WO2018193731A1 - 体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法 - Google Patents
体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法 Download PDFInfo
- Publication number
- WO2018193731A1 WO2018193731A1 PCT/JP2018/008404 JP2018008404W WO2018193731A1 WO 2018193731 A1 WO2018193731 A1 WO 2018193731A1 JP 2018008404 W JP2018008404 W JP 2018008404W WO 2018193731 A1 WO2018193731 A1 WO 2018193731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- patient
- body tissue
- image
- tissue position
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 28
- 238000001959 radiotherapy Methods 0.000 title claims description 19
- 238000000691 measurement method Methods 0.000 title claims description 11
- 238000002604 ultrasonography Methods 0.000 claims abstract description 100
- 230000000241 respiratory effect Effects 0.000 claims abstract description 59
- 238000004364 calculation method Methods 0.000 claims abstract description 33
- 238000004088 simulation Methods 0.000 claims abstract description 28
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 15
- 230000001360 synchronised effect Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 47
- 230000005855 radiation Effects 0.000 claims description 38
- 238000001727 in vivo Methods 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 165
- 239000000523 sample Substances 0.000 description 31
- 206010028980 Neoplasm Diseases 0.000 description 29
- 238000010586 diagram Methods 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 13
- 238000002591 computed tomography Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010006322 Breath holding Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
Definitions
- the present invention relates to an in-vivo tissue position measuring apparatus, a radiotherapy apparatus, and an in-vivo tissue position measuring method for measuring a specific tissue position in a patient body with ultrasound.
- Patent Documents 1 and 2 describe a method for measuring the position of a body tissue.
- Patent Document 1 discloses high-precision radiation irradiation by detecting the behavior of a treatment target site caused by patient's breathing, pulsation or body movement without particularly increasing the size and excessive complexity of the device itself.
- an ultrasonic image for treatment planning is simultaneously imaged at the time of imaging a C ⁇ image for treatment planning, The ultrasonic image for treatment imaged in real time and the ultrasonic image for treatment plan are compared to determine whether or not the correlation value of both ultrasonic images is equal to or greater than a predetermined value. It is described that the radiation irradiating means is controlled so that the radiation to the treatment target site is performed only at the time of the above.
- an ultrasonic diagnostic apparatus outputs echo data to a host controller, and a tissue coordinate calculation unit includes a three-dimensional probe.
- the coordinate information of the tumor with the child as the origin is calculated, the probe coordinate calculation unit calculates the coordinate information of the three-dimensional probe with the X-ray irradiation device as the reference point as the origin, and the total tissue coordinate calculation unit is Based on the coordinate information of the tumor whose origin is the 3D probe and the coordinate information of the 3D probe whose origin is the X-ray irradiation device, the coordinate information of the tumor whose origin is the X-ray irradiation device is calculated. And output to an X-ray irradiation apparatus.
- radiation therapy is a treatment method that kills cancer cells by irradiating a body tissue that is a treatment target site of a patient with a high dose of radiation, and can concentrate radiation on the treatment site. This is a method with relatively light side effects.
- the position of a body tissue that is a treatment target site is specified from information such as a CT (Computed Tomography) image acquired in advance, and a treatment plan is made based on the position. Thereafter, the patient is fixed to the treatment table of the radiotherapy apparatus, and the radiation is irradiated to the body tissue that is the treatment target site of the patient by controlling the radiation characteristics such as the irradiation direction and intensity.
- CT Computer Tomography
- the patient's treatment target region moves from the radiation irradiation position planned in advance, which has been a problem for accurate treatment.
- a marker made of gold or the like is embedded in the patient's body in advance, and the movement of the treatment target region is detected by capturing and tracking this marker with an X-ray transmission image, and a prior treatment plan A method of treating with high accuracy has been established by using it for radiation control during irradiation.
- the realization of a less invasive body tissue position measuring device that can suppress the exposure dose due to X-ray irradiation during treatment and that can respond to patient movement such as breathing is aimed at further reducing the exposure dose. It is desired.
- the less invasive methods there is a method using an ultrasonic image.
- Patent Literature 1 instead of markers and X-rays, radiation that emits radiation at a timing when the correlation value between an ultrasound image acquired in advance with a CT image acquired in advance and an ultrasound image acquired during treatment is high. A treatment device is described.
- the radiotherapy apparatus described in Patent Document 1 irradiates radiation using a treatment planning ultrasonic image acquired in the same phase as a CT image acquired in advance and a therapeutic ultrasonic image acquired during treatment. By controlling it, treatment is possible with minimal invasiveness.
- radiation is applied at the timing when an ultrasound image for treatment planning having a high correlation value with the treatment ultrasound image is obtained, and the position of the body tissue under treatment is not specified from the ultrasound image. Therefore, there is a problem that an error in position with the actual treatment target region may occur.
- the ultrasonic medical system described in Patent Document 2 specifies the coordinates of a tumor in a patient body using a three-dimensional ultrasonic image obtained by using a three-dimensional ultrasonic probe, and provides coordinate information to the X-ray irradiation apparatus. I am trying to output. However, there is a problem that the recording of ultrasonic waveforms and data processing take time, and the system becomes complicated.
- paragraph (0024) of Patent Document 2 states that a two-dimensional ultrasonic probe may be used to transmit and receive waves only within the two-dimensional scanning plane instead of the three-dimensional ultrasonic probe.
- a two-dimensional ultrasonic probe may be used to transmit and receive waves only within the two-dimensional scanning plane instead of the three-dimensional ultrasonic probe.
- the present invention has been made in view of the above problems, and is capable of measuring a body tissue position accurately and in real time using a less invasive ultrasonic wave without complicating the system. It is an object of the present invention to provide a measurement apparatus, a radiotherapy apparatus, and a body tissue position measurement method.
- the present invention includes a plurality of means for solving the above-described problems.
- the present invention is a body tissue position measuring apparatus for measuring the position of a tissue in a patient body by ultrasonic waves, and is a patient synchronized with breathing.
- a 3D information acquisition unit for acquiring 3D information
- a patient 3D information storage unit for storing the 3D information acquired by the respiratory synchronization 3D information acquisition unit, and the patient 3D stored in the patient 3D information storage unit
- An ultrasonic wave propagation model creating unit that creates an ultrasonic wave propagation model using information, and a pseudo ultrasonic image by simulating ultrasonic propagation in the ultrasonic wave propagation model created in the ultrasonic wave propagation model creating unit
- An ultrasonic image simulation unit for calculating the image and the pseudo ultrasonic image calculated by the ultrasonic image simulation unit in association with the patient 3D information.
- a database an ultrasonic transmission / reception unit that transmits ultrasonic waves toward the patient's body, and receives ultrasonic waves returning from the patient's body, and an actual ultrasonic image from the ultrasonic waves received by the ultrasonic transmission / reception unit Based on the respiratory state measured by the respiratory state measuring unit, the respiratory state measuring unit configured to measure the respiratory state of the patient, and the real image configured by the ultrasonic image configuring unit
- a body tissue position calculating unit that compares a sound image and a pseudo ultrasound image stored in the database to calculate a tissue position in the patient's body.
- the present invention it is possible to accurately and in real time measure the position of a body tissue within a patient's body without complicating the system by using a less invasive ultrasonic wave.
- FIG. 1 is a conceptual diagram of a configuration of a body tissue position measuring apparatus according to the present embodiment
- FIG. 2 is a schematic diagram showing a change in body tissue position in a patient body
- FIGS. 3A and 3B are changes in body tissue position in the patient body.
- FIG. 4 is a conceptual diagram showing an ultrasonic propagation model generated by the present embodiment
- FIGS. 5A and 5B are internal tissues based on comparison between real ultrasonic images and patient 3D information.
- FIG. 6 is a flowchart showing a database construction method according to the present embodiment
- FIG. 7 is a flowchart showing a body tissue position measuring method according to the present embodiment
- FIG. 8 is an actual ultrasonic image according to the present embodiment. It is a flowchart which shows the comparison method with a pseudo-ultrasonic image.
- the body tissue position measuring device is a device that measures the three-dimensional body tissue position of a patient 100 fixed to a bed 500 by using ultrasonic waves, and mainly includes a respiratory synchronization 3D information acquisition unit 101, Patient 3D information storage unit 102, ultrasound propagation model creation unit 103, body tissue position change unit (input device) 104, ultrasound image simulation unit 105, database 106, ultrasound probe 107, ultrasound transmission / reception unit 108, ultrasound The sonic image forming unit 109, the respiratory state measuring unit 110, the body tissue position calculating unit 111, and the body tissue position output unit 112 are configured.
- the patient 100 is fixed to the bed 500 in a state where the ultrasonic probe 107 whose position is fixed by a fixing jig 107a such as a robot arm is pressed against the body surface. Is done.
- the ultrasonic probe 107 receives an electrical signal from the ultrasonic transmission / reception unit 108, excites the ultrasonic wave, and transmits it to the body of the patient 100.
- ultrasonic waves that are returned from the body of the patient 100 due to reflection, scattering, and the like are received, converted into electrical signals, and transmitted to the ultrasonic transmission / reception unit 108.
- the ultrasonic transmission / reception unit 108 amplifies the electrical signal received from the ultrasonic probe 107 and sends it to the ultrasonic image construction unit 109.
- ultrasonic elements 107 are arranged in a line inside the ultrasonic probe 107, and by controlling the excitation timing by the ultrasonic transmission / reception unit 108, the ultrasonic focus position and the like can be scanned. It has become.
- the ultrasonic image construction unit 109 acquires an ultrasonic image in the ultrasonic scanning range by synthesizing the ultrasonic reception signals received by the ultrasonic transmission / reception unit 108 such as reflection and scattering.
- FIG. 2 is a schematic diagram showing a change in the position of the body tissue in the patient.
- the body tissue position can be easily calculated from the acquired ultrasonic image.
- the ultrasonic scanning section 202 and the center of the tumor 201 do not necessarily coincide with each other and often do not coincide with each other.
- FIG. 3A and FIG. 3B schematically show changes in the ultrasonic cross-sectional image due to changes in the patient's body tissue position.
- the image of the tumor 303A shown in FIG. 3A and the image of the tumor 303B shown in FIG. 3B depict the tumor 201 that is the same body tissue, but the relative images of the actual ultrasound images in the organs 302A and 302B. It is drawn at different positions and sizes. Only from the actual ultrasound image 301A and the actual ultrasound image 301B, it is possible to estimate the body tissue position in the two-dimensional image, and it is difficult to calculate the three-dimensional body tissue position. Or the accuracy may not be enough.
- 3D information of the patient 100 synchronized with respiration is acquired and stored in advance, and ultrasonic images corresponding to various target body tissue positions are created by simulation using the 3D information described above. . Furthermore, the ultrasonic image obtained by this simulation and the target in-vivo tissue position in the 3D information described above are associated with each other and stored in the database. Then, when imaging the patient's body using ultrasound and calculating the body tissue position, referring to the database described above, the ultrasound image obtained by the measurement and the ultrasound image obtained by the simulation are obtained. By comparing, the corresponding body tissue position is found.
- a configuration and operation for creating an ultrasonic image by simulation will be described.
- the respiratory synchronization 3D information acquisition unit 101 captures a CT image including at least a body tissue that is a position calculation target at a timing synchronized with respiration, for example.
- a CT image including at least a body tissue that is a position calculation target at a timing synchronized with respiration, for example.
- the ultrasound probe 107 may create an artifact of the CT image.
- a dummy probe with few artifacts for simulating the pressing of the body surface by the ultrasonic probe 107 is fixed. It is desirable that the CT image is acquired by holding the tool 107a.
- the information acquired by the respiratory synchronization 3D information acquisition unit 101 is sent to the patient 3D information storage unit 102 and stored in the patient 3D information storage unit 102.
- the ultrasonic propagation model creation unit 103 includes an ultrasonic wave in the patient body that is divided into appropriate small regions (mesh) according to the 3D information of the patient 100 stored in the patient 3D information storage unit 102.
- a sound wave propagation model 401 is created.
- the ultrasonic propagation model creation unit 103 physical quantities necessary for calculating ultrasonic propagation such as the density and sound velocity value or acoustic impedance of each small region by the operator using the body tissue position changing unit 104 described later.
- the ultrasonic wave propagation model 401 is generated in response to the input of the combination setting.
- the operator discriminates fat, muscle, blood vessel, bone, organ, etc. from the patient 3D information, and sets a physical quantity in each small region according to the type of tissue.
- the speed of sound in fat is about 1450 m / s
- the speed of sound in blood, muscle, and organs is about 1530-1630 m / s
- the speed of sound in bone is about 2700-4100 m / s.
- fat, muscle, blood vessels, bones, organs, etc. are automatically discriminated by the ultrasonic wave propagation model creation unit 103 according to the brightness of the CT image, and the physical quantity is set in each reduced area according to the type of tissue. Can be automated.
- the ultrasonic propagation model creation unit 103 determines which cross-sectional ultrasonic image is to be obtained in the 3D model based on information on the position where the ultrasonic probe 107 is actually installed and the transmission direction of the ultrasonic wave. decide.
- the body tissue position changing unit 104 for the ultrasound propagation model created by the ultrasound propagation model creating unit 103, is a body tissue to be measured or other fat, muscle, blood vessel, bone, organ, etc. This is a device for an operator or the like to arbitrarily change the direction of the position. For example, in an ultrasonic wave propagation model displayed on a computer screen, an operation means such as a mouse or input means such as text data can be used.
- the ultrasonic image simulation unit 105 uses the means such as ultrasonic propagation analysis, and the ultrasonic wave propagation model created by the ultrasonic wave propagation model creation unit 103 or changed / corrected by the body tissue position changing unit 104 Analyzes the propagation path of ultrasonic waves entering the patient from the specified ultrasonic probe position, simulates reflection and scattering of ultrasonic waves in the patient, and produces pseudo-ultrasonic images (pseudo-ultrasound Image).
- a finite element method, a difference method, or a ray tracing method is generally known, and any method can be used as long as a certain accuracy is guaranteed, and the present invention is limited. It is not a thing.
- the database 106 stores the pseudo-ultrasound image obtained by the ultrasound image simulation unit 105 in the body tissue position specified by the body tissue position changing unit 104 and the patient respiratory phase when acquired by the respiratory synchronization 3D information acquisition unit 101. Save it in a state associated with the information.
- the respiratory state measurement unit 110 is a device or device that measures the respiratory state of the patient 100.
- Examples of the respiratory state measurement unit 110 include devices and devices that identify the respiratory phase by monitoring the movement of the body surface of the patient 100 using a laser distance meter, measuring the expiration of the patient, and the like.
- Various other methods can be employed as the respiratory state measurement unit 110, and therefore the example shown here does not limit the present invention.
- the internal tissue position calculation unit 111 refers to the database 106, the ultrasonic image configuration unit 109, and the respiratory state measurement unit 110, and based on the respiratory state measured by the respiratory state measurement unit 110, the ultrasonic image configuration unit 109 performs real-time processing.
- the actual ultrasonic image acquired in step S3 is compared with the pseudo ultrasonic image obtained by the simulation stored in the database 106, and the tissue position in the body of the patient 100 is calculated.
- an example of the comparison method will be described with reference to FIGS. 5A and 5.
- the database 106 stores the patient 3D information 501 in a certain respiratory phase and the pseudo ultrasonic images 501A, 501B,.
- a pseudo ultrasonic image that can be compared with a real ultrasonic image obtained during the sound wave measurement is obtained by simulation in a specific cross section of the patient 3D information.
- the pseudo ultrasound stored in the database 106 when the ultrasound scanning section matches the center of the body tissue matches the center of the body tissue.
- the image 502A is called from the database 106
- the organ 502A and the tumor 503A depicted in the pseudo-ultrasonic image 501A are compared with the organ 302A and the tumor 303A depicted in the real ultrasound image 301A, and it is determined that they match. Calculates the tissue position in the body of the patient 100 using the information of the actual ultrasonic image 301A.
- the information is stored in the database 106 based on the information of the respiratory phase at that time measured by the respiratory state measurement unit 110.
- the pseudo ultrasonic image 501B in the case where the ultrasonic scanning cross section and the center of the body tissue do not coincide with each other is called from the database 106, and the organ 502B and the tumor 503B depicted in the pseudo ultrasonic image 501B are converted into the real ultrasonic image 301B.
- the tissue position in the body of the patient 100 is calculated using the information of the actual ultrasonic image 301B.
- the shape, size, and size of the body tissue in the cross-sectional image of the body tissue to be measured A plurality of parameters such as position can be extracted and the difference can be compared quantitatively.
- the difference between the two is calculated as an error, and the calculated error is compared with a predetermined threshold value.
- the difference is smaller than the threshold value, it is determined that they match, and when the error is greater than or equal to the threshold value, it is determined that they do not match. it can. If it is determined that the two do not match, another body tissue position previously stored in the database 106 is designated, and an ultrasonic cross-sectional image obtained by simulation is referred to, and comparison is performed again. Search for matching data.
- a correlation coefficient between images is calculated, and when a predetermined threshold value exceeds the correlation coefficient, it is determined that both match, and the correlation coefficient is the threshold value. It can be determined that they do not match in the following cases.
- the pixel size and the pixel shape obtained in the pseudo ultrasonic image and the real ultrasonic cross-sectional image are different.
- the pixel size greatly differs in shape, size, position, etc. in the cross-sectional image of the body tissue, it may be difficult to compare or it may be difficult to sufficiently ensure the accuracy of the comparison.
- the correlation coefficient it is necessary that the pixel size and the pixel shape of the two coincide at a certain level.
- the body tissue position calculation unit 111 first compares the resolution of the pseudo ultrasonic image and the real ultrasonic image, and interpolates the pixel data with respect to either the pseudo ultrasonic image or the real ultrasonic image. Therefore, it is preferable that the resolutions of both images are matched.
- a pixel interpolation method nearest neighbor interpolation, bilinear interpolation, bicubic interpolation, and the like are generally known, and an appropriate method can be selected according to target position calculation accuracy.
- the image to be interpolated may be either image, but it is desirable to match the lower resolution image with the higher resolution image.
- the body tissue position calculation unit 111 When the matching data is found, the body tissue position calculation unit 111 outputs the corresponding body tissue position information to the body tissue position output unit 112.
- the output method may be, for example, displaying a relative position from a reference coordinate numerically on a monitor, displaying patient 3D information corresponding to the found ultrasonic cross-sectional image simulation result on the monitor, or appropriately encoded electrical There is a method of transmitting the signal by wire or wireless.
- various methods can be adopted according to the purpose of use of the calculated in-vivo tissue position. Therefore, the example shown here does not limit the present invention.
- the ultrasonic propagation model creation unit 103, the ultrasonic image simulation unit 105, the ultrasonic transmission / reception unit 108, the ultrasonic image configuration unit 109, and the body tissue position calculation unit 111 are each a computer, an FPGA (Field-Programmable Gate Array), or the like. This can be realized by loading the program and executing the calculation.
- FPGA Field-Programmable Gate Array
- the patient 3D information storage unit 102 and the database 106 can be configured using various storage media such as a volatile memory, a nonvolatile memory, a hard disk, and an external storage device.
- step S101 processing is started (step S101).
- the patient 100 is already fixed to the bed 500.
- the ultrasonic probe 107 by the fixing jig 107a or a dummy probe with reduced artifacts is pressed against the patient 100 to simulate the actual ultrasonic image acquisition, and the patient 100 by the respiratory synchronization 3D information acquisition unit 101 or the like. It is assumed that preparations for measuring the respiratory status of the child have been completed.
- the respiratory synchronization 3D information acquisition unit 101 collects and stores 3D information for each respiratory phase of the patient 100 (step S102).
- the flow will be described using a case where a CT image is used as 3D information as an example.
- an ultrasonic propagation model is created by the ultrasonic propagation model creation unit 103 (step S103).
- step S104 the position and orientation of the ultrasonic probe 107 that is the starting point of the ultrasonic wave and the body tissue position to be measured are specified (step S104).
- ultrasonic propagation analysis is performed on the ultrasonic propagation model created in step S103 in a region including the position and orientation of the ultrasonic probe 107 specified in step S104 and the body tissue position, and a simulation image (pseudo image) is obtained.
- An ultrasonic image is created (step S105).
- step S105 the pseudo ultrasonic image created in step S105 is stored in the database 106 in combination with the body tissue position designated in step S104 (step S106).
- step S107 it is determined whether or not a sufficient amount of pseudo ultrasonic images has been stored in the database 106.
- the number of pseudo ultrasound images stored in the database 106 affects the final body tissue position calculation accuracy.
- the calculation accuracy of the body tissue position is an error of about the difference between the pseudo ultrasound images of the body tissue position specified in step S104. Therefore, in the determination in step S107, it is determined whether or not a sufficient amount of pseudo-ultrasonic images has been stored in the database 106 by determining whether or not the calculated final body tissue position calculation accuracy is sufficient for the purpose. Can be determined.
- step S104 When it is determined that the storage amount of the pseudo-ultrasonic image stored in the database 106 is insufficient, the process returns to step S104, and simulation and pseudo-ultrasonic image creation processing are performed with another pattern. When it is determined that the pseudo ultrasonic image is sufficiently stored, the process proceeds to step S108.
- the accuracy between the pseudo ultrasound images can be ensured by creating a pseudo ultrasound image by means other than the ultrasound propagation analysis by interpolation or the like.
- step S108 it is determined whether or not the patient 3D information is obtained with a necessary respiratory phase pattern. Similar to the description in step S107 described above, the number of necessary respiratory phase patterns to be used as a determination criterion is determined according to the final body tissue position calculation accuracy. When it is determined that the number of simulation patterns stored in the database 106 is insufficient, the process returns to step S102, and a simulation is performed using another patient 3D information. If it is determined that the number of patterns is sufficient, the process proceeds to step S109, and the ultrasonic wave propagation model creation process ends.
- step S201 processing is started (step S201).
- step S101 the patient 100 is already fixed to the bed 500, the ultrasonic probe 107 is pressed by the fixing jig 107a, and the respiratory state of the patient 100 is measured by the respiratory state measuring unit 110. It is assumed that the preparations for have been completed.
- step S202 transmission of ultrasonic waves toward the body of the patient 100 by the ultrasonic probe 107 and signals of ultrasonic waves reflected and scattered from the patient body by the ultrasonic transmission / reception unit 108 are collected.
- the ultrasonic image constructing unit 109 constructs an actual ultrasonic image using the collected ultrasonic signals (step S203).
- the respiratory state of the patient 100 is measured using the respiratory state measuring unit 110 (step S204).
- Steps S202 and S203 for constructing an actual ultrasonic image and Step S204 for measuring a respiratory state may be performed simultaneously, or the order may be switched.
- the pseudo ultrasonic image stored in the database 106 is read out (step S205).
- step S203 the real ultrasonic image constructed in step S203 is compared with the pseudo ultrasonic image selected in step S205, and a matching pseudo ultrasonic image is searched (step S206).
- step S207 it is determined whether or not the search in step S206 is successful (step S207). If it is determined that the search is successful, the process proceeds to step S208A, the body tissue position corresponding to the pseudo-ultrasonic image is read from the database 106, and is output to the body tissue position output unit 112 (step S208A). In contrast, if it is determined in step S207 that the search has failed, an error signal is output to the body tissue position output unit 112 (step S208B).
- FIG. 8 is a flowchart showing details of the search method for the real ultrasonic image and the pseudo ultrasonic image in step S206 described above.
- processing is started (step S301).
- the shape, size, and position of the body tissue are extracted from the actual ultrasound image (step S302).
- the shape, size, and position of the body tissue are extracted from the pseudo ultrasound image (step S303).
- a difference is calculated as an error from the shape, size, and position of the body tissue extracted in steps S302 and S303 (step S304). For example, the sum of squares of the difference between the values can be used as the error.
- the error is further compared with a preset threshold value to determine whether it matches or does not match.
- step S304 If it is determined in step S304 that the error is equal to or smaller than the threshold value, it is considered that they match, the process proceeds to step S306, the pseudo ultrasonic image is output to the body tissue position output unit 112, and the process ends (step S307). ).
- step S304 if it is determined in step S304 that the error is larger than the threshold value, it is considered that they do not match, and the process returns to step S302 to execute a comparison between a different pseudo ultrasonic image and a real ultrasonic image.
- the search method of the real ultrasonic image and the pseudo ultrasonic image in step S206 is not limited to the procedure shown in FIG. 8, and for example, the correlation coefficient between the real ultrasonic image and the pseudo ultrasonic image is calculated and appropriately used in advance.
- the determined threshold exceeds the correlation coefficient, it can be determined that both match, and when the correlation coefficient is equal to or less than the threshold, it can be determined that they do not match.
- the pixel size and pixel shape obtained in the pseudo ultrasonic image and the real ultrasonic cross-sectional image are different, and by interpolating either one of the pixel data, the real ultrasonic image and the pseudo ultrasonic wave are interpolated.
- the resolution can be matched with the image.
- the 3D position related to the tissue position in the patient 100 can be output from the corresponding patient 3D information in step S208 described above.
- the above-described body tissue position measurement apparatus includes the respiratory synchronization 3D information acquisition unit 101 that acquires 3D information of the patient 100 synchronized with respiration, and the 3D acquired by the respiratory synchronization 3D information acquisition unit 101.
- a patient 3D information storage unit 102 that stores information
- an ultrasound propagation model creation unit 103 that creates an ultrasound propagation model using the patient 3D information stored in the patient 3D information storage unit 102
- an ultrasound propagation model creation unit The ultrasonic image simulation unit 105 that simulates the propagation of ultrasonic waves in the ultrasonic propagation model created in 103 to calculate a pseudo ultrasonic image, and the pseudo ultrasonic image calculated by the ultrasonic image simulation unit 105
- a database 106 stored in association with the patient 3D information, and an ultrasonic wave is transmitted toward the body of the patient 100, and the patient 100
- An ultrasound image that constitutes an actual ultrasound image from ultrasound received by the ultrasound probe 107 and the ultrasound transceiver 108, and an ultrasound probe 107 and ultrasound transceiver 108 that receive ultrasound returning from the body Based on the respiratory state measured by the constituent unit 109, the respiratory state measuring unit 110 that measures the respiratory state of the patient 100, and the respiratory state measuring unit 110, the actual ultrasonic image and database configured by the ultra
- the position of the tissue in the body of the patient 100 using ultrasonic waves with low invasiveness can be accurately measured in real time, and the system is complicated as in the case of using a three-dimensional ultrasonic probe or the like. Therefore, the body tissue position in the patient can be measured accurately and in real time.
- the body tissue position changing unit 104 is further provided as an input device for changing the position of the body tissue in the ultrasound propagation model created by the ultrasound propagation model creating unit 103 and performing a simulation based on the changed ultrasound propagation model. Therefore, detailed information that could not be picked up at the time of treatment planning can be set, and a more accurate ultrasonic propagation model can be set, so that a more accurate measurement of the in-vivo tissue position becomes possible.
- the body tissue position calculation unit 111 extracts the shape, size, and position of the body tissue in each of the real ultrasound image and the pseudo ultrasound image by image processing, and detects differences in shape, size, and position as errors. And calculating the tissue position in the body of the patient 100 by comparing the calculated error with a preset threshold value, so that the comparison between the real ultrasound image and the pseudo ultrasound image can be performed with high accuracy. It is possible to measure the position of the body tissue more accurately.
- the body tissue position calculation unit 111 calculates a correlation coefficient between the real ultrasound image and the pseudo ultrasound image, and compares the calculated correlation coefficient with a preset threshold value so that the inside of the patient 100 is within the body. By calculating the tissue position, the comparison between the real ultrasonic image and the pseudo ultrasonic image can be performed with high accuracy, and the accurate measurement of the in-vivo tissue position can be performed.
- the body tissue position calculation unit 111 matches the resolution of the real ultrasound image and the pseudo ultrasound image with any one of the pixel data by interpolation, so that the real ultrasound image and the pseudo ultrasound image with higher accuracy can be obtained. Comparison with a sound image is possible, and a more accurate measurement of a body tissue position is possible.
- FIG. 9 is a diagram showing a configuration concept of the radiation irradiation apparatus according to the second embodiment of the present invention.
- the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The same applies to the following embodiments.
- the radiotherapy apparatus of the present embodiment is an apparatus for specifying a target body tissue position and irradiating the target with radiation, and the body tissue position measurement of the first embodiment.
- a radiation irradiation unit (irradiation device) 901 for irradiating the target with radiation and a radiation control unit 902 are further provided.
- the radiation control unit 902 receives the body tissue position calculated by the body tissue position calculation unit 111 as a signal, and controls the radiation irradiation unit 901 to irradiate the patient 100 with radiation 903 such as X-rays and particle beams. To control. Thereby, it is comprised so that it may concentrate on the area
- the respiratory state of the patient 100 is monitored by the respiratory state measurement unit 110 and the like to identify the respiratory phase, select an appropriate ultrasonic propagation model, and configure a pseudo ultrasonic image. .
- the respiratory state measurement unit 110 and the like to identify the respiratory phase, select an appropriate ultrasonic propagation model, and configure a pseudo ultrasonic image.
- measurement is performed using the in-vivo tissue position measurement apparatus according to the first embodiment, the radiation irradiation unit 901 that irradiates the target with radiation, and the in-vivo tissue position measurement apparatus.
- a radiation control unit 902 for controlling the radiation irradiation position in the radiation irradiation unit 901 based on the position of the in-vivo tissue, thereby reducing the exposure dose due to the X-ray irradiation resulting from the specification of the position of the body tissue being treated It is possible to perform radiotherapy with high accuracy corresponding to patient movement such as breathing.
- FIG. 10 is a conceptual diagram of an ultrasonic cross-sectional image in the body tissue position measurement apparatus of the present embodiment.
- the in-vivo tissue position measuring apparatus in the first embodiment further includes an ultrasonic reflector 1001 that strongly reflects ultrasonic waves to be embedded in the body of the patient 100.
- the ultrasound reflector 1001 is embedded in the body of the patient 100, and the ultrasound reflector 1001 is used as an index indicating the position of the body tissue to be measured. By calculating the position, the tissue position in the body of the patient 100 is calculated.
- a living tissue is a soft tissue, and the attenuation of ultrasonic waves is large, and the difference in acoustic impedance between the tissues in the body is small, so that ultrasonic reflection hardly occurs. For this reason, there may be a case where a sufficient reflected signal cannot be obtained from the body tissue that is the position calculation target, and a clear real ultrasound image cannot be obtained.
- an ultrasonic reflector 1001 having a greatly different acoustic impedance from that of a living tissue in advance in the body of the patient 100 is particularly focused. It is embedded near the body tissue such as the target site. As a result, a clearer real ultrasonic image can be obtained.
- an ultrasonic propagation model 401A in which the ultrasonic reflector 1001 is reflected is created, and relative coordinates between the embedded ultrasonic reflector 1001 and the body tissue whose position is to be calculated are calculated in advance. Further, when comparing the real ultrasonic image and the pseudo ultrasonic image, an error such as the shape, size, position, etc. of the ultrasonic reflector 1001 is calculated, or when calculating the correlation coefficient, the ultrasonic reflector 1001 is used. Or use it.
- the relative coordinates calculated in advance are added to the absolute coordinates of the ultrasonic reflector 1001.
- an ultrasonic reflector 1001 to be embedded in the body of the patient 100 is further provided, and the in-vivo tissue position calculation unit 111 uses the ultrasonic reflector 1001 reflected in the pseudo-ultrasonic image and the actual ultrasonic image to perform tissue in the patient 100. By calculating the position, the comparison between the real ultrasonic image and the pseudo ultrasonic image can be performed with higher accuracy, and more accurate measurement of the in-vivo tissue position can be performed.
- SYMBOLS 100 Patient 101 ... Respiration synchronous 3D information acquisition part 102 ... Patient 3D information storage part 103 ... Ultrasonic propagation model creation part 104 ... In-vivo tissue position change part 105 ... Ultrasound image simulation part 106 ... Database 107 ... Ultrasonic probe DESCRIPTION OF SYMBOLS 108 ... Ultrasonic transmission / reception part 109 ... Ultrasound image structure part 110 ... Respiration state measurement part 111 ... In-vivo tissue position calculation part 112 ... In-vivo tissue position output part 201 ... Tumor 202 ... Ultrasound scanning cross section 301A, 301B ... With a certain respiratory phase Real ultrasound images 302A, 302B ...
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
呼吸と同期した患者100の3D情報を用いて超音波伝搬モデルを作成する超音波伝搬モデル作成部103と、超音波伝搬モデル内での超音波の伝搬をシミュレーションして疑似超音波画像を計算する超音波画像シミュレーション部105と、疑似超音波画像を患者3D情報と対応づけて保存するデータベース106と、呼吸状態計測部110で測定した呼吸状態に基づいて、超音波画像構成部109で構成された実超音波画像とデータベース106に記憶された疑似超音波画像とを比較して、患者100の体内の組織位置を算出する体内組織位置算出部111と、を備えた。
Description
本発明は、超音波で患者体内の特定の組織位置を測定する体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法に関する。
体内組織の位置を測定する方法が、特許文献1や特許文献2に記載されている。
特許文献1には、装置自体の大型化や過度の複雑化を特に招来することなく、患者の呼吸や拍動もしくは体動などに起因する治療対象部位の挙動を検知して精度の高い放射線照射を行うことができる非侵襲性で且つ安全性の高い放射線治療装置等を提供することを目的として、治療計画用CТ画像の撮像時に治療計画用の超音波画像を同時撮像しておき、治療時には、リアルタイムに撮像した治療用超音波画像と上記治療計画用超音波画像とを比較して両超音波画像の相関値が所定値以上であるか否かを判定し、この相関値が所定値以上のときにのみ、治療対象部位に対する放射線照射が行われるように、放射線照射手段を制御することが記載されている。
特許文献2には、組織位置に関する適切な情報を出力する超音波医療システムを提供することを目的として、超音波診断装置はホストコントローラへエコーデータを出力し、組織座標演算部は3次元探触子を原点とする腫瘍の座標情報を演算し、探触子座標演算部は基準位置であるX線照射装置を原点とする3次元探触子の座標情報を演算し、総合組織座標演算部は、3次元探触子を原点とする腫瘍の座標情報、およびX線照射装置を原点とする3次元探触子の座標情報に基づいて、X線照射装置を原点とする腫瘍の座標情報を演算し、X線照射装置に出力することが記載されている。
がんの主な治療方法として外科手術、化学療法、放射線療法の3つがある。
このうち、放射線療法は、高線量の放射線を患者の治療対象部位である体内組織に照射することでがん細胞を死滅させる治療方法であり、治療部位に放射線を集中して作用させることができ、副作用が比較的軽い方法である。
放射線療法を効率的に実施するためには、放射線が集中して照射される領域と治療対象であるがん腫瘍の存在する領域とが精度良く一致していることが重要である。
従来の放射線治療装置では、事前に取得したCT(Computed Tomography)画像などの情報から治療対象部位である体内組織の位置を特定し、それに基づいて治療計画を立てる。その後、患者を放射線治療装置の治療台に固定し、照射方向、強度等の放射線の特性を制御することで患者の治療対象部位である体内組織に放射線を照射して治療している。
しかし、放射線照射中に患者自身の呼吸などに起因して、患者の治療対象部位が事前に計画した放射線照射位置から動くことが、精度良く治療することの課題となっていた。
この課題に対して、あらかじめ患者の体内に金などでできたマーカーを埋め込んでおき、このマーカーをX線透過像で撮像して追跡することによって治療対象部位の動きを検知し、事前の治療計画や照射時の放射線制御に利用することで、精度良く治療する方法が確立されている。
一方、治療中のX線照射による被ばく量を抑えることができ、かつ呼吸などの患者の動きに対応できるような、侵襲性の低い体内組織位置測定装置の実現が更なる低被ばく量化のために望まれている。侵襲性の低い方法の一つとして、超音波画像を用いる方法がある。
特許文献1では、マーカーとX線に代わり、事前に取得したCT像と同時相に取得した超音波画像と、治療中に取得した超音波画像との相関値が高いタイミングで放射線を照射する放射線治療装置について記載がある。
特許文献1記載の放射線治療装置は、事前に取得するCT像と同時相に取得した治療計画用超音波画像と、治療中に取得した治療用超音波画像を利用して放射線を照射するように制御することで、低侵襲で治療ができるようにしている。しかし、治療超音波画像と相関値の高い治療計画用超音波画像が得られるタイミングで放射線を照射するものであって、治療中の体内組織位置を超音波画像から特定しているわけではないことから、実際の治療対象部位と位置の誤差が生じる恐れがある、との問題がある。
特許文献2記載の超音波医療システムは、3次元超音波探触子を用いて得られた3次元超音波像を用いて患者体内の腫瘍の座標を特定し、X線照射装置に座標情報を出力するようにしている。しかし、超音波波形の収録やデータ処理に時間を要し、システムが複雑化する、との問題がある。
また、特許文献2の(0024)段落には、3次元超音波探触子に代えて、2次元超音波探触子を用いて2次元走査面内のみへ送受波を行ってもよい旨の記載がある。しかしながら、腫瘍を含む対象組織は超音波画像の断面内だけでなく、断面から外れる方向にも動くため、3次元超音波探触子に代えて2次元超音波探触子を用いるだけでは、実際の腫瘍位置と測定位置に誤差が生じる恐れがある、との問題がある。
本発明は、上記課題に鑑みなされたものであって、侵襲性の低い超音波を用いて、システムを複雑にすることなく、正確かつリアルタイムに体内組織位置を測定することが可能な体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法を提供することを目的とする。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、超音波によって患者体内の組織の位置を測定する体内組織位置測定装置であって、呼吸と同期した患者の3D情報を取得する呼吸同期3D情報取得部と、前記呼吸同期3D情報取得部によって取得した前記3D情報を保存する患者3D情報保存部と、前記患者3D情報保存部に保存された前記患者3D情報を用いて超音波伝搬モデルを作成する超音波伝搬モデル作成部と、前記超音波伝搬モデル作成部において作成された前記超音波伝搬モデル内での超音波の伝搬をシミュレーションして疑似超音波画像を計算する超音波画像シミュレーション部と、前記超音波画像シミュレーション部で計算された前記疑似超音波画像を前記患者3D情報と対応づけて保存するデータベースと、前記患者の体内に向けて超音波を送信し、前記患者の体内から戻る超音波を受信する超音波送受信部と、前記超音波送受信部で受信した超音波から実超音波画像を構成する超音波画像構成部と、前記患者の呼吸状態を測定する呼吸状態計測部と、前記呼吸状態計測部で測定した呼吸状態に基づいて、前記超音波画像構成部で構成された前記実超音波画像と前記データベースに記憶された疑似超音波画像とを比較して、前記患者の体内の組織位置を算出する体内組織位置算出部と、を備えたことを特徴とする。
本発明によれば、侵襲性の低い超音波を用いて、システムを複雑にすることなく、正確かつリアルタイムに患者体内の体内組織位置を測定することができる。
以下に本発明の体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法の実施例を、図面を用いて説明する。
<第1の実施例>
本発明の体内組織位置測定装置および体内組織位置測定方法の第1の実施例を、図1乃至図8を用いて説明する。なお、図1乃至図8で共通する部分については同一の符号を付している。
本発明の体内組織位置測定装置および体内組織位置測定方法の第1の実施例を、図1乃至図8を用いて説明する。なお、図1乃至図8で共通する部分については同一の符号を付している。
図1は本実施例による体内組織位置測定装置の構成の概念図、図2は患者体内の体内組織位置の変化の様子を示す模式図、図3Aおよび図3Bは患者体内の体内組織位置の変化による超音波断面画像の変化を示す模式図、図4は本実施例により生成される超音波伝搬モデルを示す概念図、図5Aおよび図5Bは実超音波画像と患者3D情報の比較による体内組織位置測定方法を示す概念図、図6は本実施例によるデータベース構築方法を示すフローチャート、図7は本実施例による体内組織位置測定方法を示すフローチャート、図8は本実施例による実超音波画像と疑似超音波画像との比較方法を示すフローチャートである。
まず、図1乃至図5Bを用いて本実施例における体内組織位置測定装置の構成と役割を説明する。
図1において、体内組織位置測定装置は、寝台500に固定して寝かされた患者100の三次元体内組織位置を超音波によって測定する装置であり、主に、呼吸同期3D情報取得部101、患者3D情報保存部102、超音波伝搬モデル作成部103、体内組織位置変更部(入力デバイス)104、超音波画像シミュレーション部105、データベース106、超音波探触子107、超音波送受信部108、超音波画像構成部109、呼吸状態計測部110、体内組織位置算出部111、体内組織位置出力部112から構成される。
体内組織位置測定装置では、患者100は、ロボットアーム等の固定治具107aによりその位置が固定された超音波探触子107がその体表に押し付けられるように設置された状態で寝台500に固定される。
超音波探触子107は超音波送受信部108から電気信号を受け取って、超音波を励振し、患者100の体内に送信する。また、患者100の体内から反射、散乱などによって戻ってくる超音波を受け取って電気信号に変換し、超音波送受信部108に送信する。超音波送受信部108は超音波探触子107から受け取った電気信号を増幅処理し、超音波画像構成部109へ送る。
一般に、超音波探触子107内部には超音波素子が一列に並んで配置されており、それぞれの励振タイミングを超音波送受信部108で制御することで、超音波のフォーカス位置などが走査可能となっている。
超音波画像構成部109は、超音波送受信部108で受信した反射、散乱などによる超音波受信信号を合成することで、超音波走査範囲の超音波画像を取得する。
ここで、図2に患者体内の体内組織位置の変化の様子を模式図で示す。超音波走査断面202に測定対象とする腫瘍201の中心が存在する時は、取得した超音波画像内から体内組織位置を容易に算出することができる。しかし、図2に示したように患者100の呼吸に伴って腫瘍201の位置が変化する場合、必ずしも超音波走査断面202と腫瘍201の中心が一致するわけではなく、一致しないことが多い。
図3Aおよび図3Bに患者の体内組織位置の変化による超音波断面画像の変化を模式図で示す。
超音波走査断面202と腫瘍201の中心が一致する場合は、図3Aに示すような、実超音波画像301A内に臓器302Aおよび腫瘍303Aの像が描画される。
一方、超音波走査断面202と腫瘍201の中心が一致しない場合は、図3Bに示すような、実超音波画像301B内に臓器302Bおよび腫瘍303Bの像が描画される。
ここで、図3Aに示す腫瘍303Aの像と図3Bに示す腫瘍303Bの像は、同一の体内組織である腫瘍201を描画したものであるが、実超音波画像の臓器302A,302B内における相対位置やサイズが異なって描画されている。このような実超音波画像301Aと実超音波画像301Bとからのみでは、二次元画像の中で体内組織位置を推定することしかできず、三次元の体内組織位置を算出することは困難であるか、その精度が十分でない恐れがある。
そこで、本発明では、予め呼吸と同期した患者100の3D情報を取得、保存しておき、上述の3D情報を用いて様々な対象体内組織位置に対応する超音波画像をシミュレーションにより作成しておく。さらに、このシミュレーションにより得られた超音波画像と上述した3D情報における対象体内組織位置を対応付けてデータベースに保存しておく。その上で、超音波を用いて患者体内を撮像して体内組織位置を算出する際に、上述したデータベースを参照し、測定で得られた超音波画像とシミュレーションで得られた超音波画像とを比較することで、対応する体内組織位置を見出すこととする。以下、シミュレーションによって超音波画像を作成するための構成とその動作について説明する。
図1において、呼吸同期3D情報取得部101は、例えば、呼吸に同期したタイミングで、少なくとも位置算出の対象とする体内組織を含むCT像を撮像する。呼吸位相ごとの複数のタイミングでCT像を撮像することで、呼吸位相ごとの患者100の体内組織位置およびその他の組織に関する情報を3D情報で取得する。この時、超音波探触子107がCT像のアーチファクトを作ることがある。このような場合は、3D情報取得の際に、超音波探触子107に代えて、超音波探触子107による体表の押し付けを模擬するための、アーチファクトが少ないダミー探触子を固定治具107aで保持し、その状態でCT像を取得することが望ましい。
呼吸同期3D情報取得部101によって取得した情報は患者3D情報保存部102に送られ、患者3D情報保存部102にて保存される。
超音波伝搬モデル作成部103は、図4に示すように、患者3D情報保存部102に保存されている患者100の3D情報に合わせて適当な小領域(メッシュ)に分割された患者体内の超音波伝搬モデル401を作成する。
例えば、超音波伝搬モデル作成部103では、後述する体内組織位置変更部104等を用いたオペレータによる各小領域の密度と音速の値または音響インピーダンスなどの超音波伝搬を計算するために必要な物理量の組合せの設定の入力を受けて超音波伝搬モデル401を作成する。オペレータは、患者3D情報から脂肪、筋肉、血管、骨、臓器などを判別し、組織の種類に応じて各小領域に物理量を設定する。例えば、脂肪中の音速は約1450m/s、血液・筋肉・臓器中の音速は約1530~1630m/s、骨中の音速は約2700~4100m/sであることが知られており、患者100の状態に合わせて適当な値を設定する。また、CT画像の輝度に応じて脂肪、筋肉、血管、骨、臓器などを超音波伝搬モデル作成部103において自動で判別し、組織の種類に応じて各省領域に物理量を設定することで設定を自動化することができる。
また、超音波伝搬モデル作成部103は、実際に超音波探触子107を設置する位置とその超音波の発信方向の情報に基づいて、3Dモデルのうちどの断面の超音波画像を得るかを決定する。
体内組織位置変更部104は、超音波伝搬モデル作成部103で作成された超音波伝搬モデルに対して、測定対象とする体内組織や、または、その他の脂肪、筋肉、血管、骨、臓器などの位置をオペレータ等が任意に指示変更するための機器である。例えば、コンピュータの画面上に表示された超音波伝搬モデルにおいて、マウスなどの操作やテキストデータなどの入力手段を用いることができる。
超音波画像シミュレーション部105は、超音波伝搬解析などの手段を用いて、超音波伝搬モデル作成部103において作成されたり、体内組織位置変更部104で変更・修正された超音波伝搬モデル内において、指定された超音波探触子位置から患者体内に入射される超音波の伝搬経路を解析し、患者体内での超音波の反射、散乱などをシミュレーションし、疑似的な超音波画像(疑似超音波画像)を計算する。伝搬解析には、有限要素法や差分法、レイトレーシングによる手法が一般には知られており、一定の精度が保証されるのであれば、どのような手法でも用いることができ、本発明を限定するものではない。
データベース106は、超音波画像シミュレーション部105にて得られた疑似超音波画像を、体内組織位置変更部104で指定した体内組織位置および呼吸同期3D情報取得部101で取得した際の患者呼吸位相の情報と対応付けた状態で保存する。
呼吸状態計測部110は、患者100の呼吸状態を計測する機器,装置である。呼吸状態計測部110としては、例えば、レーザ距離計を用いた患者100の体表の動きのモニタリングや患者の呼気の計測などにより呼吸位相を同定する機器、装置がある。呼吸状態計測部110としては、この他様々な方式を採用することができ、したがって、ここで示した例は、本発明を限定するものではない。
体内組織位置算出部111は、データベース106、超音波画像構成部109、呼吸状態計測部110を参照して、呼吸状態計測部110で測定した呼吸状態に基づいて、超音波画像構成部109でリアルタイムに取得した実超音波画像とデータベース106に記憶されたシミュレーションで得られた疑似超音波画像とを比較し、患者100の体内の組織位置を算出する。以下、比較方法の一例について図5Aおよび図5を用いて説明する。
本実施例の体内組織位置測定装置では、上述のように、データベース106にはある呼吸位相での患者3D情報501とその呼吸位相における疑似超音波画像501A,501B,…が記憶されており、超音波測定の際に得られる実超音波画像と比較可能な疑似超音波画像が患者3D情報の特定の断面におけるシミュレーションにより得られている。
そこで、超音波走査断面と体内組織の中心とが一致する場合は、図5Aに示すように、データベース106に記憶された、超音波走査断面と体内組織の中心とが一致する場合における疑似超音波画像501Aをデータベース106から呼び出し、疑似超音波画像501A内に描写された臓器502Aおよび腫瘍503Aを、実超音波画像301A内に描写された臓器302Aおよび腫瘍303Aと比較し、一致すると判定されるときはその実超音波画像301Aの情報を用いて患者100の体内の組織位置を算出する。
これに対し、超音波走査断面と体内組織の中心とが一致しない場合は、図5Bに示すように、呼吸状態計測部110で測定したその時の呼吸位相の情報に基づいて、データベース106に記憶された、超音波走査断面と体内組織の中心とが一致しない場合における疑似超音波画像501Bをデータベース106から呼び出し、疑似超音波画像501B内に描写された臓器502Bおよび腫瘍503Bを、実超音波画像301B内に描写された臓器302Bおよび腫瘍303Bと比較し、一致すると判定されるときはその実超音波画像301Bの情報を用いて患者100の体内の組織位置を算出する。
ここで、体内組織位置算出部111における疑似超音波画像と実超音波画像との比較に際しては、例えば、画像処理などにより、測定対象とする体内組織の断面像内における体内組織の形状、サイズ、位置などの複数のパラメータを抽出してその差異を定量的に比較することができる。例えば、両者の差異を誤差として計算し、計算した誤差を予め適当に定めた閾値と比較し、閾値よりも小さいときに一致すると判定し、誤差が閾値以上の時は一致しないと判定することができる。両者が一致しないと判定された場合には、あらかじめデータベース106に保存しておいた別の体内組織位置が指定され、シミュレーションされて得られた超音波断面画像を参照し、再度比較を実行し、一致するデータを検索する。
また、体内組織位置算出部111における比較では、例えば、画像同士の相関係数を計算し、予め適当に定めた閾値が相関係数を越える場合に両者が一致すると判定し、相関係数が閾値以下の場合には一致しないと判定することができる。
ここで、体内組織位置算出部111におけるシミュレーションと実超音波断面像の比較に際して、疑似超音波画像と実超音波断面像で得られる画素サイズや画素形状が異なることが想定される。例えば、体内組織の断面像内における形状、サイズ、位置などは、画素サイズが大きく異なると、比較が難しくなるか、その比較の精度を十分に担保することが困難となる恐れがある。また、相関係数を計算するためには、両者の画素サイズと画素形状がある程度の水準で一致している必要がある。
そこで、体内組織位置算出部111では、最初に疑似超音波画像と実超音波画像の解像度を比較し、疑似超音波画像と実超音波画像のどちらか一方の画像に関して画素データを内挿することで両者の画像の解像度を一致させておくことが好適である。画素の内挿の方法は、最近傍補間、双一次補間、双三次補間などが一般に知られており、目標とする位置算出精度に応じて適切な方法を選択することができる。内挿処理を行う画像はどちらの画像でも良いが、解像度の低い方の画像を解像度の高い画像に合わせることが望ましい。
一致するデータが発見できた場合は、体内組織位置算出部111は、対応する体内組織位置の情報を体内組織位置出力部112に対して出力する。出力方法は、例えば、モニタ上に基準座標からの相対位置を数値で表示させる、発見した超音波断面画像シミュレーション結果に対応する患者3D情報をモニタ上に表示させる、あるいは、適当にエンコードされた電気信号として有線あるいは無線で送信するなどの方法がある。この他、出力方法は、算出した体内組織位置の利用目的に応じて様々な方式を採用することができ、したがって、ここで示した例は、本発明を限定するものではない。
上述の超音波伝搬モデル作成部103、超音波画像シミュレーション部105、超音波送受信部108、超音波画像構成部109、体内組織位置算出部111の各部はコンピュータやFPGA(Field-Programmable Gate Array)などにプログラムを読み込ませて計算を実行させることで実現できる。
患者3D情報保存部102やデータベース106は、揮発性メモリや不揮発性メモリ、ハードディスク、外部記憶装置などの各種記憶媒体を用いて構成することができる。
次に、図6乃至図8を用いて、上述の体内組織位置測定装置を好適に用いた本実施例の体内組織位置測定方法について説明する。
最初に、図6を用いて本実施例の体内組織位置測定方法のうち、超音波伝搬モデルの作成方法について説明する。
図6において、まず、処理を開始する(ステップS101)。なお、本ステップでは、患者100は既に寝台500に固定されているものとする。また、固定治具107aによる超音波探触子107、あるいはアーチファクトを低減したダミー探触子の患者100への実超音波画像取得時を模擬した押し付け、呼吸同期3D情報取得部101などによる患者100の呼吸状態の測定の準備についても完了しているものとする。
次いで、呼吸同期3D情報取得部101により、患者100の呼吸位相ごとの3D情報を収集・保存する(ステップS102)。以下では、3D情報としてCT像を用いた場合を例として、フローを説明する。
次いで、超音波伝搬モデル作成部103により、超音波伝搬モデルを作成する(ステップS103)。
次いで、ステップS103にて作成した超音波伝搬モデルにおいて、超音波の起点となる超音波探触子107の位置,向きと測定対象とする体内組織位置を指定する(ステップS104)。
次いで、ステップS103で作成した超音波伝搬モデルに対して、ステップS104で指定した超音波探触子107の位置,向きと体内組織位置を含む領域において超音波伝搬解析を実施し、シミュレーション画像(疑似超音波画像)を作成する(ステップS105)。
次いで、ステップS105で作成した疑似超音波画像を、ステップS104で指定した体内組織位置と組みにしてデータベース106に保存する(ステップS106)。
次いで、十分な量の疑似超音波画像がデータベース106に保存されたか否かを判定する(ステップS107)。
本実施例の体内組織位置測定方法においては、データベース106に保存された疑似超音波画像の数は最終的な体内組織位置算出精度に影響を与える。具体的には、体内組織位置の算出精度は、ステップS104で指定した体内組織位置の疑似超音波画像間の差分程度の誤差になる。そこで、ステップS107の判定では、算出される最終的な体内組織位置算出の精度が目的に対して十分かどうかを判定することによって十分な量の疑似超音波画像がデータベース106に保存されたか否かを判定することができる。
データベース106に保存された疑似超音波画像の保存量が不十分であると判定されたときは処理をステップS104に戻し、別のパターンでシミュレーションおよび疑似超音波画像の作成処理を実施する。疑似超音波画像が十分に保存されていると判定されたときはステップS108に処理を進める。
なお、疑似超音波画像の間については、補間等によって超音波伝搬解析以外の手段で疑似超音波画像を作成するなどして、精度を担保することもできる。
次いで、必要な呼吸位相のパターンで患者3D情報が得られているかどうかを判定する(ステップS108)。上述のステップS107における説明と同様で、最終的な体内組織位置算出精度に応じて判定の基準とする必要な呼吸位相のパターン数を決定する。データベース106に保存されたシミュレーションパターン数が不十分であると判定されたときはステップS102に処理を戻し、別の患者3D情報を用いてシミュレーションを実施する。パターン数が十分であると判定されたときはステップS109に処理を進め、超音波伝搬モデルの作成処理を終了する。
なお、本実施例では複数の呼吸状態と体内組織位置のパターンを収集する例を示したが、十分な精度が確保できるならば、患者の息止め状態の計測結果のみを使用しても良い。また、人体を均一な密度・音速の物質として簡易的にモデル化しても良い。
次に、図7および図8を用いて、上述の体内組織位置測定装置を好適に用いた体内組織位置測定方法のうち、体内組織位置算出部111における体内組織位置の算出方法について説明する。
まず、処理を開始する(ステップS201)。ここでは、ステップS101と同様に、患者100は既に寝台500に固定されており、また固定治具107aによる超音波探触子107の押し付けや、呼吸状態計測部110による患者100の呼吸状態の測定の準備についても完了しているものとする。
次いで、超音波探触子107による患者100の体内に向けた超音波の送信や、超音波送受信部108による患者体内から反射、散乱した超音波の信号を収集する(ステップS202)。
次いで、超音波画像構成部109によって、収集した超音波信号を用いて実超音波画像を構成する(ステップS203)。
次いで、呼吸状態計測部110を用いて患者100の呼吸状態を計測する(ステップS204)。
ここで、実超音波画像を構成するためのステップS202,S203と呼吸状態を計測するステップS204は同時に実施しても良いし、その順番を入れ替えて実施しても良い。
次に、データベース106を参照し、データベース106に保存された疑似超音波画像を読み出す(ステップS205)。本ステップにおける疑似超音波画像の選択にあたっては、ステップS204で計測した患者の呼吸状態を用いて、同じ呼吸状態で取得した3D情報から生成した疑似超音波画像、近似する呼吸状態で取得した3D情報から生成した疑似超音波画像、または近似する呼吸状態で取得した3D情報から補間によって生成した疑似超音波画像から適宜選択する。
次いで、ステップS203で構成した実超音波画像をステップS205で選択した疑似超音波画像と比較し、一致する疑似超音波画像を検索する(ステップS206)。
次いで、ステップS206における検索が成功したか否かを判定する(ステップS207)。検索が成功したと判定された場合は、ステップS208Aに処理を進めて、疑似超音波画像に対応する体内組織位置をデータベース106から読み出し、体内組織位置出力部112に出力する(ステップS208A)。これに対し、ステップS207にて検索が失敗と判定された場合は、体内組織位置出力部112にエラー信号を出力する(ステップS208B)。
図8は上述のステップS206における実超音波画像と疑似超音波画像との検索方法の詳細を示すフローチャートである。
まず、処理を開始する(ステップS301)。
次いで、実超音波画像から体内組織の形状、サイズ、位置を抽出する(ステップS302)。
続いて、疑似超音波画像から体内組織の形状、サイズ、位置を抽出する(ステップS303)。
次いで、ステップS302およびステップS303で抽出した体内組織の形状、サイズ、位置から差異を誤差として計算する(ステップS304)。例えば、それぞれ値の差の二乗和などを誤差として用いることができる。このステップS304では、更に、誤差をあらかじめ設定した閾値と比較し、一致か不一致かを判定する。
ステップS304において誤差が閾値以下であると判定された場合は一致したとみなし、ステップS306に処理を進めて、疑似超音波画像を体内組織位置出力部112出力した後、処理を終了する(ステップS307)。
これに対し、ステップS304において誤差が閾値より大きいと判定された場合は一致しないとみなし、ステップS302に処理を戻し、異なる疑似超音波画像と実超音波画像との比較を実行する。
なお、ステップS206における実超音波画像と疑似超音波画像との検索方法は図8に示す手順に限られず、例えば、実超音波画像と疑似超音波画像の相関係数を計算し、予め適当に定めた閾値が相関係数を越える場合に両者が一致すると判定し、相関係数が閾値以下の場合には一致しないと判定する方法とすることができる。
また、疑似超音波画像と実超音波断面像で得られる画素サイズや画素形状が異なるか否かを判定し、いずれか一方の画素データを内挿することにより、実超音波画像と疑似超音波画像との解像度を一致させることができる。
このようにして得られた疑似超音波画像を用いて、上述のステップS208にて対応する患者3D情報から患者100内の組織位置に関する3D位置を出力することができる。
次に、本実施例の効果について説明する。
上述した本発明の第1の実施例の体内組織位置測定装置は、呼吸と同期した患者100の3D情報を取得する呼吸同期3D情報取得部101と、呼吸同期3D情報取得部101によって取得した3D情報を保存する患者3D情報保存部102と、患者3D情報保存部102に保存された患者3D情報を用いて超音波伝搬モデルを作成する超音波伝搬モデル作成部103と、超音波伝搬モデル作成部103において作成された超音波伝搬モデル内での超音波の伝搬をシミュレーションして疑似超音波画像を計算する超音波画像シミュレーション部105と、超音波画像シミュレーション部105で計算された疑似超音波画像を患者3D情報と対応づけて保存するデータベース106と、患者100の体内に向けて超音波を送信し、患者100の体内から戻る超音波を受信する超音波探触子107および超音波送受信部108と、超音波探触子107および超音波送受信部108で受信した超音波から実超音波画像を構成する超音波画像構成部109と、患者100の呼吸状態を測定する呼吸状態計測部110と、呼吸状態計測部110で測定した呼吸状態に基づいて、超音波画像構成部109で構成された実超音波画像とデータベース106に記憶された疑似超音波画像とを比較して、患者100の体内の組織位置を算出する体内組織位置算出部111と、を備えたものである。
これによって、侵襲性の低い超音波を用いた患者100の体内の組織の位置をリアルタイムで正確に測定することができ、3次元超音波探触子等を用いる場合などのようにシステムを複雑にすることなく、正確かつリアルタイムに患者体内の体内組織位置を測定することができる。
また、超音波伝搬モデル作成部103で作成した超音波伝搬モデル内の体内組織の位置を変え、変えた超音波伝搬モデルに基づいてシミュレーションさせるための入力デバイスとして体内組織位置変更部104を更に備えたため、治療計画時に拾いきれなかった細かな情報を設定することができ、より精度の高い超音波伝搬モデルを設定することができることから、より正確な体内組織位置の測定が可能となる。
更に、体内組織位置算出部111は、実超音波画像と疑似超音波画像のそれぞれの画像内における体内組織の形状、サイズ、および位置を画像処理により抽出し、形状、サイズ、位置の差異を誤差として計算して、計算した誤差を予め設定された閾値と比較して患者100の体内の組織位置を算出することで、実超音波画像と疑似超音波画像との比較を高精度に実行することができ、更に正確な体内組織位置の測定を行うことができる。
また、体内組織位置算出部111は、実超音波画像と疑似超音波画像との相関係数を計算し、計算した相関係数と予め設定された閾値とを比較することで患者100の体内の組織位置を算出することによっても、実超音波画像と疑似超音波画像との比較を高精度に実行することができ、更に正確な体内組織位置の測定を行うことができる。
更に、体内組織位置算出部111は、実超音波画像と疑似超音波画像との解像度を、いずれか一方の画素データを内挿により一致させることで、より精度の高い実超音波画像と疑似超音波画像との比較が可能となり、更に正確な体内組織位置の測定が可能となる。
<第2の実施例>
本発明の第2の実施例の放射線治療装置を図9を用いて説明する。図9は本発明の第2の実施例である放射線照射装置の構成概念を示す図である。第1の実施例と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。
本発明の第2の実施例の放射線治療装置を図9を用いて説明する。図9は本発明の第2の実施例である放射線照射装置の構成概念を示す図である。第1の実施例と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。
図9に示すように、本実施例の放射線治療装置は、対象とする体内組織位置を特定して、標的に対して放射線を照射する装置であって、第1の実施例の体内組織位置測定装置に加えて、更に、放射線を標的に対して照射する放射線照射部(照射装置)901と放射線制御部902を備えている。
放射線制御部902は体内組織位置算出部111によって算出された体内組織位置を信号として受け取り、放射線照射部901を制御することにより患者100に照射されるX線や粒子線などの放射線903の照射位置を制御する。これにより、治療計画で計画した治療対象部位の領域に集中して放射線を照射するよう構成されている。
本実施例の放射線治療装置では、患者100の呼吸状態を呼吸状態計測部110等によりモニタリングすることで呼吸位相を特定して、適切な超音波伝搬モデルを選択して疑似超音波画像を構成する。これにより、治療対象部位が目的の座標領域を通過する適切なタイミングを特定して、放射線の照射を高精度で開始したり停止したりすることができる。
また、適切なフレームレートで体内組織位置算出を繰り返し実行することで治療対象部位の動きに応じた放射線903の制御を実施することができる。
本発明の第2の実施例の放射線治療装置のように、実施例1の体内組織位置測定装置と、放射線を標的に対して照射する放射線照射部901と、体内組織位置測定装置を用いて測定した体内組織位置に基づいて放射線照射部901における放射線照射位置を制御する放射線制御部902と、を備えたことにより、治療中の体内組織の位置の特定に由来するX線照射による被ばく量を低減することができ、かつ呼吸などの患者の動きに対応した精度の高い放射線治療を実施することができる。
<第3の実施例>
本発明の第3の実施例の体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法を図10を用いて説明する。図10は、本実施例の体内組織位置測定装置における超音波断面画像の概念図である。
本発明の第3の実施例の体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法を図10を用いて説明する。図10は、本実施例の体内組織位置測定装置における超音波断面画像の概念図である。
本実施例では、第1の実施例における体内組織位置測定装置において、患者100の体内に埋め込むための超音波を強く反射する超音波反射体1001を更に備えているものである。
更に、体内組織位置を測定する際には、患者100の体内に超音波反射体1001を埋め込み、超音波反射体1001を測定対象の体内組織の位置を示す指標として、この超音波反射体1001の位置を算出することで患者100の体内の組織位置を算出するものである。
一般的に、生体組織は軟組織であり、超音波の減衰が大きいうえ、体内組織間の音響インピーダンス差が小さいために超音波反射が起こりにくいことが知られている。このため、位置算出の対象としている体内組織からの十分な反射信号が得られず、鮮明な実超音波画像が得られない場合がある。
そこで、本実施例では、超音波伝搬モデル作成前である作成呼吸同期3D情報を取得する段階で、あらかじめ生体組織と音響インピーダンスが大きく異なる超音波反射体1001を患者100の体内、特に注目する治療対象部位などの体内組織の近傍に埋め込んでおく。これにより、より鮮明な実超音波画像が得られるようにする。
その上で、超音波反射体1001の映り込んだ超音波伝搬モデル401Aを作成するとともに、埋め込んだ超音波反射体1001と位置を算出したい体内組織の間の相対座標をあらかじめ算出しておく。また、実超音波画像と疑似超音波画像との比較の際に超音波反射体1001の形状、サイズ、位置等の誤差を計算したり、相関係数の計算の際に超音波反射体1001を用いたりする。
本実施例では、注目する体内組織の位置を算出する際に、超音波反射体1001の絶対座標にあらかじめ算出しておいた相対座標を加える。
本発明の第3の実施例の体内組織位置測定装置においても、前述した第1の実施例の体内組織位置測定装置とほぼ同様な効果が得られる。
また、患者100の体内に埋め込む超音波反射体1001を更に備え、体内組織位置算出部111は、疑似超音波画像および実超音波画像に映る超音波反射体1001を用いて患者100の体内の組織位置を算出ことにより、実超音波画像と疑似超音波画像との比較をより高い精度で行うことができ、更に正確な体内組織位置の測定を行うことができる。
<その他>
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
100…患者
101…呼吸同期3D情報取得部
102…患者3D情報保存部
103…超音波伝搬モデル作成部
104…体内組織位置変更部
105…超音波画像シミュレーション部
106…データベース
107…超音波探触子
108…超音波送受信部
109…超音波画像構成部
110…呼吸状態計測部
111…体内組織位置算出部
112…体内組織位置出力部
201…腫瘍
202…超音波走査断面
301A,301B…ある呼吸位相での実超音波画像
302A,302B…実超音波画像中に描画された臓器
303A,303B…実超音波画像中に描画された腫瘍
401,401A…超音波伝搬モデル
501…患者3D情報
501A,501B…ある呼吸位相での疑似超音波画像
502A,502B…患者3D情報中に描画された臓器
503A,503B…患者3D情報中に描画された測定対象の腫瘍
901…放射線照射部
902…放射線制御部
903…放射線
1001…超音波反射体
101…呼吸同期3D情報取得部
102…患者3D情報保存部
103…超音波伝搬モデル作成部
104…体内組織位置変更部
105…超音波画像シミュレーション部
106…データベース
107…超音波探触子
108…超音波送受信部
109…超音波画像構成部
110…呼吸状態計測部
111…体内組織位置算出部
112…体内組織位置出力部
201…腫瘍
202…超音波走査断面
301A,301B…ある呼吸位相での実超音波画像
302A,302B…実超音波画像中に描画された臓器
303A,303B…実超音波画像中に描画された腫瘍
401,401A…超音波伝搬モデル
501…患者3D情報
501A,501B…ある呼吸位相での疑似超音波画像
502A,502B…患者3D情報中に描画された臓器
503A,503B…患者3D情報中に描画された測定対象の腫瘍
901…放射線照射部
902…放射線制御部
903…放射線
1001…超音波反射体
Claims (12)
- 超音波によって患者体内の組織の位置を測定する体内組織位置測定装置であって、
呼吸と同期した患者の3D情報を取得する呼吸同期3D情報取得部と、
前記呼吸同期3D情報取得部によって取得した前記3D情報を保存する患者3D情報保存部と、
前記患者3D情報保存部に保存された前記患者3D情報を用いて超音波伝搬モデルを作成する超音波伝搬モデル作成部と、
前記超音波伝搬モデル作成部において作成された前記超音波伝搬モデル内での超音波の伝搬をシミュレーションして疑似超音波画像を計算する超音波画像シミュレーション部と、
前記超音波画像シミュレーション部で計算された前記疑似超音波画像を前記患者3D情報と対応づけて保存するデータベースと、
前記患者の体内に向けて超音波を送信し、前記患者の体内から戻る超音波を受信する超音波送受信部と、
前記超音波送受信部で受信した超音波から実超音波画像を構成する超音波画像構成部と、
前記患者の呼吸状態を測定する呼吸状態計測部と、
前記呼吸状態計測部で測定した呼吸状態に基づいて、前記超音波画像構成部で構成された前記実超音波画像と前記データベースに記憶された疑似超音波画像とを比較して、前記患者の体内の組織位置を算出する体内組織位置算出部と、を備えた
ことを特徴とする体内組織位置測定装置。 - 請求項1に記載の体内組織位置測定装置において、
前記超音波伝搬モデル作成部で作成した前記超音波伝搬モデル内の体内組織の位置を変え、変えた超音波伝搬モデルに基づいてシミュレーションさせるための入力デバイスを更に備えた
ことを特徴とする体内組織位置測定装置。 - 請求項1に記載の体内組織位置測定装置において、
前記体内組織位置算出部は、前記実超音波画像と前記疑似超音波画像のそれぞれの画像内における体内組織の形状、サイズ、および位置を画像処理により抽出し、前記形状、サイズ、位置の差異を誤差として計算して、計算した前記誤差を予め設定された閾値と比較することで、前記患者の体内の組織位置を算出する
ことを特徴とする体内組織位置測定装置。 - 請求項1に記載の体内組織位置測定装置において、
前記体内組織位置算出部は、前記実超音波画像と疑似超音波画像との相関係数を計算し、計算した前記相関係数と予め設定された閾値とを比較することで前記患者の体内の組織位置を算出する
ことを特徴とする体内組織位置測定装置。 - 請求項1に記載の体内組織位置測定装置において、
前記体内組織位置算出部は、前記実超音波画像と疑似超音波画像との解像度を、いずれか一方の画素データを内挿することにより一致させる
ことを特徴とする体内組織位置測定装置。 - 請求項1に記載の体内組織位置測定装置において、
前記患者の体内に埋め込む超音波反射体を更に備え、
前記体内組織位置算出部は、前記疑似超音波画像および前記実超音波画像に映る前記超音波反射体を用いて前記患者の体内の組織位置を算出する
ことを特徴とする体内組織位置測定装置。 - 対象とする体内組織位置を特定して、標的に対して放射線を照射する放射線治療装置であって、
請求項1に記載の体内組織位置測定装置と、
前記放射線を前記標的に対して照射する照射装置と、
前記体内組織位置測定装置を用いて測定した体内組織位置に基づいて前記照射装置における放射線照射位置を制御する放射線制御部と、を備えた
ことを特徴とする放射線治療装置。 - 超音波によって患者体内の体内組織位置を求める体内組織位置測定方法であって、
呼吸と同期した患者の3D情報を取得するステップと、
取得した前記3D情報を用いて超音波伝搬モデルを作成するステップと、
作成した前記超音波伝搬モデル内での超音波の伝搬をシミュレーションして疑似超音波画像を作成するステップと、
作成した前記疑似超音波画像を前記患者3D情報と対応付けてデータベースに保存するステップと、
前記患者の体内に向けて超音波を送信するとともに前記患者の体内から戻る超音波を受信し、受信した超音波から実超音波画像を構成するステップと、
前記患者の呼吸状態を測定するステップと、
測定した前記患者の呼吸状態に基づいて、前記実超音波画像と前記疑似超音波画像とを比較して、前記患者の体内の組織位置を算出するステップと、を有する
ことを特徴とする体内組織位置測定方法。 - 請求項8に記載の体内組織位置測定方法において、
前記体内組織位置を算出するステップは、
画像処理により、前記実超音波画像と前記疑似超音波画像のそれぞれの画像内における体内組織の形状、サイズ、および位置を画像処理により抽出するステップと、
前記形状、サイズ、および位置の差異を誤差として計算するステップと、
前記誤差を予め設定された閾値と比較することで前記実超音波画像と前記疑似超音波画像とが一致するか否かを判定するステップと、を有する
ことを特徴とする体内組織位置測定方法。 - 請求項8に記載の体内組織位置測定方法において、
前記体内組織位置を算出するステップは、
前記実超音波画像と疑似超音波画像との相関係数を計算するステップと、
前記相関係数を予め設定された閾値と比較することで前記実超音波画像と前記疑似超音波画像とが一致するか否かを判定するステップと、を有する
ことを特徴とする体内組織位置測定方法。 - 請求項8に記載の体内組織位置測定方法において、
前記体内組織位置を算出するステップは、
前記実超音波画像と疑似超音波画像との解像度を、いずれか一方の画素データを内挿することにより一致させるステップ、を更に有する
ことを特徴とする体内組織位置測定方法。 - 請求項8に記載の体内組織位置測定方法において、
前記実超音波画像を構成するステップは、
前記患者の体内に超音波反射体を埋め込むステップと、
前記超音波反射体を測定対象の体内組織の位置を示す指標として、前記疑似超音波画像および前記実超音波画像に映る前記超音波反射体を用いて前記患者の体内の組織位置を算出するステップと、を有する
ことを特徴とする体内組織位置測定方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-083389 | 2017-04-20 | ||
JP2017083389A JP6867218B2 (ja) | 2017-04-20 | 2017-04-20 | 体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193731A1 true WO2018193731A1 (ja) | 2018-10-25 |
Family
ID=63857106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008404 WO2018193731A1 (ja) | 2017-04-20 | 2018-03-05 | 体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6867218B2 (ja) |
WO (1) | WO2018193731A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102765007B1 (ko) | 2019-05-15 | 2025-02-11 | 삼성메디슨 주식회사 | 초음파 영상 장치 및 그 표시 방법 |
JP7433927B2 (ja) * | 2020-01-22 | 2024-02-20 | キヤノンメディカルシステムズ株式会社 | 放射線治療計画装置 |
US11497475B2 (en) | 2020-01-31 | 2022-11-15 | Caption Health, Inc. | Ultrasound image acquisition optimization according to different respiration modes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003117010A (ja) * | 2001-08-09 | 2003-04-22 | Mitsubishi Electric Corp | 放射線治療装置、並びにプログラム及び該プログラムを記録したコンピュータ読み取り可能な記録媒体 |
JP2004000499A (ja) * | 2002-03-27 | 2004-01-08 | Aloka Co Ltd | 超音波医療システム |
JP2007529272A (ja) * | 2004-03-15 | 2007-10-25 | バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド | 心拍同期ct画像取得 |
JP2014012129A (ja) * | 2012-06-05 | 2014-01-23 | Toshiba Corp | 超音波診断装置及び画像処理装置 |
-
2017
- 2017-04-20 JP JP2017083389A patent/JP6867218B2/ja active Active
-
2018
- 2018-03-05 WO PCT/JP2018/008404 patent/WO2018193731A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003117010A (ja) * | 2001-08-09 | 2003-04-22 | Mitsubishi Electric Corp | 放射線治療装置、並びにプログラム及び該プログラムを記録したコンピュータ読み取り可能な記録媒体 |
JP2004000499A (ja) * | 2002-03-27 | 2004-01-08 | Aloka Co Ltd | 超音波医療システム |
JP2007529272A (ja) * | 2004-03-15 | 2007-10-25 | バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド | 心拍同期ct画像取得 |
JP2014012129A (ja) * | 2012-06-05 | 2014-01-23 | Toshiba Corp | 超音波診断装置及び画像処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6867218B2 (ja) | 2021-04-28 |
JP2018175688A (ja) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6440140B2 (ja) | 被検体情報取得装置、処理装置、および信号処理方法 | |
CN104244818B (zh) | 在非侵入式治疗期间的基于参考的运动跟踪 | |
JP5707148B2 (ja) | 医用画像診断装置及び医用画像処理装置 | |
US20180228471A1 (en) | Method and apparatus for analyzing elastography of tissue using ultrasound waves | |
CN109313698B (zh) | 同步的表面和内部肿瘤检测 | |
KR102207919B1 (ko) | 초음파를 생성하는 방법, 장치 및 시스템 | |
JP6525565B2 (ja) | 被検体情報取得装置および被検体情報取得方法 | |
US9949723B2 (en) | Image processing apparatus, medical image apparatus and image fusion method for the medical image | |
CN106456253B (zh) | 免于重建的自动多模态超声配准 | |
US20150193932A1 (en) | Image processing system, x-ray diagnostic apparatus, and image processing method | |
KR20140126815A (ko) | 호흡 주기 동안 체내 장기의 변화를 추적하는 방법, 장치 및 시스템. | |
KR20140008746A (ko) | 움직이는 장기에 초음파를 조사하여 장기 특정 부위의 온도 변화를 나타내는 온도 맵을 생성하는 방법 및 초음파 시스템 | |
CN107960983A (zh) | 被检体信息获得装置、显示方法、程序和处理装置 | |
JP5495886B2 (ja) | 患者位置決めシステム | |
JP6829437B2 (ja) | 生体内運動追跡装置 | |
KR20130143434A (ko) | 고강도 집속 초음파의 초점을 결정하는 방법 및 장치 | |
KR20140113172A (ko) | 초음파 조사 계획 수립 방법 및 장치, 초음파 조사 방법 | |
KR20130054003A (ko) | 해부학적 특성을 기반으로 초음파 조사 계획을 수립하는 방법 및 장치 | |
WO2018193731A1 (ja) | 体内組織位置測定装置および放射線治療装置、ならびに体内組織位置測定方法 | |
CN116437866A (zh) | 用于基于计算的机器人臂位置生成图像的方法、装置和系统 | |
KR20140100648A (ko) | 일 호흡 주기에 따른 장기의 형상 및 위치의 변화를 나타내는 모델을 생성하는 방법, 장치 및 시스템. | |
JP7072471B2 (ja) | 位置測定装置、およびこれを備えた治療システム、ならびに位置測定方法 | |
KR20160064574A (ko) | 하이푸 치료 시스템 및 그 방법 | |
CN110914916B (zh) | 用于监测evar后患者的成像方法、控制器和成像系统 | |
JP6450165B2 (ja) | 荷電粒子ビーム装置および荷電粒子ビーム照射位置特定装置ならびに荷電粒子ビーム照射位置特定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787976 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18787976 Country of ref document: EP Kind code of ref document: A1 |