+

WO2018193495A1 - Emission spectrometer - Google Patents

Emission spectrometer Download PDF

Info

Publication number
WO2018193495A1
WO2018193495A1 PCT/JP2017/015471 JP2017015471W WO2018193495A1 WO 2018193495 A1 WO2018193495 A1 WO 2018193495A1 JP 2017015471 W JP2017015471 W JP 2017015471W WO 2018193495 A1 WO2018193495 A1 WO 2018193495A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressurizer
gas supply
discharge chamber
discharge
Prior art date
Application number
PCT/JP2017/015471
Other languages
French (fr)
Japanese (ja)
Inventor
晶 菅瀬
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2017/015471 priority Critical patent/WO2018193495A1/en
Priority to JP2019513512A priority patent/JP6897763B2/en
Priority to CN201780089644.4A priority patent/CN110546485B/en
Priority to TW107111780A priority patent/TWI672485B/en
Publication of WO2018193495A1 publication Critical patent/WO2018193495A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Definitions

  • the present invention relates to an emission spectroscopic analysis apparatus that excites a solid sample by discharge and performs spectroscopic measurement of the emitted light.
  • an emission spectroscopic analyzer In an emission spectroscopic analyzer, generally, a solid sample, which is a metal or nonmetal, is given energy by arc discharge or spark discharge to evaporate and evaporate the sample, and the emitted light is introduced into a spectrometer. A spectral line having a wavelength peculiar to the element is extracted and detected (for example, see Patent Document 1).
  • an emission spectroscopic analyzer using a spark discharge as an excitation source is capable of highly accurate analysis. For example, in a production plant such as a steel material or a non-ferrous metal material, a composition analysis in a produced metal body is performed. Widely used.
  • the configuration of a conventional general emission spectroscopic analyzer is shown in FIG.
  • the emission spectroscopic analysis apparatus includes an excitation unit 210 that excites and emits a solid sample S, a spectroscopic unit 220 that detects light emitted from the sample S by wavelength dispersion, and a control / processing unit that performs control and data processing of each unit. 230.
  • the excitation unit 210 includes a discharge generation unit 211, an electrode rod 212, a discharge chamber 213, a sample mounting plate 214, and a condenser lens 215.
  • the discharge chamber 213 is provided with an analysis opening opened obliquely upward and a light guide hole 213a for taking out light from the discharge chamber 213, and a sample is provided above the discharge chamber 213 so as to cover the analysis opening.
  • a mounting plate 214 is detachably attached.
  • the sample mounting plate 214 has a central opening 214a smaller than the sample S. By placing the sample S on the sample mounting plate 214 so as to cover the central opening 214a, the lower surface ( A part of the surface to be analyzed) is exposed inside the discharge chamber 213.
  • an electrode rod 212 for discharge is disposed with its tip directed toward the central opening 214a.
  • the discharge generator 211 applies a pulsed high voltage to the electrode bar 212 in synchronization with a predetermined frequency (for example, 400 Hz).
  • the sample S such as iron or non-ferrous metal is excited to emit light by the spark discharge from the electrode rod 212.
  • Light emitted by excitation light emission of the sample S passes through a light guide hole 213 a provided in the discharge chamber 213, is collected by the condenser lens 215, and is introduced into the spectroscopic unit 220 through the entrance slit 221.
  • the spectroscopic unit 220 includes a diffraction grating 222 for wavelength-dispersing light from the sample S in order to obtain spectral lines having wavelengths unique to a plurality of elements, Exit slits 223a, 223b, and 223c disposed at positions where spectral lines of wavelengths reach, and a plurality of photodetectors (usually photomultiplier tubes) 224a disposed behind the exit slits 223a, 223b, and 223c. 224b and 224c.
  • Light incident on the spectroscopic unit 220 from the excitation unit 210 through the entrance slit 221 is wavelength-dispersed by the diffraction grating 222, and a predetermined wavelength range in which the wavelength-dispersed light passes through the exit slits 223a, 223b, and 223c.
  • a predetermined wavelength range in which the wavelength-dispersed light passes through the exit slits 223a, 223b, and 223c. are detected by the photodetectors 224a, 224b, and 224c.
  • Detection signals obtained by the respective photodetectors 224a, 224b, and 224c obtained by measuring the sample are input to the control / processing unit 230 via the A / D conversion unit 225, and are included by performing predetermined data processing.
  • the intensity of the spectral line of a certain element having a quantity is obtained, and based on this, quantitative analysis or the like for each element is executed.
  • the influence of the gas components in the discharge chamber 213 on the analysis result is suppressed, the discharge is stabilized to improve the analysis accuracy, and the light having a wavelength in the vacuum ultraviolet region is attenuated.
  • the sample is measured. High purity argon gas is introduced into the discharge chamber 213.
  • the discharge chamber 213 includes a gas supply conduit 242 for supplying argon gas from a gas supply source 241 such as a gas cylinder to the discharge chamber 213, and a gas exhaust conduit for discharging gas from the discharge chamber 213. H.245 is connected.
  • An open / close valve 243 and a flow rate adjusting valve 244 are provided on the gas supply line 242, and the argon gas is introduced into the discharge chamber 213 by being driven by the control / processing unit 230 or the user. .
  • the discharge chamber 213 must be maintained at a pressure higher than the atmospheric pressure in order to prevent a decrease in argon gas purity due to the inflow of air from the surroundings.
  • the end of the gas discharge conduit 245 is not opened to the atmosphere, but is led to a container called a pressurizer 246 and opened in a liquid 246 a such as water or oil accommodated in the pressurizer 246.
  • the gas introduced into the pressurizer 246 from the end of the gas discharge conduit 245 is discharged to the outside through the exhaust conduit 247 provided in the pressurizer 246.
  • One end of the exhaust pipe 247 is disposed above the liquid level in the pressurizer 246, and the other end is opened to the atmosphere outside the pressurizer 246.
  • the exhaust from the pressurizer 246 is discharged to the outside via the exhaust equipment or provided on the exhaust pipe 247 as shown in FIG. It is common to discharge indoors through a filter 248.
  • the filter 248 When using the filter 248 as described above, periodic filter replacement is required. If the filter 248 continues to be used without being replaced, the exhaust flow rate from the pressurizer 246 may be reduced due to clogging of the filter 248 and may eventually not flow at all. Also, even when exhaust is released outdoors through an exhaust facility without using a filter, for example, evaporated sample particulates accumulate in the flow path of the exhaust facility, or exhaust is emitted outdoors in a cold region. For example, the end of the pipe line for freezing may freeze, and the exhaust from the pressurizer 246 may not flow.
  • the gas supply path from the gas supply source 241 to the pressurizer 246 that is, the gas supply conduit 242, the discharge chamber 213, and the gas
  • the pressure in the discharge pipe 245 and the internal space of the pressurizer 246 increases, and the liquid 246a in the pressurizer 246 flows back into the discharge chamber 213 at the moment when the sample S is removed from the sample mounting plate 214 after the measurement is completed.
  • problems such as contamination of the discharge chamber 213 may occur.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an emission spectroscopic analyzer that does not cause problems due to clogging of the exhaust passage from the pressurizer as described above. There is to do.
  • An emission spectroscopic analysis apparatus made to solve the above-mentioned problems, a) a discharge chamber in which a sample is excited to emit light by generating discharge inside; b) a pressurizer that is a container containing a liquid; c) a gas supply source filled with an inert gas compressed above atmospheric pressure; d) a gas supply line having one end connected to the gas supply source and the other end connected to the discharge chamber; e) a gas exhaust line having one end connected to the discharge chamber and the other end opened to the liquid in the pressurizer; f) an exhaust pipe having one end disposed above the liquid level of the liquid in the pressurizer and the other end opened to the outside of the pressurizer; g) a pressure sensor that measures the pressure of the inert gas in the internal space of any of the gas supply line, the discharge chamber, the gas discharge line, or the pressurizer; h) warning means for issuing a warning to the user when the measured value by the pressure sensor exceeds a predetermined value;
  • the inert gas is supplied from the gas supply source to the discharge chamber via the gas supply line, and further, the inert gas is supplied from the discharge chamber to the gas discharge line, the pressurizer, and the exhaust line.
  • the emission spectroscopic analysis apparatus having a function of discharging the gas to the outside, when clogging occurs on the flow path of the exhaust from the pressurizer, the flow path of the inert gas from the gas supply source through the discharge chamber to the pressurizer Pressure rises abnormally. Therefore, in the first aspect of the invention, the pressure of the inert gas in the internal space of any one of the flow paths of the inert gas, that is, the gas supply conduit, the discharge chamber, the gas discharge conduit, or the pressurizer is measured.
  • the user can immediately know that clogging has occurred on the flow path of the exhaust gas from the pressurizer.
  • the filter provided on the flow path of the exhaust gas can be replaced or the exhaust gas including the flow path can be replaced. It is possible to take measures such as inspection and maintenance of equipment. As a result, it is possible to prevent problems such as the backflow of the liquid in the pressurizer as described above.
  • an emission spectroscopic analyzer made to solve the above problems is a) a discharge chamber in which a sample is excited to emit light by generating discharge inside; b) a pressurizer that is a container containing a liquid; c) a gas supply source filled with an inert gas compressed above atmospheric pressure; d) a gas supply line having one end connected to the gas supply source and the other end opened to the discharge chamber; e) a gas exhaust line having one end opened in the discharge chamber and the other end opened in the liquid in the pressurizer; f) an exhaust pipe having one end disposed above the liquid level of the liquid in the pressurizer and the other end opened to the outside of the pressurizer; g) a flow rate sensor for measuring a flow rate of the inert gas in the gas supply line, the gas discharge line, or the exhaust line; h) warning means for issuing a warning to the user when the measured value by the flow sensor falls below a predetermined value; It is good also as what is characterized by
  • the inert gas is supplied from the gas supply source to the discharge chamber via the gas supply line, and further, the inert gas is supplied from the discharge chamber to the gas discharge line, the pressurizer, and the exhaust line.
  • the emission spectroscopic analyzer having a function of discharging the gas to the outside, when clogging occurs on the flow path of the exhaust from the pressurizer, the gas supply pipe, the discharge pipe, and the inert gas in the exhaust pipe The flow rate drops abnormally. Therefore, in the second aspect of the invention, the flow rate of the inert gas in the gas supply pipe, the gas discharge pipe, or the exhaust pipe is measured by a flow sensor, and the obtained measurement value is lower than a predetermined value. If this happens, a warning is issued to the user.
  • the user can immediately know that clogging has occurred on the flow path of the exhaust gas from the pressurizer.
  • the filter provided on the flow path of the exhaust gas can be replaced or the exhaust gas including the flow path can be replaced. It is possible to take measures such as inspection and maintenance of equipment. As a result, it is possible to prevent problems such as the backflow of the liquid in the pressurizer described above.
  • the warning means in the first invention or the second invention when the measured value by the pressure sensor exceeds a predetermined value, or the measured value by the flow sensor falls below a predetermined value. In such a case, it may be possible to output the fact or the fact that clogging has occurred on the flow path of the exhaust from the pressurizer on the screen of the monitor as characters or graphics, or output from the speaker as sound. Further, the present invention is not limited thereto, and the warning means is used when the measured value by the pressure sensor exceeds a predetermined value, or when the measured value by the flow sensor falls below a predetermined value. It is good also as what makes it light or sounds a buzzer.
  • the emission spectroscopic analyzer according to the first invention or the second invention further includes a flow rate adjusting valve provided on the gas supply pipe, and the pressure sensor or the flow sensor is provided on the gas supply pipe. It is desirable that the flow control valve is disposed between the discharge chamber and the discharge chamber.
  • the emission spectroscopic analyzer according to the first invention or the second invention may be used when the measured value by the pressure sensor exceeds a predetermined value, or by the flow sensor.
  • Gas supply stop means may be provided for stopping supply of inert gas from the gas supply source to the discharge chamber when the measured value falls below a predetermined value.
  • the emission spectroscopic analysis apparatus may be configured such that the measured value by the pressure sensor exceeds a predetermined value, or the measured value by the flow sensor falls below a predetermined value.
  • the gas discharge pipe or the gas discharge means for discharging the inert gas from the pressurizer may be provided.
  • the gas discharge conduit or the pressurizer is opened as the pressure of the inert gas increases, and the inert gas in the gas discharge conduit or the pressurizer is opened. It is also possible to provide a relief valve that discharges to the outside.
  • the inert gas when clogging occurs on the flow path of the exhaust from the pressurizer, the inert gas is discharged from the gas discharge conduit or the pressurizer by the gas discharge means or the relief valve. Therefore, even when the user is away from the apparatus, the abnormal increase in the pressure of the inert gas can be solved immediately.
  • the emission spectroscopic analysis apparatus As described above, according to the emission spectroscopic analysis apparatus according to the present invention having the above-described configuration, for example, due to the clogging of the filter as described above, the accumulation of sample fine particles in the exhaust facility, or the freezing of the pipeline.
  • clogging occurs on the flow path of the exhaust from the pressurizer, this is detected based on the measured value of the pressure sensor or flow sensor, and a warning is given to the user, or the supply of inert gas is stopped, The inert gas is discharged outside the apparatus. Therefore, an undesired increase in pressure can be prevented, and problems such as backflow of liquid in the pressurizer can be avoided.
  • FIG. 1 is a schematic configuration diagram of an emission spectroscopic analyzer according to an embodiment of the present invention.
  • 1 is a schematic configuration diagram of a conventional emission spectroscopic analyzer.
  • FIG. 1 is a diagram showing a main configuration of an emission spectroscopic analyzer according to the present embodiment.
  • subjected and description is abbreviate
  • the main difference between the emission spectroscopic analysis apparatus according to this embodiment and the conventional emission spectroscopic analysis apparatus is that a pressure sensor 151 is provided on a gas flow path from the gas supply source 141 to the pressurizer 146 through the discharge chamber 113. It is.
  • the pressurizer 146 provides an inert gas (here, argon gas). Is not properly discharged, the pressure in the gas flow path increases. Therefore, by monitoring the pressure in the gas flow path with the pressure sensor 151, it is possible to immediately detect clogging occurring in the exhaust pipe 147 or the filter 148.
  • the pressure sensor 151 may be provided in any of the components constituting the argon gas flow path, that is, the gas supply pipe 142, the discharge chamber 113, the gas discharge pipe 145, and the pressurizer 146. .
  • the pressure is more upstream than the discharge chamber 113 from the viewpoint of avoiding the influence of the fine particles on the measurement value. It is desirable to provide the sensor 151.
  • the upstream side of the flow rate adjusting valve 144 has a higher pressure in the flow path than the downstream side, and even if the exhaust pipe 147 or the filter 148 is clogged as described above, the pressure fluctuation range is on the downstream side. Smaller. Therefore, in the emission spectroscopic analysis apparatus according to this embodiment, the pressure sensor 151 is disposed at a position downstream of the flow rate adjustment valve 144 on the gas supply pipe 142.
  • the detection signal from the pressure sensor 151 is sent to the control / processing unit 130. Further, detection signals from the photodetectors 124 a, 124 b, and 124 c of the spectroscopic unit 120 are input to the control / processing unit 130 via the A / D conversion unit 125.
  • the control / processing unit 130 is configured by dedicated hardware, general-purpose hardware (such as a personal computer), or a combination thereof, and further includes an input unit 131 including a keyboard and an output unit 132 including a monitor and a speaker. Is connected.
  • the control / processing unit 130 executes predetermined data processing based on detection signals from the pressure sensor 151 and the photodetectors 124a, 124b, and 124c, as well as a discharge generation unit 111, an on-off valve 143, and a flow rate adjustment valve. 144 and the like are controlled.
  • the control / processing unit 130 and the output unit 132 cooperate to function as warning means in the present invention.
  • the user sets the sample S on the sample mounting plate 114 of the excitation unit 110 and then performs a predetermined operation with the input unit 131 to instruct the control / processing unit 130 to start purging the discharge chamber 113.
  • the control / processing unit 130 opens the opening / closing valve 143 provided in the gas supply conduit 142 from the gas supply source 141 to the discharge chamber 113, and purges the air inside the discharge chamber 113 with argon gas.
  • the flow rate of the argon gas is adjusted by the flow rate adjusting valve 144.
  • the flow rate adjusting valve 144 has a needle valve for restricting the flow rate of the fluid flowing through the gas supply pipe 142 and a dial for adjusting the opening of the needle valve, and the user manually operates the dial.
  • the flow rate of the argon gas can be adjusted by changing the opening of the needle valve.
  • a guideline of the flow rate obtained when the dial is rotated at various angles is described around the dial, and the flow rate is a relatively high value (for example, 5 L / L) when performing sample measurement. min), otherwise it is set to a relatively low value (eg 1 L / min).
  • the former is referred to as a “high” state
  • the latter is referred to as a “low” state.
  • the flow rate is set to “low” at the start of the purge operation.
  • the user operates the dial provided on the flow rate adjustment valve 144 to set the argon gas flow rate to “high”, and then the input unit 131.
  • a predetermined operation is performed to instruct the control / processing unit 130 to execute sample measurement.
  • the control / processing unit 130 controls the discharge generation unit 111 to apply a pulsed high voltage from the discharge generation unit 111 to the electrode bar 112 and excite the sample S by the spark discharge from the electrode bar 112. Make it emit light.
  • the emitted light obtained at this time passes through a light guide hole 113 a provided in the discharge chamber 113, is condensed by the condenser lens 115, and is emitted to the spectroscopic unit 120.
  • the emitted light emitted from the excitation unit 110 enters the spectroscopic unit 120 through the entrance slit 121 and is wavelength-dispersed by the diffraction grating 122.
  • the wavelength-dispersed light light in a predetermined wavelength range passes through the exit slits 123a, 123b, and 123c, and is detected by the photodetectors 124a, 124b, and 124c.
  • the user When one sample measurement is completed, the user operates the dial of the flow rate adjusting valve 144 again to return the argon gas flow rate to “low”. Then, the sample S is exchanged, or the position and orientation of the sample S on the sample mounting plate 114 are changed so that the region of the measurement surface of the sample S that has not been used for measurement is exposed from the central opening 114a. Or Thereafter, the user operates the dial of the flow rate adjusting valve 144 again to set the argon gas flow rate to “high”, and instructs the control / processing unit 130 to execute sample measurement using the input unit 131.
  • the user sets the discharge chamber 113 in the control / processing unit 130 via the input unit 131. Instructs the end of purging. Then, the control / processing unit 130 closes the open / close valve 143 of the gas supply conduit 142 and stops introducing argon gas into the discharge chamber 113.
  • the pressure in the gas supply pipe 142 is monitored by the pressure sensor 151 from the start of the purge of the discharge chamber 113 accompanying the sample measurement as described above to the end of the purge.
  • the detection signal from the pressure sensor 151 is sent to the control / processing unit 130 at a predetermined time interval, and the control / processing unit 130 sets the measured value of the pressure obtained from the detection signal to a predetermined upper limit value. It is sequentially judged whether or not it exceeds.
  • a warning sound is emitted from the speaker of the output unit 132 and the exhaust passage from the pressurizer 146 (that is, the exhaust pipe 147 and the filter 148).
  • a message for notifying the user that clogging has occurred is displayed on a monitor screen provided in the output unit 132.
  • the pressure in the gas supply pipe line 142 differs depending on whether the argon gas flow rate is “high” or “low” even when the exhaust from the pressurizer 146 is normally performed. That is, when the flow rate is “high”, the internal pressure of the gas supply pipe 142 is relatively high, and when the flow rate is “low”, the internal pressure is relatively low. Therefore, it is desirable that the upper limit value applied when the flow rate is “high” and the upper limit value applied when the flow rate is “low” are individually set as the upper limit value. These upper limit values may be set by the user from the input unit 131 at the time of measurement, or may be set at the time of shipment of the apparatus from the factory and stored in the memory in the control / processing unit 130. Good.
  • this invention is not limited to said example, A change is suitably permitted in the range of the meaning of this invention. It is.
  • clogging of the flow path of the exhaust gas from the pressurizer is detected based on the detection value of the pressure sensor, but a flow rate sensor may be provided instead of the pressure sensor.
  • the flow rate sensor is provided in any one of the gas supply line 142, the gas discharge line 145, and the exhaust line 147, and the flow rate detected by the flow rate sensor is below a predetermined lower limit value. It is assumed that a warning is issued to the user in the event of a failure.
  • the processing unit 130 may close the on-off valve 143 provided in the gas supply conduit 142 to stop the supply of argon gas. According to such a configuration, when the exhaust from the pressurizer 146 stops flowing normally, the supply of argon gas to the discharge chamber 113 is automatically stopped, so even when the user is not near the apparatus. Further increase in the pressure of argon gas can be prevented.
  • a branch pipe 152 and a flow path switching valve 153 are provided on the gas discharge pipe 145, and the measured value of the pressure sensor 151 exceeds a predetermined upper limit value or the measured value of the flow sensor.
  • the control / processing unit 130 switches the flow path switching valve 153 so that the argon gas discharged from the discharge chamber 113 is not on the pressurizer 146 but on the branch tube 152 side. You may make it flow.
  • the exhaust pipe 147 or the filter 148 is clogged, the argon gas is automatically discharged from the gas discharge pipe 145 to the outside. Even in the place, the pressure in the flow path can be immediately reduced.
  • a relief valve for allowing gas to escape from the gas discharge pipe 145 when the pressure rises abnormally may be provided.
  • This relief valve is normally closed by the force of a spring, but when the pressure higher than the force of the spring is applied due to an increase in internal pressure, the valve opens and, as a result, a gas exhaust line 145 is opened. The argon gas inside is discharged to the outside.
  • the branch pipe 152 or the relief valve is used. It is desirable to send the exhaust gas to a predetermined collection container instead of the atmosphere.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plasma Technology (AREA)

Abstract

This emission spectrometer is provided with: an electric discharge chamber 113 for using internal electric discharge to excite a sample and cause the same to emit light, a pressurizer 146 that is a container accommodating a liquid, a gas supply source 141 filled with an inert gas compressed to atmospheric pressure or higher, a gas supply line 142 having one end connected to the gas supply source 141 and the other end connected to the electric discharge chamber 113, a gas discharge line 145 having one end connected to the electric discharge chamber 113 and the other end opened within the liquid inside the pressurizer 146, an exhaust line 147 having one end disposed above the liquid surface of the liquid in the pressurizer 146 and the other end opened to the outside of the pressurizer 146, a pressure sensor 151 for measuring the pressure of the inert gas inside the gas supply line 142, and a warning means 130, 132 for warning a user if the value measured by the pressure sensor 151 exceeds a predetermined value. As a result of this configuration, it is possible for a user to know immediately when the exhaust flow path from the pressurizer becomes clogged.

Description

発光分光分析装置Optical emission spectrometer
 本発明は、放電により固体試料を励起発光させ、その発光光を分光測定する発光分光分析装置に関する。 The present invention relates to an emission spectroscopic analysis apparatus that excites a solid sample by discharge and performs spectroscopic measurement of the emitted light.
 発光分光分析装置では、一般に、金属又は非金属である固体試料にアーク放電やスパーク放電などによりエネルギーを与えることによって該試料を蒸発気化及び励起発光させ、その発光光を分光器に導入して各元素に特有な波長を有するスペクトル線を取り出して検出する(例えば、特許文献1を参照)。特に、励起源にスパーク放電を用いる発光分光分析装置は、精度の高い分析が可能であるため、例えば鉄鋼材や非鉄金属材などの生産工場において、生産された金属体中の組成分析を行うために広く利用されている。 In an emission spectroscopic analyzer, generally, a solid sample, which is a metal or nonmetal, is given energy by arc discharge or spark discharge to evaporate and evaporate the sample, and the emitted light is introduced into a spectrometer. A spectral line having a wavelength peculiar to the element is extracted and detected (for example, see Patent Document 1). In particular, an emission spectroscopic analyzer using a spark discharge as an excitation source is capable of highly accurate analysis. For example, in a production plant such as a steel material or a non-ferrous metal material, a composition analysis in a produced metal body is performed. Widely used.
 従来の一般的な発光分光分析装置の構成を図3に示す。この発光分光分析装置は、固体試料Sを励起発光させる励起部210と、前記試料Sからの発光光を波長分散して検出する分光部220と、各部の制御及びデータ処理を行う制御・処理部230とを含んでいる。 The configuration of a conventional general emission spectroscopic analyzer is shown in FIG. The emission spectroscopic analysis apparatus includes an excitation unit 210 that excites and emits a solid sample S, a spectroscopic unit 220 that detects light emitted from the sample S by wavelength dispersion, and a control / processing unit that performs control and data processing of each unit. 230.
 励起部210は、放電発生部211、電極棒212、放電室213、試料載置板214、及び集光レンズ215を備えている。放電室213には、斜め上方に向けて空いた分析開口と放電室213から光を取り出すための導光穴213aが設けられており、放電室213の上部には前記分析開口を覆うように試料載置板214が着脱自在に取り付けられている。試料載置板214は、試料Sよりも小さな中央開口214aを有しており、試料Sをその中央開口214aを覆うようにして試料載置板214に載置することにより、試料Sの下面(被分析面)の一部が放電室213の内部に露出するようになっている。放電室213の内部には放電のための電極棒212がその先端を前記中央開口214aに向けた状態で配設されている。 The excitation unit 210 includes a discharge generation unit 211, an electrode rod 212, a discharge chamber 213, a sample mounting plate 214, and a condenser lens 215. The discharge chamber 213 is provided with an analysis opening opened obliquely upward and a light guide hole 213a for taking out light from the discharge chamber 213, and a sample is provided above the discharge chamber 213 so as to cover the analysis opening. A mounting plate 214 is detachably attached. The sample mounting plate 214 has a central opening 214a smaller than the sample S. By placing the sample S on the sample mounting plate 214 so as to cover the central opening 214a, the lower surface ( A part of the surface to be analyzed) is exposed inside the discharge chamber 213. Inside the discharge chamber 213, an electrode rod 212 for discharge is disposed with its tip directed toward the central opening 214a.
 放電発生部211は、所定周波数(例えば400 Hz)に同期してパルス状の高電圧を電極棒212に印加する。鉄又は非鉄金属などの試料Sは、電極棒212からのスパーク放電によって励起発光する。試料Sの励起発光による発光光は、放電室213に設けられた導光穴213aを通過し、集光レンズ215で集光されて入口スリット221を介して分光部220に導入される。 The discharge generator 211 applies a pulsed high voltage to the electrode bar 212 in synchronization with a predetermined frequency (for example, 400 Hz). The sample S such as iron or non-ferrous metal is excited to emit light by the spark discharge from the electrode rod 212. Light emitted by excitation light emission of the sample S passes through a light guide hole 213 a provided in the discharge chamber 213, is collected by the condenser lens 215, and is introduced into the spectroscopic unit 220 through the entrance slit 221.
 分光部220は、特許文献1などに開示されているように、複数の元素にそれぞれ特有な波長のスペクトル線を得るために、試料Sからの光を波長分散させるための回折格子222と、各波長のスペクトル線が到達する位置に配置された出口スリット223a、223b、223cと、各出口スリット223a、223b、223cの後方に配置された複数の光検出器(通常は、光電子増倍管)224a、224b、224cとを有している。前記励起部210から入口スリット221を介して分光部220に入射した光は、前記回折格子222で波長分散され、その波長分散光のうち各出口スリット223a、223b、223cを通過した所定の波長範囲の光が各光検出器224a、224b、224cによって検出される。 As disclosed in Patent Document 1 or the like, the spectroscopic unit 220 includes a diffraction grating 222 for wavelength-dispersing light from the sample S in order to obtain spectral lines having wavelengths unique to a plurality of elements, Exit slits 223a, 223b, and 223c disposed at positions where spectral lines of wavelengths reach, and a plurality of photodetectors (usually photomultiplier tubes) 224a disposed behind the exit slits 223a, 223b, and 223c. 224b and 224c. Light incident on the spectroscopic unit 220 from the excitation unit 210 through the entrance slit 221 is wavelength-dispersed by the diffraction grating 222, and a predetermined wavelength range in which the wavelength-dispersed light passes through the exit slits 223a, 223b, and 223c. Are detected by the photodetectors 224a, 224b, and 224c.
 試料の測定によって得られた各光検出器224a、224b、224cによる検出信号はA/D変換部225を介して制御・処理部230に入力され、所定のデータ処理が行われることによって或る含有量を有する或る元素のスペクトル線の強度が求められ、それに基づいて各元素に対する定量分析などが実行される。 Detection signals obtained by the respective photodetectors 224a, 224b, and 224c obtained by measuring the sample are input to the control / processing unit 230 via the A / D conversion unit 225, and are included by performing predetermined data processing. The intensity of the spectral line of a certain element having a quantity is obtained, and based on this, quantitative analysis or the like for each element is executed.
 上記のような発光分光分析装置では、放電室213内の気体成分による分析結果への影響を抑えることや、放電を安定させて分析精度を高めること、真空紫外領域の波長を持つ光を減衰させることなく分光器(分光部220)に導入すること、及び放電によって蒸発した試料由来の微粒子が放電室213内に滞留することによる分析精度の悪化を防ぐこと等を目的として、試料の測定に際し、放電室213に高純度アルゴンガスが導入される。そのため、放電室213には、ガスボンベ等のガス供給源241から放電室213へアルゴンガスを供給するためのガス供給用管路242と、放電室213からガスを排出するためのガス排出用管路245とが接続されている。ガス供給用管路242上には、開閉バルブ243と流量調節バルブ244が設けられており、これらを制御・処理部230又はユーザが駆動することにより放電室213へのアルゴンガス導入が実行される。 In the emission spectroscopic analyzer as described above, the influence of the gas components in the discharge chamber 213 on the analysis result is suppressed, the discharge is stabilized to improve the analysis accuracy, and the light having a wavelength in the vacuum ultraviolet region is attenuated. In order to prevent the deterioration of the analysis accuracy due to the introduction into the spectroscope (spectrometer 220) without any problems and the retention of fine particles derived from the sample in the discharge chamber 213, the sample is measured. High purity argon gas is introduced into the discharge chamber 213. Therefore, the discharge chamber 213 includes a gas supply conduit 242 for supplying argon gas from a gas supply source 241 such as a gas cylinder to the discharge chamber 213, and a gas exhaust conduit for discharging gas from the discharge chamber 213. H.245 is connected. An open / close valve 243 and a flow rate adjusting valve 244 are provided on the gas supply line 242, and the argon gas is introduced into the discharge chamber 213 by being driven by the control / processing unit 230 or the user. .
 更に、周囲からの空気の流入によるアルゴンガス純度の低下を防ぐため、放電室213内は大気圧よりも高い圧力に維持する必要がある。このため、ガス排出用管路245の末端は、大気開放ではなく、加圧器246とよばれる容器に導かれ、該加圧器246に収容された水や油などの液体246a中に開放される。このとき、ガス排出用管路245の末端から加圧器246内に導入されたガスは、加圧器246に設けられた排気管路247を介して外部に排出される。なお、この排気管路247の一端は、加圧器246内の液面よりも上方に配置され、他端は加圧器246の外部で大気に開放される。 Furthermore, the discharge chamber 213 must be maintained at a pressure higher than the atmospheric pressure in order to prevent a decrease in argon gas purity due to the inflow of air from the surroundings. For this reason, the end of the gas discharge conduit 245 is not opened to the atmosphere, but is led to a container called a pressurizer 246 and opened in a liquid 246 a such as water or oil accommodated in the pressurizer 246. At this time, the gas introduced into the pressurizer 246 from the end of the gas discharge conduit 245 is discharged to the outside through the exhaust conduit 247 provided in the pressurizer 246. One end of the exhaust pipe 247 is disposed above the liquid level in the pressurizer 246, and the other end is opened to the atmosphere outside the pressurizer 246.
 放電室213内で蒸発した試料に由来する微粒子のうち、一部はこの加圧器246内の液体246aによって捕捉されるが、大部分は加圧器246を通過してしまう。そのため、この微粒子が屋内に放出されるのを防ぐために、加圧器246からの排気は、排気設備を経由して屋外に放出するか、図3に示すように、排気管路247上に設けたフィルタ248を通じて屋内に放出するのが一般的である。 Among the fine particles derived from the sample evaporated in the discharge chamber 213, a part is captured by the liquid 246 a in the pressurizer 246, but most passes through the pressurizer 246. Therefore, in order to prevent the fine particles from being discharged indoors, the exhaust from the pressurizer 246 is discharged to the outside via the exhaust equipment or provided on the exhaust pipe 247 as shown in FIG. It is common to discharge indoors through a filter 248.
特開2001-83096号公報Japanese Patent Laid-Open No. 2001-83096
 上記のようにフィルタ248を使用する場合には、定期的なフィルタ交換が必要となる。仮に、交換せずに使用し続けた場合には、フィルタ248の目詰まりによって加圧器246からの排気流量が低下して最終的には全く流れなくなるおそれがある。また、フィルタを使用せず、排気設備を介して屋外に排気を放出する場合でも、例えば、蒸発した試料の微粒子が排気設備の流路内に堆積したり、寒冷地において排気を屋外に放出するための管路の末端が凍結したりすることにより、加圧器246からの排気が流れなくなる可能性がある。 When using the filter 248 as described above, periodic filter replacement is required. If the filter 248 continues to be used without being replaced, the exhaust flow rate from the pressurizer 246 may be reduced due to clogging of the filter 248 and may eventually not flow at all. Also, even when exhaust is released outdoors through an exhaust facility without using a filter, for example, evaporated sample particulates accumulate in the flow path of the exhaust facility, or exhaust is emitted outdoors in a cold region. For example, the end of the pipe line for freezing may freeze, and the exhaust from the pressurizer 246 may not flow.
 このような流路の詰まりによって加圧器246からの排気が滞ると、試料の測定時にガス供給源241から加圧器246に至るガス流路内(すなわちガス供給用管路242、放電室213、ガス排出用管路245、及び加圧器246の内部空間)における圧力が増大し、測定終了後に試料載置板214から試料Sを取り除いた瞬間に、加圧器246内の液体246aが放電室213に逆流して放電室213内を汚染するなどの不具合を生じる可能性がある。 When the exhaust from the pressurizer 246 stagnate due to such clogging of the flow path, the gas supply path from the gas supply source 241 to the pressurizer 246 (that is, the gas supply conduit 242, the discharge chamber 213, and the gas) when the sample is measured The pressure in the discharge pipe 245 and the internal space of the pressurizer 246 increases, and the liquid 246a in the pressurizer 246 flows back into the discharge chamber 213 at the moment when the sample S is removed from the sample mounting plate 214 after the measurement is completed. As a result, problems such as contamination of the discharge chamber 213 may occur.
 本発明は、上記の点に鑑みて成されたものであり、その目的とするところは、上記のような加圧器からの排気流路の詰まりによる不具合が生じることのない発光分光分析装置を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide an emission spectroscopic analyzer that does not cause problems due to clogging of the exhaust passage from the pressurizer as described above. There is to do.
 上記課題を解決するために成された第1発明に係る発光分光分析装置は、
 a)内部で放電を生じることにより試料を励起発光させる放電室と、
 b)液体を収容した容器である加圧器と、
 c)大気圧以上に圧縮された不活性ガスが充填されたガス供給源と、
 d)一端が前記ガス供給源に接続され、他端が前記放電室に接続されたガス供給用管路と、
 e)一端が前記放電室に接続され、他端が前記加圧器内の前記液体中に開放されたガス排出用管路と、
 f)一端が前記加圧器内において前記液体の液面よりも上方に配置され、他端が該加圧器の外部に開放された排気管路と、
 g)前記ガス供給用管路、前記放電室、前記ガス排出用管路、又は前記加圧器のいずれかの内部空間における前記不活性ガスの圧力を測定する圧力センサと、
 h)前記圧力センサによる測定値が予め定められた値を超えた場合にユーザに警告を発する警告手段と、
 を有することを特徴としている。
An emission spectroscopic analysis apparatus according to the first invention made to solve the above-mentioned problems,
a) a discharge chamber in which a sample is excited to emit light by generating discharge inside;
b) a pressurizer that is a container containing a liquid;
c) a gas supply source filled with an inert gas compressed above atmospheric pressure;
d) a gas supply line having one end connected to the gas supply source and the other end connected to the discharge chamber;
e) a gas exhaust line having one end connected to the discharge chamber and the other end opened to the liquid in the pressurizer;
f) an exhaust pipe having one end disposed above the liquid level of the liquid in the pressurizer and the other end opened to the outside of the pressurizer;
g) a pressure sensor that measures the pressure of the inert gas in the internal space of any of the gas supply line, the discharge chamber, the gas discharge line, or the pressurizer;
h) warning means for issuing a warning to the user when the measured value by the pressure sensor exceeds a predetermined value;
It is characterized by having.
 上述のような、ガス供給源からガス供給用管路を経て放電室に不活性ガスを供給し、更に放電室からガス排出用管路、加圧器、及び排気管路を介して該不活性ガスを外部に排出する機能を備えた発光分光分析装置において、加圧器からの排気の流路上に詰まりが生じると、前記ガス供給源から放電室を経て加圧器に至る不活性ガスの流路内の圧力が異常に上昇する。そこで上記第1発明では、前記不活性ガスの流路、すなわちガス供給用管路、放電室、ガス排出用管路、又は加圧器のいずれかの内部空間における前記不活性ガスの圧力を圧力センサで測定し、得られた測定値が予め定められた値を超えた場合に、ユーザに警告を発するものとなっている。これにより、ユーザは前記加圧器からの排気の流路上に詰まりが生じたことを直ちに知ることができ、例えば、該排気の流路上に設けられたフィルタを交換したり、該流路を含む排気設備の点検・整備を行うといった対策を講じることができる。その結果、上述のような加圧器内の液体の逆流などの不具合を未然に防ぐことが可能となる。 As described above, the inert gas is supplied from the gas supply source to the discharge chamber via the gas supply line, and further, the inert gas is supplied from the discharge chamber to the gas discharge line, the pressurizer, and the exhaust line. In the emission spectroscopic analysis apparatus having a function of discharging the gas to the outside, when clogging occurs on the flow path of the exhaust from the pressurizer, the flow path of the inert gas from the gas supply source through the discharge chamber to the pressurizer Pressure rises abnormally. Therefore, in the first aspect of the invention, the pressure of the inert gas in the internal space of any one of the flow paths of the inert gas, that is, the gas supply conduit, the discharge chamber, the gas discharge conduit, or the pressurizer is measured. When the measured value obtained by the measurement exceeds a predetermined value, a warning is issued to the user. As a result, the user can immediately know that clogging has occurred on the flow path of the exhaust gas from the pressurizer. For example, the filter provided on the flow path of the exhaust gas can be replaced or the exhaust gas including the flow path can be replaced. It is possible to take measures such as inspection and maintenance of equipment. As a result, it is possible to prevent problems such as the backflow of the liquid in the pressurizer as described above.
 また、上記課題を解決するために成された第2発明に係る発光分光分析装置は、
 a)内部で放電を生じることにより試料を励起発光させる放電室と、
 b)液体を収容した容器である加圧器と、
 c)大気圧以上に圧縮された不活性ガスが充填されたガス供給源と、
 d)一端が前記ガス供給源に接続され、他端が前記放電室内に開放されたガス供給用管路と、
 e)一端が前記放電室内に開放され、他端が前記加圧器内の前記液体中に開放されたガス排出用管路と、
 f)一端が前記加圧器内において前記液体の液面よりも上方に配置され、他端が該加圧器の外部に開放された排気管路と、
 g)前記ガス供給用管路、前記ガス排出用管路、又は前記排気管路における前記不活性ガスの流量を測定する流量センサと、
 h)前記流量センサによる測定値が予め定められた値を下回った場合にユーザに警告を発する警告手段と、
 を有することを特徴とするものとしてもよい。
In addition, an emission spectroscopic analyzer according to the second invention made to solve the above problems is
a) a discharge chamber in which a sample is excited to emit light by generating discharge inside;
b) a pressurizer that is a container containing a liquid;
c) a gas supply source filled with an inert gas compressed above atmospheric pressure;
d) a gas supply line having one end connected to the gas supply source and the other end opened to the discharge chamber;
e) a gas exhaust line having one end opened in the discharge chamber and the other end opened in the liquid in the pressurizer;
f) an exhaust pipe having one end disposed above the liquid level of the liquid in the pressurizer and the other end opened to the outside of the pressurizer;
g) a flow rate sensor for measuring a flow rate of the inert gas in the gas supply line, the gas discharge line, or the exhaust line;
h) warning means for issuing a warning to the user when the measured value by the flow sensor falls below a predetermined value;
It is good also as what is characterized by having.
 上述のような、ガス供給源からガス供給用管路を経て放電室に不活性ガスを供給し、更に放電室からガス排出用管路、加圧器、及び排気管路を介して該不活性ガスを外部に排出する機能を備えた発光分光分析装置において、加圧器からの排気の流路上に詰まりが生じると、前記ガス供給用管路、排出用管路、及び排気管路における不活性ガスの流量が異常に低下する。そこで上記第2発明では、ガス供給用管路、ガス排出用管路、又は排気管路における前記不活性ガスの流量を流量センサで測定し、得られた測定値が予め定められた値を下回った場合に、ユーザに警告を発するものとなっている。これにより、ユーザは前記加圧器からの排気の流路上に詰まりが生じたことを直ちに知ることができ、例えば、該排気の流路上に設けられたフィルタを交換したり、該流路を含む排気設備の点検・整備を行うといった対策を講じることができる。その結果、上述した加圧器内の液体の逆流などの不具合を未然に防ぐことが可能となる。 As described above, the inert gas is supplied from the gas supply source to the discharge chamber via the gas supply line, and further, the inert gas is supplied from the discharge chamber to the gas discharge line, the pressurizer, and the exhaust line. In the emission spectroscopic analyzer having a function of discharging the gas to the outside, when clogging occurs on the flow path of the exhaust from the pressurizer, the gas supply pipe, the discharge pipe, and the inert gas in the exhaust pipe The flow rate drops abnormally. Therefore, in the second aspect of the invention, the flow rate of the inert gas in the gas supply pipe, the gas discharge pipe, or the exhaust pipe is measured by a flow sensor, and the obtained measurement value is lower than a predetermined value. If this happens, a warning is issued to the user. As a result, the user can immediately know that clogging has occurred on the flow path of the exhaust gas from the pressurizer. For example, the filter provided on the flow path of the exhaust gas can be replaced or the exhaust gas including the flow path can be replaced. It is possible to take measures such as inspection and maintenance of equipment. As a result, it is possible to prevent problems such as the backflow of the liquid in the pressurizer described above.
 なお、前記第1発明又は第2発明における前記警告手段としては、前記圧力センサによる測定値が予め定められた値を超えた場合、又は前記流量センサによる測定値が予め定められた値を下回った場合に、その旨又は前記加圧器からの排気の流路上に詰まりが生じている旨を、文字やグラフィックとしてモニタの画面上に出力したり、音声としてスピーカから出力したりするものが考えられる。また、これらに限らず、前記警告手段を、前記圧力センサによる測定値が予め定められた値を超えた場合、又は前記流量センサによる測定値が予め定められた値を下回った場合に、ランプを点灯させたりブザーを鳴らしたりするものとしてもよい。 As the warning means in the first invention or the second invention, when the measured value by the pressure sensor exceeds a predetermined value, or the measured value by the flow sensor falls below a predetermined value. In such a case, it may be possible to output the fact or the fact that clogging has occurred on the flow path of the exhaust from the pressurizer on the screen of the monitor as characters or graphics, or output from the speaker as sound. Further, the present invention is not limited thereto, and the warning means is used when the measured value by the pressure sensor exceeds a predetermined value, or when the measured value by the flow sensor falls below a predetermined value. It is good also as what makes it light or sounds a buzzer.
 前記第1発明又は第2発明に係る発光分光分析装置は、更に、前記ガス供給用管路上に設けられた流量調節バルブを有し、前記圧力センサ又は前記流量センサが、前記ガス供給用管路上の該流量調節バルブと前記放電室との間に配置されているものとすることが望ましい。 The emission spectroscopic analyzer according to the first invention or the second invention further includes a flow rate adjusting valve provided on the gas supply pipe, and the pressure sensor or the flow sensor is provided on the gas supply pipe. It is desirable that the flow control valve is disposed between the discharge chamber and the discharge chamber.
 また、前記第1発明又は第2発明に係る発光分光分析装置は、前記警告手段に加えて又は代えて、前記圧力センサによる測定値が予め定められた値を超えた場合、又は前記流量センサによる測定値が予め定められた値を下回った場合に、前記ガス供給源から前記放電室への不活性ガスの供給を停止するガス供給停止手段を有するものとしてもよい。 In addition, in addition to or instead of the warning means, the emission spectroscopic analyzer according to the first invention or the second invention may be used when the measured value by the pressure sensor exceeds a predetermined value, or by the flow sensor. Gas supply stop means may be provided for stopping supply of inert gas from the gas supply source to the discharge chamber when the measured value falls below a predetermined value.
 このような構成によれば、加圧器からの排気の流路上に詰まりが生じた際に、前記不活性ガスの供給が自動的に停止されるため、ユーザが装置の近くにいない場合でも、不活性ガスの圧力が更に上昇するのを防ぐことが可能となる。 According to such a configuration, when clogging occurs in the flow path of the exhaust gas from the pressurizer, the supply of the inert gas is automatically stopped. It becomes possible to prevent the pressure of the active gas from further rising.
 また、前記第1発明又は第2発明に係る発光分光分析装置は、前記圧力センサによる測定値が予め定められた値を超えた場合、又は前記流量センサによる測定値が予め定められた値を下回った場合に、前記ガス排出用管路、又は前記加圧器から不活性ガスを外部に放出するガス放出手段を備えた構成としてもよい。 The emission spectroscopic analysis apparatus according to the first or second aspect of the invention may be configured such that the measured value by the pressure sensor exceeds a predetermined value, or the measured value by the flow sensor falls below a predetermined value. In this case, the gas discharge pipe or the gas discharge means for discharging the inert gas from the pressurizer may be provided.
 また、前記ガス放出手段に代えて、前記ガス排出用管路又は前記加圧器に、前記不活性ガスの圧力上昇に伴って開放され、該ガス排出用管路又は該加圧器内の不活性ガスを外部に放出するリリーフバルブを設けた構成とすることもできる。 Further, instead of the gas discharge means, the gas discharge conduit or the pressurizer is opened as the pressure of the inert gas increases, and the inert gas in the gas discharge conduit or the pressurizer is opened. It is also possible to provide a relief valve that discharges to the outside.
 このような構成によれば、加圧器からの排気の流路上に詰まりが生じた際に、前記ガス放出手段又は前記リリーフバルブによって、ガス排出用管路又は加圧器から不活性ガスが排出されるため、ユーザが装置から離れた場所にいる場合でも、不活性ガスの圧力の異常上昇を直ちに解消することができる。 According to such a configuration, when clogging occurs on the flow path of the exhaust from the pressurizer, the inert gas is discharged from the gas discharge conduit or the pressurizer by the gas discharge means or the relief valve. Therefore, even when the user is away from the apparatus, the abnormal increase in the pressure of the inert gas can be solved immediately.
 以上で説明した通り、上記構成から成る本発明に係る発光分光分析装置によれば、例えば、上述のようなフィルタの目詰まり、排気設備内への試料微粒子の堆積、又は管路の凍結などによって加圧器からの排気の流路上に詰まりが生じた場合に、圧力センサ又は流量センサの測定値に基づいてその旨が検知され、ユーザに警告を発したり、不活性ガスの供給を停止したり、該不活性ガスが装置外に排出されたりする。そのため、不所望な圧力上昇を防止し、加圧器内の液体が逆流するなどの不具合を回避することができる。 As described above, according to the emission spectroscopic analysis apparatus according to the present invention having the above-described configuration, for example, due to the clogging of the filter as described above, the accumulation of sample fine particles in the exhaust facility, or the freezing of the pipeline. When clogging occurs on the flow path of the exhaust from the pressurizer, this is detected based on the measured value of the pressure sensor or flow sensor, and a warning is given to the user, or the supply of inert gas is stopped, The inert gas is discharged outside the apparatus. Therefore, an undesired increase in pressure can be prevented, and problems such as backflow of liquid in the pressurizer can be avoided.
本発明の一実施形態に係る発光分光分析装置の概略構成図。1 is a schematic configuration diagram of an emission spectroscopic analyzer according to an embodiment of the present invention. 本発明の別の実施形態に係る発光分光分析装置の概略構成図。The schematic block diagram of the emission-spectral-analysis apparatus which concerns on another embodiment of this invention. 従来の発光分光分析装置の概略構成図。1 is a schematic configuration diagram of a conventional emission spectroscopic analyzer.
 以下、本発明に係る発光分光分析装置について実施形態を挙げて説明を行う。図1は、本実施形態に係る発光分光分析装置の要部構成を示す図である。なお、既に説明した図3と同一又は対応する構成要素については下2桁が共通する符号を付し、適宜説明を省略する。 Hereinafter, the emission spectroscopic analysis apparatus according to the present invention will be described with reference to embodiments. FIG. 1 is a diagram showing a main configuration of an emission spectroscopic analyzer according to the present embodiment. In addition, about the component which is the same as that of FIG. 3 already demonstrated or respond | corresponds, the code | symbol which the last 2 digits share is attached | subjected, and description is abbreviate | omitted suitably.
 本実施形態に係る発光分光分析装置と従来の発光分光分析装置の主な相違点は、ガス供給源141から放電室113を経て加圧器146に至るガス流路上に圧力センサ151を備えている点である。加圧器146内のガスを排出するための排気管路147や該排気管路147上に設けられたフィルタ148に詰まりが生じた場合、加圧器146から不活性ガス(ここではアルゴンガスとする)が適切に排出されなくなるため、前記ガス流路内の圧力が上昇する。そこで、前記圧力センサ151によって該ガス流路内の圧力をモニタリングすることにより、前記排気管路147又はフィルタ148に生じた詰まりを直ちに検知することができる。 The main difference between the emission spectroscopic analysis apparatus according to this embodiment and the conventional emission spectroscopic analysis apparatus is that a pressure sensor 151 is provided on a gas flow path from the gas supply source 141 to the pressurizer 146 through the discharge chamber 113. It is. When clogging occurs in the exhaust pipe 147 for discharging the gas in the pressurizer 146 or the filter 148 provided on the exhaust pipe 147, the pressurizer 146 provides an inert gas (here, argon gas). Is not properly discharged, the pressure in the gas flow path increases. Therefore, by monitoring the pressure in the gas flow path with the pressure sensor 151, it is possible to immediately detect clogging occurring in the exhaust pipe 147 or the filter 148.
 なお、圧力センサ151は、前記アルゴンガスの流路を構成する各構成要素、すなわちガス供給用管路142、放電室113、ガス排出用管路145、及び加圧器146のいずれに設けてもよい。但し、放電室113及びそれより下流側では蒸発した試料の微粒子がアルゴンガス中に浮遊しているため、該微粒子による測定値への影響を回避する観点から、放電室113よりも上流側に圧力センサ151を設けることが望ましい。また、流量調節バルブ144よりも上流側は下流側よりも流路内の圧力が高くなっており、上記のような排気管路147又はフィルタ148の詰まりが生じても圧力の変動幅が下流側より小さくなる。そのため、本実施形態に係る発光分光分析装置では、ガス供給用管路142上の流量調節バルブ144より下流側の位置に圧力センサ151を配置している。 The pressure sensor 151 may be provided in any of the components constituting the argon gas flow path, that is, the gas supply pipe 142, the discharge chamber 113, the gas discharge pipe 145, and the pressurizer 146. . However, since the fine particles of the evaporated sample are suspended in the argon gas in the discharge chamber 113 and the downstream side thereof, the pressure is more upstream than the discharge chamber 113 from the viewpoint of avoiding the influence of the fine particles on the measurement value. It is desirable to provide the sensor 151. Further, the upstream side of the flow rate adjusting valve 144 has a higher pressure in the flow path than the downstream side, and even if the exhaust pipe 147 or the filter 148 is clogged as described above, the pressure fluctuation range is on the downstream side. Smaller. Therefore, in the emission spectroscopic analysis apparatus according to this embodiment, the pressure sensor 151 is disposed at a position downstream of the flow rate adjustment valve 144 on the gas supply pipe 142.
 圧力センサ151からの検出信号は制御・処理部130に送出される。また、制御・処理部130には、分光部120の光検出器124a、124b、124cからの検出信号がA/D変換部125を介して入力される。制御・処理部130は、専用のハードウェア若しくは汎用のハードウェア(パーソナルコンピュータ等)、又はその組み合わせで構成されており、更に、キーボード等から成る入力部131と、モニタやスピーカから成る出力部132が接続されている。この制御・処理部130は、前記圧力センサ151や光検出器124a、124b、124cからの検出信号に基づいて所定のデータ処理を実行するほか、放電発生部111、開閉バルブ143、及び流量調節バルブ144などの制御を行う。なお、本実施例では制御・処理部130及び出力部132が協働して本発明における警告手段として機能する。 The detection signal from the pressure sensor 151 is sent to the control / processing unit 130. Further, detection signals from the photodetectors 124 a, 124 b, and 124 c of the spectroscopic unit 120 are input to the control / processing unit 130 via the A / D conversion unit 125. The control / processing unit 130 is configured by dedicated hardware, general-purpose hardware (such as a personal computer), or a combination thereof, and further includes an input unit 131 including a keyboard and an output unit 132 including a monitor and a speaker. Is connected. The control / processing unit 130 executes predetermined data processing based on detection signals from the pressure sensor 151 and the photodetectors 124a, 124b, and 124c, as well as a discharge generation unit 111, an on-off valve 143, and a flow rate adjustment valve. 144 and the like are controlled. In this embodiment, the control / processing unit 130 and the output unit 132 cooperate to function as warning means in the present invention.
 続いて、本実施形態に係る発光分光分析装置において試料の測定を行う際の基本的な操作の流れについて説明する。まず、ユーザが励起部110の試料載置板114に試料Sをセットした上で、入力部131で所定の操作を行うことにより制御・処理部130に放電室113のパージ開始を指示する。すると制御・処理部130が、ガス供給源141から放電室113に至るガス供給用管路142に設けられた開閉バルブ143を開放し、放電室113の内部の空気をアルゴンガスでパージする。 Subsequently, a basic operation flow when measuring a sample in the emission spectroscopic analyzer according to the present embodiment will be described. First, the user sets the sample S on the sample mounting plate 114 of the excitation unit 110 and then performs a predetermined operation with the input unit 131 to instruct the control / processing unit 130 to start purging the discharge chamber 113. Then, the control / processing unit 130 opens the opening / closing valve 143 provided in the gas supply conduit 142 from the gas supply source 141 to the discharge chamber 113, and purges the air inside the discharge chamber 113 with argon gas.
 このときのアルゴンガスの流量は流量調節バルブ144によって調節される。流量調節バルブ144は、ガス供給用管路142を流れる流体の流量を絞るためのニードルバルブと該ニードルバルブの開度を調節するためのダイアルを有しており、ユーザが該ダイアルを手動で操作して前記ニードルバルブの開度を変化させることによりアルゴンガスの流量を調節できるものとなっている。なお、前記ダイアルの周囲には該ダイアルを各種の角度に回動させたときに得られる流量の目安が記載されており、該流量は、試料測定の実行時には比較的高い値(例えば5 L/min)に設定され、それ以外のときは比較的低い値(例えば1 L/min)に設定される。以下、前者を流量が「高」の状態、後者を流量が「低」の状態とよぶこととする。なお、上記パージ操作の開始時点では前記流量は「低」に設定される。 At this time, the flow rate of the argon gas is adjusted by the flow rate adjusting valve 144. The flow rate adjusting valve 144 has a needle valve for restricting the flow rate of the fluid flowing through the gas supply pipe 142 and a dial for adjusting the opening of the needle valve, and the user manually operates the dial. The flow rate of the argon gas can be adjusted by changing the opening of the needle valve. In addition, a guideline of the flow rate obtained when the dial is rotated at various angles is described around the dial, and the flow rate is a relatively high value (for example, 5 L / L) when performing sample measurement. min), otherwise it is set to a relatively low value (eg 1 L / min). Hereinafter, the former is referred to as a “high” state, and the latter is referred to as a “low” state. The flow rate is set to “low” at the start of the purge operation.
 その後、前記放電室113のパージ開始から所定の時間が経過した時点で、ユーザが流量調節バルブ144に設けられた前記ダイアルを操作してアルゴンガス流量を「高」にし、続いて、入力部131で所定の操作を行って制御・処理部130に試料測定の実行を指示する。すると、制御・処理部130は、放電発生部111を制御することにより、該放電発生部111からパルス状の高電圧を電極棒112に印加し、電極棒112からのスパーク放電によって試料Sを励起発光させる。このとき得られた発光光は放電室113に設けられた導光穴113aを通過し、集光レンズ115で集光されて分光部120へと出射される。励起部110から出射した発光光は、入口スリット121を介して分光部120に入射し、回折格子122で波長分散される。そして、その波長分散された光のうち所定の波長範囲の光が出口スリット123a、123b、123cを通過し、光検出器124a、124b、124cによって検出される。 Thereafter, when a predetermined time has elapsed from the start of the purge of the discharge chamber 113, the user operates the dial provided on the flow rate adjustment valve 144 to set the argon gas flow rate to “high”, and then the input unit 131. A predetermined operation is performed to instruct the control / processing unit 130 to execute sample measurement. Then, the control / processing unit 130 controls the discharge generation unit 111 to apply a pulsed high voltage from the discharge generation unit 111 to the electrode bar 112 and excite the sample S by the spark discharge from the electrode bar 112. Make it emit light. The emitted light obtained at this time passes through a light guide hole 113 a provided in the discharge chamber 113, is condensed by the condenser lens 115, and is emitted to the spectroscopic unit 120. The emitted light emitted from the excitation unit 110 enters the spectroscopic unit 120 through the entrance slit 121 and is wavelength-dispersed by the diffraction grating 122. Of the wavelength-dispersed light, light in a predetermined wavelength range passes through the exit slits 123a, 123b, and 123c, and is detected by the photodetectors 124a, 124b, and 124c.
 1回の試料測定が完了すると、再びユーザが流量調節バルブ144のダイアルを操作してアルゴンガス流量を「低」に戻す。そして、試料Sを交換したり、試料Sの被測定面のうち未だ測定に供されていない領域が中央開口114aから露出するように試料載置板114上における試料Sの位置や向きを変更したりする。その後は、ユーザが流量調節バルブ144のダイアルを再度操作してアルゴンガス流量を「高」にし、入力部131を用いて制御・処理部130に試料測定の実行を指示する。 When one sample measurement is completed, the user operates the dial of the flow rate adjusting valve 144 again to return the argon gas flow rate to “low”. Then, the sample S is exchanged, or the position and orientation of the sample S on the sample mounting plate 114 are changed so that the region of the measurement surface of the sample S that has not been used for measurement is exposed from the central opening 114a. Or Thereafter, the user operates the dial of the flow rate adjusting valve 144 again to set the argon gas flow rate to “high”, and instructs the control / processing unit 130 to execute sample measurement using the input unit 131.
 その後は、以上のような試料の交換又は位置変更と試料測定とを交互に実行し、必要な測定が全て完了した時点でユーザが入力部131を介して制御・処理部130に放電室113のパージ終了を指示する。すると、制御・処理部130はガス供給用管路142の開閉バルブ143を閉鎖し、放電室113へのアルゴンガスの導入を停止する。 After that, sample exchange or position change and sample measurement as described above are performed alternately, and when all necessary measurements are completed, the user sets the discharge chamber 113 in the control / processing unit 130 via the input unit 131. Instructs the end of purging. Then, the control / processing unit 130 closes the open / close valve 143 of the gas supply conduit 142 and stops introducing argon gas into the discharge chamber 113.
 本実施形態に係る発光分光分析装置では、以上のような試料測定に伴う放電室113のパージ開始から該パージの終了までの間、圧力センサ151によってガス供給用管路142内の圧力がモニタリングされる。すなわち、該圧力センサ151からの検出信号が所定の時間間隔で制御・処理部130に送出され、制御・処理部130は、該検出信号から求められる圧力の測定値が予め定められた上限値を超えているか否かを順次判定する。そして、該測定値が前記上限値を超えていると判定した場合には、出力部132のスピーカから警告音を発すると共に、加圧器146からの排気流路(すなわち排気管路147及びフィルタ148)に詰まりが生じている旨をユーザに通知するメッセージを出力部132に設けられたモニタの画面上に表示する。 In the emission spectroscopic analyzer according to the present embodiment, the pressure in the gas supply pipe 142 is monitored by the pressure sensor 151 from the start of the purge of the discharge chamber 113 accompanying the sample measurement as described above to the end of the purge. The That is, the detection signal from the pressure sensor 151 is sent to the control / processing unit 130 at a predetermined time interval, and the control / processing unit 130 sets the measured value of the pressure obtained from the detection signal to a predetermined upper limit value. It is sequentially judged whether or not it exceeds. When it is determined that the measured value exceeds the upper limit value, a warning sound is emitted from the speaker of the output unit 132 and the exhaust passage from the pressurizer 146 (that is, the exhaust pipe 147 and the filter 148). A message for notifying the user that clogging has occurred is displayed on a monitor screen provided in the output unit 132.
 なお、ガス供給用管路142内の圧力は、加圧器146からの排気が正常に行われている場合でも、アルゴンガス流量が「高」のときと「低」とで異なってくる。すなわち、流量「高」のときはガス供給用管路142の内圧は相対的に高く、流量「低」のときには前記内圧は相対的に低くなる。そのため、前記上限値としては、流量「高」のときに適用する上限値と、流量「低」のときに適用する上限値とを個別に設定しておくことが望ましい。これらの上限値は、測定に際してユーザが入力部131から設定するようにしてもよく、あるいは本装置の工場出荷時点で設定し、制御・処理部130内のメモリに記憶させておくようにしてもよい。 It should be noted that the pressure in the gas supply pipe line 142 differs depending on whether the argon gas flow rate is “high” or “low” even when the exhaust from the pressurizer 146 is normally performed. That is, when the flow rate is “high”, the internal pressure of the gas supply pipe 142 is relatively high, and when the flow rate is “low”, the internal pressure is relatively low. Therefore, it is desirable that the upper limit value applied when the flow rate is “high” and the upper limit value applied when the flow rate is “low” are individually set as the upper limit value. These upper limit values may be set by the user from the input unit 131 at the time of measurement, or may be set at the time of shipment of the apparatus from the factory and stored in the memory in the control / processing unit 130. Good.
 以上、本発明を実施するための形態について具体例を挙げて説明を行ったが、本発明は上記の例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容されるものである。例えば、上記の例では、圧力センサの検出値に基づいて加圧器からの排気の流路の詰まりを検出するものとしたが、該圧力センサの代わりに流量センサを設けた構成としてもよい。この場合、該流量センサは、ガス供給用管路142、ガス排出用管路145、及び排気管路147のいずれかに設け、該流量センサで検出された流量が予め定められた下限値を下回った場合にユーザに警告を発するものとする。 As mentioned above, although the specific example was given and demonstrated about the form for implementing this invention, this invention is not limited to said example, A change is suitably permitted in the range of the meaning of this invention. It is. For example, in the above example, clogging of the flow path of the exhaust gas from the pressurizer is detected based on the detection value of the pressure sensor, but a flow rate sensor may be provided instead of the pressure sensor. In this case, the flow rate sensor is provided in any one of the gas supply line 142, the gas discharge line 145, and the exhaust line 147, and the flow rate detected by the flow rate sensor is below a predetermined lower limit value. It is assumed that a warning is issued to the user in the event of a failure.
 また、上記のようなユーザへの警告に加えて又は代えて、圧力センサの測定値が所定の上限値を超えた場合又は流量センサの測定値が所定の下限値を下回った場合に、制御・処理部130がガス供給用管路142に設けられた開閉バルブ143を閉鎖してアルゴンガスの供給を停止するようにしてもよい。このような構成によれば、加圧器146からの排気が正常に流れなくなった場合に、放電室113へのアルゴンガスの供給が自動的に停止されるため、ユーザが装置の近くにいない場合でも、アルゴンガスの圧力の更なる上昇を防ぐことが可能となる。 In addition to or instead of the above warning to the user, when the measured value of the pressure sensor exceeds a predetermined upper limit value or when the measured value of the flow sensor falls below a predetermined lower limit value, The processing unit 130 may close the on-off valve 143 provided in the gas supply conduit 142 to stop the supply of argon gas. According to such a configuration, when the exhaust from the pressurizer 146 stops flowing normally, the supply of argon gas to the discharge chamber 113 is automatically stopped, so even when the user is not near the apparatus. Further increase in the pressure of argon gas can be prevented.
 また、図2に示すように、ガス排出用管路145上に分岐管152及び流路切替バルブ153を設け、圧力センサ151の測定値が所定の上限値を超えた場合又は流量センサの測定値が所定の下限値を下回った場合に、制御・処理部130が該流路切替バルブ153の切り替えを行うことにより、放電室113から排出されたアルゴンガスを加圧器146ではなく分岐管152の側に流すようにしてもよい。このような構成によれば、排気管路147やフィルタ148に詰まりが生じた際に、アルゴンガスが自動的にガス排出用管路145から外部へと排出されるため、ユーザが装置から離れた場所にいる場合でも、直ちに流路内の圧力を下げることができる。また、前記のような分岐管152及び流路切替バルブ153に代えて、圧力の異常上昇時にガス排出用管路145からガスを逃がすためのリリーフバルブ(逃がし弁)を設けた構成としてもよい。このリリーフバルブは、通常時はバネの力によって弁を閉じた状態となっているが、内圧の上昇により該バネの力以上の圧力が掛かると弁が開き、その結果、ガス排出用管路145内のアルゴンガスが外部に排出される。なお、こうした流路切替バルブ153又はリリーフバルブを設ける場合には、放電室113からの排気に含まれる試料の微粒子が装置の周囲に放出されるのを防ぐため、前記分岐管152又はリリーフバルブからの排気を大気中でなく所定の回収容器に送出するようにすることが望ましい。 Further, as shown in FIG. 2, a branch pipe 152 and a flow path switching valve 153 are provided on the gas discharge pipe 145, and the measured value of the pressure sensor 151 exceeds a predetermined upper limit value or the measured value of the flow sensor. When the flow rate falls below a predetermined lower limit, the control / processing unit 130 switches the flow path switching valve 153 so that the argon gas discharged from the discharge chamber 113 is not on the pressurizer 146 but on the branch tube 152 side. You may make it flow. According to such a configuration, when the exhaust pipe 147 or the filter 148 is clogged, the argon gas is automatically discharged from the gas discharge pipe 145 to the outside. Even in the place, the pressure in the flow path can be immediately reduced. In addition, instead of the branch pipe 152 and the flow path switching valve 153 as described above, a relief valve (relief valve) for allowing gas to escape from the gas discharge pipe 145 when the pressure rises abnormally may be provided. This relief valve is normally closed by the force of a spring, but when the pressure higher than the force of the spring is applied due to an increase in internal pressure, the valve opens and, as a result, a gas exhaust line 145 is opened. The argon gas inside is discharged to the outside. In the case where such a flow path switching valve 153 or a relief valve is provided, in order to prevent the sample fine particles contained in the exhaust from the discharge chamber 113 from being released around the apparatus, the branch pipe 152 or the relief valve is used. It is desirable to send the exhaust gas to a predetermined collection container instead of the atmosphere.
110、210…励起部
111、211…放電発生部
112、212…電極棒
113、213…放電室
113a、213a…導光穴
114、214…試料載置板
114a、214a…中央開口
120、220…分光部
121、221…入口スリット
122、222…回折格子
123a~c、223a~c…出口スリット
124a~c、224a~c…光検出器
130、230…制御・処理部
131…入力部
132…出力部
141、241…ガス供給源
142、242…ガス供給用管路
143、243…開閉バルブ
144、244…流量調節バルブ
145、245…ガス排出用管路
146、246…加圧器
147、247…排気管路
148、248…フィルタ
151…圧力センサ
152…分岐管
153…流路切替バルブ
110, 210 ... excitation sections 111, 211 ... discharge generation sections 112, 212 ... electrode rods 113, 213 ... discharge chambers 113a, 213a ... light guide holes 114, 214 ... sample placement plates 114a, 214a ... center openings 120, 220 ... Spectroscopic units 121, 221 ... entrance slits 122, 222 ... diffraction gratings 123a-c, 223a-c ... exit slits 124a-c, 224a-c ... photodetectors 130, 230 ... control / processing unit 131 ... input unit 132 ... output Portions 141, 241 ... Gas supply sources 142, 242 ... Gas supply pipes 143, 243 ... Open / close valves 144, 244 ... Flow rate control valves 145, 245 ... Gas discharge pipes 146, 246 ... Pressurizers 147, 247 ... Exhaust Pipe lines 148, 248 ... Filter 151 ... Pressure sensor 152 ... Branch pipe 153 ... Flow path switching valve

Claims (6)

  1.  a)内部で放電を生じることにより試料を励起発光させる放電室と、
     b)液体を収容した容器である加圧器と、
     c)大気圧以上に圧縮された不活性ガスが充填されたガス供給源と、
     d)一端が前記ガス供給源に接続され、他端が前記放電室に接続されたガス供給用管路と、
     e)一端が前記放電室に接続され、他端が前記加圧器内の前記液体中に開放されたガス排出用管路と、
     f)一端が前記加圧器内において前記液体の液面よりも上方に配置され、他端が該加圧器の外部に開放された排気管路と、
     g)前記ガス供給用管路、前記放電室、前記ガス排出用管路、又は前記加圧器のいずれかの内部空間における前記不活性ガスの圧力を測定する圧力センサと、
     h)前記圧力センサによる測定値が予め定められた値を超えた場合にユーザに警告を発する警告手段と、
     を有することを特徴とする発光分光分析装置。
    a) a discharge chamber in which a sample is excited to emit light by generating discharge inside;
    b) a pressurizer that is a container containing a liquid;
    c) a gas supply source filled with an inert gas compressed above atmospheric pressure;
    d) a gas supply line having one end connected to the gas supply source and the other end connected to the discharge chamber;
    e) a gas exhaust line having one end connected to the discharge chamber and the other end opened to the liquid in the pressurizer;
    f) an exhaust pipe having one end disposed above the liquid level of the liquid in the pressurizer and the other end opened to the outside of the pressurizer;
    g) a pressure sensor that measures the pressure of the inert gas in the internal space of any of the gas supply line, the discharge chamber, the gas discharge line, or the pressurizer;
    h) warning means for issuing a warning to the user when the measured value by the pressure sensor exceeds a predetermined value;
    An emission spectroscopic analyzer characterized by comprising:
  2.  a)内部で放電を生じることにより試料を励起発光させる放電室と、
     b)液体を収容した容器である加圧器と、
     c)大気圧以上に圧縮された不活性ガスが充填されたガス供給源と、
     d)一端が前記ガス供給源に接続され、他端が前記放電室内に開放されたガス供給用管路と、
     e)一端が前記放電室内に開放され、他端が前記加圧器内の前記液体中に開放されたガス排出用管路と、
     f)一端が前記加圧器内において前記液体の液面よりも上方に配置され、他端が該加圧器の外部に開放された排気管路と、
     g)前記ガス供給用管路、前記ガス排出用管路、又は前記排気管路における前記不活性ガスの流量を測定する流量センサと、
     h)前記流量センサによる測定値が予め定められた値を下回った場合にユーザに警告を発する警告手段と、
     を有することを特徴とする発光分光分析装置。
    a) a discharge chamber in which a sample is excited to emit light by generating discharge inside;
    b) a pressurizer that is a container containing a liquid;
    c) a gas supply source filled with an inert gas compressed above atmospheric pressure;
    d) a gas supply line having one end connected to the gas supply source and the other end opened to the discharge chamber;
    e) a gas exhaust line having one end opened in the discharge chamber and the other end opened in the liquid in the pressurizer;
    f) an exhaust pipe having one end disposed above the liquid level of the liquid in the pressurizer and the other end opened to the outside of the pressurizer;
    g) a flow rate sensor for measuring a flow rate of the inert gas in the gas supply line, the gas discharge line, or the exhaust line;
    h) warning means for issuing a warning to the user when the measured value by the flow sensor falls below a predetermined value;
    An emission spectroscopic analyzer characterized by comprising:
  3.  更に、前記ガス供給用管路上に設けられた流量調節バルブを有し、
     前記圧力センサ又は前記流量センサが、前記ガス供給用管路上の該流量調節バルブと前記放電室との間に配置されていることを特徴とする請求項1又は請求項2に記載の発光分光分析装置。
    Furthermore, it has a flow control valve provided on the gas supply conduit,
    The emission spectroscopic analysis according to claim 1 or 2, wherein the pressure sensor or the flow rate sensor is disposed between the flow rate adjusting valve and the discharge chamber on the gas supply pipe. apparatus.
  4.  前記警告手段に加えて又は代えて、前記圧力センサによる測定値が予め定められた値を超えた場合、又は前記流量センサによる測定値が予め定められた値を下回った場合に、前記ガス供給源から前記放電室への不活性ガスの供給を停止するガス供給停止手段を有することを特徴とする請求項1~3のいずれかに記載の発光分光分析装置。 In addition to or instead of the warning means, when the measured value by the pressure sensor exceeds a predetermined value, or when the measured value by the flow sensor falls below a predetermined value, the gas supply source The emission spectroscopic analyzer according to any one of claims 1 to 3, further comprising gas supply stop means for stopping supply of an inert gas from the discharge chamber to the discharge chamber.
  5.  前記警告手段に加えて又は代えて、前記圧力センサによる測定値が予め定められた値を超えた場合、又は前記流量センサによる測定値が予め定められた値を下回った場合に、前記ガス排出用管路又は前記加圧器から不活性ガスを外部に放出するガス放出手段を有することを特徴とする請求項1~3のいずれかに記載の発光分光分析装置。 In addition to or instead of the warning means, when the measured value by the pressure sensor exceeds a predetermined value, or when the measured value by the flow sensor falls below a predetermined value, The emission spectroscopic analyzer according to any one of claims 1 to 3, further comprising a gas releasing means for discharging an inert gas to the outside from a pipe line or the pressurizer.
  6.  前記警告手段に加えて又は代えて、前記ガス排出用管路又は前記加圧器に、前記不活性ガスの圧力上昇に伴って開放され、該ガス排出用管路又は該加圧器内の不活性ガスを外部に放出するリリーフバルブを設けたことを特徴とする請求項1~3のいずれかに記載の発光分光分析装置。 In addition to or in place of the warning means, the gas discharge conduit or the pressurizer is opened as the pressure of the inert gas increases, and the gas exhaust conduit or the inert gas in the pressurizer is opened. The emission spectroscopic analyzer according to any one of claims 1 to 3, further comprising a relief valve for discharging the gas to the outside.
PCT/JP2017/015471 2017-04-17 2017-04-17 Emission spectrometer WO2018193495A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/015471 WO2018193495A1 (en) 2017-04-17 2017-04-17 Emission spectrometer
JP2019513512A JP6897763B2 (en) 2017-04-17 2017-04-17 Emission spectrophotometer
CN201780089644.4A CN110546485B (en) 2017-04-17 2017-04-17 Luminescence spectroscopic analyzer
TW107111780A TWI672485B (en) 2017-04-17 2018-04-03 Emission spectroscopy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015471 WO2018193495A1 (en) 2017-04-17 2017-04-17 Emission spectrometer

Publications (1)

Publication Number Publication Date
WO2018193495A1 true WO2018193495A1 (en) 2018-10-25

Family

ID=63855645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015471 WO2018193495A1 (en) 2017-04-17 2017-04-17 Emission spectrometer

Country Status (4)

Country Link
JP (1) JP6897763B2 (en)
CN (1) CN110546485B (en)
TW (1) TWI672485B (en)
WO (1) WO2018193495A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040282U (en) * 1973-07-27 1975-04-24
JP2005127732A (en) * 2003-10-21 2005-05-19 Rigaku Industrial Co X-ray fluorescence analyzer
WO2006038451A1 (en) * 2004-10-07 2006-04-13 Matsushita Electric Industrial Co., Ltd. Gas laser oscillator
JP2008151094A (en) * 2006-12-20 2008-07-03 Aisan Ind Co Ltd Exhaust emission control device for internal combustion engine
JP3144123U (en) * 2008-06-06 2008-08-14 株式会社島津製作所 Luminescence analyzer
JP2010094640A (en) * 2008-10-20 2010-04-30 Tatsuno Corp Vapor recovery device
JP2010159993A (en) * 2009-01-06 2010-07-22 Shimadzu Corp Emission spectrophotometer
JP2012511138A (en) * 2008-12-03 2012-05-17 オーワイ ハルトン グループ リミテッド Exhaust flow control system and method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040282Y1 (en) * 1968-12-27 1975-11-18
EP0193821A3 (en) * 1985-03-06 1987-06-10 Allied Corporation In-situ analysis of a liquid conductive material
US5610706A (en) * 1994-02-02 1997-03-11 Thermo Jarrell Ash Corporation Analysis system
JPH08145859A (en) * 1994-11-25 1996-06-07 Shimadzu Corp Method and apparatus for cooling analyzing iron/steel sample
JP3543532B2 (en) * 1997-01-30 2004-07-14 株式会社島津製作所 Gas chromatograph
CN101676700B (en) * 1999-12-06 2011-06-29 谢心良 Pressure measurement anti-blockage method and sampling device for anti-blockage measurement
KR100648782B1 (en) * 2004-12-23 2006-11-23 삼성코닝 주식회사 Discharge gas, surface light source device and backlight unit including the same
JP4595875B2 (en) * 2005-08-30 2010-12-08 株式会社島津製作所 ICP analyzer
JP4944454B2 (en) * 2006-02-20 2012-05-30 大陽日酸株式会社 Nitrogen analyzer
CN101592586B (en) * 2009-07-01 2012-01-04 彩虹集团电子股份有限公司 Method and device for testing performance of resisting vacuum ultraviolet deterioration of fluorescent powder
CN201729659U (en) * 2010-07-01 2011-02-02 姜渝 Composite chlorine dioxide generator
CN102182932A (en) * 2011-02-28 2011-09-14 煤炭科学研究总院重庆研究院 Method for detecting fault of coal bed methane collecting and delivering pipeline at coal mine region
JP5650697B2 (en) * 2012-09-06 2015-01-07 富士フイルム株式会社 Air supply system
CN103211649B (en) * 2013-04-26 2016-03-16 重庆金山科技(集团)有限公司 A kind of argon control method, controller, control device and high-frequency argon pneumoelectric cutter
CN103330992B (en) * 2013-07-18 2016-03-30 苏州元禾医疗器械有限公司 The Intelligent adjustment therapy system of auxiliary wound healing
CN203772801U (en) * 2013-09-25 2014-08-13 株式会社岛津制作所 Discharge ionization current detector
CN103837462B (en) * 2014-03-03 2016-10-05 中国科学院苏州生物医学工程技术研究所 A kind of small-sized flow cytometer liquid-way system
WO2016059675A1 (en) * 2014-10-14 2016-04-21 株式会社島津製作所 Spectroscope and emission spectroscopy device provided with same
CN105890958A (en) * 2014-11-24 2016-08-24 王素蓉 Staining method
CN104686502B (en) * 2015-02-16 2017-02-08 上海云泽生物科技有限公司 Safety protection enhanced organ low-temperature machine perfusion preservation device and method
CN204422490U (en) * 2015-03-18 2015-06-24 中国石油集团渤海钻探工程有限公司 The dehydrating unit of chromatograph gas source purification
CN104976709B (en) * 2015-07-14 2017-10-13 北京汇众亿通智能科技有限公司 A kind of medical air micro dust particle obstructing instrument
CN105651760B (en) * 2015-12-31 2018-06-22 中国科学院上海硅酸盐研究所 A kind of microplasma device of the metallic element analysis suitable for gas
CN106290210B (en) * 2016-08-04 2019-02-12 中国地质大学(武汉) A method and detection system for detecting metal ions by atmospheric glow discharge
JP6652037B2 (en) * 2016-11-14 2020-02-19 株式会社島津製作所 Emission analyzer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040282U (en) * 1973-07-27 1975-04-24
JP2005127732A (en) * 2003-10-21 2005-05-19 Rigaku Industrial Co X-ray fluorescence analyzer
WO2006038451A1 (en) * 2004-10-07 2006-04-13 Matsushita Electric Industrial Co., Ltd. Gas laser oscillator
JP2008151094A (en) * 2006-12-20 2008-07-03 Aisan Ind Co Ltd Exhaust emission control device for internal combustion engine
JP3144123U (en) * 2008-06-06 2008-08-14 株式会社島津製作所 Luminescence analyzer
JP2010094640A (en) * 2008-10-20 2010-04-30 Tatsuno Corp Vapor recovery device
JP2012511138A (en) * 2008-12-03 2012-05-17 オーワイ ハルトン グループ リミテッド Exhaust flow control system and method
JP2010159993A (en) * 2009-01-06 2010-07-22 Shimadzu Corp Emission spectrophotometer

Also Published As

Publication number Publication date
JPWO2018193495A1 (en) 2020-01-16
CN110546485A (en) 2019-12-06
CN110546485B (en) 2022-03-08
TW201842312A (en) 2018-12-01
TWI672485B (en) 2019-09-21
JP6897763B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
US20120224175A1 (en) Microwave plasma atomic fluorescence mercury analysis system
EP1944598B1 (en) Elongated exhaust gas probe
CN108141000B (en) Laser gas refining system and laser system
CN101680856A (en) Mass spectrometry unit
EP2998730B1 (en) X-ray fluorescence analyzer
WO2018193495A1 (en) Emission spectrometer
US10801945B2 (en) Inline particle sensor
JP5540235B2 (en) X-ray analyzer and emission analyzer
JP6288290B2 (en) Optical emission spectrometer
JP3765549B2 (en) Dust concentration measurement method
JP2002079203A (en) Ultraviolet irradiation device and method for controlling ultraviolet-light irradiation device
JP2004020412A (en) Apparatus for analyzing / diagnosing oil
JP5495978B2 (en) Gas particle measurement system
JP5456408B2 (en) Radioactive gas monitor
EP1748291B1 (en) Microchip measurement device
JP4262709B2 (en) An X-ray analyzer equipped with an X-ray gas flow proportional counter and a method of using the X-ray gas flow proportional counter.
JP6652037B2 (en) Emission analyzer
JPH08210979A (en) Glow discharge emission spectral analyzing method and device used therefor
KR20240137908A (en) Gas analysis apparatus in high radiation area and thereof method
KR100664040B1 (en) PD panel gas analyzer
EP4515213A1 (en) Spark stand for optical emission spectrometry with improved dust removal
JP5874613B2 (en) Predetermined room gas displacement device for analysis or measurement
JP2025509796A (en) Membrane-based purge gas and sample transport for sample processing by laser ablation.
JP2007078370A (en) Spectrophotometer
JPH0762656B2 (en) Fluorescent X-ray analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906090

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载