+

WO2018193563A1 - Ice maker - Google Patents

Ice maker Download PDF

Info

Publication number
WO2018193563A1
WO2018193563A1 PCT/JP2017/015782 JP2017015782W WO2018193563A1 WO 2018193563 A1 WO2018193563 A1 WO 2018193563A1 JP 2017015782 W JP2017015782 W JP 2017015782W WO 2018193563 A1 WO2018193563 A1 WO 2018193563A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
tray
ice tray
ice making
cooling
Prior art date
Application number
PCT/JP2017/015782
Other languages
French (fr)
Japanese (ja)
Inventor
松本 真理子
舞子 柴田
伊藤 敬
大治 澤田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2017409899A priority Critical patent/AU2017409899B2/en
Priority to CN201780088497.9A priority patent/CN110494704B/en
Priority to PCT/JP2017/015782 priority patent/WO2018193563A1/en
Priority to JP2019513150A priority patent/JP6729799B2/en
Priority to TW106117837A priority patent/TWI651503B/en
Publication of WO2018193563A1 publication Critical patent/WO2018193563A1/en
Priority to AU2020294172A priority patent/AU2020294172B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/06Apparatus for disintegrating, removing or harvesting ice without the use of saws by deforming bodies with which the ice is in contact, e.g. using inflatable members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice

Definitions

  • This invention relates to an ice making machine for making ice.
  • Patent Document 1 describes an ice making machine provided in a refrigerator.
  • the ice making machine described in Patent Document 1 includes, for example, a first ice making tray and a second ice making tray.
  • a first ice making tray By using the first ice tray, ice of the first shape can be made.
  • a second ice tray By using the second ice tray, ice having a second shape different from the first shape can be produced.
  • An object of the present invention is to provide an ice making machine capable of making ice with different shapes using the same ice tray.
  • the ice making machine includes an ice tray, a cooler that cools water in the ice tray, and a heater that heats the ice in the ice tray.
  • the first ice making mode includes a first cooling step by a cooler. In the first cooling step, water in the ice tray is cooled at the first cooling rate.
  • the second ice making mode includes a second cooling step by the cooler and a heating step by the heater after the second cooling step. In the second cooling step, the water in the ice tray is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate.
  • An ice making machine includes an ice tray, a cooler that cools water in the ice tray, a heater that heats ice in the ice tray, and a motor that generates a force for elastically deforming the ice tray.
  • the first ice making mode includes a first cooling step by a cooler and a heating step by a heater after the first cooling step. In the first cooling step, water in the ice tray is cooled at the first cooling rate.
  • the second ice making mode includes a second cooling step by the cooler and a deformation step by the motor after the second cooling step. In the second cooling step, the water in the ice tray is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate.
  • the ice making machine includes, for example, an ice tray, a cooler, and a heater.
  • the first ice making mode includes a first cooling step by a cooler. In the first cooling step, water in the ice tray is cooled at the first cooling rate.
  • the second ice making mode includes a second cooling step by the cooler and a heating step by the heater after the second cooling step. In the second cooling step, the water in the ice tray is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate.
  • FIG. 4 is a view showing an AA cross section of FIG. 3. It is a perspective view which shows the example of an ice tray. It is a figure for demonstrating the example of the movable mechanism of an ice tray. It is a perspective view which shows the example of a case. It is a flowchart which shows the operation example of the ice making machine in Embodiment 1 of this invention. It is a flowchart which shows the operation example of the ice making machine in Embodiment 1 of this invention.
  • FIG. 14 is a timing chart when the second ice making mode shown in FIG. 13 and the first ice making mode shown in FIG. 12 are alternately performed. It is a figure which shows the shear bond strength of ice and stainless steel.
  • FIG. 1 is a cross-sectional view showing an example of a refrigerator 1 equipped with an ice making machine.
  • the refrigerator 1 includes a main body 2, for example.
  • a refrigerator compartment 3 In the main body 2, for example, a refrigerator compartment 3, an ice making chamber 4, a freezer compartment 5, and a vegetable compartment 6 are formed. Frozen food or the like is stored in the freezer compartment 5. Vegetables and plastic bottles are stored in the vegetable room 6.
  • a switching chamber may be formed in the main body 2.
  • the switching room is a room in which the set temperature can be switched.
  • the switching chamber is arranged next to the ice making chamber 4, for example.
  • Each room formed in the main body 2 is partitioned by a heat insulating member.
  • urethane foam or a vacuum heat insulating material is used as the heat insulating member.
  • the refrigerator 1 further includes a refrigeration cycle, for example.
  • the refrigeration cycle includes, for example, a compressor 7, a condenser (not shown), an expander (not shown), and an evaporator 8.
  • the refrigeration cycle further includes a pipe through which the refrigerant passes.
  • FIG. 2 is a diagram showing electrical connections of devices provided in the refrigerator 1.
  • the refrigerator 1 further includes temperature sensors 9a to 9e, an operation panel 10, a blower 11, a motor 12, a damper 13, and a control device 14, for example.
  • the temperature of each room formed in the main body 2 is detected by the temperature sensors 9a to 9e.
  • the temperature of the refrigerator compartment 3 is detected by the temperature sensor 9a.
  • the temperature of the ice making chamber 4 is detected by the temperature sensor 9b.
  • the temperature of the freezer compartment 5 is detected by the temperature sensor 9c.
  • the temperature of the vegetable compartment 6 is detected by the temperature sensor 9d.
  • the temperature of the switching chamber is detected by the temperature sensor 9e.
  • Information on the temperatures detected by the temperature sensors 9 a to 9 e is input to the control device 14.
  • Each of the temperature sensors 9a to 9e includes a temperature detection thermistor, for example.
  • the operation panel 10 is provided on the front surface of the door 2a of the refrigerator compartment 3, for example.
  • the door 2a is a part of the main body 2.
  • the operation panel 10 may include a device for a user to input information.
  • the user inputs information for changing the set temperature of each room from the operation panel 10.
  • Information input from the operation panel 10 by the user is input to the control device 14.
  • the operation panel 10 may include a display.
  • the status of each room formed in the main body 2 is displayed on the display.
  • the temperature of each room is displayed on the display.
  • the function of the operation panel 10 may be provided in an external device.
  • a user's smartphone may have the input function and the display function. In such a case, the control device 14 transmits and receives information to and from the user's smartphone.
  • the blower 11 generates an air flow for sending the air cooled by the evaporator 8 to each room.
  • Air outlets leading to the feed duct are formed on the wall surface of each room.
  • the air cooled by the evaporator 8 passes through the feed duct and is sent to each room.
  • a suction port leading to the return duct is formed on the wall surface of each room. Air in each room returns from the inlet and enters the duct. The air in which the stored items are cooled in each room passes through the return duct and returns to the space where the evaporator 8 is disposed. The air that has returned to the space is cooled by passing through the evaporator 8.
  • the motor 12 drives the damper 13.
  • the dampers 13 are arranged at various locations on the air path. For example, the damper 13 opens and closes the feed duct. When the feed duct leading to the refrigerator compartment 3 is closed by the damper 13, cold air is not supplied to the refrigerator compartment 3 even if the blower 11 is driven. If the feed duct leading to the refrigerator compartment 3 is not closed by the damper 13, the blower 11 is driven to supply cold air to the refrigerator compartment 3. The same applies to other rooms. For example, when the feed duct leading to the ice making chamber 4 is closed by the damper 13, cold air is not supplied to the ice making chamber 4 even if the blower 11 is driven. If the feed duct leading to the ice making chamber 4 is not closed by the damper 13, the blower 11 is driven to supply cold air to the ice making chamber 4.
  • Control device 14 controls each device provided in refrigerator 1. For example, the control device 14 controls the compressor 7, the blower 11, and the motor 12. The control device 14 controls each device based on temperature information detected by the temperature sensors 9a to 9e, information input from the operation panel 10, and the like. When the operation panel 10 includes a display device, the control device 14 controls the display device.
  • the refrigerator 1 has the function of making ice, that is, the function of an ice making machine.
  • the functions of the ice making machine included in the refrigerator 1 will be described in detail with reference to FIGS.
  • FIG. 3 is a cross-sectional view showing an example of the ice making chamber 4.
  • FIG. 4 is a view showing a cross section taken along line AA of FIG.
  • the refrigerator 1 includes, for example, a tank 15, a pipe 16, a motor 17, a pump 18, an ice tray 19, a support shaft 20a, a support shaft 20b, a frame 21, a motor 22, a stopper 23, a temperature sensor 24, a heater 25, a case 26, and a sensor. 27 is further provided.
  • Water for making ice is stored in the tank 15.
  • the tank 15 is arrange
  • the pipe 16 is connected to the tank 15.
  • the pipe 16 passes through a portion of the main body 2 that partitions the refrigerator compartment 3 and the ice making chamber 4.
  • the lower end of the pipe 16 opens downward in the ice making chamber 4.
  • the lower end of the pipe 16 is disposed immediately above the ice tray 19.
  • the motor 17 drives the pump 18.
  • the motor 17 is provided in the main body 2.
  • the motor 17 is controlled by the control device 14.
  • the pump 18 is provided inside the tank 15. When the pump 18 is driven, the water stored in the tank 15 passes through the pipe 16 and is supplied to the ice tray 19.
  • FIG. 5 is a perspective view showing an example of the ice tray 19.
  • FIG. 5 shows an example in which twelve depressions 19 a for making ice are formed in the ice tray 19.
  • the notch 19b is formed in the partition that forms the recess 19a. By forming the notches 19b, water can be evenly supplied to the recesses 19a.
  • the ice tray 19 is arranged at the upper part of the ice making chamber 4.
  • the ice tray 19 is preferably made of metal at least at a portion where water can be put.
  • the ice tray 19 is a molded product of stainless steel.
  • the ice tray 19 may be made of copper or aluminum.
  • the ice tray 19 may be made of resin.
  • the support shaft 20 a and the support shaft 20 b are provided on the side surface of the ice tray 19 so as to protrude from the ice tray 19.
  • the side surface from which the support shaft 20a protrudes and the side surface from which the support shaft 20b protrudes face in opposite directions.
  • the support shaft 20a and the support shaft 20b are arranged in a straight line.
  • the frame 21 is fixed to the wall surface of the ice making chamber 4.
  • the support shaft 20a and the support shaft 20b are supported by the frame 21. That is, the ice tray 19 is supported by the frame 21 so as to be rotatable about the support shaft 20a and the support shaft 20b.
  • the motor 22 rotates the ice tray 19. That is, when the motor 22 is driven, the ice tray 19 rotates about the support shaft 20a and the support shaft 20b.
  • the motor 22 is controlled by the control device 14.
  • the motor 22 is provided in the frame 21, for example.
  • the support shaft 20 a is connected to the motor 22.
  • a reduction gear may be provided between the motor 22 and the support shaft 20a.
  • the support shaft 20b is rotatably held by the frame 21.
  • FIG. 6 is a diagram for explaining an example of the movable mechanism of the ice tray 19.
  • the stopper 23 is disposed between the frame 21 and the wall surface of the ice making chamber 4.
  • the stopper 23 includes, for example, a disk member 23a and a rod-shaped member 23b.
  • a through hole 23c is formed at the center of the disk member 23a.
  • the support shaft 20b penetrates the through hole 23c.
  • the stopper 23 can rotate around the support shaft 20b.
  • the rod-shaped member 23b is provided on the disk member 23a.
  • the rod-shaped member 23b protrudes from the disk member 23a.
  • the rod-shaped member 23b is disposed in parallel with the support shaft 20b.
  • the support shaft 20b passes through the through hole 21a formed in the frame 21.
  • a long hole 21 b is formed in the frame 21.
  • FIG. 6 shows an example in which a long hole 21b is formed in the frame 21 in an arc shape centering on the support shaft 20b.
  • the stopper 23 is disposed so that the rod-like member 23b penetrates the long hole 21b. That is, the long hole 21b is formed in accordance with the position where the rod-shaped member 23b is disposed when the stopper 23 rotates.
  • the stopper 23 stops rotating when the rod-shaped member 23b hits the edge of the long hole 21b.
  • the ice tray 19 is supported by the frame 21 so as to be rotatable.
  • the temperature sensor 24 is a sensor for detecting the temperature of water or ice in the ice tray 19.
  • the temperature sensor 24 is provided in the ice tray 19, for example.
  • FIG. 4 shows an example in which the temperature sensor 24 is arranged in the valley on the back surface of the ice tray 19.
  • the temperature sensor 24 includes a thermistor for temperature detection attached to the back surface of the ice tray 19.
  • the temperature sensor 24 is covered with a heat insulating material 28. Information on the temperature detected by the temperature sensor 24 is input to the control device 14.
  • the heater 25 is an example of a heater that heats the ice in the ice tray 19.
  • the heater 25 is provided in the ice tray 19 so as to cover, for example, a portion of the ice tray 19 into which water is put from the back side. Although details will be described later, the ice tray 19 is elastically deformed. For this reason, the heater 25 is preferably deformed following the deformation of the ice tray 19.
  • the heater 25 may be, for example, a planar heating element in which a heating wire is disposed on silicon rubber.
  • FIG. 7 is a perspective view showing an example of the case 26.
  • the case 26 includes a partition 26a.
  • the space inside the case 26 is partitioned into a first space 26b and a second space 26c by a partition 26a.
  • the ice tray 19 rotates around the support shaft 20a and the support shaft 20b.
  • the first space 26b is a space for receiving ice falling from the ice tray 19 when the ice tray 19 rotates in one direction. For example, when the ice tray 19 rotates in the direction B shown in FIG.
  • the second space 26c is a space for receiving ice falling from the ice tray 19 when the ice tray 19 rotates in a direction opposite to the one direction. For example, when the ice tray 19 rotates in the direction C shown in FIG. 4, the ice in the ice tray 19 falls into the second space 26c.
  • the partition 26a may be slidable so that the volume of the first space 26b and the volume of the second space 26c can be changed.
  • the partition 26 a may be detachable from the main body portion of the case 26.
  • Sensor 27 detects that case 26 is full of ice.
  • the sensor 27 includes a lever disposed above the case 26. When a certain amount of ice accumulates in the case 26, the lever is pushed by the ice. When the lever is pushed, it is detected that the case 26 is full of ice. When the sensor 27 detects that the case 26 is full of ice, it outputs detection information to the control device 14.
  • the refrigeration cycle, the blower 11, the motor 12, and the damper 13 are examples of a cooler that cools the water in the ice tray 19.
  • the air cooled by the evaporator 8 passes through the feed duct and is sent to the ice making chamber 4.
  • An air outlet 4 a and a suction port 4 b are formed on the wall surface of the ice making chamber 4.
  • Cold air enters the ice making chamber 4 from the outlet 4a.
  • FIG. 3 shows an example in which the outlet 4 a is formed at a position higher than the ice tray 19 on the inner wall of the ice making chamber 4.
  • FIG. 3 shows an example in which a suction port 4 b is formed at a position lower than the ice tray 19 on the inner wall surface of the ice making chamber 4.
  • the air that has passed under the ice tray 19 returns from the suction port 4b and enters the duct.
  • the water in the ice tray 19 begins to freeze from the top.
  • the temperature sensor 24 is provided on the back surface of the ice tray 19, it can be more accurately determined from the temperature information detected by the temperature sensor 24 that the water placed in the ice tray 19 has been frozen. Furthermore, if the temperature sensor 24 is covered with the heat insulating material 28, it is possible to prevent cold air from directly hitting the temperature sensor 24 even if the airflow is generated.
  • Refrigerator 1 shown in the present embodiment has a function of making ice in at least two modes.
  • the refrigerator 1 can make ice in the first ice making mode.
  • the refrigerator 1 can make ice in the second ice making mode.
  • block ice is made in the first ice making mode.
  • crushed ice is made in the second ice making mode.
  • the size of the ice made in the second ice making mode is smaller than the size of the ice made in the first ice making mode.
  • 8 and 9 are flowcharts showing an operation example of the ice making machine according to Embodiment 1 of the present invention. 8 and 9 show a series of operations.
  • the control device 14 drives the blower 11 at the rotation speed f_n [rpm] (S101).
  • the subscript n indicates an arbitrary value.
  • the control device 14 controls the blower 11 based on temperature information detected by the temperature sensors 9a to 9e. For this reason, the rotation speed f_n of the blower 11 changes according to the situation at that time.
  • the rotation speed f_n is a certain set value or 0 which is smaller than the maximum value.
  • control device 14 controls the motor 17 and drives the pump 18 for a predetermined time (S102). Thereby, the water stored in the tank 15 is supplied to the ice tray 19. A certain amount of water is stored in the ice tray 19.
  • the operation panel 10 includes a first button and a second button.
  • the first button and the second button may be a mechanical button having a contact or a button displayed on the screen.
  • first information indicating that the user has selected block ice is input to the control device 14.
  • second information indicating that the user has selected the crashed ice is input to the control device 14.
  • the method for selecting the type of ice is not limited to the above example.
  • the control device 14 specifies the type of ice selected by the user (S103). In the example shown in the present embodiment, the control device 14 determines whether the first information is input from the operation panel 10 or the second information is input. When the first information is input from the operation panel 10, the control device 14 starts a first ice making mode for making block ice (S104). When the second information is input from the operation panel 10, the control device 14 starts a second ice making mode for making crushed ice (S114).
  • the first ice making mode includes a first cooling step by a cooler.
  • the water in the ice tray 19 is cooled at the first cooling rate.
  • the cooler is supplied to the ice making chamber 4 by driving the blower 11 at the rotation speed f_n.
  • the control device 14 determines whether or not the temperature Tit [° C.] detected by the temperature sensor 24 is lower than the first ice making temperature (S105).
  • the first ice making temperature is a temperature for determining that the water in the ice tray 19 is frozen. 8 and 9 show an example in which the first ice making temperature is ⁇ 13 ° C.
  • the first ice making temperature is preset.
  • the control device 14 determines that the water put in the ice making tray 19 is frozen in S102.
  • the control device 14 drives the motor 22 to rotate the ice tray 19 normally (S106). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG.
  • the controller 14 starts counting the time tr1 [sec] when the ice tray 19 starts rotating in S106 (S107).
  • the control device 14 determines whether or not the time tr1 at which the counting is started in S107 has reached the first set time (S108).
  • the first set time is a time for applying a certain amount of twist to the ice tray 19.
  • the first set time is set in advance.
  • the rotation of the stopper 23 stops when the rod-like member 23b hits the edge of the long hole 21b.
  • the first set time is set to a time longer than the time from when the ice tray 19 starts to rotate until the rod-like member 23b hits the edge of the long hole 21b. For this reason, the drive of the motor 22 is continued even after the rod-shaped member 23b hits the edge of the long hole 21b.
  • the rotation of one end of the ice tray 19 stops. This one end is an end to which the support shaft 20b is connected. On the other hand, even if the rod-like member 23b hits the edge of the long hole 21b, the other end of the ice tray 19 continues to rotate.
  • the other end is an end to which the support shaft 20a is connected.
  • a twist is added to the ice tray 19 and the ice tray 19 is elastically deformed.
  • the ice moves away from the ice tray 19.
  • the ice separated from the ice tray 19 falls into the case 26.
  • ice having a size corresponding to the size of the recess 19 a falls from the ice tray 19. That is, block ice falls from the ice tray 19 in S108. Block ice accumulates in the first space of the case 26.
  • the controller 14 controls the motor 22 to reverse the ice tray 19 when the first set time has elapsed since the rotation of the ice tray 19 was started in S106 (S109). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG. When starting the rotation of the ice tray 19 in S109, the control device 14 starts counting time tr2 [sec] (S110). The control device 14 determines whether or not the time tr2 at which counting is started in S110 has reached the first set time (S111). The control device 14 stops the motor 22 when the first set time elapses after starting the rotation of the ice tray 19 in S109. Thereby, the ice tray 19 stops in the state arrange
  • the control device 14 determines whether or not the case 26 is full of ice (S113). When the detection information is input from the sensor 27, the control device 14 determines that the case 26 is full of ice. In such a case, the control device 14 stops the operation for making ice. If the detection information is not input from the sensor 27, the control device 14 determines that the case 26 is not full of ice. In such a case, the control device 14 continues the operation for making ice. The control device 14 drives the pump 18 for a certain time to supply water for making the next ice to the ice tray 19 (S102).
  • the second ice making mode includes a second cooling step by a cooler and a heating step by a heater.
  • the heating process is performed after the second cooling process.
  • the water in the ice tray 19 is cooled at the second cooling rate.
  • the second cooling rate is greater than the first cooling rate. That is, in the second cooling step, water is cooled more rapidly than in the first cooling step. This rapid cooling is performed in order to disperse the bubbles as evenly as possible in the ice. It is preferable that the ice formed by the second cooling step is entirely clouded by bubbles.
  • ice is crushed by expanding air trapped in the ice.
  • the heating process after ice making is performed to expand the air trapped in the ice.
  • the control device 14 drives the blower 11 at the rotation speed f_Max [rpm] (S115).
  • the subscript Max indicates the maximum value.
  • rapid cooling may be performed by other methods.
  • the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S116). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S102. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 returns the rotational speed of the blower 11 to f_n (S117).
  • the control device 14 sets the output of the heater 25 to W_Max (S118).
  • the control device 14 starts counting time th1 [sec] (S119).
  • the control device 14 determines whether or not the time th1 at which the counting is started in S119 has reached the second set time (S120).
  • the second set time is a time for expanding the air trapped in the ice and crushing the ice.
  • the second set time is set in advance. By heating the heater 25 with the maximum output for the second set time, the ice is shattered on the ice tray 19.
  • the ice temperature at this time is, for example, ⁇ 10 ° C.
  • the control device 14 stops energizing the heater 25 when the second set time has elapsed after starting energizing the heater 25 in S118 (S121). Further, when the second set time has elapsed, the control device 14 drives the motor 22 to reverse the ice tray 19 (S122). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG.
  • the control device 14 starts counting the time tr1 when the ice tray 19 starts rotating in S122 (S123).
  • the control device 14 determines whether or not the time tr1 at which the counting is started in S123 has reached the first set time (S124).
  • the first set time is set to be longer than the time from when the ice tray 19 starts to rotate until the rod-like member 23b hits the edge of the long hole 21b. Even after the rod-shaped member 23b hits the edge of the long hole 21b, the drive of the motor 22 is continued, whereby the ice tray 19 is twisted. Thereby, the ice tray 19 is elastically deformed, and the crushed ice made in S120 falls from the ice tray 19. Crashed ice accumulates in the second space of the case 26.
  • the control device 14 controls the motor 22 to rotate the ice tray 19 forward when the first set time has elapsed since the rotation of the ice tray 19 was started in S122 (S125). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG.
  • the control device 14 starts counting time tr2 (S126).
  • the control device 14 determines whether or not the time tr2 at which the counting is started in S126 has reached the first set time (S127).
  • the control device 14 stops the motor 22 when the first set time elapses after the rotation of the ice tray 19 is started in S125. Thereby, the ice tray 19 stops in the state arrange
  • the control device 14 determines whether or not the case 26 is full of ice (S129). When the detection information is input from the sensor 27, the control device 14 determines that the case 26 is full of ice. In such a case, the control device 14 stops the operation for making ice. If the detection information is not input from the sensor 27, the control device 14 determines that the case 26 is not full of ice. In such a case, the control device 14 continues the operation for making ice. The control device 14 drives the pump 18 for a certain time to supply water for making the next ice to the ice tray 19 (S102).
  • Ice is a solid formed by cooling water.
  • the impurity air is discharged out of the crystal. That is, as water freezes, air is pushed out to the ice growth interface. The air that is pushed out to the ice growth interface gathers and is trapped inside is a bubble that can be seen in the ice.
  • the material changes in length as the temperature changes.
  • the rate of change in length with respect to temperature depends on the substance. This rate of change is called linear expansion coefficient.
  • the linear expansion coefficient of ice is 50.7 ⁇ 10 ⁇ 6 [1 / K]. Since air is a gas, the linear expansion coefficient of air is a reciprocal of the absolute temperature T.
  • the initial temperature of ice is set to ⁇ 18 ° C., which is the temperature of an ice making room of a general refrigerator.
  • the size of the ice is 20 [mm] square.
  • Expression 1 represents a length change ⁇ L when the temperature is increased from the initial temperature to the temperature Tn.
  • FIG. 10 is a diagram showing a change in length with respect to the temperature of ice and a change in length with respect to the temperature of air trapped in the ice.
  • ⁇ L obtained by Expression 1 is shown as the expansion distance.
  • FIG. 10 shows the calculation results when the ice temperature is increased from ⁇ 18 ° C. to 0 ° C.
  • FIG. 11 is a graph showing a ratio of air length change to ice length change. That is, FIG. 11 shows the change in air length when the change in ice length is 1 at each temperature.
  • the ice can be broken more finely by quickly raising the temperature of many bubbles trapped in the ice. That is, a finer crushed ice can be made.
  • the ice tray 19 is preferably made of metal having good thermal conductivity.
  • the heater 25 is preferably a planar heating element capable of simultaneously heating a wide range.
  • FIG. 12 is a flowchart showing another operation example of the ice making machine according to Embodiment 1 of the present invention.
  • FIGS. 12 and 9 show a series of operations.
  • the first ice making mode includes a first cooling step by a cooler and a first heating step by a heater.
  • the first heating step is performed after the first cooling step.
  • the ice in the ice tray 19 is heated at the first heating rate.
  • the heating process in the second ice making mode ice in the ice tray 19 is heated at the second heating rate.
  • the heating process shown in FIG. 9 is referred to as a second heating process.
  • the second heating rate is greater than the first heating rate.
  • the processing flow shown in FIG. 12 corresponds to the processing flow shown in FIG. 8 plus the processing shown in S130 to S132.
  • the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S105).
  • the control device 14 determines that the water put in the ice making tray 19 is frozen in S102.
  • the control device 14 sets the output of the heater 25 to W_n (S130).
  • the output W_n is a set value that is smaller than the maximum output W_Max.
  • the controller 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature (S131).
  • the second ice making temperature is a temperature for determining that the ice is easily separated from the ice tray 19.
  • FIG. 12 shows an example in which the second ice making temperature is ⁇ 1 ° C.
  • the second ice making temperature is preset.
  • the control device 14 stops energizing the heater 25 (S132). Further, when the temperature Tit becomes equal to or higher than the second ice making temperature, the control device 14 drives the motor 22 to rotate the ice tray 19 normally (S106). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG.
  • the processes shown in S106 to S113 in FIG. 12 are the same as the processes shown in S106 to S113 in FIG.
  • FIG. 13 is a flowchart showing another example of operation of the ice making machine according to Embodiment 1 of the present invention.
  • FIGS. 12 and 13 show a series of operations.
  • the second ice making mode includes a second cooling step by a cooler, a second heating step and a third heating step by a heater.
  • the second heating step is performed after the second cooling step.
  • the third heating step is performed after the second heating step.
  • the ice in the ice tray 19 is heated at the second heating rate.
  • the third heating step the ice in the ice tray 19 is heated at the third heating rate.
  • the second heating rate is greater than the third heating rate.
  • the second heating rate is greater than the first heating rate.
  • the third heating step is performed to make it easier for the ice to leave the ice tray 19.
  • the processing flow shown in FIG. 13 corresponds to the processing flow shown in FIG. 9 plus the processing shown in S133 and S134.
  • the control device 14 drives the blower 11 at the rotation speed f_Max (S115).
  • the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S116). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S102. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 returns the rotational speed of the blower 11 to f_n (S117).
  • control device 14 sets the output of the heater 25 to W_Max (S118).
  • control device 14 starts counting the time th1 (S119).
  • the control device 14 determines whether or not the time th1 at which the counting is started in S119 has reached the second set time (S120).
  • the control device 14 sets the output of the heater 25 to W_n when the second set time has elapsed after starting energization of the heater 25 in S118 (S133).
  • the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature (S134).
  • FIG. 13 shows an example in which the second ice making temperature is ⁇ 1 ° C.
  • the control device 14 stops energizing the heater 25 (S121). Further, when the temperature Tit becomes equal to or higher than the second ice making temperature, the control device 14 drives the motor 22 to reverse the ice tray 19 (S122). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG.
  • the processing shown in S121 to S129 in FIG. 13 is the same as the processing shown in S121 to S129 in FIG.
  • FIG. 14 is a timing chart when the second ice making mode shown in FIG. 13 and the first ice making mode shown in FIG. 12 are alternately performed.
  • a section I shown in FIG. 14 corresponds to the processing from S101 to S103 in FIG.
  • Section II corresponds to the processing from S115 to S117 in FIG.
  • the second cooling step is included in Section II.
  • Section III corresponds to the processing from S118 to S120 in FIG.
  • the second heating step is included in Section III.
  • the section IV corresponds to the processing from S133 to S129 in FIG.
  • the third heating step is included in the first part of section IV.
  • the section V corresponds to the process of S105 in FIG.
  • the first cooling process is included in the section V.
  • the section VI corresponds to the processing from S130 to S113 in FIG.
  • the first heating step is included in the first part of the section VI.
  • the second cooling rate in the second cooling step is higher than the first cooling rate in the first cooling step.
  • the cooling rate is larger as the time taken for a predetermined amount of water at a certain set temperature to become ice at the target temperature is shorter.
  • the ice formed by the second cooling step is preferably entirely clouded by bubbles.
  • the ice growth rate needs to be 2 [mm / hour] or more.
  • the ice growth rate is desirably 5 [mm / hour] or more.
  • the second heating rate in the second heating step is greater than the first heating rate in the first heating step and the third heating rate in the third heating step.
  • the heating rate is larger as the time taken for a specified amount of ice at a certain set temperature to become ice at a target temperature higher than the set temperature is shorter.
  • ice having different shapes can be made using the same ice tray 19. There is no need to use multiple ice trays to make ice of different shapes. For this reason, an apparatus can be reduced in size.
  • the refrigerator can be downsized. In other words, the capacity of other rooms formed in the refrigerator can be increased.
  • an example of making block ice and crushed ice has been described. This is an example. Other shapes of ice may be made using the ice tray 19.
  • the case 26 includes a partition 26a.
  • Block ice is stored in the first space partitioned by the partition 26a.
  • Crushed ice is stored in the second space partitioned by the partition 26a. Since block ice and crushed ice can be stored separately, it is easy to use.
  • the ice tray 19 may be made of metal only in the portion where water can be put and resin in the remaining portion. If it is such an ice tray 19, compared with the ice tray 19 whose all parts are metal, force required in order to carry out elastic deformation can be reduced. For this reason, a small and inexpensive motor 22 can be used.
  • the cooler including the evaporator 8 and the blower 11 is illustrated.
  • the cooler an apparatus for directly cooling the ice tray 19 may be used.
  • the cooler may include a cooling pipe provided on the back surface of the ice tray 19.
  • the cooler may include a Peltier element provided on the back surface of the ice tray 19.
  • the heater 25 provided on the back surface of the ice tray 19 is exemplified as the heater.
  • the heater a device that blows warm air on the ice in the ice tray 19 may be used as the heater.
  • the case 26 is disposed in the ice making chamber 4 .
  • the case 26 may be arranged in a room other than the ice making room 4.
  • the case 26 which can open and extract the door of the ice making chamber 4 was illustrated. This is an example.
  • the refrigerator 1 By providing the refrigerator 1 with a dispenser function, the ice may be taken out without opening the entire door of the ice making chamber 4.
  • Embodiment 2 FIG. In Embodiment 1, the example which crushes ice by heating rapidly cooled ice was demonstrated. In the present embodiment, an example will be described in which a force is applied to the ice by twisting the ice tray 19 to break the ice.
  • the motor 22 generates a force for elastically deforming the ice tray 19.
  • a large number of air is trapped in the rapidly cooled ice. For this reason, if the ice tray 19 is elastically deformed, the ice in the ice tray 19 can be shattered.
  • the ice tray 19 when the ice tray 19 is twisted, it is necessary to prevent the ice from coming off the ice tray 19 before the ice breaks.
  • FIG. 15 is a diagram showing the shear bond strength between ice and stainless steel.
  • FIG. 16 is a diagram showing the shear bond strength between ice and polystyrene. 15 and 16 are cited from the following. "Keiichi Maeno,” Ice adhesion and friction ", Japan Society of Snow and Ice, Vol. 68, no. 5, p. 449-455 (2006) "
  • the ice tray 19 is made of metal at least at a portion into which water is put.
  • the portion into which water is put is not polished after being removed from the mold.
  • the ice tray 19 is made of resin, for example, it is preferable that the surface of the portion into which water is put is rougher than the surface of the other portion. Such an ice tray 19 may be applied to the example shown in the first embodiment.
  • 17 and 18 are flowcharts showing an example of the operation of the ice making machine according to Embodiment 2 of the present invention. 17 and 18 show a series of operations. The processing flow shown in FIG. 17 is the same as the processing flow shown in FIG.
  • the control device 14 drives the blower 11 at the rotation speed f_n [rpm] (S201). Further, the control device 14 controls the motor 17 to drive the pump 18 for a certain time (S202). Thereby, the water stored in the tank 15 is supplied to the ice tray 19. A certain amount of water is stored in the ice tray 19.
  • the control device 14 specifies the type of ice selected by the user (S203). For example, when the first information is input from the operation panel 10, the control device 14 starts a first ice making mode for making block ice (S204). When the second information is input from the operation panel 10, the control device 14 starts a second ice making mode for making crushed ice (S214).
  • the first ice making mode includes a first cooling step by a cooler and a first heating step by a heater.
  • the first cooling step the water in the ice tray 19 is cooled at the first cooling rate.
  • the cooler is supplied to the ice making chamber 4 by driving the blower 11 at the rotation speed f_n.
  • the first heating step is performed after the first cooling step.
  • the ice in the ice tray 19 is heated at the first heating rate.
  • the first heating step is performed to make it easy for the ice to leave the ice tray 19.
  • the control device 14 determines whether or not the temperature Tit [° C.] detected by the temperature sensor 24 is lower than the first ice making temperature (S205).
  • FIG. 17 shows an example in which the first ice making temperature is ⁇ 13 ° C.
  • the first ice making temperature is preset.
  • the control device 14 determines that the water put in the ice tray 19 is frozen in S202. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 sets the output of the heater 25 to W_n (S230).
  • the controller 14 determines whether or not the temperature Tit [° C.] detected by the temperature sensor 24 is equal to or higher than the second ice making temperature (S231).
  • FIG. 17 shows an example in which the second ice making temperature is ⁇ 1 ° C.
  • the second ice making temperature is preset.
  • the control device 14 stops energizing the heater 25 (S232). Further, when the temperature Tit becomes equal to or higher than the second ice making temperature, the control device 14 drives the motor 22 to rotate the ice tray 19 normally (S206). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG.
  • the processes shown in S206 to S213 in FIG. 17 are the same as the processes shown in S106 to S113 in FIG.
  • the second ice making mode includes a second cooling step by the cooler and a deformation step of the ice tray 19 by the motor 22.
  • the deformation process is performed after the second cooling process.
  • the water in the ice tray 19 is cooled at the second cooling rate.
  • the second cooling rate is greater than the first cooling rate.
  • the control device 14 drives the blower 11 at the rotation speed f_Max [rpm] (S215). Also in the present embodiment, an example in which rapid cooling is performed by increasing the rotation speed of the blower 11 will be described. In the second cooling step, rapid cooling may be performed by other methods.
  • the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S216). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S202. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 returns the rotational speed of the blower 11 to f_n (S217).
  • the control device 14 drives the motor 22 to reverse the ice tray 19 (S222). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG.
  • the control device 14 starts counting time tr1 [sec] (S223).
  • the control device 14 determines whether or not the time tr1 at which counting is started in S223 has reached the first set time (S224).
  • the first set time is set to a time longer than the time from when the ice tray 19 starts to rotate until the rod-shaped member 23b hits the edge of the long hole 21b. Even after the rod-shaped member 23b hits the edge of the long hole 21b, the drive of the motor 22 is continued, whereby the ice tray 19 is twisted. Thereby, the ice tray 19 is elastically deformed, and the ice in the ice tray 19 is shattered. In other words, in S224, the crashed ice falls from the ice tray 19. Crashed ice accumulates in the second space of the case 26.
  • the control device 14 controls the motor 22 to rotate the ice tray 19 forward (S225).
  • the processes shown in S225 to S229 in FIG. 18 are the same as the processes shown in S125 to S129 in FIG.
  • control device 14 includes a processing circuit including, for example, a processor 29 and a memory 30 as hardware resources.
  • the control device 14 implements each function described above by executing a program stored in the memory 30 by the processor 29.
  • the processor 29 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • a CPU Central Processing Unit
  • a central processing unit a central processing unit
  • a processing unit an arithmetic unit
  • a microprocessor a microcomputer
  • a DSP Digital Signal Processor
  • the memory 30 a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed.
  • Semiconductor memories that can be used include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
  • control device 14 may be realized by hardware.
  • hardware for realizing the function of the control device 14 a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof may be employed.
  • the present invention can be applied to various devices that make ice from water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

This ice maker is provided with an ice making tray (19), a cooler for cooling water in the ice making tray (19), and a heater for heating ice in the ice making tray (19). A first ice making mode includes a first cooling step employing the cooler. In the first cooling step, the water in the ice making tray (19) is cooled at a first cooling rate. A second ice making mode includes a second cooling step employing the cooler and a heating step employing the heater, after the second cooling step. In the second cooling step, the water in the ice making tray (19) is cooled at a second cooling rate. The second cooling rate is higher than the first cooling rate.

Description

製氷機Ice machine
 この発明は、氷を作るための製氷機に関する。 This invention relates to an ice making machine for making ice.
 特許文献1に、冷蔵庫に備えられた製氷機が記載されている。特許文献1に記載された製氷機は、例えば第1の製氷皿及び第2の製氷皿を備える。第1の製氷皿を用いることにより、第1の形状の氷を作ることができる。第2の製氷皿を用いることにより、第1の形状とは異なる第2の形状の氷を作ることができる。 Patent Document 1 describes an ice making machine provided in a refrigerator. The ice making machine described in Patent Document 1 includes, for example, a first ice making tray and a second ice making tray. By using the first ice tray, ice of the first shape can be made. By using the second ice tray, ice having a second shape different from the first shape can be produced.
日本特許第3781767号公報Japanese Patent No. 378767
 特許文献1に記載された製氷機では、例えば第1の製氷皿を用いて第2の形状の氷を作ることはできない。同様に、第2の製氷皿を用いて第1の形状の氷を作ることはできない。特許文献1に記載された製氷機では、形状の異なる氷を作るために、複数の製氷皿が必要になるといった問題があった。 In the ice making machine described in Patent Document 1, it is impossible to make ice of the second shape using, for example, the first ice tray. Similarly, the first ice cube cannot be made using the second ice tray. The ice making machine described in Patent Document 1 has a problem in that a plurality of ice trays are required to produce ice having different shapes.
 この発明は、上述のような課題を解決するためになされた。この発明の目的は、同じ製氷皿を用いて、形状の異なる氷を作ることができる製氷機を提供することである。 This invention has been made to solve the above-described problems. An object of the present invention is to provide an ice making machine capable of making ice with different shapes using the same ice tray.
 この発明に係る製氷機は、製氷皿と、製氷皿にある水を冷却する冷却器と、製氷皿にある氷を加熱する加熱器と、を備える。第1製氷モードは、冷却器による第1冷却工程を備える。第1冷却工程では、製氷皿にある水が第1冷却速度で冷却される。第2製氷モードは、冷却器による第2冷却工程と第2冷却工程後の加熱器による加熱工程とを備える。第2冷却工程では、製氷皿にある水が第2冷却速度で冷却される。第2冷却速度は第1冷却速度より大きい。 The ice making machine according to the present invention includes an ice tray, a cooler that cools water in the ice tray, and a heater that heats the ice in the ice tray. The first ice making mode includes a first cooling step by a cooler. In the first cooling step, water in the ice tray is cooled at the first cooling rate. The second ice making mode includes a second cooling step by the cooler and a heating step by the heater after the second cooling step. In the second cooling step, the water in the ice tray is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate.
 この発明に係る製氷機は、製氷皿と、製氷皿にある水を冷却する冷却器と、製氷皿にある氷を加熱する加熱器と、製氷皿を弾性変形させるための力を発生させるモータと、を備える。第1製氷モードは、冷却器による第1冷却工程と第1冷却工程後の加熱器による加熱工程とを備える。第1冷却工程では、製氷皿にある水が第1冷却速度で冷却される。第2製氷モードは、冷却器による第2冷却工程と第2冷却工程後のモータによる変形工程とを備える。第2冷却工程では、製氷皿にある水が第2冷却速度で冷却される。第2冷却速度は第1冷却速度より大きい。 An ice making machine according to this invention includes an ice tray, a cooler that cools water in the ice tray, a heater that heats ice in the ice tray, and a motor that generates a force for elastically deforming the ice tray. . The first ice making mode includes a first cooling step by a cooler and a heating step by a heater after the first cooling step. In the first cooling step, water in the ice tray is cooled at the first cooling rate. The second ice making mode includes a second cooling step by the cooler and a deformation step by the motor after the second cooling step. In the second cooling step, the water in the ice tray is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate.
 この発明に係る製氷機は、例えば製氷皿、冷却器及び加熱器を備える。第1製氷モードは、冷却器による第1冷却工程を備える。第1冷却工程では、製氷皿にある水が第1冷却速度で冷却される。第2製氷モードは、冷却器による第2冷却工程と第2冷却工程後の加熱器による加熱工程とを備える。第2冷却工程では、製氷皿にある水が第2冷却速度で冷却される。第2冷却速度は第1冷却速度より大きい。この発明に係る製氷機であれば、同じ製氷皿を用いて、形状の異なる氷を作ることができる。 The ice making machine according to the present invention includes, for example, an ice tray, a cooler, and a heater. The first ice making mode includes a first cooling step by a cooler. In the first cooling step, water in the ice tray is cooled at the first cooling rate. The second ice making mode includes a second cooling step by the cooler and a heating step by the heater after the second cooling step. In the second cooling step, the water in the ice tray is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate. With the ice making machine according to the present invention, ice having different shapes can be made using the same ice tray.
製氷機を備えた冷蔵庫の例を示す断面図である。It is sectional drawing which shows the example of the refrigerator provided with the ice making machine. 冷蔵庫に備えられた機器の電気的な接続を示す図である。It is a figure which shows the electrical connection of the apparatus with which the refrigerator was equipped. 製氷室の例を示す断面図である。It is sectional drawing which shows the example of an ice making chamber. 図3のA-A断面を示す図である。FIG. 4 is a view showing an AA cross section of FIG. 3. 製氷皿の例を示す斜視図である。It is a perspective view which shows the example of an ice tray. 製氷皿の可動機構の例を説明するための図である。It is a figure for demonstrating the example of the movable mechanism of an ice tray. ケースの例を示す斜視図である。It is a perspective view which shows the example of a case. この発明の実施の形態1における製氷機の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the ice making machine in Embodiment 1 of this invention. この発明の実施の形態1における製氷機の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the ice making machine in Embodiment 1 of this invention. 氷の温度に対する長さ変化と氷に閉じ込められた空気の温度に対する長さ変化とを示す図である。It is a figure which shows the length change with respect to the temperature of ice, and the length change with respect to the temperature of the air confined in ice. 氷の長さ変化に対する空気の長さ変化の比を示す図である。It is a figure which shows ratio of the length change of the air with respect to the length change of ice. この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。It is a flowchart which shows the other operation example of the ice making machine in Embodiment 1 of this invention. この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。It is a flowchart which shows the other operation example of the ice making machine in Embodiment 1 of this invention. 図13に示す第2製氷モードと図12に示す第1製氷モードとを交互に行う時のタイミングチャートである。FIG. 14 is a timing chart when the second ice making mode shown in FIG. 13 and the first ice making mode shown in FIG. 12 are alternately performed. 氷とステンレスとのせん断付着強度を示す図である。It is a figure which shows the shear bond strength of ice and stainless steel. 氷とポリスチレンとのせん断付着強度を示す図である。It is a figure which shows the shear bond strength of ice and polystyrene. この発明の実施の形態2における製氷機の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the ice making machine in Embodiment 2 of this invention. この発明の実施の形態2における製氷機の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the ice making machine in Embodiment 2 of this invention.
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。 The present invention will be described with reference to the accompanying drawings. The overlapping description will be simplified or omitted as appropriate. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、製氷機を備えた冷蔵庫1の例を示す断面図である。冷蔵庫1は、例えば本体2を備える。本体2に、例えば冷蔵室3、製氷室4、冷凍室5、及び野菜室6が形成される。冷凍室5に冷凍食品等が収納される。野菜室6に野菜及びペットボトル等が収納される。本体2に、切替室を形成しても良い。切替室は、設定温度を切り替えることができる部屋である。切替室は、例えば製氷室4の隣に配置される。本体2に形成された各部屋は、断熱部材によって仕切られる。断熱部材として、例えば発泡ウレタン或いは真空断熱材が用いられる。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing an example of a refrigerator 1 equipped with an ice making machine. The refrigerator 1 includes a main body 2, for example. In the main body 2, for example, a refrigerator compartment 3, an ice making chamber 4, a freezer compartment 5, and a vegetable compartment 6 are formed. Frozen food or the like is stored in the freezer compartment 5. Vegetables and plastic bottles are stored in the vegetable room 6. A switching chamber may be formed in the main body 2. The switching room is a room in which the set temperature can be switched. The switching chamber is arranged next to the ice making chamber 4, for example. Each room formed in the main body 2 is partitioned by a heat insulating member. For example, urethane foam or a vacuum heat insulating material is used as the heat insulating member.
 冷蔵庫1は、例えば冷凍サイクルを更に備える。冷凍サイクルは、例えば圧縮機7、凝縮器(図示せず)、膨張器(図示せず)、及び蒸発器8を備える。冷凍サイクルは、冷媒が通る配管を更に備える。 The refrigerator 1 further includes a refrigeration cycle, for example. The refrigeration cycle includes, for example, a compressor 7, a condenser (not shown), an expander (not shown), and an evaporator 8. The refrigeration cycle further includes a pipe through which the refrigerant passes.
 図2は、冷蔵庫1に備えられた機器の電気的な接続を示す図である。冷蔵庫1は、例えば温度センサ9a~9e、操作パネル10、送風機11、モータ12、ダンパ13、及び制御装置14を更に備える。 FIG. 2 is a diagram showing electrical connections of devices provided in the refrigerator 1. The refrigerator 1 further includes temperature sensors 9a to 9e, an operation panel 10, a blower 11, a motor 12, a damper 13, and a control device 14, for example.
 本体2に形成された各部屋の温度は、温度センサ9a~9eによって検出される。例えば、温度センサ9aによって冷蔵室3の温度が検出される。温度センサ9bによって製氷室4の温度が検出される。温度センサ9cによって冷凍室5の温度が検出される。温度センサ9dによって野菜室6の温度が検出される。温度センサ9eによって切替室の温度が検出される。温度センサ9a~9eによって検出された温度の情報は、制御装置14に入力される。温度センサ9a~9eは、例えば温度検知用のサーミスタをそれぞれ備える。 The temperature of each room formed in the main body 2 is detected by the temperature sensors 9a to 9e. For example, the temperature of the refrigerator compartment 3 is detected by the temperature sensor 9a. The temperature of the ice making chamber 4 is detected by the temperature sensor 9b. The temperature of the freezer compartment 5 is detected by the temperature sensor 9c. The temperature of the vegetable compartment 6 is detected by the temperature sensor 9d. The temperature of the switching chamber is detected by the temperature sensor 9e. Information on the temperatures detected by the temperature sensors 9 a to 9 e is input to the control device 14. Each of the temperature sensors 9a to 9e includes a temperature detection thermistor, for example.
 操作パネル10は、例えば冷蔵室3の扉2aの前面に設けられる。扉2aは、本体2の一部である。操作パネル10は、使用者が情報を入力するための装置を備えても良い。使用者は、各部屋の設定温度を変更するための情報を操作パネル10から入力する。使用者が操作パネル10から入力した情報は、制御装置14に入力される。操作パネル10は、表示器を備えても良い。表示器に、本体2に形成された各部屋の状況が表示される。例えば、表示器に各部屋の温度が表示される。操作パネル10の上記機能は、外部機器が備えても良い。例えば、使用者のスマートフォンが上記入力機能及び表示機能を備えても良い。かかる場合、制御装置14は、使用者のスマートフォンとの間で情報の送受信を行う。 The operation panel 10 is provided on the front surface of the door 2a of the refrigerator compartment 3, for example. The door 2a is a part of the main body 2. The operation panel 10 may include a device for a user to input information. The user inputs information for changing the set temperature of each room from the operation panel 10. Information input from the operation panel 10 by the user is input to the control device 14. The operation panel 10 may include a display. The status of each room formed in the main body 2 is displayed on the display. For example, the temperature of each room is displayed on the display. The function of the operation panel 10 may be provided in an external device. For example, a user's smartphone may have the input function and the display function. In such a case, the control device 14 transmits and receives information to and from the user's smartphone.
 送風機11は、蒸発器8で冷やされた空気を各部屋に送るための気流を発生させる。各部屋の壁面に、送りダクトに通じる吹出し口が形成される。送風機11が駆動することにより、蒸発器8で冷やされた空気が送りダクトを通り、各部屋に送られる。また、各部屋の壁面に、戻りダクトに通じる吸込み口が形成される。各部屋の空気は、吸込み口から戻りダクトに入る。各部屋で貯蔵物を冷やした空気は、戻りダクトを通り、蒸発器8が配置された空間に戻る。上記空間に戻った空気は、蒸発器8を通過することによって冷却される。 The blower 11 generates an air flow for sending the air cooled by the evaporator 8 to each room. Air outlets leading to the feed duct are formed on the wall surface of each room. When the blower 11 is driven, the air cooled by the evaporator 8 passes through the feed duct and is sent to each room. In addition, a suction port leading to the return duct is formed on the wall surface of each room. Air in each room returns from the inlet and enters the duct. The air in which the stored items are cooled in each room passes through the return duct and returns to the space where the evaporator 8 is disposed. The air that has returned to the space is cooled by passing through the evaporator 8.
 モータ12は、ダンパ13を駆動する。ダンパ13は、風路の各所に配置される。例えば、ダンパ13は送りダクトを開閉する。冷蔵室3に通じる送りダクトがダンパ13によって閉じられると、送風機11が駆動していても冷蔵室3に冷気は供給されない。冷蔵室3に通じる送りダクトがダンパ13によって閉じられていなければ、送風機11が駆動することによって冷蔵室3に冷気が供給される。他の部屋についても同様である。例えば、製氷室4に通じる送りダクトがダンパ13によって閉じられると、送風機11が駆動していても製氷室4に冷気は供給されない。製氷室4に通じる送りダクトがダンパ13によって閉じられていなければ、送風機11が駆動することによって製氷室4に冷気が供給される。 The motor 12 drives the damper 13. The dampers 13 are arranged at various locations on the air path. For example, the damper 13 opens and closes the feed duct. When the feed duct leading to the refrigerator compartment 3 is closed by the damper 13, cold air is not supplied to the refrigerator compartment 3 even if the blower 11 is driven. If the feed duct leading to the refrigerator compartment 3 is not closed by the damper 13, the blower 11 is driven to supply cold air to the refrigerator compartment 3. The same applies to other rooms. For example, when the feed duct leading to the ice making chamber 4 is closed by the damper 13, cold air is not supplied to the ice making chamber 4 even if the blower 11 is driven. If the feed duct leading to the ice making chamber 4 is not closed by the damper 13, the blower 11 is driven to supply cold air to the ice making chamber 4.
 制御装置14は、冷蔵庫1に備えられた各機器を制御する。例えば、制御装置14は、圧縮機7、送風機11及びモータ12を制御する。制御装置14は、温度センサ9a~9eによって検出された温度の情報及び操作パネル10から入力された情報等に基づいて各機器を制御する。操作パネル10が表示器を備える場合、表示器の制御は制御装置14によって行われる。 Control device 14 controls each device provided in refrigerator 1. For example, the control device 14 controls the compressor 7, the blower 11, and the motor 12. The control device 14 controls each device based on temperature information detected by the temperature sensors 9a to 9e, information input from the operation panel 10, and the like. When the operation panel 10 includes a display device, the control device 14 controls the display device.
 冷蔵庫1は、氷を作る機能、即ち製氷機の機能を備える。以下に、図3から図11も参照し、冷蔵庫1が備える製氷機の機能について詳細に説明する。図3は、製氷室4の例を示す断面図である。図4は、図3のA-A断面を示す図である。冷蔵庫1は、例えばタンク15、パイプ16、モータ17、ポンプ18、製氷皿19、支持軸20a、支持軸20b、フレーム21、モータ22、ストッパ23、温度センサ24、ヒータ25、ケース26、及びセンサ27を更に備える。 The refrigerator 1 has the function of making ice, that is, the function of an ice making machine. Hereinafter, the functions of the ice making machine included in the refrigerator 1 will be described in detail with reference to FIGS. FIG. 3 is a cross-sectional view showing an example of the ice making chamber 4. FIG. 4 is a view showing a cross section taken along line AA of FIG. The refrigerator 1 includes, for example, a tank 15, a pipe 16, a motor 17, a pump 18, an ice tray 19, a support shaft 20a, a support shaft 20b, a frame 21, a motor 22, a stopper 23, a temperature sensor 24, a heater 25, a case 26, and a sensor. 27 is further provided.
 タンク15に、氷を作るための水が溜められる。タンク15は、例えば冷蔵室3に配置される。パイプ16は、タンク15に接続される。パイプ16は、本体2のうち冷蔵室3と製氷室4とを仕切る部分を貫通する。パイプ16の下端は、製氷室4で下向きに開口する。パイプ16の下端は、製氷皿19の直上に配置される。 Water for making ice is stored in the tank 15. The tank 15 is arrange | positioned at the refrigerator compartment 3, for example. The pipe 16 is connected to the tank 15. The pipe 16 passes through a portion of the main body 2 that partitions the refrigerator compartment 3 and the ice making chamber 4. The lower end of the pipe 16 opens downward in the ice making chamber 4. The lower end of the pipe 16 is disposed immediately above the ice tray 19.
 モータ17は、ポンプ18を駆動する。モータ17は、本体2に設けられる。モータ17は、制御装置14によって制御される。ポンプ18は、タンク15の内部に設けられる。ポンプ18が駆動することにより、タンク15に溜められた水がパイプ16を通り、製氷皿19に供給される。 The motor 17 drives the pump 18. The motor 17 is provided in the main body 2. The motor 17 is controlled by the control device 14. The pump 18 is provided inside the tank 15. When the pump 18 is driven, the water stored in the tank 15 passes through the pipe 16 and is supplied to the ice tray 19.
 図5は、製氷皿19の例を示す斜視図である。図5は、氷を作るための12個の窪み19aが製氷皿19に形成された例を示す。例えば、窪み19aを形成する仕切りに切欠き19bが形成される。切欠き19bが形成されることにより、各窪み19aに均等に水を供給することができる。製氷皿19は、製氷室4の上部に配置される。製氷皿19は、少なくとも水が入れられる部分が金属製であることが好ましい。例えば、製氷皿19は、ステンレスの成型品である。製氷皿19は銅製或いはアルミ製であっても良い。製氷皿19は樹脂製であっても構わない。 FIG. 5 is a perspective view showing an example of the ice tray 19. FIG. 5 shows an example in which twelve depressions 19 a for making ice are formed in the ice tray 19. For example, the notch 19b is formed in the partition that forms the recess 19a. By forming the notches 19b, water can be evenly supplied to the recesses 19a. The ice tray 19 is arranged at the upper part of the ice making chamber 4. The ice tray 19 is preferably made of metal at least at a portion where water can be put. For example, the ice tray 19 is a molded product of stainless steel. The ice tray 19 may be made of copper or aluminum. The ice tray 19 may be made of resin.
 支持軸20a及び支持軸20bは、製氷皿19から突出するように製氷皿19の側面に設けられる。支持軸20aが突出する側面と支持軸20bが突出する側面とは、互いに反対の方向を向く。支持軸20a及び支持軸20bは、一直線状に配置される。フレーム21は、製氷室4の壁面に固定される。支持軸20a及び支持軸20bは、フレーム21に支持される。即ち、製氷皿19は、支持軸20a及び支持軸20bを中心に回転可能となるようにフレーム21に支持される。 The support shaft 20 a and the support shaft 20 b are provided on the side surface of the ice tray 19 so as to protrude from the ice tray 19. The side surface from which the support shaft 20a protrudes and the side surface from which the support shaft 20b protrudes face in opposite directions. The support shaft 20a and the support shaft 20b are arranged in a straight line. The frame 21 is fixed to the wall surface of the ice making chamber 4. The support shaft 20a and the support shaft 20b are supported by the frame 21. That is, the ice tray 19 is supported by the frame 21 so as to be rotatable about the support shaft 20a and the support shaft 20b.
 モータ22は、製氷皿19を回転させる。即ち、モータ22が駆動することにより、製氷皿19は支持軸20a及び支持軸20bを中心に回転する。モータ22は、制御装置14によって制御される。モータ22は、例えばフレーム21に設けられる。図3に示す例では、支持軸20aがモータ22に連結される。モータ22と支持軸20aとの間に、減速ギアが設けられても良い。支持軸20bは、フレーム21に回転可能に保持される。 The motor 22 rotates the ice tray 19. That is, when the motor 22 is driven, the ice tray 19 rotates about the support shaft 20a and the support shaft 20b. The motor 22 is controlled by the control device 14. The motor 22 is provided in the frame 21, for example. In the example shown in FIG. 3, the support shaft 20 a is connected to the motor 22. A reduction gear may be provided between the motor 22 and the support shaft 20a. The support shaft 20b is rotatably held by the frame 21.
 図6は、製氷皿19の可動機構の例を説明するための図である。ストッパ23は、フレーム21と製氷室4の壁面との間に配置される。ストッパ23は、例えば円盤部材23aと棒状部材23bとを備える。円盤部材23aの中心部に貫通孔23cが形成される。支持軸20bは、貫通孔23cを貫通する。ストッパ23は、支持軸20bを中心に回転可能である。棒状部材23bは、円盤部材23aに設けられる。棒状部材23bは、円盤部材23aから突出する。棒状部材23bは、支持軸20bと平行に配置される。 FIG. 6 is a diagram for explaining an example of the movable mechanism of the ice tray 19. The stopper 23 is disposed between the frame 21 and the wall surface of the ice making chamber 4. The stopper 23 includes, for example, a disk member 23a and a rod-shaped member 23b. A through hole 23c is formed at the center of the disk member 23a. The support shaft 20b penetrates the through hole 23c. The stopper 23 can rotate around the support shaft 20b. The rod-shaped member 23b is provided on the disk member 23a. The rod-shaped member 23b protrudes from the disk member 23a. The rod-shaped member 23b is disposed in parallel with the support shaft 20b.
 支持軸20bは、フレーム21に形成された貫通孔21aを貫通する。また、フレーム21に、長孔21bが形成される。図6は、フレーム21に、支持軸20bを中心とする円弧状に長孔21bが形成される例を示す。ストッパ23は、棒状部材23bが長孔21bを貫通するように配置される。即ち、長孔21bは、ストッパ23が回転した時に棒状部材23bが配置される位置に合わせて形成される。棒状部材23bが長孔21bの縁に当たることによってストッパ23の回転が止まる。上述したように、製氷皿19は回転可能となるようにフレーム21に支持される。製氷皿19が回転すると、製氷皿19の縁が棒状部材23bに当たる。ストッパ23は、棒状部材23bが長孔21bの縁に当たるまで、製氷皿19に押されて回転する。棒状部材23bが長孔21bの縁に当たると、ストッパ23の回転は止まる。ストッパ23の回転が止まると、製氷皿19の変位は棒状部材23bによって阻害される。 The support shaft 20b passes through the through hole 21a formed in the frame 21. In addition, a long hole 21 b is formed in the frame 21. FIG. 6 shows an example in which a long hole 21b is formed in the frame 21 in an arc shape centering on the support shaft 20b. The stopper 23 is disposed so that the rod-like member 23b penetrates the long hole 21b. That is, the long hole 21b is formed in accordance with the position where the rod-shaped member 23b is disposed when the stopper 23 rotates. The stopper 23 stops rotating when the rod-shaped member 23b hits the edge of the long hole 21b. As described above, the ice tray 19 is supported by the frame 21 so as to be rotatable. When the ice tray 19 rotates, the edge of the ice tray 19 hits the rod-shaped member 23b. The stopper 23 is pushed by the ice tray 19 and rotates until the rod-like member 23b hits the edge of the long hole 21b. When the rod-like member 23b hits the edge of the long hole 21b, the rotation of the stopper 23 stops. When the rotation of the stopper 23 stops, the displacement of the ice tray 19 is hindered by the bar-like member 23b.
 温度センサ24は、製氷皿19にある水或いは氷の温度を検出するためのセンサである。温度センサ24は、例えば製氷皿19に設けられる。図4は、温度センサ24が製氷皿19の裏面の谷間に配置される例を示す。例えば、温度センサ24は、製氷皿19の裏面に貼り付けられた温度検知用のサーミスタを備える。図4に示す例では、温度センサ24が断熱材28によって覆われる。温度センサ24によって検出された温度の情報は、制御装置14に入力される。 The temperature sensor 24 is a sensor for detecting the temperature of water or ice in the ice tray 19. The temperature sensor 24 is provided in the ice tray 19, for example. FIG. 4 shows an example in which the temperature sensor 24 is arranged in the valley on the back surface of the ice tray 19. For example, the temperature sensor 24 includes a thermistor for temperature detection attached to the back surface of the ice tray 19. In the example shown in FIG. 4, the temperature sensor 24 is covered with a heat insulating material 28. Information on the temperature detected by the temperature sensor 24 is input to the control device 14.
 ヒータ25は、製氷皿19にある氷を加熱する加熱器の一例である。ヒータ25は、例えば製氷皿19のうち水が入れられる部分を裏面側から覆うように製氷皿19に設けられる。詳細は後述するが、製氷皿19は弾性変形する。このため、ヒータ25は、製氷皿19の変形に追従して変形することが好ましい。ヒータ25は、例えば、シリコンゴムに電熱線を配置した面状発熱体でも良い。 The heater 25 is an example of a heater that heats the ice in the ice tray 19. The heater 25 is provided in the ice tray 19 so as to cover, for example, a portion of the ice tray 19 into which water is put from the back side. Although details will be described later, the ice tray 19 is elastically deformed. For this reason, the heater 25 is preferably deformed following the deformation of the ice tray 19. The heater 25 may be, for example, a planar heating element in which a heating wire is disposed on silicon rubber.
 ケース26に、製氷皿19で作られた氷が溜められる。ケース26は、製氷室4の下部に配置される。ケース26は、製氷皿19の下方に配置される。図7は、ケース26の例を示す斜視図である。図7に示す例では、ケース26は仕切り26aを備える。ケース26の内側の空間は、仕切り26aによって第1空間26bと第2空間26cとに区画される。上述したように、製氷皿19は支持軸20a及び支持軸20bを中心に回転する。第1空間26bは、製氷皿19が一方向に回転した際に製氷皿19から落ちる氷を受けるための空間である。例えば、製氷皿19が図4に示すB方向に回転すると、製氷皿19にある氷が第1空間26bに落下する。第2空間26cは、製氷皿19が上記一方向とは反対の方向に回転した際に製氷皿19から落ちる氷を受けるための空間である。例えば、製氷皿19が図4に示すC方向に回転すると、製氷皿19にある氷が第2空間26cに落下する。仕切り26aは、第1空間26bの体積と第2空間26cの体積とを変更することができるようにスライド可能であっても良い。仕切り26aはケース26の本体部分に着脱可能であっても良い。 In the case 26, ice made from the ice tray 19 is stored. The case 26 is disposed in the lower part of the ice making chamber 4. The case 26 is disposed below the ice tray 19. FIG. 7 is a perspective view showing an example of the case 26. In the example illustrated in FIG. 7, the case 26 includes a partition 26a. The space inside the case 26 is partitioned into a first space 26b and a second space 26c by a partition 26a. As described above, the ice tray 19 rotates around the support shaft 20a and the support shaft 20b. The first space 26b is a space for receiving ice falling from the ice tray 19 when the ice tray 19 rotates in one direction. For example, when the ice tray 19 rotates in the direction B shown in FIG. 4, the ice in the ice tray 19 falls into the first space 26b. The second space 26c is a space for receiving ice falling from the ice tray 19 when the ice tray 19 rotates in a direction opposite to the one direction. For example, when the ice tray 19 rotates in the direction C shown in FIG. 4, the ice in the ice tray 19 falls into the second space 26c. The partition 26a may be slidable so that the volume of the first space 26b and the volume of the second space 26c can be changed. The partition 26 a may be detachable from the main body portion of the case 26.
 センサ27は、ケース26が氷で満杯であることを検出する。例えば、センサ27は、ケース26の上方に配置されたレバーを備える。ケース26に一定量の氷が溜まると、氷によってレバーが押される。レバーが押されることによって、ケース26が氷で満杯であることが検出される。センサ27は、ケース26が氷で満杯であることを検出すると検出情報を制御装置14に出力する。 Sensor 27 detects that case 26 is full of ice. For example, the sensor 27 includes a lever disposed above the case 26. When a certain amount of ice accumulates in the case 26, the lever is pushed by the ice. When the lever is pushed, it is detected that the case 26 is full of ice. When the sensor 27 detects that the case 26 is full of ice, it outputs detection information to the control device 14.
 本実施の形態に示す例において、冷凍サイクル、送風機11、モータ12、及びダンパ13は、製氷皿19にある水を冷却する冷却器の一例である。上述したように、送風機11が駆動することにより、蒸発器8で冷やされた空気が送りダクトを通り、製氷室4に送られる。製氷室4の壁面に、吹出し口4a及び吸込み口4bが形成される。製氷室4には、吹出し口4aから冷気が入る。図3は、製氷室4の奥側の壁面に、製氷皿19より高い位置に吹出し口4aが形成される例を示す。 In the example shown in the present embodiment, the refrigeration cycle, the blower 11, the motor 12, and the damper 13 are examples of a cooler that cools the water in the ice tray 19. As described above, when the blower 11 is driven, the air cooled by the evaporator 8 passes through the feed duct and is sent to the ice making chamber 4. An air outlet 4 a and a suction port 4 b are formed on the wall surface of the ice making chamber 4. Cold air enters the ice making chamber 4 from the outlet 4a. FIG. 3 shows an example in which the outlet 4 a is formed at a position higher than the ice tray 19 on the inner wall of the ice making chamber 4.
 製氷室4では、送風機11が駆動すると、製氷皿19にある水を冷却するための気流が発生する。例えば、吹出し口4aから製氷室4に入った空気は、製氷皿19の上方を通過した後に製氷皿19の下方を通過する。図3は、製氷室4の奥側の壁面に、製氷皿19より低い位置に吸込み口4bが形成される例を示す。製氷皿19の下方を通過した空気は、吸込み口4bから戻りダクトに入る。図3及び図4に示す例では、製氷皿19にある水は、上部から凍り始める。このため、温度センサ24が製氷皿19の裏面に設けられていれば、温度センサ24によって検出された温度の情報から、製氷皿19に入れられた水が凍ったことをより正確に判定できる。更に、温度センサ24が断熱材28に覆われていれば、上記気流が発生しても冷気が温度センサ24に直接当たることを防止できる。 In the ice making chamber 4, when the blower 11 is driven, an air flow for cooling the water in the ice tray 19 is generated. For example, the air that has entered the ice making chamber 4 from the outlet 4 a passes below the ice tray 19 and then passes below the ice tray 19. FIG. 3 shows an example in which a suction port 4 b is formed at a position lower than the ice tray 19 on the inner wall surface of the ice making chamber 4. The air that has passed under the ice tray 19 returns from the suction port 4b and enters the duct. In the example shown in FIGS. 3 and 4, the water in the ice tray 19 begins to freeze from the top. For this reason, if the temperature sensor 24 is provided on the back surface of the ice tray 19, it can be more accurately determined from the temperature information detected by the temperature sensor 24 that the water placed in the ice tray 19 has been frozen. Furthermore, if the temperature sensor 24 is covered with the heat insulating material 28, it is possible to prevent cold air from directly hitting the temperature sensor 24 even if the airflow is generated.
 本実施の形態に示す冷蔵庫1は、少なくとも2つのモードで氷を作る機能を備える。例えば、冷蔵庫1は、第1製氷モードで氷を作ることができる。冷蔵庫1は、第2製氷モードで氷を作ることができる。以下においては、第1製氷モードでブロックアイスが作られる例を説明する。第2製氷モードでクラッシュドアイスが作られる例を説明する。第2製氷モードで作られる氷の大きさは、第1製氷モードで作られる氷の大きさより小さい。以下に、図8及び図9も参照し、冷蔵庫1で氷を作るための動作について詳しく説明する。 Refrigerator 1 shown in the present embodiment has a function of making ice in at least two modes. For example, the refrigerator 1 can make ice in the first ice making mode. The refrigerator 1 can make ice in the second ice making mode. In the following, an example in which block ice is made in the first ice making mode will be described. An example in which crushed ice is made in the second ice making mode will be described. The size of the ice made in the second ice making mode is smaller than the size of the ice made in the first ice making mode. Below, with reference to FIG.8 and FIG.9, the operation | movement for making ice with the refrigerator 1 is demonstrated in detail.
 図8及び図9は、この発明の実施の形態1における製氷機の動作例を示すフローチャートである。図8及び図9は一連の動作を示す。 8 and 9 are flowcharts showing an operation example of the ice making machine according to Embodiment 1 of the present invention. 8 and 9 show a series of operations.
 制御装置14は、送風機11を回転数f_n[rpm]で駆動させる(S101)。本実施の形態に示す例では、添え字nは任意の値であることを示す。例えば、制御装置14は、温度センサ9a~9eによって検出された温度の情報等に基づいて送風機11を制御する。このため、送風機11の回転数f_nは、その時の状況に合わせて変化する。本実施の形態に示す例では、回転数f_nは、最大値より小さいある設定値或いは0である。 The control device 14 drives the blower 11 at the rotation speed f_n [rpm] (S101). In the example shown in the present embodiment, the subscript n indicates an arbitrary value. For example, the control device 14 controls the blower 11 based on temperature information detected by the temperature sensors 9a to 9e. For this reason, the rotation speed f_n of the blower 11 changes according to the situation at that time. In the example shown in the present embodiment, the rotation speed f_n is a certain set value or 0 which is smaller than the maximum value.
 次に、制御装置14は、モータ17を制御し、ポンプ18を一定時間駆動させる(S102)。これにより、タンク15に溜められた水が製氷皿19に供給される。製氷皿19に、一定量の水が溜められる。 Next, the control device 14 controls the motor 17 and drives the pump 18 for a predetermined time (S102). Thereby, the water stored in the tank 15 is supplied to the ice tray 19. A certain amount of water is stored in the ice tray 19.
 本実施の形態では、使用者が操作パネル10から氷の種類を選択できる例について説明する。例えば、操作パネル10は、第1ボタン及び第2ボタンを備える。第1ボタン及び第2ボタンは、接点を有する機械式のボタンでも画面上に表示されるボタンでも良い。第1ボタンが押されると、使用者がブロックアイスを選択した旨の第1情報が制御装置14に入力される。第2ボタンが押されると、使用者がクラッシュドアイスを選択した旨の第2情報が制御装置14に入力される。氷の種類を選択する方法は、上記例に限定されない。 In this embodiment, an example in which the user can select the type of ice from the operation panel 10 will be described. For example, the operation panel 10 includes a first button and a second button. The first button and the second button may be a mechanical button having a contact or a button displayed on the screen. When the first button is pressed, first information indicating that the user has selected block ice is input to the control device 14. When the second button is pressed, second information indicating that the user has selected the crashed ice is input to the control device 14. The method for selecting the type of ice is not limited to the above example.
 制御装置14は、使用者が選択した氷の種類を特定する(S103)。本実施の形態に示す例であれば、制御装置14は、操作パネル10から第1情報が入力されたのか第2情報が入力されたのかを判定する。制御装置14は、操作パネル10から第1情報が入力されると、ブロックアイスを作るための第1製氷モードを開始する(S104)。制御装置14は、操作パネル10から第2情報が入力されると、クラッシュドアイスを作るための第2製氷モードを開始する(S114)。 The control device 14 specifies the type of ice selected by the user (S103). In the example shown in the present embodiment, the control device 14 determines whether the first information is input from the operation panel 10 or the second information is input. When the first information is input from the operation panel 10, the control device 14 starts a first ice making mode for making block ice (S104). When the second information is input from the operation panel 10, the control device 14 starts a second ice making mode for making crushed ice (S114).
 第1製氷モードは、冷却器による第1冷却工程を備える。第1冷却工程では、製氷皿19にある水が第1冷却速度で冷却される。例えば、第1冷却工程では、送風機11が回転数f_nで駆動されることによって製氷室4に冷気が供給される。 The first ice making mode includes a first cooling step by a cooler. In the first cooling step, the water in the ice tray 19 is cooled at the first cooling rate. For example, in the first cooling process, the cooler is supplied to the ice making chamber 4 by driving the blower 11 at the rotation speed f_n.
 制御装置14は、温度センサ24によって検出された温度Tit[℃]が第1製氷温度より低いか否かを判定する(S105)。第1製氷温度は、製氷皿19にある水が凍ったと判定するための温度である。図8及び図9は、第1製氷温度が-13℃である例を示す。第1製氷温度は予め設定される。 The control device 14 determines whether or not the temperature Tit [° C.] detected by the temperature sensor 24 is lower than the first ice making temperature (S105). The first ice making temperature is a temperature for determining that the water in the ice tray 19 is frozen. 8 and 9 show an example in which the first ice making temperature is −13 ° C. The first ice making temperature is preset.
 制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、モータ22を駆動し、製氷皿19を正転させる(S106)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。 When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S102. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 drives the motor 22 to rotate the ice tray 19 normally (S106). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG.
 制御装置14は、S106で製氷皿19の回転を開始すると、時間tr1[sec]のカウントを開始する(S107)。制御装置14は、S107でカウントを開始した時間tr1が第1設定時間に達したか否かを判定する(S108)。第1設定時間は、製氷皿19に一定量の捻りを加えるための時間である。第1設定時間は予め設定される。 The controller 14 starts counting the time tr1 [sec] when the ice tray 19 starts rotating in S106 (S107). The control device 14 determines whether or not the time tr1 at which the counting is started in S107 has reached the first set time (S108). The first set time is a time for applying a certain amount of twist to the ice tray 19. The first set time is set in advance.
 上述したように、ストッパ23の回転は、棒状部材23bが長孔21bの縁に当たることによって止まる。第1設定時間は、製氷皿19の回転が開始されてから棒状部材23bが長孔21bの縁に当たるまでの時間より長い時間に設定される。このため、棒状部材23bが長孔21bの縁に当たった後もモータ22の駆動は継続される。棒状部材23bが長孔21bの縁に当たると、製氷皿19の一方の端部の回転が止まる。この一方の端部は、支持軸20bが接続された端部である。一方、棒状部材23bが長孔21bの縁に当たっても、製氷皿19のもう一方の端部は回転し続ける。このもう一方の端部は、支持軸20aが接続された端部である。これにより、製氷皿19に捻りが加えられ、製氷皿19は弾性変形する。製氷皿19が弾性変形することによって氷が製氷皿19から離れる。製氷皿19から離れた氷は、ケース26に落下する。この時、製氷皿19からは、窪み19aの大きさに合わせた大きさの氷が落下する。即ち、S108では、製氷皿19からブロックアイスが落下する。ケース26の第1空間に、ブロックアイスが溜まる。 As described above, the rotation of the stopper 23 stops when the rod-like member 23b hits the edge of the long hole 21b. The first set time is set to a time longer than the time from when the ice tray 19 starts to rotate until the rod-like member 23b hits the edge of the long hole 21b. For this reason, the drive of the motor 22 is continued even after the rod-shaped member 23b hits the edge of the long hole 21b. When the rod-like member 23b hits the edge of the long hole 21b, the rotation of one end of the ice tray 19 stops. This one end is an end to which the support shaft 20b is connected. On the other hand, even if the rod-like member 23b hits the edge of the long hole 21b, the other end of the ice tray 19 continues to rotate. The other end is an end to which the support shaft 20a is connected. Thereby, a twist is added to the ice tray 19 and the ice tray 19 is elastically deformed. As the ice tray 19 is elastically deformed, the ice moves away from the ice tray 19. The ice separated from the ice tray 19 falls into the case 26. At this time, ice having a size corresponding to the size of the recess 19 a falls from the ice tray 19. That is, block ice falls from the ice tray 19 in S108. Block ice accumulates in the first space of the case 26.
 制御装置14は、S106で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を制御し、製氷皿19を逆転させる(S109)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。制御装置14は、S109で製氷皿19の回転を開始すると、時間tr2[sec]のカウントを開始する(S110)。制御装置14は、S110でカウントを開始した時間tr2が上記第1設定時間に達したか否かを判定する(S111)。制御装置14は、S109で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を停止させる。これにより、製氷皿19は、水平に配置された状態で停止する(S112)。 The controller 14 controls the motor 22 to reverse the ice tray 19 when the first set time has elapsed since the rotation of the ice tray 19 was started in S106 (S109). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG. When starting the rotation of the ice tray 19 in S109, the control device 14 starts counting time tr2 [sec] (S110). The control device 14 determines whether or not the time tr2 at which counting is started in S110 has reached the first set time (S111). The control device 14 stops the motor 22 when the first set time elapses after starting the rotation of the ice tray 19 in S109. Thereby, the ice tray 19 stops in the state arrange | positioned horizontally (S112).
 次に、制御装置14は、ケース26が氷で満杯であるか否かを判定する(S113)。制御装置14は、センサ27から検出情報が入力されると、ケース26が氷で満杯であると判定する。かかる場合、制御装置14は、氷を作るための動作を停止する。制御装置14は、センサ27から検出情報が入力されていなければ、ケース26が氷で満杯ではないと判定する。かかる場合、制御装置14は、氷を作るための動作を継続する。制御装置14は、ポンプ18を一定時間駆動させて、次の氷を作るための水を製氷皿19に供給する(S102)。 Next, the control device 14 determines whether or not the case 26 is full of ice (S113). When the detection information is input from the sensor 27, the control device 14 determines that the case 26 is full of ice. In such a case, the control device 14 stops the operation for making ice. If the detection information is not input from the sensor 27, the control device 14 determines that the case 26 is not full of ice. In such a case, the control device 14 continues the operation for making ice. The control device 14 drives the pump 18 for a certain time to supply water for making the next ice to the ice tray 19 (S102).
 一方、第2製氷モードは、冷却器による第2冷却工程と加熱器による加熱工程とを備える。加熱工程は、第2冷却工程の後に行われる。第2冷却工程では、製氷皿19にある水が第2冷却速度で冷却される。第2冷却速度は、第1冷却速度より大きい。即ち、第2冷却工程では、第1冷却工程より水が急速に冷却される。この急速冷却は、氷の中に、気泡を可能な限り均等に分散させるために行われる。第2冷却工程によってできる氷は、気泡によって全体が白濁していることが好ましい。第2製氷モードでは、氷の中に閉じ込められた空気を膨張させることによって氷を粉砕する。製氷後の加熱工程は、氷の中に閉じ込められた空気を膨張させるために行われる。 On the other hand, the second ice making mode includes a second cooling step by a cooler and a heating step by a heater. The heating process is performed after the second cooling process. In the second cooling step, the water in the ice tray 19 is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate. That is, in the second cooling step, water is cooled more rapidly than in the first cooling step. This rapid cooling is performed in order to disperse the bubbles as evenly as possible in the ice. It is preferable that the ice formed by the second cooling step is entirely clouded by bubbles. In the second ice making mode, ice is crushed by expanding air trapped in the ice. The heating process after ice making is performed to expand the air trapped in the ice.
 S114で第2製氷モードが開始されると、制御装置14は、送風機11を回転数f_Max[rpm]で駆動させる(S115)。本実施の形態に示す例では、添え字Maxは最大の値であることを示す。本実施の形態では、送風機11の回転数を上げることによって急速冷却を行う例を示す。第2冷却工程では、他の方法によって急速冷却を行っても良い。 When the second ice making mode is started in S114, the control device 14 drives the blower 11 at the rotation speed f_Max [rpm] (S115). In the example shown in the present embodiment, the subscript Max indicates the maximum value. In this embodiment, an example in which rapid cooling is performed by increasing the number of rotations of the blower 11 will be described. In the second cooling step, rapid cooling may be performed by other methods.
 制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S116)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、送風機11の回転数をf_nに戻す(S117)。 The control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S116). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S102. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 returns the rotational speed of the blower 11 to f_n (S117).
 次に、制御装置14は、ヒータ25の出力をW_Maxにする(S118)。制御装置14は、S118でヒータ25への通電を開始すると、時間th1[sec]のカウントを開始する(S119)。制御装置14は、S119でカウントを開始した時間th1が第2設定時間に達したか否かを判定する(S120)。第2設定時間は、氷の中に閉じ込められた空気を膨張させて氷を粉砕するための時間である。第2設定時間は予め設定される。ヒータ25による最大出力の加熱が第2設定時間行われることにより、製氷皿19の上で氷が粉々になる。この時の氷の温度は、例えば-10℃である。 Next, the control device 14 sets the output of the heater 25 to W_Max (S118). When starting energization of the heater 25 in S118, the control device 14 starts counting time th1 [sec] (S119). The control device 14 determines whether or not the time th1 at which the counting is started in S119 has reached the second set time (S120). The second set time is a time for expanding the air trapped in the ice and crushing the ice. The second set time is set in advance. By heating the heater 25 with the maximum output for the second set time, the ice is shattered on the ice tray 19. The ice temperature at this time is, for example, −10 ° C.
 制御装置14は、S118でヒータ25への通電を開始してから第2設定時間が経過すると、ヒータ25への通電を停止する(S121)。また、制御装置14は、第2設定時間が経過すると、モータ22を駆動し、製氷皿19を逆転させる(S122)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。 The control device 14 stops energizing the heater 25 when the second set time has elapsed after starting energizing the heater 25 in S118 (S121). Further, when the second set time has elapsed, the control device 14 drives the motor 22 to reverse the ice tray 19 (S122). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG.
 制御装置14は、S122で製氷皿19の回転を開始すると、時間tr1のカウントを開始する(S123)。制御装置14は、S123でカウントを開始した時間tr1が第1設定時間に達したか否かを判定する(S124)。上述したように、第1設定時間は、製氷皿19の回転が開始されてから棒状部材23bが長孔21bの縁に当たるまでの時間より長い時間に設定される。棒状部材23bが長孔21bの縁に当たった後もモータ22の駆動が継続されることにより、製氷皿19に捻りが加えられる。これにより、製氷皿19が弾性変形し、S120で作られたクラッシュドアイスが製氷皿19から落下する。ケース26の第2空間に、クラッシュドアイスが溜まる。 The control device 14 starts counting the time tr1 when the ice tray 19 starts rotating in S122 (S123). The control device 14 determines whether or not the time tr1 at which the counting is started in S123 has reached the first set time (S124). As described above, the first set time is set to be longer than the time from when the ice tray 19 starts to rotate until the rod-like member 23b hits the edge of the long hole 21b. Even after the rod-shaped member 23b hits the edge of the long hole 21b, the drive of the motor 22 is continued, whereby the ice tray 19 is twisted. Thereby, the ice tray 19 is elastically deformed, and the crushed ice made in S120 falls from the ice tray 19. Crashed ice accumulates in the second space of the case 26.
 制御装置14は、S122で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を制御し、製氷皿19を正転させる(S125)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。制御装置14は、S125で製氷皿19の回転を開始すると、時間tr2のカウントを開始する(S126)。制御装置14は、S126でカウントを開始した時間tr2が第1設定時間に達したか否かを判定する(S127)。制御装置14は、S125で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を停止させる。これにより、製氷皿19は、水平に配置された状態で停止する(S128)。 The control device 14 controls the motor 22 to rotate the ice tray 19 forward when the first set time has elapsed since the rotation of the ice tray 19 was started in S122 (S125). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG. When starting the rotation of the ice tray 19 in S125, the control device 14 starts counting time tr2 (S126). The control device 14 determines whether or not the time tr2 at which the counting is started in S126 has reached the first set time (S127). The control device 14 stops the motor 22 when the first set time elapses after the rotation of the ice tray 19 is started in S125. Thereby, the ice tray 19 stops in the state arrange | positioned horizontally (S128).
 次に、制御装置14は、ケース26が氷で満杯であるか否かを判定する(S129)。制御装置14は、センサ27から検出情報が入力されると、ケース26が氷で満杯であると判定する。かかる場合、制御装置14は、氷を作るための動作を停止する。制御装置14は、センサ27から検出情報が入力されていなければ、ケース26が氷で満杯ではないと判定する。かかる場合、制御装置14は、氷を作るための動作を継続する。制御装置14は、ポンプ18を一定時間駆動させて、次の氷を作るための水を製氷皿19に供給する(S102)。 Next, the control device 14 determines whether or not the case 26 is full of ice (S129). When the detection information is input from the sensor 27, the control device 14 determines that the case 26 is full of ice. In such a case, the control device 14 stops the operation for making ice. If the detection information is not input from the sensor 27, the control device 14 determines that the case 26 is not full of ice. In such a case, the control device 14 continues the operation for making ice. The control device 14 drives the pump 18 for a certain time to supply water for making the next ice to the ice tray 19 (S102).
 次に、図10及び図11も参照し、クラッシュドアイスの生成原理について説明する。水には、一定量の空気が溶存している。氷は、水が冷却されて固体になったものである。水が結晶化すると、不純物である空気は結晶外に排出される。即ち、水が凍っていくと、空気は氷成長界面に押し出される。氷成長界面に押し出された空気が集合し、且つ内部に閉じ込められたものが、氷の中に見られる気泡である。 Next, the generation principle of crushed ice will be described with reference to FIGS. A certain amount of air is dissolved in the water. Ice is a solid formed by cooling water. When water crystallizes, the impurity air is discharged out of the crystal. That is, as water freezes, air is pushed out to the ice growth interface. The air that is pushed out to the ice growth interface gathers and is trapped inside is a bubble that can be seen in the ice.
 物質は、温度が変化することによって長さが変化する。温度に対する長さの変化の割合は、物質によって異なる。この変化の割合のことを線膨張率という。氷の線膨張率は50.7×10-6[1/K]である。空気は気体であるため、空気の線膨張率は絶対温度Tの逆数となる。 The material changes in length as the temperature changes. The rate of change in length with respect to temperature depends on the substance. This rate of change is called linear expansion coefficient. The linear expansion coefficient of ice is 50.7 × 10 −6 [1 / K]. Since air is a gas, the linear expansion coefficient of air is a reciprocal of the absolute temperature T.
 例えば、氷の初期温度を、一般的な冷蔵庫の製氷室の温度である-18℃とする。また、氷の大きさを20[mm]角とする。氷の温度に対する長さ変化ΔL[mm]及び氷に閉じ込められた空気の温度に対する長さ変化ΔL[mm]は、次式で表される。
 ΔL=α×20×{Tn-(-18)}  …(1)
 αは線膨張率である。式1は、初期温度から温度Tnまで上げた時の長さ変化ΔLを表す。
For example, the initial temperature of ice is set to −18 ° C., which is the temperature of an ice making room of a general refrigerator. The size of the ice is 20 [mm] square. The length change ΔL [mm] with respect to the ice temperature and the length change ΔL [mm] with respect to the temperature of the air trapped in the ice are expressed by the following equations.
ΔL = α × 20 × {Tn − (− 18)} (1)
α is a linear expansion coefficient. Expression 1 represents a length change ΔL when the temperature is increased from the initial temperature to the temperature Tn.
 図10は、氷の温度に対する長さ変化と氷に閉じ込められた空気の温度に対する長さ変化とを示す図である。図10では、式1によって得られたΔLを膨張距離として示している。図10は、氷の温度を-18℃から0℃まで上げた時の計算結果を示す。図11は、氷の長さ変化に対する空気の長さ変化の比を示す図である。即ち、図11は、各温度で氷の長さ変化を1とした場合の空気の長さ変化を示す。 FIG. 10 is a diagram showing a change in length with respect to the temperature of ice and a change in length with respect to the temperature of air trapped in the ice. In FIG. 10, ΔL obtained by Expression 1 is shown as the expansion distance. FIG. 10 shows the calculation results when the ice temperature is increased from −18 ° C. to 0 ° C. FIG. 11 is a graph showing a ratio of air length change to ice length change. That is, FIG. 11 shows the change in air length when the change in ice length is 1 at each temperature.
 図11から分かるように、上記温度範囲では、空気は氷と比較して70~80倍膨張する。但し、-18℃の空気が-15℃になっても、その長さ変化の絶対値は0.2[mm]である。-18℃の空気が-5℃になっても、その長さ変化の絶対値は1[mm]である。このため、第2製氷モードでクラッシュドアイスを作るためには、第2冷却工程において、多数の気泡をなるべく接近して氷の中に閉じ込めることが好ましい。このような氷を作るためには、氷の結晶の核となる氷核を多数生成した上で、気泡が大きくならないうちに気泡を氷結晶に取り込む必要がある。即ち、水を可能な限り急速に冷却することによって、クラッシュドアイスに適した氷を作ることができる。 As can be seen from FIG. 11, in the above temperature range, the air expands 70 to 80 times compared to ice. However, even when the air at −18 ° C. becomes −15 ° C., the absolute value of the length change is 0.2 [mm]. Even when −18 ° C. air becomes −5 ° C., the absolute value of the length change is 1 [mm]. For this reason, in order to make crushed ice in the second ice-making mode, it is preferable to confine many bubbles in the ice as close as possible in the second cooling step. In order to make such ice, it is necessary to generate a large number of ice nuclei that serve as nuclei of ice crystals, and to incorporate the bubbles into the ice crystals before the bubbles become large. That is, ice suitable for crashed ice can be made by cooling water as quickly as possible.
 また、氷の中に閉じ込められた多数の気泡の温度を素早く上げることによって、氷をより細かく砕くことができる。即ち、より細かいクラッシュドアイスを作ることができる。このため、製氷皿19は、熱伝導性の良い金属製であることが好ましい。また、ヒータ25は、広い範囲を同時に暖めることが可能な面状の発熱体であることが好ましい。 Also, the ice can be broken more finely by quickly raising the temperature of many bubbles trapped in the ice. That is, a finer crushed ice can be made. For this reason, the ice tray 19 is preferably made of metal having good thermal conductivity. The heater 25 is preferably a planar heating element capable of simultaneously heating a wide range.
 図12は、この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。例えば、図12及び図9は一連の動作を示す。 FIG. 12 is a flowchart showing another operation example of the ice making machine according to Embodiment 1 of the present invention. For example, FIGS. 12 and 9 show a series of operations.
 図12に示す例では、第1製氷モードは、冷却器による第1冷却工程と加熱器による第1加熱工程とを備える。第1加熱工程は、第1冷却工程の後に行われる。第1加熱工程では、製氷皿19にある氷が第1加熱速度で加熱される。一方、第2製氷モードの加熱工程では、製氷皿19にある氷が第2加熱速度で加熱される。以下においては、図9に示す加熱工程を第2加熱工程という。第2加熱速度は、第1加熱速度より大きい。製氷皿19が金属製であると、製氷皿19が樹脂製である場合と比較して氷が製氷皿19から離れ難くなる。第1製氷モードの第1加熱工程は、氷が製氷皿19から離れ易くするために行われる。 In the example shown in FIG. 12, the first ice making mode includes a first cooling step by a cooler and a first heating step by a heater. The first heating step is performed after the first cooling step. In the first heating step, the ice in the ice tray 19 is heated at the first heating rate. On the other hand, in the heating process in the second ice making mode, ice in the ice tray 19 is heated at the second heating rate. Hereinafter, the heating process shown in FIG. 9 is referred to as a second heating process. The second heating rate is greater than the first heating rate. When the ice tray 19 is made of metal, it becomes difficult for the ice to separate from the ice tray 19 compared to the case where the ice tray 19 is made of resin. The first heating step in the first ice making mode is performed to make it easier for the ice to leave the ice tray 19.
 図12に示す処理フローは、図8に示す処理フローにS130からS132に示す処理を加えたものに相当する。S104で第1製氷モードが開始されると、制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S105)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、ヒータ25の出力をW_nにする(S130)。出力W_nは、最大出力W_Maxより小さいある設定値である。 The processing flow shown in FIG. 12 corresponds to the processing flow shown in FIG. 8 plus the processing shown in S130 to S132. When the first ice making mode is started in S104, the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S105). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S102. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 sets the output of the heater 25 to W_n (S130). The output W_n is a set value that is smaller than the maximum output W_Max.
 制御装置14は、S130でヒータ25への通電を開始すると、温度センサ24によって検出された温度Titが第2製氷温度以上であるか否かを判定する(S131)。第2製氷温度は、氷が製氷皿19から離れ易くなったと判定するための温度である。図12は、第2製氷温度が-1℃である例を示す。第2製氷温度は予め設定される。 When the controller 14 starts energizing the heater 25 in S130, the controller 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature (S131). The second ice making temperature is a temperature for determining that the ice is easily separated from the ice tray 19. FIG. 12 shows an example in which the second ice making temperature is −1 ° C. The second ice making temperature is preset.
 制御装置14は、温度センサ24によって検出された温度Titが第2製氷温度以上になると、ヒータ25への通電を停止する(S132)。また、制御装置14は、温度Titが第2製氷温度以上になると、モータ22を駆動し、製氷皿19を正転させる(S106)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。図12のS106からS113に示す処理は、図8のS106からS113に示す処理と同じである。 When the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature, the control device 14 stops energizing the heater 25 (S132). Further, when the temperature Tit becomes equal to or higher than the second ice making temperature, the control device 14 drives the motor 22 to rotate the ice tray 19 normally (S106). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG. The processes shown in S106 to S113 in FIG. 12 are the same as the processes shown in S106 to S113 in FIG.
 図13は、この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。例えば、図12及び図13は一連の動作を示す。 FIG. 13 is a flowchart showing another example of operation of the ice making machine according to Embodiment 1 of the present invention. For example, FIGS. 12 and 13 show a series of operations.
 図13に示す例では、第2製氷モードは、冷却器による第2冷却工程と加熱器による第2加熱工程及び第3加熱工程とを備える。第2加熱工程は、第2冷却工程の後に行われる。第3加熱工程は、第2加熱工程の後に行われる。第2加熱工程では、製氷皿19にある氷が第2加熱速度で加熱される。第3加熱工程では、製氷皿19にある氷が第3加熱速度で加熱される。第2加熱速度は、第3加熱速度より大きい。第2加熱速度は、第1加熱速度より大きい。第3加熱工程は、氷が製氷皿19から離れ易くするために行われる。 In the example shown in FIG. 13, the second ice making mode includes a second cooling step by a cooler, a second heating step and a third heating step by a heater. The second heating step is performed after the second cooling step. The third heating step is performed after the second heating step. In the second heating step, the ice in the ice tray 19 is heated at the second heating rate. In the third heating step, the ice in the ice tray 19 is heated at the third heating rate. The second heating rate is greater than the third heating rate. The second heating rate is greater than the first heating rate. The third heating step is performed to make it easier for the ice to leave the ice tray 19.
 図13に示す処理フローは、図9に示す処理フローにS133及びS134に示す処理を加えたものに相当する。S114で第2製氷モードが開始されると、制御装置14は、送風機11を回転数f_Maxで駆動させる(S115)。 The processing flow shown in FIG. 13 corresponds to the processing flow shown in FIG. 9 plus the processing shown in S133 and S134. When the second ice making mode is started in S114, the control device 14 drives the blower 11 at the rotation speed f_Max (S115).
 制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S116)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、送風機11の回転数をf_nに戻す(S117)。 The control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S116). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S102. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 returns the rotational speed of the blower 11 to f_n (S117).
 次に、制御装置14は、ヒータ25の出力をW_Maxにする(S118)。制御装置14は、S118でヒータ25への通電を開始すると、時間th1のカウントを開始する(S119)。制御装置14は、S119でカウントを開始した時間th1が第2設定時間に達したか否かを判定する(S120)。 Next, the control device 14 sets the output of the heater 25 to W_Max (S118). When starting energization of the heater 25 in S118, the control device 14 starts counting the time th1 (S119). The control device 14 determines whether or not the time th1 at which the counting is started in S119 has reached the second set time (S120).
 制御装置14は、S118でヒータ25への通電を開始してから第2設定時間が経過すると、ヒータ25の出力をW_nにする(S133)。制御装置14は、S133でヒータ25の出力を低下させると、温度センサ24によって検出された温度Titが第2製氷温度以上であるか否かを判定する(S134)。図13は、第2製氷温度が-1℃である例を示す。 The control device 14 sets the output of the heater 25 to W_n when the second set time has elapsed after starting energization of the heater 25 in S118 (S133). When the output of the heater 25 is decreased in S133, the control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature (S134). FIG. 13 shows an example in which the second ice making temperature is −1 ° C.
 制御装置14は、温度センサ24によって検出された温度Titが第2製氷温度以上になると、ヒータ25への通電を停止する(S121)。また、制御装置14は、温度Titが第2製氷温度以上になると、モータ22を駆動し、製氷皿19を逆転させる(S122)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。図13のS121からS129に示す処理は、図9のS121からS129に示す処理と同じである。 When the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature, the control device 14 stops energizing the heater 25 (S121). Further, when the temperature Tit becomes equal to or higher than the second ice making temperature, the control device 14 drives the motor 22 to reverse the ice tray 19 (S122). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG. The processing shown in S121 to S129 in FIG. 13 is the same as the processing shown in S121 to S129 in FIG.
 図14は、図13に示す第2製氷モードと図12に示す第1製氷モードとを交互に行う時のタイミングチャートである。図14に示す区間Iは、図12のS101からS103の処理に対応する。区間IIは、図13のS115からS117の処理に対応する。第2冷却工程は、区間IIに含まれる。区間IIIは、図13のS118からS120の処理に対応する。第2加熱工程は、区間IIIに含まれる。区間IVは、図13のS133からS129の処理に対応する。第3加熱工程は、区間IVの最初の部分に含まれる。区間Vは、図12のS105の処理に対応する。第1冷却工程は、区間Vに含まれる。区間VIは、図12のS130からS113の処理に対応する。第1加熱工程は、区間VIの最初の部分に含まれる。 FIG. 14 is a timing chart when the second ice making mode shown in FIG. 13 and the first ice making mode shown in FIG. 12 are alternately performed. A section I shown in FIG. 14 corresponds to the processing from S101 to S103 in FIG. Section II corresponds to the processing from S115 to S117 in FIG. The second cooling step is included in Section II. Section III corresponds to the processing from S118 to S120 in FIG. The second heating step is included in Section III. The section IV corresponds to the processing from S133 to S129 in FIG. The third heating step is included in the first part of section IV. The section V corresponds to the process of S105 in FIG. The first cooling process is included in the section V. The section VI corresponds to the processing from S130 to S113 in FIG. The first heating step is included in the first part of the section VI.
 上述したように、第2冷却工程での第2冷却速度は、第1冷却工程での第1冷却速度より大きい。本実施の形態では、ある設定温度の規定量の水が目標温度の氷になるまでに掛かる時間が短いほど、冷却速度が大きいと定義する。なお、第2冷却工程によってできる氷は、気泡によって全体が白濁していることが好ましい。このような氷を作るためには、氷成長速度は2[mm/時間]以上である必要がある。氷成長速度は、5[mm/時間]以上であることが望ましい。 As described above, the second cooling rate in the second cooling step is higher than the first cooling rate in the first cooling step. In the present embodiment, it is defined that the cooling rate is larger as the time taken for a predetermined amount of water at a certain set temperature to become ice at the target temperature is shorter. Note that the ice formed by the second cooling step is preferably entirely clouded by bubbles. In order to make such ice, the ice growth rate needs to be 2 [mm / hour] or more. The ice growth rate is desirably 5 [mm / hour] or more.
 上述したように、第2加熱工程での第2加熱速度は、第1加熱工程での第1加熱速度及び第3加熱工程での第3加熱速度より大きい。本実施の形態では、ある設定温度の規定量の氷がその設定温度より高い目標温度の氷になるまでに掛かる時間が短いほど、加熱速度が大きいと定義する。 As described above, the second heating rate in the second heating step is greater than the first heating rate in the first heating step and the third heating rate in the third heating step. In the present embodiment, it is defined that the heating rate is larger as the time taken for a specified amount of ice at a certain set temperature to become ice at a target temperature higher than the set temperature is shorter.
 本実施の形態に示す例であれば、同じ製氷皿19を用いて形状の異なる氷を作ることができる。形状の異なる氷を作るために複数の製氷皿を用いる必要はない。このため、装置を小型化できる。製氷機が冷蔵庫に備えられる場合は、冷蔵庫を小型化できる。換言すれば、冷蔵庫に形成される他の部屋の容量を大きくすることができる。本実施の形態では、ブロックアイス及びクラッシュドアイスを作る例について説明した。これは一例である。製氷皿19を用いて他の形状の氷を作っても良い。 In the example shown in this embodiment, ice having different shapes can be made using the same ice tray 19. There is no need to use multiple ice trays to make ice of different shapes. For this reason, an apparatus can be reduced in size. When the ice making machine is provided in the refrigerator, the refrigerator can be downsized. In other words, the capacity of other rooms formed in the refrigerator can be increased. In the present embodiment, an example of making block ice and crushed ice has been described. This is an example. Other shapes of ice may be made using the ice tray 19.
 なお、氷を刃物で削ることによってクラッシュドアイスを作ることも可能であるが、刃物を使用する場合は器具を洗う際に注意が必要になる。本実施の形態に示す例では、クラッシュドアイスを作るために刃物を用いない。このため、器具の洗浄を容易に行うことができる。 It is possible to make crushed ice by scraping ice with a blade, but when using a blade, care must be taken when washing the utensil. In the example shown in this embodiment, a blade is not used to make crushed ice. For this reason, the instrument can be easily cleaned.
 本実施の形態に示す例では、ケース26が仕切り26aを備える。仕切り26aによって区画された第1空間にブロックアイスが溜められる。仕切り26aによって区画された第2空間にクラッシュドアイスが溜められる。ブロックアイス及びクラッシュドアイスを分けて溜めることができるため、使い勝手が良い。 In the example shown in the present embodiment, the case 26 includes a partition 26a. Block ice is stored in the first space partitioned by the partition 26a. Crushed ice is stored in the second space partitioned by the partition 26a. Since block ice and crushed ice can be stored separately, it is easy to use.
 製氷皿19は、水が入れられる部分のみが金属製で、残りの部分が樹脂製でも良い。このような製氷皿19であれば、全ての部分が金属製である製氷皿19と比較して、弾性変形させるために必要な力を低減できる。このため、モータ22として小型及び安価なものを使用できる。 The ice tray 19 may be made of metal only in the portion where water can be put and resin in the remaining portion. If it is such an ice tray 19, compared with the ice tray 19 whose all parts are metal, force required in order to carry out elastic deformation can be reduced. For this reason, a small and inexpensive motor 22 can be used.
 本実施の形態では、蒸発器8及び送風機11を備える冷却器を例示した。これは一例である。冷却器として、製氷皿19を直接冷却する装置を用いても良い。例えば、冷却器は、製氷皿19の裏面に設けられた冷却管を備えても良い。冷却器は、製氷皿19の裏面に設けられたペルチェ素子を備えても良い。 In the present embodiment, the cooler including the evaporator 8 and the blower 11 is illustrated. This is an example. As the cooler, an apparatus for directly cooling the ice tray 19 may be used. For example, the cooler may include a cooling pipe provided on the back surface of the ice tray 19. The cooler may include a Peltier element provided on the back surface of the ice tray 19.
 本実施の形態では、加熱器として、製氷皿19の裏面に設けられたヒータ25を例示した。これは一例である。例えば、加熱器として、製氷皿19の氷に対して温風を吹き付ける装置を用いても良い。 In the present embodiment, the heater 25 provided on the back surface of the ice tray 19 is exemplified as the heater. This is an example. For example, a device that blows warm air on the ice in the ice tray 19 may be used as the heater.
 本実施の形態では、ケース26を製氷室4に配置する例について説明した。これは一例である。ケース26は、製氷室4以外の部屋に配置されても良い。また、本実施の形態では、製氷室4の扉を開けて取り出すことができるケース26を例示した。これは一例である。冷蔵庫1にディスペンサー機能を備えることにより、製氷室4の扉全体を開けることなく氷を取り出すことができるようにしても良い。 In the present embodiment, an example in which the case 26 is disposed in the ice making chamber 4 has been described. This is an example. The case 26 may be arranged in a room other than the ice making room 4. Moreover, in this Embodiment, the case 26 which can open and extract the door of the ice making chamber 4 was illustrated. This is an example. By providing the refrigerator 1 with a dispenser function, the ice may be taken out without opening the entire door of the ice making chamber 4.
実施の形態2.
 実施の形態1では、急速冷却した氷を加熱することによって氷を破砕する例について説明した。本実施の形態では、製氷皿19を捻ることによって氷に力を加え、氷を破砕する例について説明する。
Embodiment 2. FIG.
In Embodiment 1, the example which crushes ice by heating rapidly cooled ice was demonstrated. In the present embodiment, an example will be described in which a force is applied to the ice by twisting the ice tray 19 to break the ice.
 本実施の形態に示す例では、モータ22が、製氷皿19を弾性変形させるための力を発生させる。上述したように、急速冷却された氷には多数の空気が閉じ込められる。このため、製氷皿19を弾性変形させれば、製氷皿19にある氷を粉々にすることができる。但し、本実施の形態に示す例では、製氷皿19が捻られた際に、氷が破砕する前に氷が製氷皿19から外れてしまうことを防止する必要がある。 In the example shown in the present embodiment, the motor 22 generates a force for elastically deforming the ice tray 19. As described above, a large number of air is trapped in the rapidly cooled ice. For this reason, if the ice tray 19 is elastically deformed, the ice in the ice tray 19 can be shattered. However, in the example shown in this embodiment, when the ice tray 19 is twisted, it is necessary to prevent the ice from coming off the ice tray 19 before the ice breaks.
 図15は、氷とステンレスとのせん断付着強度を示す図である。図16は、氷とポリスチレンとのせん断付着強度を示す図である。図15及び図16は以下より引用した。
 「前野紀一、「氷の付着と摩擦」、日本雪氷学会、Vol.68,No.5,p.449-455(2006)」
FIG. 15 is a diagram showing the shear bond strength between ice and stainless steel. FIG. 16 is a diagram showing the shear bond strength between ice and polystyrene. 15 and 16 are cited from the following.
"Keiichi Maeno," Ice adhesion and friction ", Japan Society of Snow and Ice, Vol. 68, no. 5, p. 449-455 (2006) "
 付着強度が大きいほど氷は離れ難い。本実施の形態に示す例では、製氷皿19は、少なくとも水が入れられる部分が金属製であることが好ましい。例えば、製氷皿19がステンレスの成型品である場合、水が入れられる部分は、金型から外された後に研磨作業が行われていないことが好ましい。製氷皿19が樹脂製である場合は、例えば、水が入れられる部分の表面が他の部分の表面より粗いことが好ましい。実施の形態1に示す例に、このような製氷皿19を適用しても良い。 ¡The greater the adhesion strength, the harder the ice will leave. In the example shown in the present embodiment, it is preferable that the ice tray 19 is made of metal at least at a portion into which water is put. For example, when the ice tray 19 is a molded product made of stainless steel, it is preferable that the portion into which water is put is not polished after being removed from the mold. When the ice tray 19 is made of resin, for example, it is preferable that the surface of the portion into which water is put is rougher than the surface of the other portion. Such an ice tray 19 may be applied to the example shown in the first embodiment.
 図17及び図18は、この発明の実施の形態2における製氷機の動作例を示すフローチャートである。図17及び図18は一連の動作を示す。図17に示す処理フローは、図12に示す処理フローと同様である。 17 and 18 are flowcharts showing an example of the operation of the ice making machine according to Embodiment 2 of the present invention. 17 and 18 show a series of operations. The processing flow shown in FIG. 17 is the same as the processing flow shown in FIG.
 制御装置14は、送風機11を回転数f_n[rpm]で駆動させる(S201)。また、制御装置14は、モータ17を制御し、ポンプ18を一定時間駆動させる(S202)。これにより、タンク15に溜められた水が製氷皿19に供給される。製氷皿19に、一定量の水が溜められる。 The control device 14 drives the blower 11 at the rotation speed f_n [rpm] (S201). Further, the control device 14 controls the motor 17 to drive the pump 18 for a certain time (S202). Thereby, the water stored in the tank 15 is supplied to the ice tray 19. A certain amount of water is stored in the ice tray 19.
 制御装置14は、使用者が選択した氷の種類を特定する(S203)。例えば、制御装置14は、操作パネル10から第1情報が入力されると、ブロックアイスを作るための第1製氷モードを開始する(S204)。制御装置14は、操作パネル10から第2情報が入力されると、クラッシュドアイスを作るための第2製氷モードを開始する(S214)。 The control device 14 specifies the type of ice selected by the user (S203). For example, when the first information is input from the operation panel 10, the control device 14 starts a first ice making mode for making block ice (S204). When the second information is input from the operation panel 10, the control device 14 starts a second ice making mode for making crushed ice (S214).
 第1製氷モードは、冷却器による第1冷却工程と加熱器による第1加熱工程とを備える。第1冷却工程では、製氷皿19にある水が第1冷却速度で冷却される。例えば、第1冷却工程では、送風機11が回転数f_nで駆動されることによって製氷室4に冷気が供給される。第1加熱工程は、第1冷却工程の後に行われる。第1加熱工程では、製氷皿19にある氷が第1加熱速度で加熱される。第1加熱工程は、氷が製氷皿19から離れ易くするために行われる。 The first ice making mode includes a first cooling step by a cooler and a first heating step by a heater. In the first cooling step, the water in the ice tray 19 is cooled at the first cooling rate. For example, in the first cooling process, the cooler is supplied to the ice making chamber 4 by driving the blower 11 at the rotation speed f_n. The first heating step is performed after the first cooling step. In the first heating step, the ice in the ice tray 19 is heated at the first heating rate. The first heating step is performed to make it easy for the ice to leave the ice tray 19.
 制御装置14は、温度センサ24によって検出された温度Tit[℃]が第1製氷温度より低いか否かを判定する(S205)。図17は、第1製氷温度が-13℃である例を示す。第1製氷温度は予め設定される。 The control device 14 determines whether or not the temperature Tit [° C.] detected by the temperature sensor 24 is lower than the first ice making temperature (S205). FIG. 17 shows an example in which the first ice making temperature is −13 ° C. The first ice making temperature is preset.
 制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S202で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、ヒータ25の出力をW_nにする(S230)。 When the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature, the control device 14 determines that the water put in the ice tray 19 is frozen in S202. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 sets the output of the heater 25 to W_n (S230).
 制御装置14は、S230でヒータ25への通電を開始すると、温度センサ24によって検出された温度Tit[℃]が第2製氷温度以上であるか否かを判定する(S231)。図17は、第2製氷温度が-1℃である例を示す。第2製氷温度は予め設定される。 When the controller 14 starts energizing the heater 25 in S230, the controller 14 determines whether or not the temperature Tit [° C.] detected by the temperature sensor 24 is equal to or higher than the second ice making temperature (S231). FIG. 17 shows an example in which the second ice making temperature is −1 ° C. The second ice making temperature is preset.
 制御装置14は、温度センサ24によって検出された温度Titが第2製氷温度以上になると、ヒータ25への通電を停止する(S232)。また、制御装置14は、温度Titが第2製氷温度以上になると、モータ22を駆動し、製氷皿19を正転させる(S206)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。図17のS206からS213に示す処理は、図12のS106からS113に示す処理と同じである。 When the temperature Tit detected by the temperature sensor 24 is equal to or higher than the second ice making temperature, the control device 14 stops energizing the heater 25 (S232). Further, when the temperature Tit becomes equal to or higher than the second ice making temperature, the control device 14 drives the motor 22 to rotate the ice tray 19 normally (S206). For example, the control device 14 rotates the ice tray 19 in the direction B shown in FIG. The processes shown in S206 to S213 in FIG. 17 are the same as the processes shown in S106 to S113 in FIG.
 一方、第2製氷モードは、冷却器による第2冷却工程とモータ22による製氷皿19の変形工程とを備える。変形工程は、第2冷却工程の後に行われる。第2冷却工程では、製氷皿19にある水が第2冷却速度で冷却される。第2冷却速度は、第1冷却速度より大きい。 On the other hand, the second ice making mode includes a second cooling step by the cooler and a deformation step of the ice tray 19 by the motor 22. The deformation process is performed after the second cooling process. In the second cooling step, the water in the ice tray 19 is cooled at the second cooling rate. The second cooling rate is greater than the first cooling rate.
 S214で第2製氷モードが開始されると、制御装置14は、送風機11を回転数f_Max[rpm]で駆動させる(S215)。本実施の形態においても、送風機11の回転数を上げることによって急速冷却を行う例を示す。第2冷却工程では、他の方法によって急速冷却を行っても良い。 When the second ice making mode is started in S214, the control device 14 drives the blower 11 at the rotation speed f_Max [rpm] (S215). Also in the present embodiment, an example in which rapid cooling is performed by increasing the rotation speed of the blower 11 will be described. In the second cooling step, rapid cooling may be performed by other methods.
 制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S216)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S202で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、送風機11の回転数をf_nに戻す(S217)。 The control device 14 determines whether or not the temperature Tit detected by the temperature sensor 24 is lower than the first ice making temperature (S216). When the temperature Tit detected by the temperature sensor 24 becomes lower than the first ice making temperature, the control device 14 determines that the water put in the ice making tray 19 is frozen in S202. When the temperature Tit becomes lower than the first ice making temperature, the control device 14 returns the rotational speed of the blower 11 to f_n (S217).
 次に、制御装置14は、モータ22を駆動し、製氷皿19を逆転させる(S222)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。制御装置14は、S222で製氷皿19の回転を開始すると、時間tr1[sec]のカウントを開始する(S223)。制御装置14は、S223でカウントを開始した時間tr1が第1設定時間に達したか否かを判定する(S224)。 Next, the control device 14 drives the motor 22 to reverse the ice tray 19 (S222). For example, the control device 14 rotates the ice tray 19 in the direction C shown in FIG. When starting the rotation of the ice tray 19 in S222, the control device 14 starts counting time tr1 [sec] (S223). The control device 14 determines whether or not the time tr1 at which counting is started in S223 has reached the first set time (S224).
 上述したように、第1設定時間は、製氷皿19の回転が開始されてから棒状部材23bが長孔21bの縁に当たるまでの時間より長い時間に設定される。棒状部材23bが長孔21bの縁に当たった後もモータ22の駆動が継続されることにより、製氷皿19に捻りが加えられる。これにより、製氷皿19が弾性変形し、製氷皿19にある氷が粉々になる。即ち、S224では、製氷皿19からクラッシュドアイスが落下する。ケース26の第2空間に、クラッシュドアイスが溜まる。 As described above, the first set time is set to a time longer than the time from when the ice tray 19 starts to rotate until the rod-shaped member 23b hits the edge of the long hole 21b. Even after the rod-shaped member 23b hits the edge of the long hole 21b, the drive of the motor 22 is continued, whereby the ice tray 19 is twisted. Thereby, the ice tray 19 is elastically deformed, and the ice in the ice tray 19 is shattered. In other words, in S224, the crashed ice falls from the ice tray 19. Crashed ice accumulates in the second space of the case 26.
 制御装置14は、S222で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を制御し、製氷皿19を正転させる(S225)。図18のS225からS229に示す処理は、図9のS125からS129に示す処理と同じである。 When the first set time has elapsed after the rotation of the ice tray 19 in S222, the control device 14 controls the motor 22 to rotate the ice tray 19 forward (S225). The processes shown in S225 to S229 in FIG. 18 are the same as the processes shown in S125 to S129 in FIG.
 本実施の形態に示す例でも、実施の形態1で開示した例が奏する効果と同様の効果を奏することができる。即ち、本実施の形態に示す例であれば、同じ製氷皿19を用いて形状の異なる氷を作ることができる。形状の異なる氷を作るために複数の製氷皿を用いる必要はない。このため、装置を小型化できる。製氷機が冷蔵庫に備えられる場合は、冷蔵庫を小型化できる。換言すれば、冷蔵庫に形成される他の部屋の体積を大きくすることができる。本実施の形態では、ブロックアイス及びクラッシュドアイスを作る例について説明した。これは一例である。製氷皿19を用いて他の形状の氷を作っても良い。 Even in the example shown in the present embodiment, it is possible to achieve the same effect as the effect disclosed by the example disclosed in the first embodiment. That is, in the example shown in the present embodiment, ice having different shapes can be made using the same ice tray 19. There is no need to use multiple ice trays to make ice of different shapes. For this reason, an apparatus can be reduced in size. When the ice making machine is provided in the refrigerator, the refrigerator can be downsized. In other words, the volume of the other room formed in the refrigerator can be increased. In the present embodiment, an example of making block ice and crushed ice has been described. This is an example. Other shapes of ice may be made using the ice tray 19.
 なお、氷を刃物で削ることによってクラッシュアイスを作ることも可能であるが、刃物を使用する場合は器具を洗う際に注意が必要になる。本実施の形態に示す例では、クラッシュドアイスを作るために刃物を用いない。このため、器具の洗浄を容易に行うことができる。 Note that it is possible to make crushed ice by shaving ice with a blade, but when using a blade, care must be taken when washing the utensil. In the example shown in this embodiment, a blade is not used to make crushed ice. For this reason, the instrument can be easily cleaned.
 本実施の形態で説明しない特徴は、実施の形態1で開示した特徴と同様である。 Features not described in the present embodiment are the same as the features disclosed in the first embodiment.
 図2に示すように、制御装置14は、ハードウェア資源として、例えばプロセッサ29とメモリ30とを含む処理回路を備える。制御装置14は、メモリ30に記憶されたプログラムをプロセッサ29によって実行することにより、上述した各機能を実現する。 As shown in FIG. 2, the control device 14 includes a processing circuit including, for example, a processor 29 and a memory 30 as hardware resources. The control device 14 implements each function described above by executing a program stored in the memory 30 by the processor 29.
 プロセッサ29は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ或いはDSPともいわれる。メモリ30として、半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク或いはDVDを採用しても良い。採用可能な半導体メモリには、RAM、ROM、フラッシュメモリ、EPROM及びEEPROM等が含まれる。 The processor 29 is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. As the memory 30, a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed. Semiconductor memories that can be used include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
 制御装置14が有する各機能の一部又は全部をハードウェアによって実現しても良い。制御装置14の機能を実現するハードウェアとして、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらの組み合わせを採用しても良い。 Some or all of the functions of the control device 14 may be realized by hardware. As hardware for realizing the function of the control device 14, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof may be employed.
 この発明は、水から氷を作る種々の装置に適用できる。 The present invention can be applied to various devices that make ice from water.
 1 冷蔵庫、 2 本体、 2a 扉、 3 冷蔵室、 4 製氷室、 4a 吹出し口、 4b 吸込み口、 5 冷凍室、 6 野菜室、 7 圧縮機、 8 蒸発器、 9a~9e 温度センサ、 10 操作パネル、 11 送風機、 12 モータ、 13 ダンパ、 14 制御装置、 15 タンク、 16 パイプ、 17 モータ、 18 ポンプ、 19 製氷皿、 19a 窪み、 19b 切欠き、 20a 支持軸、 20b 支持軸、 21 フレーム、 21a 貫通孔、 21b 長孔、 22 モータ、 23 ストッパ、 23a 円盤部材、 23b 棒状部材、 23c 貫通孔、 24 温度センサ、 25 ヒータ、 26 ケース、 26a 仕切り、 26b 第1空間、 26c 第2空間、 27 センサ、 28 断熱材、 29 プロセッサ、 30 メモリ 1 refrigerator, 2 main body, 2a door, 3 refrigerator compartment, 4 ice making room, 4a outlet, 4b inlet, 5 freezer compartment, 6 vegetable compartment, 7 compressor, 8 evaporator, 9a-9e temperature sensor, 10 operation panel , 11 blower, 12 motor, 13 damper, 14 control device, 15 tank, 16 pipe, 17 motor, 18 pump, 19 ice tray, 19a recess, 19b notch, 20a support shaft, 20b support shaft, 21 frame, 21a penetration Hole, 21b long hole, 22 motor, 23 stopper, 23a disk member, 23b rod-shaped member, 23c through hole, 24 temperature sensor, 25 heater, 26 case, 26a partition, 26b first space, 26c second Space, 27 sensors, 28 heat insulator, 29 processor, 30 a memory

Claims (9)

  1.  第1製氷モード及び第2製氷モードのそれぞれで氷を作ることが可能な製氷機であって、
     製氷皿と、
     前記製氷皿にある水を冷却する冷却器と、
     前記製氷皿にある氷を加熱する加熱器と、
    を備え、
     前記第1製氷モードは、前記冷却器による第1冷却工程を備え、
     前記第1冷却工程では、前記製氷皿にある水が第1冷却速度で冷却され、
     前記第2製氷モードは、前記冷却器による第2冷却工程と前記第2冷却工程後の前記加熱器による加熱工程とを備え、
     前記第2冷却工程では、前記製氷皿にある水が第2冷却速度で冷却され、
     前記第2冷却速度は前記第1冷却速度より大きい製氷機。
    An ice making machine capable of making ice in each of the first ice making mode and the second ice making mode,
    An ice tray,
    A cooler for cooling the water in the ice tray;
    A heater for heating the ice in the ice tray;
    With
    The first ice making mode includes a first cooling step by the cooler,
    In the first cooling step, water in the ice tray is cooled at a first cooling rate,
    The second ice making mode includes a second cooling step by the cooler and a heating step by the heater after the second cooling step,
    In the second cooling step, water in the ice tray is cooled at a second cooling rate,
    The ice making machine wherein the second cooling rate is greater than the first cooling rate.
  2.  前記第1製氷モードは、前記第1冷却工程後の前記加熱器による第1加熱工程を更に備え、
     前記第1加熱工程では、前記製氷皿にある氷が第1加熱速度で加熱され、
     前記第2製氷モードの前記加熱工程では、前記製氷皿にある氷が第2加熱速度で加熱され、
     前記第2加熱速度は前記第1加熱速度より大きい請求項1に記載の製氷機。
    The first ice making mode further includes a first heating step by the heater after the first cooling step,
    In the first heating step, the ice in the ice tray is heated at a first heating rate,
    In the heating step of the second ice making mode, ice in the ice tray is heated at a second heating rate,
    The ice making machine according to claim 1, wherein the second heating rate is higher than the first heating rate.
  3.  前記第1製氷モードは、前記第1冷却工程後の前記加熱器による第1加熱工程を更に備え、
     前記第1加熱工程では、前記製氷皿にある氷が第1加熱速度で加熱され、
     前記第2製氷モードの前記加熱工程は、前記第2冷却工程後の第2加熱工程と前記第2加熱工程後の第3加熱工程とを備え、
     前記第2加熱工程では、前記製氷皿にある氷が第2加熱速度で加熱され、
     前記第3加熱工程では、前記製氷皿にある氷が第3加熱速度で加熱され、
     前記第2加熱速度は、前記第1加熱速度及び前記第3加熱速度より大きい請求項1に記載の製氷機。
    The first ice making mode further includes a first heating step by the heater after the first cooling step,
    In the first heating step, the ice in the ice tray is heated at a first heating rate,
    The heating step in the second ice making mode includes a second heating step after the second cooling step and a third heating step after the second heating step,
    In the second heating step, the ice in the ice tray is heated at a second heating rate,
    In the third heating step, the ice in the ice tray is heated at a third heating rate,
    The ice making machine according to claim 1, wherein the second heating rate is higher than the first heating rate and the third heating rate.
  4.  第1製氷モード及び第2製氷モードのそれぞれで氷を作ることが可能な製氷機であって、
     製氷皿と、
     前記製氷皿にある水を冷却する冷却器と、
     前記製氷皿にある氷を加熱する加熱器と、
     前記製氷皿を弾性変形させるための力を発生させるモータと、
    を備え、
     前記第1製氷モードは、前記冷却器による第1冷却工程と前記第1冷却工程後の前記加熱器による加熱工程とを備え、
     前記第1冷却工程では、前記製氷皿にある水が第1冷却速度で冷却され、
     前記第2製氷モードは、前記冷却器による第2冷却工程と前記第2冷却工程後の前記モータによる変形工程とを備え、
     前記第2冷却工程では、前記製氷皿にある水が第2冷却速度で冷却され、
     前記第2冷却速度は前記第1冷却速度より大きい製氷機。
    An ice making machine capable of making ice in each of the first ice making mode and the second ice making mode,
    An ice tray,
    A cooler for cooling the water in the ice tray;
    A heater for heating the ice in the ice tray;
    A motor for generating a force for elastically deforming the ice tray;
    With
    The first ice making mode includes a first cooling step by the cooler and a heating step by the heater after the first cooling step,
    In the first cooling step, water in the ice tray is cooled at a first cooling rate,
    The second ice making mode includes a second cooling step by the cooler and a deformation step by the motor after the second cooling step,
    In the second cooling step, water in the ice tray is cooled at a second cooling rate,
    The ice making machine wherein the second cooling rate is greater than the first cooling rate.
  5.  前記製氷皿は、少なくとも水が入れられる部分が金属製である請求項1から請求項4の何れか一項に記載の製氷機。 The ice making machine according to any one of claims 1 to 4, wherein the ice tray is made of metal at least at a portion into which water is put.
  6.  前記製氷皿は樹脂製であり、水が入れられる部分の表面が他の部分の表面より粗い請求項1から請求項4の何れか一項に記載の製氷機。 The ice making machine according to any one of claims 1 to 4, wherein the ice tray is made of a resin and a surface of a portion into which water is put is rougher than a surface of another portion.
  7.  前記加熱器は、前記製氷皿のうち水が入れられる部分を裏面側から覆う面状発熱体である請求項1から請求項6の何れか一項に記載の製氷機。 The ice making machine according to any one of claims 1 to 6, wherein the heater is a planar heating element that covers a portion of the ice tray that is filled with water from the back side.
  8.  前記製氷皿に設けられた温度センサと、
     前記温度センサを覆う断熱材と、
    を更に備えた請求項1から請求項7の何れか一項に記載の製氷機。
    A temperature sensor provided in the ice tray;
    A heat insulating material covering the temperature sensor;
    The ice making machine according to any one of claims 1 to 7, further comprising:
  9.  前記製氷皿の下方に配置されたケースを更に備え、
     前記製氷皿は、軸を中心に回転可能に支持され、
     前記ケースは、第1空間と第2空間とを区画するための仕切りを備え、
     前記第1空間は、前記製氷皿が前記軸を中心に一方向に回転した際に前記製氷皿から落ちる氷を受けるための空間であり、
     前記第2空間は、前記製氷皿が前記軸を中心に前記一方向とは反対の方向に回転した際に前記製氷皿から落ちる氷を受けるための空間である請求項1から請求項8の何れか一項に記載の製氷機。
    Further comprising a case disposed below the ice tray;
    The ice tray is supported rotatably about an axis;
    The case includes a partition for partitioning the first space and the second space,
    The first space is a space for receiving ice falling from the ice tray when the ice tray rotates in one direction around the axis;
    9. The second space is a space for receiving ice falling from the ice tray when the ice tray rotates in a direction opposite to the one direction around the axis. 9. An ice making machine according to claim 1.
PCT/JP2017/015782 2017-04-19 2017-04-19 Ice maker WO2018193563A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2017409899A AU2017409899B2 (en) 2017-04-19 2017-04-19 Ice maker
CN201780088497.9A CN110494704B (en) 2017-04-19 2017-04-19 Ice making machine
PCT/JP2017/015782 WO2018193563A1 (en) 2017-04-19 2017-04-19 Ice maker
JP2019513150A JP6729799B2 (en) 2017-04-19 2017-04-19 Ice machine
TW106117837A TWI651503B (en) 2017-04-19 2017-05-31 Ice maker
AU2020294172A AU2020294172B2 (en) 2017-04-19 2020-12-21 Ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015782 WO2018193563A1 (en) 2017-04-19 2017-04-19 Ice maker

Publications (1)

Publication Number Publication Date
WO2018193563A1 true WO2018193563A1 (en) 2018-10-25

Family

ID=63856685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015782 WO2018193563A1 (en) 2017-04-19 2017-04-19 Ice maker

Country Status (5)

Country Link
JP (1) JP6729799B2 (en)
CN (1) CN110494704B (en)
AU (2) AU2017409899B2 (en)
TW (1) TWI651503B (en)
WO (1) WO2018193563A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201237A (en) * 1992-12-28 1994-07-19 Toshiba Corp Automatic ice making device
JPH0719685A (en) * 1993-07-07 1995-01-20 Matsushita Refrig Co Ltd Automatic ice-making equipment
JPH11108513A (en) * 1997-10-02 1999-04-23 Toshiba Home Techno Corp Automatic ice making machine
JP2000249437A (en) * 1999-02-25 2000-09-14 Mitsubishi Electric Corp Automatic ice-making device
JP2002350021A (en) * 2001-05-31 2002-12-04 Hitachi Ltd refrigerator
JP2005076920A (en) * 2003-08-28 2005-03-24 Sanyo Electric Co Ltd Refrigerator
JP2011064371A (en) * 2009-09-16 2011-03-31 Sharp Corp Ice-making device for refrigerator-freezer
JP2013181734A (en) * 2012-03-05 2013-09-12 Sharp Corp Refrigerator
JP2013185747A (en) * 2012-03-07 2013-09-19 Mitsubishi Electric Corp Ice tray, automatic ice making machine, and refrigerator-freezer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164440A (en) * 1991-12-17 1993-06-29 Toshiba Corp Ice making device of refrigerator
JPH11270940A (en) * 1998-03-20 1999-10-05 Sanyo Electric Co Ltd Plate-type ice machine
JP3781767B2 (en) * 2005-09-06 2006-05-31 松下冷機株式会社 refrigerator
KR100786075B1 (en) * 2005-12-16 2007-12-17 엘지전자 주식회사 How to control the operation of the refrigerator
KR101750309B1 (en) * 2010-10-28 2017-06-23 엘지전자 주식회사 A ice maker and a refrigerator comprising the ice maker
RU2013145311A (en) * 2011-03-16 2015-04-27 Шарп Кабусики Кайся ICE PRODUCER FOR REFRIGERATOR / FREEZER
JP2013040729A (en) * 2011-08-18 2013-02-28 Sharp Corp Refrigerator
US9513045B2 (en) * 2012-05-03 2016-12-06 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
CN102679657A (en) * 2012-06-08 2012-09-19 小天鹅(荆州)电器有限公司 Ice machine and refrigerator
CN105241146A (en) * 2015-10-14 2016-01-13 苏州路之遥科技股份有限公司 Double-ice-mold ice maker

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201237A (en) * 1992-12-28 1994-07-19 Toshiba Corp Automatic ice making device
JPH0719685A (en) * 1993-07-07 1995-01-20 Matsushita Refrig Co Ltd Automatic ice-making equipment
JPH11108513A (en) * 1997-10-02 1999-04-23 Toshiba Home Techno Corp Automatic ice making machine
JP2000249437A (en) * 1999-02-25 2000-09-14 Mitsubishi Electric Corp Automatic ice-making device
JP2002350021A (en) * 2001-05-31 2002-12-04 Hitachi Ltd refrigerator
JP2005076920A (en) * 2003-08-28 2005-03-24 Sanyo Electric Co Ltd Refrigerator
JP2011064371A (en) * 2009-09-16 2011-03-31 Sharp Corp Ice-making device for refrigerator-freezer
JP2013181734A (en) * 2012-03-05 2013-09-12 Sharp Corp Refrigerator
JP2013185747A (en) * 2012-03-07 2013-09-19 Mitsubishi Electric Corp Ice tray, automatic ice making machine, and refrigerator-freezer

Also Published As

Publication number Publication date
TWI651503B (en) 2019-02-21
TW201839335A (en) 2018-11-01
AU2020294172B2 (en) 2022-03-17
AU2017409899A1 (en) 2019-10-03
AU2017409899B2 (en) 2021-02-04
JPWO2018193563A1 (en) 2019-11-07
CN110494704B (en) 2021-07-27
JP6729799B2 (en) 2020-07-22
AU2020294172A1 (en) 2021-01-28
CN110494704A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
EP2354736B1 (en) Control method of refrigerator
EP3029399A1 (en) Refrigerator
KR100808171B1 (en) Ice maker and control method
CN101929777A (en) Ice maker and refrigerator with same
JP6750725B2 (en) Automatic ice machine and refrigerator/freezer
WO2018193563A1 (en) Ice maker
CN110050165B (en) Ice making device and refrigerator
AU2023210670B2 (en) Refrigerator and method for controlling the same
AU2019352419B2 (en) Refrigerator and method for controlling same
CN101738040A (en) Ice dispensing technology, ice making device of refrigerator and control method thereof
KR100722051B1 (en) Refrigerator Ice Maker and Ice Maker Control Method
AU2019353487B2 (en) Refrigerator and method for controlling same
AU2019352420B2 (en) Refrigerator and method for controlling same
JP4869313B2 (en) Refrigerator and method for manufacturing object to be cooled
JP7375297B2 (en) refrigerator
JP2007209306A (en) Ice cream producing apparatus, ice cream producing method, and refrigerator using the apparatus
KR20170100879A (en) High efficiency ice making machine control device and ice making system
JP2023038035A (en) refrigerator
KR20210005781A (en) Refrigerator and method for controlling the same
KR20210005791A (en) Refrigerator and method for controlling the same
KR20210005800A (en) Refrigerator and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513150

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017409899

Country of ref document: AU

Date of ref document: 20170419

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906663

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载