to or higher than the predetermined concentration determined based on the above.
  • oxygen concentration request the request based on the oxygen concentration in the exhaust gas required for setting the PM combustion rate to a predetermined value or higher (hereinafter also simply referred to as “oxygen concentration request”) are satisfied.
  • the air-fuel ratio is controlled as follows.
  • the O2 required A / F value Ao2 that is an air-fuel ratio for satisfying the oxygen concentration request is compared with the A / F lower limit value Amin, and among these, the amount of deviation from the stoichiometric air-fuel ratio (stoichiometric)
  • the combustion is performed using a large air-fuel ratio, that is, a leaner air-fuel ratio.
  • the O2 required A / F value Ao2 is farther from the stoichiometric air-fuel ratio than the A / F lower limit value Amin and is the lean value A2
  • the O2 required A / F value Ao2 is changed to the combustion A / F.
  • step S101 it is determined whether there is a filter regeneration request based on the PM accumulation amount.
  • an affirmative determination is made when the differential pressure between the upstream side and the downstream side of the GPF 27 exceeds a predetermined pressure.
  • the method for determining the necessity of filter regeneration is not limited to the method using the differential pressure sensor 31.
  • the amount of PM detected using the PM sensor has become a predetermined value or more
  • (2) a predetermined time or more has passed since the previous filter regeneration process
  • Whether or not the filter regeneration is necessary may be determined by determining whether or not a condition such as traveling more than a distance is satisfied.
  • step S102 it is determined whether or not the engine 10 is operating. If the engine is operating, the process proceeds to step S103, and it is determined whether or not the engine 10 has been warmed up using the detected value of the coolant temperature sensor 41 or the like. If the warm-up is completed, the process proceeds to step S104, and it is determined whether or not the current engine operation state is within an operation region where filter regeneration can be performed.
  • an engine operating region in which filter regeneration can be performed is determined in advance as a map or the like (for example, the map of FIG.
  • filter regeneration is permitted in the predetermined medium rotation / medium / high load region and medium A / high rotation / medium load region A.
  • Filter regeneration is prohibited in a predetermined low rotation / low load region B and a predetermined high rotation / high load region C.
  • Region A is an operating region in which the air-fuel ratio can be controlled to the lean side as required.
  • step S105 it is determined whether the temperature of the GPF 27 (hereinafter also referred to as “filter temperature”) is higher than the target temperature Tpm.
  • the target temperature Tpm is determined in advance based on the ignition temperature of PM. For example, the target temperature Tpm is set to 600 ° C. or a value in the vicinity thereof.
  • the filter temperature may be estimated from the engine operating state or the exhaust gas temperature, or may be directly detected by providing a temperature sensor that detects the filter temperature. In this step S105, determination is performed on the filter temperature before the start of filter regeneration.
  • step S106 When a negative determination is made in at least one of steps S102 to S105, the filter regeneration is not started and the process waits as it is until all the conditions for executing the filter regeneration processing are satisfied. When an affirmative determination is made in all of steps S102 to S105, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S106.
  • step S106 an A / F lower limit value Amin is calculated.
  • the engine exhaust NOx amount varies depending on the engine operating state, and as shown in FIG. 6, the engine exhaust NOx amount increases as the engine load increases. Accordingly, the lower the lower limit value of the air-fuel ratio range in which the amount of engine exhaust NOx becomes equal to or less than the allowable discharge value NOth becomes leaner as the engine 10 is more heavily loaded. Therefore, in this embodiment, the A / F lower limit value Amin is calculated based on the engine load. Specifically, the map shown in FIG. 6 is determined and stored in advance, and the A / F lower limit value Amin corresponding to each engine load is read using this map. According to the map of FIG. 6, the leaner value is set as the A / F lower limit value Amin as the engine 10 becomes higher in load.
  • step S107 an O2 required A / F value Ao2 is calculated as an air-fuel ratio for satisfying the oxygen concentration request.
  • FIG. 7 shows the relationship between the oxygen concentration in the exhaust gas supplied to the GPF 27 and the PM combustion rate.
  • an oxygen concentration (hereinafter also referred to as “minimum O2 concentration Dmin”) for compensating for a combustion speed Vmin that should be ensured at a minimum is set in advance, and the minimum O2 concentration Dmin is set.
  • the O2 request A / F value Ao2 is set so that it can be secured.
  • the lower limit value D1 (for example, about 5%) of the oxygen concentration range in which the change amount of the PM combustion speed converges to a predetermined value or less when the oxygen concentration in the exhaust gas is increased is increased to the O2 required A / F value.
  • the O2 requirement A / F value Ao2 is set to the lower limit value D1 in order to suppress excessive leaning. ing.
  • step S108 it is determined whether or not the O2 request A / F value Ao2 is larger than the A / F lower limit value Amin, that is, whether the O2 request A / F value Ao2 is a value on the lean side of the A / F lower limit value Amin. Determine whether or not. If the O2 requirement A / F value Ao2 is a value on the lean side of the A / F lower limit value Amin, the process proceeds to step S109, and the combustion air-fuel ratio during filter regeneration (hereinafter also referred to as “regeneration combustion A / F”). ) To set the O2 request A / F value Ao2.
  • step S110 if the O2 required A / F value Ao2 is a value on the richer side than the A / F lower limit value Amin, the process proceeds to step S110, and the A / F lower limit value Amin is set as the combustion A / F during regeneration. Thereafter, the process proceeds to step S111.
  • step S111 it is determined whether or not the exhaust gas temperature is higher than the target temperature Tpm after the start of leaning. If the exhaust temperature is higher than the target temperature Tpm, the process proceeds to step S113. On the other hand, when the exhaust gas temperature is equal to or lower than the target temperature Tpm, the process proceeds to step S112, and exhaust gas temperature raising control is performed. As a result, the state where the filter temperature is higher than the target temperature Tpm is compensated.
  • the exhaust gas temperature raising control for example, ignition delay angle and the like can be mentioned.
  • the exhaust gas temperature raising control is executed by a separate routine (not shown).
  • a detection value of the exhaust temperature sensor 32 may be used, or an estimated value estimated from the engine operating state may be used.
  • the process proceeds to step S113 without performing the processes of steps S111 and S112.
  • the exhaust gas temperature may be estimated after a predetermined time from the start of leaning, and the exhaust gas temperature raising control may be performed based on the estimated value.
  • step S113 filter regeneration processing is performed. Specifically, for example, the intake air amount of the engine 10 is controlled so that the air-fuel ratio becomes the combustion A / F during regeneration. Thereby, filter regeneration processing is performed.
  • step S114 the PM combustion amount by the filter regeneration process is calculated, and in step S115, it is determined whether or not a predetermined PM amount (for example, the PM accumulation amount at the start of the filter regeneration process) has been combusted. If a negative determination is made in step S115, the processing after step S102 is executed again. If a positive determination is made in step S115, the process proceeds to step S116, the filter regeneration is terminated, and this routine is terminated.
  • a predetermined PM amount for example, the PM accumulation amount at the start of the filter regeneration process
  • the filter regeneration process is not started for a while, and the combustion A / F is controlled by stoichiometry.
  • a value on the lean side of the stoichiometric value is set as the combustion A / F during regeneration at time t11, and filter regeneration is started.
  • the air-fuel ratio is controlled so that the amount of engine exhaust NOx becomes equal to or less than the allowable exhaust value NOth. Therefore, the emission of nitrogen oxides can be suppressed during the combustion removal of the PM deposited on the GPF 27. As a result, PM can be removed by combustion while suppressing deterioration of exhaust emission.
  • the burning rate of the deposited PM depends on the oxygen concentration supplied to the GPF 27. The higher the oxygen concentration, the faster the PM burning rate.
  • NOx suppression request the regeneration A / F during regeneration is set in consideration of the oxygen concentration requirement for PM combustion removal, so that while quickly suppressing NOx emission Filter regeneration can be performed.
  • the O2 required A / F value Ao2 is calculated as the first required air-fuel ratio that is the air-fuel ratio for setting the oxygen concentration in the exhaust gas supplied to the GPF 27 to an oxygen concentration that satisfies the PM combustion speed requirement.
  • the A / F lower limit value Amin is calculated as the second required air-fuel ratio, which is the air-fuel ratio for making the NOx amount exhausted from the engine 10 equal to or less than the allowable emission value NOth during the period of PM combustion removal, and O2 Of the required A / F value Ao2 and the A / F lower limit value Amin, a filter regeneration process is performed by performing air-fuel ratio control using a lean value.
  • the filter regeneration is performed at the second required air-fuel ratio. Therefore, the deterioration of exhaust emission can be suppressed while the filter regeneration is performed quickly.
  • the first required air-fuel ratio is richer than the second required air-fuel ratio, and the air-fuel ratio is leaner than the first required air-fuel ratio.
  • excessive leaning can be suppressed. Thereby, the fall of the exhaust temperature resulting from leaning can be suppressed, and combustion stability can be ensured.
  • the A / F lower limit value Amin is set based on the engine load, even when the air-fuel ratio at which the engine exhaust NOx amount is equal to or less than the allowable discharge value NOth varies depending on the engine load, an appropriate air-fuel ratio for suppressing NOx Filter regeneration can be performed. Specifically, when the engine 10 is in a high load operation state, the A / F lower limit value Amin is set to a leaner side, so that NOx emission can be sufficiently suppressed even during high load operation. Further, when the engine 10 is in the low load operation state, the A / F lower limit value Amin is set to a relatively rich side, so that NOx emission can be suppressed while suppressing the occurrence of misfire as much as possible.
  • the second embodiment will be described focusing on differences from the first embodiment.
  • the filter regeneration processing is performed after the filter temperature reaches the target temperature Tpm.
  • post injection is performed to increase the filter temperature. This is different from the first embodiment in that it is performed.
  • the ECU 50 performs temperature increase control for increasing the exhaust temperature by performing post injection for supplying fuel into the combustion chamber 21 after the main injection (for example, during the expansion stroke or the exhaust stroke).
  • the post injection amount Gp is set so that the temperature of the exhaust gas supplied to the GPF 27 is equal to or higher than the target temperature Tpm.
  • the post injection amount Gp is calculated based on the difference between the target temperature Tpm and the actual value or estimated value of the exhaust temperature and the exhaust flow rate.
  • step S501 the presence / absence of a filter regeneration request is determined based on the PM accumulation amount. If there is a filter regeneration request, the process proceeds to step S502, and it is determined whether or not the filter temperature is higher than the start temperature Tstart.
  • the start temperature Tstart is a value set higher than the ignition temperature of the post-injected fuel, and is set to, for example, 300 ° C. or a value in the vicinity thereof. If a negative determination is made in step S502, this routine is once ended. If an affirmative determination is made, the process proceeds to step S503.
  • step S503 it is determined whether the exhaust temperature is equal to or lower than the temperature rise determination temperature Trn. If the exhaust temperature is equal to or lower than the temperature rise determination temperature Trn, the process proceeds to step S504, and the post injection amount Gp is calculated based on the difference between the target temperature Tpm and the current exhaust temperature and the exhaust flow rate. In subsequent step S505, post injection is performed. On the other hand, if the exhaust temperature is higher than the temperature rise determination temperature Trn, the process proceeds to step S506, the post injection amount Gp is set to zero, and this routine is ended.
  • steps S201 to S204 processing similar to that in steps S101 to S104 in FIG. 4 is executed.
  • a succeeding step S205 it is determined whether or not the filter temperature is higher than the start temperature Tstart. If a negative determination is made in at least one of steps S202 to S205, the process waits until all the conditions for executing the filter regeneration process are satisfied. On the other hand, if an affirmative determination is made in all of steps S202 to S205, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S206.
  • step S206 the A / F lower limit value Amin is calculated in the same manner as in step S106 of FIG.
  • an O2 request A / F value Ao2 is calculated.
  • the O2 required A / F value Ao2 is calculated based on the post injection amount and the oxygen concentration request.
  • the lower limit value D1 is corrected according to the post injection amount Gp, and the O2 required A / F value Ao2 corresponding to the corrected oxygen concentration is calculated.
  • the higher the post injection amount Gp the higher the oxygen concentration in the exhaust gas is set, and the O2 required A / F value Ao2 is set to the lean side.
  • steps S208 to S210 processing similar to that in steps S108 to S110 in FIG. 4 is executed. That is, if the O2 required A / F value Ao2 is a value leaner than the A / F lower limit value Amin, the O2 required A / F value Ao2 is set to the combustion A / F during regeneration. On the other hand, when the O2 request A / F value Ao2 is a richer value than the A / F lower limit value Amin, the A / F lower limit value Amin is set to the combustion A / F during regeneration.
  • step S211 it is determined whether or not the exhaust temperature after the start of leaning is higher than the ignition temperature of the post-injected fuel (hereinafter referred to as “fuel ignition temperature Tburn”).
  • the fuel ignition temperature Tburn is, for example, 250 ° C. or a value in the vicinity thereof. If the exhaust temperature is higher than the fuel ignition temperature Tburn, the process proceeds to step S213. If the exhaust temperature is equal to or lower than the fuel ignition temperature Tburn, the process proceeds to step S212, and after the exhaust gas temperature raising control is performed, the process proceeds to step S213. In steps S213 to S216, processing similar to that in steps S113 to S116 in FIG. 4 is executed, and this routine is terminated.
  • the filter temperature becomes higher than the start temperature Tstart after the generation of the filter regeneration request
  • post injection is started at the time t21, and the air-fuel ratio is controlled to the lean side, and the filter regeneration process is started.
  • the A / F lower limit value Amin is set as the combustion A / F during regeneration (time t21 to t23).
  • the O2 request A / F value Ao2 becomes leaner than the A / F lower limit value Amin due to an increase in the accelerator operation amount, the O2 request A / F value Ao2 is set as the regeneration combustion A / F.
  • the amount of engine exhaust NOx becomes equal to or less than the allowable discharge value NOth, and the GPF 27 after combustion of fuel injected by post-injection
  • the combustion A / F during regeneration is set so that the oxygen concentration in the exhaust gas supplied to the exhaust gas satisfies the oxygen concentration requirement.
  • the third embodiment is different from the second embodiment in that the combustion A / F during regeneration is set to an A / F upper limit value Amax that is a lean limit.
  • steps S301 to S304 processing similar to that in steps S101 to S104 in FIG. 4 is executed.
  • a succeeding step S305 it is determined whether or not the filter temperature is higher than the start temperature Tstart. If a negative determination is made in at least one of steps S302 to S305, the process waits until all the conditions for executing the filter regeneration process are satisfied. On the other hand, if an affirmative determination is made in all of steps S302 to S305, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S306.
  • step S306 the A / F upper limit value Amax is calculated, and the calculated A / F upper limit value Amax is set as the combustion A / F during regeneration.
  • the A / F upper limit value Amax is calculated according to the engine operating state (for example, the engine rotation speed and the engine load).
  • the A / F upper limit value Amax may be a fixed value regardless of the engine operating state.
  • the intake air is increased by a method such as opening the throttle valve 14 without changing the fuel injection amount so as not to cause a torque shortage. To do.
  • step S307 it is determined whether the exhaust temperature after the start of leaning is higher than the fuel ignition temperature Tburn. If the exhaust gas temperature is higher than the fuel ignition temperature Tburn, the process proceeds to step S309. On the other hand, if the exhaust gas temperature is equal to or lower than the fuel ignition temperature Tburn, the process proceeds to step S308. After the exhaust gas temperature raising control is performed, the process proceeds to step S309. In step S309, it is determined whether or not the minimum O2 concentration Dmin can be secured. If it can be secured, the process proceeds to steps S310 to S313, and the same processing as steps S113 to S116 in FIG. 4 is executed. Then, this routine ends.
  • the filter regeneration process is performed with the combustion A / F during regeneration as the A / F upper limit value Amax, so that the filter regeneration can be performed while the NOx emission suppressing effect is further enhanced. . Further, since the oxygen concentration in the exhaust gas is high, the PM combustion rate is high, and the filter regeneration process can be completed in a short period of time.
  • the filter regeneration process is performed by setting the A / F upper limit value Amax to the combustion A / F during regeneration as in the third embodiment.
  • a / F upper limit value Amax to the combustion A / F during regeneration as in the third embodiment.
  • as much fuel as possible is supplied in the post injection. This is different from the third embodiment.
  • the PM combustion rate is sensitive to the oxygen concentration in the exhaust gas and the filter temperature, and varies depending on both, but the sensitivity to the filter temperature is higher.
  • the filter temperature is lower than the start temperature Tstart, the oxygen concentration in the exhaust gas supplied to the GPF 27 after the combustion of the post-injected fuel is within the range where the oxygen concentration is at least the O2 concentration.
  • the maximum allowable fuel injection amount is supplied by post injection. As a result, the filter temperature is quickly raised to perform efficient filter regeneration.
  • FIG. 14A shows the gas configuration in the cylinder of the engine 10
  • FIG. 14B shows the breakdown of the usage of the exhaust gas supplied to the GPF 27.
  • the A / F upper limit Amax is made as lean as possible as the combustion A / F during regeneration, so that oxygen remains in the exhaust gas after combustion of the main injection fuel.
  • the minimum O2 concentration Dmin for PM combustion is secured, and the remaining oxygen is used to supply as much fuel as possible by post-injection. Increase the temperature.
  • the maximum injection amount Gmax that can be injected by post injection is set as the post injection amount. Calculation is performed in consideration of the upper and lower limits and the upper limit of the substrate temperature of the GPF 27.
  • the remaining oxygen obtained by subtracting the oxygen necessary for burning the maximum injection amount Gmax and the oxygen corresponding to the minimum O2 concentration Dmin is used as oxygen for PM combustion.
  • the amount of oxygen used for PM combustion is calculated from the oxygen concentration remaining after the post-injected fuel is burned. This oxygen concentration may be estimated from the engine operating state, or may be detected by an O2 sensor or the like.
  • the upper and lower limits of the post injection amount and the base material of the GPF 27 are based on the remaining air amount obtained by subtracting the air amount Q2 corresponding to the minimum O2 concentration Dmin from the air amount Q1. Considering the upper limit of temperature, the maximum injection amount Gmax is calculated as the post injection amount.
  • steps S401 to S404 processing similar to that in steps S101 to S104 in FIG. 4 is executed.
  • a succeeding step S405 it is determined whether or not the filter temperature is higher than the start temperature Tstart. If a negative determination is made in at least one of steps S402 to S405, the process waits until all the conditions for executing the filter regeneration process are satisfied. On the other hand, if an affirmative determination is made in all of steps S402 to S405, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S406.
  • step S406 the A / F upper limit value Amax is calculated, and the calculated A / F upper limit value Amax is set to the combustion A / F during regeneration.
  • the A / F upper limit value Amax may be a variable value or a fixed value as in the third embodiment.
  • step S407 it is determined whether or not the exhaust temperature after the start of leaning is higher than the fuel ignition temperature Tburn. If the exhaust temperature is higher than the fuel ignition temperature Tburn, the process proceeds to step S409. On the other hand, if the fuel ignition temperature Tburn or lower, the process proceeds to step S408, and after the exhaust gas temperature raising control is performed, the process proceeds to step S409. In step S409, filter regeneration processing is performed.
  • the intake air amount of the engine 10 is controlled so that the combustion air-fuel ratio becomes the combustion A / F during regeneration.
  • steps S410 to S412 the same processing as in steps S114 to S116 of FIG. 4 is executed, and this routine is terminated.
  • the post injection is interrupted because the exhaust gas temperature is higher than the temperature rise determination temperature Trn.
  • PM accumulated on the GPF 27 is burned and removed by filter regeneration, leaning is completed at time t44 and the control is switched to stoichiometric control.
  • the filter regeneration process is performed with the combustion A / F during regeneration as the A / F upper limit value Amax and the fuel injection amount by post injection as the maximum injection amount Gmax, the NOx emission is suppressed.
  • Filter regeneration can be completed in a short period of time while increasing the effect.
  • the A / F lower limit value Amin and the O2 required A / F value Ao2 are variable values, but at least one of them may be a fixed value.
  • the second required air-fuel ratio is set to the A / F lower limit value Amin, but is leaner than the A / F lower limit value Amin, and from the A / F upper limit value Amax. May be a rich value.
  • air-fuel ratio feedback control may be performed so that the actual air-fuel ratio matches the target air-fuel ratio.
  • the combustion A / F during regeneration is set to the target air-fuel ratio, and air-fuel ratio feedback is performed so that the actual air-fuel ratio detected by the oxygen concentration sensor matches the combustion A / F during regeneration. It is good also as a structure which implements control.
  • the present invention is applied to an exhaust system in which the GPF 27 is disposed on the downstream side of the three-way catalyst 26 has been described as an example, but the configuration of the exhaust system is not limited to this.
  • another three-way catalyst may be further arranged upstream or downstream of the three-way catalyst 26.
  • the GPF 27 a filter not coated with an oxidation catalyst can be used.
  • the GPF 27 may be disposed on the upstream side of the three-way catalyst 26.
  • the present invention may be applied to a compression self-ignition type engine.
  • the engine provided with a supercharger you may apply to the natural aspiration engine (N / A) which is not provided with a supercharger.
  • each said component is conceptual and is not limited to the said embodiment.
  • the functions of one component may be realized by being distributed to a plurality of components, or the functions of a plurality of components may be realized by one component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

An exhaust treatment device (50) is applied to an internal combustion engine (10) in which a three-way catalyst (26) that oxidizes or reduces a component included in exhaust and a particle filter (27) that filters particulate matter included in exhaust are provided to an exhaust passage (22). The exhaust treatment device burns and removes the particulate matter filtered by the particle filter when a prescribed condition for implementation is satisfied. The exhaust treatment device also comprises an air-fuel ratio control unit that controls the air-fuel ratio of the internal combustion engine so that, during the time period in which the particulate matter filtered by the particle filter is burned and removed, the amount of nitrogen oxide exhausted from the internal combustion engine will be equal to or less than a prescribed allowable exhaust value.

Description

内燃機関の排気処理装置Exhaust treatment device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年4月21日に出願された日本出願番号2017-084886号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-084886 filed on April 21, 2017, the contents of which are incorporated herein by reference.
 本開示は、内燃機関の排気処理装置に関し、特に、排気を浄化するための排気浄化装置として三元触媒と粒子フィルタとを備える内燃機関の排気処理装置に関する。 The present disclosure relates to an exhaust treatment device for an internal combustion engine, and more particularly, to an exhaust treatment device for an internal combustion engine including a three-way catalyst and a particle filter as an exhaust purification device for purifying exhaust gas.
 従来、燃料の燃焼によって内燃機関から排出される粒子状物質(PM)を排気通路において捕集する技術が種々提案されている(例えば、特許文献1参照)。特許文献1には、ストイキエンジンにおいて、粒子フィルタの再生のためにリーン燃焼を行うことが開示されている。ストイキ燃焼中では、エンジンの排気中に含まれる酸素の量は非常に少ないため、特許文献1に記載のものでは、リーン燃焼を行うことにより、PMの燃焼除去に必要な酸素を粒子フィルタに供給するようにしている。 Conventionally, various techniques for collecting particulate matter (PM) discharged from an internal combustion engine by combustion of fuel in an exhaust passage have been proposed (see, for example, Patent Document 1). Patent Document 1 discloses that lean combustion is performed for regeneration of a particle filter in a stoichiometric engine. During stoichiometric combustion, the amount of oxygen contained in the exhaust of the engine is very small. Therefore, in the one described in Patent Document 1, oxygen necessary for combustion removal of PM is supplied to the particle filter by performing lean combustion. Like to do.
米国特許出願公開第2016/0123200号明細書US Patent Application Publication No. 2016/0123200
 三元触媒を用いた排気浄化システムの場合、粒子フィルタの再生のために単にリーン化するだけでは、空燃比が三元触媒の浄化ウィンドからリーン側に外れることに起因してNOx浄化率が低下し、排気エミッションの悪化を招くことが懸念される。 In the case of an exhaust purification system using a three-way catalyst, the NOx purification rate decreases due to the fact that the air-fuel ratio deviates from the purification window of the three-way catalyst to the lean side simply by making it lean for regeneration of the particle filter. In addition, there is a concern that exhaust emissions will deteriorate.
 本開示は上記課題に鑑みなされたものであり、排気エミッションの悪化を抑制しながら、粒子フィルタに捕集された粒子状物質を燃焼除去することができる内燃機関の排気処理装置を提供することを一つの目的とする。 The present disclosure has been made in view of the above problems, and provides an exhaust treatment device for an internal combustion engine capable of burning and removing particulate matter collected by a particle filter while suppressing deterioration of exhaust emission. One purpose.
本開示は、上記課題を解決するために、以下の手段を採用した。 The present disclosure employs the following means in order to solve the above problems.
 本開示は、排気に含まれる成分を酸化又は還元する三元触媒と、前記排気に含まれる粒子状物質を捕集する粒子フィルタとが排気通路に設けられた内燃機関に適用され、所定の実施条件が成立した場合に、前記粒子フィルタに捕集された前記粒子状物質を燃焼除去する排気処理装置に関する。第1の構成は、前記粒子フィルタに捕集された前記粒子状物質の燃焼除去の実施期間において、前記内燃機関から排出される窒素酸化物の量が所定の排出許容値以下になるように前記内燃機関の空燃比を制御する空燃比制御部を備える。 The present disclosure is applied to an internal combustion engine in which an exhaust passage is provided with a three-way catalyst that oxidizes or reduces components contained in exhaust and a particulate filter that collects particulate matter contained in the exhaust. The present invention relates to an exhaust treatment device that burns and removes the particulate matter collected by the particle filter when a condition is satisfied. In the first configuration, the amount of nitrogen oxides discharged from the internal combustion engine is equal to or less than a predetermined allowable emission value during the period of combustion removal of the particulate matter collected by the particle filter. An air-fuel ratio control unit that controls the air-fuel ratio of the internal combustion engine is provided.
 上記構成では、粒子フィルタに捕集された粒子状物質を燃焼除去する際には、内燃機関から排出される窒素酸化物の量が排出許容値以下になるように空燃比を制御するため、粒子状物質の燃焼除去に際し、窒素酸化物の排出を抑制することができる。これにより、排気エミッションの悪化を抑制しながら、粒子フィルタに捕集された粒子状物質を燃焼除去することができる。 In the above configuration, when the particulate matter collected by the particle filter is burned and removed, the air-fuel ratio is controlled so that the amount of nitrogen oxides discharged from the internal combustion engine is less than or equal to the allowable emission value. In the combustion removal of the particulate matter, the emission of nitrogen oxides can be suppressed. Thereby, it is possible to burn and remove the particulate matter collected by the particle filter while suppressing the deterioration of the exhaust emission.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン制御システムの全体概略構成図であり、 図2は、エンジン排出NOx量と空燃比との関係を示す図であり、 図3は、再生中燃焼A/F値の設定方法を示す図であり、 図4は、第1実施形態のフィルタ再生処理の処理手順を示すフローチャートであり、 図5は、フィルタ再生を実施可能なエンジン運転領域を示す図であり、 図6は、エンジン負荷に応じたエンジン排出NOx量を示す図であり、 図7は、酸素濃度とPM燃焼速度との関係を示す図であり、 図8は、第1実施形態のフィルタ再生処理の具体的態様を示すタイムチャートであり、 図9は、ポスト噴射制御の処理手順を示すフローチャートであり、 図10は、第2実施形態のフィルタ再生処理の処理手順を示すフローチャートであり、 図11は、第2実施形態のフィルタ再生処理の具体的態様を示すタイムチャートであり、 図12は、第3実施形態のフィルタ再生処理の処理手順を示すフローチャートであり、 図13は、第3実施形態のフィルタ再生処理の処理手順を示すタイムチャートであり、 図14は、ポスト噴射における最大噴射量を説明するための図であり、 図15は、第4実施形態のフィルタ再生処理の処理手順を示すフローチャートであり、 図16は、第4実施形態のフィルタ再生処理の処理手順を示すタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an overall schematic configuration diagram of an engine control system, FIG. 2 is a diagram showing the relationship between the engine exhaust NOx amount and the air-fuel ratio, FIG. 3 is a diagram illustrating a method for setting the combustion A / F value during regeneration. FIG. 4 is a flowchart showing a processing procedure of the filter regeneration processing according to the first embodiment. FIG. 5 is a diagram showing an engine operation region in which filter regeneration can be performed. FIG. 6 is a diagram showing the engine exhaust NOx amount according to the engine load. FIG. 7 is a diagram showing the relationship between the oxygen concentration and the PM combustion rate, FIG. 8 is a time chart showing a specific aspect of the filter regeneration processing of the first embodiment. FIG. 9 is a flowchart showing a post-injection control process. FIG. 10 is a flowchart illustrating a processing procedure of the filter regeneration processing according to the second embodiment. FIG. 11 is a time chart showing a specific aspect of the filter regeneration processing of the second embodiment. FIG. 12 is a flowchart showing the processing procedure of the filter regeneration processing of the third embodiment. FIG. 13 is a time chart showing the processing procedure of the filter regeneration processing of the third embodiment. FIG. 14 is a diagram for explaining the maximum injection amount in the post injection, FIG. 15 is a flowchart illustrating a processing procedure of the filter regeneration processing according to the fourth embodiment. FIG. 16 is a time chart showing the processing procedure of the filter regeneration processing of the fourth embodiment.
 (第1実施形態)
 以下、実施形態について図面を参照しつつ説明する。本実施形態は、内燃機関である車載多気筒4サイクルガソリンエンジンであって、筒内噴射式かつ火花点火式のエンジンを対象にエンジン制御システムを構築するものとしている。当該制御システムにおいては、電子制御ユニット(以下、ECUという)を中枢として、燃料噴射量の制御や点火時期の制御等を実施する。このエンジン制御システムの全体概略構成図を図1に示す。
(First embodiment)
Hereinafter, embodiments will be described with reference to the drawings. The present embodiment is an in-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine, and an engine control system is constructed for an in-cylinder injection and spark ignition engine. In the control system, an electronic control unit (hereinafter referred to as ECU) is used as a center to control the fuel injection amount, ignition timing, and the like. FIG. 1 shows an overall schematic configuration diagram of the engine control system.
 図1に示すエンジン10において、吸気管11には、DCモータ等のスロットルアクチュエータ13によって開度調節されるスロットルバルブ14が設けられている。スロットルバルブ14の開度(スロットル開度)は、スロットルアクチュエータ13に内蔵されたスロットル開度センサにより検出される。 1, the intake pipe 11 is provided with a throttle valve 14 whose opening degree is adjusted by a throttle actuator 13 such as a DC motor. The opening of the throttle valve 14 (throttle opening) is detected by a throttle opening sensor built in the throttle actuator 13.
 スロットルバルブ14の下流側にはサージタンク15が設けられ、サージタンク15において、吸気管内圧力を検出するための吸気管内圧力センサ16が設けられている。サージタンク15には、エンジン10の各気筒に空気を導入する吸気マニホールド17が接続されている。吸気マニホールド17は、各気筒の吸気ポートに接続されている。 A surge tank 15 is provided on the downstream side of the throttle valve 14, and an intake pipe pressure sensor 16 for detecting the intake pipe pressure is provided in the surge tank 15. An intake manifold 17 that introduces air into each cylinder of the engine 10 is connected to the surge tank 15. The intake manifold 17 is connected to the intake port of each cylinder.
 エンジン10の吸気ポート及び排気ポートには、それぞれ吸気バルブ18及び排気バルブ19が設けられている。吸気バルブ18の開動作によりサージタンク15内の空気が燃焼室21内に導入され、排気バルブ19の開動作により燃焼後の排ガスが排気管22に排出される。吸気バルブ18及び排気バルブ19の開閉タイミング(バルブタイミング)は、可変バルブタイミング装置20によりそれぞれ可変制御される。 The intake port 18 and the exhaust port 19 of the engine 10 are provided with an intake valve 18 and an exhaust valve 19, respectively. The air in the surge tank 15 is introduced into the combustion chamber 21 by the opening operation of the intake valve 18, and the exhaust gas after combustion is discharged to the exhaust pipe 22 by the opening operation of the exhaust valve 19. The opening / closing timing (valve timing) of the intake valve 18 and the exhaust valve 19 is variably controlled by the variable valve timing device 20.
 エンジン10の各気筒の上部には、燃焼室21内に燃料を直接供給する燃料噴射弁23が取り付けられている。燃料噴射弁23は、図示しない燃料配管を介して燃料タンクに接続されている。燃料タンク内の燃料は各気筒の燃料噴射弁23に供給され、燃料噴射弁23から燃焼室21内に噴射される。 A fuel injection valve 23 for directly supplying fuel into the combustion chamber 21 is attached to the upper part of each cylinder of the engine 10. The fuel injection valve 23 is connected to the fuel tank via a fuel pipe (not shown). The fuel in the fuel tank is supplied to the fuel injection valve 23 of each cylinder, and is injected from the fuel injection valve 23 into the combustion chamber 21.
 エンジン10のシリンダヘッドには点火プラグ24が取り付けられている。点火プラグ24には、点火コイル等よりなる点火装置25を通じて、所望とする点火時期に高電圧が印加される。点火プラグ24に対する高電圧の印加により、各点火プラグ24の対向電極間に火花放電が発生し、燃焼室21内における燃料と吸気との混合気が着火されて燃焼に供される。エンジン10の燃焼制御は、吸気行程、圧縮行程、膨張行程及び排気行程を1燃焼サイクルとして行われる。 A spark plug 24 is attached to the cylinder head of the engine 10. A high voltage is applied to the ignition plug 24 at a desired ignition timing through an ignition device 25 including an ignition coil. By applying a high voltage to the spark plug 24, a spark discharge is generated between the opposing electrodes of each spark plug 24, and the mixture of fuel and intake air in the combustion chamber 21 is ignited and used for combustion. The combustion control of the engine 10 is performed with an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke as one combustion cycle.
 排気管22には、排気を浄化するための排気浄化装置として、三元触媒26とGPF(ガソリンパティキュレートフィルタ)27とが設けられている。三元触媒26は、排気中の成分である一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)を酸化又は還元するための触媒である。GPF27は、排気中の粒子状物質(PM)を捕集するフィルタ装置であり、三元触媒26の下流側に設けられている。GPF27は、酸化触媒(例えばPt等)が表面コーティングされた触媒コート付きフィルタである。 The exhaust pipe 22 is provided with a three-way catalyst 26 and a GPF (gasoline particulate filter) 27 as an exhaust purification device for purifying exhaust. The three-way catalyst 26 is a catalyst for oxidizing or reducing carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx), which are components in the exhaust. The GPF 27 is a filter device that collects particulate matter (PM) in the exhaust gas, and is provided on the downstream side of the three-way catalyst 26. The GPF 27 is a filter with a catalyst coat on which an oxidation catalyst (for example, Pt) is coated.
 排気管22において三元触媒26の上流側及び下流側には、排気を検出対象として混合気の酸素濃度を検出する酸素濃度センサが設けられている。酸素濃度センサとして本実施形態では、三元触媒26の上流側にリニア検出式のA/Fセンサ28が配置され、三元触媒26の下流側に二値検出式のO2センサ29が配置されている。また、排気管22には、GPF27の上流側と下流側との差圧を検出する差圧センサ31が設けられている。差圧センサ31により、GPF27に堆積したPM量を検出可能である。排気管22において三元触媒26の下流側であってGPF27の上流側には、排気温度を検出する排気温度センサ32が設けられている。 In the exhaust pipe 22, upstream and downstream of the three-way catalyst 26 are provided oxygen concentration sensors that detect the oxygen concentration of the air-fuel mixture using exhaust as a detection target. In the present embodiment, as the oxygen concentration sensor, a linear detection type A / F sensor 28 is arranged upstream of the three-way catalyst 26, and a binary detection type O2 sensor 29 is arranged downstream of the three-way catalyst 26. Yes. The exhaust pipe 22 is provided with a differential pressure sensor 31 that detects a differential pressure between the upstream side and the downstream side of the GPF 27. The PM amount accumulated on the GPF 27 can be detected by the differential pressure sensor 31. An exhaust temperature sensor 32 for detecting the exhaust temperature is provided on the exhaust pipe 22 downstream of the three-way catalyst 26 and upstream of the GPF 27.
 本システムには、排気を利用して空気の圧縮を行う過給機が設けられている。過給機は、吸気管11においてスロットルバルブ14の上流側に配置された吸気コンプレッサ33と、排気管22において排気ポートの出口付近であって三元触媒26の上流側に配置された排気タービン34と、を備えている。吸気コンプレッサ33と排気タービン34とは回転軸35によって連結されている。排気管22内を流れる排気によって排気タービン34が回転されると、その回転に伴い吸気コンプレッサ33が回転される。このとき、吸気コンプレッサ33の回転により生じる遠心力によって吸気管11内の吸気が圧縮される。吸気管11には、吸気コンプレッサ33の下流側に、熱交換器としてのインタクーラ12が配置されている。過給された吸気がインタクーラ12によって冷却されることで、圧縮効率の低下が抑制される。 This system is equipped with a supercharger that compresses air using exhaust. The supercharger includes an intake compressor 33 disposed on the upstream side of the throttle valve 14 in the intake pipe 11, and an exhaust turbine 34 disposed on the upstream side of the three-way catalyst 26 near the outlet of the exhaust port in the exhaust pipe 22. And. The intake compressor 33 and the exhaust turbine 34 are connected by a rotating shaft 35. When the exhaust turbine 34 is rotated by the exhaust gas flowing in the exhaust pipe 22, the intake compressor 33 is rotated along with the rotation. At this time, the intake air in the intake pipe 11 is compressed by the centrifugal force generated by the rotation of the intake compressor 33. In the intake pipe 11, an intercooler 12 as a heat exchanger is disposed downstream of the intake compressor 33. Since the supercharged intake air is cooled by the intercooler 12, a decrease in compression efficiency is suppressed.
 その他、エンジン10には、冷却水温を検出する冷却水温センサ41や、エンジン10の所定クランク角毎に矩形状のクランク角信号を出力するクランク角センサ42などが設けられている。 In addition, the engine 10 is provided with a coolant temperature sensor 41 that detects the coolant temperature, a crank angle sensor 42 that outputs a rectangular crank angle signal for each predetermined crank angle of the engine 10, and the like.
 ECU50は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータ(以下、マイコンという)を主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、都度のエンジン運転状態に応じてエンジン10の各種制御を実施する。すなわち、ECU50は、前述した各種センサなどから各々検出信号を入力し、それら入力した各種検出信号に基づいて、燃料噴射量や燃料噴射時期、点火時期等を演算して燃料噴射弁23や点火装置25の駆動等を制御する。燃料噴射制御について、ECU50は、都度のエンジン運転状態(例えばエンジン回転速度やエンジン負荷)に基づいて、噴射時期及び噴射量を算出する。また、算出した噴射時期に所望の噴射量の燃料が噴射されるよう燃料噴射弁23の駆動を制御する。 As is well known, the ECU 50 is mainly composed of a microcomputer (hereinafter referred to as a microcomputer) composed of a CPU, ROM, RAM, etc., and executes various control programs stored in the ROM, so that the ECU 50 responds to each engine operating state. Various controls of the engine 10 are performed. That is, the ECU 50 inputs detection signals from the various sensors described above, calculates the fuel injection amount, fuel injection timing, ignition timing, etc. based on the input various detection signals, and calculates the fuel injection valve 23 and the ignition device. 25 drive and the like are controlled. Regarding the fuel injection control, the ECU 50 calculates the injection timing and the injection amount based on the engine operating state (for example, engine speed and engine load). Further, the driving of the fuel injection valve 23 is controlled so that a desired injection amount of fuel is injected at the calculated injection timing.
 ECU50は、スロットルバルブ14の開度(以下、「スロットル開度」ともいう。)や、燃料噴射弁23から燃焼室21内に噴射される燃料の量を調整することで空燃比制御を実施している。具体的には、通常時には、エンジン10の空燃比が理論空燃比(A/F≒14.7)となるようにスロットル開度及び燃料噴射量を制御するストイキ運転を行っている。 The ECU 50 performs air-fuel ratio control by adjusting the opening of the throttle valve 14 (hereinafter also referred to as “throttle opening”) and the amount of fuel injected from the fuel injection valve 23 into the combustion chamber 21. ing. Specifically, at the normal time, stoichiometric operation is performed to control the throttle opening and the fuel injection amount so that the air-fuel ratio of the engine 10 becomes the stoichiometric air-fuel ratio (A / F≈14.7).
 なお、エンジン10はストイキエンジンであるが、リーン空燃比でも運転可能である。具体的には、リーン燃焼の空気過剰分をEGR率に置き換えると、エンジン10の全運転領域において、昇温のみを実施する場合には18%以上のEGR率で運転可能であり、昇温とフィルタ再生とを実施する場合には25%以上のEGR率で運転可能である。 The engine 10 is a stoichiometric engine, but can be operated even with a lean air-fuel ratio. Specifically, when the excess air amount of lean combustion is replaced with the EGR rate, in the entire operation region of the engine 10, when only the temperature rise is performed, the engine 10 can be operated at an EGR rate of 18% or more. When performing filter regeneration, it is possible to operate at an EGR rate of 25% or more.
 ECU50は、GPF27にPMが所定量以上堆積したと判断した場合に、GPF27に堆積したPMを燃焼除去するフィルタ再生制御を実施する。これにより、GPF27のPM捕集機能の再生(フィルタ再生)を行う。フィルタ再生を行うには、GPF27の温度(以下、「フィルタ温度」ともいう。)が所定温度以上であって、かつGPF27に酸素が存在していることが必要である。 When the ECU 50 determines that a predetermined amount or more of PM has accumulated on the GPF 27, the ECU 50 performs filter regeneration control for burning and removing the PM accumulated on the GPF 27. Thereby, regeneration (filter regeneration) of the PM collection function of the GPF 27 is performed. In order to perform filter regeneration, it is necessary that the temperature of the GPF 27 (hereinafter also referred to as “filter temperature”) is equal to or higher than a predetermined temperature and oxygen is present in the GPF 27.
 理論空燃比での燃焼(ストイキ燃焼)が行われている状況下では、排気に含まれる酸素は極めて少ない。そのため、ストイキ燃焼中はフィルタ再生に必要な量の酸素がGPF27に供給されず、フィルタ再生を実施できない。そこで、フィルタ再生時には、理論空燃比よりも一時的にリーンとなるように空燃比を制御することにより、フィルタ再生に必要な量の酸素をGPF27に供給することが考えられる。しかしながら、三元触媒26を用いた排気浄化システムの場合、フィルタ再生のために単にリーン化するだけでは、空燃比が三元触媒26の浄化ウィンドからリーン側に外れることによってNOx浄化率が低下し、NOxエミッションの悪化を招くことが懸念される。 ¡Under the situation where combustion at stoichiometric air-fuel ratio (stoichiometric combustion) is performed, the oxygen contained in the exhaust is extremely small. Therefore, during the stoichiometric combustion, the amount of oxygen necessary for filter regeneration is not supplied to the GPF 27, and filter regeneration cannot be performed. Therefore, it is conceivable to supply the GPF 27 with an amount of oxygen necessary for filter regeneration by controlling the air-fuel ratio so that it is temporarily leaner than the stoichiometric air-fuel ratio during filter regeneration. However, in the case of an exhaust purification system using the three-way catalyst 26, simply by making it lean for filter regeneration, the NOx purification rate decreases due to the air-fuel ratio deviating from the purification window of the three-way catalyst 26 to the lean side. There is a concern that NOx emissions will deteriorate.
 ここで、燃料の燃焼によってエンジン10から排出される排気中のNOx量は空燃比に応じて異なる。具体的には、図2に示すように、空燃比をストイキからリーン限界に近付けるとNOx量は一旦増加し、その後リーン側になるにつれて徐々に減少する。また、空燃比をストイキからリッチ限界に近付けると、リッチ側になるにつれてNOx量は徐々に減少する。この点に着目し、本実施形態では、GPF27で捕集されたPMの燃焼除去を実施する期間では、エンジン10から排出されるNOxの量(以下、「エンジン排出NOx量」ともいう。)が、エンジン10からの排出を許容する値として予め定めた値(以下、「排出許容値NOth」という。)以下になるように空燃比を制御することとしている。これにより、PMの燃焼除去の実施期間では、GPF27に十分な量の酸素を供給しつつ、エンジン10から排出されるNOx量自体が少なくなるようにしている。 Here, the amount of NOx in the exhaust discharged from the engine 10 due to the combustion of fuel varies depending on the air-fuel ratio. Specifically, as shown in FIG. 2, when the air-fuel ratio is brought closer to the lean limit from stoichiometry, the NOx amount once increases and then gradually decreases as it becomes leaner. Further, when the air-fuel ratio is brought closer to the rich limit from stoichiometry, the NOx amount gradually decreases as it becomes richer. Focusing on this point, in the present embodiment, the amount of NOx discharged from the engine 10 (hereinafter also referred to as “engine exhausted NOx amount”) during the period in which the PM collected by the GPF 27 is burned and removed. The air-fuel ratio is controlled so as to be equal to or less than a predetermined value (hereinafter referred to as “emission allowable value NOth”) as a value allowing discharge from the engine 10. As a result, during the PM combustion removal period, a sufficient amount of oxygen is supplied to the GPF 27, while the amount of NOx discharged from the engine 10 itself is reduced.
 特に本実施形態では、エンジン10の燃焼時における空燃比を理論空燃比よりもリーン側で制御することによって、PMの燃焼除去の実施期間においてエンジン排出NOx量が排出許容値NOth以下となるようにしている。具体的には、図2に示すように、リーン側において、エンジン排出NOx量が排出許容値NOth以下となる空燃比範囲の下限値であるA/F下限値Amin(例えば、A/F≒19)と、エンジン10において正常燃焼が可能な空燃比の限界(リーン限界)であるA/F上限値Amax(例えば、A/F≒23)とによって定められる範囲をNOx抑制範囲Rafとしている。そして、フィルタ再生時には、燃焼A/FがNOx抑制範囲Raf内となるように制御している。 In particular, in the present embodiment, the air-fuel ratio at the time of combustion of the engine 10 is controlled to be leaner than the stoichiometric air-fuel ratio, so that the engine exhaust NOx amount becomes equal to or less than the allowable emission value NOth during the PM combustion removal period. ing. Specifically, as shown in FIG. 2, on the lean side, the A / F lower limit value Amin (for example, A / F≈19) that is the lower limit value of the air-fuel ratio range in which the engine exhaust NOx amount is equal to or less than the allowable discharge value NOth. ) And an A / F upper limit value Amax (for example, A / F≈23) that is a limit (lean limit) of an air-fuel ratio at which normal combustion is possible in the engine 10 is defined as a NOx suppression range Raf. During filter regeneration, the combustion A / F is controlled to be within the NOx suppression range Raf.
 図3を用いて、本実施形態のフィルタ再生処理について説明する。フィルタ再生時には、排気中の酸素濃度を、NOxの排出を排出許容値NOth以下に抑制可能な酸素濃度に確保しつつ、GPF27に供給される排気中の酸素濃度が、PMの燃焼速度の要求に基づき定めた所定濃度以上になるように空燃比を制御する。これにより、NOx排出抑制要求と、PMの燃焼速度を所定値以上とするために必要とされる排気中の酸素濃度に基づく要求(以下、単に「酸素濃度要求」ともいう。)と、を満たすように空燃比を制御する。 The filter regeneration processing of this embodiment will be described with reference to FIG. At the time of filter regeneration, the oxygen concentration in the exhaust gas supplied to the GPF 27 satisfies the demand for the combustion rate of PM while ensuring the oxygen concentration in the exhaust gas so that the NOx emission can be suppressed to the emission allowable value NOth or less. The air-fuel ratio is controlled so as to be equal to or higher than the predetermined concentration determined based on the above. Thus, the NOx emission suppression request and the request based on the oxygen concentration in the exhaust gas required for setting the PM combustion rate to a predetermined value or higher (hereinafter also simply referred to as “oxygen concentration request”) are satisfied. The air-fuel ratio is controlled as follows.
 具体的には、酸素濃度要求を満たすための空燃比であるO2要求A/F値Ao2と、A/F下限値Aminとを比較し、これらのうち、理論空燃比(ストイキ)からの乖離量が大きい空燃比、すなわち、よりリーン側の空燃比を用いて燃焼を行う。例えば、O2要求A/F値Ao2が、A/F下限値Aminよりも理論空燃比から離れており、リーン側の値A2である場合にはO2要求A/F値Ao2を燃焼A/Fに設定する。一方、O2要求A/F値Ao2が、A/F下限値Aminよりも理論空燃比に近く、リッチ側の所定値A1である場合には、NOx抑制要求を満たすA/Fのうち、リッチ側の境界値であるA/F下限値Aminを燃焼A/Fに設定する。そして、その設定した燃焼A/Fとなるようにエンジン10の吸気量や燃料噴射量を制御する。なお、「O2要求A/F値Ao2」が第1要求空燃比に相当し、「A/F下限値Amin」が第2要求空燃比に相当する。 Specifically, the O2 required A / F value Ao2 that is an air-fuel ratio for satisfying the oxygen concentration request is compared with the A / F lower limit value Amin, and among these, the amount of deviation from the stoichiometric air-fuel ratio (stoichiometric) The combustion is performed using a large air-fuel ratio, that is, a leaner air-fuel ratio. For example, when the O2 required A / F value Ao2 is farther from the stoichiometric air-fuel ratio than the A / F lower limit value Amin and is the lean value A2, the O2 required A / F value Ao2 is changed to the combustion A / F. Set. On the other hand, when the O2 required A / F value Ao2 is closer to the stoichiometric air-fuel ratio than the A / F lower limit value Amin and is the predetermined value A1 on the rich side, the rich side of the A / F that satisfies the NOx suppression request A / F lower limit value Amin, which is the boundary value, is set to combustion A / F. Then, the intake air amount and the fuel injection amount of the engine 10 are controlled so as to achieve the set combustion A / F. Note that “O2 required A / F value Ao2” corresponds to the first required air-fuel ratio, and “A / F lower limit value Amin” corresponds to the second required air-fuel ratio.
 次に、本実施形態のフィルタ再生処理の処理手順について、図4のフローチャートを用いて説明する。この処理は、ECU50により所定時間毎に実行される。 Next, the processing procedure of the filter regeneration processing of this embodiment will be described using the flowchart of FIG. This process is executed by the ECU 50 every predetermined time.
 図4において、ステップS101では、PM堆積量に基づいてフィルタ再生要求が有るか否かを判定する。ここでは、GPF27にPMが再生判定値Wth以上堆積しているか否かを判定する。具体的には、差圧センサ31の検出値を用い、GPF27の上流側と下流側との差圧が所定圧以上になった場合に肯定判定される。 In FIG. 4, in step S101, it is determined whether there is a filter regeneration request based on the PM accumulation amount. Here, it is determined whether or not PM is accumulated in the GPF 27 at a regeneration determination value Wth or more. Specifically, using the detected value of the differential pressure sensor 31, an affirmative determination is made when the differential pressure between the upstream side and the downstream side of the GPF 27 exceeds a predetermined pressure.
 なお、フィルタ再生の要否を判定する方法としては、差圧センサ31を用いる方法に限らない。例えば、(1)PMセンサを用いて検出したPM量が所定値以上になったこと、(2)前回のフィルタ再生処理から所定時間以上が経過したこと、(3)前回のフィルタ再生処理から所定距離以上走行したこと、等といった条件を満たすか否かを判定することによってフィルタ再生の要否を判定してもよい。 It should be noted that the method for determining the necessity of filter regeneration is not limited to the method using the differential pressure sensor 31. For example, (1) the amount of PM detected using the PM sensor has become a predetermined value or more, (2) a predetermined time or more has passed since the previous filter regeneration process, and (3) a predetermined value from the previous filter regeneration process. Whether or not the filter regeneration is necessary may be determined by determining whether or not a condition such as traveling more than a distance is satisfied.
 フィルタ再生要求有りと判定されると、ステップS102~S105で、フィルタ再生処理の実施条件が成立しているか否かを判定する。具体的には、まずステップS102で、エンジン10が稼働中であるか否かを判定する。エンジン稼働中であれば、ステップS103へ進み、冷却水温センサ41の検出値等を用いて、エンジン10の暖機が完了したか否かを判定する。暖機が完了していればステップS104へ進み、現在のエンジン運転状態が、フィルタ再生を実施可能な運転領域内にあるか否かを判定する。ここでは、エンジン回転速度とエンジン負荷(例えば、吸気管内圧力)とに対応させて、フィルタ再生を実施可能なエンジン運転領域がマップ等(例えば、図5のマップ)として予め定められている。このマップ等を用いて、エンジン回転速度及びエンジン負荷の検出値から、フィルタ再生を実施可能なエンジン運転領域にあるか否かを判定する。 If it is determined that there is a filter regeneration request, it is determined in steps S102 to S105 whether or not the conditions for executing the filter regeneration process are satisfied. Specifically, first, in step S102, it is determined whether or not the engine 10 is operating. If the engine is operating, the process proceeds to step S103, and it is determined whether or not the engine 10 has been warmed up using the detected value of the coolant temperature sensor 41 or the like. If the warm-up is completed, the process proceeds to step S104, and it is determined whether or not the current engine operation state is within an operation region where filter regeneration can be performed. Here, an engine operating region in which filter regeneration can be performed is determined in advance as a map or the like (for example, the map of FIG. 5) in accordance with the engine rotation speed and the engine load (for example, the intake pipe pressure). By using this map or the like, it is determined from the detected values of the engine speed and the engine load whether or not the engine is in an engine operating region where filter regeneration can be performed.
 図5のマップによれば、所定の中回転/中・高負荷領域及び中・高回転/中負荷領域である領域Aではフィルタ再生が許可される。所定の低回転/低負荷領域B、及び所定の高回転/高負荷領域Cではフィルタ再生が禁止される。領域Aは、要求通りに空燃比をリーン側に制御可能な運転領域である。 According to the map of FIG. 5, filter regeneration is permitted in the predetermined medium rotation / medium / high load region and medium A / high rotation / medium load region A. Filter regeneration is prohibited in a predetermined low rotation / low load region B and a predetermined high rotation / high load region C. Region A is an operating region in which the air-fuel ratio can be controlled to the lean side as required.
 フィルタ再生を実施可能なエンジン運転領域にあると判定されると、ステップS105へ進み、GPF27の温度(以下、「フィルタ温度」ともいう。)が目標温度Tpmよりも高温であるか否かを判定する。目標温度Tpmは、PMの着火温度に基づき予め定められており、例えば600℃又はその近傍の値が設定されている。フィルタ温度は、エンジン運転状態や排気温度から推定してもよいし、あるいはフィルタ温度を検出する温度センサを設けて直接検出してもよい。このステップS105では、フィルタ再生開始前のフィルタ温度を対象として判定を行う。 If it is determined that the engine is in the engine operating region where filter regeneration can be performed, the process proceeds to step S105, where it is determined whether the temperature of the GPF 27 (hereinafter also referred to as “filter temperature”) is higher than the target temperature Tpm. To do. The target temperature Tpm is determined in advance based on the ignition temperature of PM. For example, the target temperature Tpm is set to 600 ° C. or a value in the vicinity thereof. The filter temperature may be estimated from the engine operating state or the exhaust gas temperature, or may be directly detected by providing a temperature sensor that detects the filter temperature. In this step S105, determination is performed on the filter temperature before the start of filter regeneration.
 ステップS102~S105の少なくともいずれかで否定判定された場合には、フィルタ再生処理の実施条件が全て成立するまでフィルタ再生を開始せずにそのまま待機する。ステップS102~S105の全てで肯定判定された場合、フィルタ再生処理の実施条件が成立したとしてステップS106へ進む。 When a negative determination is made in at least one of steps S102 to S105, the filter regeneration is not started and the process waits as it is until all the conditions for executing the filter regeneration processing are satisfied. When an affirmative determination is made in all of steps S102 to S105, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S106.
 ステップS106では、A/F下限値Aminを算出する。ここで、エンジン排出NOx量はエンジン運転状態に応じて異なり、図6に示すように、エンジン負荷が高負荷であるほどエンジン排出NOx量が多くなる。また、これに伴い、エンジン10が高負荷であるほど、エンジン排出NOx量が排出許容値NOth以下となる空燃比範囲の下限値がリーン側になる。そこで本実施形態では、エンジン負荷に基づいてA/F下限値Aminを算出する。具体的には、図6に示すマップを予め定めて記憶させておき、このマップを用いて、都度のエンジン負荷に対応するA/F下限値Aminを読み出す。図6のマップによれば、エンジン10が高負荷ほどA/F下限値Aminとしてはリーン側の値が設定される。 In step S106, an A / F lower limit value Amin is calculated. Here, the engine exhaust NOx amount varies depending on the engine operating state, and as shown in FIG. 6, the engine exhaust NOx amount increases as the engine load increases. Accordingly, the lower the lower limit value of the air-fuel ratio range in which the amount of engine exhaust NOx becomes equal to or less than the allowable discharge value NOth becomes leaner as the engine 10 is more heavily loaded. Therefore, in this embodiment, the A / F lower limit value Amin is calculated based on the engine load. Specifically, the map shown in FIG. 6 is determined and stored in advance, and the A / F lower limit value Amin corresponding to each engine load is read using this map. According to the map of FIG. 6, the leaner value is set as the A / F lower limit value Amin as the engine 10 becomes higher in load.
 ステップS107では、酸素濃度要求を満たすための空燃比としてO2要求A/F値Ao2を算出する。図7に、GPF27に供給される排気中の酸素濃度と、PM燃焼速度との関係を示す。排気中の酸素濃度が低濃度の範囲では、PM燃焼速度が大きく低下する。このため、限られた時間内に確実にフィルタ再生を行うようにするためには、排気中の酸素濃度をある程度以上の濃度に確保できるように空燃比を制御する必要がある。 In step S107, an O2 required A / F value Ao2 is calculated as an air-fuel ratio for satisfying the oxygen concentration request. FIG. 7 shows the relationship between the oxygen concentration in the exhaust gas supplied to the GPF 27 and the PM combustion rate. When the oxygen concentration in the exhaust gas is in a low concentration range, the PM combustion rate is greatly reduced. For this reason, in order to reliably perform filter regeneration within a limited time, it is necessary to control the air-fuel ratio so that the oxygen concentration in the exhaust gas can be secured to a certain level or more.
 この点に鑑み、本実施形態では、最低限確保すべき燃焼速度Vminを補償するための酸素濃度(以下、「最低O2濃度Dmin」ともいう。)を予め設定しておき、最低O2濃度Dminを確保することが可能となるようにO2要求A/F値Ao2を設定する。ここでは、排気中の酸素濃度を増大側へ変化させた場合にPM燃焼速度の変化量が所定値以下に収束する酸素濃度範囲の下限値D1(例えば5%程度)をO2要求A/F値Ao2に設定する。リーン限界に近付くほど、排気温度が低下したり燃焼安定性が低下したりしやすいため、本実施形態では過剰なリーン化を抑制するべく、O2要求A/F値Ao2を下限値D1に設定している。 In view of this point, in the present embodiment, an oxygen concentration (hereinafter also referred to as “minimum O2 concentration Dmin”) for compensating for a combustion speed Vmin that should be ensured at a minimum is set in advance, and the minimum O2 concentration Dmin is set. The O2 request A / F value Ao2 is set so that it can be secured. Here, the lower limit value D1 (for example, about 5%) of the oxygen concentration range in which the change amount of the PM combustion speed converges to a predetermined value or less when the oxygen concentration in the exhaust gas is increased is increased to the O2 required A / F value. Set to Ao2. Since the exhaust temperature tends to decrease or the combustion stability tends to decrease as the lean limit is approached, in this embodiment, the O2 requirement A / F value Ao2 is set to the lower limit value D1 in order to suppress excessive leaning. ing.
 続くステップS108では、O2要求A/F値Ao2がA/F下限値Aminよりも大きいか否か、つまりO2要求A/F値Ao2がA/F下限値Aminよりもリーン側の値であるか否かを判定する。O2要求A/F値Ao2がA/F下限値Aminよりもリーン側の値であれば、ステップS109へ進み、フィルタ再生中の燃焼空燃比(以下、「再生中燃焼A/F」ともいう。)としてO2要求A/F値Ao2を設定する。一方、O2要求A/F値Ao2がA/F下限値Aminよりもリッチ側の値である場合には、ステップS110へ進み、再生中燃焼A/FとしてA/F下限値Aminを設定する。その後、ステップS111へ進む。 In the following step S108, it is determined whether or not the O2 request A / F value Ao2 is larger than the A / F lower limit value Amin, that is, whether the O2 request A / F value Ao2 is a value on the lean side of the A / F lower limit value Amin. Determine whether or not. If the O2 requirement A / F value Ao2 is a value on the lean side of the A / F lower limit value Amin, the process proceeds to step S109, and the combustion air-fuel ratio during filter regeneration (hereinafter also referred to as “regeneration combustion A / F”). ) To set the O2 request A / F value Ao2. On the other hand, if the O2 required A / F value Ao2 is a value on the richer side than the A / F lower limit value Amin, the process proceeds to step S110, and the A / F lower limit value Amin is set as the combustion A / F during regeneration. Thereafter, the process proceeds to step S111.
 ステップS111では、リーン化の開始後において排気温度が目標温度Tpmよりも高いか否かを判定する。排気温度が目標温度Tpmよりも高い場合にはステップS113へ進む。一方、排気温度が目標温度Tpm以下である場合には、ステップS112へ進み、排気昇温制御を実施する。これにより、フィルタ温度が目標温度Tpmよりも高温である状態を補償している。排気昇温制御としては、例えば点火遅角等が挙げられる。排気昇温制御は、図示しない別ルーチンにより実行される。なお、排気温度については、排気温度センサ32の検出値を用いてもよいし、エンジン運転状態から推定される推定値を用いてもよい。リーン化の開始前又はリーン化開始直後の所定時間内では、ステップS111及びS112の処理を実施せずにステップS113へ進む。あるいは、リーン化開始直後の所定時間においては、リーン化を開始してから所定時間後の排気温度を推定し、その推定値に基づいて排気昇温制御を実施してもよい。 In step S111, it is determined whether or not the exhaust gas temperature is higher than the target temperature Tpm after the start of leaning. If the exhaust temperature is higher than the target temperature Tpm, the process proceeds to step S113. On the other hand, when the exhaust gas temperature is equal to or lower than the target temperature Tpm, the process proceeds to step S112, and exhaust gas temperature raising control is performed. As a result, the state where the filter temperature is higher than the target temperature Tpm is compensated. As the exhaust gas temperature raising control, for example, ignition delay angle and the like can be mentioned. The exhaust gas temperature raising control is executed by a separate routine (not shown). As for the exhaust temperature, a detection value of the exhaust temperature sensor 32 may be used, or an estimated value estimated from the engine operating state may be used. In a predetermined time before the start of leaning or immediately after the start of leaning, the process proceeds to step S113 without performing the processes of steps S111 and S112. Alternatively, in a predetermined time immediately after the start of leaning, the exhaust gas temperature may be estimated after a predetermined time from the start of leaning, and the exhaust gas temperature raising control may be performed based on the estimated value.
 続くステップS113では、フィルタ再生処理を実施する。具体的には、空燃比が再生中燃焼A/Fとなるように、例えばエンジン10の吸気量を制御する。これにより、フィルタ再生処理を実施する。ステップS114では、フィルタ再生処理によるPM燃焼量を算出し、ステップS115で、所定のPM量(例えば、フィルタ再生処理の開始時のPM堆積量)を燃焼できたかどうかを判定する。ステップS115で否定判定された場合には、ステップS102以降の処理を再度実行する。ステップS115で肯定判定されると、ステップS116へ進み、フィルタ再生を終了して、本ルーチンを終了する。 In subsequent step S113, filter regeneration processing is performed. Specifically, for example, the intake air amount of the engine 10 is controlled so that the air-fuel ratio becomes the combustion A / F during regeneration. Thereby, filter regeneration processing is performed. In step S114, the PM combustion amount by the filter regeneration process is calculated, and in step S115, it is determined whether or not a predetermined PM amount (for example, the PM accumulation amount at the start of the filter regeneration process) has been combusted. If a negative determination is made in step S115, the processing after step S102 is executed again. If a positive determination is made in step S115, the process proceeds to step S116, the filter regeneration is terminated, and this routine is terminated.
 次に、本実施形態のフィルタ再生処理の具体的態様について、図8のタイムチャートを用いて説明する。図8では、PM堆積量が再生判定値Wth以上となり、フィルタ再生要求があった場合を想定している。 Next, a specific aspect of the filter regeneration process of the present embodiment will be described using the time chart of FIG. In FIG. 8, it is assumed that the PM accumulation amount is equal to or greater than the regeneration determination value Wth and a filter regeneration request is made.
 フィルタ再生要求が有った後においてフィルタ温度が目標温度Tpmよりも低いと、暫くの間はフィルタ再生処理が開始されず、燃焼A/Fはストイキで制御される。そして、排気温度が上昇してフィルタ温度が目標温度Tpmよりも高温になると、その時刻t11で再生中燃焼A/Fとしてストイキよりもリーン側の値が設定され、フィルタ再生が開始される。 If there is a filter regeneration request and the filter temperature is lower than the target temperature Tpm, the filter regeneration process is not started for a while, and the combustion A / F is controlled by stoichiometry. When the exhaust gas temperature rises and the filter temperature becomes higher than the target temperature Tpm, a value on the lean side of the stoichiometric value is set as the combustion A / F during regeneration at time t11, and filter regeneration is started.
 このとき、O2要求A/F値Ao2(図8中の一点鎖線参照)よりもA/F下限値Aminの方がリーン側である場合には、図8に示すように、エミッション要求に基づきA/F下限値Aminが再生中燃焼A/Fに設定されて、A/F下限値Aminとなるように吸気量が制御される。つまり、フィルタ温度が十分に高く、O2要求A/F値Ao2で制御すれば堆積PMを燃焼除去可能であっても、O2要求A/F値Ao2がNOx抑制範囲Rafよりもリッチ側である場合には、さらにリーン化した状態でフィルタ再生を行う。これにより、エンジン10から排出されるNOx量を許容範囲に収めながらフィルタ再生が行われる。なお、図8の「A/F」及び「排気中O2濃度」中の一点鎖線は、フィルタ再生時にO2要求A/F値Ao2で空燃比制御を行った場合を示している。フィルタ再生によりGPF27に堆積したPMが燃焼除去されると、その時刻t12でリーン化が終了され、ストイキ制御に切り替えられる。 At this time, if the A / F lower limit Amin is leaner than the O2 required A / F value Ao2 (see the one-dot chain line in FIG. 8), as shown in FIG. / F lower limit value Amin is set to the combustion A / F during regeneration, and the intake air amount is controlled to become the A / F lower limit value Amin. That is, when the filter temperature is sufficiently high and the accumulated PM can be removed by combustion if controlled by the O2 required A / F value Ao2, the O2 required A / F value Ao2 is richer than the NOx suppression range Raf. First, filter regeneration is performed in a lean state. Thereby, filter regeneration is performed while keeping the amount of NOx discharged from the engine 10 within an allowable range. Note that the alternate long and short dash lines in “A / F” and “O2 concentration in exhaust” in FIG. 8 indicate the case where air-fuel ratio control is performed with the O2 required A / F value Ao2 during filter regeneration. When PM accumulated on the GPF 27 is burned and removed by the filter regeneration, leaning is finished at the time t12, and the control is switched to the stoichiometric control.
 以上詳述した本実施形態によれば、次の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 フィルタ再生時には、エンジン排出NOx量が排出許容値NOth以下になるように空燃比を制御するため、GPF27に堆積したPMの燃焼除去に際し、窒素酸化物の排出を抑制することができる。これにより、排気エミッションの悪化を抑制しながらPMを燃焼除去することができる。 During the regeneration of the filter, the air-fuel ratio is controlled so that the amount of engine exhaust NOx becomes equal to or less than the allowable exhaust value NOth. Therefore, the emission of nitrogen oxides can be suppressed during the combustion removal of the PM deposited on the GPF 27. As a result, PM can be removed by combustion while suppressing deterioration of exhaust emission.
 堆積PMの燃焼速度はGPF27に供給される酸素濃度に依存し、酸素濃度が高いほどPM燃焼速度が速くなる。この点に鑑み、NOx排出抑制に基づく要求(NOx抑制要求)に加え、PM燃焼除去のための酸素濃度要求を考慮して再生中燃焼A/Fを設定するため、NOx排出を抑制しながら迅速にフィルタ再生を行うことができる。 The burning rate of the deposited PM depends on the oxygen concentration supplied to the GPF 27. The higher the oxygen concentration, the faster the PM burning rate. In view of this point, in addition to the request based on NOx emission suppression (NOx suppression request), the regeneration A / F during regeneration is set in consideration of the oxygen concentration requirement for PM combustion removal, so that while quickly suppressing NOx emission Filter regeneration can be performed.
 具体的には、GPF27に供給される排気中の酸素濃度を、PMの燃焼速度の要求を満たす酸素濃度とするための空燃比である第1要求空燃比としてO2要求A/F値Ao2を算出するとともに、PMの燃焼除去の実施期間においてエンジン10から排出されるNOx量を排出許容値NOth以下とするための空燃比である第2要求空燃比としてA/F下限値Aminを算出し、O2要求A/F値Ao2及びA/F下限値Aminのうち、リーン側の値を用いて空燃比制御を行うことによりフィルタ再生処理を実施する構成とした。この構成によれば、第1要求空燃比が第2要求空燃比よりもリーン側であり、第1要求空燃比での制御によって酸素濃度要求とNOx抑制要求とを満たす場合には、それ以上のリーン化を行わないため、過剰なリーン化を抑制しつつ排気エミッションの悪化を抑制することができる。逆に、第1要求空燃比ではNOx抑制要求を満たさない場合には、第2要求空燃比でフィルタ再生を行うため、フィルタ再生を迅速に行いつつ排気エミッションの悪化を抑制することができる。 Specifically, the O2 required A / F value Ao2 is calculated as the first required air-fuel ratio that is the air-fuel ratio for setting the oxygen concentration in the exhaust gas supplied to the GPF 27 to an oxygen concentration that satisfies the PM combustion speed requirement. In addition, the A / F lower limit value Amin is calculated as the second required air-fuel ratio, which is the air-fuel ratio for making the NOx amount exhausted from the engine 10 equal to or less than the allowable emission value NOth during the period of PM combustion removal, and O2 Of the required A / F value Ao2 and the A / F lower limit value Amin, a filter regeneration process is performed by performing air-fuel ratio control using a lean value. According to this configuration, when the first required air-fuel ratio is leaner than the second required air-fuel ratio and the oxygen concentration request and the NOx suppression request are satisfied by the control at the first required air-fuel ratio, more than that is required. Since leaning is not performed, deterioration of exhaust emission can be suppressed while suppressing excessive leaning. On the other hand, when the NOx suppression request is not satisfied at the first required air-fuel ratio, the filter regeneration is performed at the second required air-fuel ratio. Therefore, the deterioration of exhaust emission can be suppressed while the filter regeneration is performed quickly.
 また、第2要求空燃比としてA/F下限値Aminを用いるため、第1要求空燃比が第2要求空燃比よりもリッチ側であり、第1要求空燃比よりもリーン側の空燃比でフィルタ再生を行う場合に、過剰なリーン化を抑制することができる。これにより、リーン化に起因する排気温度の低下を抑制でき、また、燃焼安定性を確保することができる。 Further, since the A / F lower limit value Amin is used as the second required air-fuel ratio, the first required air-fuel ratio is richer than the second required air-fuel ratio, and the air-fuel ratio is leaner than the first required air-fuel ratio. When performing regeneration, excessive leaning can be suppressed. Thereby, the fall of the exhaust temperature resulting from leaning can be suppressed, and combustion stability can be ensured.
 エンジン負荷に基づいてA/F下限値Aminを設定するため、エンジン排出NOx量が排出許容値NOth以下となる空燃比がエンジン負荷に応じて異なる場合にも、NOx抑制のための適切な空燃比でフィルタ再生を行うことができる。具体的には、エンジン10が高負荷運転状態のときには、A/F下限値Aminがよりリーン側に設定されるため、高負荷運転時にもNOx排出を十分に抑制することができる。また、エンジン10が低負荷運転状態のときには、A/F下限値Aminが比較的リッチ側に設定されるため、失火の発生をできるだけ抑制しつつNOxの排出を抑制することができる。 Since the A / F lower limit value Amin is set based on the engine load, even when the air-fuel ratio at which the engine exhaust NOx amount is equal to or less than the allowable discharge value NOth varies depending on the engine load, an appropriate air-fuel ratio for suppressing NOx Filter regeneration can be performed. Specifically, when the engine 10 is in a high load operation state, the A / F lower limit value Amin is set to a leaner side, so that NOx emission can be sufficiently suppressed even during high load operation. Further, when the engine 10 is in the low load operation state, the A / F lower limit value Amin is set to a relatively rich side, so that NOx emission can be suppressed while suppressing the occurrence of misfire as much as possible.
 (第2実施形態)
 次に、第2実施形態について、第1実施形態との相違点を中心に説明する。第1実施形態では、フィルタ再生要求が有った場合に、フィルタ温度が目標温度Tpmになるのを待ってフィルタ再生処理を実施したが、本実施形態では、フィルタ温度を上昇させるべくポスト噴射を行う点で第1実施形態と相違する。
(Second Embodiment)
Next, the second embodiment will be described focusing on differences from the first embodiment. In the first embodiment, when there is a filter regeneration request, the filter regeneration processing is performed after the filter temperature reaches the target temperature Tpm. However, in this embodiment, post injection is performed to increase the filter temperature. This is different from the first embodiment in that it is performed.
 ECU50は、燃料噴射制御において、主噴射の後に(例えば、膨張行程又は排気行程に)燃焼室21内に燃料を供給するポスト噴射を実施して排気温度を昇温させる昇温制御を実施する。ポスト噴射に際しては、GPF27に供給される排気の温度が目標温度Tpm以上となるようにポスト噴射量Gpが設定される。ここでは、目標温度Tpmと排気温度の実際値又は推定値との差分と、排気流量とに基づいてポスト噴射量Gpを算出する。 In the fuel injection control, the ECU 50 performs temperature increase control for increasing the exhaust temperature by performing post injection for supplying fuel into the combustion chamber 21 after the main injection (for example, during the expansion stroke or the exhaust stroke). At the time of post injection, the post injection amount Gp is set so that the temperature of the exhaust gas supplied to the GPF 27 is equal to or higher than the target temperature Tpm. Here, the post injection amount Gp is calculated based on the difference between the target temperature Tpm and the actual value or estimated value of the exhaust temperature and the exhaust flow rate.
 ポスト噴射制御について、図9のフローチャートを用いて説明する。この処理は、ECU50により所定周期毎に実行される。図9において、ステップS501では、PM堆積量に基づいてフィルタ再生要求の有無を判定する。フィルタ再生要求が有ればステップS502へ進み、フィルタ温度が開始温度Tstartよりも高いか否かを判定する。開始温度Tstartは、ポスト噴射した燃料の着火温度よりも高温側に設定された値であり、例えば300℃又はその近傍の値が設定されている。ステップS502で否定判定された場合には一旦本ルーチンを終了し、肯定判定された場合にはステップS503へ進む。 Post injection control will be described with reference to the flowchart of FIG. This process is executed by the ECU 50 at predetermined intervals. In FIG. 9, in step S501, the presence / absence of a filter regeneration request is determined based on the PM accumulation amount. If there is a filter regeneration request, the process proceeds to step S502, and it is determined whether or not the filter temperature is higher than the start temperature Tstart. The start temperature Tstart is a value set higher than the ignition temperature of the post-injected fuel, and is set to, for example, 300 ° C. or a value in the vicinity thereof. If a negative determination is made in step S502, this routine is once ended. If an affirmative determination is made, the process proceeds to step S503.
 ステップS503では、排気温度が昇温判定温度Trn以下であるか否かを判定する。排気温度が昇温判定温度Trn以下であればステップS504へ進み、目標温度Tpmと現在の排気温度との差分、及び排気流量に基づいてポスト噴射量Gpを算出する。続くステップS505ではポスト噴射を実施する。一方、排気温度が昇温判定温度Trnよりも高い場合には、ステップS506へ進み、ポスト噴射量Gpをゼロに設定して本ルーチンを終了する。 In step S503, it is determined whether the exhaust temperature is equal to or lower than the temperature rise determination temperature Trn. If the exhaust temperature is equal to or lower than the temperature rise determination temperature Trn, the process proceeds to step S504, and the post injection amount Gp is calculated based on the difference between the target temperature Tpm and the current exhaust temperature and the exhaust flow rate. In subsequent step S505, post injection is performed. On the other hand, if the exhaust temperature is higher than the temperature rise determination temperature Trn, the process proceeds to step S506, the post injection amount Gp is set to zero, and this routine is ended.
 次に、本実施形態のフィルタ再生処理の処理手順について、図10のフローチャートを用いて説明する。この処理は、ECU50により所定時間毎に実行される。なお、図10の説明では、図4と同様の処理については、図4のステップ番号を付してその説明を省略する。 Next, the processing procedure of the filter regeneration process of this embodiment will be described using the flowchart of FIG. This process is executed by the ECU 50 every predetermined time. In the description of FIG. 10, steps similar to those in FIG. 4 are denoted by step numbers in FIG. 4 and description thereof is omitted.
 図10において、ステップS201~S204では、図4のステップS101~S104と同様の処理を実行する。続くステップS205では、フィルタ温度が開始温度Tstartよりも高温であるか否かを判定する。ステップS202~S205の少なくともいずれかで否定判定された場合には、フィルタ再生処理の実施条件が全て成立するまで待機する。一方、ステップS202~S205の全てで肯定判定された場合、フィルタ再生処理の実施条件が成立したとしてステップS206へ進む。 In FIG. 10, in steps S201 to S204, processing similar to that in steps S101 to S104 in FIG. 4 is executed. In a succeeding step S205, it is determined whether or not the filter temperature is higher than the start temperature Tstart. If a negative determination is made in at least one of steps S202 to S205, the process waits until all the conditions for executing the filter regeneration process are satisfied. On the other hand, if an affirmative determination is made in all of steps S202 to S205, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S206.
 ステップS206では、図4のステップS106と同様にしてA/F下限値Aminを算出する。続くステップS207では、O2要求A/F値Ao2を算出する。ここで、ポスト噴射を実施してフィルタ再生処理を行う場合には、PMの燃焼除去のためだけでなく、ポスト噴射の燃料を燃焼させるためにも酸素が必要である。この点に鑑み、本実施形態では、ポスト噴射量と酸素濃度要求とに基づいてO2要求A/F値Ao2を算出する。例えば、ポスト噴射量Gpに応じて下限値D1を補正し、その補正後の酸素濃度に対応するO2要求A/F値Ao2を算出する。このとき、ポスト噴射量Gpが多いほど、排気中の酸素濃度として高い濃度が設定され、O2要求A/F値Ao2がリーン側に設定される。 In step S206, the A / F lower limit value Amin is calculated in the same manner as in step S106 of FIG. In a succeeding step S207, an O2 request A / F value Ao2 is calculated. Here, when the filter regeneration process is performed by performing the post injection, oxygen is necessary not only for the combustion removal of PM but also for the combustion of the fuel of the post injection. In view of this point, in the present embodiment, the O2 required A / F value Ao2 is calculated based on the post injection amount and the oxygen concentration request. For example, the lower limit value D1 is corrected according to the post injection amount Gp, and the O2 required A / F value Ao2 corresponding to the corrected oxygen concentration is calculated. At this time, the higher the post injection amount Gp, the higher the oxygen concentration in the exhaust gas is set, and the O2 required A / F value Ao2 is set to the lean side.
 続くステップS208~S210では、図4のステップS108~S110と同様の処理を実行する。すなわち、O2要求A/F値Ao2がA/F下限値Aminよりもリーン側の値であれば、O2要求A/F値Ao2を再生中燃焼A/Fに設定する。これに対し、O2要求A/F値Ao2がA/F下限値Aminよりもリッチ側の値である場合にはA/F下限値Aminを再生中燃焼A/Fに設定する。 In subsequent steps S208 to S210, processing similar to that in steps S108 to S110 in FIG. 4 is executed. That is, if the O2 required A / F value Ao2 is a value leaner than the A / F lower limit value Amin, the O2 required A / F value Ao2 is set to the combustion A / F during regeneration. On the other hand, when the O2 request A / F value Ao2 is a richer value than the A / F lower limit value Amin, the A / F lower limit value Amin is set to the combustion A / F during regeneration.
 ステップS211では、リーン化開始後の排気温度が、ポスト噴射した燃料の着火温度(以下、「燃料着火温度Tburn」という。)よりも高いか否かを判定する。燃料着火温度Tburnは、例えば250℃又はその近傍の値である。排気温度が燃料着火温度Tburnよりも高い場合にはステップS213へ進む。排気温度が燃料着火温度Tburn以下である場合にはステップS212へ進み、排気昇温制御を実施した後、ステップS213へ進む。ステップS213~S216では、図4のステップS113~S116と同様の処理を実行し、本ルーチンを終了する。 In step S211, it is determined whether or not the exhaust temperature after the start of leaning is higher than the ignition temperature of the post-injected fuel (hereinafter referred to as “fuel ignition temperature Tburn”). The fuel ignition temperature Tburn is, for example, 250 ° C. or a value in the vicinity thereof. If the exhaust temperature is higher than the fuel ignition temperature Tburn, the process proceeds to step S213. If the exhaust temperature is equal to or lower than the fuel ignition temperature Tburn, the process proceeds to step S212, and after the exhaust gas temperature raising control is performed, the process proceeds to step S213. In steps S213 to S216, processing similar to that in steps S113 to S116 in FIG. 4 is executed, and this routine is terminated.
 次に、本実施形態のフィルタ再生処理の具体的態様について、図11のタイムチャートを用いて説明する。 Next, a specific aspect of the filter regeneration process of the present embodiment will be described using the time chart of FIG.
 フィルタ再生要求の発生後において、フィルタ温度が開始温度Tstartよりも高温になると、その時刻t21でポスト噴射が開始されるとともに、空燃比がリーン側に制御されてフィルタ再生処理が開始される。このとき、O2要求A/F値Ao2はA/F下限値Aminよりもリッチ側であるため、再生中燃焼A/FとしてはA/F下限値Aminが設定される(時刻t21~t23)。そして、時刻t23において、アクセル操作量の増大により、O2要求A/F値Ao2がA/F下限値Aminよりもリーン側になると、再生中燃焼A/FとしてO2要求A/F値Ao2が設定される(時刻t23~t26)。これにより、エンジン10から排出されるNOx量を許容範囲に収めながらフィルタ再生が行われる。なお、時刻t24~t25では、排気温度が昇温判定温度Trnよりも高いため、ポスト噴射が中断されている。フィルタ再生によりGPF27に堆積したPMが燃焼除去されると、その時刻t26でリーン化が終了され、ストイキ制御に移行される。 When the filter temperature becomes higher than the start temperature Tstart after the generation of the filter regeneration request, post injection is started at the time t21, and the air-fuel ratio is controlled to the lean side, and the filter regeneration process is started. At this time, since the O2 required A / F value Ao2 is richer than the A / F lower limit value Amin, the A / F lower limit value Amin is set as the combustion A / F during regeneration (time t21 to t23). At time t23, when the O2 request A / F value Ao2 becomes leaner than the A / F lower limit value Amin due to an increase in the accelerator operation amount, the O2 request A / F value Ao2 is set as the regeneration combustion A / F. (Time t23 to t26). Thereby, filter regeneration is performed while keeping the amount of NOx discharged from the engine 10 within an allowable range. From time t24 to t25, the post-injection is interrupted because the exhaust temperature is higher than the temperature rise determination temperature Trn. When PM accumulated on the GPF 27 is burned and removed by the filter regeneration, leaning is finished at the time t26, and the shift to the stoichiometric control is performed.
 以上詳述した本実施形態によれば、フィルタ再生に際してポスト噴射によりフィルタ昇温させる場合には、エンジン排出NOx量が排出許容値NOth以下となり、かつポスト噴射により噴射された燃料の燃焼後においてGPF27に供給される排気中の酸素濃度が酸素濃度要求を満たすように再生中燃焼A/Fを設定する構成とした。こうした構成とすることにより、ポスト噴射によりフィルタ昇温を行う場合にも、PMの燃焼除去を迅速に行うために必要な量の酸素をGPF27に供給しつつ、NOx排出量の抑制を図ることができる。 According to the present embodiment described in detail above, when the temperature of the filter is raised by post-injection during filter regeneration, the amount of engine exhaust NOx becomes equal to or less than the allowable discharge value NOth, and the GPF 27 after combustion of fuel injected by post-injection The combustion A / F during regeneration is set so that the oxygen concentration in the exhaust gas supplied to the exhaust gas satisfies the oxygen concentration requirement. By adopting such a configuration, even when the temperature of the filter is raised by post-injection, it is possible to suppress the NOx emission amount while supplying the GPF 27 with an amount of oxygen necessary for quickly removing and burning PM. it can.
 (第3実施形態)
 次に、第3実施形態について、第2実施形態との相違点を中心に説明する。第3実施形態では、再生中燃焼A/Fを、リーン限界であるA/F上限値Amaxとする点で第2実施形態と相違する。
(Third embodiment)
Next, the third embodiment will be described focusing on differences from the second embodiment. The third embodiment is different from the second embodiment in that the combustion A / F during regeneration is set to an A / F upper limit value Amax that is a lean limit.
 本実施形態のフィルタ再生処理の処理手順について、図12のフローチャートを用いて説明する。この処理は、ECU50により所定時間毎に実行される。なお、図12の説明では、図4と同様の処理については、図4のステップ番号を付してその説明を省略する。 The processing procedure of the filter regeneration processing of this embodiment will be described using the flowchart of FIG. This process is executed by the ECU 50 every predetermined time. In the description of FIG. 12, steps similar to those in FIG. 4 are denoted by step numbers in FIG. 4 and description thereof is omitted.
 図12において、ステップS301~S304では、図4のステップS101~S104と同様の処理を実行する。続くステップS305では、フィルタ温度が開始温度Tstartよりも高温であるか否かを判定する。ステップS302~S305の少なくともいずれかで否定判定された場合には、フィルタ再生処理の実施条件が全て成立するまで待機する。一方、ステップS302~S305の全てで肯定判定された場合、フィルタ再生処理の実施条件が成立したとしてステップS306へ進む。 In FIG. 12, in steps S301 to S304, processing similar to that in steps S101 to S104 in FIG. 4 is executed. In a succeeding step S305, it is determined whether or not the filter temperature is higher than the start temperature Tstart. If a negative determination is made in at least one of steps S302 to S305, the process waits until all the conditions for executing the filter regeneration process are satisfied. On the other hand, if an affirmative determination is made in all of steps S302 to S305, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S306.
 ステップS306では、A/F上限値Amaxを算出し、その算出したA/F上限値Amaxを再生中燃焼A/Fに設定する。ここでは、エンジン運転状態(例えば、エンジン回転速度及びエンジン負荷)に応じてA/F上限値Amaxを算出する。なお、A/F上限値Amaxについて、エンジン運転状態にかかわらず固定値としてもよい。再生中燃焼A/FをA/F上限値Amaxで制御する際には、トルク不足が生じないように、燃料噴射量は変えずにスロットルバルブ14を開くなどの方法により吸入空気を増やすようにする。 In step S306, the A / F upper limit value Amax is calculated, and the calculated A / F upper limit value Amax is set as the combustion A / F during regeneration. Here, the A / F upper limit value Amax is calculated according to the engine operating state (for example, the engine rotation speed and the engine load). The A / F upper limit value Amax may be a fixed value regardless of the engine operating state. When controlling the combustion A / F during regeneration with the A / F upper limit value Amax, the intake air is increased by a method such as opening the throttle valve 14 without changing the fuel injection amount so as not to cause a torque shortage. To do.
 続くステップS307では、リーン化開始後の排気温度が燃料着火温度Tburnよりも高いか否かを判定する。排気温度が燃料着火温度Tburnよりも高ければステップS309へ進む。一方、排気温度が燃料着火温度Tburn以下であればステップS308へ進み、排気昇温制御を実施した後、ステップS309へ進む。ステップS309では、最低O2濃度Dminを確保可能か否かを判定し、確保可能であればステップS310~S313に進み、図4のステップS113~S116と同様の処理を実行する。そして本ルーチンを終了する。 In subsequent step S307, it is determined whether the exhaust temperature after the start of leaning is higher than the fuel ignition temperature Tburn. If the exhaust gas temperature is higher than the fuel ignition temperature Tburn, the process proceeds to step S309. On the other hand, if the exhaust gas temperature is equal to or lower than the fuel ignition temperature Tburn, the process proceeds to step S308. After the exhaust gas temperature raising control is performed, the process proceeds to step S309. In step S309, it is determined whether or not the minimum O2 concentration Dmin can be secured. If it can be secured, the process proceeds to steps S310 to S313, and the same processing as steps S113 to S116 in FIG. 4 is executed. Then, this routine ends.
 次に、本実施形態のフィルタ再生処理の具体的態様について、図13のタイムチャートを用いて説明する。 Next, a specific aspect of the filter regeneration process of the present embodiment will be described using the time chart of FIG.
 フィルタ再生要求の発生後において、フィルタ温度が開始温度Tstartよりも高温になると、その時刻t31でポスト噴射が開始される。ポスト噴射量については、第2実施形態と同様、目標温度Tpmに基づいて算出される。また、時刻t31では、再生中燃焼A/FとしてA/F上限値Amaxが設定され、フィルタ再生処理が開始される。再生中燃焼A/FをA/F上限値Amaxとすることにより、時刻t31以降では、GPF27に供給される排気中の酸素濃度が下限値D1よりも高くなり、速い燃焼速度でPMが燃やされる。なお、時刻t32~t33では、排気温度が昇温判定温度Trnよりも高いため、ポスト噴射が中断されている。フィルタ再生によりGPF27に堆積したPMが燃焼除去されると、その時刻t34でリーン化を終了し、ストイキ制御に切り替えられる。 When the filter temperature becomes higher than the start temperature Tstart after the generation of the filter regeneration request, post injection is started at the time t31. The post injection amount is calculated based on the target temperature Tpm, as in the second embodiment. At time t31, A / F upper limit Amax is set as combustion A / F during regeneration, and filter regeneration processing is started. By setting the combustion A / F during regeneration to the A / F upper limit value Amax, after time t31, the oxygen concentration in the exhaust gas supplied to the GPF 27 becomes higher than the lower limit value D1, and PM is burned at a high combustion rate. . At times t32 to t33, the post injection is interrupted because the exhaust temperature is higher than the temperature rise determination temperature Trn. When the PM accumulated on the GPF 27 is burned and removed by the filter regeneration, the leaning is finished at the time t34 and the control is switched to the stoichiometric control.
 以上詳述した第3実施形態では、再生中燃焼A/FをA/F上限値Amaxとしてフィルタ再生処理を実施するため、NOx排出の抑制効果をより高くしつつ、フィルタ再生を行うことができる。また、排気中の酸素濃度が高いため、PMの燃焼速度が速く、フィルタ再生処理を短期間で終了させることができる。 In the third embodiment described above in detail, the filter regeneration process is performed with the combustion A / F during regeneration as the A / F upper limit value Amax, so that the filter regeneration can be performed while the NOx emission suppressing effect is further enhanced. . Further, since the oxygen concentration in the exhaust gas is high, the PM combustion rate is high, and the filter regeneration process can be completed in a short period of time.
 (第4実施形態)
 次に、第4実施形態について、第3実施形態との相違点を中心に説明する。第4実施形態では、第3実施形態と同様に再生中燃焼A/FにA/F上限値Amaxを設定してフィルタ再生処理を行うが、ポスト噴射に際しできるだけ多くの燃料を供給する点で第3実施形態と相違する。
(Fourth embodiment)
Next, the fourth embodiment will be described focusing on differences from the third embodiment. In the fourth embodiment, the filter regeneration process is performed by setting the A / F upper limit value Amax to the combustion A / F during regeneration as in the third embodiment. However, in the fourth embodiment, as much fuel as possible is supplied in the post injection. This is different from the third embodiment.
 PM燃焼速度は、排気中の酸素濃度及びフィルタ温度に感度があり、両者に依存して変化するが、フィルタ温度への感度の方が高い。この点を考慮し、本実施形態では、フィルタ温度が開始温度Tstartよりも低い場合には、ポスト噴射燃料の燃焼後においてGPF27に供給される排気中の酸素濃度が最低O2濃度以上になる範囲で許容される最大の噴射量の燃料をポスト噴射によって供給する。これにより、フィルタ温度を速やかに高温化させて、効率的なフィルタ再生を行うようにしている。 The PM combustion rate is sensitive to the oxygen concentration in the exhaust gas and the filter temperature, and varies depending on both, but the sensitivity to the filter temperature is higher. In consideration of this point, in this embodiment, when the filter temperature is lower than the start temperature Tstart, the oxygen concentration in the exhaust gas supplied to the GPF 27 after the combustion of the post-injected fuel is within the range where the oxygen concentration is at least the O2 concentration. The maximum allowable fuel injection amount is supplied by post injection. As a result, the filter temperature is quickly raised to perform efficient filter regeneration.
 図14を用いて、本実施形態のフィルタ再生処理について説明する。図14中、(a)は、エンジン10の気筒内のガス構成を示し、(b)は、GPF27に供給される排気の用途の内訳を示している。フィルタ再生中では、A/F上限値Amaxを再生中燃焼A/Fとして可能な限りリーン化することにより、主噴射燃料の燃焼後の排気中に酸素を残存させる。本実施形態では、リーン化により追加で供給した空気量Q1のうち、PM燃焼用の最低O2濃度Dminを確保し、残りの酸素を用いて可能な限り多くの燃料をポスト噴射で供給することにより昇温を図る。 The filter regeneration process according to the present embodiment will be described with reference to FIG. 14A shows the gas configuration in the cylinder of the engine 10, and FIG. 14B shows the breakdown of the usage of the exhaust gas supplied to the GPF 27. During filter regeneration, the A / F upper limit Amax is made as lean as possible as the combustion A / F during regeneration, so that oxygen remains in the exhaust gas after combustion of the main injection fuel. In the present embodiment, among the air amount Q1 additionally supplied by leaning, the minimum O2 concentration Dmin for PM combustion is secured, and the remaining oxygen is used to supply as much fuel as possible by post-injection. Increase the temperature.
 具体的には、最低O2濃度Dmin分の空気量Q2を空気量Q1から差し引いた残りの空気量(Q1-Q2)を基に、ポスト噴射によって噴射可能な最大噴射量Gmaxを、ポスト噴射量の上下限、及びGPF27の基材温度の上限を考慮して算出する。この場合、最大噴射量Gmaxを燃焼させるのに必要な酸素と、最低O2濃度Dmin分の酸素とを差し引いた残りの酸素が、PM燃焼用の酸素として用いられる。PM燃焼に使われる酸素量は、ポスト噴射燃料を燃焼させた後に残る酸素濃度から算出される。この酸素濃度は、エンジン運転状態から推定してもよいし、O2センサ等により検出してもよい。 Specifically, based on the remaining air amount (Q1-Q2) obtained by subtracting the air amount Q2 corresponding to the minimum O2 concentration Dmin from the air amount Q1, the maximum injection amount Gmax that can be injected by post injection is set as the post injection amount. Calculation is performed in consideration of the upper and lower limits and the upper limit of the substrate temperature of the GPF 27. In this case, the remaining oxygen obtained by subtracting the oxygen necessary for burning the maximum injection amount Gmax and the oxygen corresponding to the minimum O2 concentration Dmin is used as oxygen for PM combustion. The amount of oxygen used for PM combustion is calculated from the oxygen concentration remaining after the post-injected fuel is burned. This oxygen concentration may be estimated from the engine operating state, or may be detected by an O2 sensor or the like.
 なお、本実施形態において、図9のステップS504では、空気量Q1から最低O2濃度Dmin分の空気量Q2を差し引いた残りの空気量を基に、ポスト噴射量の上下限、及びGPF27の基材温度の上限を考慮して、ポスト噴射量として最大噴射量Gmaxが算出される。 In this embodiment, in step S504 of FIG. 9, the upper and lower limits of the post injection amount and the base material of the GPF 27 are based on the remaining air amount obtained by subtracting the air amount Q2 corresponding to the minimum O2 concentration Dmin from the air amount Q1. Considering the upper limit of temperature, the maximum injection amount Gmax is calculated as the post injection amount.
 次に、本実施形態のフィルタ再生処理の処理手順について、図15のフローチャートを用いて説明する。この処理は、ECU50により所定時間毎に実行される。なお、図15の説明では、図4と同様の処理については、図4のステップ番号を付してその説明を省略する。 Next, the processing procedure of the filter regeneration processing of this embodiment will be described using the flowchart of FIG. This process is executed by the ECU 50 every predetermined time. In the description of FIG. 15, steps similar to those in FIG. 4 are denoted by step numbers in FIG. 4 and description thereof is omitted.
 図15において、ステップS401~S404では、図4のステップS101~S104と同様の処理を実行する。続くステップS405では、フィルタ温度が開始温度Tstartよりも高温であるか否かを判定する。ステップS402~S405の少なくともいずれかで否定判定された場合には、フィルタ再生処理の実施条件が全て成立するまで待機する。一方、ステップS402~S405の全てで肯定判定された場合、フィルタ再生処理の実施条件が成立したとしてステップS406へ進む。 In FIG. 15, in steps S401 to S404, processing similar to that in steps S101 to S104 in FIG. 4 is executed. In a succeeding step S405, it is determined whether or not the filter temperature is higher than the start temperature Tstart. If a negative determination is made in at least one of steps S402 to S405, the process waits until all the conditions for executing the filter regeneration process are satisfied. On the other hand, if an affirmative determination is made in all of steps S402 to S405, it is determined that the conditions for executing the filter regeneration process are satisfied, and the process proceeds to step S406.
 ステップS406では、A/F上限値Amaxを算出し、その算出したA/F上限値Amaxを再生中燃焼A/Fに設定する。なお、A/F上限値Amaxは、第3実施形態と同じく可変値でもよいし、固定値でもよい。続くステップS407では、リーン化開始後の排気温度が燃料着火温度Tburnよりも高いか否かを判定する。排気温度が燃料着火温度Tburnよりも高ければステップS409へ進む。また、燃料着火温度Tburn以下であればステップS408へ進み、排気昇温制御を実施した後、ステップS409へ進む。ステップS409ではフィルタ再生処理を実施する。具体的には、燃焼空燃比が再生中燃焼A/Fとなるようにエンジン10の吸気量を制御する。ステップS410~S412では、図4のステップS114~S116と同様の処理を実行し、本ルーチンを終了する。 In step S406, the A / F upper limit value Amax is calculated, and the calculated A / F upper limit value Amax is set to the combustion A / F during regeneration. The A / F upper limit value Amax may be a variable value or a fixed value as in the third embodiment. In subsequent step S407, it is determined whether or not the exhaust temperature after the start of leaning is higher than the fuel ignition temperature Tburn. If the exhaust temperature is higher than the fuel ignition temperature Tburn, the process proceeds to step S409. On the other hand, if the fuel ignition temperature Tburn or lower, the process proceeds to step S408, and after the exhaust gas temperature raising control is performed, the process proceeds to step S409. In step S409, filter regeneration processing is performed. Specifically, the intake air amount of the engine 10 is controlled so that the combustion air-fuel ratio becomes the combustion A / F during regeneration. In steps S410 to S412, the same processing as in steps S114 to S116 of FIG. 4 is executed, and this routine is terminated.
 次に、本実施形態のフィルタ再生処理の具体的態様について、図16のタイムチャートを用いて説明する。 Next, a specific aspect of the filter regeneration processing of this embodiment will be described using the time chart of FIG.
 フィルタ再生要求の発生後において、フィルタ温度が開始温度Tstartよりも高温になると、その時刻t41でポスト噴射が開始される。また、時刻t41では、再生中燃焼A/FとしてA/F上限値Amaxが設定され、フィルタ再生処理が開始される。ポスト噴射では最大噴射量Gmaxの燃料が噴射される。これにより、フィルタ温度がPM着火温度(Tpm)よりもさらに昇温し、フィルタ温度の上限値Tmax付近(例えば、850℃付近)まで昇温する。また、フィルタ再生中では、GPF27に供給される排気中の酸素濃度が最低O2濃度Dminを下回らないように制御される。なお、時刻t42~t43では、排気温度が昇温判定温度Trnよりも高いため、ポスト噴射が中断されている。フィルタ再生によりGPF27に堆積したPMが燃焼除去されると、その時刻t44でリーン化が終了され、ストイキ制御に切り替えられる。 When the filter temperature becomes higher than the start temperature Tstart after the generation of the filter regeneration request, post injection is started at the time t41. At time t41, A / F upper limit Amax is set as combustion A / F during regeneration, and filter regeneration processing is started. In the post-injection, the maximum injection amount Gmax of fuel is injected. As a result, the filter temperature further rises above the PM ignition temperature (Tpm) and rises to near the upper limit value Tmax (for example, around 850 ° C.) of the filter temperature. Further, during filter regeneration, control is performed so that the oxygen concentration in the exhaust gas supplied to the GPF 27 does not fall below the minimum O2 concentration Dmin. At times t42 to t43, the post injection is interrupted because the exhaust gas temperature is higher than the temperature rise determination temperature Trn. When PM accumulated on the GPF 27 is burned and removed by filter regeneration, leaning is completed at time t44 and the control is switched to stoichiometric control.
 以上詳述した第4実施形態では、再生中燃焼A/FをA/F上限値Amaxし、かつポスト噴射による燃料噴射量を最大噴射量Gmaxとしてフィルタ再生処理を実施するため、NOx排出の抑制効果をより高くしつつ、フィルタ再生を短期間で終了させることができる。 In the fourth embodiment described above in detail, since the filter regeneration process is performed with the combustion A / F during regeneration as the A / F upper limit value Amax and the fuel injection amount by post injection as the maximum injection amount Gmax, the NOx emission is suppressed. Filter regeneration can be completed in a short period of time while increasing the effect.
 (他の実施形態)
 本開示は上記実施形態に限定されず、例えば以下のように実行されてもよい。
(Other embodiments)
This indication is not limited to the above-mentioned embodiment, for example, may be performed as follows.
 ・上記実施形態では、A/F下限値Amin及びO2要求A/F値Ao2を可変値としたが、これらのうち少なくとも一方を固定値としてもよい。 In the above embodiment, the A / F lower limit value Amin and the O2 required A / F value Ao2 are variable values, but at least one of them may be a fixed value.
 ・上記第1実施形態及び第2実施形態では、第2要求空燃比をA/F下限値Aminとしたが、A/F下限値Aminよりもリーン側であって、A/F上限値Amaxよりもリッチ側の値としてもよい。 In the first embodiment and the second embodiment, the second required air-fuel ratio is set to the A / F lower limit value Amin, but is leaner than the A / F lower limit value Amin, and from the A / F upper limit value Amax. May be a rich value.
 ・上記実施形態において、エンジン10の燃焼制御を行うに当たっては、実空燃比を目標空燃比に一致させるべく空燃比フィードバック制御を実施してもよい。具体的には、フィルタ再生時であれば、再生中燃焼A/Fを目標空燃比に設定し、酸素濃度センサで検出した実空燃比が再生中燃焼A/Fに一致するように空燃比フィードバック制御を実施する構成としてもよい。 In the above embodiment, when performing the combustion control of the engine 10, air-fuel ratio feedback control may be performed so that the actual air-fuel ratio matches the target air-fuel ratio. Specifically, during filter regeneration, the combustion A / F during regeneration is set to the target air-fuel ratio, and air-fuel ratio feedback is performed so that the actual air-fuel ratio detected by the oxygen concentration sensor matches the combustion A / F during regeneration. It is good also as a structure which implements control.
 ・上記実施形態では、三元触媒26の下流側にGPF27を配置する排気系システムに適用する場合を一例に挙げて説明したが、排気系の構成はこれに限定されない。例えば、図1のシステムにおいて、三元触媒26の上流側又は下流側に別の三元触媒を更に配置してもよい。この場合、GPF27としては、酸化触媒がコーティングされていないフィルタを用いることもできる。また、GPF27として触媒コート付きフィルタを用いる場合には、三元触媒26の上流側にGPF27を配置してもよい。 In the above embodiment, the case where the present invention is applied to an exhaust system in which the GPF 27 is disposed on the downstream side of the three-way catalyst 26 has been described as an example, but the configuration of the exhaust system is not limited to this. For example, in the system of FIG. 1, another three-way catalyst may be further arranged upstream or downstream of the three-way catalyst 26. In this case, as the GPF 27, a filter not coated with an oxidation catalyst can be used. When a filter with a catalyst coat is used as the GPF 27, the GPF 27 may be disposed on the upstream side of the three-way catalyst 26.
 ・上記実施形態では、火花点火式のエンジン10に適用する場合について説明したが、圧縮自着火式のエンジンに適用してもよい。また、過給機を備えるエンジンに適用したが、過給機を備えない自然吸気エンジン(N/A)に適用してもよい。 In the above embodiment, the case of applying to the spark ignition type engine 10 has been described, but the present invention may be applied to a compression self-ignition type engine. Moreover, although applied to the engine provided with a supercharger, you may apply to the natural aspiration engine (N / A) which is not provided with a supercharger.
 ・上記の各構成要素は概念的なものであり、上記実施形態に限定されない。例えば、一つの構成要素が有する機能を複数の構成要素に分散して実現したり、複数の構成要素が有する機能を一つの構成要素で実現したりしてもよい。 -Each said component is conceptual and is not limited to the said embodiment. For example, the functions of one component may be realized by being distributed to a plurality of components, or the functions of a plurality of components may be realized by one component.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  排気に含まれる成分を酸化又は還元する三元触媒(26)と、前記排気に含まれる粒子状物質を捕集する粒子フィルタ(27)とが排気通路(22)に設けられた内燃機関(10)に適用され、
     所定の実施条件が成立した場合に、前記粒子フィルタに捕集された前記粒子状物質を燃焼除去する排気処理装置であって、
     前記粒子フィルタに捕集された前記粒子状物質の燃焼除去の実施期間において前記内燃機関から排出される窒素酸化物の量が所定の排出許容値以下になるように前記内燃機関の空燃比を制御する空燃比制御部を備える、内燃機関の排気処理装置。
    An internal combustion engine (10) in which a three-way catalyst (26) for oxidizing or reducing components contained in exhaust and a particle filter (27) for collecting particulate matter contained in the exhaust are provided in an exhaust passage (22). )
    An exhaust treatment device that burns and removes the particulate matter collected by the particle filter when a predetermined implementation condition is satisfied,
    The air-fuel ratio of the internal combustion engine is controlled so that the amount of nitrogen oxides discharged from the internal combustion engine is equal to or less than a predetermined allowable emission value during the period of combustion removal of the particulate matter collected by the particle filter. An exhaust treatment device for an internal combustion engine, comprising an air-fuel ratio control unit.
  2.  前記空燃比制御部は、前記燃焼除去の実施期間において前記内燃機関から排出される窒素酸化物の量が前記所定の排出許容値以下となり、かつ前記粒子フィルタに供給される前記排気中の酸素濃度が、前記粒子状物質の燃焼速度の要求に基づき定めた所定濃度以上になるように前記空燃比を制御する、請求項1に記載の内燃機関の排気処理装置。 The air-fuel ratio control unit is configured such that the amount of nitrogen oxides discharged from the internal combustion engine during the combustion removal period is equal to or less than the predetermined discharge allowable value, and the oxygen concentration in the exhaust gas supplied to the particle filter 2. The exhaust gas processing apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio is controlled to be equal to or higher than a predetermined concentration determined based on a demand for a burning rate of the particulate matter.
  3.  前記粒子フィルタに供給される前記排気中の酸素濃度を、前記粒子状物質の燃焼速度の要求を満たす酸素濃度とするための空燃比である第1要求空燃比を算出する第1空燃比算出部と、
     前記燃焼除去の実施期間において前記内燃機関から排出される窒素酸化物の量を前記所定の排出許容値以下とするための空燃比である第2要求空燃比を算出する第2空燃比算出部と、を備え、
     前記空燃比制御部は、前記燃焼除去の実施期間では、前記第1要求空燃比及び前記第2要求空燃比のうち理論空燃比からの乖離量が大きい方の空燃比となるように前記内燃機関の空燃比を制御する、請求項1又は2に記載の内燃機関の排気処理装置。
    A first air-fuel ratio calculation unit that calculates a first required air-fuel ratio that is an air-fuel ratio for making the oxygen concentration in the exhaust gas supplied to the particle filter an oxygen concentration that satisfies the demand for the combustion rate of the particulate matter When,
    A second air-fuel ratio calculating unit that calculates a second required air-fuel ratio that is an air-fuel ratio for making the amount of nitrogen oxides discharged from the internal combustion engine less than or equal to the predetermined allowable emission value during the combustion removal period; With
    The air-fuel ratio control unit is configured so that, during the combustion removal period, the internal combustion engine has an air-fuel ratio that has a larger deviation from the stoichiometric air-fuel ratio between the first required air-fuel ratio and the second required air-fuel ratio. The exhaust treatment device for an internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio of the internal combustion engine is controlled.
  4.  前記第2空燃比算出部は、前記内燃機関の負荷に基づいて前記第2要求空燃比を算出する、請求項3に記載の内燃機関の排気処理装置。 The exhaust treatment device for an internal combustion engine according to claim 3, wherein the second air-fuel ratio calculation unit calculates the second required air-fuel ratio based on a load of the internal combustion engine.
  5.  前記内燃機関の主噴射の後に前記内燃機関に燃料を供給するポスト噴射を実施して前記粒子フィルタを昇温させる昇温制御部を備え、
     前記空燃比制御部は、前記燃焼除去の実施期間において前記内燃機関から排出される窒素酸化物の量が前記所定の排出許容値以下となり、かつ前記ポスト噴射により噴射された燃料の燃焼後において前記粒子フィルタに供給される前記排気中の酸素濃度が前記所定濃度以上になるように前記空燃比を制御する、請求項2~4のいずれか一項に記載の内燃機関の排気処理装置。
    A temperature raising control unit for raising the temperature of the particle filter by performing post injection for supplying fuel to the internal combustion engine after main injection of the internal combustion engine;
    The air-fuel ratio control unit is configured to reduce the amount of nitrogen oxides discharged from the internal combustion engine during the combustion removal period to be equal to or less than the predetermined discharge allowable value, and after combustion of the fuel injected by the post injection, The exhaust treatment device for an internal combustion engine according to any one of claims 2 to 4, wherein the air-fuel ratio is controlled so that an oxygen concentration in the exhaust gas supplied to the particle filter is equal to or higher than the predetermined concentration.
  6.  前記空燃比制御部は、前記内燃機関において正常燃焼が可能な空燃比の限界である失火限界空燃比で前記内燃機関の空燃比を制御する、請求項1又は2に記載の内燃機関の排気処理装置。 The exhaust process of the internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio control unit controls the air-fuel ratio of the internal combustion engine at a misfire limit air-fuel ratio that is a limit of an air-fuel ratio at which normal combustion is possible in the internal combustion engine. apparatus.
PCT/JP2018/014255 2017-04-21 2018-04-03 Exhaust treatment device for internal combustion engine WO2018193833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018002095.9T DE112018002095T5 (en) 2017-04-21 2018-04-03 Exhaust gas treatment device for internal combustion engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084886 2017-04-21
JP2017084886A JP6711310B2 (en) 2017-04-21 2017-04-21 Exhaust treatment device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018193833A1 true WO2018193833A1 (en) 2018-10-25

Family

ID=63855803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014255 WO2018193833A1 (en) 2017-04-21 2018-04-03 Exhaust treatment device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP6711310B2 (en)
DE (1) DE112018002095T5 (en)
WO (1) WO2018193833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749803A (en) * 2020-05-20 2020-10-09 中国第一汽车股份有限公司 Regeneration control method for gasoline engine particle catcher

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159876B2 (en) 2019-01-08 2022-10-25 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138866A (en) * 2005-11-21 2007-06-07 Isuzu Motors Ltd Regeneration control method for exhaust emission control system, and exhaust emission control system
WO2015004713A1 (en) * 2013-07-08 2015-01-15 トヨタ自動車株式会社 Control method for internal combustion engine
JP2015121118A (en) * 2013-12-20 2015-07-02 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863337B2 (en) 2014-10-31 2018-01-09 GM Global Technology Operations LLC Systems for regeneration of a gasoline particulate filter
JP2017084886A (en) 2015-10-26 2017-05-18 京セラ株式会社 Wiring board and semiconductor element mounting structure using the same.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138866A (en) * 2005-11-21 2007-06-07 Isuzu Motors Ltd Regeneration control method for exhaust emission control system, and exhaust emission control system
WO2015004713A1 (en) * 2013-07-08 2015-01-15 トヨタ自動車株式会社 Control method for internal combustion engine
JP2015121118A (en) * 2013-12-20 2015-07-02 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749803A (en) * 2020-05-20 2020-10-09 中国第一汽车股份有限公司 Regeneration control method for gasoline engine particle catcher

Also Published As

Publication number Publication date
JP6711310B2 (en) 2020-06-17
JP2018178981A (en) 2018-11-15
DE112018002095T5 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
CN105041494B (en) The control device of internal combustion engine
JP6314870B2 (en) Control device for internal combustion engine
CN108457758B (en) Control device for internal combustion engine
US20090133387A1 (en) Particulate matter trap filter regeneration temperature control for internal combustion engine
JP5067509B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP2013011222A (en) Control apparatus for internal combustion engine
CN113175387B (en) Abnormality diagnosis device of downstream side air-fuel ratio detection device
EP3205865B1 (en) Control device for vehicle
CN108240264B (en) Control device for internal combustion engine
WO2018193833A1 (en) Exhaust treatment device for internal combustion engine
CN108240265A (en) For the control device of internal combustion engine
US20190323405A1 (en) Gasoline particulate filter filtration efficiency improvement with engine control
JP2015052291A (en) Exhaust emission control device for internal combustion engine
US9097167B2 (en) Exhaust gas purification device of internal combustion engine
JP6958155B2 (en) Exhaust treatment device for internal combustion engine
JP4995154B2 (en) Control device for internal combustion engine
JP2008121518A (en) Exhaust gas purification device for internal combustion engine
JP2012145054A (en) Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine
JP2017115703A (en) Controller of internal combustion engine
JP2008215110A (en) Exhaust gas purification device for internal combustion engine
JP4821112B2 (en) Control device for lean combustion internal combustion engine
US11143128B2 (en) Exhaust purification system of internal combustion engine
JP4300985B2 (en) Diesel engine control device
JP2018162721A (en) Control device for internal combustion engine
JP4604361B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787434

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18787434

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载