WO2018193526A1 - Blood vessel identification apparatus and observation system - Google Patents
Blood vessel identification apparatus and observation system Download PDFInfo
- Publication number
- WO2018193526A1 WO2018193526A1 PCT/JP2017/015616 JP2017015616W WO2018193526A1 WO 2018193526 A1 WO2018193526 A1 WO 2018193526A1 JP 2017015616 W JP2017015616 W JP 2017015616W WO 2018193526 A1 WO2018193526 A1 WO 2018193526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- spectrum
- doppler spectrum
- unit
- surface layer
- Prior art date
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 283
- 238000001228 spectrum Methods 0.000 claims abstract description 214
- 239000002344 surface layer Substances 0.000 claims abstract description 91
- 239000003550 marker Substances 0.000 claims description 11
- 230000001131 transforming effect Effects 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 19
- 238000001514 detection method Methods 0.000 description 14
- 230000017531 blood circulation Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/117—Identification of persons
- A61B5/1171—Identification of persons based on the shapes or appearances of their bodies or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
Definitions
- the present invention relates to a blood vessel recognition device and an observation system.
- Patent Document 1 An apparatus having a function of optically detecting a blood vessel existing in a tissue by a laser Doppler method is known (for example, see Patent Document 1).
- the light scattered by the blood in the blood vessel undergoes a frequency shift according to the blood flow speed, and the average frequency of the Doppler spectrum of the scattered light has a correlation with the blood flow speed.
- the speed of blood flow is approximately proportional to the thickness of the blood vessel.
- the thickness of a blood vessel is estimated based on the average frequency of the Doppler spectrum of scattered light.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a blood vessel recognition device and an observation system that can recognize a thick blood vessel in a deep part from a blood vessel having a thin surface layer.
- a first aspect of the present invention is a blood vessel recognition device for recognizing a thick blood vessel existing in a deep part of a tissue in a living body, and a laser light irradiation unit that irradiates the tissue with laser light that can reach the deep part;
- a spectrum acquisition unit that acquires a time waveform of the intensity of scattered light generated in the tissue by irradiation with the laser light, and obtains a real-time Doppler spectrum by Fourier transforming the acquired time waveform
- the storage unit that stores the Doppler spectrum of the thin blood vessel on the surface layer of the tissue having a small diameter, and the real spectrum acquired by the spectrum acquisition unit using the Doppler spectrum of the thin blood vessel on the surface layer stored in the storage unit.
- An analysis unit that separates the Doppler spectrum of the thin blood vessel in the surface layer included in the temporal Doppler spectrum, and the analysis unit Tsu based on puller spectrum separated the real time Doppler spectrum is a vascular recognition device and a determining vascular determining unit whether said thick blood vessel in the deep is present.
- the real-time Doppler spectrum based on the scattered light generated by the laser light irradiation is converted into the spectrum acquisition unit. Obtained by.
- Real-time Doppler spectra can include superficial thin blood vessel Doppler spectra and deep thick blood vessel Doppler spectra.
- the Doppler spectrum of the thin blood vessel on the surface layer is separated from the real-time Doppler spectrum by the analysis unit using the Doppler spectrum of the thin blood vessel on the surface layer stored in the storage unit.
- the blood vessel determination unit can determine the presence or absence of a deep thick blood vessel based on the real-time Doppler spectrum after the surface thin blood vessel Doppler spectrum has been separated. And can be recognized separately.
- the storage unit stores a first base spectrum, which is a Doppler spectrum of a thin blood vessel in the surface layer, and a second base spectrum, which is a Doppler spectrum of a deep blood vessel, and performs the analysis.
- a first base spectrum which is a Doppler spectrum of a thin blood vessel in the surface layer
- a second base spectrum which is a Doppler spectrum of a deep blood vessel
- the real-time Doppler spectrum acquired by the spectrum acquisition unit is expressed as a linear sum of the first base spectrum and the second base spectrum. Then, using the combination of the coefficient values of the first and second basis spectra when the difference between the real-time Doppler spectrum and the linear sum is minimized, the Doppler spectrum of the thin blood vessels in the surface layer included in the real-time Doppler spectrum and Deep Doppler spectra of thick blood vessels can be separated from each other.
- the coefficient of the second basis spectrum represents the magnitude of the contribution of the deep thick blood vessel in the real-time Doppler spectrum, the presence or absence of the deep thick blood vessel is determined based on the value of the coefficient of the second base spectrum. Can be determined.
- the laser beam irradiation unit sequentially irradiates the tissue with the first laser beam that reaches only the surface layer and the second laser beam that reaches the deep portion, and acquires the spectrum. Sequentially obtains a first real-time Doppler spectrum based on the scattered light caused by the irradiation with the first laser light and a second real-time Doppler spectrum based on the scattered light caused by the irradiation with the second laser light.
- the storage unit stores the first real-time Doppler spectrum as the Doppler spectrum of the thin blood vessel on the surface layer, and the analysis unit converts the first real-time Doppler spectrum into the second real-time Doppler spectrum.
- the second real-time Doppler spectrum acquired by irradiating the tissue with the second laser light reaching the deep part may include a Doppler spectrum of a thin blood vessel in the surface layer and a thick blood vessel in the deep part.
- the Doppler spectrum of a thin blood vessel in the second real-time Doppler spectrum can be estimated using the first real-time Doppler spectrum obtained by irradiating the tissue with the first laser light that reaches only the surface layer. Therefore, by subtracting the estimated thin blood vessel Doppler spectrum from the second real-time Doppler spectrum, the deep blood vessel Doppler spectrum can be extracted, and the presence or absence of the deep thick blood vessel can be determined.
- the laser beam irradiation unit may irradiate the first laser beam having low intensity and the second laser beam having higher intensity than the first laser beam. .
- the laser beam irradiation unit may irradiate the first laser beam having a short wavelength and the second laser beam having a longer wavelength than the first laser beam. In this way, the depth of arrival of the laser light in the tissue can be varied only by varying the intensity or wavelength of the first laser light and the second laser light.
- a visible light irradiating unit that irradiates visible light to an irradiation position of the laser light on the tissue
- the visible light irradiating unit includes the thick blood vessel in the deep portion by the blood vessel determining unit.
- the tissue may be irradiated with the visible light only when it is determined to exist. In this way, only when a thick blood vessel exists in the laser light irradiation region, the irradiation region is also irradiated with visible light. Therefore, the user can recognize the irradiation region of visible light as a region where a thick blood vessel exists.
- the blood vessel recognition device according to any one of the above, an observation device for observing the tissue in the living body, and a display device for displaying an image of the tissue acquired by the observation device. Is an observation system.
- the first laser spot position is calculated in the first frame obtained by the observation device when the deep blood vessel is recognized by the blood vessel recognition device, and the first laser spot position is calculated.
- Calculation for adding a marker corresponding to the first laser spot position to a position on the second frame corresponding to the first frame with respect to the second frame acquired at a time different from the frame The display device may display a plurality of the markers that are recognized by a blood vessel at a plurality of different times and added by the calculation unit with respect to the image acquired by the observation device. By doing in this way, an image in which a marker is added to the position where the deep blood vessel is recognized by the blood vessel recognition device is displayed on the display device, so the surgeon uses the position of the thick blood vessel as the marker in the image. Can be easily recognized.
- FIG. 1 is an overall configuration diagram of a blood vessel recognition device according to a first embodiment of the present invention. It is a schematic diagram explaining the structure of a structure
- FIG. 2 is a diagram for explaining a correspondence relationship between an analysis result by an analysis unit and a determination by a blood vessel determination unit in the blood vessel recognition device of FIG. 1. It is a flowchart explaining operation
- 8 is a diagram for explaining a correspondence relationship between an analysis result by an analysis unit and a determination by a blood vessel determination unit in the blood vessel recognition device in FIG. It is a flowchart explaining operation
- the blood vessel recognition device 100 can be inserted into a living body, emits laser light L toward the tissue A in the living body, and receives scattered light S from the tissue A.
- a light source unit 2 that supplies laser light L and visible light V to the probe 1
- a light detection unit (spectrum acquisition unit) 3 that detects scattered light S received by the probe 1
- a control device 4 for controlling the light source unit 2 while analyzing the data of the scattered light S detected by.
- the probe 1 includes an elongated probe body 5, an irradiation optical fiber (laser light irradiation unit, visible light irradiation unit) 6 and a light receiving optical fiber (spectrum acquisition unit) 7 provided in the probe body 5 along the longitudinal direction. It has.
- the probe 1 may be a treatment device that treats the tissue A, such as a high-frequency knife. In this case, an action portion (not shown) for treating the tissue A is provided at the tip of the probe body 5.
- the distal end of the irradiation optical fiber 6 is disposed near the distal end of the probe body 5, and the proximal end of the irradiation optical fiber 6 is connected to the light source unit 2.
- Laser light L and visible light V supplied from the light source unit 2 to the proximal end of the irradiation optical fiber 6 are emitted from the distal end of the irradiation optical fiber 6 to the front in the longitudinal direction of the probe body 5.
- the distal end of the light receiving optical fiber 7 is disposed in the vicinity of the distal end of the probe body 5, and the proximal end of the light receiving optical fiber 7 is connected to the light detection unit 3.
- the scattered light S of the laser light L scattered by the tissue A is received by the light receiving optical fiber 7 and guided to the light detection unit 3.
- the light source unit 2 includes a laser light source 8 that outputs laser light L, a visible light source 9 that outputs visible light V having a visible wavelength, and an irradiation optical fiber 6 that combines the laser light L and the visible light V. And an optical multiplexer (not shown) to be incident.
- the laser light source 8 outputs laser light L in a wavelength region (for example, near infrared region) that is less absorbed by blood. Further, as shown in FIG. 2, the laser light source 8 outputs high-intensity laser light L that propagates from the surface of the tissue A through the surface layer B and reaches the deep part C.
- the surface layer B is a region from the surface of the tissue A to a depth of about several tens of ⁇ m to several hundreds of ⁇ m
- the deep portion C is a region deeper than several hundred ⁇ m from the surface of the tissue A.
- the scattered light S received by the light receiving optical fiber 7 can include scattered light S from the thin blood vessel D1 in the surface layer B and scattered light S from the thick blood vessel D2 in the deep part C.
- the wavelength of the laser beam L can be selected from various wavelengths according to the scene to be used, the performance of the measuring device, and the like.
- the laser light L having a wavelength shorter than 680 nm can be suitably used.
- laser light L having a wavelength longer than 600 nm can be suitably used.
- both the surface layer B and the deep part C can be observed in the wavelength range where the wavelength ranges are common (overlapping).
- the wavelength of the laser light L is not limited to the above.
- the visible light source 9 is preferably a laser light source 8.
- the color of the visible light V is preferably a color that allows the operator to easily visually recognize the visible light V irradiated to the tissue A, for example, green or blue.
- the light detection unit 3 includes a photodetector such as a photodiode or a photomultiplier tube.
- the light detection unit 3 receives the scattered light S guided by the light receiving optical fiber 7 and converts the intensity of the received scattered light S into a digital value.
- the obtained digital value is transmitted to the storage unit 10 (described later) in the control device 4.
- the control device 4 includes a storage unit (spectrum acquisition unit) 10 that accumulates data on the intensity of the scattered light S detected by the light detection unit 3, an analysis unit 11 that analyzes data accumulated in the storage unit 10, and an analysis A blood vessel determination unit 12 that determines the presence or absence of a blood vessel based on an analysis result by the unit 11 and a control unit 13 that controls the laser light source 8 and the visible light source 9 are provided.
- a storage unit spectrum acquisition unit
- analysis unit 11 that analyzes data accumulated in the storage unit 10
- a blood vessel determination unit 12 that determines the presence or absence of a blood vessel based on an analysis result by the unit 11
- a control unit 13 that controls the laser light source 8 and the visible light source 9 are provided.
- the control device 4 is, for example, a computer, and includes a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device.
- the auxiliary storage device is a non-temporary storage medium such as a hard disk drive, and stores a program for causing the CPU to execute processing to be described later of the analysis unit 11, the blood vessel determination unit 12, and the control unit 13.
- the program is loaded from the auxiliary storage device to the main storage device, and the CPU executes the processing according to the program, whereby the processing of each unit 11, 12, 13 is realized.
- the processing of the units 11, 12, and 13 may be an FPGA (programmable logic device) or may be realized by dedicated hardware such as an ASIC (application-specific integrated circuit).
- the storage unit 10 includes, for example, a main storage device or other storage.
- the storage unit 10 generates time waveform data of the intensity of the scattered light S by storing the digital values received from the light detection unit 3 in time series.
- the analysis unit 11 reads the time waveform data from the storage unit 10 and performs fast Fourier transform on the time waveform data to obtain a real time Doppler spectrum Freal ( ⁇ ).
- ⁇ real time Doppler spectrum Freal
- the scattered light S scattered by a static component that is stationary like fat or bleeding and the scattered light scattered by blood flowing in the blood vessel S is simultaneously received by the light receiving optical fiber 7.
- the scattered light S due to the static component has a frequency f equal to the frequency of the laser light L, but the scattered light S due to blood is shifted from the frequency f of the laser light L according to the blood flow speed by Doppler shift. It has a frequency f + ⁇ f shifted by an amount ⁇ f. Therefore, a beat having a period corresponding to the shift amount ⁇ f appears in the time waveform data generated in the storage unit 10.
- is expressed as ⁇ .
- the speed of blood flow in a blood vessel is approximately proportional to the thickness of the blood vessel. Therefore, at a position where only the thin blood vessel D1 exists (see position P1 in FIG. 3), as shown in FIG. 4A, a Doppler spectrum Freal ( ⁇ ) having intensity only in the low frequency region is obtained. At the position where only the thick blood vessel D2 exists (see the position P2 in FIG. 3), as indicated by the solid line in FIG. 4B, the Doppler spectrum Freal ( ⁇ ), A Doppler spectrum Freal ( ⁇ ) having a higher average frequency is obtained. At a position where both the thin blood vessel D1 and the thick blood vessel D2 exist (see position P3 in FIG.
- the average frequency of the Doppler spectrum between the thin blood vessel D1 and the thick blood vessel D2 existing at the same depth as described above, the thin blood vessel D1 in the surface layer B and the thick blood vessel D2 in the deep portion C are produced. And the average frequencies of the Doppler spectra approximate each other. That is, the laser light L and the scattered light S are attenuated by scattering by the tissue A while propagating between the surface of the tissue A and the blood vessel of the deep part C, and the intensity of the scattered light S detected by the light detection unit 3. Decreases. As a result, as shown by a broken line in FIG.
- the average frequency of the Doppler spectrum of the thick blood vessel D2 shifts to the low frequency side, and the difference from the average frequency of the Doppler spectrum of the thin blood vessel D1 becomes small. Therefore, it is difficult to distinguish the thin blood vessel D1 in the surface layer B and the thick blood vessel D2 in the deep part C based on the difference in average frequency.
- the storage unit 10 is a first base spectrum Fs ( ⁇ ), which is a Doppler spectrum of the thin blood vessel D1 in the surface layer B, and a Doppler spectrum of the thick blood vessel D2 in the deep part C for analysis of the real-time Doppler spectrum Freal ( ⁇ ).
- the second basis spectrum Fd ( ⁇ ) is stored in advance.
- the first base spectrum Fs ( ⁇ ) selectively irradiates the thin blood vessel D1 with the low-intensity laser light L reaching only the surface layer B to the thin blood vessel D1 and selectively uses the scattered light S from the thin blood vessel D1. It is obtained by receiving and detecting light.
- the second base spectrum Fd ( ⁇ ) selectively irradiates the thick blood vessel D2 of the deep portion C with the high-intensity laser light L reaching the deep portion C, and selectively receives and detects the scattered light S from the thick blood vessel D2. To get it.
- the analysis unit 11 reads the first base spectrum Fs ( ⁇ ) and the second base spectrum Fd ( ⁇ ) from the storage unit 10, and the first base spectrum Fs ( ⁇ ) and the second base spectrum Fd ( A combination of coefficients ⁇ and ⁇ (0 ⁇ ⁇ , 0 ⁇ ⁇ ) that minimizes the difference ⁇ obtained by subtracting the linear sum of ⁇ ) from the real-time Doppler spectrum F ( ⁇ ) is calculated.
- the linear sum is the sum of the product of the first base spectrum Fs ( ⁇ ) and the coefficient ⁇ and the product of the second base spectrum Fd ( ⁇ ) and the coefficient ⁇ .
- ⁇ Freal ( ⁇ ) ⁇ ( ⁇ ⁇ Fs ( ⁇ ) + ⁇ ⁇ Fd ( ⁇ ))
- the calculated values of the coefficients ⁇ and ⁇ represent the magnitudes of contribution of the Doppler spectrum of the thin blood vessel D1 in the surface layer B and the Doppler spectrum of the thick blood vessel D2 in the deep part C in the real-time Doppler spectrum Freal ( ⁇ ), respectively. .
- the analysis unit 11 transmits the calculated combination of the coefficients ⁇ and ⁇ to the blood vessel determination unit 12.
- FIG. 5 shows a correspondence relationship between the combinations of the values of the coefficients ⁇ and ⁇ and the determination result by the blood vessel determination unit 12.
- the blood vessel determination unit 12 compares the values of the coefficients ⁇ and ⁇ with a predetermined threshold Th.
- the predetermined threshold Th is a value larger than 0 and in the vicinity of 0.
- blood vessel determination unit 12 determines that only deep blood vessel D2 exists within the irradiation range of laser light L, and the TRUE signal is transmitted to control unit 13. Output to.
- the blood vessel determination unit 12 sends the FALSE signal to the control unit 13. Output.
- the control unit 13 outputs the visible light V from the visible light source 9 when receiving the TRUE signal from the blood vessel determining unit 12, and outputs the visible light V from the visible light source 9 when receiving the FALSE signal from the blood vessel determining unit 12. Stop. Thereby, visible light is irradiated only to the position where only the thick blood vessel D2 in the deep part C is detected.
- the blood vessel recognition device 100 is used together with an endoscope that observes the inside of a living body.
- the endoscope and the probe 1 of the blood vessel recognition device 100 are inserted into the body.
- the output of the laser light L from the laser light source 8 is started (step SA1), and the light is emitted from the irradiation optical fiber 6 while observing the surface of the tissue A with an endoscope.
- the probe 1 is moved so that the laser beam L is scanned on the surface of the tissue A.
- the probe 1 shows a state in which the tip of the probe 1 is arranged at a position separated from the tissue A and the blood vessels D1 and D2 are detected without contact with the tissue A.
- the laser light L is used in a state where it reaches the deep part C, the separation distance of the tip of the probe 1 from the surface of the tissue A can be arbitrarily changed. That is, the probe 1 may be used in a state where the tip is in contact with the surface of the tissue A.
- the scattered light S generated in the irradiation region of the laser light L is received by the light receiving optical fiber 7 and detected by the light detection unit 3. And the time waveform data of the intensity
- the first and second basis spectra Fs ( ⁇ ) and Fd ( ⁇ ) are read from the storage unit 10 to the analysis unit 11 (step SA3).
- the analysis unit 11 the real-time Doppler spectrum F ( ⁇ ) and The combination of the values of the coefficients ⁇ and ⁇ when the difference ⁇ from the linear sum of the first and second basis spectra Fs ( ⁇ ) and Fd ( ⁇ ) is minimized is calculated (step SA4).
- the values of the coefficients ⁇ and ⁇ represent the presence or absence of a thin blood vessel D1 in the surface layer B and a thick blood vessel D2 in the deep part C, respectively.
- the blood vessel determination unit 12 determines whether or not only the thick blood vessel D2 having the deep portion C exists in the irradiation region of the laser light L based on the combination of the values of the coefficients ⁇ and ⁇ (step SA5). That is, when the value of the coefficient ⁇ is less than the threshold Th and the coefficient ⁇ is greater than or equal to the threshold Th, it is determined that only the thick blood vessel D2 in the deep part C exists (YES in Step SA5), and the control is performed from the blood vessel determination unit 12. A TRUE signal is transmitted to the unit 13.
- step SA5 it is determined that the thick blood vessel D2 in the deep portion C does not exist or that both the thin blood vessel D1 in the surface layer B and the thick blood vessel D2 in the deep portion C exist (NO in step SA5).
- a FALSE signal is transmitted to the control unit 13.
- the control unit 13 When the TRUE signal is received from the blood vessel determination unit 12, the control unit 13 causes the visible light V to be emitted from the irradiation optical fiber 6 together with the laser light L (step SA6). On the other hand, when receiving the FALSE signal from the blood vessel determination unit 12, the control unit 13 does not emit the visible light V. Therefore, the surgeon can recognize that the irradiation region of the visible light V is a region where only the thick blood vessel D2 having the deep part C exists.
- the thin blood vessel D1 included in the real-time Doppler spectrum Freal ( ⁇ ) is calculated by calculating the coefficients ⁇ and ⁇ in the linear sum of the base spectra Fs ( ⁇ ) and Fd ( ⁇ ). And the Doppler spectrum of the thick blood vessel D2 can be separated, and the presence or absence of the thick blood vessel D2 in the deep part C can be accurately determined based on the coefficient ⁇ . Further, only when a thick blood vessel D2 in the deep part C is detected, the position and travel of the thick blood vessel D2 that are particularly important for the surgeon during the treatment of the tissue A are irradiated with visible light at that position. Can be recognized based on visible light.
- the blood vessel determination unit 12 determines only the presence or absence of the thick blood vessel D2 in the deep part C, but in addition to this, the presence or absence of the thin blood vessel D1 in the surface layer B may also be determined. As described above, since the value of the coefficient ⁇ represents the presence or absence of the thin blood vessel D1 in the surface layer B, the presence or absence of the thin blood vessel D1 in the surface layer B can be determined based on the value of the coefficient ⁇ .
- the blood vessel recognition apparatus 101 differs from the first embodiment in the processing in the analysis unit 111 and the blood vessel determination unit 121. As shown in FIG. 7, the blood vessel recognition device 101 according to the present embodiment analyzes the data of the scattered light S detected by the probe 1, the light source unit 2, the light detection unit 3, and the light detection unit 3. And a control device 41 for controlling the light source unit 2.
- the control device 41 further includes a condition setting unit 14 that sets conditions for the laser light L output from the laser light source 8. .
- the condition setting unit 14 sequentially sets the conditions of the laser light L to a surface layer condition where the laser light L reaches only the surface layer B and a deep condition where the laser light L propagates through the surface layer B and reaches the deep part C.
- the condition setting unit 14 sets the intensity of the laser light L at a low intensity at which the laser light L reaches only the surface layer B in the surface layer condition, and the laser light is higher than the intensity in the surface layer condition in the deep condition.
- the intensity of the laser beam L is set to a high intensity at which L reaches the deep part C.
- the laser light source 8 outputs a low-intensity laser beam (first laser beam) L and a high-intensity laser beam (second laser beam) L in order, and the low-intensity laser beam is output at the same position in the tissue A
- the laser beam L and the high-intensity laser beam L are irradiated in order.
- a real-time Doppler spectrum (first real-time Doppler spectrum) Freal_s ( ⁇ ) based on the scattered light S by the low-intensity laser light L
- a real-time Doppler spectrum first real-time Doppler spectrum based on the scattered light S by the high-intensity laser light L.
- the real-time Doppler spectrum Freal_s ( ⁇ ) in the surface layer condition may include only the Doppler spectrum of the thin blood vessel D1 in the surface layer B, but the real-time Doppler spectrum Freal_d ( ⁇ ) in the deep condition is the thin blood vessel D1 and the deep portion C in the surface layer B. May also include a Doppler spectrum of a thick blood vessel D2.
- Two Doppler spectra Freal_s ( ⁇ ) and Freal_d ( ⁇ ) are stored in the storage unit 10.
- the analysis unit 111 reads the Doppler spectra Freal_s ( ⁇ ) and Freal_d ( ⁇ ) from the storage unit 10 and executes the calculation shown in the following formula to calculate the difference spectrum ⁇ F ( ⁇ ).
- ⁇ F ( ⁇ ) Freal_d ( ⁇ ) ⁇ ⁇ Freal_s ( ⁇ )
- the analysis unit 111 obtains an estimated Doppler spectrum ( ⁇ ⁇ Freal_s ( ⁇ )) by multiplying the intensity of the Doppler spectrum Freal_s ( ⁇ ) of the surface layer condition by a predetermined coefficient ⁇ .
- the estimated Doppler spectrum is a Doppler spectrum of the thin blood vessel D1 in the surface layer B that will be acquired when the tissue A is irradiated with the high-intensity laser light L under deep conditions.
- the coefficient ⁇ is a value experimentally determined in advance based on, for example, the intensity ratio of the Doppler spectrum of the thin blood vessel D1 of the surface layer B acquired under the surface layer condition and the deep region condition, and is stored in the storage unit 10. Yes.
- the analysis unit 111 subtracts the estimated Doppler spectrum from the Doppler spectrum Freal_d ( ⁇ ) acquired under the deep condition to obtain a difference spectrum ⁇ F ( ⁇ ).
- the real-time Doppler spectrum Freal_d ( ⁇ ) includes the Doppler spectrum of the thick blood vessel D2 in the deep portion C
- the Doppler spectrum of the deep blood vessel D2 in the deep portion C is obtained as the difference spectrum ⁇ F ( ⁇ ). .
- the real-time Doppler spectrum Freal_d ( ⁇ ) does not include the Doppler spectrum of the thick blood vessel D2 in the deep part C (that is, only the Doppler spectrum of the thin blood vessel D1 of the surface layer B is included)
- a flat difference spectrum ⁇ F ( ⁇ ) having no intensity over the frequency domain is obtained.
- the analysis unit 111 transmits the difference spectrum ⁇ F ( ⁇ ) that is the analysis result to the blood vessel determination unit 121.
- the blood vessel determination unit 121 determines whether or not a thick blood vessel D2 having a deep portion C exists based on the intensity of the difference spectrum ⁇ F ( ⁇ ). Then, as shown in FIG. 8, when the blood vessel determination unit 121 determines that there is a thick blood vessel D2 in the deep portion C, it transmits a TRUE signal to the control unit 13 and determines that there is no deep blood vessel D2 in the deep portion C. When this occurs, a FALSE signal is transmitted to the control unit 13.
- the laser light source 8 sequentially outputs the low-intensity laser light L under the surface layer condition and the high-intensity laser light L under the deep condition according to the setting by the condition setting unit 14 (step SB1, SB3), the real-time Doppler spectrum Freal_s ( ⁇ ) under the surface layer condition, and the real-time Doppler spectrum Freal_d ( ⁇ ) under the deep condition are acquired in order (steps SB2 and SB4).
- the estimated Doppler spectrum is calculated by multiplying the real-time Doppler spectrum Freal_s ( ⁇ ) obtained in step SB2 by the coefficient ⁇ (step SB5).
- the analysis unit 111 calculates a difference spectrum ⁇ F ( ⁇ ) by subtracting the estimated Doppler spectrum from the real-time Doppler spectrum Freal_d ( ⁇ ) obtained in step SB4 (step SB6).
- the blood vessel determination unit 121 determines whether or not the thick blood vessel D2 having the deep portion C exists in the irradiation region of the laser light L based on the intensity of the difference spectrum ⁇ F ( ⁇ ) (step SB7).
- a TRUE signal is transmitted from the blood vessel determination unit 121 to the control unit 13, and the visible light V is irradiated along with the laser light L (step). SB8).
- the irradiation with the visible light V is not executed. Therefore, the surgeon can recognize that the irradiation region of the visible light V is a region where the thick blood vessel D2 having the deep part C exists.
- the Doppler spectrum of the thin blood vessel D1 in the surface layer B included in the real-time Doppler spectrum Freal_d ( ⁇ ) in the deep condition is obtained using the real-time Doppler spectrum Freal_s ( ⁇ ) in the surface layer condition. It can be estimated with high accuracy. Then, by removing the estimated Doppler spectrum from the Doppler spectrum Freal_d ( ⁇ ), the Doppler spectrum of the thin blood vessel D1 in the surface layer B is separated from the Doppler spectrum Freal_d ( ⁇ ), and the Doppler spectrum of the thick blood vessel D2 in the deep part C is extracted. be able to. Thereby, there exists an advantage that the presence or absence of the thick blood vessel D2 of the deep part C can be determined correctly.
- the position is irradiated with visible light, so that the position and travel of the thick blood vessel D2 that are particularly important for the surgeon during the treatment of the tissue A are detected.
- recognition can be performed based on visible light.
- the intensity is multiplied by a constant coefficient ⁇ over the entire frequency region of the real-time Doppler spectrum Freal_s ( ⁇ ) of the surface layer condition.
- the coefficient ⁇ set for each frequency is used. ( ⁇ ) may be multiplied by the real-time Doppler spectrum Freal_s ( ⁇ ).
- the coefficient ⁇ ( ⁇ ) is calculated for each frequency ⁇ by calculating the intensity ratio of the Doppler spectrum of the thin blood vessel D1 of the surface layer B acquired under the surface condition and the deep condition, and the calculated intensity ratio of each frequency ⁇ . This is experimentally predetermined.
- the estimated Doppler spectrum which estimated more accurately the Doppler spectrum of the blood vessel D1 of the surface layer B in the deep part condition can be obtained, and the determination accuracy of the presence or absence of the blood vessel in the deep part C can be improved.
- the blood vessel determination unit 121 may determine the presence or absence of the thin blood vessel D1 of the surface layer B in addition to the presence or absence of the thick blood vessel D2 of the deep portion C. For example, the blood vessel determination unit 121 can determine the presence or absence of a thin blood vessel D1 in the surface layer B based on the average frequency of the Doppler spectrum Freal_s ( ⁇ ) of the surface layer condition.
- the blood vessel recognition device 102 according to the present embodiment is a modification of the blood vessel recognition device 101 according to the second embodiment, and differs from the second embodiment in that the wavelength of the laser light is different between the surface layer condition and the deep condition. It is different.
- the blood vessel recognition device 102 according to the present embodiment includes a probe 1, a light source unit 21, a light detection unit 3, and a control device 42.
- the light source unit 21 combines the two laser light sources 81 and 82 that output the laser beams L1 and L2 having different wavelengths, the visible light source 9, the laser beams L1 and L2, and the visible light V, and the irradiation optical fiber 6. And an optical multiplexer (not shown) to be incident.
- the laser light source 81 outputs short-wavelength laser light L1 that reaches only the surface layer B.
- the laser light source 82 outputs a laser beam L2 having a longer wavelength than the wavelength of the laser beam L1 and propagating through the surface layer B and reaching the deep part C.
- the control device 42 further includes a storage unit 10, an analysis unit 111, a blood vessel determination unit 121, a control unit 13, and a condition setting unit 141.
- the condition setting unit 141 sequentially sets the laser light conditions to a surface layer condition where the laser light reaches only the surface layer B and a deep part condition where the laser light propagates through the surface layer B and reaches the deep part C.
- the condition setting unit 141 causes the laser light source 81 to output the short wavelength laser light L1 in the surface layer condition, and causes the laser light source 82 to output the long wavelength laser light L2 in the deep part condition.
- the two laser light sources 81 and 82 sequentially turn the short-wavelength laser light (first laser light) L1 and the long-wavelength laser light (second laser light) L2.
- Steps SB1 ′ and SB3 ′ and the short wavelength laser beam L1 and the long wavelength laser beam L2 are sequentially irradiated to the same position of the tissue A.
- a real-time Doppler spectrum (first real-time Doppler spectrum) Freal_s ( ⁇ ) based on the scattered light S by the short-wavelength laser light L2
- a real-time Doppler spectrum first time based on the scattered light S by the long-wavelength laser light L2.
- the real-time Doppler spectrum Freal_s ( ⁇ ) in the surface layer condition may include only the Doppler spectrum of the thin blood vessel D1 in the surface layer B, but the real-time Doppler spectrum Freal_d ( ⁇ ) in the deep condition is the thin blood vessel D1 and the deep portion C in the surface layer B. May also include a Doppler spectrum of a thick blood vessel D2.
- Two Doppler spectra Freal_s ( ⁇ ) and Freal_d ( ⁇ ) are stored in the storage unit 10.
- an observation system 200 includes any one of the blood vessel recognition devices 100, 101, and 102 according to the first to third embodiments, an endoscope device (observation device) 20, and The blood vessel recognition devices 100, 101, 102, and the endoscope device 20 are provided with a calculation unit 30 and a display device 40 connected to the calculation unit 30.
- FIG. 12 shows a configuration including the blood vessel recognition device 100 according to the first embodiment as an example.
- the endoscope device 20 acquires an in-vivo endoscopic image, and transmits the acquired endoscopic image to the calculation unit 30.
- Reference numeral 21 denotes an illuminating unit that emits illumination light toward the tissue A
- reference numeral 22 denotes an imaging unit that acquires an endoscopic image of the tissue A.
- the arithmetic unit 30 is composed of, for example, a computer, like the control device 4 described above.
- the calculation unit 30 receives irradiation conditions of the laser light L, L1, and L2, on / off information of the visible light source 9, and blood vessels in the surface layer B and the deep part C by the blood vessel determination units 12 and 121 from the control device 4, 41, or 42 of the blood vessel recognition device.
- the determination result information on the presence / absence of D1 and D2 is received.
- the calculation unit 30 is an endoscope acquired by the endoscope device 20 when the blood vessels D1 and D2 are recognized by the blood vessel recognition devices 100, 101, and 102 (when it is determined that the blood vessels D1 and D2 exist).
- the spot positions of the laser beams L, L1, and L2 are calculated in the first frame of the image, and the calculated spot positions of the second frame acquired by the endoscope apparatus 20 at a time different from the first frame.
- a marker is added at a position corresponding to.
- blood vessels are recognized at a plurality of different times by the blood vessel recognition devices 100, 101, and 102, and an endoscopic image to which a plurality of markers E1 and E2 are added is displayed by the arithmetic unit 30 as shown in FIG. It is displayed on the device 40.
- International Publication No. 2016/171274 can be referred to.
- the operator can The distribution and running of the blood vessels D1, D2 can be easily recognized based on the markers E1, E2.
- the calculation unit 30 may add the marker E2 only when the thick blood vessel D2 in the deep part C is recognized, so that only the thick blood vessel D2 in the deep part C is displayed on the display device 40. .
- the calculation unit 30 may give the markers E1 and E2 to the thin blood vessel D1 having the surface layer B and the thick blood vessel D2 having the deep portion C, respectively, and cause the display device 40 to display them.
- the calculation unit 30 may make the aspects of the marker E1 of the blood vessel D1 of the surface layer B and the marker E2 of the blood vessel D1 of the deep portion C different from each other.
- the hues of the markers E1 and E2 may be different or the brightness may be different.
- the markers E1 and E2 may be superimposed on the same endoscopic image, but may be superimposed on different endoscopic images and displayed in parallel on the display device 40 as shown in FIG. . Also, three endoscopic images in which the markers E1 and E2 are superimposed on both the surface layer B and the blood vessel in the deep portion C, only the blood vessel in the surface layer B, and only the blood vessel in the deep portion C may be displayed on the display device 40 in parallel. .
- the calculating part 30 may display the information (for example, information of determination results, such as depth and thickness) regarding the blood vessels to which the markers E1 and E2 are attached in the endoscopic image at corresponding positions.
- the calculation unit 30 may superimpose and display the scanning trajectories F of the laser beams L, L1, and L2 on the surface of the tissue A on the endoscopic image. In this way, when the surgeon performs a surgical treatment on the tissue A, the surgeon can recognize whether or not blood vessel recognition has already been performed in the treatment target region.
- the surgeon may be configured to switch between display and non-display of the scanning trajectory F of the laser beams L, L1, and L2.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
A blood vessel identification apparatus (100) is provided with: a laser beam irradiation unit (6) that irradiates a deep part (C) of a tissue with a laser beam; a spectrum acquisition unit (7, 3, 10) that acquires real-time Doppler spectra based on scattered light from the tissue; a storage unit (10) that stores the Doppler spectrum of a thin blood vessel (D1) that is in the surface layer (B) of the tissue; an analysis unit (11) that separates the Doppler spectrum of the blood vessel (D1) included in the real-time Doppler spectra by using the Doppler spectrum of the blood vessel (D1) stored in the storage unit (10); and a blood vessel determination unit (12) that determines whether there is a thick blood vessel (D2) in the deep part (C) on the basis of the real-time Doppler spectra from which the Doppler spectrum of the blood vessel (D1) has been separated.
Description
本発明は、血管認識装置および観察システムに関するものである。
The present invention relates to a blood vessel recognition device and an observation system.
組織の外科的処置においては、組織の内側に隠れている血管の存在を術者が正確に認識し、血管を避けるように処置することが重要である。そこで、組織中に存在する血管を、レーザドップラー法により光学的に検出する機能を備えた装置が知られている(例えば、特許文献1参照。)。血管内の血液によって散乱された光には血流の速さに応じた周波数シフトが生じ、散乱光のドップラースペクトルの平均周波数は血流の速さと相関を有する。また、血流の速さは血管の太さに略比例する。特許文献1では、散乱光のドップラースペクトルの平均周波数に基づいて、血管の太さを見積もっている。
In the surgical treatment of tissue, it is important that the surgeon accurately recognizes the presence of blood vessels hidden inside the tissue and performs treatment so as to avoid the blood vessels. Therefore, an apparatus having a function of optically detecting a blood vessel existing in a tissue by a laser Doppler method is known (for example, see Patent Document 1). The light scattered by the blood in the blood vessel undergoes a frequency shift according to the blood flow speed, and the average frequency of the Doppler spectrum of the scattered light has a correlation with the blood flow speed. The speed of blood flow is approximately proportional to the thickness of the blood vessel. In Patent Document 1, the thickness of a blood vessel is estimated based on the average frequency of the Doppler spectrum of scattered light.
細い血管と太い血管が互いに同一の深さに存在する場合、細い血管と太い血管とではドップラースペクトルの平均周波数に明らかな差異が生じるため、細い血管と太い血管とを区別して認識することができる。しかしながら、細い血管は、組織の表面を含む表層に多く存在し、太い血管は、表層よりも深い深部に多く存在する。このような表層の細い血管と深部の太い血管とをドップラースペクトルの平均周波数に基づいて区別することは難しい。
When a thin blood vessel and a thick blood vessel are present at the same depth, there is a clear difference in the average frequency of the Doppler spectrum between the thin blood vessel and the thick blood vessel, so that the thin blood vessel and the thick blood vessel can be distinguished and recognized. . However, many thin blood vessels are present in the surface layer including the surface of the tissue, and many thick blood vessels are present in deeper portions than the surface layer. It is difficult to distinguish such a thin blood vessel from the surface layer and a deep blood vessel based on the average frequency of the Doppler spectrum.
すなわち、レーザ光および散乱光は、組織の表面と深部の太い血管との間を伝播する間に散乱等により減衰し、そのためドップラースペクトル全体の強度が低くなる。その結果、深部の太い血管のドップラースペクトルの平均周波数は低周波側にシフトして、表層の細い血管のドップラースペクトルの平均周波数と近くなり、深部の太い血管と表層の細い血管との間で平均周波数の差異が小さくなる。
That is, laser light and scattered light are attenuated by scattering or the like while propagating between the surface of the tissue and a deep blood vessel, so that the intensity of the entire Doppler spectrum is lowered. As a result, the average frequency of the Doppler spectrum of the deep thick blood vessel shifts to the lower frequency side and becomes close to the average frequency of the Doppler spectrum of the thin blood vessel on the surface layer, and the average between the deep blood vessel and the thin blood vessel on the surface layer The frequency difference is reduced.
本発明は、上述した事情に鑑みてなされたものであって、深部の太い血管を表層の細い血管とは区別して認識することができる血管認識装置および観察システムを提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a blood vessel recognition device and an observation system that can recognize a thick blood vessel in a deep part from a blood vessel having a thin surface layer.
上記目的を達成するため、本発明は以下の手段を提供する。
本発明の第1の態様は、生体内の組織の深部に存在する太い血管を認識する血管認識装置であって、前記深部まで到達可能なレーザ光を前記組織に照射するレーザ光照射部と、前記レーザ光の照射によって前記組織で発生する散乱光の強度の時間波形を取得し、取得された時間波形をフーリエ変換して実時間ドップラースペクトルを取得するスペクトル取得部と、前記太い血管に比べて直径が小さい前記組織の表層の細い血管のドップラースペクトルを記憶する記憶部と、該記憶部に記憶されている前記表層の細い血管のドップラースペクトルを用いて、前記スペクトル取得部によって取得された前記実時間ドップラースペクトルに含まれる前記表層の細い血管のドップラースペクトルを分離する解析部と、該解析部によって前記細い血管のドップラースペクトルが分離された前記実時間ドップラースペクトルに基づいて、前記深部に前記太い血管が存在するか否かを判定する血管判定部とを備える血管認識装置である。 In order to achieve the above object, the present invention provides the following means.
A first aspect of the present invention is a blood vessel recognition device for recognizing a thick blood vessel existing in a deep part of a tissue in a living body, and a laser light irradiation unit that irradiates the tissue with laser light that can reach the deep part; Compared to the thick blood vessel, a spectrum acquisition unit that acquires a time waveform of the intensity of scattered light generated in the tissue by irradiation with the laser light, and obtains a real-time Doppler spectrum by Fourier transforming the acquired time waveform The storage unit that stores the Doppler spectrum of the thin blood vessel on the surface layer of the tissue having a small diameter, and the real spectrum acquired by the spectrum acquisition unit using the Doppler spectrum of the thin blood vessel on the surface layer stored in the storage unit. An analysis unit that separates the Doppler spectrum of the thin blood vessel in the surface layer included in the temporal Doppler spectrum, and the analysis unit Tsu based on puller spectrum separated the real time Doppler spectrum is a vascular recognition device and a determining vascular determining unit whether said thick blood vessel in the deep is present.
本発明の第1の態様は、生体内の組織の深部に存在する太い血管を認識する血管認識装置であって、前記深部まで到達可能なレーザ光を前記組織に照射するレーザ光照射部と、前記レーザ光の照射によって前記組織で発生する散乱光の強度の時間波形を取得し、取得された時間波形をフーリエ変換して実時間ドップラースペクトルを取得するスペクトル取得部と、前記太い血管に比べて直径が小さい前記組織の表層の細い血管のドップラースペクトルを記憶する記憶部と、該記憶部に記憶されている前記表層の細い血管のドップラースペクトルを用いて、前記スペクトル取得部によって取得された前記実時間ドップラースペクトルに含まれる前記表層の細い血管のドップラースペクトルを分離する解析部と、該解析部によって前記細い血管のドップラースペクトルが分離された前記実時間ドップラースペクトルに基づいて、前記深部に前記太い血管が存在するか否かを判定する血管判定部とを備える血管認識装置である。 In order to achieve the above object, the present invention provides the following means.
A first aspect of the present invention is a blood vessel recognition device for recognizing a thick blood vessel existing in a deep part of a tissue in a living body, and a laser light irradiation unit that irradiates the tissue with laser light that can reach the deep part; Compared to the thick blood vessel, a spectrum acquisition unit that acquires a time waveform of the intensity of scattered light generated in the tissue by irradiation with the laser light, and obtains a real-time Doppler spectrum by Fourier transforming the acquired time waveform The storage unit that stores the Doppler spectrum of the thin blood vessel on the surface layer of the tissue having a small diameter, and the real spectrum acquired by the spectrum acquisition unit using the Doppler spectrum of the thin blood vessel on the surface layer stored in the storage unit. An analysis unit that separates the Doppler spectrum of the thin blood vessel in the surface layer included in the temporal Doppler spectrum, and the analysis unit Tsu based on puller spectrum separated the real time Doppler spectrum is a vascular recognition device and a determining vascular determining unit whether said thick blood vessel in the deep is present.
本発明の第1の態様によれば、レーザ光照射部から生体内の組織の深部にレーザ光が照射されると、レーザ光の照射によって生じた散乱光に基づく実時間ドップラースペクトルがスペクトル取得部によって取得される。実時間ドップラースペクトルには、表層の細い血管のドップラースペクトルおよび深部の太い血管のドップラースペクトルが含まれ得る。この表層の細い血管のドップラースペクトルは、解析部において、記憶部に記憶された表層の細い血管のドップラースペクトルを用いて、実時間ドップラースペクトルから分離される。
According to the first aspect of the present invention, when the laser light is irradiated from the laser light irradiation unit to the deep part of the tissue in the living body, the real-time Doppler spectrum based on the scattered light generated by the laser light irradiation is converted into the spectrum acquisition unit. Obtained by. Real-time Doppler spectra can include superficial thin blood vessel Doppler spectra and deep thick blood vessel Doppler spectra. The Doppler spectrum of the thin blood vessel on the surface layer is separated from the real-time Doppler spectrum by the analysis unit using the Doppler spectrum of the thin blood vessel on the surface layer stored in the storage unit.
これにより、実時間ドップラースペクトルに深部の太い血管のドップラースペクトルが含まれている場合には、当該深部の太い血管のドップラースペクトルが抽出される。したがって、血管判定部は、表層の細い血管のドップラースペクトルが分離された後の実時間ドップラースペクトルに基づいて、深部の太い血管の有無を判定することができ、深部の太い血管を表層の細い血管とは区別して認識することができる。
Thus, when the real-time Doppler spectrum includes a deep-blood vessel Doppler spectrum, the deep-blood vessel Doppler spectrum is extracted. Accordingly, the blood vessel determination unit can determine the presence or absence of a deep thick blood vessel based on the real-time Doppler spectrum after the surface thin blood vessel Doppler spectrum has been separated. And can be recognized separately.
上記第1の態様においては、前記記憶部が、前記表層の細い血管のドップラースペクトルである第1基底スペクトルと、前記深部の太い血管のドップラースペクトルである第2基底スペクトルとを記憶し、前記解析部が、前記実時間ドップラースペクトルと、前記第1基底スペクトルおよび前記第2基底スペクトルの線形和との差分が最小になるときの、前記線形和における前記第2基底スペクトルの係数を算出し、前記血管判定部が、前記解析部によって算出された前記第2基底スペクトルの係数に基づいて、前記深部に前記太い血管が存在するか否かを判定してもよい。
In the first aspect, the storage unit stores a first base spectrum, which is a Doppler spectrum of a thin blood vessel in the surface layer, and a second base spectrum, which is a Doppler spectrum of a deep blood vessel, and performs the analysis. Calculating a coefficient of the second base spectrum in the linear sum when the difference between the real-time Doppler spectrum and the linear sum of the first base spectrum and the second base spectrum is minimized, The blood vessel determination unit may determine whether or not the thick blood vessel exists in the deep portion based on the coefficient of the second base spectrum calculated by the analysis unit.
スペクトル取得部によって取得される実時間ドップラースペクトルは、第1基底スペクトルと第2基底スペクトルとの線形和として表される。そして、実時間ドップラースペクトルと線形和との差分が最小になるときの第1および第2基底スペクトルの係数の値の組み合わせを用いて、実時間ドップラースペクトルに含まれる表層の細い血管のドップラースペクトルと深部の太い血管のドップラースペクトルとを互いに分離することができる。ここで、第2基底スペクトルの係数は、実時間ドップラースペクトルにおける深部の太い血管のドップラースペクトルの寄与の大きさを表すので、第2基底スペクトルの係数の値に基づいて、深部の太い血管の有無を判定することができる。
The real-time Doppler spectrum acquired by the spectrum acquisition unit is expressed as a linear sum of the first base spectrum and the second base spectrum. Then, using the combination of the coefficient values of the first and second basis spectra when the difference between the real-time Doppler spectrum and the linear sum is minimized, the Doppler spectrum of the thin blood vessels in the surface layer included in the real-time Doppler spectrum and Deep Doppler spectra of thick blood vessels can be separated from each other. Here, since the coefficient of the second basis spectrum represents the magnitude of the contribution of the deep thick blood vessel in the real-time Doppler spectrum, the presence or absence of the deep thick blood vessel is determined based on the value of the coefficient of the second base spectrum. Can be determined.
上記第1の態様においては、前記レーザ光照射部が、前記表層のみに到達する第1のレーザ光と前記深部まで到達する第2のレーザ光とを順番に前記組織に照射し、前記スペクトル取得部が、前記第1のレーザ光の照射による前記散乱光に基づく第1実時間ドップラースペクトルと、前記第2のレーザ光の照射による前記散乱光に基づく第2実時間ドップラースペクトルとを順番に取得し、前記記憶部が、前記第1実時間ドップラースペクトルを前記表層の細い血管のドップラースペクトルとして記憶し、前記解析部が、前記第1実時間ドップラースペクトルに基づいて前記第2実時間ドップラースペクトルに含まれる前記表層の細い血管のドップラースペクトルを推定し、推定された前記表層の細い血管のドップラースペクトルを前記第2実時間ドップラースペクトルから減算して差分スペクトルを算出し、前記血管判定部が、算出された前記差分スペクトルに基づいて、前記深部に前記太い血管が存在するか否かを判定してもよい。
In the first aspect, the laser beam irradiation unit sequentially irradiates the tissue with the first laser beam that reaches only the surface layer and the second laser beam that reaches the deep portion, and acquires the spectrum. Sequentially obtains a first real-time Doppler spectrum based on the scattered light caused by the irradiation with the first laser light and a second real-time Doppler spectrum based on the scattered light caused by the irradiation with the second laser light. The storage unit stores the first real-time Doppler spectrum as the Doppler spectrum of the thin blood vessel on the surface layer, and the analysis unit converts the first real-time Doppler spectrum into the second real-time Doppler spectrum. Estimating the Doppler spectrum of the thin blood vessels contained in the surface layer, and calculating the estimated Doppler spectrum of the thin blood vessels in the surface layer. Calculating a difference spectrum by subtracting the real-time Doppler spectrum, the blood vessel determining unit, based on the calculated difference spectrum, it may be determined whether the thick blood vessel in the deep is present.
深部まで到達する第2のレーザ光を組織に照射して取得された第2実時間ドップラースペクトルには、表層の細い血管および深部の太い血管のドップラースペクトルが含まれ得る。この第2実時間ドップラースペクトル内の細い血管のドップラースペクトルは、表層にのみ到達する第1のレーザ光を組織に照射して取得された第1実時間ドップラースペクトルを用いて推定することができる。したがって、推定された細い血管のドップラースペクトルを第2実時間ドップラースペクトルから減算することで、深部の太い血管のドップラースペクトルを抽出することができ、深部の太い血管の有無を判定することができる。
The second real-time Doppler spectrum acquired by irradiating the tissue with the second laser light reaching the deep part may include a Doppler spectrum of a thin blood vessel in the surface layer and a thick blood vessel in the deep part. The Doppler spectrum of a thin blood vessel in the second real-time Doppler spectrum can be estimated using the first real-time Doppler spectrum obtained by irradiating the tissue with the first laser light that reaches only the surface layer. Therefore, by subtracting the estimated thin blood vessel Doppler spectrum from the second real-time Doppler spectrum, the deep blood vessel Doppler spectrum can be extracted, and the presence or absence of the deep thick blood vessel can be determined.
上記第1の態様においては、前記レーザ光照射部が、低強度の前記第1のレーザ光と、該第1のレーザ光に比べて高強度の前記第2のレーザ光を照射してもよい。あるいは、前記レーザ光照射部が、短波長の前記第1のレーザ光と、該第1のレーザ光に比べて長波長の前記第2のレーザ光を照射してもよい。
このように、第1のレーザ光および第2のレーザ光の強度または波長を異ならせるだけで、レーザ光の組織内の到達深度を異ならせることができる。 In the first aspect, the laser beam irradiation unit may irradiate the first laser beam having low intensity and the second laser beam having higher intensity than the first laser beam. . Alternatively, the laser beam irradiation unit may irradiate the first laser beam having a short wavelength and the second laser beam having a longer wavelength than the first laser beam.
In this way, the depth of arrival of the laser light in the tissue can be varied only by varying the intensity or wavelength of the first laser light and the second laser light.
このように、第1のレーザ光および第2のレーザ光の強度または波長を異ならせるだけで、レーザ光の組織内の到達深度を異ならせることができる。 In the first aspect, the laser beam irradiation unit may irradiate the first laser beam having low intensity and the second laser beam having higher intensity than the first laser beam. . Alternatively, the laser beam irradiation unit may irradiate the first laser beam having a short wavelength and the second laser beam having a longer wavelength than the first laser beam.
In this way, the depth of arrival of the laser light in the tissue can be varied only by varying the intensity or wavelength of the first laser light and the second laser light.
上記第1の態様においては、前記レーザ光の前記組織への照射位置に可視光を照射する可視光照射部を備え、該可視光照射部は、前記血管判定部によって前記深部に前記太い血管が存在すると判定されたときにのみ、前記組織へ前記可視光を照射してもよい。
このようにすることで、レーザ光の照射領域に太い血管が存在するときにのみ、当該照射領域に可視光も照射される。したがって、ユーザは、可視光の照射領域を太い血管が存在する領域であると認識することができる。 In the first aspect, a visible light irradiating unit that irradiates visible light to an irradiation position of the laser light on the tissue is provided, and the visible light irradiating unit includes the thick blood vessel in the deep portion by the blood vessel determining unit. The tissue may be irradiated with the visible light only when it is determined to exist.
In this way, only when a thick blood vessel exists in the laser light irradiation region, the irradiation region is also irradiated with visible light. Therefore, the user can recognize the irradiation region of visible light as a region where a thick blood vessel exists.
このようにすることで、レーザ光の照射領域に太い血管が存在するときにのみ、当該照射領域に可視光も照射される。したがって、ユーザは、可視光の照射領域を太い血管が存在する領域であると認識することができる。 In the first aspect, a visible light irradiating unit that irradiates visible light to an irradiation position of the laser light on the tissue is provided, and the visible light irradiating unit includes the thick blood vessel in the deep portion by the blood vessel determining unit. The tissue may be irradiated with the visible light only when it is determined to exist.
In this way, only when a thick blood vessel exists in the laser light irradiation region, the irradiation region is also irradiated with visible light. Therefore, the user can recognize the irradiation region of visible light as a region where a thick blood vessel exists.
本発明の第2の態様は、上記いずれかに記載の血管認識装置と、前記生体内の前記組織を観察する観察装置と、該観察装置によって取得された前記組織の画像を表示する表示装置とを備える観察システムである。
According to a second aspect of the present invention, there is provided the blood vessel recognition device according to any one of the above, an observation device for observing the tissue in the living body, and a display device for displaying an image of the tissue acquired by the observation device. Is an observation system.
上記第2の態様においては、前記血管認識装置によって前記深部の太い血管が認識された時点で前記観察装置によって取得された第1のフレームにおいて第1のレーザスポット位置を算出し、前記第1のフレームとは異なる時刻に取得された第2のフレームに対し、前記第1のフレームに対応する前記第2のフレーム上の位置に前記第1のレーザスポット位置に対応するマーカを付加するための演算部を備え、前記表示装置が、前記観察装置によって取得された画像に対し、複数の異なる時刻に血管が認識され前記演算部によって付加された複数の前記マーカを表示してもよい。
このようにすることで、血管認識装置によって深部の太い血管が認識された位置にマーカが付与された画像が表示装置に表示されるので、術者は、太い血管の位置を画像内のマーカに基づいて容易に認識することができる。 In the second aspect, the first laser spot position is calculated in the first frame obtained by the observation device when the deep blood vessel is recognized by the blood vessel recognition device, and the first laser spot position is calculated. Calculation for adding a marker corresponding to the first laser spot position to a position on the second frame corresponding to the first frame with respect to the second frame acquired at a time different from the frame The display device may display a plurality of the markers that are recognized by a blood vessel at a plurality of different times and added by the calculation unit with respect to the image acquired by the observation device.
By doing in this way, an image in which a marker is added to the position where the deep blood vessel is recognized by the blood vessel recognition device is displayed on the display device, so the surgeon uses the position of the thick blood vessel as the marker in the image. Can be easily recognized.
このようにすることで、血管認識装置によって深部の太い血管が認識された位置にマーカが付与された画像が表示装置に表示されるので、術者は、太い血管の位置を画像内のマーカに基づいて容易に認識することができる。 In the second aspect, the first laser spot position is calculated in the first frame obtained by the observation device when the deep blood vessel is recognized by the blood vessel recognition device, and the first laser spot position is calculated. Calculation for adding a marker corresponding to the first laser spot position to a position on the second frame corresponding to the first frame with respect to the second frame acquired at a time different from the frame The display device may display a plurality of the markers that are recognized by a blood vessel at a plurality of different times and added by the calculation unit with respect to the image acquired by the observation device.
By doing in this way, an image in which a marker is added to the position where the deep blood vessel is recognized by the blood vessel recognition device is displayed on the display device, so the surgeon uses the position of the thick blood vessel as the marker in the image. Can be easily recognized.
本発明によれば、深部の太い血管を表層の細い血管とは区別して認識することができるという効果を奏する。
According to the present invention, there is an effect that a thick blood vessel in a deep part can be recognized separately from a blood vessel having a thin surface layer.
(第1の実施形態)
本発明の第1の実施形態に係る血管認識装置について図1から図6を参照して以下に説明する。
本実施形態に係る血管認識装置100は、図1に示されるように、生体内に挿入可能であり生体内の組織Aに向けてレーザ光Lを射出するとともに組織Aからの散乱光Sを受光するプローブ1と、プローブ1にレーザ光Lおよび可視光Vを供給する光源ユニット2と、プローブ1によって受光された散乱光Sを検出する光検出部(スペクトル取得部)3と、光検出部3によって検出された散乱光Sのデータを解析処理するとともに光源ユニット2を制御する制御装置4とを備えている。 (First embodiment)
A blood vessel recognition device according to a first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the bloodvessel recognition device 100 according to the present embodiment can be inserted into a living body, emits laser light L toward the tissue A in the living body, and receives scattered light S from the tissue A. , A light source unit 2 that supplies laser light L and visible light V to the probe 1, a light detection unit (spectrum acquisition unit) 3 that detects scattered light S received by the probe 1, and a light detection unit 3 And a control device 4 for controlling the light source unit 2 while analyzing the data of the scattered light S detected by.
本発明の第1の実施形態に係る血管認識装置について図1から図6を参照して以下に説明する。
本実施形態に係る血管認識装置100は、図1に示されるように、生体内に挿入可能であり生体内の組織Aに向けてレーザ光Lを射出するとともに組織Aからの散乱光Sを受光するプローブ1と、プローブ1にレーザ光Lおよび可視光Vを供給する光源ユニット2と、プローブ1によって受光された散乱光Sを検出する光検出部(スペクトル取得部)3と、光検出部3によって検出された散乱光Sのデータを解析処理するとともに光源ユニット2を制御する制御装置4とを備えている。 (First embodiment)
A blood vessel recognition device according to a first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the blood
プローブ1は、細長いプローブ本体5と、プローブ本体5に長手方向に沿って設けられた照射用光ファイバ(レーザ光照射部、可視光照射部)6および受光用光ファイバ(スペクトル取得部)7とを備えている。
プローブ1は、高周波メスのような、組織Aを処置する処置デバイスであってもよい。この場合、プローブ本体5の先端には、組織Aを処置するための作用部(図示略)が設けられる。 The probe 1 includes anelongated probe body 5, an irradiation optical fiber (laser light irradiation unit, visible light irradiation unit) 6 and a light receiving optical fiber (spectrum acquisition unit) 7 provided in the probe body 5 along the longitudinal direction. It has.
The probe 1 may be a treatment device that treats the tissue A, such as a high-frequency knife. In this case, an action portion (not shown) for treating the tissue A is provided at the tip of theprobe body 5.
プローブ1は、高周波メスのような、組織Aを処置する処置デバイスであってもよい。この場合、プローブ本体5の先端には、組織Aを処置するための作用部(図示略)が設けられる。 The probe 1 includes an
The probe 1 may be a treatment device that treats the tissue A, such as a high-frequency knife. In this case, an action portion (not shown) for treating the tissue A is provided at the tip of the
照射用光ファイバ6の先端は、プローブ本体5の先端近傍に配置され、照射用光ファイバ6の基端は、光源ユニット2に接続されている。光源ユニット2から照射用光ファイバ6の基端に供給されたレーザ光Lおよび可視光Vは、照射用光ファイバ6の先端から、プローブ本体5の長手方向前方に射出されるようになっている。
受光用光ファイバ7の先端は、プローブ本体5の先端近傍に配置され、受光用光ファイバ7の基端は、光検出部3に接続されている。組織Aによって散乱されたレーザ光Lの散乱光Sは、受光用光ファイバ7によって受光されて光検出部3まで導光されるようになっている。 The distal end of the irradiationoptical fiber 6 is disposed near the distal end of the probe body 5, and the proximal end of the irradiation optical fiber 6 is connected to the light source unit 2. Laser light L and visible light V supplied from the light source unit 2 to the proximal end of the irradiation optical fiber 6 are emitted from the distal end of the irradiation optical fiber 6 to the front in the longitudinal direction of the probe body 5. .
The distal end of the light receivingoptical fiber 7 is disposed in the vicinity of the distal end of the probe body 5, and the proximal end of the light receiving optical fiber 7 is connected to the light detection unit 3. The scattered light S of the laser light L scattered by the tissue A is received by the light receiving optical fiber 7 and guided to the light detection unit 3.
受光用光ファイバ7の先端は、プローブ本体5の先端近傍に配置され、受光用光ファイバ7の基端は、光検出部3に接続されている。組織Aによって散乱されたレーザ光Lの散乱光Sは、受光用光ファイバ7によって受光されて光検出部3まで導光されるようになっている。 The distal end of the irradiation
The distal end of the light receiving
光源ユニット2は、レーザ光Lを出力するレーザ光源8と、可視域の波長を有する可視光Vを出力する可視光源9と、レーザ光Lおよび可視光Vを合波して照射用光ファイバ6に入射させる光合波器(図示略)とを備えている。
The light source unit 2 includes a laser light source 8 that outputs laser light L, a visible light source 9 that outputs visible light V having a visible wavelength, and an irradiation optical fiber 6 that combines the laser light L and the visible light V. And an optical multiplexer (not shown) to be incident.
レーザ光源8は、血液による吸収が少ない波長域(例えば、近赤外領域)のレーザ光Lを出力する。また、レーザ光源8は、図2に示されるように、組織Aの表面から表層Bを伝播して深部Cまで到達する高強度のレーザ光Lを出力する。表層Bとは、組織Aの表面から数十μm~数百μm程度の深さまでの領域であり、深部Cとは、組織Aの表面から数百μmよりも深い領域である。表層Bには細い血管D1が多く存在し、表層Bよりも深い(例えば、組織Aの表面から3mm以上の深さの)深部Cには太い(例えば、直径2mm以上の)血管D2が多く存在する。したがって、受光用光ファイバ7によって受光される散乱光Sには、表層Bの細い血管D1による散乱光Sと、深部Cの太い血管D2による散乱光Sとが含まれ得る。
The laser light source 8 outputs laser light L in a wavelength region (for example, near infrared region) that is less absorbed by blood. Further, as shown in FIG. 2, the laser light source 8 outputs high-intensity laser light L that propagates from the surface of the tissue A through the surface layer B and reaches the deep part C. The surface layer B is a region from the surface of the tissue A to a depth of about several tens of μm to several hundreds of μm, and the deep portion C is a region deeper than several hundred μm from the surface of the tissue A. There are many thin blood vessels D1 in the surface layer B, and there are many thick blood vessels D2 (for example, a diameter of 2 mm or more) deeper than the surface layer B (for example, a depth of 3 mm or more from the surface of the tissue A). To do. Accordingly, the scattered light S received by the light receiving optical fiber 7 can include scattered light S from the thin blood vessel D1 in the surface layer B and scattered light S from the thick blood vessel D2 in the deep part C.
レーザ光Lの波長は、使用する場面や測定機器の性能等に応じて、様々な波長の中から選択することができる。例えば、上述した表層Bおよび深部Cの深さを考慮すると、表層Bを主に観察する際には、680nmよりも短波長のレーザ光Lを好適に使用することができ、深部Cを主に観察する際には、600nmよりも長波長の波長(近赤外および赤外の波長域を含む)のレーザ光Lを好適に使用することができる。また、波長範囲が共通する(重なる)波長域では、表層Bと深部Cの両方を観察することができる。また、レーザ光Lの波長は上記に限らない。例えば、表層Bの観察には680nm以上の長波長を用いることも可能であるが、この場合には深部Cに比べ表層Bの観察画像のコントラストが低下する傾向がある。
可視光源9は、レーザ光源8であることが好ましい。可視光Vの色は、組織Aに照射された可視光Vを術者が容易に視認できる色、例えば緑色または青色であることが好ましい。 The wavelength of the laser beam L can be selected from various wavelengths according to the scene to be used, the performance of the measuring device, and the like. For example, in consideration of the depths of the surface layer B and the deep part C described above, when mainly observing the surface layer B, the laser light L having a wavelength shorter than 680 nm can be suitably used. When observing, laser light L having a wavelength longer than 600 nm (including near-infrared and infrared wavelength regions) can be suitably used. Moreover, both the surface layer B and the deep part C can be observed in the wavelength range where the wavelength ranges are common (overlapping). Further, the wavelength of the laser light L is not limited to the above. For example, a long wavelength of 680 nm or more can be used for observation of the surface layer B. In this case, the contrast of the observation image of the surface layer B tends to be lower than that of the deep part C.
The visiblelight source 9 is preferably a laser light source 8. The color of the visible light V is preferably a color that allows the operator to easily visually recognize the visible light V irradiated to the tissue A, for example, green or blue.
可視光源9は、レーザ光源8であることが好ましい。可視光Vの色は、組織Aに照射された可視光Vを術者が容易に視認できる色、例えば緑色または青色であることが好ましい。 The wavelength of the laser beam L can be selected from various wavelengths according to the scene to be used, the performance of the measuring device, and the like. For example, in consideration of the depths of the surface layer B and the deep part C described above, when mainly observing the surface layer B, the laser light L having a wavelength shorter than 680 nm can be suitably used. When observing, laser light L having a wavelength longer than 600 nm (including near-infrared and infrared wavelength regions) can be suitably used. Moreover, both the surface layer B and the deep part C can be observed in the wavelength range where the wavelength ranges are common (overlapping). Further, the wavelength of the laser light L is not limited to the above. For example, a long wavelength of 680 nm or more can be used for observation of the surface layer B. In this case, the contrast of the observation image of the surface layer B tends to be lower than that of the deep part C.
The visible
光検出部3は、フォトダイオードまたは光電子増倍管のような光検出器を備えている。光検出部3は、受光用光ファイバ7によって導光された散乱光Sを受光し、受光した散乱光Sの強度をデジタル値に変換する。得られたデジタル値は、制御装置4内の記憶部10(後述)に送信される。
The light detection unit 3 includes a photodetector such as a photodiode or a photomultiplier tube. The light detection unit 3 receives the scattered light S guided by the light receiving optical fiber 7 and converts the intensity of the received scattered light S into a digital value. The obtained digital value is transmitted to the storage unit 10 (described later) in the control device 4.
制御装置4は、光検出部3によって検出された散乱光Sの強度のデータを蓄積する記憶部(スペクトル取得部)10と、記憶部10に蓄積されたデータを解析する解析部11と、解析部11による解析結果に基づいて血管の有無を判定する血管判定部12と、レーザ光源8および可視光源9を制御する制御部13とを備えている。
The control device 4 includes a storage unit (spectrum acquisition unit) 10 that accumulates data on the intensity of the scattered light S detected by the light detection unit 3, an analysis unit 11 that analyzes data accumulated in the storage unit 10, and an analysis A blood vessel determination unit 12 that determines the presence or absence of a blood vessel based on an analysis result by the unit 11 and a control unit 13 that controls the laser light source 8 and the visible light source 9 are provided.
制御装置4は、例えばコンピュータであり、中央演算処理装置(CPU)と、RAMのような主記憶装置と、補助記憶装置とを備えている。補助記憶装置は、ハードディスクドライブのような非一時的な記憶媒体であり、解析部11、血管判定部12、および制御部13の後述する処理をCPUに実行させるためのプログラムを格納している。プログラムが補助記憶装置から主記憶装置にロードされプログラムに従ってCPUが処理を実行することで、各部11,12,13の処理が実現される。あるいは、各部11,12,13の処理は、FPGA(プログラマブル・ロジック・デバイス)であってもよく、ASIC(特定用途向け集積回路)のような専用ハードウェアによって実現されてもよい。
The control device 4 is, for example, a computer, and includes a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device. The auxiliary storage device is a non-temporary storage medium such as a hard disk drive, and stores a program for causing the CPU to execute processing to be described later of the analysis unit 11, the blood vessel determination unit 12, and the control unit 13. The program is loaded from the auxiliary storage device to the main storage device, and the CPU executes the processing according to the program, whereby the processing of each unit 11, 12, 13 is realized. Alternatively, the processing of the units 11, 12, and 13 may be an FPGA (programmable logic device) or may be realized by dedicated hardware such as an ASIC (application-specific integrated circuit).
記憶部10は、例えば、主記憶装置または他のストレージから構成される。記憶部10は、光検出部3から受信したデジタル値を時系列に記憶することによって、散乱光Sの強度の時間波形データを生成する。
The storage unit 10 includes, for example, a main storage device or other storage. The storage unit 10 generates time waveform data of the intensity of the scattered light S by storing the digital values received from the light detection unit 3 in time series.
解析部11は、記憶部10から時間波形データを読み出し、時間波形データを高速フーリエ変換して、実時間ドップラースペクトルFreal(ω)を得る。
ここで、実時間ドップラースペクトルFreal(ω)と、血管の太さおよび深さとの関係について説明する。 Theanalysis unit 11 reads the time waveform data from the storage unit 10 and performs fast Fourier transform on the time waveform data to obtain a real time Doppler spectrum Freal (ω).
Here, the relationship between the real-time Doppler spectrum Freal (ω) and the thickness and depth of the blood vessel will be described.
ここで、実時間ドップラースペクトルFreal(ω)と、血管の太さおよび深さとの関係について説明する。 The
Here, the relationship between the real-time Doppler spectrum Freal (ω) and the thickness and depth of the blood vessel will be described.
レーザ光Lの照射領域内に血管が含まれている場合、脂肪や出血のように静止している静的成分によって散乱された散乱光Sと、血管内を流動する血液によって散乱された散乱光Sとが、同時に受光用光ファイバ7によって受光される。静的成分による散乱光Sは、レーザ光Lの周波数と等しい周波数fを有するが、血液による散乱光Sは、ドップラーシフトによって、レーザ光Lの周波数fから、血流の速さに応じたシフト量Δfだけシフトした周波数f+Δfを有する。したがって、記憶部10に生成される時間波形データには、シフト量Δfに相当する周期のビートが現れる。以下、|Δf|をωと表記する。このような時間波形を高速フーリエ変換すると、血流の速さに応じた周波数ωに強度を有する実時間ドップラースペクトルFreal(ω)が得られる。
When a blood vessel is included in the irradiation region of the laser light L, the scattered light S scattered by a static component that is stationary like fat or bleeding and the scattered light scattered by blood flowing in the blood vessel S is simultaneously received by the light receiving optical fiber 7. The scattered light S due to the static component has a frequency f equal to the frequency of the laser light L, but the scattered light S due to blood is shifted from the frequency f of the laser light L according to the blood flow speed by Doppler shift. It has a frequency f + Δf shifted by an amount Δf. Therefore, a beat having a period corresponding to the shift amount Δf appears in the time waveform data generated in the storage unit 10. Hereinafter, | Δf | is expressed as ω. When such a time waveform is subjected to fast Fourier transform, a real-time Doppler spectrum Freal (ω) having an intensity at a frequency ω corresponding to the speed of blood flow is obtained.
血管内の血流の速さは、血管の太さに略比例することが知られている。したがって、細い血管D1のみが存在する位置(図3の位置P1参照。)では、図4Aに示されるように、低周波領域にのみ強度を有するドップラースペクトルFreal(ω)が得られる。太い血管D2のみが存在する位置(図3の位置P2参照。)では、図4Bにおいて実線で示されるように、低周波領域から高周波領域まで強度を有し、細い血管D1のドップラースペクトルFreal(ω)に比べて高い平均周波数を有するドップラースペクトルFreal(ω)が得られる。細い血管D1と太い血管D2の両方が存在する位置(図3の位置P3参照。)では、細い血管D1のドップラースペクトルと太い血管D2のドップラースペクトルとが重畳されたドップラースペクトルが得られる。血管が存在しない位置(図3の位置P4参照。)では、上記ビートが生じないため、ドップラースペクトルは、全周波数領域にわたって強度を有しない平坦状となる。
It is known that the speed of blood flow in a blood vessel is approximately proportional to the thickness of the blood vessel. Therefore, at a position where only the thin blood vessel D1 exists (see position P1 in FIG. 3), as shown in FIG. 4A, a Doppler spectrum Freal (ω) having intensity only in the low frequency region is obtained. At the position where only the thick blood vessel D2 exists (see the position P2 in FIG. 3), as indicated by the solid line in FIG. 4B, the Doppler spectrum Freal (ω ), A Doppler spectrum Freal (ω) having a higher average frequency is obtained. At a position where both the thin blood vessel D1 and the thick blood vessel D2 exist (see position P3 in FIG. 3), a Doppler spectrum in which the Doppler spectrum of the thin blood vessel D1 and the Doppler spectrum of the thick blood vessel D2 are superimposed is obtained. At the position where the blood vessel does not exist (see position P4 in FIG. 3), the above-mentioned beat does not occur, so the Doppler spectrum has a flat shape having no intensity over the entire frequency region.
ただし、互いに同一の深さに存在する細い血管D1と太い血管D2とでは、上記のようにドップラースペクトルの平均周波数に明らかな差異が生じるが、表層Bの細い血管D1と深部Cの太い血管D2とでは、ドップラースペクトルの平均周波数が互いに近似する。すなわち、レーザ光Lおよび散乱光Sは、組織Aの表面と深部Cの血管との間を伝播する間に組織Aによる散乱等によって減衰し、光検出部3によって検出される散乱光Sの強度が低下する。その結果、図4Bに破線で示されるように、太い血管D2のドップラースペクトルの平均周波数は低周波側にシフトし、細い血管D1のドップラースペクトルの平均周波数との差異が小さくなる。したがって、表層Bの細い血管D1と深部Cの太い血管D2とを平均周波数の差異に基づいて区別することは困難である。
However, although there is a clear difference in the average frequency of the Doppler spectrum between the thin blood vessel D1 and the thick blood vessel D2 existing at the same depth as described above, the thin blood vessel D1 in the surface layer B and the thick blood vessel D2 in the deep portion C are produced. And the average frequencies of the Doppler spectra approximate each other. That is, the laser light L and the scattered light S are attenuated by scattering by the tissue A while propagating between the surface of the tissue A and the blood vessel of the deep part C, and the intensity of the scattered light S detected by the light detection unit 3. Decreases. As a result, as shown by a broken line in FIG. 4B, the average frequency of the Doppler spectrum of the thick blood vessel D2 shifts to the low frequency side, and the difference from the average frequency of the Doppler spectrum of the thin blood vessel D1 becomes small. Therefore, it is difficult to distinguish the thin blood vessel D1 in the surface layer B and the thick blood vessel D2 in the deep part C based on the difference in average frequency.
記憶部10は、実時間ドップラースペクトルFreal(ω)の解析用に、表層Bの細い血管D1のドップラースペクトルである第1基底スペクトルFs(ω)と、深部Cの太い血管D2のドップラースペクトルである第2基底スペクトルFd(ω)とを予め記憶している。第1基底スペクトルFs(ω)は、表層Bにのみ到達する低強度のレーザ光Lを表層の細い血管D1に選択的にレーザ光Lを照射し、細い血管D1からの散乱光Sを選択的に受光および検出することで取得される。第2基底スペクトルFd(ω)は、深部Cまで到達する高強度のレーザ光Lを深部Cの太い血管D2に選択的に照射し、太い血管D2からの散乱光Sを選択的に受光および検出することで取得される。
The storage unit 10 is a first base spectrum Fs (ω), which is a Doppler spectrum of the thin blood vessel D1 in the surface layer B, and a Doppler spectrum of the thick blood vessel D2 in the deep part C for analysis of the real-time Doppler spectrum Freal (ω). The second basis spectrum Fd (ω) is stored in advance. The first base spectrum Fs (ω) selectively irradiates the thin blood vessel D1 with the low-intensity laser light L reaching only the surface layer B to the thin blood vessel D1 and selectively uses the scattered light S from the thin blood vessel D1. It is obtained by receiving and detecting light. The second base spectrum Fd (ω) selectively irradiates the thick blood vessel D2 of the deep portion C with the high-intensity laser light L reaching the deep portion C, and selectively receives and detects the scattered light S from the thick blood vessel D2. To get it.
解析部11は、記憶部10から第1基底スペクトルFs(ω)および第2基底スペクトルFd(ω)を読み出し、下式のように、第1基底スペクトルFs(ω)および第2基底スペクトルFd(ω)の線形和を実時間ドップラースペクトルF(ω)から減算した差分δが最小になる係数α,β(0≦α、0≦β)の組み合わせを算出する。線形和は、第1基底スペクトルFs(ω)と係数αとの積と、第2基底スペクトルFd(ω)と係数βとの積と、の和である。
δ=Freal(ω)-(α×Fs(ω)+β×Fd(ω)) Theanalysis unit 11 reads the first base spectrum Fs (ω) and the second base spectrum Fd (ω) from the storage unit 10, and the first base spectrum Fs (ω) and the second base spectrum Fd ( A combination of coefficients α and β (0 ≦ α, 0 ≦ β) that minimizes the difference δ obtained by subtracting the linear sum of ω) from the real-time Doppler spectrum F (ω) is calculated. The linear sum is the sum of the product of the first base spectrum Fs (ω) and the coefficient α and the product of the second base spectrum Fd (ω) and the coefficient β.
δ = Freal (ω) − (α × Fs (ω) + β × Fd (ω))
δ=Freal(ω)-(α×Fs(ω)+β×Fd(ω)) The
δ = Freal (ω) − (α × Fs (ω) + β × Fd (ω))
算出された係数α,βの値は、実時間ドップラースペクトルFreal(ω)における、表層Bの細い血管D1のドップラースペクトルおよび深部Cの太い血管D2のドップラースペクトルの寄与の大きさをそれぞれ表している。すなわち、理想的には、細い血管D1のみが存在する位置P1では、α>0、β=0となり、太い血管D2のみが存在する位置P2ではα=0、β>0となり、細い血管D1および太い血管D2が存在する位置P3ではα>0、β>0となり、細い血管D1および太い血管D2が存在しない位置P4では、α=β=0となる。解析部11は、算出された係数α,βの値の組み合わせを血管判定部12に送信する。
The calculated values of the coefficients α and β represent the magnitudes of contribution of the Doppler spectrum of the thin blood vessel D1 in the surface layer B and the Doppler spectrum of the thick blood vessel D2 in the deep part C in the real-time Doppler spectrum Freal (ω), respectively. . That is, ideally, α> 0 and β = 0 at the position P1 where only the thin blood vessel D1 exists, and α = 0 and β> 0 at the position P2 where only the thick blood vessel D2 exists, and the thin blood vessel D1 and In the position P3 where the thick blood vessel D2 exists, α> 0 and β> 0, and in the position P4 where the thin blood vessel D1 and the thick blood vessel D2 do not exist, α = β = 0. The analysis unit 11 transmits the calculated combination of the coefficients α and β to the blood vessel determination unit 12.
図5は、係数α,βの値の組み合わせと、血管判定部12による判定結果との対応関係を表している。血管判定部12は、係数α,βの値を所定の閾値Thと比較する。所定の閾値Thは、0よりも大きく0近傍の値である。血管判定部12は、係数α,βの内、係数βのみが閾値Th以上であるときには、レーザ光Lの照射範囲内に深部の太い血管D2のみが存在すると判定し、TRUE信号を制御部13に出力する。それ以外のとき、すなわち、係数βの値が閾値Th未満であるか、または、係数α,βの両方の値が閾値Th以上であるときには、血管判定部12は、FALSE信号を制御部13に出力する。
FIG. 5 shows a correspondence relationship between the combinations of the values of the coefficients α and β and the determination result by the blood vessel determination unit 12. The blood vessel determination unit 12 compares the values of the coefficients α and β with a predetermined threshold Th. The predetermined threshold Th is a value larger than 0 and in the vicinity of 0. When only coefficient β is greater than or equal to threshold Th among coefficients α and β, blood vessel determination unit 12 determines that only deep blood vessel D2 exists within the irradiation range of laser light L, and the TRUE signal is transmitted to control unit 13. Output to. In other cases, that is, when the value of the coefficient β is less than the threshold Th or when both the values of the coefficients α and β are equal to or greater than the threshold Th, the blood vessel determination unit 12 sends the FALSE signal to the control unit 13. Output.
制御部13は、血管判定部12からTRUE信号を受信したときに可視光源9から可視光Vを出力させ、血管判定部12からFALSE信号を受信したときには可視光源9からの可視光Vの出力を停止させる。これにより、深部Cの太い血管D2のみが検出された位置にのみ、可視光が照射される。
The control unit 13 outputs the visible light V from the visible light source 9 when receiving the TRUE signal from the blood vessel determining unit 12, and outputs the visible light V from the visible light source 9 when receiving the FALSE signal from the blood vessel determining unit 12. Stop. Thereby, visible light is irradiated only to the position where only the thick blood vessel D2 in the deep part C is detected.
次に、このように構成された血管認識装置100の作用について説明する。
本実施形態に係る血管認識装置100は、生体内を観察する内視鏡と一緒に使用される。まず、内視鏡および血管認識装置100のプローブ1を体内に挿入する。
次に、図6に示されるように、レーザ光源8からのレーザ光Lの出力を開始し(ステップSA1)、内視鏡によって組織Aの表面を観察しながら、照射用光ファイバ6から射出されるレーザ光Lを組織Aの表面上で走査するようにプローブ1を移動させる。図1には、プローブ1の先端が組織Aから離間した位置に配置されており、組織Aに非接触で血管D1,D2を検出する態様が示されているが、照射用光ファイバ6からのレーザ光Lが深部Cに到達する状態で使用する限り、組織Aの表面からのプローブ1の先端の離間距離は任意に変更することができる。すなわち、プローブ1は、先端を組織Aの表面に接触させた状態で使用してもよい。 Next, the operation of the bloodvessel recognition device 100 configured as described above will be described.
The bloodvessel recognition device 100 according to the present embodiment is used together with an endoscope that observes the inside of a living body. First, the endoscope and the probe 1 of the blood vessel recognition device 100 are inserted into the body.
Next, as shown in FIG. 6, the output of the laser light L from thelaser light source 8 is started (step SA1), and the light is emitted from the irradiation optical fiber 6 while observing the surface of the tissue A with an endoscope. The probe 1 is moved so that the laser beam L is scanned on the surface of the tissue A. FIG. 1 shows a state in which the tip of the probe 1 is arranged at a position separated from the tissue A and the blood vessels D1 and D2 are detected without contact with the tissue A. As long as the laser light L is used in a state where it reaches the deep part C, the separation distance of the tip of the probe 1 from the surface of the tissue A can be arbitrarily changed. That is, the probe 1 may be used in a state where the tip is in contact with the surface of the tissue A.
本実施形態に係る血管認識装置100は、生体内を観察する内視鏡と一緒に使用される。まず、内視鏡および血管認識装置100のプローブ1を体内に挿入する。
次に、図6に示されるように、レーザ光源8からのレーザ光Lの出力を開始し(ステップSA1)、内視鏡によって組織Aの表面を観察しながら、照射用光ファイバ6から射出されるレーザ光Lを組織Aの表面上で走査するようにプローブ1を移動させる。図1には、プローブ1の先端が組織Aから離間した位置に配置されており、組織Aに非接触で血管D1,D2を検出する態様が示されているが、照射用光ファイバ6からのレーザ光Lが深部Cに到達する状態で使用する限り、組織Aの表面からのプローブ1の先端の離間距離は任意に変更することができる。すなわち、プローブ1は、先端を組織Aの表面に接触させた状態で使用してもよい。 Next, the operation of the blood
The blood
Next, as shown in FIG. 6, the output of the laser light L from the
レーザ光Lの照射領域で発生した散乱光Sは、受光用光ファイバ7によって受光され、光検出部3によって検出される。そして、記憶部10内に散乱光Sの強度の時間波形データが生成され、解析部11において時間波形データから実時間ドップラースペクトルFreal(ω)が取得される(ステップSA2)。
The scattered light S generated in the irradiation region of the laser light L is received by the light receiving optical fiber 7 and detected by the light detection unit 3. And the time waveform data of the intensity | strength of the scattered light S is produced | generated in the memory | storage part 10, and real time Doppler spectrum Freal ((omega)) is acquired from the time waveform data in the analysis part 11 (step SA2).
次に、記憶部10から解析部11へ第1および第2基底スペクトルFs(ω),Fd(ω)が読み出され(ステップSA3)、解析部11において、実時間ドップラースペクトルF(ω)と、第1および第2基底スペクトルFs(ω),Fd(ω)の線形和との差分δが最小になるときの係数α,βの値の組み合わせが算出される(ステップSA4)。係数α,βの値は、表層Bの細い血管D1および深部Cの太い血管D2の有無をそれぞれ表す。
Next, the first and second basis spectra Fs (ω) and Fd (ω) are read from the storage unit 10 to the analysis unit 11 (step SA3). In the analysis unit 11, the real-time Doppler spectrum F (ω) and The combination of the values of the coefficients α and β when the difference δ from the linear sum of the first and second basis spectra Fs (ω) and Fd (ω) is minimized is calculated (step SA4). The values of the coefficients α and β represent the presence or absence of a thin blood vessel D1 in the surface layer B and a thick blood vessel D2 in the deep part C, respectively.
次に、血管判定部12において、係数α,βの値の組み合わせに基づいて、レーザ光Lの照射領域に深部Cの太い血管D2のみが存在するか否かが判定される(ステップSA5)。すなわち、係数αの値が閾値Th未満であり、かつ、係数βが閾値Th以上であるときには、深部Cの太い血管D2のみが存在すると判定され(ステップSA5のYES)、血管判定部12から制御部13にTRUE信号が送信される。それ以外のときには、深部Cの太い血管D2が存在しないか、または、表層Bの細い血管D1と深部Cの太い血管D2の両方が存在すると判定され(ステップSA5のNO)、血管判定部12から制御部13にFALSE信号が送信される。
Next, the blood vessel determination unit 12 determines whether or not only the thick blood vessel D2 having the deep portion C exists in the irradiation region of the laser light L based on the combination of the values of the coefficients α and β (step SA5). That is, when the value of the coefficient α is less than the threshold Th and the coefficient β is greater than or equal to the threshold Th, it is determined that only the thick blood vessel D2 in the deep part C exists (YES in Step SA5), and the control is performed from the blood vessel determination unit 12. A TRUE signal is transmitted to the unit 13. In other cases, it is determined that the thick blood vessel D2 in the deep portion C does not exist or that both the thin blood vessel D1 in the surface layer B and the thick blood vessel D2 in the deep portion C exist (NO in step SA5). A FALSE signal is transmitted to the control unit 13.
血管判定部12からTRUE信号を受信したとき、制御部13は、レーザ光Lと一緒に可視光Vを照射用光ファイバ6から射出させる(ステップSA6)。一方、血管判定部12からFALSE信号を受信したとき、制御部13は、可視光Vの射出は行わない。したがって、術者は、可視光Vの照射領域が、深部Cの太い血管D2のみが存在する領域であると認識することができる。
When the TRUE signal is received from the blood vessel determination unit 12, the control unit 13 causes the visible light V to be emitted from the irradiation optical fiber 6 together with the laser light L (step SA6). On the other hand, when receiving the FALSE signal from the blood vessel determination unit 12, the control unit 13 does not emit the visible light V. Therefore, the surgeon can recognize that the irradiation region of the visible light V is a region where only the thick blood vessel D2 having the deep part C exists.
このように、本実施形態によれば、基底スペクトルFs(ω),Fd(ω)の線形和における係数α,βを算出することで、実時間ドップラースペクトルFreal(ω)に含まれる細い血管D1のドップラースペクトルと太い血管D2のドップラースペクトルとを分離することができ、深部Cの太い血管D2の有無を係数βに基づいて正確に判定することができるという利点がある。
また、深部Cの太い血管D2のみが検出されたときにのみ、その位置に可視光が照射されることで、組織Aの処置の際に術者にとって特に重要である太い血管D2の位置および走行を可視光に基づいて認識させることができるという利点がある。 Thus, according to the present embodiment, the thin blood vessel D1 included in the real-time Doppler spectrum Freal (ω) is calculated by calculating the coefficients α and β in the linear sum of the base spectra Fs (ω) and Fd (ω). And the Doppler spectrum of the thick blood vessel D2 can be separated, and the presence or absence of the thick blood vessel D2 in the deep part C can be accurately determined based on the coefficient β.
Further, only when a thick blood vessel D2 in the deep part C is detected, the position and travel of the thick blood vessel D2 that are particularly important for the surgeon during the treatment of the tissue A are irradiated with visible light at that position. Can be recognized based on visible light.
また、深部Cの太い血管D2のみが検出されたときにのみ、その位置に可視光が照射されることで、組織Aの処置の際に術者にとって特に重要である太い血管D2の位置および走行を可視光に基づいて認識させることができるという利点がある。 Thus, according to the present embodiment, the thin blood vessel D1 included in the real-time Doppler spectrum Freal (ω) is calculated by calculating the coefficients α and β in the linear sum of the base spectra Fs (ω) and Fd (ω). And the Doppler spectrum of the thick blood vessel D2 can be separated, and the presence or absence of the thick blood vessel D2 in the deep part C can be accurately determined based on the coefficient β.
Further, only when a thick blood vessel D2 in the deep part C is detected, the position and travel of the thick blood vessel D2 that are particularly important for the surgeon during the treatment of the tissue A are irradiated with visible light at that position. Can be recognized based on visible light.
本実施形態においては、血管判定部12が、深部Cの太い血管D2の有無のみ判定することとしたが、これに加えて、表層Bの細い血管D1の有無も判定してもよい。上述したように、係数αの値は、表層Bの細い血管D1の有無を表すので、係数αの値に基づいて、表層Bの細い血管D1の有無を判定することができる。
In the present embodiment, the blood vessel determination unit 12 determines only the presence or absence of the thick blood vessel D2 in the deep part C, but in addition to this, the presence or absence of the thin blood vessel D1 in the surface layer B may also be determined. As described above, since the value of the coefficient α represents the presence or absence of the thin blood vessel D1 in the surface layer B, the presence or absence of the thin blood vessel D1 in the surface layer B can be determined based on the value of the coefficient α.
(第2の実施形態)
次に、本発明の第2の実施形態に係る血管認識装置について図7から図9を参照して説明する。
本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
本実施形態に係る血管認識装置101は、解析部111および血管判定部121における処理において、第1の実施形態と異なっている。本実施形態に係る血管認識装置101は、図7に示されるように、プローブ1と、光源ユニット2と、光検出部3と、光検出部3によって検出された散乱光Sのデータを解析処理するとともに光源ユニット2を制御する制御装置41とを備えている。 (Second Embodiment)
Next, a blood vessel recognition device according to a second embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, a configuration different from that of the first embodiment will be described, and a configuration common to the first embodiment will be denoted by the same reference numeral and description thereof will be omitted.
The bloodvessel recognition apparatus 101 according to the present embodiment differs from the first embodiment in the processing in the analysis unit 111 and the blood vessel determination unit 121. As shown in FIG. 7, the blood vessel recognition device 101 according to the present embodiment analyzes the data of the scattered light S detected by the probe 1, the light source unit 2, the light detection unit 3, and the light detection unit 3. And a control device 41 for controlling the light source unit 2.
次に、本発明の第2の実施形態に係る血管認識装置について図7から図9を参照して説明する。
本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
本実施形態に係る血管認識装置101は、解析部111および血管判定部121における処理において、第1の実施形態と異なっている。本実施形態に係る血管認識装置101は、図7に示されるように、プローブ1と、光源ユニット2と、光検出部3と、光検出部3によって検出された散乱光Sのデータを解析処理するとともに光源ユニット2を制御する制御装置41とを備えている。 (Second Embodiment)
Next, a blood vessel recognition device according to a second embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, a configuration different from that of the first embodiment will be described, and a configuration common to the first embodiment will be denoted by the same reference numeral and description thereof will be omitted.
The blood
制御装置41は、記憶部10、解析部111、血管判定部121、および制御部13に加えて、レーザ光源8から出力されるレーザ光Lの条件を設定する条件設定部14をさらに備えている。
条件設定部14は、レーザ光Lが表層Bにのみ到達する表層条件と、レーザ光Lが表層Bを伝播して深部Cまで到達する深部条件に、レーザ光Lの条件を順番に設定する。具体的には、条件設定部14は、表層条件において、レーザ光Lが表層Bにのみ到達する低強度にレーザ光Lの強度を設定し、深部条件において、表層条件における強度よりも高くレーザ光Lが深部Cまで到達する高強度にレーザ光Lの強度を設定する。 In addition to thestorage unit 10, the analysis unit 111, the blood vessel determination unit 121, and the control unit 13, the control device 41 further includes a condition setting unit 14 that sets conditions for the laser light L output from the laser light source 8. .
Thecondition setting unit 14 sequentially sets the conditions of the laser light L to a surface layer condition where the laser light L reaches only the surface layer B and a deep condition where the laser light L propagates through the surface layer B and reaches the deep part C. Specifically, the condition setting unit 14 sets the intensity of the laser light L at a low intensity at which the laser light L reaches only the surface layer B in the surface layer condition, and the laser light is higher than the intensity in the surface layer condition in the deep condition. The intensity of the laser beam L is set to a high intensity at which L reaches the deep part C.
条件設定部14は、レーザ光Lが表層Bにのみ到達する表層条件と、レーザ光Lが表層Bを伝播して深部Cまで到達する深部条件に、レーザ光Lの条件を順番に設定する。具体的には、条件設定部14は、表層条件において、レーザ光Lが表層Bにのみ到達する低強度にレーザ光Lの強度を設定し、深部条件において、表層条件における強度よりも高くレーザ光Lが深部Cまで到達する高強度にレーザ光Lの強度を設定する。 In addition to the
The
これにより、レーザ光源8からは低強度のレーザ光(第1のレーザ光)Lと高強度のレーザ光(第2のレーザ光)Lとが順番に出力され、組織Aの同一位置に低強度のレーザ光Lと高強度のレーザ光Lとが順番に照射される。そして、低強度のレーザ光Lによる散乱光Sに基づく実時間ドップラースペクトル(第1実時間ドップラースペクトル)Freal_s(ω)と、高強度のレーザ光Lによる散乱光Sに基づく実時間ドップラースペクトル(第2実時間ドップラースペクトル)Freal_d(ω)とが順番に解析部111において取得される。表層条件の実時間ドップラースペクトルFreal_s(ω)は、表層Bの細い血管D1のドップラースペクトルのみを含み得るが、深部条件の実時間ドップラースペクトルFreal_d(ω)は、表層Bの細い血管D1および深部Cの太い血管D2のドップラースペクトルも含み得る。2つのドップラースペクトルFreal_s(ω),Freal_d(ω)は、記憶部10に記憶される。
As a result, the laser light source 8 outputs a low-intensity laser beam (first laser beam) L and a high-intensity laser beam (second laser beam) L in order, and the low-intensity laser beam is output at the same position in the tissue A The laser beam L and the high-intensity laser beam L are irradiated in order. Then, a real-time Doppler spectrum (first real-time Doppler spectrum) Freal_s (ω) based on the scattered light S by the low-intensity laser light L and a real-time Doppler spectrum (first real-time Doppler spectrum based on the scattered light S by the high-intensity laser light L). Two real-time Doppler spectra) Freal_d (ω) are acquired in the analysis unit 111 in order. The real-time Doppler spectrum Freal_s (ω) in the surface layer condition may include only the Doppler spectrum of the thin blood vessel D1 in the surface layer B, but the real-time Doppler spectrum Freal_d (ω) in the deep condition is the thin blood vessel D1 and the deep portion C in the surface layer B. May also include a Doppler spectrum of a thick blood vessel D2. Two Doppler spectra Freal_s (ω) and Freal_d (ω) are stored in the storage unit 10.
解析部111は、記憶部10からドップラースペクトルFreal_s(ω),Freal_d(ω)を読み出し、下式に示される計算を実行して差分スペクトルδF(ω)を算出する。
δF(ω)=Freal_d(ω) - γ×Freal_s(ω) Theanalysis unit 111 reads the Doppler spectra Freal_s (ω) and Freal_d (ω) from the storage unit 10 and executes the calculation shown in the following formula to calculate the difference spectrum δF (ω).
δF (ω) = Freal_d (ω) −γ × Freal_s (ω)
δF(ω)=Freal_d(ω) - γ×Freal_s(ω) The
δF (ω) = Freal_d (ω) −γ × Freal_s (ω)
すなわち、解析部111は、表層条件のドップラースペクトルFreal_s(ω)の強度に所定の係数γを乗じて推定ドップラースペクトル(γ×Freal_s(ω))を得る。推定ドップラースペクトルは、深部条件の高強度のレーザ光Lが組織Aに照射された場合に取得されるであろう、表層Bの細い血管D1のドップラースペクトルである。係数γは、例えば、表層条件および深部条件でそれぞれ取得された表層Bの細い血管D1のドップラースペクトルの強度比に基づいて、実験的に予め決定された値であり、記憶部10に記憶されている。
That is, the analysis unit 111 obtains an estimated Doppler spectrum (γ × Freal_s (ω)) by multiplying the intensity of the Doppler spectrum Freal_s (ω) of the surface layer condition by a predetermined coefficient γ. The estimated Doppler spectrum is a Doppler spectrum of the thin blood vessel D1 in the surface layer B that will be acquired when the tissue A is irradiated with the high-intensity laser light L under deep conditions. The coefficient γ is a value experimentally determined in advance based on, for example, the intensity ratio of the Doppler spectrum of the thin blood vessel D1 of the surface layer B acquired under the surface layer condition and the deep region condition, and is stored in the storage unit 10. Yes.
次に、解析部111は、深部条件で取得されたドップラースペクトルFreal_d(ω)から推定ドップラースペクトルを減算して差分スペクトルδF(ω)を得る。このときに、実時間ドップラースペクトルFreal_d(ω)に深部Cの太い血管D2のドップラースペクトルが含まれている場合には、深部Cの太い血管D2のドップラースペクトルが差分スペクトルδF(ω)として得られる。一方、実時間ドップラースペクトルFreal_d(ω)に深部Cの太い血管D2のドップラースペクトルが含まれていない場合(すなわち、表層Bの細い血管D1のドップラースペクトルのみが含まれている場合)には、全周波数領域にわたって強度を有しない平坦な差分スペクトルδF(ω)が得られる。解析部111は、解析結果である差分スペクトルδF(ω)を血管判定部121に送信する。
Next, the analysis unit 111 subtracts the estimated Doppler spectrum from the Doppler spectrum Freal_d (ω) acquired under the deep condition to obtain a difference spectrum δF (ω). At this time, when the real-time Doppler spectrum Freal_d (ω) includes the Doppler spectrum of the thick blood vessel D2 in the deep portion C, the Doppler spectrum of the deep blood vessel D2 in the deep portion C is obtained as the difference spectrum δF (ω). . On the other hand, when the real-time Doppler spectrum Freal_d (ω) does not include the Doppler spectrum of the thick blood vessel D2 in the deep part C (that is, only the Doppler spectrum of the thin blood vessel D1 of the surface layer B is included), A flat difference spectrum δF (ω) having no intensity over the frequency domain is obtained. The analysis unit 111 transmits the difference spectrum δF (ω) that is the analysis result to the blood vessel determination unit 121.
血管判定部121は、差分スペクトルδF(ω)の強度に基づいて、深部Cの太い血管D2が存在するか否かを判定する。そして、血管判定部121は、図8に示されるように、深部Cの太い血管D2が存在すると判定したときには、TRUE信号を制御部13に送信し、深部Cの太い血管D2が存在しないと判定したときには、FALSE信号を制御部13に送信する。
The blood vessel determination unit 121 determines whether or not a thick blood vessel D2 having a deep portion C exists based on the intensity of the difference spectrum δF (ω). Then, as shown in FIG. 8, when the blood vessel determination unit 121 determines that there is a thick blood vessel D2 in the deep portion C, it transmits a TRUE signal to the control unit 13 and determines that there is no deep blood vessel D2 in the deep portion C. When this occurs, a FALSE signal is transmitted to the control unit 13.
次に、このように構成された血管認識装置101の作用について説明する。
図9に示されるように、レーザ光源8からは、条件設定部14による設定に従って、表層条件の低強度のレーザ光Lおよび深部条件の高強度のレーザ光Lが順番に出力され(ステップSB1,SB3)、表層条件での実時間ドップラースペクトルFreal_s(ω)および深部条件での実時間ドップラースペクトルFreal_d(ω)が順番に取得される(ステップSB2,SB4)。 Next, the operation of the bloodvessel recognition device 101 configured as described above will be described.
As shown in FIG. 9, thelaser light source 8 sequentially outputs the low-intensity laser light L under the surface layer condition and the high-intensity laser light L under the deep condition according to the setting by the condition setting unit 14 (step SB1, SB3), the real-time Doppler spectrum Freal_s (ω) under the surface layer condition, and the real-time Doppler spectrum Freal_d (ω) under the deep condition are acquired in order (steps SB2 and SB4).
図9に示されるように、レーザ光源8からは、条件設定部14による設定に従って、表層条件の低強度のレーザ光Lおよび深部条件の高強度のレーザ光Lが順番に出力され(ステップSB1,SB3)、表層条件での実時間ドップラースペクトルFreal_s(ω)および深部条件での実時間ドップラースペクトルFreal_d(ω)が順番に取得される(ステップSB2,SB4)。 Next, the operation of the blood
As shown in FIG. 9, the
次に、解析部111において、ステップSB2で取得された表層条件の実時間ドップラースペクトルFreal_s(ω)に係数γを乗じて、推定ドップラースペクトルが算出される(ステップSB5)。次に、解析部111において、ステップSB4で取得された深部条件の実時間ドップラースペクトルFreal_d(ω)から推定ドップラースペクトルを減算して差分スペクトルδF(ω)が算出される(ステップSB6)。
Next, in the analysis unit 111, the estimated Doppler spectrum is calculated by multiplying the real-time Doppler spectrum Freal_s (ω) obtained in step SB2 by the coefficient γ (step SB5). Next, the analysis unit 111 calculates a difference spectrum δF (ω) by subtracting the estimated Doppler spectrum from the real-time Doppler spectrum Freal_d (ω) obtained in step SB4 (step SB6).
次に、血管判定部121において、差分スペクトルδF(ω)の強度に基づいて、レーザ光Lの照射領域に深部Cの太い血管D2が存在するか否かが判定される(ステップSB7)。深部Cの太い血管D2が存在すると判定された場合(ステップSB7のYES)、血管判定部121から制御部13にTRUE信号が送信され、レーザ光Lと一緒に可視光Vが照射される(ステップSB8)。一方、深部Cの太い血管D2が存在しないと判定された場合(ステップSB7のNO)、可視光Vの照射は実行されない。したがって、術者は、可視光Vの照射領域が、深部Cの太い血管D2が存在する領域であると認識することができる。
Next, the blood vessel determination unit 121 determines whether or not the thick blood vessel D2 having the deep portion C exists in the irradiation region of the laser light L based on the intensity of the difference spectrum δF (ω) (step SB7). When it is determined that the thick blood vessel D2 in the deep part C exists (YES in step SB7), a TRUE signal is transmitted from the blood vessel determination unit 121 to the control unit 13, and the visible light V is irradiated along with the laser light L (step). SB8). On the other hand, when it is determined that the thick blood vessel D2 in the deep part C does not exist (NO in step SB7), the irradiation with the visible light V is not executed. Therefore, the surgeon can recognize that the irradiation region of the visible light V is a region where the thick blood vessel D2 having the deep part C exists.
このように、本実施形態によれば、表層条件の実時間ドップラースペクトルFreal_s(ω)を用いて、深部条件の実時間ドップラースペクトルFreal_d(ω)に含まれる表層Bの細い血管D1のドップラースペクトルを精度良く推定することができる。そして、推定ドップラースペクトルをドップラースペクトルFreal_d(ω)から除去することで、表層Bの細い血管D1のドップラースペクトルをドップラースペクトルFreal_d(ω)から分離し、深部Cの太い血管D2のドップラースペクトルを抽出することができる。これにより、深部Cの太い血管D2の有無を正確に判定することができるという利点がある。
また、深部Cの太い血管D2が検出されたときにのみ、その位置に可視光が照射されることで、組織Aの処置の際に術者にとって特に重要である太い血管D2の位置および走行を可視光に基づいて認識させることができるという利点がある。 Thus, according to the present embodiment, the Doppler spectrum of the thin blood vessel D1 in the surface layer B included in the real-time Doppler spectrum Freal_d (ω) in the deep condition is obtained using the real-time Doppler spectrum Freal_s (ω) in the surface layer condition. It can be estimated with high accuracy. Then, by removing the estimated Doppler spectrum from the Doppler spectrum Freal_d (ω), the Doppler spectrum of the thin blood vessel D1 in the surface layer B is separated from the Doppler spectrum Freal_d (ω), and the Doppler spectrum of the thick blood vessel D2 in the deep part C is extracted. be able to. Thereby, there exists an advantage that the presence or absence of the thick blood vessel D2 of the deep part C can be determined correctly.
Further, only when the thick blood vessel D2 in the deep part C is detected, the position is irradiated with visible light, so that the position and travel of the thick blood vessel D2 that are particularly important for the surgeon during the treatment of the tissue A are detected. There is an advantage that recognition can be performed based on visible light.
また、深部Cの太い血管D2が検出されたときにのみ、その位置に可視光が照射されることで、組織Aの処置の際に術者にとって特に重要である太い血管D2の位置および走行を可視光に基づいて認識させることができるという利点がある。 Thus, according to the present embodiment, the Doppler spectrum of the thin blood vessel D1 in the surface layer B included in the real-time Doppler spectrum Freal_d (ω) in the deep condition is obtained using the real-time Doppler spectrum Freal_s (ω) in the surface layer condition. It can be estimated with high accuracy. Then, by removing the estimated Doppler spectrum from the Doppler spectrum Freal_d (ω), the Doppler spectrum of the thin blood vessel D1 in the surface layer B is separated from the Doppler spectrum Freal_d (ω), and the Doppler spectrum of the thick blood vessel D2 in the deep part C is extracted. be able to. Thereby, there exists an advantage that the presence or absence of the thick blood vessel D2 of the deep part C can be determined correctly.
Further, only when the thick blood vessel D2 in the deep part C is detected, the position is irradiated with visible light, so that the position and travel of the thick blood vessel D2 that are particularly important for the surgeon during the treatment of the tissue A are detected. There is an advantage that recognition can be performed based on visible light.
本実施形態においては、推定ドップラースペクトルの算出において、表層条件の実時間ドップラースペクトルFreal_s(ω)の全周波数領域にわたって一定の係数γを強度に乗じることとしたが、周波数毎に設定された係数γ(ω)を実時間ドップラースペクトルFreal_s(ω)に乗じてもよい。例えば、係数γ(ω)は、表層条件および深部条件のそれぞれで取得された表層Bの細い血管D1のドップラースペクトルの強度比を周波数ω毎に算出し、算出された各周波数ωの強度比に基づいて実験的に予め決定される。
このようにすることで、深部条件での表層Bの細い血管D1のドップラースペクトルをより正確に推定した推定ドップラースペクトルを得ることができ、深部Cの血管の有無の判定精度を向上することができる。 In the present embodiment, in calculating the estimated Doppler spectrum, the intensity is multiplied by a constant coefficient γ over the entire frequency region of the real-time Doppler spectrum Freal_s (ω) of the surface layer condition. However, the coefficient γ set for each frequency is used. (Ω) may be multiplied by the real-time Doppler spectrum Freal_s (ω). For example, the coefficient γ (ω) is calculated for each frequency ω by calculating the intensity ratio of the Doppler spectrum of the thin blood vessel D1 of the surface layer B acquired under the surface condition and the deep condition, and the calculated intensity ratio of each frequency ω. This is experimentally predetermined.
By doing in this way, the estimated Doppler spectrum which estimated more accurately the Doppler spectrum of the blood vessel D1 of the surface layer B in the deep part condition can be obtained, and the determination accuracy of the presence or absence of the blood vessel in the deep part C can be improved. .
このようにすることで、深部条件での表層Bの細い血管D1のドップラースペクトルをより正確に推定した推定ドップラースペクトルを得ることができ、深部Cの血管の有無の判定精度を向上することができる。 In the present embodiment, in calculating the estimated Doppler spectrum, the intensity is multiplied by a constant coefficient γ over the entire frequency region of the real-time Doppler spectrum Freal_s (ω) of the surface layer condition. However, the coefficient γ set for each frequency is used. (Ω) may be multiplied by the real-time Doppler spectrum Freal_s (ω). For example, the coefficient γ (ω) is calculated for each frequency ω by calculating the intensity ratio of the Doppler spectrum of the thin blood vessel D1 of the surface layer B acquired under the surface condition and the deep condition, and the calculated intensity ratio of each frequency ω. This is experimentally predetermined.
By doing in this way, the estimated Doppler spectrum which estimated more accurately the Doppler spectrum of the blood vessel D1 of the surface layer B in the deep part condition can be obtained, and the determination accuracy of the presence or absence of the blood vessel in the deep part C can be improved. .
本実施形態においては、血管判定部121が、深部Cの太い血管D2の有無に加えて、表層Bの細い血管D1の有無も判定してもよい。例えば、血管判定部121は、表層条件のドップラースペクトルFreal_s(ω)の平均周波数に基づいて、表層Bの細い血管D1の有無を判定することができる。
In the present embodiment, the blood vessel determination unit 121 may determine the presence or absence of the thin blood vessel D1 of the surface layer B in addition to the presence or absence of the thick blood vessel D2 of the deep portion C. For example, the blood vessel determination unit 121 can determine the presence or absence of a thin blood vessel D1 in the surface layer B based on the average frequency of the Doppler spectrum Freal_s (ω) of the surface layer condition.
(第3の実施形態)
次に、本発明の第3の実施形態に係る血管認識装置について図8、図10および図11を参照して説明する。
本実施形態においては、第1および第2の実施形態と異なる構成について説明し、第1および第2の実施形態と共通する構成については同一の符号を付して説明を省略する。 (Third embodiment)
Next, a blood vessel recognition device according to a third embodiment of the present invention will be described with reference to FIG. 8, FIG. 10, and FIG.
In the present embodiment, configurations different from those in the first and second embodiments will be described, and configurations common to the first and second embodiments will be denoted by the same reference numerals and description thereof will be omitted.
次に、本発明の第3の実施形態に係る血管認識装置について図8、図10および図11を参照して説明する。
本実施形態においては、第1および第2の実施形態と異なる構成について説明し、第1および第2の実施形態と共通する構成については同一の符号を付して説明を省略する。 (Third embodiment)
Next, a blood vessel recognition device according to a third embodiment of the present invention will be described with reference to FIG. 8, FIG. 10, and FIG.
In the present embodiment, configurations different from those in the first and second embodiments will be described, and configurations common to the first and second embodiments will be denoted by the same reference numerals and description thereof will be omitted.
本実施形態に係る血管認識装置102は、第2の実施形態に係る血管認識装置101の変形例であり、表層条件および深部条件においてレーザ光の波長が互いに異なる点で、第2の実施形態と相違している。
本実施形態に係る血管認識装置102は、図10に示されるように、プローブ1と、光源ユニット21と、光検出部3と、制御装置42とを備えている。 The bloodvessel recognition device 102 according to the present embodiment is a modification of the blood vessel recognition device 101 according to the second embodiment, and differs from the second embodiment in that the wavelength of the laser light is different between the surface layer condition and the deep condition. It is different.
As shown in FIG. 10, the bloodvessel recognition device 102 according to the present embodiment includes a probe 1, a light source unit 21, a light detection unit 3, and a control device 42.
本実施形態に係る血管認識装置102は、図10に示されるように、プローブ1と、光源ユニット21と、光検出部3と、制御装置42とを備えている。 The blood
As shown in FIG. 10, the blood
光源ユニット21は、互いに異なる波長のレーザ光L1,L2を出力する2つのレーザ光源81,82と、可視光源9と、レーザ光L1,L2および可視光Vを合波して照射用光ファイバ6に入射させる光合波器(図示略)とを備えている。
レーザ光源81は、表層Bにのみ到達する短波長のレーザ光L1を出力する。
レーザ光源82は、レーザ光L1の波長よりも長波長であり、表層Bを伝播して深部Cまで到達する長波長のレーザ光L2を出力する。 Thelight source unit 21 combines the two laser light sources 81 and 82 that output the laser beams L1 and L2 having different wavelengths, the visible light source 9, the laser beams L1 and L2, and the visible light V, and the irradiation optical fiber 6. And an optical multiplexer (not shown) to be incident.
Thelaser light source 81 outputs short-wavelength laser light L1 that reaches only the surface layer B.
Thelaser light source 82 outputs a laser beam L2 having a longer wavelength than the wavelength of the laser beam L1 and propagating through the surface layer B and reaching the deep part C.
レーザ光源81は、表層Bにのみ到達する短波長のレーザ光L1を出力する。
レーザ光源82は、レーザ光L1の波長よりも長波長であり、表層Bを伝播して深部Cまで到達する長波長のレーザ光L2を出力する。 The
The
The
制御装置42は、記憶部10、解析部111、血管判定部121、制御部13および条件設定部141をさらに備えている。
条件設定部141は、レーザ光が表層Bにのみ到達する表層条件と、レーザ光が表層Bを伝播して深部Cまで到達する深部条件に、レーザ光の条件を順番に設定する。具体的には、条件設定部141は、表層条件において短波長のレーザ光L1をレーザ光源81から出力させ、深部条件において長波長のレーザ光L2をレーザ光源82から出力させる。 Thecontrol device 42 further includes a storage unit 10, an analysis unit 111, a blood vessel determination unit 121, a control unit 13, and a condition setting unit 141.
Thecondition setting unit 141 sequentially sets the laser light conditions to a surface layer condition where the laser light reaches only the surface layer B and a deep part condition where the laser light propagates through the surface layer B and reaches the deep part C. Specifically, the condition setting unit 141 causes the laser light source 81 to output the short wavelength laser light L1 in the surface layer condition, and causes the laser light source 82 to output the long wavelength laser light L2 in the deep part condition.
条件設定部141は、レーザ光が表層Bにのみ到達する表層条件と、レーザ光が表層Bを伝播して深部Cまで到達する深部条件に、レーザ光の条件を順番に設定する。具体的には、条件設定部141は、表層条件において短波長のレーザ光L1をレーザ光源81から出力させ、深部条件において長波長のレーザ光L2をレーザ光源82から出力させる。 The
The
これにより、図11に示されるように、2つのレーザ光源81,82からは短波長のレーザ光(第1のレーザ光)L1と長波長のレーザ光(第2のレーザ光)L2とが順番に出力され(ステップSB1’,SB3’)、組織Aの同一位置に短波長のレーザ光L1と長波長のレーザ光L2とが順番に照射される。そして、短波長のレーザ光L2による散乱光Sに基づく実時間ドップラースペクトル(第1実時間ドップラースペクトル)Freal_s(ω)と、長波長のレーザ光L2による散乱光Sに基づく実時間ドップラースペクトル(第2実時間ドップラースペクトル)Freal_d(ω)とが順番に解析部111において取得される(ステップSB2’,SB4’)。表層条件の実時間ドップラースペクトルFreal_s(ω)は、表層Bの細い血管D1のドップラースペクトルのみを含み得るが、深部条件の実時間ドップラースペクトルFreal_d(ω)は、表層Bの細い血管D1および深部Cの太い血管D2のドップラースペクトルも含み得る。2つのドップラースペクトルFreal_s(ω),Freal_d(ω)は、記憶部10に記憶される。
Accordingly, as shown in FIG. 11, the two laser light sources 81 and 82 sequentially turn the short-wavelength laser light (first laser light) L1 and the long-wavelength laser light (second laser light) L2. (Steps SB1 ′ and SB3 ′), and the short wavelength laser beam L1 and the long wavelength laser beam L2 are sequentially irradiated to the same position of the tissue A. Then, a real-time Doppler spectrum (first real-time Doppler spectrum) Freal_s (ω) based on the scattered light S by the short-wavelength laser light L2 and a real-time Doppler spectrum (first time based on the scattered light S by the long-wavelength laser light L2). 2 real-time Doppler spectra) Freal_d (ω) are sequentially acquired by the analysis unit 111 (steps SB2 ′ and SB4 ′). The real-time Doppler spectrum Freal_s (ω) in the surface layer condition may include only the Doppler spectrum of the thin blood vessel D1 in the surface layer B, but the real-time Doppler spectrum Freal_d (ω) in the deep condition is the thin blood vessel D1 and the deep portion C in the surface layer B. May also include a Doppler spectrum of a thick blood vessel D2. Two Doppler spectra Freal_s (ω) and Freal_d (ω) are stored in the storage unit 10.
解析部111、血管判定部121および制御部13による処理は、図8および図11に示されるように、第2の実施形態と同一である。
本実施形態の効果は、第2の実施形態と同一であるので説明を省略する。 The processes performed by theanalysis unit 111, the blood vessel determination unit 121, and the control unit 13 are the same as those in the second embodiment, as shown in FIGS.
Since the effect of this embodiment is the same as that of the second embodiment, the description thereof is omitted.
本実施形態の効果は、第2の実施形態と同一であるので説明を省略する。 The processes performed by the
Since the effect of this embodiment is the same as that of the second embodiment, the description thereof is omitted.
(第4の実施形態)
次に、本発明の第4の実施形態に係る観察システムについて図12から図14を参照して説明する。
本実施形態においては、第1から第3の実施形態と異なる構成について説明し、第1から第3の実施形態と共通する構成については同一の符号を付して説明を省略する。
本実施形態に係る観察システム200は、図12に示されるように、第1から第3の実施形態に係る血管認識装置100,101,102のいずれかと、内視鏡装置(観察装置)20と、血管認識装置100,101,102および内視鏡装置20に接続された演算部30と、演算部30に接続された表示装置40とを備えている。図12には、一例として、第1の実施形態に係る血管認識装置100を備える構成が示されている。 (Fourth embodiment)
Next, an observation system according to a fourth embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, configurations that are different from those in the first to third embodiments will be described, and configurations that are the same as those in the first to third embodiments will be denoted by the same reference numerals and description thereof will be omitted.
As shown in FIG. 12, anobservation system 200 according to the present embodiment includes any one of the blood vessel recognition devices 100, 101, and 102 according to the first to third embodiments, an endoscope device (observation device) 20, and The blood vessel recognition devices 100, 101, 102, and the endoscope device 20 are provided with a calculation unit 30 and a display device 40 connected to the calculation unit 30. FIG. 12 shows a configuration including the blood vessel recognition device 100 according to the first embodiment as an example.
次に、本発明の第4の実施形態に係る観察システムについて図12から図14を参照して説明する。
本実施形態においては、第1から第3の実施形態と異なる構成について説明し、第1から第3の実施形態と共通する構成については同一の符号を付して説明を省略する。
本実施形態に係る観察システム200は、図12に示されるように、第1から第3の実施形態に係る血管認識装置100,101,102のいずれかと、内視鏡装置(観察装置)20と、血管認識装置100,101,102および内視鏡装置20に接続された演算部30と、演算部30に接続された表示装置40とを備えている。図12には、一例として、第1の実施形態に係る血管認識装置100を備える構成が示されている。 (Fourth embodiment)
Next, an observation system according to a fourth embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, configurations that are different from those in the first to third embodiments will be described, and configurations that are the same as those in the first to third embodiments will be denoted by the same reference numerals and description thereof will be omitted.
As shown in FIG. 12, an
内視鏡装置20は、生体内の内視鏡画像を取得し、取得された内視鏡画像を演算部30に送信する。符号21は、組織Aに向かって照明光を射出する照明部であり、符号22は、組織Aの内視鏡画像を取得する撮像部である。
演算部30は、上述した制御装置4と同様に、例えばコンピュータからなる。演算部30は、血管認識装置の制御装置4、41または42から、レーザ光L,L1,L2の照射条件、可視光源9のオンオフ情報、血管判定部12,121による表層Bおよび深部Cの血管D1,D2の有無の判定結果情報を受信する。 Theendoscope device 20 acquires an in-vivo endoscopic image, and transmits the acquired endoscopic image to the calculation unit 30. Reference numeral 21 denotes an illuminating unit that emits illumination light toward the tissue A, and reference numeral 22 denotes an imaging unit that acquires an endoscopic image of the tissue A.
Thearithmetic unit 30 is composed of, for example, a computer, like the control device 4 described above. The calculation unit 30 receives irradiation conditions of the laser light L, L1, and L2, on / off information of the visible light source 9, and blood vessels in the surface layer B and the deep part C by the blood vessel determination units 12 and 121 from the control device 4, 41, or 42 of the blood vessel recognition device. The determination result information on the presence / absence of D1 and D2 is received.
演算部30は、上述した制御装置4と同様に、例えばコンピュータからなる。演算部30は、血管認識装置の制御装置4、41または42から、レーザ光L,L1,L2の照射条件、可視光源9のオンオフ情報、血管判定部12,121による表層Bおよび深部Cの血管D1,D2の有無の判定結果情報を受信する。 The
The
また、演算部30は、血管認識装置100,101,102によって血管D1,D2が認識された(血管D1,D2が存在すると判定された)時点で内視鏡装置20によって取得された内視鏡画像の第1のフレームにおいてレーザ光L,L1,L2のスポット位置を算出し、第1のフレームとは異なる時刻に内視鏡装置20によって取得された第2のフレームの、算出されたスポット位置と対応する位置にマーカを付加する。これにより、血管認識装置100,101,102によって複数の異なる時刻に血管が認識され、図13に示されるように、演算部30によって複数のマーカE1,E2が付加された内視鏡画像が表示装置40に表示されるようになっている。演算部30による具体的な処理については、国際公開第2016/171274号を参照することができる。
In addition, the calculation unit 30 is an endoscope acquired by the endoscope device 20 when the blood vessels D1 and D2 are recognized by the blood vessel recognition devices 100, 101, and 102 (when it is determined that the blood vessels D1 and D2 exist). The spot positions of the laser beams L, L1, and L2 are calculated in the first frame of the image, and the calculated spot positions of the second frame acquired by the endoscope apparatus 20 at a time different from the first frame. A marker is added at a position corresponding to. As a result, blood vessels are recognized at a plurality of different times by the blood vessel recognition devices 100, 101, and 102, and an endoscopic image to which a plurality of markers E1 and E2 are added is displayed by the arithmetic unit 30 as shown in FIG. It is displayed on the device 40. For specific processing by the arithmetic unit 30, International Publication No. 2016/171274 can be referred to.
このように、本実施形態によれば、それまでに血管D1,D2が認識された位置にマーカE1,E2が付された内視鏡画像が表示装置40に表示されるので、術者は、血管D1,D2の分布や走行をマーカE1,E2に基づいて容易に認識することができる。
Thus, according to the present embodiment, since the endoscope image with the markers E1 and E2 attached to the positions where the blood vessels D1 and D2 have been recognized so far is displayed on the display device 40, the operator can The distribution and running of the blood vessels D1, D2 can be easily recognized based on the markers E1, E2.
このときに、演算部30は、深部Cの太い血管D2が認識されたときにのみマーカE2を付加することで、深部Cの太い血管D2のみが表示装置40に表示されるようにしてもよい。
あるいは、演算部30は、表層Bの細い血管D1および深部Cの太い血管D2にマーカE1,E2をそれぞれ付与して表示装置40に表示させてもよい。この場合、演算部30は、表層Bの血管D1のマーカE1と深部Cの血管D1のマーカE2の態様を互いに異ならせてもよい。例えば、マーカE1,E2の色相を異ならせてもよく、明るさを異ならせもよい。特に、術者にとって注目すべき深部Cの太い血管D2のマーカE2を、マーカE1に対して強調することが好ましい。 At this time, thecalculation unit 30 may add the marker E2 only when the thick blood vessel D2 in the deep part C is recognized, so that only the thick blood vessel D2 in the deep part C is displayed on the display device 40. .
Alternatively, thecalculation unit 30 may give the markers E1 and E2 to the thin blood vessel D1 having the surface layer B and the thick blood vessel D2 having the deep portion C, respectively, and cause the display device 40 to display them. In this case, the calculation unit 30 may make the aspects of the marker E1 of the blood vessel D1 of the surface layer B and the marker E2 of the blood vessel D1 of the deep portion C different from each other. For example, the hues of the markers E1 and E2 may be different or the brightness may be different. In particular, it is preferable to emphasize the marker E2 of the thick blood vessel D2 of the deep part C that should be noted by the surgeon with respect to the marker E1.
あるいは、演算部30は、表層Bの細い血管D1および深部Cの太い血管D2にマーカE1,E2をそれぞれ付与して表示装置40に表示させてもよい。この場合、演算部30は、表層Bの血管D1のマーカE1と深部Cの血管D1のマーカE2の態様を互いに異ならせてもよい。例えば、マーカE1,E2の色相を異ならせてもよく、明るさを異ならせもよい。特に、術者にとって注目すべき深部Cの太い血管D2のマーカE2を、マーカE1に対して強調することが好ましい。 At this time, the
Alternatively, the
マーカE1,E2は、同一の内視鏡画像に重畳表示されてもよいが、別々の内視鏡画像に重畳表示され、図14に示されるように、表示装置40に並列表示されてもよい。また、表層Bと深部Cの血管の両方、表層Bの血管のみ、および深部Cの血管のみにマーカE1,E2が重畳された3つの内視鏡画像が表示装置40に並列表示されてもよい。
The markers E1 and E2 may be superimposed on the same endoscopic image, but may be superimposed on different endoscopic images and displayed in parallel on the display device 40 as shown in FIG. . Also, three endoscopic images in which the markers E1 and E2 are superimposed on both the surface layer B and the blood vessel in the deep portion C, only the blood vessel in the surface layer B, and only the blood vessel in the deep portion C may be displayed on the display device 40 in parallel. .
さらに、表層Bの血管D1および深部Cの血管D2にそれぞれマーカE1,E2を付すか否かを、術者が図示しないユーザインターフェイスを使用して選択することができるように構成されていてもよい。
また、演算部30は、内視鏡画像においてマーカE1,E2が付された血管に関する情報(例えば、深さや太さ等の判定結果の情報)を対応する位置に表示させてもよい。 Furthermore, it may be configured such that the operator can select whether or not to attach the markers E1 and E2 to the blood vessel D1 of the surface layer B and the blood vessel D2 of the deep portion C using a user interface (not shown). .
Moreover, the calculatingpart 30 may display the information (for example, information of determination results, such as depth and thickness) regarding the blood vessels to which the markers E1 and E2 are attached in the endoscopic image at corresponding positions.
また、演算部30は、内視鏡画像においてマーカE1,E2が付された血管に関する情報(例えば、深さや太さ等の判定結果の情報)を対応する位置に表示させてもよい。 Furthermore, it may be configured such that the operator can select whether or not to attach the markers E1 and E2 to the blood vessel D1 of the surface layer B and the blood vessel D2 of the deep portion C using a user interface (not shown). .
Moreover, the calculating
さらに、演算部30は、組織Aの表面上におけるレーザ光L,L1,L2の走査軌跡Fを内視鏡画像上に重畳表示してもよい。このようにすることで、術者が組織Aに対して外科的な処置を行う場合に、その処置対象の領域において既に血管認識が行われたか否かを術者に認識させることができる。レーザ光L,L1,L2の走査軌跡Fの表示と非表示とを、術者が切り替え可能に構成されていてもよい。
Further, the calculation unit 30 may superimpose and display the scanning trajectories F of the laser beams L, L1, and L2 on the surface of the tissue A on the endoscopic image. In this way, when the surgeon performs a surgical treatment on the tissue A, the surgeon can recognize whether or not blood vessel recognition has already been performed in the treatment target region. The surgeon may be configured to switch between display and non-display of the scanning trajectory F of the laser beams L, L1, and L2.
100,101,102 血管認識装置
1 プローブ
2,21 光源ユニット
3 光検出部
4,41,42 制御装置
5 プローブ本体
6 照射用光ファイバ
7 受光用光ファイバ
8,81,82 レーザ光源
9 可視光源
10 記憶部
11,111 解析部
12,121 血管判定部
13 制御部
14,141 条件設定部
20 内視鏡装置(観察装置)
30 演算部
40 表示装置
200 観察システム
A 組織
B 表層
C 深部
D1,D2 血管
E1,E2 マーカ
F 走査軌跡 100, 101, 102 Blood vessel recognition device 1 Probe 2, 21 Light source unit 3 Light detection unit 4, 41, 42 Control device 5 Probe body 6 Irradiation optical fiber 7 Light reception optical fiber 8, 81, 82 Laser light source 9 Visible light source 10 Storage unit 11, 111 Analysis unit 12, 121 Blood vessel determination unit 13 Control unit 14, 141 Condition setting unit 20 Endoscope device (observation device)
30arithmetic unit 40 display device 200 observation system A tissue B surface layer C deep part D1, D2 blood vessel E1, E2 marker F scanning locus
1 プローブ
2,21 光源ユニット
3 光検出部
4,41,42 制御装置
5 プローブ本体
6 照射用光ファイバ
7 受光用光ファイバ
8,81,82 レーザ光源
9 可視光源
10 記憶部
11,111 解析部
12,121 血管判定部
13 制御部
14,141 条件設定部
20 内視鏡装置(観察装置)
30 演算部
40 表示装置
200 観察システム
A 組織
B 表層
C 深部
D1,D2 血管
E1,E2 マーカ
F 走査軌跡 100, 101, 102 Blood vessel recognition device 1
30
Claims (8)
- 生体内の組織の深部に存在する太い血管を認識する血管認識装置であって、
前記深部まで到達可能なレーザ光を前記組織に照射するレーザ光照射部と、
前記レーザ光の照射によって前記組織で発生する散乱光の強度の時間波形を取得し、取得された時間波形をフーリエ変換して実時間ドップラースペクトルを取得するスペクトル取得部と、
前記太い血管に比べて直径が小さい前記組織の表層の細い血管のドップラースペクトルを記憶する記憶部と、
該記憶部に記憶されている前記表層の細い血管のドップラースペクトルを用いて、前記スペクトル取得部によって取得された前記実時間ドップラースペクトルに含まれる前記表層の細い血管のドップラースペクトルを分離する解析部と、
該解析部によって前記細い血管のドップラースペクトルが分離された前記実時間ドップラースペクトルに基づいて、前記深部に前記太い血管が存在するか否かを判定する血管判定部とを備える血管認識装置。 A blood vessel recognition device for recognizing a thick blood vessel existing in a deep part of a tissue in a living body,
A laser beam irradiation unit that irradiates the tissue with a laser beam that can reach the deep part; and
A spectrum acquisition unit that acquires a time waveform of the intensity of scattered light generated in the tissue by irradiation of the laser light, and obtains a real-time Doppler spectrum by Fourier transforming the acquired time waveform;
A storage unit for storing a Doppler spectrum of a thin blood vessel in a surface layer of the tissue having a diameter smaller than that of the thick blood vessel;
An analysis unit that separates the Doppler spectrum of the thin blood vessel in the surface layer included in the real-time Doppler spectrum acquired by the spectrum acquisition unit using the Doppler spectrum of the thin blood vessel in the surface layer stored in the storage unit; ,
A blood vessel recognition apparatus comprising: a blood vessel determination unit that determines whether or not the thick blood vessel exists in the deep part based on the real-time Doppler spectrum obtained by separating the Doppler spectrum of the thin blood vessel by the analysis unit. - 前記記憶部が、前記表層の細い血管のドップラースペクトルである第1基底スペクトルと、前記深部の太い血管のドップラースペクトルである第2基底スペクトルとを記憶し、
前記解析部が、前記実時間ドップラースペクトルと、前記第1基底スペクトルおよび前記第2基底スペクトルの線形和との差分が最小になるときの、前記線形和における前記第2基底スペクトルの係数を算出し、
前記血管判定部が、前記解析部によって算出された前記第2基底スペクトルの係数に基づいて、前記深部に前記太い血管が存在するか否かを判定する請求項1に記載の血管認識装置。 The storage unit stores a first base spectrum that is a Doppler spectrum of a thin blood vessel in the surface layer and a second base spectrum that is a Doppler spectrum of a deep blood vessel in the deep part,
The analysis unit calculates a coefficient of the second base spectrum in the linear sum when the difference between the real-time Doppler spectrum and the linear sum of the first base spectrum and the second base spectrum is minimized. ,
The blood vessel recognition device according to claim 1, wherein the blood vessel determination unit determines whether or not the thick blood vessel exists in the deep portion based on a coefficient of the second base spectrum calculated by the analysis unit. - 前記レーザ光照射部が、前記表層のみに到達する第1のレーザ光と前記深部まで到達する第2のレーザ光とを順番に前記組織に照射し、
前記スペクトル取得部が、前記第1のレーザ光の照射による前記散乱光に基づく第1実時間ドップラースペクトルと、前記第2のレーザ光の照射による前記散乱光に基づく第2実時間ドップラースペクトルとを順番に取得し、
前記記憶部が、前記第1実時間ドップラースペクトルを前記表層の細い血管のドップラースペクトルとして記憶し、
前記解析部が、前記第1実時間ドップラースペクトルに基づいて前記第2実時間ドップラースペクトルに含まれる前記表層の細い血管のドップラースペクトルを推定し、推定された前記表層の細い血管のドップラースペクトルを前記第2実時間ドップラースペクトルから減算して差分スペクトルを算出し、
前記血管判定部が、算出された前記差分スペクトルに基づいて、前記深部に前記太い血管が存在するか否かを判定する請求項1に記載の血管認識装置。 The laser light irradiation unit sequentially irradiates the tissue with a first laser light that reaches only the surface layer and a second laser light that reaches the deep part,
The spectrum acquisition unit includes: a first real-time Doppler spectrum based on the scattered light by the first laser light irradiation; and a second real-time Doppler spectrum based on the scattered light by the second laser light irradiation. Get in order,
The storage unit stores the first real-time Doppler spectrum as the Doppler spectrum of the thin blood vessel in the surface layer;
The analysis unit estimates a Doppler spectrum of the thin blood vessel of the surface layer included in the second real time Doppler spectrum based on the first real time Doppler spectrum, and the estimated Doppler spectrum of the thin blood vessel of the surface layer is estimated. Subtract from the second real-time Doppler spectrum to calculate the difference spectrum;
The blood vessel recognition device according to claim 1, wherein the blood vessel determination unit determines whether or not the thick blood vessel exists in the deep portion based on the calculated difference spectrum. - 前記レーザ光照射部が、低強度の前記第1のレーザ光と、該第1のレーザ光に比べて高強度の前記第2のレーザ光を照射する請求項3に記載の血管認識装置。 The blood vessel recognition device according to claim 3, wherein the laser beam irradiation unit irradiates the first laser beam with low intensity and the second laser beam with higher intensity than the first laser beam.
- 前記レーザ光照射部が、短波長の前記第1のレーザ光と、該第1のレーザ光に比べて長波長の前記第2のレーザ光を照射する請求項3に記載の血管認識装置。 The blood vessel recognition device according to claim 3, wherein the laser beam irradiation unit irradiates the first laser beam having a short wavelength and the second laser beam having a longer wavelength than the first laser beam.
- 前記レーザ光の前記組織への照射位置に可視光を照射する可視光照射部を備え、
該可視光照射部は、前記血管判定部によって前記深部に前記太い血管が存在すると判定されたときにのみ、前記組織へ前記可視光を照射する請求項1から請求項5のいずれかに記載の血管認識装置。 A visible light irradiation unit that irradiates visible light to the irradiation position of the laser light to the tissue,
The visible light irradiation unit irradiates the tissue with the visible light only when the blood vessel determination unit determines that the thick blood vessel is present in the deep part. Blood vessel recognition device. - 請求項1から請求項6のいずれかに記載の血管認識装置と、
前記生体内の前記組織を観察する観察装置と、
該観察装置によって取得された前記組織の画像を表示する表示装置とを備える観察システム。 The blood vessel recognition device according to any one of claims 1 to 6,
An observation device for observing the tissue in the living body;
An observation system comprising: a display device that displays an image of the tissue acquired by the observation device. - 前記血管認識装置によって前記深部の太い血管が認識された時点で前記観察装置によって取得された第1のフレームにおいて第1のレーザスポット位置を算出し、前記第1のフレームとは異なる時刻に取得された第2のフレームに対し、前記第1のフレームに対応する前記第2のフレーム上の位置に前記第1のレーザスポット位置に対応するマーカを付加するための演算部を備え、
前記表示装置が、前記観察装置によって取得された画像に対し、複数の異なる時刻に血管が認識され前記演算部によって付加された複数の前記マーカを表示する請求項7に記載の観察システム。 The first laser spot position is calculated in the first frame acquired by the observation device when the deep blood vessel is recognized by the blood vessel recognition device, and is acquired at a time different from that of the first frame. A calculation unit for adding a marker corresponding to the first laser spot position to a position on the second frame corresponding to the first frame with respect to the second frame;
The observation system according to claim 7, wherein the display device displays a plurality of the markers that are recognized by a blood vessel at a plurality of different times and added by the calculation unit with respect to an image acquired by the observation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015616 WO2018193526A1 (en) | 2017-04-18 | 2017-04-18 | Blood vessel identification apparatus and observation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015616 WO2018193526A1 (en) | 2017-04-18 | 2017-04-18 | Blood vessel identification apparatus and observation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193526A1 true WO2018193526A1 (en) | 2018-10-25 |
Family
ID=63855677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015616 WO2018193526A1 (en) | 2017-04-18 | 2017-04-18 | Blood vessel identification apparatus and observation system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018193526A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004500210A (en) * | 2000-03-30 | 2004-01-08 | イントラルーミナル・セラピューティクス・インコーポレーテッド | Method and apparatus for guiding a guide wire |
JP2006239444A (en) * | 1998-11-20 | 2006-09-14 | Fuji Photo Film Co Ltd | Imaging device of blood vessel and discriminating device of blood vessel, and flow velocity meter for scattered fluid |
-
2017
- 2017-04-18 WO PCT/JP2017/015616 patent/WO2018193526A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006239444A (en) * | 1998-11-20 | 2006-09-14 | Fuji Photo Film Co Ltd | Imaging device of blood vessel and discriminating device of blood vessel, and flow velocity meter for scattered fluid |
JP2004500210A (en) * | 2000-03-30 | 2004-01-08 | イントラルーミナル・セラピューティクス・インコーポレーテッド | Method and apparatus for guiding a guide wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5340648B2 (en) | Subject information calculation apparatus and subject information calculation method | |
US10238299B2 (en) | Photoacoustic image-generating apparatus and light source control method | |
JP6564402B2 (en) | Blood vessel recognition device | |
US10672123B2 (en) | Image processing apparatus, endoscope system, and image processing method | |
JP2002095663A (en) | Method of acquiring optical tomographic image of sentinel lymph node and its device | |
JP2011516865A (en) | System and method for intravascular structure analysis correcting chemical analysis modalities | |
JP6749250B2 (en) | Non-invasive optical method for measuring the characteristics of flowing blood | |
US20160081712A1 (en) | Device, system, and method for insertion of a medical device into a subject | |
JP2010081972A (en) | Surgical treatment system and surgical treatment instrument | |
JP7368597B2 (en) | Endoscopic laser system with laser interlock | |
US9002439B2 (en) | Blood vessel wall analyzing device and blood vessel wall analyzing method | |
US10149599B2 (en) | Processing apparatus | |
JP6784667B2 (en) | Surgical equipment | |
WO2016151787A1 (en) | Blood flow measuring method for blood vessel identification | |
WO2009157229A1 (en) | Scatterer interior observation device and scatterer interior observation method | |
US10825175B2 (en) | Apparatus, method, and medium for reducing pixel values in unnecessary regions in medical images | |
JP2010154935A (en) | Optical coherence tomographic imaging apparatus | |
WO2015092872A1 (en) | Biophotonic measurement apparatus and biophotonic measurement method using same | |
US20200170569A1 (en) | Blood-vessel recognizing method and blood-vessel recognizing device | |
WO2018193526A1 (en) | Blood vessel identification apparatus and observation system | |
WO2017010486A1 (en) | Blood vessel recognition system | |
JP2010223770A (en) | Scatterer inside observation device, and scatterer inside observation method | |
WO2018135005A1 (en) | Signal processing device, photoacoustic wave imaging device, and signal processing method | |
JP2018512574A (en) | Optical coherence tomography scan processing | |
JP6481024B2 (en) | Blood vessel exploration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906763 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906763 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |