WO2018193755A1 - Planar illumination device - Google Patents
Planar illumination device Download PDFInfo
- Publication number
- WO2018193755A1 WO2018193755A1 PCT/JP2018/009794 JP2018009794W WO2018193755A1 WO 2018193755 A1 WO2018193755 A1 WO 2018193755A1 JP 2018009794 W JP2018009794 W JP 2018009794W WO 2018193755 A1 WO2018193755 A1 WO 2018193755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- region
- light guide
- prism
- guide plate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q3/00—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
- B60Q3/60—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects
- B60Q3/62—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides
- B60Q3/64—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides for a single lighting device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q3/00—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
- B60Q3/70—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose
- B60Q3/74—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose for overall compartment lighting; for overall compartment lighting in combination with specific lighting, e.g. room lamps with reading lamps
- B60Q3/745—Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose for overall compartment lighting; for overall compartment lighting in combination with specific lighting, e.g. room lamps with reading lamps using lighting panels or mats, e.g. electro-luminescent panels, LED mats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
Definitions
- the present invention relates to a planar illumination device.
- planar lighting device for in-vehicle lighting that illuminates a driver's seat or a passenger seat in an automobile has been provided.
- a planar illumination device that further has translucency and is visible through such a planar illumination device has been recently demanded.
- This invention is made
- a planar illumination device includes a light source and a light guide plate.
- the light source emits light in a predetermined direction.
- the light guide plate has a side surface, an emission surface that is one main surface, and a back surface that is the other main surface, a prism is formed on the back surface, and light incident on the side surface from the light source is The light exits from the exit surface.
- the prism includes a first region that is substantially parallel to the emission surface and a second region that is inclined with respect to the emission surface when the prism is cut parallel to the predetermined direction. The region and the second region extend obliquely with respect to the predetermined direction.
- FIG. 1A is a front view of the planar illumination device according to the embodiment. 1B is a cross-sectional view taken along line AA in FIG. 1A.
- FIG. 2A is an enlarged view of a region D in FIG. 1A.
- FIG. 2B is an enlarged view of region E in FIG. 1A.
- 2C is a cross-sectional view taken along line FF in FIG. 2A.
- FIG. 3A is a diagram for explaining the light bar according to the embodiment.
- FIG. 3B is an enlarged view of the light bar according to the embodiment.
- FIG. 3C is an enlarged view of region H in FIG. 3A.
- FIG. 3D is an enlarged view of region J in FIG. 3A.
- 3E is a cross-sectional view taken along line KK in FIG.
- FIG. 4A is an enlarged view of a central portion in the longitudinal direction of the prism sheet according to the embodiment.
- FIG. 4B is an enlarged view of the vicinity of the end in the longitudinal direction of the prism sheet according to the embodiment.
- FIG. 5A is a view for explaining the visual field control film according to the embodiment.
- FIG. 5B is a diagram for describing another example of the visual field control film according to the embodiment.
- FIG. 6A is a front view of the planar illumination device according to the first modification of the embodiment.
- FIG. 6B is an enlarged view of region M in FIG. 6A.
- FIG. 7A is an enlarged view of a first light guide unit according to Modification 2 of the embodiment.
- FIG. 7B is an enlarged view of the second light guide unit according to the second modification of the embodiment.
- FIG. 8 is a cross-sectional view of a planar illumination device according to Modification 3 of the embodiment.
- FIG. 9 is a diagram for explaining a visual field control film according to Modification 3 of the embodiment.
- FIG. 10A is a diagram for explaining light distribution in the planar illumination device of the reference example.
- FIG. 10B is a diagram for describing light distribution in the planar illumination device according to the modification 3 of the embodiment.
- FIG. 11 is a cross-sectional view of a planar illumination device according to Modification 4 of the embodiment.
- FIG. 12 is a diagram illustrating a light distribution in the planar lighting device of the reference example.
- FIG. 13 is a diagram for explaining the azimuth angle in the light distribution shown in FIG.
- FIG. 14 is a diagram for explaining polar angles in the light distribution shown in FIG.
- FIG. 15 is a diagram illustrating a cross section of the light distribution in the embodiment, the third modification, the fourth modification, and the reference example.
- planar lighting device according to the embodiment will be described with reference to the drawings. Note that the application of the planar lighting device is not limited by the embodiment described below. It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation. Furthermore, there are cases in which parts having different dimensional relationships and ratios are included between the drawings.
- FIG. 1A is a front view of the planar lighting device 1 according to the embodiment
- FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
- the planar illumination device 1 includes a housing frame 2, linear light sources 3A and 3B, a visual field control film 4, and a light guide plate 5.
- the planar illumination device 1 is used, for example, as an in-vehicle illumination lamp that illuminates the hands of a driver's seat and a passenger seat of an automobile.
- the housing frame 2 holds and stores the linear light sources 3A and 3B, the visual field control film 4, and the light guide plate 5.
- the housing frame 2 is made of, for example, synthetic resin or metal.
- the housing frame 2 has an opening 2a formed on the main surface 5d side of the light guide plate 5 and an opening 2b formed on the main surface 5e side of the light guide plate 5.
- the light guide plate 5 is exposed from the openings 2a and 2b.
- FIG. 1A for convenience of explanation, illustration of a portion on the positive side in the Z-axis direction of the housing frame 2 at a position where the linear light sources 3A and 3B and the visual field control film 4 are disposed is omitted.
- the linear light source 3A is, for example, a light source that emits light emitted toward the passenger seat in the vehicle (lower left side in FIG. 1A). It is a light source which emits the light radiate
- the linear light sources 3 ⁇ / b> A and 3 ⁇ / b> B include a pair of FPC (Flexible Printed Circuits) 10, a pair of LEDs (Light Emitting Diode) 11, a pair of light bars 12, and one prism sheet 13.
- the FPC 10 is a board on which the LEDs 11 are mounted.
- the FPC 10 has a mounting surface configured such that the LED 11 can be mounted, and a surface opposite to the light emitting surface 11a of the LED 11 is bonded to the mounting surface.
- a drive circuit (not shown) is connected to each of the pair of FPCs 10. Then, the LED 11 is driven by the driving circuit via the FPC 10, and the corresponding linear light sources 3A and 3B are turned on.
- the LED 11 is a point light source.
- the LED 11 has a light emitting surface 11 a that emits light, and is disposed on the light incident surface 12 a side of the light bar 12 in a state where the light emitting surface 11 a faces the light incident surface 12 a of the light bar 12.
- the LED 11 emits light from the light emitting surface 11 a toward the light incident surface 12 a of the light bar 12.
- the surface of the LED 11 opposite to the light emitting surface 11a is joined to the FPC 10. That is, the LED 11 is a top view type LED in which the mounted FPC 10 is substantially parallel to the light emitting surface 11a.
- the LED 11 is not limited to the top view type LED, and may be a side view type LED in which the mounted FPC 10 is orthogonal to the light emitting surface 11a.
- the light bar 12 converts light incident from the LED 11, which is a point light source, into linear light and emits it toward the prism sheet 13.
- the light bar 12 is made of a transparent material (for example, polycarbonate resin), is formed in a rod shape, and has a light incident surface 12a, a light exit surface 12b, and a light exit surface 12c opposite to the light exit surface 12b. .
- the light incident surface 12a is one end surface of the light bar 12, and the light emitted from the LED 11 is incident thereon.
- the light exit surface 12b is a surface substantially perpendicular to the light entrance surface 12a and emits incident light.
- a plurality of prisms 12j are formed side by side on the light exit surface 12b.
- the light exit surface 12c is a surface opposite to the light exit surface 12b, and a plurality of prisms 12g (see FIG. 3C) are formed side by side. Details of the light bar 12 will be described later.
- the prism sheet 13 controls the light distribution.
- the prism sheet 13 is disposed between the light exit surface 12 b of the light bar 12 and the light incident surface 4 a of the visual field control film 4.
- the prism sheet 13 has a light incident surface 13a that faces the light output surface 12b of the light bar 12, and a light output surface 13b opposite to the light incident surface 13a.
- a plurality of prisms 13d are formed side by side on the light incident surface 13a.
- a convex lens 13e is formed side by side on the light exit surface 13b. The details of the prism sheet 13 will be described later.
- the linear light sources 3 ⁇ / b> A and 3 ⁇ / b> B described so far are in a predetermined direction B (Y-axis negative direction in the drawing) from the light exit surface 13 b of the prism sheet 13 to the side surface 5 c of the light guide plate 5 through the visual field control film 4.
- a linear light is emitted.
- planar light can be emitted from the light guide plate 5 by using the linear light sources 3A and 3B that emit light linearly.
- the visual field control film 4 controls the light distribution angle.
- the visual field control film 4 is disposed between the light exit surface 13 b of the prism sheet 13 and the side surface 5 c of the light guide plate 5.
- the field-of-view control film 4 has a light incident surface 4a that faces the light output surface 13b of the prism sheet 13, and a light output surface 4b opposite to the light incident surface 4a. The details of the visual field control film 4 will be described later.
- the light guide plate 5 is formed in a rectangular shape when viewed from above, and the first light guide portion 5a into which the light emitted from the linear light source 3A enters and the light emitted from the linear light source 3B enter. And a second light guide 5b.
- the planar illumination device 1 according to the embodiment is formed symmetrically about a center C shown in FIG. 1A as an axis, and the light guide plate 5 and the first light guide unit 5a are connected to the first C light guide 5a with the center C as a boundary. 2 light guides 5b.
- the light guide plate 5 has a side surface 5c facing the visual field control film 4, a main surface 5d, and a main surface 5e opposite to the main surface 5d.
- the side surface 5c is a strip-shaped surface extending in the X-axis direction. Light traveling in a predetermined direction B is incident on the side surface 5c.
- the light guide plate 5 when the light guide plate 5 is cut in parallel to the predetermined direction B, the light guide plate 5 has a wedge shape that gradually decreases in thickness in the predetermined direction B. That is, the distance between the main surface 5d and the main surface 5e becomes narrower as the light guide plate 5 is separated from the visual field control film 4.
- the main surfaces 5d and 5e are rectangular surfaces extending along the XY plane.
- the main surface 5d is an emission surface from which light incident from the side surface 5c is emitted. Therefore, in the following description, the main surface 5d is referred to as “exit surface 5d”.
- the main surface 5e on the back side is expressed as “back surface 5e”.
- the light guide plate 5 is made of a transparent material (for example, polycarbonate resin) and has a desired translucency.
- the entire light guide plate 5 is transparent so that an object existing on the back surface 5 e side can be viewed from the exit surface 5 d side through the openings 2 a and 2 b of the housing frame 2.
- the exit surface 5d is disposed substantially parallel to the predetermined direction B.
- the back surface 5e is inclined from the predetermined direction B.
- a plurality of prisms 5f are arranged side by side on the back surface 5e. Next, details of the prism 5f formed on the light guide plate 5 will be described with reference to FIGS. 2A to 2C.
- FIG. 2A is an enlarged view of region D in FIG. 1A
- FIG. 2B is an enlarged view of region E in FIG. 1A. That is, FIG. 2A is an enlarged view of the first light guide portion 5a into which light from the linear light source 3A enters, and FIG. 2B is an enlarged view of the second light guide portion 5b into which light from the linear light source 3B enters.
- FIG. 2A is an enlarged view of the first light guide portion 5a into which light from the linear light source 3A enters
- FIG. 2B is an enlarged view of the second light guide portion 5b into which light from the linear light source 3B enters.
- FIG. 2C is a cross-sectional view taken along the line FF in FIG. 2A. Specifically, FIG. 2C is a cross-sectional view when the light guide plate 5 is cut in parallel with a predetermined direction B. Note that FIG. 2C also coincides with the cross section taken along line GG in FIG. 2B.
- a plurality of prisms 5f are formed along the predetermined direction B on the back surface 5e of the light guide plate 5. As shown in FIG.
- the prism 5f has a first region 5f1 and a second region 5f2.
- region 5f1 is substantially planar shape, and when the light-guide plate 5 is cut
- the second region 5f2 has a substantially planar shape, and is inclined with respect to the emission surface 5d when the light guide plate 5 is cut in parallel with the predetermined direction B. Specifically, the second region 5f2 is inclined in a direction approaching the emission surface 5d as it goes in the predetermined direction B. Also, the second region 5f2 of one prism 5f is formed continuously with the first region 5f1 of the adjacent prism 5f.
- the prism 5f having such a cross-sectional shape changes the path of the light irradiated along the predetermined direction B by the linear light sources 3A and 3B, and emits the light from the emission surface 5d. . Specifically, light is reflected toward the exit surface 5d by the second region 5f2 of the prism 5f. Thus, the light distribution in the Z-axis direction can be controlled by the prism 5f.
- the light guide plate 5 when the light guide plate 5 is cut in parallel with the predetermined direction B, the object existing on the back surface 5e side is visually recognized from the exit surface 5d side by making the first region 5f1 and the exit surface 5d substantially parallel.
- the physical continuity of the visually recognized object can be increased. That is, the distortion of the visually recognized object can be reduced by making the first region 5f1 and the exit surface 5d substantially parallel. Therefore, the light guide plate 5 has high translucency.
- the light incident along the predetermined direction B is reflected by the first region 5f1 by making the first region 5f1 substantially parallel to the emission surface 5d.
- the first region 5f1 and the second region 5f2 of the prism 5f extend obliquely with respect to the predetermined direction B.
- the first region 5f1 and the second region 5f2 are directed from the X-axis negative direction and the Y-axis negative direction to the X-axis positive direction and the Y-axis positive direction. It extends.
- the first region 5f1 and the second region 5f2 extend from the X-axis positive direction and the Y-axis negative direction toward the X-axis negative direction and the Y-axis positive direction.
- the first light guide 5a emits light in the negative X-axis direction and the negative Y-axis direction
- the second light guide 5b The light is emitted in the positive direction of the X axis and in the negative direction of the Y axis. That is, light is emitted from the light guide plate 5 in a direction away from the visual field control film 4 and in a direction approaching both ends where the LEDs 11 are provided. In this way, the light distribution in the X-axis direction can be accurately controlled by the prism 5f.
- the light distribution (in the orthogonal direction on the exit surface 5 d of the light guide plate 5) is achieved by the prism 5 f formed on the light guide plate 5.
- the light distribution in the biaxial direction) can be controlled with high accuracy.
- the light guide plate 5 has high translucency. That is, according to the embodiment, it is possible to achieve both the light transmitting property and the high light distribution property.
- the light emitted from the light guide plate 5 may be emitted within a range of 40 ° or less in full width at half maximum.
- the first region 5f1 and the emission surface 5d do not have to be completely parallel.
- the first region 5f1 may have an angle of 0 ° or more and 5 ° or less with the emission surface 5d.
- the first region 5f1 preferably has an angle of 0 ° to 1 ° with the exit surface 5d, and more preferably has an angle of 0 ° to 0.5 ° with the exit surface 5d.
- the entire light guide plate 5 since the entire light guide plate 5 has a wedge shape in the cross-sectional view of the YZ plane, the light guide plate 5 is cut in a direction different from the predetermined direction B. In this case, the first region 5f1 and the emission surface 5d are not parallel.
- the ratio of the length L2 of the first region 5f1 in the Y-axis direction to the length L1 of the prism 5f in the Y-axis direction is 60 % Or more and less than 100%.
- the length L1 is the sum of the length L2 and the length L3 of the second region 5f2 in the Y-axis direction.
- the prism angle ⁇ 1 formed by the second region 5f2 and the surface 5g parallel to the exit surface 5d is expressed by the following equation (1).
- ⁇ 1 ⁇ 90 ⁇ asin (sin ⁇ / n) ⁇ / 2 (°) (1)
- the angle ⁇ is an angle (emission angle) formed by the direction 5h perpendicular to the emission surface 5d and the light 100 emitted from the emission surface 5d.
- N is the refractive index of the light guide plate 5.
- the planar illumination device 1 when used as an in-vehicle illumination lamp that illuminates the hands of the driver seat and the passenger seat, a person sitting on the driver or passenger seat It is possible to illuminate only at hand. Thereby, it can suppress that a driver
- a plurality of lights 100 are emitted in a plurality of directions from the emission surface 5d, and a direction 5h perpendicular to the emission surface 5d and a direction in which the light 100 having the peak luminous intensity among the plurality of lights 100 travels. Is an angle ⁇ .
- FIG. 3A is a diagram for explaining the light bar 12 according to the embodiment.
- the width (dimension in the Y-axis direction) of the light bar 12 decreases from one end where the light incident surface 12a is provided toward the other end along the longitudinal direction (X-axis direction in the drawing). It has become.
- the light bar 12 has a root portion 12d including the light incident surface 12a and a tip portion 12e provided away from the light incident surface 12a.
- the root portion 12d and the tip portion 12e are formed with different inclinations of the light exit surface 12c. Specifically, as shown in FIG. 3B, the angle ⁇ 2 formed between the light exit surface 12c1 provided at the root portion 12d and the surface 12f parallel to the light exit surface 12b is the same as the light exit surface 12c2 provided at the tip portion 12e. The angle ⁇ 3 formed with the surface 12f parallel to the light exit surface 12b is larger.
- the light bar 12 has a two-stage wedge shape in which the reflecting surface 12c1 provided at the root portion 12d has a larger inclination than the reflecting surface 12c2 provided at the tip portion 12e.
- FIG. 3C is an enlarged view of region H in FIG. 3A
- FIG. 3D is an enlarged view of region J in FIG. 3A. That is, FIG. 3C is a diagram for explaining the prism 12g formed in the region H near the root portion 12d in the tip portion 12e, and FIG. 3D is separated from the root portion 12d in the tip portion 12e.
- 5 is a diagram for explaining a prism 12g formed in a region J.
- a plurality of prisms 12g are formed along the longitudinal direction (X-axis direction) of the light bar 12 on the light exit surface 12c in the region H.
- the prism 12g has an inclined surface 12g1 and an inclined surface 12g2.
- the inclined surface 12g1 is inclined in a direction away from the light exit surface 12b as it goes from one end (light entrance surface 12a side) of the light bar 12 to the other end.
- the inclined surface 12g2 is inclined in a direction approaching the light exit surface 12b as it goes from one end (light incident surface 12a side) of the light bar 12 to the other end. Further, the inclined surface 12g2 of one prism 12g is formed continuously with the inclined surface 12g1 of the adjacent prism 12g.
- a plurality of prisms 12g are also formed side by side along the longitudinal direction (X-axis direction) of the light bar 12 on the light exit surface 12c in the region J.
- the angle ⁇ 4 formed by the inclined surface 12g2 of the prism 12g in the region H shown in FIG. 3C and the surface 12f parallel to the light exit surface 12b is the inclination of the prism 12g in the region J shown in FIG. 3D. It is smaller than the angle ⁇ 5 formed by the surface 12g2 and the surface 12f parallel to the light exit surface 12b. That is, as it goes from one end (light incident surface 12a side) to the other end of the light bar 12, the angle formed by the inclined surface 12g2 of the prism 12g and the surface 12f parallel to the light exit surface 12b is gradually increased. To change.
- the angle ⁇ 6 formed by the inclined surface 12g1 and the inclined surface 12g2 is an angle common to all the prisms 12g.
- FIG. 3E is a cross-sectional view taken along line KK in FIG. 3A.
- FIG. 3E shows the side surfaces 12k and 12m of the light bar 12 substantially parallel to the XY plane.
- a plurality of prisms 12j are formed side by side along the short direction (Z-axis direction) of the light bar 12 on the light exit surface 12b of the light bar 12 in a sectional view of the YZ plane.
- the prism 12j has an inclined surface 12j1 and an inclined surface 12j2.
- the inclined surface 12j1 is inclined in a direction away from the surface 12h parallel to the light exit surface 12b as it goes from one end (side surface 12k side) to the other end (side surface 12m side) in the short direction of the light bar 12.
- the inclined surface 12j2 is inclined in a direction approaching the surface 12h parallel to the light exit surface 12b as it goes from one end (side surface 12k side) to the other end (side surface 12m side) in the short direction of the light bar 12.
- the apex angle ⁇ 7 of the angle formed by the inclined surface 12j1 and the inclined surface 12j2 is 90 °, for example.
- an angle ⁇ 8 formed by the inclined surface 12j1 and the surface 12h and an angle ⁇ 9 formed by the inclined surface 12j2 and the surface 12h are, for example, 45 °.
- the prism 12j changes the path of the light 101 incident on the light bar 12 in a direction parallel to the Y-axis direction, thereby converting the light 101 into the light incident surface 13a of the prism sheet 13. Can be made incident.
- the light distribution in the Z-axis direction can be accurately controlled by the prism 12j.
- the light distribution in the X-axis direction can be controlled by forming the prism 12g on the light exit surface 12c. That is, in the light bar 12 according to the embodiment, the light distribution in the X-axis direction and the Z-axis direction can be accurately controlled.
- the apex angle ⁇ 7 of the prism 12j is 90 °
- the light distribution angle in the Z-axis direction on the exit surface 5d of the light guide plate 5 can be minimized.
- the apex angle ⁇ 7 is made larger than 90 °, the light distribution in the Z-axis direction on the exit surface 5d of the light guide plate 5 can be widened.
- FIG. 4A is an enlarged view of a central portion in the longitudinal direction (X-axis direction) of the prism sheet 13 according to the embodiment.
- a plurality of prisms 13 d are formed side by side along the longitudinal direction (X-axis direction) of the prism sheet 13 on the light incident surface 13 a in the center of the prism sheet 13.
- the prism 13d has an inclined surface 13d1 and an inclined surface 13d2.
- the inclined surface 13d1 is inclined in a direction away from the light exit surface 13b as it goes from one end (X-axis negative direction side) in the longitudinal direction of the prism sheet 13 to the other end (X-axis positive direction side).
- the inclined surface 13d2 is inclined in a direction approaching the light exit surface 13b as it goes from one end (X-axis negative direction side) in the longitudinal direction of the prism sheet 13 to the other end (X-axis positive direction side). Further, the inclined surface 13d2 of one prism 13d is formed continuously with the inclined surface 13d1 of the adjacent prism 13d.
- the prism 13d changes the path of the light 102 incident on the prism sheet 13 in a direction parallel to the Y-axis direction, so that the light 102 is incident on the light incident surface 4a of the visual field control film 4. Can be made incident.
- the light 102 incident on the inclined surface 13d1 of the prism 13d is reflected toward the light incident surface 4a by the inclined surface 13d2.
- the light distribution in the X-axis direction can be controlled by the prism 13d.
- FIG. 4B is an enlarged view of the vicinity of the end portion in the longitudinal direction of the prism sheet 13 according to the embodiment, specifically, an enlarged view of the vicinity of the end portion on the linear light source 3A side.
- a plurality of prisms 13d are also formed side by side along the longitudinal direction (X-axis direction) of the prism sheet 13 on the light incident surface 13a in the vicinity of the end.
- the shapes of the plurality of prisms 13 d in the cross-sectional view of the XY plane are line symmetric with respect to the line segment passing through the center C of the planar illumination device 1. That is, the light incident surface 13a is inclined toward the center C from both ends of the prism sheet 13 in the X-axis direction, and is inclined in a direction approaching the light output surface 13b and an inclined surface 13d1 inclined in a direction away from the light output surface 13b.
- a plurality of prisms 13d having continuous inclined surfaces 13d2 are formed side by side along the X-axis direction.
- the prism 13 d changes the path of the light 103 incident on the prism sheet 13 in a direction parallel to the Y-axis direction, thereby causing the light 103 to enter the light incident surface 4 a of the visual field control film 4. Can be made incident.
- the angle ⁇ 10 formed by the inclined surface 13d1 of the prism 13d in the central portion of the prism sheet 13 shown in FIG. 4A and the surface 13f parallel to the light exit surface 13b is the prism sheet shown in FIG. 4B. 13 is smaller than the angle ⁇ 13 formed by the inclined surface 13d1 and the surface 13f of the prism 13d in the vicinity of the end portion.
- the inclination angle (angle ⁇ 10) of the inclined surface 13d1 formed in the central portion of the light incident surface 13a is smaller than the inclination angle (angle ⁇ 13) of the inclined surface 13d1 formed near the end of the light incident surface 13a.
- the angle ⁇ 11 formed by the inclined surface 13d2 of the prism 13d in the central portion of the prism sheet 13 shown in FIG. 4A and the surface 13f parallel to the light exit surface 13b is the prism sheet 13 shown in FIG. 4B. Is larger than the angle ⁇ 14 formed by the inclined surface 13d2 and the surface 13f of the prism 13d in the vicinity of the end of the prism 13d.
- the inclination angle (angle ⁇ 11) of the inclined surface 13d2 formed at the central portion of the light incident surface 13a is larger than the inclination angle (angle ⁇ 14) of the inclined surface 13d2 formed near the end of the light incident surface 13a.
- the angle ⁇ 12 formed by the inclined surface 13d1 and the inclined surface 13d2 is an angle common to all the prisms 13d.
- the angle ⁇ 10 formed by the inclined surface 13d1 and the surface 13f is equal to the angle ⁇ 11 formed by the inclined surface 13d2 and the surface 13f. That is, in the cross-sectional view of the XY plane, the shape of the prism 13d located at the center C is an isosceles triangle.
- the shape of the plurality of prisms 13d in the cross-sectional view of the XY plane is line symmetric with respect to the line segment passing through the center C of the planar illumination device 1.
- the light exit surface 13b of the prism sheet 13 may be planar, or as shown in FIGS. 4A and 4B, a lenticular lens in which a plurality of convex lenses 13e are arranged in the X-axis direction may be provided.
- the light distribution in the X-axis direction can be increased by increasing the contact angle between the convex lens 13e and the light exit surface 13b.
- the light distribution in the X-axis direction can be accurately controlled by appropriately adjusting the contact angle between the convex lens 13e and the light exit surface 13b. Therefore, the light distribution in the X-axis direction on the exit surface 5d of the light guide plate 5 can be accurately controlled. Furthermore, by making the pitch interval between the adjacent convex lenses 13e narrower than the pitch interval between the prisms 13d facing each other, it is possible to improve the uniformity of luminance in the X-axis direction.
- FIG. 5A is a view for explaining the visual field control film 4 according to the embodiment, and specifically, a cross-sectional view in the XY plane.
- the visual field control film 4 has a light transmission part 4c as a base material and a plurality of light absorption parts 4d.
- the light transmitting portion 4c has a function of transmitting light, and is made of, for example, a light transmitting resin.
- the light absorbing portion 4d has a function of absorbing light and is made of, for example, a light absorbing resin.
- the light absorbing portion 4d has a band shape, and is arranged so that the longitudinal direction thereof is aligned in a predetermined direction (for example, the peak direction P of light emitted from the prism sheet 13 in a cross-sectional view of the XY plane).
- light 104 or light 105 having a small inclination with respect to the peak direction P can pass through the light transmitting portion 4c from the light incident surface 4a to the light exit surface 4b, whereas the peak direction
- the light 106 having a large inclination with respect to P is absorbed by the light absorbing portion 4d and cannot reach the light exit surface 4b.
- the light emitted from the light exit surface 4b of the visual field control film 4 that is, the light emitted from the linear light sources 3A and 3B to the light guide plate 5 has a full width at half maximum of 20 ° or less.
- the visual field control film 4 is good to restrict
- FIG. 5A shows the case where the peak direction P is parallel to the Y-axis direction
- the peak direction P is not limited to being parallel to the Y-axis direction.
- FIG. 5B when the peak direction P is tilted from the Y-axis direction, the longitudinal direction of the light absorbing portion 4d may be tilted from the Y-axis direction so as to be along the peak direction P.
- FIG. 5B is a diagram for explaining another example of the visual field control film 4 according to the embodiment. Thereby, similarly to the example shown in FIG. 5A, it is possible to suppress the transmission of the light 106 having a large inclination with respect to the peak direction P.
- a resin having a high reflectance for example, a white resin
- a resin having a high reflectance for example, a white resin
- a resin having a high absorption rate may be used for the housing frame 2 other than the above-described parts. Thereby, unnecessary light distribution can be reduced. That is, the housing frame 2 is preferably formed by two-color molding using a white resin and a black resin.
- the planar illumination device 1 includes a surface other than the light incident surface 12a and the light output surface 12b in the light bar 12, a surface other than the light incident surface 13a and the light output surface 13b in the prism sheet 13, and the light guide plate 5.
- the light be specularly reflected on the surface having a width of about 2 mm adjacent to the side surface 5c.
- a specular reflection sheet having a U-shaped cross section.
- planar illumination device 1 is configured such that light is absorbed by the terminal end portion (the lower end portion in FIG. 1A) and the side surface portion (the left and right side surfaces in FIG. 1A) of the light guide plate 5. It is good to be. For example, such a portion may be painted with a black coating material. Thereby, unnecessary light distribution can be reduced.
- FIG. 6A is a front view of the planar lighting device 1 according to the first modification of the embodiment
- FIG. 6B is an enlarged view of a region M in FIG. 6A.
- Modification 1 only one linear light source is provided instead of a pair as in the embodiment (linear light source 3A).
- the prism 5 f is inclined with respect to a predetermined direction B (in the figure, from the X axis positive direction and the Y axis negative direction to the X axis negative direction and the Y axis positive direction). Extending). Thereby, in the modification 1, light can be irradiated toward a desired one direction (X-axis positive direction and Y-axis negative direction in the drawing) by the prism 5f.
- FIG. 7A is an enlarged view of the first light guide 5a according to Modification 2 of the embodiment
- FIG. 7B is an enlarged view of the second light guide 5b according to Modification 2 of the embodiment
- 7A is an enlarged view of a region D (see FIG. 1A) in the embodiment
- FIG. 7B is an enlarged view of a region E (see FIG. 1A) in the embodiment.
- the prism 5f extends obliquely with respect to the predetermined direction B as in the embodiment, whereas the first light guide 5b as shown in FIG. 7A.
- the prism 5f extends in a direction perpendicular to the predetermined direction B.
- the emission direction can be aligned with the predetermined direction B on the XY plane as shown in FIG. 7A. Furthermore, by forming the prism 5f tilted from the predetermined direction B in the second light guide 5b, it is possible to irradiate with the emission direction tilted from the predetermined direction B on the XY plane.
- the planar illumination device 1 can change the emission direction in two different directions.
- FIG. 8 is a cross-sectional view of the planar lighting device 1 according to the third modification of the embodiment, and corresponds to FIG. 1B in the embodiment.
- the third modified example is an example in which the visual field control film 4 in the embodiment is changed to a visual field control film 4A having a different structure.
- FIG. 9 is a diagram for explaining a visual field control film 4A according to Modification 3 of the embodiment, specifically, a cross-sectional view in the YZ plane.
- the visual field control film 4 ⁇ / b> A has a light transmission part 4 c that is a base material and a plurality of light absorption parts 4 d, similarly to the visual field control film 4.
- the light absorbing portion 4 d having a band shape is arranged so that the longitudinal direction is aligned with the peak direction P of the light emitted from the prism sheet 13 in the cross-sectional view of the YZ plane.
- the light 107 and the light 108 having a small inclination with respect to the peak direction P can be transmitted through the light transmitting portion 4 c from the light incident surface 4 a to the light exit surface 4 b in the cross-sectional view of the YZ plane. it can.
- the light 109 having a large inclination with respect to the peak direction P is absorbed by the light absorbing portion 4d and cannot reach the light exit surface 4b.
- FIG. 10A is a diagram for explaining light distribution in the planar illumination device 1 of the reference example. Specifically, the reference example shown in FIG. 10A shows a planar illumination device 1 in which the visual field control film 4A is not provided.
- the light guide plate 5 has not only the light 107 and the light 108 with a small inclination with respect to the peak direction P but also the peak direction P in the cross-sectional view of the YZ plane.
- Light 109 having a large inclination with respect to is also incident.
- the light 107 and the light 108 having a small inclination with respect to the peak direction P are reflected by the first region 5f1 and the second region 5f2 of the prism 5f inside the light guide plate 5, and are transmitted in a predetermined direction (Y-axis negative direction and Z-axis). The light is emitted in the positive direction.
- the light 109 having a large inclination with respect to the peak direction P is repeatedly reflected by the light exit surface 5d and the first region 5f1 of the prism 5f inside the light guide plate 5, and finally reflected by the second region 5f2 to be predetermined. Is emitted in a direction different from the direction (Y-axis positive direction and Z-axis positive direction).
- the field-of-view control film 4A when the field-of-view control film 4A is not provided, it is difficult to improve the light distribution in the Y-axis direction of the light that is changed in direction by the light guide plate 5 and emitted. That is, in the reference example, there is a possibility that a driver on the Y axis positive direction side or a person sitting in the passenger seat may feel dazzled.
- FIG. 10B is a diagram for explaining light distribution in the planar illumination device 1 according to the third modification of the embodiment.
- the visual field control film 4A when the visual field control film 4A is provided, the light 107 and the light 108 having a small inclination with respect to the peak direction P are incident on the light guide plate 5 in the cross-sectional view of the YZ plane.
- Light 109 having a large inclination with respect to is not incident.
- the light distribution property in the Y-axis direction of the light emitted with the direction changed by the light guide plate 5 can be improved.
- the light emitted from the light exit surface 4b of the visual field control film 4A that is, the light emitted from the linear light sources 3A and 3B to the light guide plate 5 in the cross-sectional view of the YZ plane is 20 ° or less at a full width at half maximum. It is good to be.
- the light distribution angle may be limited within a range of ⁇ 60 ° or less, and more preferably limited within the range of ⁇ 45 ° or less. Thereby, the light distribution in the Y-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
- FIG. 11 is a cross-sectional view of the planar illumination device 1 according to the fourth modification of the embodiment.
- Modification 4 is an example in which both the visual field control film 4 provided in the embodiment and the visual field control film 4A provided in Modification 3 are used.
- the visual field control film 4 and the visual field control film 4 ⁇ / b> A are laminated and disposed between the prism sheet 13 and the light guide plate 5.
- the visual field control film 4 can improve the light distribution in the X-axis direction of the light emitted from the light guide plate 5 whose direction is changed, and the visual field control film 4A allows the light guide plate 5 to be improved. It is possible to improve the light distribution in the Y-axis direction of the light emitted with the direction changed by.
- Modification 4 it is preferable to directly bond the visual field control film 4 and the visual field control film 4A. Thereby, since the change of the refractive index between the visual field control film 4 and the visual field control film 4A can be suppressed, the attenuation of light between the visual field control film 4 and the visual field control film 4A is suppressed. be able to. Therefore, the luminous efficiency of the planar lighting device 1 can be improved.
- FIG. 12 is a diagram showing a light distribution in the planar lighting device 1 of the reference example. Note that the light distribution shown in FIG. 12 indicates that the darker the color, the higher the luminance. Further, the orientation of the azimuth angle and polar angle in the light distribution shown in FIG. 12 will be described with reference to FIGS.
- FIG. 13 is a diagram for explaining the azimuth angle in the light distribution shown in FIG.
- the X-axis positive direction is set to an azimuth angle of 0 °
- the Y-axis negative direction is set to The azimuth angle is 90 °
- the negative X-axis direction is 180 °
- the positive Y-axis direction is 270 °.
- An azimuth angle of 90 ° (Y-axis negative direction) corresponds to the front side of the vehicle
- an azimuth angle of 270 ° (Y-axis positive direction) corresponds to the rear side of the vehicle.
- FIG. 14 is a diagram for explaining polar angles in the light distribution shown in FIG.
- the positive Z-axis direction is 0 ° and the vertical direction is perpendicular to the positive Z-axis direction.
- the direction is a polar angle of 90 °
- the opposite direction of the perpendicular direction is a polar angle of ⁇ 90 °.
- the positive Y-axis direction is 90 ° polar angle
- the negative Y-axis direction is ⁇ 90 ° polar angle.
- the planar illumination device 1 of the reference example is configured to emit light in a predetermined direction centered on an azimuth angle of about 25 ° and a polar angle of about 50 °. .
- the planar illumination device 1 of the reference example emits light in a direction different from the predetermined direction.
- FIG. 15 is a view showing a cross section of the light distribution of the embodiment, the third modification, the fourth modification, and the reference example. Specifically, FIG. 15 is a cross section at an azimuth angle of about 337 ° (corresponding to the broken line 110 in FIG. 12) in the luminance distribution in the hemispherical direction in which the positive Z-axis direction shown in FIG. The brightness is shown.
- the region where the polar angle is near 0 ° is a region where the luminance is increased when the light distribution is disturbed in the X-axis direction, and the region where the polar angle is near 63 ° is the light distribution in the Y-axis direction. This is a region where the brightness increases when disturbed.
- the luminance is high regardless of whether the polar angle is near 0 ° or 63 °. It can be seen that the light distribution is somewhat disturbed both in the direction and in the Y-axis direction.
- the light distribution is improved in the X-axis direction because the luminance is reduced near the polar angle of 0 ° as compared with the reference example. I understand.
- the luminance is reduced near the polar angle of 63 ° as compared with the reference example, the light distribution is improved in the Y-axis direction. I understand.
- the luminance is reduced even when the polar angle is around 0 ° or the polar angle is around 63 ° as compared with the reference example. From this, it can be seen that the light distribution in both the X-axis direction and the Y-axis direction is improved.
- the prism 5f formed on the back surface 5e of the light guide plate 5 is cut in parallel to the predetermined direction B, the first region 5f1 substantially parallel to the emission surface 5d
- the second region 5f2 is inclined with respect to the emission surface 5d, and the first region 5f1 and the second region 5f2 are formed so as to extend obliquely with respect to the predetermined direction B. Both light properties and high light distribution can be achieved.
- the linear light sources 3A and 3B are formed using the LED 11 and the light bar 12, but the configuration of the linear light source is not limited to this example.
- a linear light source may be formed by arranging a plurality of LEDs in a line.
- the planar illumination device 1 is formed symmetrically about the center C as an axis, but may not be formed symmetrically.
- the configuration of the prism sheet 13 is bilaterally symmetric, but the prism sheet 13 may be configured differently on the left and right. Thereby, the light of the different direction can be incident on the 1st light guide part 5a and the 2nd light guide part 5b of the light guide plate 5, respectively. Furthermore, in the above embodiment, the prism sheet 13 is integrally formed. However, like the light bar 12, the prism sheet 13 may be divided into left and right.
- the planar illumination device 1 includes the light sources (linear light sources 3A and 3B) and the light guide plate 5.
- the light sources (linear light sources 3A and 3B) emit light in a predetermined direction B.
- the light guide plate 5 has a side surface 5c, an exit surface 5d that is one main surface, and a back surface 5e that is the other main surface.
- a prism 5f is formed on the back surface 5e, and light sources (linear light sources 3A and 3B) are formed. ) Is incident on the side surface 5c from the exit surface 5d.
- the prism 5f includes a first region 5f1 that is substantially parallel to the exit surface 5d and a second region 5f2 that is inclined with respect to the exit surface 5d when cut in parallel to the predetermined direction B.
- the first region 5f1 and the second region 5f2 extend obliquely with respect to the predetermined direction B. Thereby, both the translucency and the high light distribution can be achieved.
- the light emitted from the emission surface 5d is emitted in a range of 40 ° or less at the full width at half maximum.
- planar illumination device 1 further includes a visual field control film 4 configured to be capable of limiting the light distribution angle between the light source (linear light sources 3A and 3B) and the side surface 5c of the light guide plate 5. Prepare. Thereby, the light distribution property of the light emitted by changing the direction by the light guide plate 5 can be improved.
- the visual field control film 4 has a light distribution angle with respect to a predetermined direction of ⁇ 60 ° or less (preferably ⁇ 45) when cut by a plane parallel to the emission surface 5d. Limit in the range of ° or less. Thereby, the light distribution in the X-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
- the visual field control film 4A has a light distribution angle in a range of ⁇ 60 ° or less (preferably ⁇ 45 ° or less) when cut along a plane perpendicular to the longitudinal direction. Limit with. Thereby, the light distribution in the Y-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
- the light sources are linear light sources 3A and 3B extending along the side surface 5c. Thereby, planar light can be emitted from the light guide plate 5.
- two linear light sources 3A and 3B are arranged along the side surface 5c. Thereby, two different places (for example, the driver's seat side and the passenger seat side) can be irradiated with light independently.
- the light guide plate 5 includes a first light guide 5a and a second light guide 5b, and the first light guide 5a and the second light guide 5b.
- the extending directions of the first region 5f1 and the second region 5f2 are different from each other.
- two different places for example, the driver's seat side and the passenger seat side
- 1 Surface illumination device 2 housing frame, 3A, 3B linear light source, 4, 4A visual field control film, 5 light guide plate, 5a first light guide, 5b second light guide, 5c side, 5d exit surface, 5e Back surface, 5f prism, 5f1, first area, 5f2, second area, 10 FPC, 11 LED (light source), 12 light bar, 13 prism sheet
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Planar Illumination Modules (AREA)
Abstract
A planar illumination device (1) according to an embodiment of the present invention is provided with a light source and a light guide plate (5). The light source emits light in a prescribed direction (B). The light guide plate (5) has a side surface (5c), an emission surface (5d) that is one main surface, and a back surface (5e) that is the other main surface. A prism (5f) is formed on the back surface (5e), and light incident on the side surface (5c) from the light source is emitted from the emission surface (5d). The prism (5f) has, if being cut in parallel to the prescribed direction (B), a first region (5f1) that is roughly parallel to the emission surface (5d) and a second region (5f2) that is inclined with respect to the emission surface (5d). The first region (5f1) and the second region (5f2) extend in a direction oblique to the prescribed direction (B).
Description
本発明は、面状照明装置に関する。
The present invention relates to a planar illumination device.
従来、自動車内の運転席や助手席の手元を照らす車内照明用の面状照明装置が提供されている。また、透光性をさらに有し、かかる面状照明装置を介して視認可能な面状照明装置が近年求められている。
2. Description of the Related Art Conventionally, a planar lighting device for in-vehicle lighting that illuminates a driver's seat or a passenger seat in an automobile has been provided. In addition, a planar illumination device that further has translucency and is visible through such a planar illumination device has been recently demanded.
しかしながら、透光性を有する面状照明装置において、透光性を維持しつつ、高い配光性を実現させることは困難であった。したがって、運転席や助手席の手元のみならず、運転者や助手席に座る人に対しても光が照射され、運転者や助手席に座る人がまぶしく感じる場合があった。
However, it has been difficult to achieve high light distribution while maintaining translucency in a planar illumination device having translucency. Therefore, not only the driver's seat and the passenger's seat, but also the driver and the passenger's seat are irradiated with light, and the driver and the passenger's seat may feel dazzled.
本発明は、上記に鑑みてなされたものであって、透光性と高い配光性とを両立させることができる面状照明装置を提供することを目的とする。
This invention is made | formed in view of the above, Comprising: It aims at providing the planar illuminating device which can make translucency and high light distribution compatible.
上述した課題を解決し、目的を達成するために、本発明の一態様に係る面状照明装置は、光源と、導光板とを備える。前記光源は、所定の方向に光を出射する。前記導光板は、側面と、一方の主面である出射面と、他方の主面である裏面とを有し、前記裏面にプリズムが形成され、前記光源から前記側面に入射される光を前記出射面から出射する。そして、前記プリズムは、前記所定の方向と平行に切断した場合に、前記出射面と略平行である第1領域と、前記出射面に対して傾斜する第2領域とを有し、前記第1領域と前記第2領域とが前記所定の方向に対して斜め方向に延びる。
In order to solve the above-described problems and achieve the object, a planar illumination device according to an aspect of the present invention includes a light source and a light guide plate. The light source emits light in a predetermined direction. The light guide plate has a side surface, an emission surface that is one main surface, and a back surface that is the other main surface, a prism is formed on the back surface, and light incident on the side surface from the light source is The light exits from the exit surface. The prism includes a first region that is substantially parallel to the emission surface and a second region that is inclined with respect to the emission surface when the prism is cut parallel to the predetermined direction. The region and the second region extend obliquely with respect to the predetermined direction.
本発明の一態様によれば、透光性と高い配光性とを両立させることができる。
According to one embodiment of the present invention, it is possible to achieve both translucency and high light distribution.
以下、実施形態に係る面状照明装置について図面を参照して説明する。なお、以下に説明する実施形態により面状照明装置の用途が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
Hereinafter, the planar lighting device according to the embodiment will be described with reference to the drawings. Note that the application of the planar lighting device is not limited by the embodiment described below. It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation. Furthermore, there are cases in which parts having different dimensional relationships and ratios are included between the drawings.
(実施形態)
まず、実施形態に係る面状照明装置1の概要について、図1Aおよび図1Bを参照しながら説明する。図1Aは、実施形態に係る面状照明装置1の正面図であり、図1Bは、図1AにおけるA-A線の断面図である。 (Embodiment)
First, the outline | summary of the planar illuminatingdevice 1 which concerns on embodiment is demonstrated, referring FIG. 1A and FIG. 1B. FIG. 1A is a front view of the planar lighting device 1 according to the embodiment, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
まず、実施形態に係る面状照明装置1の概要について、図1Aおよび図1Bを参照しながら説明する。図1Aは、実施形態に係る面状照明装置1の正面図であり、図1Bは、図1AにおけるA-A線の断面図である。 (Embodiment)
First, the outline | summary of the planar illuminating
図1Aに示すように、面状照明装置1は、ハウジングフレーム2と、線状光源3A、3Bと、視野制御フィルム4と、導光板5とを備える。面状照明装置1は、たとえば、自動車の運転席および助手席の手元を照らす車内照明灯に用いられる。
As shown in FIG. 1A, the planar illumination device 1 includes a housing frame 2, linear light sources 3A and 3B, a visual field control film 4, and a light guide plate 5. The planar illumination device 1 is used, for example, as an in-vehicle illumination lamp that illuminates the hands of a driver's seat and a passenger seat of an automobile.
ハウジングフレーム2は、線状光源3A、3Bや視野制御フィルム4、導光板5を保持し収納する。ハウジングフレーム2は、たとえば、合成樹脂や金属で形成される。また、図1Bに示すように、ハウジングフレーム2には、導光板5の主面5d側に開口部2aが形成され、導光板5の主面5e側に開口部2bが形成されており、かかる開口部2a、2bから導光板5が露出している。なお、図1Aにおいて、説明の便宜上、線状光源3A、3Bや視野制御フィルム4が配置された箇所におけるハウジングフレーム2のZ軸正方向側の部分の図示が省略されている。
The housing frame 2 holds and stores the linear light sources 3A and 3B, the visual field control film 4, and the light guide plate 5. The housing frame 2 is made of, for example, synthetic resin or metal. As shown in FIG. 1B, the housing frame 2 has an opening 2a formed on the main surface 5d side of the light guide plate 5 and an opening 2b formed on the main surface 5e side of the light guide plate 5. The light guide plate 5 is exposed from the openings 2a and 2b. In FIG. 1A, for convenience of explanation, illustration of a portion on the positive side in the Z-axis direction of the housing frame 2 at a position where the linear light sources 3A and 3B and the visual field control film 4 are disposed is omitted.
線状光源3Aは、図1Aおよび図1Bに示すように、たとえば、車内の助手席側(図1Aでは左下側)に出射される光を発する光源であり、線状光源3Bは、たとえば、車内の運転席側(図1Aでは右下側)に出射される光を発する光源である。線状光源3A、3Bは、一対のFPC(Flexible Printed Circuits)10と、一対のLED(Light Emitting Diode)11と、一対のライトバー12と、1つのプリズムシート13とを有する。
As shown in FIGS. 1A and 1B, the linear light source 3A is, for example, a light source that emits light emitted toward the passenger seat in the vehicle (lower left side in FIG. 1A). It is a light source which emits the light radiate | emitted by the driver's seat side (FIG. 1A lower right side). The linear light sources 3 </ b> A and 3 </ b> B include a pair of FPC (Flexible Printed Circuits) 10, a pair of LEDs (Light Emitting Diode) 11, a pair of light bars 12, and one prism sheet 13.
FPC10は、LED11が実装される基板である。FPC10は、LED11を実装可能に構成される実装面を有し、かかる実装面にLED11の発光面11aとは反対側の面が接合される。
The FPC 10 is a board on which the LEDs 11 are mounted. The FPC 10 has a mounting surface configured such that the LED 11 can be mounted, and a surface opposite to the light emitting surface 11a of the LED 11 is bonded to the mounting surface.
一対のFPC10には、それぞれ図示しない駆動回路が接続される。そして、かかる駆動回路により、FPC10を介してLED11が駆動され、対応する線状光源3A、3Bがそれぞれ点灯する。
A drive circuit (not shown) is connected to each of the pair of FPCs 10. Then, the LED 11 is driven by the driving circuit via the FPC 10, and the corresponding linear light sources 3A and 3B are turned on.
LED11は、点状の光源である。LED11は、光を発する発光面11aを有し、かかる発光面11aがライトバー12の入光面12aに対向した状態で、ライトバー12の入光面12a側に配置される。そして、LED11は、発光面11aからライトバー12の入光面12aに向けて光を出射する。
LED 11 is a point light source. The LED 11 has a light emitting surface 11 a that emits light, and is disposed on the light incident surface 12 a side of the light bar 12 in a state where the light emitting surface 11 a faces the light incident surface 12 a of the light bar 12. The LED 11 emits light from the light emitting surface 11 a toward the light incident surface 12 a of the light bar 12.
また、上述したように、LED11における発光面11aとは反対側の面がFPC10に接合される。すなわち、LED11は、実装されるFPC10が発光面11aと略平行であるトップビュー型のLEDである。なお、LED11は、トップビュー型のLEDに限られず、実装されるFPC10が発光面11aと直交するサイドビュー型のLEDであってもよい。
Further, as described above, the surface of the LED 11 opposite to the light emitting surface 11a is joined to the FPC 10. That is, the LED 11 is a top view type LED in which the mounted FPC 10 is substantially parallel to the light emitting surface 11a. The LED 11 is not limited to the top view type LED, and may be a side view type LED in which the mounted FPC 10 is orthogonal to the light emitting surface 11a.
ライトバー12は、点状の光源であるLED11から入射した光を線状の光に変換して、プリズムシート13に向けて出射する。ライトバー12は、透明材料(たとえば、ポリカーボネート樹脂)で構成されており、棒状に形成され、入光面12aと、出光面12bと、かかる出光面12bとは反対側の反出光面12cを有する。
The light bar 12 converts light incident from the LED 11, which is a point light source, into linear light and emits it toward the prism sheet 13. The light bar 12 is made of a transparent material (for example, polycarbonate resin), is formed in a rod shape, and has a light incident surface 12a, a light exit surface 12b, and a light exit surface 12c opposite to the light exit surface 12b. .
入光面12aは、ライトバー12の一端面であり、LED11が発した光が入射される。出光面12bは、入光面12aと略垂直な面であり、入射された光を出射する。また、出光面12bには、複数のプリズム12j(図3E参照)が並んで形成される。反出光面12cは、出光面12bとは反対側の面であり、複数のプリズム12g(図3C参照)が並んで形成される。なお、かかるライトバー12の詳細については後述する。
The light incident surface 12a is one end surface of the light bar 12, and the light emitted from the LED 11 is incident thereon. The light exit surface 12b is a surface substantially perpendicular to the light entrance surface 12a and emits incident light. A plurality of prisms 12j (see FIG. 3E) are formed side by side on the light exit surface 12b. The light exit surface 12c is a surface opposite to the light exit surface 12b, and a plurality of prisms 12g (see FIG. 3C) are formed side by side. Details of the light bar 12 will be described later.
プリズムシート13は、光の配光を制御する。プリズムシート13は、ライトバー12の出光面12bと、視野制御フィルム4の入光面4aとの間に配置される。プリズムシート13は、ライトバー12の出光面12bに対向する入光面13aと、かかる入光面13aとは反対側の出光面13bとを有する。
The prism sheet 13 controls the light distribution. The prism sheet 13 is disposed between the light exit surface 12 b of the light bar 12 and the light incident surface 4 a of the visual field control film 4. The prism sheet 13 has a light incident surface 13a that faces the light output surface 12b of the light bar 12, and a light output surface 13b opposite to the light incident surface 13a.
入光面13aには、複数のプリズム13d(図4A参照)が並んで形成される。また、出光面13bには、凸レンズ13e(図4A参照)が並んで形成される。なお、かかるプリズムシート13の詳細については後述する。
A plurality of prisms 13d (see FIG. 4A) are formed side by side on the light incident surface 13a. A convex lens 13e (see FIG. 4A) is formed side by side on the light exit surface 13b. The details of the prism sheet 13 will be described later.
ここまで説明した線状光源3A、3Bは、プリズムシート13の出光面13bから、視野制御フィルム4を介して、導光板5の側面5cに対し所定の方向B(図ではY軸負方向)に向かって線状の光を出射する。このように、線状に光を発する線状光源3A、3Bを用いることにより、導光板5から面状の光を発光させることができる。
The linear light sources 3 </ b> A and 3 </ b> B described so far are in a predetermined direction B (Y-axis negative direction in the drawing) from the light exit surface 13 b of the prism sheet 13 to the side surface 5 c of the light guide plate 5 through the visual field control film 4. A linear light is emitted. Thus, planar light can be emitted from the light guide plate 5 by using the linear light sources 3A and 3B that emit light linearly.
視野制御フィルム4は、光の配光角度を制御する。視野制御フィルム4は、プリズムシート13の出光面13bと、導光板5の側面5cとの間に配置される。視野制御フィルム4は、プリズムシート13の出光面13bに対向する入光面4aと、かかる入光面4aとは反対側の出光面4bとを有する。なお、かかる視野制御フィルム4の詳細については後述する。
The visual field control film 4 controls the light distribution angle. The visual field control film 4 is disposed between the light exit surface 13 b of the prism sheet 13 and the side surface 5 c of the light guide plate 5. The field-of-view control film 4 has a light incident surface 4a that faces the light output surface 13b of the prism sheet 13, and a light output surface 4b opposite to the light incident surface 4a. The details of the visual field control film 4 will be described later.
導光板5は、上面視で矩形状に形成されており、線状光源3Aから出射される光が入光する第1導光部5aと、線状光源3Bから出射される光が入光する第2導光部5bとを有する。なお、実施形態に係る面状照明装置1は、図1Aに示す中心Cを軸に左右対称に形成されており、かかる中心Cを境界にして、導光板5が第1導光部5aと第2導光部5bとに分けられる。
The light guide plate 5 is formed in a rectangular shape when viewed from above, and the first light guide portion 5a into which the light emitted from the linear light source 3A enters and the light emitted from the linear light source 3B enter. And a second light guide 5b. The planar illumination device 1 according to the embodiment is formed symmetrically about a center C shown in FIG. 1A as an axis, and the light guide plate 5 and the first light guide unit 5a are connected to the first C light guide 5a with the center C as a boundary. 2 light guides 5b.
また、導光板5は、図1Bに示すように、視野制御フィルム4に向かい合う側面5cと、主面5dと、かかる主面5dとは反対側の主面5eとを有する。側面5cは、X軸方向に延伸する短冊状の面である。側面5cには、所定の方向Bに向かう光が入射される。さらに、導光板5は、所定の方向Bと平行に切断した場合に、所定の方向Bに向かうにしたがい徐々に厚さが小さくなるくさび形状を有する。すなわち、導光板5は、視野制御フィルム4から離れるほど主面5dと主面5eとの間隔が狭くなる。
Further, as shown in FIG. 1B, the light guide plate 5 has a side surface 5c facing the visual field control film 4, a main surface 5d, and a main surface 5e opposite to the main surface 5d. The side surface 5c is a strip-shaped surface extending in the X-axis direction. Light traveling in a predetermined direction B is incident on the side surface 5c. Furthermore, when the light guide plate 5 is cut in parallel to the predetermined direction B, the light guide plate 5 has a wedge shape that gradually decreases in thickness in the predetermined direction B. That is, the distance between the main surface 5d and the main surface 5e becomes narrower as the light guide plate 5 is separated from the visual field control film 4.
主面5d、5eは、XY平面に沿って広がる矩形状の面である。主面5dは、側面5cから入射された光が出射される出射面である。そのため、以下の説明では、主面5dを「出射面5d」と表記する。また、裏側の主面5eを「裏面5e」と表記する。
The main surfaces 5d and 5e are rectangular surfaces extending along the XY plane. The main surface 5d is an emission surface from which light incident from the side surface 5c is emitted. Therefore, in the following description, the main surface 5d is referred to as “exit surface 5d”. In addition, the main surface 5e on the back side is expressed as “back surface 5e”.
導光板5は、透明材料(たとえば、ポリカーボネート樹脂)で構成されており、所望の透光性を有する。たとえば、導光板5は、全体が透けており、裏面5e側に存在する物体が、ハウジングフレーム2の開口部2a、2bを介して、出射面5d側から視認できるように構成される。
The light guide plate 5 is made of a transparent material (for example, polycarbonate resin) and has a desired translucency. For example, the entire light guide plate 5 is transparent so that an object existing on the back surface 5 e side can be viewed from the exit surface 5 d side through the openings 2 a and 2 b of the housing frame 2.
図1Bに示すように、出射面5dは、所定の方向Bと略平行に配置される。一方で、裏面5eは、所定の方向Bから傾斜して配置される。また、裏面5eには、複数のプリズム5f(図2A参照)が並んで配置される。つづいて、導光板5に形成されるプリズム5fの詳細について、図2A~図2Cを参照しながら説明する。
As shown in FIG. 1B, the exit surface 5d is disposed substantially parallel to the predetermined direction B. On the other hand, the back surface 5e is inclined from the predetermined direction B. A plurality of prisms 5f (see FIG. 2A) are arranged side by side on the back surface 5e. Next, details of the prism 5f formed on the light guide plate 5 will be described with reference to FIGS. 2A to 2C.
図2Aは、図1Aにおける領域Dの拡大図であり、図2Bは、図1Aにおける領域Eの拡大図である。すなわち、図2Aは線状光源3Aからの光が入光する第1導光部5aの拡大図であり、図2Bは線状光源3Bからの光が入光する第2導光部5bの拡大図である。
2A is an enlarged view of region D in FIG. 1A, and FIG. 2B is an enlarged view of region E in FIG. 1A. That is, FIG. 2A is an enlarged view of the first light guide portion 5a into which light from the linear light source 3A enters, and FIG. 2B is an enlarged view of the second light guide portion 5b into which light from the linear light source 3B enters. FIG.
また、図2Cは、図2AにおけるF-F線の断面図であり、具体的には、導光板5を所定の方向Bと平行に切断した場合の断面図である。なお、図2Cは、図2BにおけるG-G線の断面とも一致する。
2C is a cross-sectional view taken along the line FF in FIG. 2A. Specifically, FIG. 2C is a cross-sectional view when the light guide plate 5 is cut in parallel with a predetermined direction B. Note that FIG. 2C also coincides with the cross section taken along line GG in FIG. 2B.
図2Cに示すように、導光板5の裏面5eには、複数のプリズム5fが所定の方向Bに沿って並んで形成される。プリズム5fは、第1領域5f1と第2領域5f2とを有する。
2C, a plurality of prisms 5f are formed along the predetermined direction B on the back surface 5e of the light guide plate 5. As shown in FIG. The prism 5f has a first region 5f1 and a second region 5f2.
第1領域5f1は、略平面状であり、図2Cに示すように、導光板5を所定の方向Bと平行に切断した場合に、出射面5dと略平行である。第2領域5f2は、略平面状であり、導光板5を所定の方向Bと平行に切断した場合に、出射面5dに対して傾斜している。具体的には、第2領域5f2は、所定の方向Bに向かうにしたがい、出射面5dに近づく方向に傾斜している。また、1つのプリズム5fの第2領域5f2は、隣接するプリズム5fの第1領域5f1に連続して形成される。
1st area | region 5f1 is substantially planar shape, and when the light-guide plate 5 is cut | disconnected in parallel with the predetermined direction B, as shown to FIG. The second region 5f2 has a substantially planar shape, and is inclined with respect to the emission surface 5d when the light guide plate 5 is cut in parallel with the predetermined direction B. Specifically, the second region 5f2 is inclined in a direction approaching the emission surface 5d as it goes in the predetermined direction B. Also, the second region 5f2 of one prism 5f is formed continuously with the first region 5f1 of the adjacent prism 5f.
かかる断面形状を有するプリズム5fが、図2Cに示すように、線状光源3A、3Bにより所定の方向Bに沿って照射される光の進路を変更させて、かかる光を出射面5dから出射させる。具体的には、プリズム5fの第2領域5f2で出射面5dに向けて光が反射される。このように、プリズム5fによって、Z軸方向の配光を制御することができる。
As shown in FIG. 2C, the prism 5f having such a cross-sectional shape changes the path of the light irradiated along the predetermined direction B by the linear light sources 3A and 3B, and emits the light from the emission surface 5d. . Specifically, light is reflected toward the exit surface 5d by the second region 5f2 of the prism 5f. Thus, the light distribution in the Z-axis direction can be controlled by the prism 5f.
また、導光板5を所定の方向Bと平行に切断した場合に、第1領域5f1と出射面5dとを略平行にすることにより、裏面5e側に存在する物体を出射面5d側から視認する際に、視認される物体の物理的な連続性を高くすることができる。すなわち、第1領域5f1と出射面5dとを略平行にすることにより、視認される物体の歪みを小さくすることができる。したがって、導光板5は高い透光性を有する。
Further, when the light guide plate 5 is cut in parallel with the predetermined direction B, the object existing on the back surface 5e side is visually recognized from the exit surface 5d side by making the first region 5f1 and the exit surface 5d substantially parallel. In this case, the physical continuity of the visually recognized object can be increased. That is, the distortion of the visually recognized object can be reduced by making the first region 5f1 and the exit surface 5d substantially parallel. Therefore, the light guide plate 5 has high translucency.
さらに、第1領域5f1を所定の方向Bと平行に切断した場合に出射面5dと略平行にすることにより、所定の方向Bに沿って入射される光が、第1領域5f1で反射する際に、出射される光100の角度θが所定の方向BからZ軸方向にずれることを抑制することができる。したがって、導光板5におけるZ軸方向の配光分布を精度よく制御することができる。
Further, when the first region 5f1 is cut in parallel to the predetermined direction B, the light incident along the predetermined direction B is reflected by the first region 5f1 by making the first region 5f1 substantially parallel to the emission surface 5d. In addition, it is possible to suppress the angle θ of the emitted light 100 from deviating from the predetermined direction B in the Z-axis direction. Therefore, the light distribution in the Z-axis direction in the light guide plate 5 can be accurately controlled.
実施形態では、さらに、図2Aおよび図2Bに示すように、プリズム5fの第1領域5f1および第2領域5f2は、所定の方向Bに対して斜め方向に延びている。具体的には、図2Aに示す第1導光部5aでは、第1領域5f1および第2領域5f2が、X軸負方向かつY軸負方向からX軸正方向かつY軸正方向に向かって延びている。
In the embodiment, as shown in FIGS. 2A and 2B, the first region 5f1 and the second region 5f2 of the prism 5f extend obliquely with respect to the predetermined direction B. Specifically, in the first light guide 5a shown in FIG. 2A, the first region 5f1 and the second region 5f2 are directed from the X-axis negative direction and the Y-axis negative direction to the X-axis positive direction and the Y-axis positive direction. It extends.
また、図2Bに示す第2導光部5bでは、第1領域5f1および第2領域5f2が、X軸正方向かつY軸負方向からX軸負方向かつY軸正方向に向かって延びている。
2B, the first region 5f1 and the second region 5f2 extend from the X-axis positive direction and the Y-axis negative direction toward the X-axis negative direction and the Y-axis positive direction. .
このように、プリズム5fを所定の方向Bに対して斜め方向に延びるように形成することにより、図2Aおよび図2Bに示すように、線状光源3A、3Bにより所定の方向Bに沿って照射される光の進路を変更させて、進路が変更された光を出射面5dから出射させることができる。
In this way, by forming the prism 5f so as to extend obliquely with respect to the predetermined direction B, irradiation is performed along the predetermined direction B by the linear light sources 3A and 3B as shown in FIGS. 2A and 2B. By changing the path of the light to be emitted, the light whose path has been changed can be emitted from the emission surface 5d.
具体的には、図2Aに示すように、第1導光部5aではX軸負方向かつY軸負方向に向かって光が出射され、図2Bに示すように、第2導光部5bでは、X軸正方向かつY軸負方向に向かって光が出射される。すなわち、導光板5からは、視野制御フィルム4から離れる方向かつLED11が設けられる両端に近づく方向に向かって光が出射される。このように、プリズム5fにより、X軸方向の配光分布を精度よく制御することができる。
Specifically, as shown in FIG. 2A, the first light guide 5a emits light in the negative X-axis direction and the negative Y-axis direction, and as shown in FIG. 2B, the second light guide 5b The light is emitted in the positive direction of the X axis and in the negative direction of the Y axis. That is, light is emitted from the light guide plate 5 in a direction away from the visual field control film 4 and in a direction approaching both ends where the LEDs 11 are provided. In this way, the light distribution in the X-axis direction can be accurately controlled by the prism 5f.
ここまで説明したように、実施形態に係る面状照明装置1では、導光板5に形成されるプリズム5fにより、Z軸方向およびX軸方向の配光分布(導光板5の出射面5dにおける直交する2軸方向の配光分布)を精度よく制御することができる。また、上述のように、面状照明装置1では導光板5が高い透光性を有する。すなわち、実施形態によれば、透光性と高い配光性とを両立させることができる。
As described so far, in the planar illumination device 1 according to the embodiment, the light distribution (in the orthogonal direction on the exit surface 5 d of the light guide plate 5) is achieved by the prism 5 f formed on the light guide plate 5. The light distribution in the biaxial direction) can be controlled with high accuracy. Further, as described above, in the planar illumination device 1, the light guide plate 5 has high translucency. That is, according to the embodiment, it is possible to achieve both the light transmitting property and the high light distribution property.
また、実施形態では、導光板5から出射される光が、半値全幅で40°以内の範囲に出射されるとよい。これにより、必要な領域(たとえば、運転席の手元)を十分に照射するとともに、不要な領域(たとえば、運転者)に照射されることをさらに抑制することができる。
In the embodiment, the light emitted from the light guide plate 5 may be emitted within a range of 40 ° or less in full width at half maximum. Thereby, while irradiating a required area | region (for example, the hand of a driver's seat) enough, it can further suppress that an unnecessary area | region (for example, driver | operator) is irradiated.
なお、実施形態では、導光板5を所定の方向Bと平行に切断した場合に、第1領域5f1と出射面5dとが完全に平行である必要はない。たとえば、第1領域5f1は、出射面5dとの成す角度が0°以上5°以下であればよい。さらに、第1領域5f1は、出射面5dとの成す角度が0°以上1°以下であれば好ましく、出射面5dとの成す角度が0°以上0.5°以下であればより好ましい。
In the embodiment, when the light guide plate 5 is cut in parallel to the predetermined direction B, the first region 5f1 and the emission surface 5d do not have to be completely parallel. For example, the first region 5f1 may have an angle of 0 ° or more and 5 ° or less with the emission surface 5d. Further, the first region 5f1 preferably has an angle of 0 ° to 1 ° with the exit surface 5d, and more preferably has an angle of 0 ° to 0.5 ° with the exit surface 5d.
さらに、実施形態では、図1Bに示したように、YZ平面の断面視において、導光板5全体がくさび形状を有していることから、導光板5を所定の方向Bと異なる向きに切断した場合には、第1領域5f1と出射面5dとが平行にはならない。
Furthermore, in the embodiment, as shown in FIG. 1B, since the entire light guide plate 5 has a wedge shape in the cross-sectional view of the YZ plane, the light guide plate 5 is cut in a direction different from the predetermined direction B. In this case, the first region 5f1 and the emission surface 5d are not parallel.
また、実施形態では、図2Cに示すように、プリズム5fのY軸方向(すなわち、所定の方向B)における長さL1に対する、第1領域5f1のY軸方向における長さL2の比率が、60%以上100%未満である。なお、長さL1は、長さL2と、第2領域5f2のY軸方向における長さL3との和である。
In the embodiment, as shown in FIG. 2C, the ratio of the length L2 of the first region 5f1 in the Y-axis direction to the length L1 of the prism 5f in the Y-axis direction (that is, the predetermined direction B) is 60 % Or more and less than 100%. Note that the length L1 is the sum of the length L2 and the length L3 of the second region 5f2 in the Y-axis direction.
また、YZ平面の断面視において、第2領域5f2と、出射面5dに平行な面5gとの成すプリズム角度φ1は、下記の式(1)で表される。
φ1={90-asin(sinθ/n)}/2(°) ・・・(1) In addition, in the cross-sectional view of the YZ plane, the prism angle φ1 formed by the second region 5f2 and thesurface 5g parallel to the exit surface 5d is expressed by the following equation (1).
φ1 = {90−asin (sin θ / n)} / 2 (°) (1)
φ1={90-asin(sinθ/n)}/2(°) ・・・(1) In addition, in the cross-sectional view of the YZ plane, the prism angle φ1 formed by the second region 5f2 and the
φ1 = {90−asin (sin θ / n)} / 2 (°) (1)
なお、上述の式(1)において、角度θは、出射面5dに対して垂直な方向5hと、出射面5dから出射される光100とが成す角度(出射角度)である。また、nは導光板5の屈折率である。
In the above equation (1), the angle θ is an angle (emission angle) formed by the direction 5h perpendicular to the emission surface 5d and the light 100 emitted from the emission surface 5d. N is the refractive index of the light guide plate 5.
換言すると、プリズム5fのプリズム角度φ1を所定の角度に設定することにより、面状照明装置1を運転席および助手席の手元を照らす車内照明灯に用いる場合において、運転者や助手席に座る人の手元のみに限定して照らすことができる。これにより、運転者や助手席に座る人がまぶしく感じることを抑制することができる。
In other words, by setting the prism angle φ1 of the prism 5f to a predetermined angle, when the planar illumination device 1 is used as an in-vehicle illumination lamp that illuminates the hands of the driver seat and the passenger seat, a person sitting on the driver or passenger seat It is possible to illuminate only at hand. Thereby, it can suppress that a driver | operator and the person sitting in a passenger seat feel dazzling.
なお、出射面5dからは、複数の光100が複数の方向に出射されるが、複数の光100のうちピークの光度を有する光100が進む方向と、出射面5dに対して垂直な方向5hとの成す角度が角度θである。
A plurality of lights 100 are emitted in a plurality of directions from the emission surface 5d, and a direction 5h perpendicular to the emission surface 5d and a direction in which the light 100 having the peak luminous intensity among the plurality of lights 100 travels. Is an angle θ.
つづいて、実施形態に係る線状光源3A、3Bおよび視野制御フィルム4の詳細について説明する。まず、線状光源3A、3Bのライトバー12について、図3A~図3Eを参照しながら説明する。図3Aは、実施形態に係るライトバー12を説明するための図である。
Next, details of the linear light sources 3A and 3B and the visual field control film 4 according to the embodiment will be described. First, the light bar 12 of the linear light sources 3A and 3B will be described with reference to FIGS. 3A to 3E. FIG. 3A is a diagram for explaining the light bar 12 according to the embodiment.
図3Aに示すように、ライトバー12は、入光面12aが設けられる一端から、長手方向(図ではX軸方向)に沿って他端に向かうにつれて、幅(Y軸方向における寸法)が狭くなっている。また、ライトバー12は、入光面12aを含む根元部12dと、入光面12aから離れて設けられる先端部12eとを有する。
As shown in FIG. 3A, the width (dimension in the Y-axis direction) of the light bar 12 decreases from one end where the light incident surface 12a is provided toward the other end along the longitudinal direction (X-axis direction in the drawing). It has become. The light bar 12 has a root portion 12d including the light incident surface 12a and a tip portion 12e provided away from the light incident surface 12a.
そして、かかる根元部12dと先端部12eとは、反出光面12cの傾斜が異なって形成される。具体的には、図3Bに示すように、根元部12dに設けられる反出光面12c1と、出光面12bに平行な面12fとの成す角度φ2は、先端部12eに設けられる反出光面12c2と、出光面12bに平行な面12fとの成す角度φ3より大きい。
The root portion 12d and the tip portion 12e are formed with different inclinations of the light exit surface 12c. Specifically, as shown in FIG. 3B, the angle φ2 formed between the light exit surface 12c1 provided at the root portion 12d and the surface 12f parallel to the light exit surface 12b is the same as the light exit surface 12c2 provided at the tip portion 12e. The angle φ3 formed with the surface 12f parallel to the light exit surface 12b is larger.
換言すると、ライトバー12は、根元部12dに設けられる反出光面12c1が、先端部12eに設けられる反出光面12c2より傾斜が大きい2段くさび形状を有している。
In other words, the light bar 12 has a two-stage wedge shape in which the reflecting surface 12c1 provided at the root portion 12d has a larger inclination than the reflecting surface 12c2 provided at the tip portion 12e.
次に、ライトバー12の反出光面12cに形成されるプリズム12gの詳細について、図3Cおよび図3Dを参照しながら説明する。図3Cは、図3Aにおける領域Hの拡大図であり、図3Dは、図3Aにおける領域Jの拡大図である。すなわち、図3Cは、先端部12eのうち、根元部12dに近い領域Hに形成されるプリズム12gを説明するための図であり、図3Dは、先端部12eのうち、根元部12dから離れた領域Jに形成されるプリズム12gを説明するための図である。
Next, details of the prism 12g formed on the light exit surface 12c of the light bar 12 will be described with reference to FIGS. 3C and 3D. 3C is an enlarged view of region H in FIG. 3A, and FIG. 3D is an enlarged view of region J in FIG. 3A. That is, FIG. 3C is a diagram for explaining the prism 12g formed in the region H near the root portion 12d in the tip portion 12e, and FIG. 3D is separated from the root portion 12d in the tip portion 12e. 5 is a diagram for explaining a prism 12g formed in a region J. FIG.
図3Cに示すように、領域Hにおける反出光面12cには、複数のプリズム12gが、ライトバー12の長手方向(X軸方向)に沿って並んで形成される。プリズム12gは、傾斜面12g1と傾斜面12g2とを有する。
As shown in FIG. 3C, a plurality of prisms 12g are formed along the longitudinal direction (X-axis direction) of the light bar 12 on the light exit surface 12c in the region H. The prism 12g has an inclined surface 12g1 and an inclined surface 12g2.
傾斜面12g1は、ライトバー12の一端(入光面12a側)から他端に向かうにしたがい、出光面12bから離れる方向に傾斜している。傾斜面12g2は、ライトバー12の一端(入光面12a側)から他端に向かうにしたがい、出光面12bに近づく方向に傾斜している。また、1つのプリズム12gの傾斜面12g2は、隣接するプリズム12gの傾斜面12g1に連続して形成される。
The inclined surface 12g1 is inclined in a direction away from the light exit surface 12b as it goes from one end (light entrance surface 12a side) of the light bar 12 to the other end. The inclined surface 12g2 is inclined in a direction approaching the light exit surface 12b as it goes from one end (light incident surface 12a side) of the light bar 12 to the other end. Further, the inclined surface 12g2 of one prism 12g is formed continuously with the inclined surface 12g1 of the adjacent prism 12g.
さらに、図3Dに示すように、領域Jにおける反出光面12cにも、複数のプリズム12gが、ライトバー12の長手方向(X軸方向)に沿って並んで形成される。
Furthermore, as shown in FIG. 3D, a plurality of prisms 12g are also formed side by side along the longitudinal direction (X-axis direction) of the light bar 12 on the light exit surface 12c in the region J.
ここで、XY平面の断面視において、図3Cに示す領域Hにおけるプリズム12gの傾斜面12g2と出光面12bに平行な面12fとの成す角度φ4は、図3Dに示す領域Jにおけるプリズム12gの傾斜面12g2と出光面12bに平行な面12fとの成す角度φ5より小さい。すなわち、ライトバー12の一端(入光面12a側)から他端に向かうにしたがい、プリズム12gの傾斜面12g2と出光面12bに平行な面12fとの成す角度が徐々に大きくなるように連続的に変化する。
Here, in the sectional view of the XY plane, the angle φ4 formed by the inclined surface 12g2 of the prism 12g in the region H shown in FIG. 3C and the surface 12f parallel to the light exit surface 12b is the inclination of the prism 12g in the region J shown in FIG. 3D. It is smaller than the angle φ5 formed by the surface 12g2 and the surface 12f parallel to the light exit surface 12b. That is, as it goes from one end (light incident surface 12a side) to the other end of the light bar 12, the angle formed by the inclined surface 12g2 of the prism 12g and the surface 12f parallel to the light exit surface 12b is gradually increased. To change.
一方で、XY平面の断面視において、傾斜面12g1と傾斜面12g2との成す角度φ6は、すべてのプリズム12gで共通の角度である。ここまで説明したプリズム12gにより、ライトバー12の出光面12bにおけるX軸方向の配光分布を精度よく制御することができる。
On the other hand, in the cross-sectional view of the XY plane, the angle φ6 formed by the inclined surface 12g1 and the inclined surface 12g2 is an angle common to all the prisms 12g. With the prism 12g described so far, the light distribution in the X-axis direction on the light exit surface 12b of the light bar 12 can be accurately controlled.
次に、ライトバー12の出光面12bに形成されるプリズム12jについて、図3Eを参照しながら説明する。図3Eは、図3AにおけるK-K線の断面図である。なお、図3Eには、XY平面と略平行であるライトバー12の側面12k、12mが示されている。
Next, the prism 12j formed on the light exit surface 12b of the light bar 12 will be described with reference to FIG. 3E. 3E is a cross-sectional view taken along line KK in FIG. 3A. FIG. 3E shows the side surfaces 12k and 12m of the light bar 12 substantially parallel to the XY plane.
図3Eに示すように、YZ平面の断面視において、ライトバー12の出光面12bに、複数のプリズム12jが、ライトバー12の短手方向(Z軸方向)に沿って並んで形成される。プリズム12jは、傾斜面12j1と傾斜面12j2とを有する。
As shown in FIG. 3E, a plurality of prisms 12j are formed side by side along the short direction (Z-axis direction) of the light bar 12 on the light exit surface 12b of the light bar 12 in a sectional view of the YZ plane. The prism 12j has an inclined surface 12j1 and an inclined surface 12j2.
傾斜面12j1は、ライトバー12の短手方向における一端(側面12k側)から他端(側面12m側)に向かうにしたがい、出光面12bに平行な面12hから離れる方向に傾斜している。傾斜面12j2は、ライトバー12の短手方向における一端(側面12k側)から他端(側面12m側)に向かうにしたがい、出光面12bに平行な面12hに近づく方向に傾斜している。
The inclined surface 12j1 is inclined in a direction away from the surface 12h parallel to the light exit surface 12b as it goes from one end (side surface 12k side) to the other end (side surface 12m side) in the short direction of the light bar 12. The inclined surface 12j2 is inclined in a direction approaching the surface 12h parallel to the light exit surface 12b as it goes from one end (side surface 12k side) to the other end (side surface 12m side) in the short direction of the light bar 12.
そして、傾斜面12j1と傾斜面12j2との成す角(プリズム12jの頂角)の頂角度φ7は、たとえば90°である。また、傾斜面12j1と面12hとの成す角度φ8、および傾斜面12j2と面12hとの成す角度φ9は、たとえば45°である。
And the apex angle φ7 of the angle formed by the inclined surface 12j1 and the inclined surface 12j2 (the apex angle of the prism 12j) is 90 °, for example. Further, an angle φ8 formed by the inclined surface 12j1 and the surface 12h and an angle φ9 formed by the inclined surface 12j2 and the surface 12h are, for example, 45 °.
ここで、図3Eに示すように、プリズム12jが、ライトバー12に入射する光101の進路をY軸方向と平行な方向に変更させることにより、かかる光101をプリズムシート13の入光面13aに入射させることができる。このように、プリズム12jにより、Z軸方向の配光分布を精度よく制御することができる。
Here, as shown in FIG. 3E, the prism 12j changes the path of the light 101 incident on the light bar 12 in a direction parallel to the Y-axis direction, thereby converting the light 101 into the light incident surface 13a of the prism sheet 13. Can be made incident. As described above, the light distribution in the Z-axis direction can be accurately controlled by the prism 12j.
さらに、上述のように、反出光面12cにプリズム12gが形成されることにより、X軸方向の配光を制御することができる。すなわち、実施形態に係るライトバー12では、X軸方向およびZ軸方向の配光分布を精度よく制御することができる。
Furthermore, as described above, the light distribution in the X-axis direction can be controlled by forming the prism 12g on the light exit surface 12c. That is, in the light bar 12 according to the embodiment, the light distribution in the X-axis direction and the Z-axis direction can be accurately controlled.
なお、プリズム12jの頂角度φ7を90°にした場合、導光板5の出射面5dにおけるZ軸方向の配光角を最も狭くすることができる。一方で、頂角度φ7を90°より大きくすることによって、導光板5の出射面5dにおけるZ軸方向の配光を広くすることができる。
When the apex angle φ7 of the prism 12j is 90 °, the light distribution angle in the Z-axis direction on the exit surface 5d of the light guide plate 5 can be minimized. On the other hand, by making the apex angle φ7 larger than 90 °, the light distribution in the Z-axis direction on the exit surface 5d of the light guide plate 5 can be widened.
つづいて、実施形態に係るプリズムシート13の詳細について、図4Aおよび図4Bを参照しながら説明する。図4Aは、実施形態に係るプリズムシート13の長手方向(X軸方向)における中央部分の拡大図である。
Next, details of the prism sheet 13 according to the embodiment will be described with reference to FIGS. 4A and 4B. FIG. 4A is an enlarged view of a central portion in the longitudinal direction (X-axis direction) of the prism sheet 13 according to the embodiment.
図4Aに示すように、プリズムシート13の中央部における入光面13aには、複数のプリズム13dが、プリズムシート13の長手方向(X軸方向)に沿って並んで形成される。プリズム13dは、傾斜面13d1と傾斜面13d2とを有する。
As shown in FIG. 4A, a plurality of prisms 13 d are formed side by side along the longitudinal direction (X-axis direction) of the prism sheet 13 on the light incident surface 13 a in the center of the prism sheet 13. The prism 13d has an inclined surface 13d1 and an inclined surface 13d2.
傾斜面13d1は、プリズムシート13の長手方向における一端(X軸負方向側)から他端(X軸正方向側)に向かうにしたがい、出光面13bから離れる方向に傾斜している。傾斜面13d2は、プリズムシート13の長手方向における一端(X軸負方向側)から他端(X軸正方向側)に向かうにしたがい、出光面13bに近づく方向に傾斜している。また、1つのプリズム13dの傾斜面13d2は、隣接するプリズム13dの傾斜面13d1に連続して形成される。
The inclined surface 13d1 is inclined in a direction away from the light exit surface 13b as it goes from one end (X-axis negative direction side) in the longitudinal direction of the prism sheet 13 to the other end (X-axis positive direction side). The inclined surface 13d2 is inclined in a direction approaching the light exit surface 13b as it goes from one end (X-axis negative direction side) in the longitudinal direction of the prism sheet 13 to the other end (X-axis positive direction side). Further, the inclined surface 13d2 of one prism 13d is formed continuously with the inclined surface 13d1 of the adjacent prism 13d.
そして、図4Aに示すように、プリズム13dが、プリズムシート13に入射する光102の進路をY軸方向と平行な方向に変更させることにより、かかる光102を視野制御フィルム4の入光面4aに入射させることができる。たとえば、プリズム13dの傾斜面13d1に入射された光102が、傾斜面13d2により入光面4aに向けて反射される。このように、プリズム13dにより、X軸方向の配光を制御することができる。
4A, the prism 13d changes the path of the light 102 incident on the prism sheet 13 in a direction parallel to the Y-axis direction, so that the light 102 is incident on the light incident surface 4a of the visual field control film 4. Can be made incident. For example, the light 102 incident on the inclined surface 13d1 of the prism 13d is reflected toward the light incident surface 4a by the inclined surface 13d2. Thus, the light distribution in the X-axis direction can be controlled by the prism 13d.
図4Bは、実施形態に係るプリズムシート13の長手方向における端部近傍の拡大図であり、具体的には、線状光源3A側の端部近傍における拡大図である。図4Bに示すように、端部近傍における入光面13aにも、複数のプリズム13dが、プリズムシート13の長手方向(X軸方向)に沿って並んで形成される。
FIG. 4B is an enlarged view of the vicinity of the end portion in the longitudinal direction of the prism sheet 13 according to the embodiment, specifically, an enlarged view of the vicinity of the end portion on the linear light source 3A side. As shown in FIG. 4B, a plurality of prisms 13d are also formed side by side along the longitudinal direction (X-axis direction) of the prism sheet 13 on the light incident surface 13a in the vicinity of the end.
なお、XY平面の断面視における複数のプリズム13dの形状は、面状照明装置1の中心Cを通る線分に対して線対称となる。すなわち、入光面13aには、X軸方向におけるプリズムシート13の両端から中心Cに向かうにしたがい、出光面13bから離れる方向に傾斜している傾斜面13d1と、出光面13bに近づく方向に傾斜している傾斜面13d2とが連続する複数のプリズム13dが、X軸方向に沿って並んで形成される。
Note that the shapes of the plurality of prisms 13 d in the cross-sectional view of the XY plane are line symmetric with respect to the line segment passing through the center C of the planar illumination device 1. That is, the light incident surface 13a is inclined toward the center C from both ends of the prism sheet 13 in the X-axis direction, and is inclined in a direction approaching the light output surface 13b and an inclined surface 13d1 inclined in a direction away from the light output surface 13b. A plurality of prisms 13d having continuous inclined surfaces 13d2 are formed side by side along the X-axis direction.
そして、図4Bに示すように、プリズム13dが、プリズムシート13に入射する光103の進路をY軸方向と平行な方向に変更させることにより、かかる光103を視野制御フィルム4の入光面4aに入射させることができる。
Then, as shown in FIG. 4B, the prism 13 d changes the path of the light 103 incident on the prism sheet 13 in a direction parallel to the Y-axis direction, thereby causing the light 103 to enter the light incident surface 4 a of the visual field control film 4. Can be made incident.
ここで、XY平面の断面視において、図4Aに示すプリズムシート13の中央部分におけるプリズム13dの傾斜面13d1と、出光面13bに平行な面13fとの成す角度φ10は、図4Bに示すプリズムシート13の端部近傍におけるプリズム13dの傾斜面13d1と面13fとの成す角度φ13より小さい。
Here, in the sectional view of the XY plane, the angle φ10 formed by the inclined surface 13d1 of the prism 13d in the central portion of the prism sheet 13 shown in FIG. 4A and the surface 13f parallel to the light exit surface 13b is the prism sheet shown in FIG. 4B. 13 is smaller than the angle φ13 formed by the inclined surface 13d1 and the surface 13f of the prism 13d in the vicinity of the end portion.
すなわち、入光面13aの中央部分に形成される傾斜面13d1の傾斜角(角度φ10)は、入光面13aの端部近傍に形成される傾斜面13d1の傾斜角(角度φ13)より小さい。
That is, the inclination angle (angle φ10) of the inclined surface 13d1 formed in the central portion of the light incident surface 13a is smaller than the inclination angle (angle φ13) of the inclined surface 13d1 formed near the end of the light incident surface 13a.
また、XY平面の断面視において、図4Aに示すプリズムシート13の中央部分におけるプリズム13dの傾斜面13d2と、出光面13bに平行な面13fとの成す角度φ11は、図4Bに示すプリズムシート13の端部近傍におけるプリズム13dの傾斜面13d2と面13fとの成す角度φ14より大きい。
4A, the angle φ11 formed by the inclined surface 13d2 of the prism 13d in the central portion of the prism sheet 13 shown in FIG. 4A and the surface 13f parallel to the light exit surface 13b is the prism sheet 13 shown in FIG. 4B. Is larger than the angle φ14 formed by the inclined surface 13d2 and the surface 13f of the prism 13d in the vicinity of the end of the prism 13d.
すなわち、入光面13aの中央部分に形成される傾斜面13d2の傾斜角(角度φ11)は、入光面13aの端部近傍に形成される傾斜面13d2の傾斜角(角度φ14)より大きい。
That is, the inclination angle (angle φ11) of the inclined surface 13d2 formed at the central portion of the light incident surface 13a is larger than the inclination angle (angle φ14) of the inclined surface 13d2 formed near the end of the light incident surface 13a.
一方で、XY平面の断面視において、傾斜面13d1と傾斜面13d2との成す角度φ12は、すべてのプリズム13dで共通の角度である。
On the other hand, in the cross-sectional view of the XY plane, the angle φ12 formed by the inclined surface 13d1 and the inclined surface 13d2 is an angle common to all the prisms 13d.
なお、XY平面の断面視において、中心Cに位置するプリズム13dは、傾斜面13d1と面13fとの成す角度φ10が、傾斜面13d2と面13fとの成す角度φ11と等しくなる。すなわち、XY平面の断面視において、中心Cに位置するプリズム13dの形状は二等辺三角形となる。
In the sectional view of the XY plane, in the prism 13d positioned at the center C, the angle φ10 formed by the inclined surface 13d1 and the surface 13f is equal to the angle φ11 formed by the inclined surface 13d2 and the surface 13f. That is, in the cross-sectional view of the XY plane, the shape of the prism 13d located at the center C is an isosceles triangle.
上述のように、XY平面の断面視における複数のプリズム13dの形状は、面状照明装置1の中心Cを通る線分に対して線対称となる。これにより、一対のLED11がそれぞれ異なる方向から光を照射したとしても、プリズムシート13により所定の方向Bに光の向きを揃えることができる。
As described above, the shape of the plurality of prisms 13d in the cross-sectional view of the XY plane is line symmetric with respect to the line segment passing through the center C of the planar illumination device 1. Thereby, even if a pair of LED11 irradiates light from a different direction, the direction of light can be aligned in the predetermined direction B by the prism sheet 13.
なお、プリズムシート13の出光面13bは、平面状であってもよいし、図4Aおよび図4Bに示すように、X軸方向に複数の凸レンズ13eが並んだレンチキュラレンズを設けてもよい。そして、かかる凸レンズ13eと出光面13bとの接触角を大きくすることにより、X軸方向の配光を大きくすることができる。
The light exit surface 13b of the prism sheet 13 may be planar, or as shown in FIGS. 4A and 4B, a lenticular lens in which a plurality of convex lenses 13e are arranged in the X-axis direction may be provided. The light distribution in the X-axis direction can be increased by increasing the contact angle between the convex lens 13e and the light exit surface 13b.
すなわち、凸レンズ13eと出光面13bとの接触角を適宜調整することにより、X軸方向の配光分布を精度よく制御することができる。したがって、導光板5の出射面5dにおけるX軸方向の配光分布を精度よく制御することができる。さらに、隣接する凸レンズ13e間のピッチ間隔を、向かい合うプリズム13d間のピッチ間隔より狭くすることによって、X軸方向の輝度の均一性を向上させることができる。
That is, the light distribution in the X-axis direction can be accurately controlled by appropriately adjusting the contact angle between the convex lens 13e and the light exit surface 13b. Therefore, the light distribution in the X-axis direction on the exit surface 5d of the light guide plate 5 can be accurately controlled. Furthermore, by making the pitch interval between the adjacent convex lenses 13e narrower than the pitch interval between the prisms 13d facing each other, it is possible to improve the uniformity of luminance in the X-axis direction.
つづいて、実施形態に係る視野制御フィルム4の詳細について、図5Aを参照しながら説明する。図5Aは、実施形態に係る視野制御フィルム4について説明するための図であり、具体的には、XY平面における断面図である。
Next, details of the visual field control film 4 according to the embodiment will be described with reference to FIG. 5A. FIG. 5A is a view for explaining the visual field control film 4 according to the embodiment, and specifically, a cross-sectional view in the XY plane.
視野制御フィルム4は、基材である光透過部4cと、複数の光吸収部4dとを有する。光透過部4cは、光を透過する機能を有し、たとえば、光透過性樹脂で構成される。光吸収部4dは、光を吸収する機能を有し、たとえば、光吸収性樹脂で構成される。かかる光吸収部4dは、帯形状を有し、長手方向が所定の向き(たとえば、XY平面の断面視において、プリズムシート13から出光される光のピーク方向P)に揃って向くように配置される。
The visual field control film 4 has a light transmission part 4c as a base material and a plurality of light absorption parts 4d. The light transmitting portion 4c has a function of transmitting light, and is made of, for example, a light transmitting resin. The light absorbing portion 4d has a function of absorbing light and is made of, for example, a light absorbing resin. The light absorbing portion 4d has a band shape, and is arranged so that the longitudinal direction thereof is aligned in a predetermined direction (for example, the peak direction P of light emitted from the prism sheet 13 in a cross-sectional view of the XY plane). The
これにより、図5Aに示すように、たとえば、ピーク方向Pに対する傾きが小さい光104や光105が入光面4aから出光面4bまで光透過部4cを透過することができるのに対し、ピーク方向Pに対する傾きが大きい光106は光吸収部4dで吸収され、出光面4bまで到達できない。
As a result, as shown in FIG. 5A, for example, light 104 or light 105 having a small inclination with respect to the peak direction P can pass through the light transmitting portion 4c from the light incident surface 4a to the light exit surface 4b, whereas the peak direction The light 106 having a large inclination with respect to P is absorbed by the light absorbing portion 4d and cannot reach the light exit surface 4b.
すなわち、視野制御フィルム4を設けることにより、XY平面の断面視、すなわち導光板5の出射面5dと平行な面で切断した場合に、ピーク方向Pから大きく外れる不要な光(たとえば、光106)が導光板5に入光することを抑制することができる。これにより、導光板5で向きが変えられて出射される光のX軸方向における配光性を向上させることができる。
That is, by providing the visual field control film 4, unnecessary light (for example, light 106) greatly deviating from the peak direction P when cut in a cross-sectional view in the XY plane, that is, in a plane parallel to the exit surface 5 d of the light guide plate 5. Can be prevented from entering the light guide plate 5. Thereby, it is possible to improve the light distribution in the X-axis direction of the light emitted with the direction changed by the light guide plate 5.
実施形態では、XY平面の断面視において、視野制御フィルム4の出光面4bから出光する光、すなわち、線状光源3A、3Bから導光板5に出射される光が、半値全幅で20°以下であるとよい。また、視野制御フィルム4は、XY平面の断面視において、配光角度を±60°以下の範囲で制限するとよい。これにより、導光板5で向きが変えられて出射される光のX軸方向における配光性をさらに向上させることができる。
In the embodiment, in the cross-sectional view of the XY plane, the light emitted from the light exit surface 4b of the visual field control film 4, that is, the light emitted from the linear light sources 3A and 3B to the light guide plate 5 has a full width at half maximum of 20 ° or less. There should be. Moreover, the visual field control film 4 is good to restrict | limit the light distribution angle in the range of ± 60 degrees or less in the cross-sectional view of XY plane. Thereby, the light distribution in the X-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
なお、図5Aでは、ピーク方向PがY軸方向と平行な場合について示したが、ピーク方向PはY軸方向と平行な場合に限られない。たとえば、図5Bに示すように、ピーク方向PがY軸方向から傾いている場合には、光吸収部4dの長手方向もピーク方向Pに沿うように、Y軸方向から傾けて配置するとよい。図5Bは、実施形態に係る視野制御フィルム4の別の例について説明するための図である。これにより、図5Aに示した例と同様に、ピーク方向Pに対する傾きが大きい光106の透過を抑制することができる。
Although FIG. 5A shows the case where the peak direction P is parallel to the Y-axis direction, the peak direction P is not limited to being parallel to the Y-axis direction. For example, as shown in FIG. 5B, when the peak direction P is tilted from the Y-axis direction, the longitudinal direction of the light absorbing portion 4d may be tilted from the Y-axis direction so as to be along the peak direction P. FIG. 5B is a diagram for explaining another example of the visual field control film 4 according to the embodiment. Thereby, similarly to the example shown in FIG. 5A, it is possible to suppress the transmission of the light 106 having a large inclination with respect to the peak direction P.
また、実施形態において、LED11の周囲およびライトバー12の入光面12a付近のハウジングフレーム2には、高い反射率を有する樹脂(たとえば白色樹脂)を用いるとよい。これにより、光の効率を向上させることができる。さらに、上述の部位以外のハウジングフレーム2には、高い吸収率を有する樹脂(たとえば黒色樹脂)を用いるとよい。これにより、不要な配光を低減することができる。すなわち、ハウジングフレーム2は、白色樹脂と黒色樹脂とによる2色成形で成形するとよい。
In the embodiment, a resin having a high reflectance (for example, a white resin) may be used for the housing frame 2 around the LED 11 and in the vicinity of the light incident surface 12a of the light bar 12. Thereby, the efficiency of light can be improved. Further, a resin (for example, black resin) having a high absorption rate may be used for the housing frame 2 other than the above-described parts. Thereby, unnecessary light distribution can be reduced. That is, the housing frame 2 is preferably formed by two-color molding using a white resin and a black resin.
さらに、実施形態にかかる面状照明装置1は、ライトバー12における入光面12aおよび出光面12b以外の表面と、プリズムシート13における入光面13aおよび出光面13b以外の表面と、導光板5において側面5cに隣接する幅2mm程度の範囲の表面とで、光が鏡面反射されるように構成されているとよい。たとえば、断面コ字状の鏡面反射シートで、かかる表面を覆えばよい。これにより、光の効率を向上させることができるとともに、不要な配光を低減することができる。
Furthermore, the planar illumination device 1 according to the embodiment includes a surface other than the light incident surface 12a and the light output surface 12b in the light bar 12, a surface other than the light incident surface 13a and the light output surface 13b in the prism sheet 13, and the light guide plate 5. In this case, it is preferable that the light be specularly reflected on the surface having a width of about 2 mm adjacent to the side surface 5c. For example, such a surface may be covered with a specular reflection sheet having a U-shaped cross section. Thereby, the efficiency of light can be improved and unnecessary light distribution can be reduced.
さらに、実施形態にかかる面状照明装置1は、導光板5の終端部(図1Aにおける下端部)および側面部(図1Aにおける左右側の側面)とで光が吸収されるように構成されているとよい。たとえば、黒色の塗装材でかかる部位を塗装すればよい。これにより、不要な配光を低減することができる。
Furthermore, the planar illumination device 1 according to the embodiment is configured such that light is absorbed by the terminal end portion (the lower end portion in FIG. 1A) and the side surface portion (the left and right side surfaces in FIG. 1A) of the light guide plate 5. It is good to be. For example, such a portion may be painted with a black coating material. Thereby, unnecessary light distribution can be reduced.
(変形例)
以降においては、実施形態の各種変形例について説明する。なお、以降の説明では実施形態と同じ部位については同じ符号を付し、重複する説明については省略する場合がある。最初に、実施形態の変形例1について、図6Aおよび図6Bを参照しながら説明する。 (Modification)
Hereinafter, various modifications of the embodiment will be described. In the following description, the same parts as those in the embodiment are denoted by the same reference numerals, and redundant descriptions may be omitted. First,Modification 1 of the embodiment will be described with reference to FIGS. 6A and 6B.
以降においては、実施形態の各種変形例について説明する。なお、以降の説明では実施形態と同じ部位については同じ符号を付し、重複する説明については省略する場合がある。最初に、実施形態の変形例1について、図6Aおよび図6Bを参照しながら説明する。 (Modification)
Hereinafter, various modifications of the embodiment will be described. In the following description, the same parts as those in the embodiment are denoted by the same reference numerals, and redundant descriptions may be omitted. First,
図6Aは、実施形態の変形例1に係る面状照明装置1の正面図であり、図6Bは、図6Aにおける領域Mの拡大図である。図6Aに示すように、変形例1では、線状光源が実施形態のように一対ではなく、1つのみ設けられている(線状光源3A)。
FIG. 6A is a front view of the planar lighting device 1 according to the first modification of the embodiment, and FIG. 6B is an enlarged view of a region M in FIG. 6A. As shown in FIG. 6A, in Modification 1, only one linear light source is provided instead of a pair as in the embodiment (linear light source 3A).
さらに、図6Bに示すように、導光板5において、プリズム5fは所定の方向Bに対して斜め方向に(図ではX軸正方向かつY軸負方向からX軸負方向かつY軸正方向に向かって)延びている。これにより、変形例1では、かかるプリズム5fにより所望の一方向(図ではX軸正方向かつY軸負方向)に向かって光を照射することができる。
Further, as shown in FIG. 6B, in the light guide plate 5, the prism 5 f is inclined with respect to a predetermined direction B (in the figure, from the X axis positive direction and the Y axis negative direction to the X axis negative direction and the Y axis positive direction). Extending). Thereby, in the modification 1, light can be irradiated toward a desired one direction (X-axis positive direction and Y-axis negative direction in the drawing) by the prism 5f.
つづいて、実施形態の変形例2について、図7Aおよび図7Bを参照しながら説明する。図7Aは、実施形態の変形例2に係る第1導光部5aの拡大図であり、図7Bは、実施形態の変形例2に係る第2導光部5bの拡大図である。すなわち、図7Aは、実施形態における領域D(図1A参照)の拡大図であり、図7Bは、実施形態における領域E(図1A参照)の拡大図である。
Subsequently, Modification 2 of the embodiment will be described with reference to FIGS. 7A and 7B. FIG. 7A is an enlarged view of the first light guide 5a according to Modification 2 of the embodiment, and FIG. 7B is an enlarged view of the second light guide 5b according to Modification 2 of the embodiment. 7A is an enlarged view of a region D (see FIG. 1A) in the embodiment, and FIG. 7B is an enlarged view of a region E (see FIG. 1A) in the embodiment.
図7Bに示すように、第2導光部5bでは、実施形態と同様にプリズム5fが所定の方向Bに対して斜め方向に延びているのに対し、図7Aに示すように、第1導光部5aでは、プリズム5fが所定の方向Bに対して垂直方向に延びている。
As shown in FIG. 7B, in the second light guide 5b, the prism 5f extends obliquely with respect to the predetermined direction B as in the embodiment, whereas the first light guide 5b as shown in FIG. 7A. In the optical part 5a, the prism 5f extends in a direction perpendicular to the predetermined direction B.
このように、プリズム5fを所定の方向Bに対して垂直方向に延ばして形成することにより、図7Aに示すように、XY平面において、出射方向を所定の方向Bと揃えることができる。さらに、第2導光部5bにおいて、プリズム5fを所定の方向Bから傾けて形成することにより、XY平面において、出射方向を所定の方向Bから傾けて照射することができる。
Thus, by forming the prism 5f so as to extend in a direction perpendicular to the predetermined direction B, the emission direction can be aligned with the predetermined direction B on the XY plane as shown in FIG. 7A. Furthermore, by forming the prism 5f tilted from the predetermined direction B in the second light guide 5b, it is possible to irradiate with the emission direction tilted from the predetermined direction B on the XY plane.
このように、第1導光部5aと第2導光部5bとにおけるプリズム5fの向きを適宜変更することにより、面状照明装置1では、異なる2方向に出射方向を変更することができる。
Thus, by changing the direction of the prism 5f in the first light guide 5a and the second light guide 5b as appropriate, the planar illumination device 1 can change the emission direction in two different directions.
つづいて、実施形態の変形例3について、図8~図10Bを参照しながら説明する。図8は、実施形態の変形例3に係る面状照明装置1の断面図であり、実施形態における図1Bに対応する図面である。かかる変形例3は、実施形態における視野制御フィルム4が、異なる構造を有する視野制御フィルム4Aに変更された例である。
Subsequently, Modification 3 of the embodiment will be described with reference to FIGS. 8 to 10B. FIG. 8 is a cross-sectional view of the planar lighting device 1 according to the third modification of the embodiment, and corresponds to FIG. 1B in the embodiment. The third modified example is an example in which the visual field control film 4 in the embodiment is changed to a visual field control film 4A having a different structure.
かかる視野制御フィルム4Aの詳細について、図9に示す。図9は、実施形態の変形例3に係る視野制御フィルム4Aについて説明するための図であり、具体的には、YZ平面における断面図である。
Details of the visual field control film 4A are shown in FIG. FIG. 9 is a diagram for explaining a visual field control film 4A according to Modification 3 of the embodiment, specifically, a cross-sectional view in the YZ plane.
視野制御フィルム4Aは、視野制御フィルム4と同様に、基材である光透過部4cと、複数の光吸収部4dとを有する。一方で、帯形状を有する光吸収部4dは、視野制御フィルム4と異なり、YZ平面の断面視において、長手方向がプリズムシート13から出光される光のピーク方向Pに揃って向くように配置される。
The visual field control film 4 </ b> A has a light transmission part 4 c that is a base material and a plurality of light absorption parts 4 d, similarly to the visual field control film 4. On the other hand, unlike the visual field control film 4, the light absorbing portion 4 d having a band shape is arranged so that the longitudinal direction is aligned with the peak direction P of the light emitted from the prism sheet 13 in the cross-sectional view of the YZ plane. The
これにより、図9に示すように、YZ平面の断面視において、入光面4aから出光面4bまでの光透過部4cを、ピーク方向Pに対する傾きが小さい光107や光108は透過することができる。これに対し、ピーク方向Pに対する傾きが大きい光109は光吸収部4dで吸収され、出光面4bまで到達できない。
As a result, as shown in FIG. 9, the light 107 and the light 108 having a small inclination with respect to the peak direction P can be transmitted through the light transmitting portion 4 c from the light incident surface 4 a to the light exit surface 4 b in the cross-sectional view of the YZ plane. it can. On the other hand, the light 109 having a large inclination with respect to the peak direction P is absorbed by the light absorbing portion 4d and cannot reach the light exit surface 4b.
すなわち、視野制御フィルム4Aを設けることにより、YZ平面の断面視、すなわち視野制御フィルム4Aの長手方向と垂直な面で切断した場合に、ピーク方向Pから大きく外れる不要な光(たとえば、光109)が導光板5に入光することを抑制することができる。
That is, by providing the visual field control film 4A, unnecessary light (for example, light 109) that deviates significantly from the peak direction P when cut in a cross-sectional view in the YZ plane, that is, in a plane perpendicular to the longitudinal direction of the visual field control film 4A. Can be prevented from entering the light guide plate 5.
図10Aは、参考例の面状照明装置1における配光について説明するための図である。具体的には、図10Aに示す参考例は、視野制御フィルム4Aが設けられていない面状照明装置1について示している。
FIG. 10A is a diagram for explaining light distribution in the planar illumination device 1 of the reference example. Specifically, the reference example shown in FIG. 10A shows a planar illumination device 1 in which the visual field control film 4A is not provided.
図10Aに示すように、視野制御フィルム4Aが設けられていない場合、YZ平面の断面視において、導光板5には、ピーク方向Pに対する傾きが小さい光107や光108のみならず、ピーク方向Pに対する傾きが大きい光109も入射される。そして、ピーク方向Pに対する傾きが小さい光107や光108は、導光板5の内部では、プリズム5fの第1領域5f1や第2領域5f2で反射され、所定の方向(Y軸負方向かつZ軸正方向)に出射される。
As shown in FIG. 10A, when the visual field control film 4A is not provided, the light guide plate 5 has not only the light 107 and the light 108 with a small inclination with respect to the peak direction P but also the peak direction P in the cross-sectional view of the YZ plane. Light 109 having a large inclination with respect to is also incident. Then, the light 107 and the light 108 having a small inclination with respect to the peak direction P are reflected by the first region 5f1 and the second region 5f2 of the prism 5f inside the light guide plate 5, and are transmitted in a predetermined direction (Y-axis negative direction and Z-axis). The light is emitted in the positive direction.
一方、ピーク方向Pに対する傾きが大きい光109は、導光板5の内部で、出射面5dとプリズム5fの第1領域5f1とで反射をくり返し、最終的に第2領域5f2で反射されて、所定の方向とは異なる方向(Y軸正方向かつZ軸正方向)に出射される。
On the other hand, the light 109 having a large inclination with respect to the peak direction P is repeatedly reflected by the light exit surface 5d and the first region 5f1 of the prism 5f inside the light guide plate 5, and finally reflected by the second region 5f2 to be predetermined. Is emitted in a direction different from the direction (Y-axis positive direction and Z-axis positive direction).
したがって、視野制御フィルム4Aが設けられていない場合、導光板5で向きが変えられて出射される光のY軸方向における配光性を向上させることが困難である。すなわち、参考例では、Y軸正方向側にいる運転者や助手席に座る人がまぶしく感じる恐れがある。
Therefore, when the field-of-view control film 4A is not provided, it is difficult to improve the light distribution in the Y-axis direction of the light that is changed in direction by the light guide plate 5 and emitted. That is, in the reference example, there is a possibility that a driver on the Y axis positive direction side or a person sitting in the passenger seat may feel dazzled.
図10Bは、実施形態の変形例3に係る面状照明装置1における配光について説明するための図である。図10Bに示すように、視野制御フィルム4Aが設けられる場合、YZ平面の断面視において、導光板5には、ピーク方向Pに対する傾きが小さい光107や光108は入射されるが、ピーク方向Pに対する傾きが大きい光109は入射されない。
FIG. 10B is a diagram for explaining light distribution in the planar illumination device 1 according to the third modification of the embodiment. As shown in FIG. 10B, when the visual field control film 4A is provided, the light 107 and the light 108 having a small inclination with respect to the peak direction P are incident on the light guide plate 5 in the cross-sectional view of the YZ plane. Light 109 having a large inclination with respect to is not incident.
これにより、かかる光109に起因する所定の方向とは異なる方向(Y軸正方向かつZ軸正方向)に出射される光を低減させることができる。したがって、変形例3によれば、導光板5で向きが変えられて出射される光のY軸方向における配光性を向上させることができる。
Thereby, it is possible to reduce the light emitted in a direction (Y-axis positive direction and Z-axis positive direction) different from the predetermined direction due to the light 109. Therefore, according to the modification 3, the light distribution property in the Y-axis direction of the light emitted with the direction changed by the light guide plate 5 can be improved.
変形例3では、YZ平面の断面視において、視野制御フィルム4Aの出光面4bから出光する光、すなわち、線状光源3A、3Bから導光板5に出射される光が、半値全幅で20°以下であるとよい。また、視野制御フィルム4Aは、YZ平面の断面視において、配光角度を±60°以下の範囲で制限するとよく、配光角度を±45°以下の範囲で制限するとさらによい。これにより、導光板5で向きが変えられて出射される光のY軸方向における配光性をさらに向上させることができる。
In the modified example 3, the light emitted from the light exit surface 4b of the visual field control film 4A, that is, the light emitted from the linear light sources 3A and 3B to the light guide plate 5 in the cross-sectional view of the YZ plane is 20 ° or less at a full width at half maximum. It is good to be. Further, in the field-of-view control film 4A, in the cross-sectional view of the YZ plane, the light distribution angle may be limited within a range of ± 60 ° or less, and more preferably limited within the range of ± 45 ° or less. Thereby, the light distribution in the Y-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
図11は、実施形態の変形例4に係る面状照明装置1の断面図である。変形例4は、実施形態に設けられる視野制御フィルム4と、変形例3に設けられる視野制御フィルム4Aとを両方用いた例である。
FIG. 11 is a cross-sectional view of the planar illumination device 1 according to the fourth modification of the embodiment. Modification 4 is an example in which both the visual field control film 4 provided in the embodiment and the visual field control film 4A provided in Modification 3 are used.
具体的には、図11に示すように、プリズムシート13と導光板5との間に、視野制御フィルム4と視野制御フィルム4Aとが積層されて配置されている。この変形例4では、視野制御フィルム4により、導光板5で向きが変えられて出射される光のX軸方向における配光性を向上させることができるとともに、視野制御フィルム4Aにより、導光板5で向きが変えられて出射される光のY軸方向における配光性を向上させることができる。
Specifically, as shown in FIG. 11, the visual field control film 4 and the visual field control film 4 </ b> A are laminated and disposed between the prism sheet 13 and the light guide plate 5. In the fourth modification, the visual field control film 4 can improve the light distribution in the X-axis direction of the light emitted from the light guide plate 5 whose direction is changed, and the visual field control film 4A allows the light guide plate 5 to be improved. It is possible to improve the light distribution in the Y-axis direction of the light emitted with the direction changed by.
なお、変形例4では、視野制御フィルム4と視野制御フィルム4Aとを直接貼り合わせるとよい。これにより、視野制御フィルム4と視野制御フィルム4Aとの間での屈折率の変化を抑制することができることから、視野制御フィルム4と視野制御フィルム4Aとの間で光が減衰することを抑制することができる。したがって、面状照明装置1の発光効率を向上させることができる。
In Modification 4, it is preferable to directly bond the visual field control film 4 and the visual field control film 4A. Thereby, since the change of the refractive index between the visual field control film 4 and the visual field control film 4A can be suppressed, the attenuation of light between the visual field control film 4 and the visual field control film 4A is suppressed. be able to. Therefore, the luminous efficiency of the planar lighting device 1 can be improved.
図12は、参考例の面状照明装置1における配光分布を示す図である。なお、図12に示す配光分布は、色が濃いほど輝度が大きいことを示している。また、図12に示す配光分布における方位角および極角の向きについて、図13および図14を参照しながら説明する。
FIG. 12 is a diagram showing a light distribution in the planar lighting device 1 of the reference example. Note that the light distribution shown in FIG. 12 indicates that the darker the color, the higher the luminance. Further, the orientation of the azimuth angle and polar angle in the light distribution shown in FIG. 12 will be described with reference to FIGS.
図13は、図12に示した配光分布における方位角について説明するための図である。図13に示すように、図12に示した配光分布では、導光板5の第2導光部5bから出射される光について、X軸正方向を方位角0°とし、Y軸負方向を方位角90°とし、X軸負方向を方位角180°とし、Y軸正方向を方位角270°としている。なお、方位角90°(Y軸負方向)が車両の前方側に対応し、方位角270°(Y軸正方向)が車両の後方側に対応している。
FIG. 13 is a diagram for explaining the azimuth angle in the light distribution shown in FIG. As shown in FIG. 13, in the light distribution shown in FIG. 12, with respect to the light emitted from the second light guide portion 5b of the light guide plate 5, the X-axis positive direction is set to an azimuth angle of 0 °, and the Y-axis negative direction is set to The azimuth angle is 90 °, the negative X-axis direction is 180 °, and the positive Y-axis direction is 270 °. An azimuth angle of 90 ° (Y-axis negative direction) corresponds to the front side of the vehicle, and an azimuth angle of 270 ° (Y-axis positive direction) corresponds to the rear side of the vehicle.
図14は、図12に示した配光分布における極角について説明するための図である。図14に示すように、図12に示した配光分布では、導光板5の出射面5dから出射される光について、Z軸正方向を極角0°とし、かかるZ軸正方向と垂直な方向を極角90°とし、かかる垂直な方向の反対方向を極角-90°としている。たとえば、図14に示すように、Y軸正方向を極角90°とした場合、Y軸負方向が極角-90°となる。
FIG. 14 is a diagram for explaining polar angles in the light distribution shown in FIG. As shown in FIG. 14, in the light distribution shown in FIG. 12, with respect to the light emitted from the exit surface 5d of the light guide plate 5, the positive Z-axis direction is 0 ° and the vertical direction is perpendicular to the positive Z-axis direction. The direction is a polar angle of 90 °, and the opposite direction of the perpendicular direction is a polar angle of −90 °. For example, as shown in FIG. 14, when the positive Y-axis direction is 90 ° polar angle, the negative Y-axis direction is −90 ° polar angle.
図12の説明に戻る。図12に示すように、参考例の面状照明装置1は、方位角が約25°、極角が約50°を中心とする所定の方向に向けて光を出射するように構成されている。一方で、参考例の面状照明装置1は、かかる所定の方向とは異なる方向にも光が出射されている。
Returning to the explanation of FIG. As shown in FIG. 12, the planar illumination device 1 of the reference example is configured to emit light in a predetermined direction centered on an azimuth angle of about 25 ° and a polar angle of about 50 °. . On the other hand, the planar illumination device 1 of the reference example emits light in a direction different from the predetermined direction.
図15は、実施形態、変形例3、変形例4および参考例の配光分布の断面を示した図である。具体的には、図15は、図12に示したZ軸正方向を極角0°とする半球方向の輝度分布のうち、方位角約337°(図12の破線110に対応)における断面での輝度を示している。
FIG. 15 is a view showing a cross section of the light distribution of the embodiment, the third modification, the fourth modification, and the reference example. Specifically, FIG. 15 is a cross section at an azimuth angle of about 337 ° (corresponding to the broken line 110 in FIG. 12) in the luminance distribution in the hemispherical direction in which the positive Z-axis direction shown in FIG. The brightness is shown.
また、図15において、極角が0°付近の領域がX軸方向において配光が乱れた場合に輝度が高くなる領域であり、極角が63°付近の領域がY軸方向において配光が乱れた場合に輝度が高くなる領域である。
In FIG. 15, the region where the polar angle is near 0 ° is a region where the luminance is increased when the light distribution is disturbed in the X-axis direction, and the region where the polar angle is near 63 ° is the light distribution in the Y-axis direction. This is a region where the brightness increases when disturbed.
図15に示すように、視野制御フィルム4と視野制御フィルム4Aとがいずれも設けられていない参考例では、極角が0°付近でも63°付近でも輝度が高くなっていることから、X軸方向でもY軸方向でも配光が多少乱れていることがわかる。
As shown in FIG. 15, in the reference example in which neither the visual field control film 4 nor the visual field control film 4A is provided, the luminance is high regardless of whether the polar angle is near 0 ° or 63 °. It can be seen that the light distribution is somewhat disturbed both in the direction and in the Y-axis direction.
一方で、視野制御フィルム4が設けられる実施形態では、参考例と比較して、極角が0°付近で輝度が低下していることから、X軸方向で配光性が向上していることがわかる。
On the other hand, in the embodiment in which the visual field control film 4 is provided, the light distribution is improved in the X-axis direction because the luminance is reduced near the polar angle of 0 ° as compared with the reference example. I understand.
また、視野制御フィルム4Aが設けられる変形例3では、参考例と比較して、極角が63°付近で輝度が低下していることから、Y軸方向で配光性が向上していることがわかる。
Further, in the third modification in which the visual field control film 4A is provided, since the luminance is reduced near the polar angle of 63 ° as compared with the reference example, the light distribution is improved in the Y-axis direction. I understand.
さらに、視野制御フィルム4と視野制御フィルム4Aとがいずれも設けられる変形例4では、参考例と比較して、極角が0°付近でも極角が63°付近でも輝度が低下していることから、X軸方向およびY軸方向いずれの配光性も向上していることがわかる。
Furthermore, in the modified example 4 in which both the visual field control film 4 and the visual field control film 4A are provided, the luminance is reduced even when the polar angle is around 0 ° or the polar angle is around 63 ° as compared with the reference example. From this, it can be seen that the light distribution in both the X-axis direction and the Y-axis direction is improved.
上述したように、実施形態によれば、導光板5の裏面5eに形成されるプリズム5fが、所定の方向Bと平行に切断した場合に、出射面5dと略平行である第1領域5f1と、出射面5dに対して傾斜する第2領域5f2とを有し、かかる第1領域5f1と第2領域5f2とが所定の方向Bに対して斜め方向に延びるように形成されることにより、透光性と高い配光性とを両立させることができる。
As described above, according to the embodiment, when the prism 5f formed on the back surface 5e of the light guide plate 5 is cut in parallel to the predetermined direction B, the first region 5f1 substantially parallel to the emission surface 5d The second region 5f2 is inclined with respect to the emission surface 5d, and the first region 5f1 and the second region 5f2 are formed so as to extend obliquely with respect to the predetermined direction B. Both light properties and high light distribution can be achieved.
なお、上記の実施形態では、LED11およびライトバー12を用いて線状光源3A、3Bを形成していたが、線状光源の構成はかかる例に限られない。たとえば、複数のLEDを一列に並べて線状光源を形成してもよい。また、上記の実施形態では、面状照明装置1が中心Cを軸に左右対称に形成されていたが、左右対称に形成されなくともよい。
In the above embodiment, the linear light sources 3A and 3B are formed using the LED 11 and the light bar 12, but the configuration of the linear light source is not limited to this example. For example, a linear light source may be formed by arranging a plurality of LEDs in a line. In the above-described embodiment, the planar illumination device 1 is formed symmetrically about the center C as an axis, but may not be formed symmetrically.
また、上記の実施形態では、プリズムシート13の構成が左右対称であったが、プリズムシート13が左右で異なる構成であってもよい。これにより、導光板5の第1導光部5aと第2導光部5bとに、それぞれ異なる向きの光を入光させることができる。さらに、上記の実施形態では、プリズムシート13が一体で構成されていたが、ライトバー12と同様に、左右で分割されていてもよい。
In the above-described embodiment, the configuration of the prism sheet 13 is bilaterally symmetric, but the prism sheet 13 may be configured differently on the left and right. Thereby, the light of the different direction can be incident on the 1st light guide part 5a and the 2nd light guide part 5b of the light guide plate 5, respectively. Furthermore, in the above embodiment, the prism sheet 13 is integrally formed. However, like the light bar 12, the prism sheet 13 may be divided into left and right.
以上のように、実施形態に係る面状照明装置1は、光源(線状光源3A、3B)と、導光板5とを備える。光源(線状光源3A、3B)は、所定の方向Bに光を出射する。導光板5は、側面5cと、一方の主面である出射面5dと、他方の主面である裏面5eとを有し、裏面5eにプリズム5fが形成され、光源(線状光源3A、3B)から側面5cに入射される光を出射面5dから出射する。そして、プリズム5fは、所定の方向Bと平行に切断した場合に、出射面5dと略平行である第1領域5f1と、出射面5dに対して傾斜する第2領域5f2とを有し、第1領域5f1と第2領域5f2とが所定の方向Bに対して斜め方向に延びる。これにより、透光性と高い配光性とを両立させることができる。
As described above, the planar illumination device 1 according to the embodiment includes the light sources (linear light sources 3A and 3B) and the light guide plate 5. The light sources (linear light sources 3A and 3B) emit light in a predetermined direction B. The light guide plate 5 has a side surface 5c, an exit surface 5d that is one main surface, and a back surface 5e that is the other main surface. A prism 5f is formed on the back surface 5e, and light sources (linear light sources 3A and 3B) are formed. ) Is incident on the side surface 5c from the exit surface 5d. The prism 5f includes a first region 5f1 that is substantially parallel to the exit surface 5d and a second region 5f2 that is inclined with respect to the exit surface 5d when cut in parallel to the predetermined direction B. The first region 5f1 and the second region 5f2 extend obliquely with respect to the predetermined direction B. Thereby, both the translucency and the high light distribution can be achieved.
また、実施形態に係る面状照明装置1において、出射面5dから出射される光は、半値全幅で40°以下の範囲に出射される。これにより、必要な領域を十分に照射するとともに、不要な領域に照射されることをさらに抑制することができる。
Further, in the planar illumination device 1 according to the embodiment, the light emitted from the emission surface 5d is emitted in a range of 40 ° or less at the full width at half maximum. Thereby, while irradiating a required area | region fully, it can further suppress that an unnecessary area | region is irradiated.
また、実施形態に係る面状照明装置1は、光源(線状光源3A、3B)と導光板5の側面5cとの間に、配光角度を制限可能に構成される視野制御フィルム4をさらに備える。これにより導光板5で向きが変えられて出射される光の配光性を向上させることができる。
Moreover, the planar illumination device 1 according to the embodiment further includes a visual field control film 4 configured to be capable of limiting the light distribution angle between the light source (linear light sources 3A and 3B) and the side surface 5c of the light guide plate 5. Prepare. Thereby, the light distribution property of the light emitted by changing the direction by the light guide plate 5 can be improved.
また、実施形態に係る面状照明装置1において、視野制御フィルム4は、出射面5dと平行な面で切断した場合に、所定の方向に対する配光角度を±60°以下(好ましくは、±45°以下)の範囲で制限する。これにより、導光板5で向きが変えられて出射される光のX軸方向における配光性をさらに向上させることができる。
In the planar illumination device 1 according to the embodiment, the visual field control film 4 has a light distribution angle with respect to a predetermined direction of ± 60 ° or less (preferably ± 45) when cut by a plane parallel to the emission surface 5d. Limit in the range of ° or less. Thereby, the light distribution in the X-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
また、実施形態に係る面状照明装置1において、視野制御フィルム4Aは、長手方向と垂直な面で切断した場合に、配光角度を±60°以下(好ましくは、±45°以下)の範囲で制限する。これにより、導光板5で向きが変えられて出射される光のY軸方向における配光性をさらに向上させることができる。
In the planar illumination device 1 according to the embodiment, the visual field control film 4A has a light distribution angle in a range of ± 60 ° or less (preferably ± 45 ° or less) when cut along a plane perpendicular to the longitudinal direction. Limit with. Thereby, the light distribution in the Y-axis direction of the light emitted with the direction changed by the light guide plate 5 can be further improved.
また、実施形態に係る面状照明装置1において、光源は、側面5cに沿って延びる線状光源3A、3Bである。これにより、導光板5から面状の光を発光させることができる。
In the planar illumination device 1 according to the embodiment, the light sources are linear light sources 3A and 3B extending along the side surface 5c. Thereby, planar light can be emitted from the light guide plate 5.
また、実施形態に係る面状照明装置1は、2つの線状光源3A、3Bが側面5cに沿って配置される。これにより、異なる2箇所(例えば、運転席側および助手席側)にそれぞれ独立して光を照射させることができる。
In the planar illumination device 1 according to the embodiment, two linear light sources 3A and 3B are arranged along the side surface 5c. Thereby, two different places (for example, the driver's seat side and the passenger seat side) can be irradiated with light independently.
また、実施形態に係る面状照明装置1において、導光板5は、第1導光部5aと第2導光部5bとを有し、第1導光部5aと第2導光部5bとで第1領域5f1と第2領域5f2とが延びる方向が互いに異なる。これにより、異なる2箇所(例えば、運転席側および助手席側)にそれぞれ高い配向性で光を照射させることができる。
In the planar lighting device 1 according to the embodiment, the light guide plate 5 includes a first light guide 5a and a second light guide 5b, and the first light guide 5a and the second light guide 5b. Thus, the extending directions of the first region 5f1 and the second region 5f2 are different from each other. Thereby, two different places (for example, the driver's seat side and the passenger seat side) can each be irradiated with light with high orientation.
また、上記実施の形態により本発明が限定されるものではない。上述した各構成素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
Further, the present invention is not limited by the above embodiment. What comprised suitably combining each component mentioned above is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
1 面状照明装置、2 ハウジングフレーム、3A,3B 線状光源、4,4A 視野制御フィルム、5 導光板、5a 第1導光部、5b 第2導光部、5c 側面、5d 出射面、5e 裏面、5f プリズム、5f1 第1領域、5f2 第2領域、10 FPC、11 LED(光源)、12 ライトバー、13 プリズムシート
1 Surface illumination device, 2 housing frame, 3A, 3B linear light source, 4, 4A visual field control film, 5 light guide plate, 5a first light guide, 5b second light guide, 5c side, 5d exit surface, 5e Back surface, 5f prism, 5f1, first area, 5f2, second area, 10 FPC, 11 LED (light source), 12 light bar, 13 prism sheet
Claims (8)
- 所定の方向に光を出射する光源と、
側面と、一方の主面である出射面と、他方の主面である裏面とを有し、前記裏面にプリズムが形成され、前記光源から前記側面に入射される光を前記出射面から出射する導光板と、
を備え、
前記プリズムは、
前記所定の方向と平行に切断した場合に、前記出射面と略平行である第1領域と、前記出射面に対して傾斜する第2領域とを有し、前記第1領域と前記第2領域とが前記所定の方向に対して斜め方向に延びる、
面状照明装置。 A light source that emits light in a predetermined direction;
It has a side surface, an exit surface that is one main surface, and a back surface that is the other main surface. A prism is formed on the back surface, and light incident on the side surface from the light source is emitted from the exit surface. A light guide plate;
With
The prism is
A first region that is substantially parallel to the emission surface and a second region that is inclined with respect to the emission surface when cut in parallel to the predetermined direction; the first region and the second region; Extending in an oblique direction with respect to the predetermined direction,
Planar lighting device. - 前記出射面から出射される光は、半値全幅で40°以下の範囲に出射される、
請求項1に記載の面状照明装置。 The light emitted from the emission surface is emitted in a range of 40 ° or less at full width at half maximum.
The planar illumination device according to claim 1. - 前記光源と前記導光板の前記側面との間に、配光角度を制限可能に構成される視野制御フィルムをさらに備える、
請求項1または2に記載の面状照明装置。 Further comprising a visual field control film configured to limit a light distribution angle between the light source and the side surface of the light guide plate.
The planar illumination device according to claim 1 or 2. - 前記視野制御フィルムは、
前記出射面と平行な面で切断した場合に、前記配光角度を±60°以下の範囲で制限する、
請求項3に記載の面状照明装置。 The visual field control film is
When cut by a plane parallel to the exit surface, the light distribution angle is limited within a range of ± 60 ° or less.
The planar illumination device according to claim 3. - 前記視野制御フィルムは、
長手方向と垂直な面で切断した場合に、前記配光角度を±60°以下の範囲で制限する、
請求項3または4に記載の面状照明装置。 The visual field control film is
When cut along a plane perpendicular to the longitudinal direction, the light distribution angle is limited within a range of ± 60 ° or less.
The planar illumination device according to claim 3 or 4. - 前記光源は、
前記側面に沿って延びる線状光源である、
請求項1~5のいずれか一つに記載の面状照明装置。 The light source is
A linear light source extending along the side surface;
The planar illumination device according to any one of claims 1 to 5. - 2つの前記線状光源が前記側面に沿って配置される、
請求項6に記載の面状照明装置。 The two linear light sources are arranged along the side surface;
The planar illumination device according to claim 6. - 前記導光板は、
第1導光部と第2導光部とを有し、前記第1導光部と前記第2導光部とで前記第1領域と前記第2領域とが延びる方向が互いに異なる、
請求項1~7のいずれか一つに記載の面状照明装置。 The light guide plate is
A first light guide portion and a second light guide portion, wherein the first light guide portion and the second light guide portion have different directions in which the first region and the second region extend;
The planar illumination device according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/605,037 US20210103086A1 (en) | 2017-04-21 | 2018-03-13 | Planar illumination device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-084521 | 2017-04-21 | ||
JP2017084521 | 2017-04-21 | ||
JP2017140760A JP2018181822A (en) | 2017-04-21 | 2017-07-20 | Planar illumination device |
JP2017-140760 | 2017-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193755A1 true WO2018193755A1 (en) | 2018-10-25 |
Family
ID=63856694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009794 WO2018193755A1 (en) | 2017-04-21 | 2018-03-13 | Planar illumination device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018193755A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02106610U (en) * | 1989-02-09 | 1990-08-24 | ||
JP2002197915A (en) * | 2000-12-22 | 2002-07-12 | Nec Corp | Front light, liquid crystal display device, and electronic equipment |
JP2003185847A (en) * | 2001-12-19 | 2003-07-03 | Konica Corp | Light transmission body working as linear light source and planar light emitting device |
JP2006278251A (en) * | 2005-03-30 | 2006-10-12 | Nippon Leiz Co Ltd | Light guide plate and surface illumination device |
JP2009540503A (en) * | 2006-06-05 | 2009-11-19 | ピクストロニクス,インコーポレイテッド | Display device having optical cavity |
WO2013035788A1 (en) * | 2011-09-09 | 2013-03-14 | コニカミノルタアドバンストレイヤー株式会社 | Illumination device and illumination stand |
JP2013120360A (en) * | 2011-12-08 | 2013-06-17 | Sharp Corp | Display device |
-
2018
- 2018-03-13 WO PCT/JP2018/009794 patent/WO2018193755A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02106610U (en) * | 1989-02-09 | 1990-08-24 | ||
JP2002197915A (en) * | 2000-12-22 | 2002-07-12 | Nec Corp | Front light, liquid crystal display device, and electronic equipment |
JP2003185847A (en) * | 2001-12-19 | 2003-07-03 | Konica Corp | Light transmission body working as linear light source and planar light emitting device |
JP2006278251A (en) * | 2005-03-30 | 2006-10-12 | Nippon Leiz Co Ltd | Light guide plate and surface illumination device |
JP2009540503A (en) * | 2006-06-05 | 2009-11-19 | ピクストロニクス,インコーポレイテッド | Display device having optical cavity |
WO2013035788A1 (en) * | 2011-09-09 | 2013-03-14 | コニカミノルタアドバンストレイヤー株式会社 | Illumination device and illumination stand |
JP2013120360A (en) * | 2011-12-08 | 2013-06-17 | Sharp Corp | Display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5664900B2 (en) | Optical unit for vehicles | |
JP7278920B2 (en) | Light guide lens, lens assembly and vehicle lamp | |
US9701240B2 (en) | Vehicle lighting unit having light guiding lens | |
EP2762770A1 (en) | Vehicle lighting unit | |
KR20140135942A (en) | Optic assembly having virtual external common focus | |
EP3228924B1 (en) | Vehicle lamp | |
US7592561B2 (en) | Illuminated switch | |
JP2018198127A (en) | Vehicle lighting | |
CN207661691U (en) | headlights | |
JP6887257B2 (en) | Vehicle lighting | |
US9862306B2 (en) | Vehicle decorative lighting device and vehicle lamp | |
WO2018193755A1 (en) | Planar illumination device | |
JP7418492B2 (en) | Vehicle lights | |
JP7629800B2 (en) | Vehicle lighting fixtures | |
JP2018181822A (en) | Planar illumination device | |
JP2023000113A (en) | Vehicular lighting tool | |
JP7265437B2 (en) | vehicle lamp | |
US10941918B1 (en) | Vehicle lamp assembly | |
TW202307366A (en) | Vehicle signal light structure and daytime running light | |
JP6875968B2 (en) | Planar lighting device | |
JP7139147B2 (en) | vehicle lamp | |
JP2019207790A (en) | Planar lighting device | |
JP6725385B2 (en) | Area lighting device | |
JP2021174570A (en) | Vehicle lighting | |
JP2025009056A (en) | Vehicle lighting fixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18788297 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18788297 Country of ref document: EP Kind code of ref document: A1 |