WO2018190533A1 - Method for preparing fuel additive and fuel using same - Google Patents
Method for preparing fuel additive and fuel using same Download PDFInfo
- Publication number
- WO2018190533A1 WO2018190533A1 PCT/KR2018/003498 KR2018003498W WO2018190533A1 WO 2018190533 A1 WO2018190533 A1 WO 2018190533A1 KR 2018003498 W KR2018003498 W KR 2018003498W WO 2018190533 A1 WO2018190533 A1 WO 2018190533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- fuel additive
- glycol monoalkyl
- aqueous
- alkylene glycol
- Prior art date
Links
- 239000002816 fuel additive Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000000446 fuel Substances 0.000 title claims description 97
- -1 alkylene glycol monoalkyl ether Chemical class 0.000 claims abstract description 70
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 62
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000007864 aqueous solution Substances 0.000 claims abstract description 26
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 25
- 159000000000 sodium salts Chemical class 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims description 60
- 238000006243 chemical reaction Methods 0.000 claims description 49
- 239000000243 solution Substances 0.000 claims description 42
- 239000002904 solvent Substances 0.000 claims description 38
- 239000006228 supernatant Substances 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 24
- 239000003502 gasoline Substances 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 20
- 150000002430 hydrocarbons Chemical class 0.000 claims description 19
- 239000007795 chemical reaction product Substances 0.000 claims description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims description 16
- 229930195733 hydrocarbon Natural products 0.000 claims description 16
- 239000012266 salt solution Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 6
- 239000000295 fuel oil Substances 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 239000003495 polar organic solvent Substances 0.000 claims description 5
- 239000003245 coal Substances 0.000 claims description 3
- 150000002118 epoxides Chemical class 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 239000003350 kerosene Substances 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 150000001241 acetals Chemical class 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 150000002978 peroxides Chemical class 0.000 claims description 2
- 239000004210 ether based solvent Substances 0.000 abstract description 5
- 239000012295 chemical reaction liquid Substances 0.000 abstract description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 239000003981 vehicle Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 11
- 239000013618 particulate matter Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 238000005191 phase separation Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 239000000428 dust Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002283 diesel fuel Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 235000009245 Elaeagnus multiflora Nutrition 0.000 description 4
- 240000000298 Elaeagnus multiflora Species 0.000 description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N 1,1-dimethoxyethane Chemical compound COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 239000005431 greenhouse gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- SWTCCCJQNPGXLQ-UHFFFAOYSA-N 1-(1-butoxyethoxy)butane Chemical compound CCCCOC(C)OCCCC SWTCCCJQNPGXLQ-UHFFFAOYSA-N 0.000 description 2
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 2
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 2
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 2
- KCBPVRDDYVJQHA-UHFFFAOYSA-N 2-[2-(2-propoxyethoxy)ethoxy]ethanol Chemical compound CCCOCCOCCOCCO KCBPVRDDYVJQHA-UHFFFAOYSA-N 0.000 description 2
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 2
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 101150005343 INHA gene Proteins 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000007798 antifreeze agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- ULDHMXUKGWMISQ-UHFFFAOYSA-N carvone Chemical compound CC(=C)C1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229960001701 chloroform Drugs 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- YLYBTZIQSIBWLI-UHFFFAOYSA-N octyl acetate Chemical compound CCCCCCCCOC(C)=O YLYBTZIQSIBWLI-UHFFFAOYSA-N 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 2
- 229960005323 phenoxyethanol Drugs 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229940061368 sonata Drugs 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 2
- 239000003021 water soluble solvent Substances 0.000 description 2
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- PAOHAQSLJSMLAT-UHFFFAOYSA-N 1-butylperoxybutane Chemical group CCCCOOCCCC PAOHAQSLJSMLAT-UHFFFAOYSA-N 0.000 description 1
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- QAPLQMROVGLYLM-UHFFFAOYSA-N 2-butan-2-ylperoxybutane Chemical compound CCC(C)OOC(C)CC QAPLQMROVGLYLM-UHFFFAOYSA-N 0.000 description 1
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 1
- NTHGIYFSMNNHSC-UHFFFAOYSA-N 3-methylbutyl nitrate Chemical compound CC(C)CCO[N+]([O-])=O NTHGIYFSMNNHSC-UHFFFAOYSA-N 0.000 description 1
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005973 Carvone Substances 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- HSNWZBCBUUSSQD-UHFFFAOYSA-N amyl nitrate Chemical compound CCCCCO[N+]([O-])=O HSNWZBCBUUSSQD-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- GAPFWGOSHOCNBM-UHFFFAOYSA-N isopropyl nitrate Chemical compound CC(C)O[N+]([O-])=O GAPFWGOSHOCNBM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229930007503 menthone Natural products 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 1
- 229940073769 methyl oleate Drugs 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000010747 number 6 fuel oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/185—Ethers; Acetals; Ketals; Aldehydes; Ketones
- C10L1/1852—Ethers; Acetals; Ketals; Orthoesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/185—Ethers; Acetals; Ketals; Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/08—Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/10—Use of additives to fuels or fires for particular purposes for improving the octane number
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2230/00—Function and purpose of a components of a fuel or the composition as a whole
- C10L2230/08—Inhibitors
- C10L2230/081—Anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/026—Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/04—Specifically adapted fuels for turbines, planes, power generation
Definitions
- the present invention relates to a method for producing a fuel additive of a hydrocarbon fuel and a fuel to which the fuel additive obtained therefrom is applied.
- Hydrogen fueled vehicles and electric vehicles have no particulate matter emitted by combustion, and no gaseous substances associated with global warming.
- fossil fuels are an indispensable energy source not only in automobiles, trains, ships and airplanes, but also in thermal power plants for electricity production, countries around the world are trying to improve energy efficiency, especially fossil fuels.
- Fuel paraffin wax is mixed by heating liquid paraffin as fuel additive, and the fuel additive of methyl oleate, liquid calsulsulfonate and synthetic fatty oil is mixed with each other to improve the fuel efficiency of the vehicle and at the same time, significantly reduce harmful emissions. It is shown to decrease.
- Korean Patent Registration No. 10-0339859 discloses a fuel additive for combustion promotion comprising a hydrocarbon solvent, a nonionic surfactant, an alcohol, a molybdenum oxide compound, and an alkali compound.
- Korean Patent No. 10-1161638 discloses an emulsified nano-microfuel additive and a method for manufacturing the same, wherein water-in-oil molecules dispersed as nanoparticles do not emulsify even when added to a fuel, and thermodynamically stabilizes the system to consume fuel during combustion. It is said to be excellent for reduction.
- WO 02/059236 and WO 2003/078552 provide methods for preparing ethane-diesel fuel compositions by adding surfactants to ethanol or propanol.
- the fuel additive which mixes liquid hydrocarbon solvent and water improves fuel efficiency and reduces the exhaust gas and particulate matter (PM), but stabilizes water and hydrocarbon solvents.
- the use of surfactants for mixing is also concerned with the generation of sludge due to the combustion of the surfactants, and it does not appear that the colloidal phase dispersed in the nano-micro particles is stably dispersed in the hydrocarbon for a long time.
- bioethanol As a result, the use of bioethanol is increasing instead of enjoying MTBE worldwide.
- the addition of bioethanol has the disadvantage of costly infrastructure construction due to the hydrophilic nature of bioethanol, such as the restriction of use of existing oil pipelines and the installation of new low oil and oil fuel hanks to minimize water ingress during distribution.
- Marine fuels include marine diesel and residues, usually determined numerically by the viscosity of the Bunker—C and Mare gas O.I l (ship diesel). This is called heavy oil (IF0), which is the best way for ship owners and operators to reduce carbon dioxide and fine dust while reducing costs.
- IF0 heavy oil
- IM0 International Maritime Organization
- Increasing interest in the basic quality of heavy oil for ships is expected due to the restriction of fuel sulfur content applied in the emission control area (ECA) after January 1, 2015.
- ECA emission control area
- the development of fuel additives that reduce the amount of dust and reduce fine dust (PM) is urgently needed. .
- Patent Document 1 Republic of Korea Registered Patent KR10-1210037
- Patent Document 2 Korean Patent Registration No. KR10-0339859
- Patent Document 3 Korean Patent Registration No. KR10-1161638
- Patent Document 4 International Publication W02002 / 059236
- Patent Document 5 International Publication W02003 / 078552
- the present invention does not use any surfactants and does not disperse water with a homogenizer, and is prepared through a method of combining water with -0-, -0H through a chemical reaction and liquid hydrocarbon fuel. As it is dispersed through chemical bonding, it is not only easy to dilute stably for a long time but also improves fuel consumption rate when used in addition to gasoline and diesel oil, and it is a fuel additive which can enjoy PM5 and PM2.5, which are emitted gas and particulate matter. It is to provide.
- the present invention is to provide a fuel to which the fuel additive is added.
- At least one aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol
- a fuel additive manufacturing method comprising the step of reacting at a temperature of 40 ° C to 150 ° C. '
- a fuel comprising a fuel additive and a hydrocarbon-based fuel obtained by the fuel additive manufacturing method.
- At least one aqueous reaction solution selected from the group consisting of water, aqueous solution of polar organic compounds, aqueous solution of sodium salt, and alkylene having a weight average molecular weight of 50 g / mol to 250 g / mol Glycol Monoalkyl Ether
- a method of preparing a fuel additive comprising reacting a solvent at a temperature of 40 ° C. to 150 ° C., may be provided.
- the inventors of the present invention use the above-described method for preparing a specific fuel additive, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mo l to 250 g / mo l, water, an aqueous solution of a polar organic compound, and sodium salt
- an aqueous reaction mixture selected from the group consisting of an aqueous solution
- the final prepared fuel additive by inducing the bonding of the ether functional group or hydroxy period present in the alkylene glycol monoalkyl ether solvent or the aqueous reaction solution
- the hydrophobicity of can be increased and completed the invention.
- the alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mo l to 250 g / mo l is at least one aqueous reaction selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution.
- the reaction properties with the liquid are high, and it is easy to prepare a stably dispersed fuel additive without adding a separate surfactant, and it may be possible to solve the problem of sludge generation during combustion due to the addition of a conventional surfactant.
- hydrophobicity is enhanced.
- hydrocarbon fuels such as gasoline or diesel fuel through fuel additives
- it can be easily diluted for a long time through stable dispersion, thereby improving the combustion efficiency of fuel added fuel additives, exhaust gas or fine dust Reduction was confirmed through experiments.
- the fuel additive manufacturing method of the embodiment is water, a polar organic compound aqueous solution, and sodium salt aqueous solution selected from the group consisting of aqueous solution of sodium salt, and the weight average molecular weight of 50 g / mo l to 250 g / mo It may comprise the step of reacting the alkylene glycol monoalkyl ether solvent of l at a temperature of 40 ° C to 150.
- the aqueous reaction solution is characterized by including water as pure water or an aqueous solution containing the same.
- the aqueous reaction solution may include one or more selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution. That is, the aqueous reaction mixture may include water, an aqueous polar organic compound solution, an aqueous sodium salt solution, or a mixture of two or more thereof.
- water is used as the aqueous reaction solution, or a mixture of water and an aqueous solution of a polar organic compound, or a mixture of water and an aqueous sodium salt solution.
- the polar organic compound solution refers to a solution in which the polar organic compound is dissolved in water, and the polar organic compound has a property of being very soluble in water-soluble solvents such as water, alcohols, ketones, ethers, esters, acetal peroxides, and epoxides. It may include one or more selected from the group consisting of the side.
- the alcohol may include methanol, ethanol, propanol, n-butyl alcohol, sec-butyl alcohol, I SO-butyl alcohol, Tert-butyl alcohol, nucleic acid, or a combination of two or more thereof.
- concentration of the alcohol is not particularly limited, for example, may be 90% or more, or 90% to 99.9%, or 93 ⁇ 4 to 99.9%.
- the ketone may include diisobutyl ketone, ethyl amyl ketone, carbon (carvone), menton (Menthone or a combination of two or more thereof).
- the ethers include monoethers such as dibutyl ether, tertiary-butyl isobutyl ether, ethylbutyl ether, diisoamyl ether, dinuxyl ether and diisooctyl ether; Or diethers thereof; Or dialkylcycloether having 4 to 10 carbon atoms; Or two or more combinations thereof.
- the ester includes organic acid esters such as ethyl formic acid ester, methyl acetate, octyl acetate, isoamyl poropionic acid ester, methyl butyric acid ester, ethyl oleic acid ester, and ethyl caprylic acid ester; Or inorganic acid esters such as cyclonuclear nitrate, isopropyl nitrate, n-amyl nitrate, 2-ethyl nucleosil nitrate, and iso-amyl nitrate; Or two or more combinations thereof.
- organic acid esters such as ethyl formic acid ester, methyl acetate, octyl acetate, isoamyl poropionic acid ester, methyl butyric acid ester, ethyl oleic acid ester, and ethyl caprylic acid ester
- inorganic acid esters such as cyclonu
- the acetal may include dimethyl acetal, formaldehyde diethyl acetal, acetaldehyde diethyl acetal, acetaldehyde dibutyl acetal, or a combination of two or more thereof.
- the peroxide may include 3-butyl peroxide, tert-butyl acetate, secondary-tertiary butyl peroxide, or a combination of two or more thereof.
- the epoxide may include 1, 2-epoxy-4-epoxy ethylcyclonucleic acid, epoxidized methyl ester, ethylnuxyl glycidyl, or a combination of two or more thereof.
- aqueous sodium salt solution refers to a solution in which a salt containing sodium (Na) as a cation is dissolved in water, and specific examples thereof may include an aqueous NaOH solution or an aqueous sodium silicate (Na 2 0—nSi -xH 2 0) solution. Can be.
- the alkylene glycol monoalkyl ether solvent may have a weight average molecular weight of 50 g / mo l to 250 g / mo l.
- the said weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by the GPC method.
- a detector and an analysis column such as a conventionally known analysis device and a differential refractive index detector, and the like.
- Silver conditions, solvents, flow rate can be applied. Specific examples of the measurement conditions include silver at 30 ° C., chloroform solvent (Chl oroform) and flow rate of 1 mL / min.
- the alkylene glycol monoalkyl ether solvents include alkylene glycol mono alkyl, ether or were used in the sense to include all of the derivatives thereof a compound, and specifically, the alkylene glycol monoalkyl ether solvents are alkylene glycol monoalkyl ether, It may include one or more selected from the group consisting of dialkylene glycol monoalkyl ether, trialkylene glycol monoalkyl ether and esters thereof.
- the alkylene glycol monoalkyl ether solvent is alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, trialkylene glycol monoalkyl ether, alkylene glycol monoalkyl ether ester, dialkylene glycol monoalkyl ether Esters, trialkylene glycol monoalkyl ether esters, or combinations of two or more thereof.
- alkylene glycol monoalkyl ether or alkylene glycol monoalkyl ether ester examples include ethylene glycol monoethyl ether (EGEE), Ethylene glycol monomethyl ether (EGME), ethylene glycol monobutyl ether (EGBE), ethylene glycol monoethyl ether acetate (EGEEA), ethylene glycol monobutyl ether acetate (EGBEA) .
- Ethylene glycol monopropyl ether (EGPE), ethylene glycol monophenyl ether (EGPhE), ethylene glycol mononuclear ether (EGHE), ethylene glycol mono 2-Ethyl nucleosil ether, etc. are mentioned.
- dialkylene glycol monoalkyl ether or dialkylene glycol monoalkyl ether ester examples include diethylene glycol monomethyl ether (DGME), diethylene glycol monoethyl ether (DGEE), diethylene glycol monoethyl ether acetate ( DGEEA), diethylene glycol monobutyl ether (DGBE), diethylene glycol monobutyl ether acetate (DGBEA), diethylene glycol monopropyl ether (DGPE), diethylene glycol mononuclear ether (DGHE), etc. are mentioned.
- DGME diethylene glycol monomethyl ether
- DGEE diethylene glycol monoethyl ether
- DGEEA diethylene glycol monoethyl ether acetate
- DGBE diethylene glycol monobutyl ether
- DGBEA diethylene glycol monobutyl ether acetate
- DGPE diethylene glycol monopropyl ether
- DGHE diethylene glycol mononuclear ether
- examples of the trialkylene glycol monoalkyl ether or trialkylene glycol monoalkyl ether ester include triethylene glycol monomethyl ether (TGME) and triethylene glycol.
- TGME triethylene glycol monomethyl ether
- TGEE Monoethyl ether
- TGBE triethylene glycol monobutyl ether
- TGPE triethylene glycol monopropyl ether
- the volume ratio of the aqueous semicoagulant to the alkylene glycol monoalkyl ether solvent may be 0.1 to 1.5, or 0.2 to 1.3, or 0.24 to 1.12.
- the volume ratio of the nonpolar organic solvent to the alkylene glycol monoalkyl ether solvent may be 0.5 to 1, or 0.6 to 1.
- the volume ratio of the aqueous reaction solution to the alkylene glycol monoalkyl ether solvent means a value obtained by dividing the volume of the aqueous reaction solution by the volume of the alkylene glycol monoalkyl ether solvent.
- At least one aqueous reaction mixture selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol is used.
- ° C to 150 ° C The step of reacting at a temperature is 40 ° C to 150 ° C, or 45 ' C to 130 ° C, or 50 ° C to 120 ° C, or 50 ° C to 90 ° C, or 60 ° C to 90 ° C, Or at 80 ° C. to 90 ° C. temperature conditions.
- the reaction is carried out under the specific silver conditions described above, it is possible to implement high reaction efficiency by suppressing side reactions while minimizing the loss of reactants.
- aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol
- Alkylene glycol monoalkyl ether solvents simply form a mixed solution through physical mixing, and chemically form a substitution reaction of — 0-, -0H-, -00H- in the alkylene glycol monoalkyl ether solvent. This is hard to proceed.
- At least one aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol
- an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol
- reaction at 150 t temperature may be performed in one or more gas atmospheres selected from the group consisting of oxygen, carbon dioxide, and carbon monoxide, if necessary.
- gas atmospheres selected from the group consisting of oxygen, carbon dioxide, and carbon monoxide, if necessary.
- At least one aqueous reaction solution selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol are used.
- the aqueous reaction solution and alkylene glycol Phase separation may occur due to chemical reaction between the monoalkyl ether solvents.
- the method may further include separating the supernatant in the supernatant and the lower layer in the reaction product.
- An example of a separation method of the supernatant and the lower layer liquid in the separation step is a separatory funnel.
- the supernatant and the lower layer liquid are two different kinds of liquids separated by the boundary due to the phase separation occurring in the reaction product, and the lower liquid based on the interface has a lower density and a lower density.
- the upper liquid can be divided into the upper liquid based on the boundary surface.
- the supernatant is an alkylene glycol monoalkyl ether solvent having a substance in which an aqueous reaction solution is chemically bonded
- the lower layer is an aqueous semi-aqueous solution in which some components of the alkylene glycol monoalkyl ether solvent are bonded It seems to exist in a state.
- At least one aqueous reaction solution selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol
- adding a non-polar organic solvent to the reaction product may further include.
- the nonpolar organic solvent may be used to precipitate the excess aqueous reaction liquid remaining in the reaction product after the reaction between the aqueous reaction mixture and the alkylene glycol monoalkyl ether solvent.
- the nonpolar organic solvent has a property of being very insoluble in water-soluble solvents such as water, and examples of the nonpolar organic solvent include hydrocarbon solvents having 5 to 20 carbon atoms, specifically, toluene, xylene, nucleic acid, tetradecane, and octa. Decene and the like, and preferably, luluene can be used.
- the toluene can be used without limitation the commercially available toluene of 99% purity or commercial toluene (industrial toluene contains 25% Benzene).
- the non-polar organic solvent when added to the reaction product, after adding the non-polar organic solvent to the reaction product, the supernatant and the supernatant in the non-polar organic solvent mixture are separated. It may further comprise a step.
- An example of a separation method of the supernatant and the lower layer liquid in the separation step is a separatory funnel.
- the supernatant and the lower layer liquid are two different kinds of liquids separated by the boundary due to the phase separation occurring in the reaction product.
- the lower liquid has a greater density and the lower layer liquid has a lower density.
- the upper liquid can be divided into the upper liquid based on the boundary surface.
- the step of reacting the reaction product at room temperature (2crc) before the step of separating the supernatant in the reaction solution and the supernatant in the reaction product may further include.
- phase separation may proceed to the upper and lower liquids in the reaction product.
- the fuel additive manufacturing method of the embodiment the water, a polar organic compound aqueous solution, and sodium salt aqueous solution selected from the group consisting of aqueous solution of sodium salt, and a weight average molecular weight of 50 g / mo l to 250 g / mo
- the reaction product may be further heat-treated to remove low boiling point impurities.
- the reaction product was included in the reaction product through heat treatment. -0-, -0H-, or — 00H- breaks the bond. Atomic groups containing these can be removed by evaporation as impurities.
- the low-boiling impurities are -0-, -0H-, or means, a compound containing a -00H- bond, and the low boiling point impurities having a boiling point of fire is reduced to less than 60 ° C, to remove vaporized in heat treatment conditions above 60 ° C Can be.
- the heat treatment of the separated supernatant may be performed for 10 seconds to 30 hours at a temperature of 60 ° C to 150 ° C.
- a liquid hydrocarbon compound in the volume of 0.1% to 30% by volume based on the total fuel additive volume
- the liquid hydrocarbon compounds include liquid paraffinic compounds, liquid naphthalene compounds, liquid olefin compounds, liquid aromatic compounds, and the like.
- xylene may be used as the liquid aromatic compound.
- a fuel including a fuel additive and a hydrocarbon-based fuel obtained by the fuel additive manufacturing method of the embodiment can be provided.
- the fuel additive is obtained from the fuel additive manufacturing method of the embodiment of the present invention is added to the gasoline fuel ⁇ diesel fuel, marine oil, aviation oil to reduce the exhaust gas and particulate matter, it is possible to improve the efficiency of fuel economy.
- the fuel additive obtained from the above one embodiment the fuel additive production process is because of the nature of the hydrophobic, the fuel is little or a phase separation according to a moisture content not cause phase separation very small addition of them, ⁇ transport of the fuel through the pipeline It is believed that this will be possible.
- Information on the fuel additive manufacturing method includes all of the above-described information in the embodiment.
- the fuel additive may be included in 0.05% by volume to 50% by volume, or 0.1% by volume to 30% by volume, based on the total fuel volume.
- the hydrocarbon-based fuel may include one or more selected from the group consisting of liquefied coal, oral, gasoline, diesel, kerosene, heavy oil (bunk oil), aviation gasoline, and jet fuel. That is, the hydrocarbon-based fuel may include coal liquefied fuel, oral emulsion, gasoline, diesel, kerosene heavy oil (bunk oil), aviation gasoline, jet fuel, or a combination of two or more thereof.
- the fuel may further include one or more additives selected from the group consisting of an antifreeze agent, an antistatic agent, a corrosion inhibitor, an antioxidant, a lubricant, an octane number improver, a cetane number improver, a flow improver, a diffusion agent, and a heat stabilizer.
- the additive may include an antifreeze agent, an antistatic agent, a corrosion inhibitor, an antioxidant, a lubricant, an octane number improver, a cetane number improver, a fluidity improver, a diffusion agent, a heat stabilizer, or a combination of two or more thereof.
- no surfactant is used and no homogenizer is used to disperse water, and stably dispersed in a liquid hydrocarbon fuel.
- a method of preparing a fuel additive capable of improving combustion efficiency and reducing exhaust gas and fine dust (PM) discharged after combustion, and a fuel using the fuel additive obtained therefrom may be provided.
- the supernatant was about 760 ml and the remaining amount was evaporated.
- a first separation step of separating the supernatant and the lower layer was performed.
- the sediment When unloaded from the hot plates, the sediment increased to about 30 ml at the bottom of the beaker.
- the beaker When the beaker was put on the hot glass again and the temperature was raised, about 50 ml of precipitate was precipitated at the bottom near 70 ° C.
- the supernatant liquid which became cloudy near the liquid temperature of 79 ° C. became transparent, and in the lower layer, the transparent precipitate increased to about 50 ml.
- the supernatant was about 150 ml of a transparent butyl salosolve (BC; Ethylene Glycol Mono Butyl Ether) compound.
- BC transparent butyl salosolve
- the separation funnel was separated into a supernatant and a lower layer.
- the top was sealed with a plastic wrap, and a back-filled flask was placed on the sealed vinyl so that the gas evaporated inside the beaker was easily contacted with cold water and collected in a 500 ml beaker suspended inside.
- EtOH 99.9% ethanol
- the hot plate was turned on and set to a temperature of 120 ° C and a time of 36hr, and left to mix with a magnetic bar at 150rpm.
- the transparent phase-separated supernatant reacted in the first reaction step was about 4,800 ml, and the lower layer was about 2,600 ml. Only about 4,800 ml of the supernatant was separated and collected in a 15 liter plastic container.
- a second separation step was carried out in which two liters of the supernatant in the liquid separated in the supernatant and the lower layer reacted in the second reaction step were collected in a three liter beaker. 5. Raise the reaction solution containing 2 liters obtained in the second separation step on the hot plate, insulate the side of the beaker with a plastic wrap, let the steam escape with the top of the beaker open, and mix the magnetic bar on the bottom of the beaker. Put a mercury thermometer so that the temperature of the liquid, the hot piate was turned on, set to 120 ° C, 12hr, left to stand off, the reaction solution was about 1,500ml.
- a fuel was prepared by mixing the fuel additive obtained in Preparation Example 1 with gasoline to be about 25 vol. Of the total fuel.
- Example 2
- a fuel was prepared by mixing the fuel additive obtained in Preparation Example 2 with gasoline such that about 0.5 vol 3 ⁇ 4 of the total fuel was used.
- Example 3
- Fuel was prepared by mixing with light oil so as to be about 0.8% by volume of the total fuel additive obtained in Preparation Example 2.
- Example 4
- a fuel was prepared by mixing with diesel to be about 0.4% by volume of the fuel additive fuel obtained in Preparation Example 1. Comparative Example Manufacture of Fuel Comparative Example 1
- the diesel oil which did not add the fuel additive obtained by the said preparation example was used as fuel.
- a vehicle equipped with a 1,999 cc gasoline engine (Hyundai Motor Model 2016; SONATA CWL) was prepared, the fuel of Example 2 and Comparative Example 1 was filled, and a fuel consumption actual vehicle test was performed.
- the vehicle traveled at a constant speed of 80 km (25 km) on the 25th national highway from Gumi to Sangjubo, and measured the fuel economy of ascending (Gumi ⁇ Sangjubo) and descending (Sangjubo ⁇ Gumi).
- the vehicle was filled with full fuel and traveled more than 100 km, and the next day it was measured with a section fuel economy meter installed on the dashboard of the car.
- the test vehicle is a vehicle equipped with a gasoline engine (HYUNDAI, SONATA, CWL, 2.0 gasoline, 2015 model).
- the test vehicle HYUNDAI MOTORS 1.6L Diesel AT
- the test mode was CVS-75 MODE, and hot running and modal analysis were performed.
- the CVS-75 mode in Korea is the same as the FTP-75 mode used in the United States.It is a mode created by simulating the actual driving pattern by evenly combining the morning rush hour, the congestion section in the city, and the high-speed section out of the office. to be.
- Mode total time is 1877 seconds, total distance is 17.8km, average speed is 34km / h, speed is 92km / h.
- the fuel consumption rate was improved by 2 to 9% as a whole. Particularly, the fuel consumption rate was improved by about 13% at low speed. Regardless of speed, it tended to decrease by 20-40%. .
- bioalcohol maintains hydrophobicity for 5 days in gasoline and there is no phase change (sample 1).
- the bioalcohol is not diluted in diesel, but the fuel additive was confirmed to be transparently diluted in diesel.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
The present invention relates to a method for preparing a fuel additive, the method comprising a step for reacting at least one aqueous reaction liquid, which is selected from the group consisting of water, a polar organic compound aqueous solution, and a sodium salt aqueous solution, with an alkylene glycol monoalkyl ether-based solvent, which has a weight average molecular weight of 50-250g/mol at a temperature of 40-150°C.
Description
【발명의 설명】 [Explanation of invention]
【발명의 명칭】 [Name of invention]
연료첨가제의 제조방법 및 이를 이용한 연료 Manufacturing method of fuel additive and fuel using same
【기술분야】 Technical Field
관련 출원 (들)과의 상호 인용 Cross Citation with Related Application (s)
본 출원은 2017년 4월 10일자 한국 특허 출원 제 .10-201그 0046062호 및 2018년 3월 23일자 한국 특허 출원 제 10-2018-0033910호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-201 No. 0046062 dated April 10, 2017 and Korean Patent Application No. 10-2018-0033910 dated March 23, 2018. All content disclosed in the literature is incorporated as part of this specification.
본 발명은 탄화수소계 연료의 연료첨가제의 제조방법과 이로부터 얻어지는 연료첨가제가 적용된 연료에 관한 것이다. The present invention relates to a method for producing a fuel additive of a hydrocarbon fuel and a fuel to which the fuel additive obtained therefrom is applied.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
지구온난화로 인해 지구촌 곳곳에서 산발적으로 발생하는 각종 재해를 예방하기 위한 세계 각국의 노력이 활발히 진행되고 있다. 지난 2015년에는 미국과 중국을 비롯해 전 세계의 195개 국가가 파리기후변화협약을 맺으면서 온실가스 감축을 약속했고, 세계 각국에서는 온실가스 배출량을 줄이기 위해 다양한 노력을 시도하고 있다. 저탄소 친환경 사회를 구현해야하는 현 상황에서 일각에서는 탄산가스가 전혀 배출되지 않는 무공해 에너지원인 수소연료에 대한 연구 또한 활발하다. 수소연료전지 자동차의 경우 친환경 자동차이기는 하지만 현재 대당 가격이 너무 높아 활성화되기에는 시간이 많이 걸린다. 또한 친환경 자동차로 전기자동차도 활발히 연구되고 있다. 수소연료 자동차와 전기자동차는 연소에 의해 배출되는 입자상 물질이 없고, 지구 온난화와 관련된 가스상 물질이 없다. 그러나 아직 화석연료는 자동차, 열차, 선박, 비행기 등 이동수단 뿐만 아니라 전기 생산을 위한 화력발전소에서는 없어서는 안 되는 에너지원이기 때문에 세계 각국은 에너지효율향상, 특히 화석연료의 에너지효율향상에 노력하고 있다. Due to global warming, efforts are being made by countries around the world to prevent sporadic disasters occurring in various parts of the world. In 2015, 195 countries around the world, including the United States and China, signed a Paris climate change pact and pledged to reduce greenhouse gas emissions. Various countries are making various efforts to reduce greenhouse gas emissions. In the present situation of implementing a low-carbon eco-friendly society, some researches are also being conducted on hydrogen fuel, a pollution-free energy source that emits no carbon dioxide. Hydrogen fuel cell vehicles are eco-friendly vehicles, but the price per unit is so high that it takes a long time to be activated. Electric vehicles are also being actively researched as eco-friendly vehicles. Hydrogen fueled vehicles and electric vehicles have no particulate matter emitted by combustion, and no gaseous substances associated with global warming. However, since fossil fuels are an indispensable energy source not only in automobiles, trains, ships and airplanes, but also in thermal power plants for electricity production, countries around the world are trying to improve energy efficiency, especially fossil fuels.
화석연료 사용량 증가는 이산화탄소 배출이 많아져 지구 온난화 현상이 가속화되고. 지구 생태계 파괴와 인류의 생활환경에 매우 나쁜 영항을
끼치며, 특히 배출되는 미세먼지 (PM)의 증가는 인구가 밀집된 도시 주민의 건강을 위협하고, 평균수명을 단축시키는 등 큰 해악을 끼치고 있다. Increasing fossil fuel usage is accelerating global warming due to higher carbon dioxide emissions. Have a very bad effect on the destruction of the global ecosystem In particular, the increase in the emission of fine dust (PM) is a serious harm, such as threatening the health of dense urban population, shortening the life expectancy.
특히, 석유 업계에서는 자동차 등 운송수단으로부터 배출되는 NOx나 PM (미세먼지)등에 의한 대기오염 문제가 심각함에 따라 대기오염물질의 배출저감을 위하여 가솔린의 무연화나 경유의 저황화 등 각종 연료의 품질개선에 노력하고 있다. In particular, in the petroleum industry, due to the serious air pollution problem caused by NOx and PM (fine dust) emitted from vehicles such as automobiles, the quality improvement of various fuels such as gasoline-free and low-sulfurization to reduce emissions of air pollutants. Working on.
대한민국 등록특허 10-1210037에서는 내연기관용 . 연료천가제로서 유동파라핀을 가열하여 파라핀 왁스를 흔합하고, 또 메틸올레이트와 액상 칼습설포네이트와 합성지방유를 서로 흔합한 연료첨가제를 사용함으로써 차량의 연비가 향상되고, 동시에 유해 배출물질이 대폭 감소하였다고 제시하고 있다. Korean Patent Registration No. 10-1210037 for an internal combustion engine. Fuel paraffin wax is mixed by heating liquid paraffin as fuel additive, and the fuel additive of methyl oleate, liquid calsulsulfonate and synthetic fatty oil is mixed with each other to improve the fuel efficiency of the vehicle and at the same time, significantly reduce harmful emissions. It is shown to decrease.
대한민국 등록특허 10-0339859에서는 탄화수소 용매와 비이온 계면활성제와 알코올과 산화몰리브덴화합물 및 알칼리화합물로 이루어진 연소촉진용 연료첨가제가 제시되어 있다. Korean Patent Registration No. 10-0339859 discloses a fuel additive for combustion promotion comprising a hydrocarbon solvent, a nonionic surfactant, an alcohol, a molybdenum oxide compound, and an alkali compound.
대한민국 등록특허 10-1161638에서는 유화 나노 마이크로 연료첨가제 및 그 제조방법이 제시되어 있는데, 나노입자로 분산된 유중수 분자들이 연료내에 첨가되어도 유화가 일어나지 않고, 시스템을 열역학적으로 안정화시켜 연소과정에서 연료 소비 감소에 효과가 탁월하다고 기술되어 있다. Korean Patent No. 10-1161638 discloses an emulsified nano-microfuel additive and a method for manufacturing the same, wherein water-in-oil molecules dispersed as nanoparticles do not emulsify even when added to a fuel, and thermodynamically stabilizes the system to consume fuel during combustion. It is said to be excellent for reduction.
W0 02/059236과 W0 2003/078552에서는 에탄올 또는 프로판올에 계면활성제를 첨가하여 에탄을 -디젤 연료조성물을 제조하는 방법을 제시하고 있다. WO 02/059236 and WO 2003/078552 provide methods for preparing ethane-diesel fuel compositions by adding surfactants to ethanol or propanol.
상술한 출원 /등록특허에 있어, 액체 탄화수소 용매와 물을 흔합한 연료첨가제는 연비를 향상시키고, 배출가스와 입자상물질인 미세먼지 (PM)을 줄이는 효과가 있기는 하나, 물과 탄화수소 용제를 안정적으로 흔합하기 위하여 계면활성제를 사용하고 있어세 계면활성제의 연소로 인한 슬러지의 발생도 염려되고, 나노 마이크로 입자로 분산된 콜로이드 상이 탄화수소에 안정적으로 장시간 동안 ^산되어 있다고 보이지는 않는다 . In the above-mentioned application / registered patent, the fuel additive which mixes liquid hydrocarbon solvent and water improves fuel efficiency and reduces the exhaust gas and particulate matter (PM), but stabilizes water and hydrocarbon solvents. The use of surfactants for mixing is also concerned with the generation of sludge due to the combustion of the surfactants, and it does not appear that the colloidal phase dispersed in the nano-micro particles is stably dispersed in the hydrocarbon for a long time.
그리고 아직도 많은 나라가 사용하고 있는 연료첨가제인 MTBE는 주유소 저장탱크에서 흘러나온 MTBE성분이 땅으로 스며들어 지하수를 오염시키는데,
MTBE가 발암성분으로 의심된다는 연구보고서가 있으며, 미국의 일부. 주에서는 이미 사용이 금지되고 있다. And MTBE, a fuel additive still in use in many countries, causes MTBE from the gas station storage tanks to penetrate the ground and contaminate groundwater. There are studies that suspect MTBE to be a carcinogenic component . The state is already banned.
이에, 현재 전 세계적으로 MTBE의 사용을 즐이는 대신 바이오 에탄올의 사용이 증가되고 있다. 하지만 바이오 에탄올의 첨가는 바이오 에탄올이 가진 친수성 특성으로 인해 기존 송유관의 이용 제한과 유통과정에서의 수분 흔입을 최소화하기 위한 새로운 저유행크 및 주유행크의 설치 등 인프라 구축비용이 많이 드는 단점이 있다. As a result, the use of bioethanol is increasing instead of enjoying MTBE worldwide. However, the addition of bioethanol has the disadvantage of costly infrastructure construction due to the hydrophilic nature of bioethanol, such as the restriction of use of existing oil pipelines and the installation of new low oil and oil fuel hanks to minimize water ingress during distribution.
또한, 최근 국제해사기구 ( IM0)의 선박배출 온실가스 규제가 현실화되면서 조선해운업계는 선체저항 감소, 추진효율 개선, 운항효율.개선, 기관 효율 개선 등 에너지효율을 향상시키기 위한 연구를 하는 한편, 대체연료로 LNG 연료를 사용하는 선박연구로 이산화탄소 배출량과 미세먼지 (PM)를 줄이기 위한 연구를 하고 있다. In addition, with the recent implementation of the International Maritime Organization (IM0) regulations on ship emission greenhouse gases, the shipbuilding and shipping industry is conducting research to improve energy efficiency such as reducing hull resistance, improving propulsion efficiency, operating efficiency, improving engine efficiency, etc. The research on ships using LNG fuel as an alternative fuel is to reduce carbon dioxide emissions and fine dust (PM).
선박용 연료로는 선박용 경유와 잔사유가 있고, 보통은 Bunker— C와 Mar ine gas o.i l (선박용 경유)를 섞는 비율에 따른 점도에 따라 수치로 결정된다. 이것을 중질유 ( IF0)라 부르는데, 선박의 연료 절감은 선주나 운영자들에게는 비용 절감과 동시에 이산화탄소와 미세먼지를 줄이는 가장 좋은 방법이다. 국제해사기구 ( IM0)에서는 이산화탄소 배출을 강력하게 규제하고, 규제에 따르지 않을 시 선박운항이 정지되는 처벌도 예상된다. 2015년 1월 1일 이후 배출통제지역 (ECA)에 적용되는 연료유 황 함유량 제한에 따라 선박용 중유의 기본 품질에 대한 관심이 더욱 높아질 것으로 예상되는 가운데 선박용 연료 에너지 효율향상과 배출되는 이산화탄소 (C02)의 감소, 미세먼지 (PM)가 줄어드는 연료첨가제의 개발이 절실하다. . Marine fuels include marine diesel and residues, usually determined numerically by the viscosity of the Bunker—C and Mare gas O.I l (ship diesel). This is called heavy oil (IF0), which is the best way for ship owners and operators to reduce carbon dioxide and fine dust while reducing costs. The International Maritime Organization (IM0) strongly regulates carbon dioxide emissions and punishes ships for suspension if they do not comply. Increasing interest in the basic quality of heavy oil for ships is expected due to the restriction of fuel sulfur content applied in the emission control area (ECA) after January 1, 2015. The development of fuel additives that reduce the amount of dust and reduce fine dust (PM) is urgently needed. .
따라서, 연료첨가제로서, 계면활성제를 전혀 사용하지 않고, 또한 호모나이저로 물을 분산시키지도 않고, 액체 탄화수소연료 내에서 안정적으로 분산되어 장기간 희석이 용이할 뿐만 아니라, 연소효율을 향상시키고 연소 후 배출되는 배기가스와 미세먼지 (PM)를 저감시킬 수 있는 기술 개발이 요구되고 있다. Therefore, as a fuel additive, no surfactant is used and no homogenizer is used to disperse the water, and it is stably dispersed in the liquid hydrocarbon fuel to facilitate long-term dilution, improve combustion efficiency and discharge after combustion. There is a demand for a technology that can reduce exhaust gas and fine dust (PM).
【선행기술문헌】 Prior Art Documents
【특허문헌】
(특허문헌 1) 대한민국 등록특허 KR10-1210037호 [Patent literature] (Patent Document 1) Republic of Korea Registered Patent KR10-1210037
(특허문헌 2) 대한민국 등록특허 KR10-0339859호 (Patent Document 2) Korean Patent Registration No. KR10-0339859
(특허문헌 3) 대한민국 등록특허 KR10-1161638호 (Patent Document 3) Korean Patent Registration No. KR10-1161638
(특허문헌 4) 국제공개특허 W02002/059236호 (Patent Document 4) International Publication W02002 / 059236
(특허문헌 5) 국제공개특허 W02003/078552호 (Patent Document 5) International Publication W02003 / 078552
【발명의 내용】 ' [Contents of the invention] '
【해결하고자 하는 과제】 Problem to be solved
본 발명은 계면활성제를 전혀 사용하지 않고, 또한 호모나이저로 물을 분산시키지도 않고, 단지 물을 액체 탄화수소용제와 화학적인 반웅을 통해 -0- , -0H 결합시키는 방법을 통하여 제조하고, 액체 탄화수소연료와도 화학결합을 통하여 분산되므로 안정적으로 장기간 희석이 용이할 뿐만 아니라, 가솔린과 디젤유에 첨가하여 사용시 연료 소비율이 향상되며, 배출되는 가스와 입자상물질인 PM5 , PM2.5를 현저히 즐일 수 있는 연료첨가제를 제공하기 위한 것이다. The present invention does not use any surfactants and does not disperse water with a homogenizer, and is prepared through a method of combining water with -0-, -0H through a chemical reaction and liquid hydrocarbon fuel. As it is dispersed through chemical bonding, it is not only easy to dilute stably for a long time but also improves fuel consumption rate when used in addition to gasoline and diesel oil, and it is a fuel additive which can enjoy PM5 and PM2.5, which are emitted gas and particulate matter. It is to provide.
또한, 본 발명은 상기 연료첨가제가 첨가된 연료를 제공하기 위한 것이다. 【과제의 해결 수단】 In addition, the present invention is to provide a fuel to which the fuel additive is added. [Measures of problem]
본 명세서에서는, 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과, 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150 °C 온도에서 반웅시키는 단계를 포함하는 연료첨가제 제조방법이 제공된다. ' In the present specification, at least one aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol Provided is a fuel additive manufacturing method comprising the step of reacting at a temperature of 40 ° C to 150 ° C. '
본 명세서에서는 또한, 상기 연료첨가제 제조방법에 의해 얻어진 연료첨가제 및 탄화수소계 연료를 포함하는, 연료가 제공된다. In the present specification, there is also provided a fuel comprising a fuel additive and a hydrocarbon-based fuel obtained by the fuel additive manufacturing method.
이하 발명의 구체적인 구현예에 따른 연료첨가제의 제조방법 및 이를 이용한 연료에 대하여 보다 상세하게 설명하기로 한다 . 발명의 일 구현예에 따르면, 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과, 중량평균 분자량이 50 g/mo l 내지 250 g/mo l인 알킬렌글리콜 모노알킬에테르계
용매를 40 °C 내지 150 °C 온도에서 반응시키는 단계를 포함하는, 연료첨가제 제조방법이 제공될 수 있다.. Hereinafter, a method of preparing a fuel additive and a fuel using the same according to specific embodiments of the present invention will be described in detail. According to one embodiment of the invention, at least one aqueous reaction solution selected from the group consisting of water, aqueous solution of polar organic compounds, aqueous solution of sodium salt, and alkylene having a weight average molecular weight of 50 g / mol to 250 g / mol Glycol Monoalkyl Ether A method of preparing a fuel additive, comprising reacting a solvent at a temperature of 40 ° C. to 150 ° C., may be provided.
본 발명자들은 상술한 특정의 연료첨가제 제조방법을 이용하면, 중량평균 분자량이 50 g/mo l 내지 250 g/mo l인 알킬렌글리콜 모노알킬에테르계 용매와 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액의 화학적 반웅을 통해, 상기 알킬렌글리콜 모노알킬에테르계 용매 또는 수성 반응액 내에 존재하는 에테르 작용기 또는 히드록시기간의 결합을 유도함에 따라, 최종 제조된 연료첨가제의 소수성이 높일 수 있음을 실험을 통하여 확인하고 발명을 완성하였다. The inventors of the present invention use the above-described method for preparing a specific fuel additive, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mo l to 250 g / mo l, water, an aqueous solution of a polar organic compound, and sodium salt Through the chemical reaction of at least one aqueous reaction mixture selected from the group consisting of an aqueous solution, the final prepared fuel additive by inducing the bonding of the ether functional group or hydroxy period present in the alkylene glycol monoalkyl ether solvent or the aqueous reaction solution Experiment confirmed that the hydrophobicity of can be increased and completed the invention.
특히, 상기 중량평균 분자량이 50 g/mo l 내지 250 g/mo l인 알킬렌글리콜 모노알킬에테르계 용매는 상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과의 반웅성이 높아, 별도의 계면활성제 첨가 없이도 안정적으로 분산된 연료첨가제 제조에 용이하여, 종래 계면활성제 첨가에 따른 연소시 슬러지의 발생의 문제를 해결할 수 있을 것으로 보인다. Particularly, the alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mo l to 250 g / mo l is at least one aqueous reaction selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution. The reaction properties with the liquid are high, and it is easy to prepare a stably dispersed fuel additive without adding a separate surfactant, and it may be possible to solve the problem of sludge generation during combustion due to the addition of a conventional surfactant.
또한, 소수성이 향상된. 연료첨가제를 .통해 휘발유 또는 경유와 같은 탄화수소계 연료에 첨가시, 안정적인 분산을 통해 장기간 희석이 용이할 수 있고, 이를 통해 연료첨가제가 첨가된 연료의 연소효율을 향상시키며, 배기가스나 미세먼지는 감축시키는 것을 실험을 통해 확인하였다. In addition, hydrophobicity is enhanced. When added to hydrocarbon fuels such as gasoline or diesel fuel through fuel additives, it can be easily diluted for a long time through stable dispersion, thereby improving the combustion efficiency of fuel added fuel additives, exhaust gas or fine dust Reduction was confirmed through experiments.
구체적으로, 상기 일 구현예의 연료첨가제 제조방법은 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과, 중량평균 분자량이 50 g/mo l 내지 250 g/mo l인 알킬렌글리콜 모노알킬에테르계 용매를 40 °C 내지 150 온도에서 반응시키는 단계를 포함할 수 있다. Specifically, the fuel additive manufacturing method of the embodiment is water, a polar organic compound aqueous solution, and sodium salt aqueous solution selected from the group consisting of aqueous solution of sodium salt, and the weight average molecular weight of 50 g / mo l to 250 g / mo It may comprise the step of reacting the alkylene glycol monoalkyl ether solvent of l at a temperature of 40 ° C to 150.
먼저, 상기 수성 반웅액은 순수한 물 또는 이를 포함한 수용액으로서 물을 포함하는 특징이 있다. 구체적으로, 상기 수성 반응액은 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 즉, 상기 수성 반웅엑은 물, 극성 유기화합물 수용액, 소듐염 수용액, 또는 이들의 2종 이상의 흔합물을 포함할 수 있다.
바람직하게는 상기 수성 반응액.으로 물을 사용하거나, 물과 극성 유기화합물 수용액의 흔합물, 또는 물과 소듐염 수용액의 흔합물을 들 수 있다. First, the aqueous reaction solution is characterized by including water as pure water or an aqueous solution containing the same. Specifically, the aqueous reaction solution may include one or more selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution. That is, the aqueous reaction mixture may include water, an aqueous polar organic compound solution, an aqueous sodium salt solution, or a mixture of two or more thereof. Preferably, water is used as the aqueous reaction solution, or a mixture of water and an aqueous solution of a polar organic compound, or a mixture of water and an aqueous sodium salt solution.
상기 극성 유기화합물 수용액은 극성 유기화합물이 물에 용해된 용액을 의미하며, 상기 극성 유기 화합물은 물과 같은 수용성 용매에 매우 잘 녹는 특성을 가지며, 알코올, 케톤, 에테르, 에스터, 아세탈 과산화물, 및 에폭사이드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. The polar organic compound solution refers to a solution in which the polar organic compound is dissolved in water, and the polar organic compound has a property of being very soluble in water-soluble solvents such as water, alcohols, ketones, ethers, esters, acetal peroxides, and epoxides. It may include one or more selected from the group consisting of the side.
상기 알코을은, 메탄올, 에탄올, 프로판올, n-부틸 알코올, sec-부틸 알코올, I SO-부틸 알코올, Tert—부틸 알코올, 핵산을, 또는 이들의 2종 이상의 흔합물을 포함할 .수 있다. 상기 알코을의 농도의 예가 크게 한정되는 것은 아니나, 예를 들어 90%이상, 또는 90% 내지 99.9% , 또는 9¾ 내지 99.9%일 수 있다. The alcohol may include methanol, ethanol, propanol, n-butyl alcohol, sec-butyl alcohol, I SO-butyl alcohol, Tert-butyl alcohol, nucleic acid, or a combination of two or more thereof. Examples of the concentration of the alcohol is not particularly limited, for example, may be 90% or more, or 90% to 99.9%, or 9¾ to 99.9%.
상기 케톤은, 디이소부틸 케톤, 에틸아밀 케톤, 카르본 (carvone ) , 멘톤 (Menthone 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. The ketone may include diisobutyl ketone, ethyl amyl ketone, carbon (carvone), menton (Menthone or a combination of two or more thereof).
상기 에테르는, 디부틸 에테르, 삼차—부틸 이소부틸 에테르, 에틸부틸 에테르, 디이소아밀 에테르, 디핵실 에테르, 디이소옥틸에테르 등의 모노에테르; 또는 이의 디에테르; 또는 탄소수 4 내지 10의 디알킬시클로에테르; 또는 이들의 2종 이상의 흔합물을,포함할 수 있다. 상기 에스터는, 에틸 포름산 에스터, 메틸 아세테이트 , 옥틸 아세테이트 , 이소아밀 포로피온산 에스터, 메틸 부티르산 에스터, 에틸 올레산 에스터, 에틸카프릴산 에스터 등의 유기산 에스터 ; 또는 시크로핵실 질산염 , 이소프로필 질산염 , n—아밀 질산염, 2—에틸 핵실 질산염, 이소 -아밀 질산염 등의 무기산 에스터; 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. 상기 아세탈은, 디메틸 아세탈, 포름알데히드 디에틸 아세탈, 아세트알데히드 디에틸 아세탈, 아세트알데히드 디부틸 아세탈, 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. The ethers include monoethers such as dibutyl ether, tertiary-butyl isobutyl ether, ethylbutyl ether, diisoamyl ether, dinuxyl ether and diisooctyl ether; Or diethers thereof; Or dialkylcycloether having 4 to 10 carbon atoms; Or two or more combinations thereof. The ester includes organic acid esters such as ethyl formic acid ester, methyl acetate, octyl acetate, isoamyl poropionic acid ester, methyl butyric acid ester, ethyl oleic acid ester, and ethyl caprylic acid ester; Or inorganic acid esters such as cyclonuclear nitrate, isopropyl nitrate, n-amyl nitrate, 2-ethyl nucleosil nitrate, and iso-amyl nitrate; Or two or more combinations thereof. The acetal may include dimethyl acetal, formaldehyde diethyl acetal, acetaldehyde diethyl acetal, acetaldehyde dibutyl acetal, or a combination of two or more thereof.
상기 과산화물은, 3—부틸 과수산화물 , 삼차—부틸 과산화아세테이트, 이차- 삼차 부틸 과산화물, 또는 이들의 2종 이상의 흔합물을 포함할 수 있다.
상기 에폭사이드는, 1 , 2-에폭시—4-에폭시 에틸시클로핵산, 에폭시화 메틸 에스테르, 에틸핵실 글리시딜, 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. The peroxide may include 3-butyl peroxide, tert-butyl acetate, secondary-tertiary butyl peroxide, or a combination of two or more thereof. The epoxide may include 1, 2-epoxy-4-epoxy ethylcyclonucleic acid, epoxidized methyl ester, ethylnuxyl glycidyl, or a combination of two or more thereof.
또한, 상기 소듐염 수용액은 소듐 (Na)을 양이온으로 함유한 염이 물에 용해된 용액을 의미하며, 구체적인 예로는 NaOH 수용액 또는 규산나트륨 (Na20— nSi -xH20) 수용액을 포함할 수 있다. In addition, the aqueous sodium salt solution refers to a solution in which a salt containing sodium (Na) as a cation is dissolved in water, and specific examples thereof may include an aqueous NaOH solution or an aqueous sodium silicate (Na 2 0—nSi -xH 2 0) solution. Can be.
한편, 상기 알킬렌글리콜 모노알킬에테르계 용매는, 중량평균 분자량이 50 g/mo l 내지 250 g/mo l일 수 있다. 상기 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기 (Ref ract ive Index Detector ) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 은도 조건, 용매, f l ow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예로, 30 °C의 은도, 클로로포름 용매 (Chl oroform) 및 1 mL/min의 f l ow rate를 들 수 있다. Meanwhile, the alkylene glycol monoalkyl ether solvent may have a weight average molecular weight of 50 g / mo l to 250 g / mo l. The said weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by the GPC method. In the process of measuring the weight average molecular weight of polystyrene conversion measured by the GPC method, it is possible to use a detector and an analysis column, such as a conventionally known analysis device and a differential refractive index detector, and the like. Silver conditions, solvents, flow rate can be applied. Specific examples of the measurement conditions include silver at 30 ° C., chloroform solvent (Chl oroform) and flow rate of 1 mL / min.
상기 알킬렌글리콜 모노알킬에테르계 용매의 중량평균 분자량이 250 g/mo l 초과로 지나치게 증가하게 되면, 연료첨가제 내에서 계면활성제로서 작용하게 되어, 연료에 적용된 이후 연소시 슬러지가 발생되는 한계가 있다. 상기 알킬렌글리콜 모노알킬에테르계 용매는 알킬렌글리콜 모노알킬'에테르 또는 이의 유도체 화합물을 모두 포함하는 의미로 사용되었고, 구체적으로, 상기 알킬렌글리콜 모노알킬에테르계 용매는 알킬렌글리콜 모노알킬에테르, 디알킬렌글리콜 모노알킬에테르, 트리알킬렌글리콜 모노알킬에테르 및 이의 에스터화물로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 즉, 상기 알킬렌글리콜 모노알킬에테르계 용매는 알킬렌글리콜 모노알킬에테르, 디알킬렌글리콜 모노알킬에테르, 트리알킬렌글리콜 모노알킬에테르, 알킬렌글리콜 모노알킬에테르에스터, 디알킬렌글리콜 모노알킬에테르에스터, 트리알킬렌글리콜 모노알킬에테르에스터, 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. If the weight average molecular weight of the alkylene glycol monoalkyl ether solvent is excessively increased to more than 250 g / mol, it acts as a surfactant in the fuel additive, there is a limit that the sludge is generated during combustion after being applied to the fuel . The alkylene glycol monoalkyl ether solvents include alkylene glycol mono alkyl, ether or were used in the sense to include all of the derivatives thereof a compound, and specifically, the alkylene glycol monoalkyl ether solvents are alkylene glycol monoalkyl ether, It may include one or more selected from the group consisting of dialkylene glycol monoalkyl ether, trialkylene glycol monoalkyl ether and esters thereof. That is, the alkylene glycol monoalkyl ether solvent is alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, trialkylene glycol monoalkyl ether, alkylene glycol monoalkyl ether ester, dialkylene glycol monoalkyl ether Esters, trialkylene glycol monoalkyl ether esters, or combinations of two or more thereof.
보다 구체적으로, 상기 알킬렌글리콜 모노알킬에테르 또는 알킬렌글리콜 모노알킬에테르에스터의 예로는 에틸렌글리콜 모노에틸에테르 (EGEE) ,
에틸렌글리콜 모노메틸에테르 (EGME) , 에틸렌글리콜 모노부틸에테르 (EGBE) , 에틸렌글리콜 모노에틸에테르아세테이트 (EGEEA) , 에 렌글리콜 모노부틸에테르아세테이트 (EGBEA) , . 에틸렌글리콜 모노프로필에테르 (EGPE) , 에틸렌글리콜 모노페닐에테르 (EGPhE) , 에틸렌글리콜 모노핵실에테르 (EGHE) , 에틸렌글리콜 모노 2—에.틸핵실에테르 등을 들 수 있다. More specifically, examples of the alkylene glycol monoalkyl ether or alkylene glycol monoalkyl ether ester include ethylene glycol monoethyl ether (EGEE), Ethylene glycol monomethyl ether (EGME), ethylene glycol monobutyl ether (EGBE), ethylene glycol monoethyl ether acetate (EGEEA), ethylene glycol monobutyl ether acetate (EGBEA) . Ethylene glycol monopropyl ether (EGPE), ethylene glycol monophenyl ether (EGPhE), ethylene glycol mononuclear ether (EGHE), ethylene glycol mono 2-Ethyl nucleosil ether, etc. are mentioned.
또한, 상기 디알킬렌글리콜 모노알킬에테르 또는 디알킬렌글리콜 모노알킬에테르에스터의 예로는 디에틸렌글리콜 모노메틸에테르 (DGME) , 디에틸렌글리콜 모노에틸에테르 (DGEE) , 디에틸렌글리콜 모노에틸에테르아세테이트 (DGEEA) , 디에틸렌글리콜 모노부틸에테르 (DGBE) , 디에틸렌글리콜 모노부틸에테르아세테이트 (DGBEA) , 디에틸렌글리콜 모노프로필에테르 (DGPE) , 디에틸렌글리콜 모노핵실에테르 (DGHE) 등을 들 수 있다. In addition, examples of the dialkylene glycol monoalkyl ether or dialkylene glycol monoalkyl ether ester include diethylene glycol monomethyl ether (DGME), diethylene glycol monoethyl ether (DGEE), diethylene glycol monoethyl ether acetate ( DGEEA), diethylene glycol monobutyl ether (DGBE), diethylene glycol monobutyl ether acetate (DGBEA), diethylene glycol monopropyl ether (DGPE), diethylene glycol mononuclear ether (DGHE), etc. are mentioned.
또한, 상기 트리알킬렌글리콜 모노알킬에테르 또는 트리알킬렌글리콜 모노알킬에테르에스터의 예로는 트리에틸렌글리콜 모노메틸에테르 (TGME) , 트리에틸렌글리콜. 모노에틸에테르 (TGEE) , 트리에틸렌글리콜 모노부틸에테르 (TGBE), 트리에틸렌글리콜 모노프로필에테르 (TGPE) 등을 들 수 있다. In addition, examples of the trialkylene glycol monoalkyl ether or trialkylene glycol monoalkyl ether ester include triethylene glycol monomethyl ether (TGME) and triethylene glycol. Monoethyl ether (TGEE), triethylene glycol monobutyl ether (TGBE), triethylene glycol monopropyl ether (TGPE) and the like.
이때, 상기 알킬렌글리콜 모노알킬에테르계 용매에 대한 수성 반웅액의 부피비율이 0.1 내지 1.5, 또는 0.2 내지 1.3, 또는 0.24 내지 1.12일 수 있다. 또한, 상기 알킬렌글리콜 모노알킬에테르계 용매에 대한 무극성 유기용매의 부피비율이 0.5 내지 1 , 또는 0.6 내지 1일 수 있다. 상기 알킬렌글리콜 모노알킬에테르계 용매에 대한 수성 반응액의 부피비율이란, 상기 수성 반응액의 부피를 상기 알킬렌글리콜 모노알킬에테르계 용매의 부피로 나눈 값을 의미한다. 상술한 특정의 반응물 투입조건에서 반웅을 진행시, 반응물의 손실을 최소화하면서 부반응을 억제하여 높은 반응효율을 구현할 수 있다. In this case, the volume ratio of the aqueous semicoagulant to the alkylene glycol monoalkyl ether solvent may be 0.1 to 1.5, or 0.2 to 1.3, or 0.24 to 1.12. In addition, the volume ratio of the nonpolar organic solvent to the alkylene glycol monoalkyl ether solvent may be 0.5 to 1, or 0.6 to 1. The volume ratio of the aqueous reaction solution to the alkylene glycol monoalkyl ether solvent means a value obtained by dividing the volume of the aqueous reaction solution by the volume of the alkylene glycol monoalkyl ether solvent. When reacting under the specific reactant input conditions described above, high reaction efficiency can be realized by suppressing side reactions while minimizing loss of reactants.
한편, 상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150°C
온도에서 반응시키는 단계는 40°C 내지 150°C, 또는 45'C 내지 130°C, 또는 50 °C 내지 120°C, 또는 50°C 내지 90°C, 또는 60°C 내지 90°C , 또는 80°C 내지 90 °C 온도조건에서 진행될 수 있다. 상술한 특정의 은도조건에서 반웅을 진행시, 반응물의 손실을 최소화하면서 부반웅을 억제하여 높은 반웅효율을 구현할 수 있다. On the other hand, at least one aqueous reaction mixture selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol is used. ° C to 150 ° C The step of reacting at a temperature is 40 ° C to 150 ° C, or 45 ' C to 130 ° C, or 50 ° C to 120 ° C, or 50 ° C to 90 ° C, or 60 ° C to 90 ° C, Or at 80 ° C. to 90 ° C. temperature conditions. When the reaction is carried out under the specific silver conditions described above, it is possible to implement high reaction efficiency by suppressing side reactions while minimizing the loss of reactants.
상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과, 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 미만의 온도, 구체적으로 예를 들어 20°C 내지 30°C의 상온에 방치할 경우, 상기 수성 반응액과. 알킬렌글리콜 모노알킬에테르계 용매는 단순히 물리적 흔합을 통해 흔합용액을 형성할 뿐 화학적으로 알킬렌글리콜 모노알킬에테르계 용매에 — 0-, -0H-, -00H- 둥의 결합이 형성되는 치환반응이 진행되기 어렵다. 40 ° of at least one aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol When left at a temperature of less than C, specifically room temperature of 20 ° C to 30 ° C, for example, with the aqueous reaction solution. Alkylene glycol monoalkyl ether solvents simply form a mixed solution through physical mixing, and chemically form a substitution reaction of — 0-, -0H-, -00H- in the alkylene glycol monoalkyl ether solvent. This is hard to proceed.
또한, 상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과, 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 150°C 초과의 고온으로 반웅시키게 돠면, 반웅물인 수성 반웅액이나 알킬렌글리콜 모노알킬에테르계 용매가 기화되어 손실되는 양이 지나치게 많아져 반웅 효율이 감소할 수 있다. In addition, at least one aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol When the reaction is carried out at a high temperature of more than 150 ° C, the amount of loss caused by evaporation of the aqueous side reaction liquid or alkylene glycol monoalkyl ether solvent, which is a side product, may be excessively large, thereby reducing the reaction efficiency.
상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 4C C 내지 150 t 온도에서 반응시키는 단계는, 필요에 따라 산소, 이산화탄소, 및 일산화탄소로 이루어진 군에서 선택된 1종 이상의 기체 분위기에서 진행될 수 있다. 상술한 기체 조건에서 반응을 진행시, 산화 반웅조건이 형성되어 높은 반응효율을 구현할 수 있다. 4 C C to 1 C aqueous solution of the at least one aqueous reaction solution selected from the group consisting of water, an aqueous polar organic compound solution and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol The reaction at 150 t temperature may be performed in one or more gas atmospheres selected from the group consisting of oxygen, carbon dioxide, and carbon monoxide, if necessary. When the reaction proceeds under the above-described gas conditions, an oxidation reaction condition may be formed to implement high reaction efficiency.
이처럼 상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과, 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150 °C 온도에서 반응시키는 단계에서는, 수성 반응액과 알킬렌글리콜
모노알킬에테르계 용매간의 화학반응으로 인해 상분리가 발생할 수 있다. 이때, 필요에 따라, 반응 결과물내 상층액 및 하층액 중 상층액을 분리시키는 단계를 더 포함할 수 있다. 상기 분리단계에서 상층액과 하층액의 분리방법의 예로는 분별깔대기를 들 수 있다. As described above, at least one aqueous reaction solution selected from the group consisting of water, an aqueous polar organic compound solution, and an aqueous sodium salt solution and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol are used. In the step of reacting at a temperature of ° C to 150 ° C, the aqueous reaction solution and alkylene glycol Phase separation may occur due to chemical reaction between the monoalkyl ether solvents. In this case, if necessary, the method may further include separating the supernatant in the supernatant and the lower layer in the reaction product. An example of a separation method of the supernatant and the lower layer liquid in the separation step is a separatory funnel.
여기서 상층액과 하층액은 상기 반웅 결과물에서 상분리가 발생하여 경계면으로 구분되는 서로다른 2종의 액을 의미하며 , 보다 큰 밀도를 가져 경계면을 기준으로 아래쪽에 위치한 액을 하층액, 보다 작은 밀도를 가져 경계면을 기준으로 위쪽에 위치한 액을 상층액으로 구분할 수 있다. Herein, the supernatant and the lower layer liquid are two different kinds of liquids separated by the boundary due to the phase separation occurring in the reaction product, and the lower liquid based on the interface has a lower density and a lower density. The upper liquid can be divided into the upper liquid based on the boundary surface.
보다 구체적으로, 상기 상층액은 알킬렌글리콜 모노알킬에테르계 용매에 수성 반응액이 화학 결합된 물질이 존재하고, 하층액은 수성 반웅액에 알킬렌글리콜 모노알킬에테르계 용매의 일부 성분이 결합된 상태로 존재하는 것으로 보인다. More specifically, the supernatant is an alkylene glycol monoalkyl ether solvent having a substance in which an aqueous reaction solution is chemically bonded, the lower layer is an aqueous semi-aqueous solution in which some components of the alkylene glycol monoalkyl ether solvent are bonded It seems to exist in a state.
한편, 상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과, 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150 t 온도에서 반응시키는 단계 이후, 상기 반응 결과물에 무극성 유기용매를 첨가하는 단계;를 더 포함할 수 있다. Meanwhile, at least one aqueous reaction solution selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol After the step of reacting at a temperature of 40 ° C to 150 t, adding a non-polar organic solvent to the reaction product; may further include.
상기 무극성 유기용매는 상기 수성 반웅액과 알킬렌글리콜 모노알킬에테르쳬 용매간의 반응이후, 반응 결과물 내에 잔류하는 과량의 수성 반응액을 침전시키기 위해 사용할 수 있다. The nonpolar organic solvent may be used to precipitate the excess aqueous reaction liquid remaining in the reaction product after the reaction between the aqueous reaction mixture and the alkylene glycol monoalkyl ether solvent.
상기 무극성 유기 용매는 물과 같은 수용성 용매에 매우 잘 녹지 않는 특성을 가지며, 상기 무극성 유기 용매의 예로는 탄소수가 5 내지 20인 탄화수소계 용매, 구체적으로 틀루엔, 자일렌, 핵산, 테트라데칸, 옥타데센 등이 있으며 , 바람직하게는 를루엔을 사용할 수 있다. 상기 를루엔은 순도 99%이상의 롤루엔 또는 시판되는 공업용 Toluene (공업용 Toluene은 25%의 Benzene이 함유)을 제한없이 사용할 수 있다. The nonpolar organic solvent has a property of being very insoluble in water-soluble solvents such as water, and examples of the nonpolar organic solvent include hydrocarbon solvents having 5 to 20 carbon atoms, specifically, toluene, xylene, nucleic acid, tetradecane, and octa. Decene and the like, and preferably, luluene can be used. The toluene can be used without limitation the commercially available toluene of 99% purity or commercial toluene (industrial toluene contains 25% Benzene).
이처럼 상기 반응 결과물에 무극성 유기용매를 첨가하는 단계를 거치는 경우 상기 반응 결과물에 무극성 유기용매를 첨가하는 단계 이후, 무극성 유기용매가 흔합된 흔합물내 상층액 및 하층액 중 상층액을 분리시키는
단계를 더 포함할 수 있다. 상기 분리단계에서 상층액과 하층액의 분리방법의 예로는 분별깔대기를 들 수 있다. As described above, when the non-polar organic solvent is added to the reaction product, after adding the non-polar organic solvent to the reaction product, the supernatant and the supernatant in the non-polar organic solvent mixture are separated. It may further comprise a step. An example of a separation method of the supernatant and the lower layer liquid in the separation step is a separatory funnel.
여기서 상충액과 하층액은 상기 반응 결과물에서 상분리가 발생하여 경계면으로 구분되는 서로다른 2종의 액을 의미하며, 보다 큰 밀도를 가져 경계면을 기준으로 아래쪽에 위치한 액을 하층액, 보다 작은 밀도를 가져 경계면을 기준으로 위쪽에 위치한 액을 상층액으로 구분할 수 있다. Herein, the supernatant and the lower layer liquid are two different kinds of liquids separated by the boundary due to the phase separation occurring in the reaction product. The lower liquid has a greater density and the lower layer liquid has a lower density. The upper liquid can be divided into the upper liquid based on the boundary surface.
필요에 따라, 상기 반응 결과물 내 상층액 및 하층액 중 상층액을 분리시키는 단계 이전에, 반웅 결과물을 상온 (2crc )으로 넁각시키는 단계를 더 포함할 수 있다. 상기 반웅 결과물을 상온 (20 °C )으로 넁각시키는 단계를 통해, 반응 결과물 내에 상액과 하액으로 상분리가 진행될 수 있다. If necessary, the step of reacting the reaction product at room temperature (2crc) before the step of separating the supernatant in the reaction solution and the supernatant in the reaction product may further include. Through the step of reacting the reaction product at room temperature (20 ° C.), phase separation may proceed to the upper and lower liquids in the reaction product.
또한 상기 일 구현예의 연료첨가제 제조방법은, 상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과, 중량평균 분자량이 50 g/mo l 내지 250 g/mo l인 알킬렌글리콜 모노알킬에테르계 용매를 4(rc 내지 150 °C 온도에서 반응시키는 단계이후, 반응 결과물을 열처리하여 저비점 불순물을 제거하는 단계를 더 포함할 수 있다. In addition, the fuel additive manufacturing method of the embodiment, the water, a polar organic compound aqueous solution, and sodium salt aqueous solution selected from the group consisting of aqueous solution of sodium salt, and a weight average molecular weight of 50 g / mo l to 250 g / mo After the step of reacting the alkylene glycol monoalkyl ether solvent of l at 4 (rc to 150 ° C.), the reaction product may be further heat-treated to remove low boiling point impurities.
상기 반웅 결과물에 대한 열처리를 통해 반응 결과물 내에 포함되어 있던 . -0- , -0H- , 또는 — 00H- 결합을 끊어., 이를 포함한 원자단을 불순물로서 증발시켜 제거할 수 있다. The reaction product was included in the reaction product through heat treatment. -0-, -0H-, or — 00H- breaks the bond. Atomic groups containing these can be removed by evaporation as impurities.
즉, 상기 저비점 불순물은 —0- , -0H- , 또는 -00H- 결합을 함유한 화합물을 의미하며, 상기 저비점 불순불의 비점은 60 °C 미만으로 낮아, 60 °C이상의 열처리 조건에서 기화되어 제거될 수 있다. That is, the low-boiling impurities are -0-, -0H-, or means, a compound containing a -00H- bond, and the low boiling point impurities having a boiling point of fire is reduced to less than 60 ° C, to remove vaporized in heat treatment conditions above 60 ° C Can be.
이를 위해, 상기 분리된 상층액의 열처리는 60 °C 내지 150 °C 온도에서 10초 내지 30시간동안 진행될 수 있다. To this end, the heat treatment of the separated supernatant may be performed for 10 seconds to 30 hours at a temperature of 60 ° C to 150 ° C.
한편, 필요에 따라, 상기 분리된 상층액을 열처리하여 저비점 불순물을 제거하는 단계이후 액상의 탄화수소화합물을 전체 연료첨가제 부피를 기준으로 0. 1부피 % 내지 30부피 %로 첨가하는 단계를 더 포함할 수 있다. 상기 액상의 탄화수소화합물의 예로는 액상 파라핀계 화합물, 액상 나프탈렌계 화합물, 액상 올레핀계 화합물, 액상 방향족계 화합물 등을 들
수 있다. 보다 구체적인 예로, 상기 액상 방향족계 화합물로는 자일렌을 들 수 있다. 한편, 발명의 다른 구현예에 따르면, 상기 일 구현예의 연료첨가제 제조방법에 의해 얻어진 연료첨가제 및 탄화수소계 연료를 포함하는, 연료가 제공될 수 있다. 상기 일 구현예의 연료첨가제 제조방법으로부터 얻어진 연료첨가제로 가솔린연료ᅳ 디젤연료, 선박유, 항공유에 첨가시 배기가스와 입자상물질을 감소시키고., 연비의 효율을 향상시킬 수 있다. 또한 상기 일 구현예의 연료첨가제 제조방법으로부터 얻어진 연료첨가제는 소수성의 성질을 가지므로, 이를 첨가한 연료는 수분함유에 따른 상분리 현상이 거의 일어나지 않거나 상분리 현상이 매우 적어, 파이프라인을 통한■ 연료의 수송이 가능하게 될 것으로 판단된다. On the other hand, if necessary, after the step of heat-treating the separated supernatant to remove low-boiling impurities, further comprising the step of adding a liquid hydrocarbon compound in the volume of 0.1% to 30% by volume based on the total fuel additive volume Can be. Examples of the liquid hydrocarbon compounds include liquid paraffinic compounds, liquid naphthalene compounds, liquid olefin compounds, liquid aromatic compounds, and the like. Can be. As a more specific example, xylene may be used as the liquid aromatic compound. On the other hand, according to another embodiment of the invention, a fuel, including a fuel additive and a hydrocarbon-based fuel obtained by the fuel additive manufacturing method of the embodiment can be provided. When the fuel additive is obtained from the fuel additive manufacturing method of the embodiment of the present invention is added to the gasoline fuel ᅳ diesel fuel, marine oil, aviation oil to reduce the exhaust gas and particulate matter, it is possible to improve the efficiency of fuel economy. The fuel additive obtained from the above one embodiment the fuel additive production process is because of the nature of the hydrophobic, the fuel is little or a phase separation according to a moisture content not cause phase separation very small addition of them, ■ transport of the fuel through the pipeline It is believed that this will be possible.
상기 연료첨가제 제조방법에 대한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함한다. Information on the fuel additive manufacturing method includes all of the above-described information in the embodiment.
상기 연료첨가제는 전체 연료 부피를 기준으로 0.05 부피 % 내지 50 부피 ¾>, 또는 0. 1 부피 % 내지 30 부피 %로 포함될 수 있다. The fuel additive may be included in 0.05% by volume to 50% by volume, or 0.1% by volume to 30% by volume, based on the total fuel volume.
상기 탄화수소계 연료는 석탄액화연료, 오리멀전, 휘발유, 경유, 등유, 중유 (벙크유) , 항공가솔린, 및 제트연료로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 즉, 상기 탄화수소계 연료는 석탄액화연료, 오리멀전, 휘발유, 경유, 등유 중유 (벙크유) , 항공가솔린, 제트연료, 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. The hydrocarbon-based fuel may include one or more selected from the group consisting of liquefied coal, oral, gasoline, diesel, kerosene, heavy oil (bunk oil), aviation gasoline, and jet fuel. That is, the hydrocarbon-based fuel may include coal liquefied fuel, oral emulsion, gasoline, diesel, kerosene heavy oil (bunk oil), aviation gasoline, jet fuel, or a combination of two or more thereof.
상기 연료는 빙결방지제, 정전기방지제, 부식방지제, 산화방지제, 윤활제, 옥탄가 향상제, 세탄가 향상제, 유동성 향상제, 확산제 및 열안정제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다. 즉, 상기 첨가제는 빙결방지제, 정전기방지제, 부식방지제, 산화방지제, 윤활제 , 옥탄가 향상제, 세탄가 향상제, 유동성 향상제, 확산제, 열안정제 또는 이들의 2종 이상의 흔합물을 포함할 수 있다. The fuel may further include one or more additives selected from the group consisting of an antifreeze agent, an antistatic agent, a corrosion inhibitor, an antioxidant, a lubricant, an octane number improver, a cetane number improver, a flow improver, a diffusion agent, and a heat stabilizer. That is, the additive may include an antifreeze agent, an antistatic agent, a corrosion inhibitor, an antioxidant, a lubricant, an octane number improver, a cetane number improver, a fluidity improver, a diffusion agent, a heat stabilizer, or a combination of two or more thereof.
【발명의 효과】 【Effects of the Invention】
본 발명에 따르면, 계면활성제를 전혀 사용하지 않고, 또한 호모나이저로 물을 분산시키지도 않고 , 액체 탄화수소연료 내에서 안정적으로 분산되어
장기간 희석이 용이할 뿐만 아니라, 연소효율을 향상시키고 연소 후 배출되는 배기가스와 미세먼지 (PM)를 저감시킬 수 있는 연료첨가제의 제조방법 및 이로부터 얻어지는 연료첨가제를 이용한 연료가 제공될 수 있다. According to the present invention, no surfactant is used and no homogenizer is used to disperse water, and stably dispersed in a liquid hydrocarbon fuel. In addition to easy dilution for a long time, a method of preparing a fuel additive capable of improving combustion efficiency and reducing exhaust gas and fine dust (PM) discharged after combustion, and a fuel using the fuel additive obtained therefrom may be provided.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. ' <제조예 : 연료첨가제의 제조 > The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. '<Preparation Example: Preparation of a fuel additive>
제조예 1 Preparation Example 1
300ml 비이커에 부틸셀로솔브 (BC ; Ethylene Glycol Mono Butyl Ether) 100ml 및 95% 에틸알코올 40ml를 첨가하였다. magnet i c Hot plate위에 비이커를 을리고 마그네틱 바 (magnet i c bar )로 반응중 400rpm으로 교반하면서 흔합액의 온도를 75°C 내지 85°C에서 30분간 유지하면서 , 산소와 질소를 분리하는 가정용 산소발생기 (Model NO : EYVENZ3M)를 사'용하여 산소만을 20분간 호스로 반응 중인 비이커의 액 중에 공급하며 산소와 반웅하는 공정을 거쳬 남아있는 액을 연료첨가제로 사용하였다. 제조예 2 To a 300 ml beaker was added 100 ml of butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether) and 40 ml of 95% ethyl alcohol. Household oxygen generator that separates oxygen and nitrogen while placing the beaker on a magnet ic hot plate and stirring the mixture at 400rpm while maintaining the temperature of the mixture at 75 ° C to 85 ° C for 30 minutes with a magnetic ic bar. (Model NO: EYVENZ3M) the use, supplied in the use only of the beaker are reaction solution hose for 20 minutes and oxygen was used as the liquid remaining geochye the step of banung and oxygen as a fuel additive. Preparation Example 2
1. 1리터의 비이커에 70°C의 부틸셀로솔브 (BC ; Ethyl ene Glycol Mono Butyl Ether ) 500ml를 따르고, 85°C의 물 120ml를 첨가 (이때 전체 액의 온도는 74°C )하고, magnet i c Hot pi ate위에 비이커를 올리고 마그네틱 바 (magnet i c bar )로 5분간 400rpm으로 교반하면서, 산소와 질소를 분리하는 가정용 산소발생기 (Model NO: EYVENZ3M)를 사용하여 산소만을 20분간 호스로 반웅 중인 비이커의 액 중에 공급하며 산소와 반웅하게 하고, 1시간 방치하는 제 1반응단계를 진행하였다. 이때 액은 전체가 상분리 없이 투명하였다.1.Pour 500 ml of 70 ° C butyl cellosolve (BC; Ethyl ene Glycol Mono Butyl Ether) into a 1-liter beaker, add 120 ml of 85 ° C water (the temperature of the entire liquid is 74 ° C), Place the beaker on the magnet ic hot piate and stir the oxygen for 20 minutes using a domestic oxygen generator (Model NO: EYVENZ3M) that separates oxygen and nitrogen while stirring at 400 rpm for 5 minutes with a magnetic ic bar. The first reaction step was carried out to supply the beaker liquid and react with oxygen, and to stand for 1 hour. At this time, the whole liquid was transparent without phase separation.
2. 제 1반응단계를 거친 위 부틸셀로솔브 (BC ; Ethylene Glycol Mono Butyl Ether )와 물 그리고 산소와 반응한 반응액을 Hot plate 위에서 가열하면서 magnet i c bar로 400rpm으로 MIX중에 30초간 실온의 공업용 를루엔 (Toluene)
300ml를 첨가하고 가열반응 중 반웅액 온도는 62°C에서 우윳빛으로 뿌옇게 되었다. 이 상태에서 Hot pi ate를 OFF하고 방치하는 제 2반응단계를 진행하였다. 2. Industrial reaction of the above butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether), water and oxygen, which has passed through the first reaction stage, with water and oxygen on a hot plate for 30 seconds in MIX at 400 rpm using a magnet ic bar. Toluene 300 ml were added and the reaction mixture became milky at 62 ° C during heating. In this state, the second reaction step of turning off and leaving the hot pilate was performed.
3. Hot plate를 OFF하고 방치하였더니 20°C 부근에서 액은 투명하고 상분리로 상층액과 하층액으로 분리되어 있었다. 하층액의 양은 약3. When the hot plate was turned off and left, the liquid was transparent at 20 ° C and separated into supernatant and lower layer by phase separation. The amount of substratum is about
40ml였다. 상층 액은 약 760ml로 나머지 양은 증발하였다. 상층액과 하층액으로 분리하는 제 1분리단계를 진행하였다. 40 ml. The supernatant was about 760 ml and the remaining amount was evaporated. A first separation step of separating the supernatant and the lower layer was performed.
4. 1리터 비이커에 제 1분리단계에서 분리한 상층액 760ml를 따르고, 비이커 옆면을 비닐 램으로 감싸 보온하고 비이커 상부도 증기가 빠져 나갈 수 있게 조금의 공간만 남기고 밀봉하였다. Hot p l ate 위에' 올리고 액을 승온하여, 액 온도가 70°C를 유지하게 하면서 12시간 동안 방치하는 가열증류 공정을 거쳐, 남아있는 액은 20°C에서 약 500ml였으며, 이를 연료첨가제로 사용하였다. 제조예 3 4. Pour 760 ml of the supernatant from the first separation step into a 1-liter beaker, wrap the beaker side with a vinyl ram to keep warm, and seal the top of the beaker with a small amount of space to allow steam to escape. And "oligonucleotide heating the solution above the Hot pl ate, through a heated distillation step of leaving for 12 hours the solution temperature, while maintaining the 70 ° C, it was left liquid that is about 500ml at 20 ° C, which was used as a fuel additive . Preparation Example 3
1. 300ml 비이커에 부틸샐로솔브 (BC ; Ethyl ene Glycol Mono Butyl Ether) 100ml 및 물 100ml를 첨가하니, 상분리 없이 투명하게 섞였다. 물이 첨가된 부틸셀로솔브 (BC ; Ethylene Glycol Mono Butyl Ether ) 흔합물을 Hot pl ate 위에 올리고 승온하였다. 상온에서 40°C까지는 투명하게 상 분리가 없었다. 액 온도 44°C가 넘어가면서 아래쪽에서 기포가 발생하기 시작하였다. 온도 50°C 부근에서 기포가 퍼지면서 전체액이 뿌옇다ᅳ 액 온도 60°C에서 아래에 투명하게 25ml정도의 물이 침전되고, 위의 액은 뿌옇다. Hot pl ate에서 내리고 방치하니, 비이커 바닥에 침전물이 약 30ml로 늘어났다. 비이커를 다시 Hot pl ate 위에 을리고 승온하자 70 °C 부근에서 바닥에 약 50ml의 침전물이 침전되었다. 액 온도 79°C 부근에서 뿌옇던 상층 액이 투명하게 되고, 아래 층에는 투명한 침전물이 약 50ml로 늘어났다. 상층 액인 투명한 부틸샐로솔브 (BC ; Ethylene Glycol Mono Butyl Ether ) 화합물은 약 150ml였다. 1. 100 ml of butyl salosolve (BC; Ethyl ene Glycol Mono Butyl Ether) and 100 ml of water were added to a 300 ml beaker, and the mixture was mixed transparently without phase separation. Water-added butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether) mixture was heated on a hot liquid and heated. At room temperature up to 40 ° C. there was no phase separation transparently. As the liquid temperature exceeded 44 ° C., bubbles began to form at the bottom. Bubbles are spreading around the temperature of 50 ° C, the whole liquid is cloudy. At the liquid temperature of 60 ° C, about 25 ml of water is settled below, and the liquid is cloudy. When unloaded from the hot plates, the sediment increased to about 30 ml at the bottom of the beaker. When the beaker was put on the hot glass again and the temperature was raised, about 50 ml of precipitate was precipitated at the bottom near 70 ° C. The supernatant liquid which became cloudy near the liquid temperature of 79 ° C. became transparent, and in the lower layer, the transparent precipitate increased to about 50 ml. The supernatant was about 150 ml of a transparent butyl salosolve (BC; Ethylene Glycol Mono Butyl Ether) compound.
2. 상층 액 ( 150ml )과 하층 액 (50ml )으로 상분리된 비이커를 Hot pl ate 위에 올리고 65°C에서 를루엔 (Tohiene) 30ml를 스포이드로 서서히 첨가하였더니,
상층 액이 뿌옇게 되면서 즉시 침전물이 생성되고, 하층 액이 80ml로 늘어났다. 를루엔 (To luene) 2( l를 스포이드로 추가하여 합 5( l가 되게 첨가하였더니, 하층 액은 투명하고 상층 액이 뿌옇게 되었고, 승온하여 액 온도 70°C가 되니, 뿌옇던 상층 액이 투명하게 되고, 하층 액은 85ml로 늘어났다. 액 온도 70°C에서 를루엔 (Toluene) 20ml를 스포이드로 더 첨가하였더니, 즉시 상층 액이 뿌옇게 되었으나, 액 온도가 다시 70°C가 되자 전체가 투명해지고 하층 액은 변화가 거의 없이 투명하게 85m l정도를 유지하였다. 전체 액 온도 70t에서 를루엔 (Toluene) 30ml를 스포이드로 더 첨가하여도 하층 액은 변화가 거의 없이 85ml # 유지하였다. 2. A beaker separated from the supernatant (150 ml) and the lower layer (50 ml) was placed on a hot glass, and 30 ml of toluene was slowly added to the dropper at 65 ° C. As the supernatant became cloudy, a precipitate formed immediately, and the lower layer increased to 80 ml. Toluene 2 (l was added to the dropper to add up to 5 (l). The lower layer became clear and the upper layer became cloudy, and the temperature was raised to 70 ° C. and a transparent lower layer liquid is increased to 85ml. solution temperature was made further added at 70 ° C for toluene (Toluene) 20ml with dropper immediately, but the supernatant is cloudy, the fluid temperature When it was back to 70 ° C, the entire transparent The lower layer solution remained transparent at about 85 ml with little change, even though 30 ml of toluene was further added as a dropper at a total liquid temperature of 70 t, the lower layer solution was maintained at 85 ml # with little change.
3. 분별깔대기로 상층 액과 하층 액으로 분리하는 공정을 진행하였다. 3. The separation funnel was separated into a supernatant and a lower layer.
4. 상층 액 215ml를 500ml 비이커에 담고, 비이커 옆면을 보온하기 위하여 비닐 랩으로 감싸고, 증발 응축시킨 액을 담기위하여 비이커 중앙에 200ml 비이커를 매달아 웅축액이 모이게 하고, 500ml비이커의 상부는 비닐 랩으로 감싸 밀봉 보온하고, Hot pl ate 위에 올려 승온하면서, 비닐 윗부분에는 찬 물이 든 등근 유리 플라스크을 얹어두어 비이커 내부에서 증발된 가스가 찬 물과 접촉되어 쉽게 응축되어 내부에 매단 200ml 비이커에 모이게 하였다. 이후, Hot pl ate를 120°C , 6시간으로 sett ing하고, Hot pl ate 위에 액이 든 500ml 비이커를 올리고, 방치하였고, 500ml 비이커에 담긴 액은 195ml가 되었고ᅳ 중간에 매단 200ml 비이커에는 약 15ml의 웅축액아모였다. 이때, 500ml 비이커에 담긴 액을 연료첨가제로 사용하였다. 제조예 4 4. Put 215 ml of the supernatant into a 500 ml beaker, wrap it in a plastic wrap to warm the sides of the beaker, and hang the 200 ml beaker in the center of the beaker to hold the evaporated condensed liquid. Wrapped and kept warm, and heated on a hot glass, the top of the vinyl was placed in a glass flask with cold water so that the gas evaporated inside the beaker was easily condensed in contact with the cold water and condensed inside the 200 ml beaker. Then, set the hot liquid at 120 ° C for 6 hours, put the 500ml beaker with liquid on the hot liquid, and leave it, and the liquid in the 500ml beaker became 195ml, and about 15ml in the 200ml beaker suspended in the middle. It was an australia. At this time, the liquid contained in the 500 ml beaker was used as a fuel additive. Preparation Example 4
1. 부틸셀로솔브 (BC ; Ethylene Glycol Mono Butyl Ether) 100ml와 95% 농도의 바이오 알코을 ( ' Prethanol A ' , (주)덕산 (DUKSAN) 제품) 수용액 100ml를 15°C에서 섞어 비닐 랩으로 보온한 500ml 비이커에 넣고, 500ml 비이커 중간에 200ml 비이커를 매단 채 동일한 방법으로 비이커 상부를 비닐 랩으로 밀봉하고, Hot plate 위에 비이커를 올리고, 비이커 상부에는 찬 물이 든 등근 유리 플라스크을 얹어두어 비이커 내부에서 증발된 가스가 찬 물과 접촉되어 쉽게 웅축되어 내부에 매단 200ml 비이커에 모이게
하였다. Hot plate를 ON하여 온도를 llOT:, 6시간으로 setting하고 방치하였다. 5시간 후 액 온도는 70°C였고, 0.5ml의 웅축액이 고여 있었다. 1.Insulate vinyl wrap by mixing 100 ml of butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether) and 100 ml of 95% bioalcohol ('Prethanol A', manufactured by Duksan Co., Ltd.) at 15 ° C. Place in a 500 ml beaker, seal the top of the beaker with a plastic wrap in the same way with a 200 ml beaker in the middle of the 500 ml beaker, place the beaker on a hot plate, place an isometric glass flask with cold water on top of the beaker and evaporate inside the beaker Gas is contacted with cold water and is easily condensed to collect in a 200 ml beaker suspended inside It was. The hot plate was turned on and the temperature was set to llOT :, 6 hours and left. After 5 hours the liquid temperature was 70 ° C., and 0.5 ml of the gasoline solution had accumulated.
2. 부틸셀로솔브 (BC; Ethylene Glycol Mono Butyl Ether)와 바이오 알코올이 든 500ml 비이커에 틀루엔 (Toluene)을 100ml 첨가하고, Hot plate 온도를 125°C, 8시간으로 setting 하고 방치하였다. 500ml 비이커 안의 200ml 비이커에 응축액이 20ml 고여 있었다. 이때, 500ml 비이커 안의 액 15ml를 다른 비이커에 따르고, 찬물을 스포이드로 떨어뜨려 친수성 확인을 하였더니, 찬블이 방울로 떨어져 비이커 바닥에 고이나, 일부는 액 중에 희석이 되는 듯 보인다. 다시, Hot plate 위에 비이커를 올리고, 0N 하여 125 °C , 8hr으로 setting하고 동일한 방법으로 가열 증류하기 위하여 방치하였고, 비이커 안의 200ml 웅축액 비이커에는 35ml의 응축액이 고여 있었다. 응축액 35ml의 특성 파악을 위하여 경유 30ml에 응축액 3ml를 첨가하자 투명하게 희석되면서 일부는 바닥에 방울로 가라앉았다가 액 중에 투명하게 희석 되었다. 2. 100 ml of toluene was added to a 500 ml beaker containing butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether) and bio alcohol, and the hot plate temperature was set at 125 ° C. for 8 hours. 20 ml of condensate was collected in a 200 ml beaker in a 500 ml beaker. At this time, 15 ml of the liquid in the 500 ml beaker was poured into another beaker, and cold water was dropped into the dropper to confirm hydrophilicity. When the bumbled drops into the bottom of the beaker, some seem to be diluted in the liquid. Again, the beaker was placed on a hot plate, 0N was set at 125 ° C and 8hr and left to heat distillation in the same manner, and 35 ml of condensate was collected in the 200 ml condenser beaker in the beaker. To characterize the 35 ml of condensate, 3 ml of condensate was added to 30 ml of diesel oil.
3. 500ml 비이커에 담긴 약 265ml의 반응액을 PET 병에 따르고, 공기를 산소와 질소로 분리하여 산소를 공급하는 산소발생기에 호스를 연결하고 끝에 유리관을 연결하여, PET에 담긴 액 중에 유리관을 통하여 산소를 30분간 공급하여 산소와 반웅시킨 후, 액상 파라핀 (LiQuid Paraffine) 26ml를 첨가하여 본 발명의 연료 첨가제를 제조하였다. 제조예 5 3. Pour about 265ml of the reaction solution in the 500ml beaker into the PET bottle, connect the hose to the oxygen generator that supplies oxygen by separating the air into oxygen and nitrogen, and connect the glass tube to the end. After supplying oxygen for 30 minutes and reacting with oxygen, 26 ml of liquid paraffin (LiQuid Paraffine) was added to prepare a fuel additive of the present invention. Preparation Example 5
1. Hot plate 위에 5리터 비이커를 놓고 부틸셀로솔브 (BC; Ethylene Glycol Mono Butyl Ether) 1,200ml와 95% 농도의 바이오 알코올 ( 'Prethanol Α' , (주)덕산 (DUKSAN) 제품) 수용액과 를루엔 (Toluene) 1,000ml와 불 100ml를 넣고, 온도 120°C, time 60hr로 setting 하고, 480rpm으로 Magnetic bar로 Mix 하는 상태로 옆면을 밀봉하고, 5리터 비이커 안에 웅축액이 모이게 500ml 비이커를 매달고ᅳ 상부는 비닐 랩으로 밀봉하고, 밀봉 한 비닐 위에 물을 넣은 등근 플라스크를 얹어두어, 비이커 내부에서 증발된 가스가 찬 물과 접촉되어 쉽게 웅축되어 내부에 매단 500ml 비이커에 모이게 하였다.
2. 5리터 비이커에 99.9% 농도의 에탄올 (EtOH) 수용액 900ml를 추가로 넣어 부틸셀로솔브 (BC; Ethylene Glycol Mono Butyl Ether)와 바이오 알코올과 틀루엔이 반응하는 액에서 에탄올의 함량을 늘리고, Hot plate를 On 하고 온도 120 °C, time 36hr로 setting 하고, 150rpm으로 Magnetic bar로 Mix 하는 상태로 방치하였다. 1. Place a 5-liter beaker on a hot plate and place 1,200 ml of butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether) and 95% concentration of bioalcohol (Prethanol A, manufactured by DUKSAN). Add 1,000 ml of toluene and 100 ml of fire, set the temperature to 120 ° C, time 60hr, seal the side with mixing by magnetic bar at 480rpm, hang the 500ml beaker to collect the liquid in the 5 liter beaker. The top was sealed with a plastic wrap, and a back-filled flask was placed on the sealed vinyl so that the gas evaporated inside the beaker was easily contacted with cold water and collected in a 500 ml beaker suspended inside. 2. Add 900 ml of 99.9% ethanol (EtOH) aqueous solution to 5 liter beaker to increase the content of ethanol in the reaction of butyl cellosolve (BC) with bio alcohol and toluene. The hot plate was turned on and set to a temperature of 120 ° C and a time of 36hr, and left to mix with a magnetic bar at 150rpm.
3. 5리터 비이커에 2-Methyl-2-Propanol을 반웅액 대비 약 10vol% 되게 400ml를 첨가하고, Hot pi ate를 ON하여 은도를 120°C, time 48hr, 250rpm으로 setting하고 방치하였다. 3. 400 ml of 2-Methyl-2-Propanol was added to the 5 liter beaker to about 10 vol% of the reaction solution. The hot piate was turned on and the silver was set at 120 ° C., 48 hours, and 250 rpm.
4. 5리터에 든 반응액에 2-Methyl-2-Propanol 300ml를 추가로 첨가하고, Hot pi ate를 On 하고 온도 120 °C, time 12hr, 250rpm으로 setting하고 방치하였다. 13시간 후 Hot plate Off 상태에서 5리터 비이커에 담긴 액을 연료첨가제로 사용하였다. 제조예 6 4. 300 ml of 2-Methyl-2-Propanol was further added to the reaction solution in 5 liters, and the hot piate was turned on, and the temperature was set at 120 ° C, time 12hr, and 250rpm. After 13 hours, the liquid contained in a 5 liter beaker was used as a fuel additive in a hot plate off state. Preparation Example 6
1. 15리터 플라스틱 용기에 부틸셀로솔브 (BC; Ethylene Glycol Mono Butyl Ether) 3500ml를 따르고, 약 50°C 물 3500ml에 규산나트륨 (물유리 2호; Na20- nSi02-xH20) 850g을 녹인 규산나트륨 수용액을 첨가하여, 믹스용 임펠러가 달린 4,500rpm 핸드드릴 모터를 사용하여 4시간동안 믹스 한 후 뚜껑을 닫고 밀봉하여 방치하는 제 1반웅단계를 진행하였다. 1.Pour 3500 ml of butyl cellosolve (BC; Ethylene Glycol Mono Butyl Ether) in a 15-liter plastic container and 850 g of sodium silicate (water glass # 2; Na 2 0-nSi0 2 -xH 2 0) in 3500 ml of water at approximately 50 ° C After dissolving the sodium silicate solution was added, the mixture was mixed for 4 hours using a 4,500rpm hand drill motor with an impeller for mixing, followed by a first reaction step of leaving the lid closed and sealed.
2. 제 1반응단계에서 반응시킨 투명하게 상 분리된 상층액이 약 4,800ml 이고, 하층액이 약 2,600ml였다. 상층액 약 4, 800ml만 분리하여 15리터 플라스틱 용기에 모으는 제 1분리단계를 진행하였다. 2. The transparent phase-separated supernatant reacted in the first reaction step was about 4,800 ml, and the lower layer was about 2,600 ml. Only about 4,800 ml of the supernatant was separated and collected in a 15 liter plastic container.
3. 15리터 플라스틱 용기에 제 1분리단계에서 얻어진 상층액 4.8리터를 따르고 를루엔 (Toluene) 2.4리터를 추가하여 입구가 넓은 15리터 플라스틱 용기에 담그고 뜨거운 물을 부어, 중탕으로 반웅액 온도를 50°C로 승온하고, 20분간 Mix용 임펠러가 달린 4,500rpm 핸드드릴로 Mix 한 후, 15리터 플라스틱 용기의 두¾을 닫고, 12시간 방치하여 제 2반응단계를 진행하였다.3. Into a 15-liter plastic container, 4.8 liters of the supernatant obtained in the first separation step, add 2.4 liters of toluene, immerse it in a 15-liter plastic container with a wide opening, and pour hot water. After heating up to ° C and mixing with a 4,500 rpm hand drill with an impeller for 20 minutes to mix, two ¾ of a 15 liter plastic container was closed and left for 12 hours to proceed with the second reaction step.
4. 제 2반웅단계에서 반응시킨 상층 액과 하층 액으로 상분리된 액 중 상층 액 2리터를 3리터 비이커에 모으는 제 2분리단계를 진행하였다.
5. Hot plate 위에 제 2분리단계에서 얻어진 2리터가 담긴 반응액을 올리고, 비이커 옆면을 비닐 랩으로 보온하고, 비이커 상부가 Open 된 상태로 증기가 빠져 나가게 하고, 비이커 바닥에 Mix를 위하여 Magnetic bar를 넣고, 액 온도를 알 수 있도록 수은온도계를 넣어두고, hot pi ate를 ON하고, 120 °C, 12hr으로 setting하고, 방치하다가 Off되고, 반응 액이 1,500ml 정도가 되었다. 4. A second separation step was carried out in which two liters of the supernatant in the liquid separated in the supernatant and the lower layer reacted in the second reaction step were collected in a three liter beaker. 5. Raise the reaction solution containing 2 liters obtained in the second separation step on the hot plate, insulate the side of the beaker with a plastic wrap, let the steam escape with the top of the beaker open, and mix the magnetic bar on the bottom of the beaker. Put a mercury thermometer so that the temperature of the liquid, the hot piate was turned on, set to 120 ° C, 12hr, left to stand off, the reaction solution was about 1,500ml.
6. Hot plate를 On하여 승온 중에 반웅 액 1,500ml에 Xylene 150ml와 액상파라핀 (Liquid Paraffine) 150ml를 Magnetic bar로 mix 중 첨가하고, 액 온도가 50°C가 되었을 때 Mix를 마쳤다. ' 6. On the hot plate, add 150 ml of Xylene and 150 ml of liquid paraffine to the mix bar with magnetic bar while heating the reaction solution. The mixture was finished when the liquid temperature reached 50 ° C. '
7. Hot PI ate를 OFF하고 방치하여 냉각시킨 후 비이커 내부에 남아있는 액을 연료첨가제로 사용하였다. 7. After turning off the hot PIate and allowing it to cool, the remaining liquid in the beaker was used as a fuel additive.
<실시예 : 연료의 제조 > Example Manufacture of Fuel
실시예 1 Example 1
상기 제조예 1에서 얻어진 연료첨가제를 전체 연료의 약 으 25 부피 가 되도록 휘발유와 흔합하여 연료를 제조하였다. 실시예 2 A fuel was prepared by mixing the fuel additive obtained in Preparation Example 1 with gasoline to be about 25 vol. Of the total fuel. Example 2
상기 제조예 2에서 얻어진 연료첨가제를 전체 연료의 약 0.5 부피 ¾>가 되도록 휘발유와 흔합하여 연료를 제조하였다. 실시예 3 A fuel was prepared by mixing the fuel additive obtained in Preparation Example 2 with gasoline such that about 0.5 vol ¾ of the total fuel was used. Example 3
상기 제조예 2에서 얻어진 연료첨가제 전체 연료의 약 0.8 부피 %가 되도록 경유와 흔합하여 연료를 제조하였다. 실시예 4 Fuel was prepared by mixing with light oil so as to be about 0.8% by volume of the total fuel additive obtained in Preparation Example 2. Example 4
상기 제조예 1에서 얻어진 연료첨가제 연료의 약 0.4 부피 %가 되도록 경유와 흔합하여 연료를 제조하였다. <비교예 : 연료의 제조 >
비교예 1 A fuel was prepared by mixing with diesel to be about 0.4% by volume of the fuel additive fuel obtained in Preparation Example 1. Comparative Example Manufacture of Fuel Comparative Example 1
상기 제조예에서. 얻어진 연료첨가제를 첨가하지 않은 휘발유를 연료로 사용하였다. 비교예 2 In the above preparation. The gasoline to which the obtained fuel additive was not added was used as a fuel. Comparative Example 2
상기 제조예에서 얻어진 연료첨가제를 첨가하지 않은 경유를 연료로 사용하였다. The diesel oil which did not add the fuel additive obtained by the said preparation example was used as fuel.
<실험예 > Experimental Example
1. 연비 실차 시험 1. Fuel economy actual vehicle test
l,999cc 휘발유 엔진을 장착한 차량 (현대자동차 2016년 model ; SONATA CWL)을 준비하여 상기 실시예 2 및 비교예 1의 연료를 채우고, 연비 실차 시험을 실시하였다. A vehicle equipped with a 1,999 cc gasoline engine (Hyundai Motor Model 2016; SONATA CWL) was prepared, the fuel of Example 2 and Comparative Example 1 was filled, and a fuel consumption actual vehicle test was performed.
구체적인 연비 실차 실험은, 구미에서 상주보까지 25번 국도상 거리 33km를 평균 80KPH로 정속 주행하여, 상행 (구미→상주보)과 하행 (상주보→구미)의 연비를 비교 측정하였다. 바람이 적고 맑은 날, 연료를 Full로 채우고 100km 이상을 주행한 후, 다음날 자동차 계기판에 설치된 구간 연비계로 측정하였다. In the specific fuel consumption test, the vehicle traveled at a constant speed of 80 km (25 km) on the 25th national highway from Gumi to Sangjubo, and measured the fuel economy of ascending (Gumi → Sangjubo) and descending (Sangjubo → Gumi). On a sunny day, the vehicle was filled with full fuel and traveled more than 100 km, and the next day it was measured with a section fuel economy meter installed on the dashboard of the car.
【표 1】 Table 1
상기 표 1에 나타난 바와 같이 , 연료첨가제 첨가없이 주행한 상기 비교예 1의 왕복 연비는 18.5km/L였고, 제조예 2의 연료첨가제를 0.5vol% 첨가하여 주행한 상기 실시예 2의 왕복 평균 연비는 20.85km/L로, 실시예 2와 같이 연료첨가제를 첨가한 경우가 12.7%와연비향상 효과를 보였다. 2. 배기가스 /연비시험
(1) 상기 실시예 1의 연료, 및 비교예 1의 연료에 대하여, 경상북도 구미시 소재 자동차 검사소에서 자동차 검사장비 (JASTEC.CO. ,LTD. CGA-4700)를 이용한 배기가스 측정시험을 실시한 결과를 하기 표 2에 나타내었다. As shown in Table 1, the reciprocating fuel economy of Comparative Example 1 which was run without the addition of the fuel additive was 18.5km / L, and the reciprocating average fuel economy of Example 2 which was run by adding 0.5vol% of the fuel additive of Preparation Example 2 Was 20.85km / L, and the fuel additive was added as in Example 2, showing a 12.7% fuel efficiency improvement. 2. Exhaust Gas / Fuel Efficiency Test (1) For the fuel of Example 1 and the fuel of Comparative Example 1, the exhaust gas measurement test using the automobile inspection equipment (JASTEC.CO., LTD.CGA-4700) was carried out at the automobile inspection station in Gumi, Gyeongsangbuk-do. It is shown in Table 2 below.
시험차량은 휘발유 엔진을 장착한 차량 (HYUNDAI, SONATA, CWL, 2.0 gasoline, 2015년식)이다. The test vehicle is a vehicle equipped with a gasoline engine (HYUNDAI, SONATA, CWL, 2.0 gasoline, 2015 model).
【표 2】 Table 2
상기 표 2에 나타난 바와 같이, 제조예 1에서 얻어진 연료첨가제를 휘발유에 0.25VOL 되게 첨가한 실시예 1의 연료는 배기가스 시험에서 연료첨가제가 미첨가된 비교예 1의 연료대비 HC와 CO의 양이 적게나왔다.. As shown in Table 2, the fuel of Example 1 to which the fuel additive obtained in Preparation Example 1 was added to the gasoline to be 0.25VOL, the amount of HC and CO relative to the fuel of Comparative Example 1 without the fuel additive added in the exhaust gas test This came out less ..
(2) 상기 실시예 3의 연료, 실시예 4의 연료 및 비교예 2의 연료에 대하여, 대한민국 인천에 소재한 인하공업전문대학 (Inha Technical College) 배출가스시험실 (EMISSION LABORATORY)에서 2016년 10월 18일에 배기가스와 연비시험을 실시한 결과를 하기 표 3에 나타내었다. (2) For the fuel of Example 3, the fuel of Example 4 and the fuel of Comparative Example 2, October 2016 at EMHA SION LABORATORY, Inha Technical College, Incheon, Korea. The results of conducting the exhaust gas and fuel consumption test on the day are shown in Table 3 below.
시험차량은 HYUNDAI MOTORS 1.6L Diesel AT, 2012년식으로 총 주행거리 (Mileage)는 107 ,000km이다. 시험모드는 CVS-75 MODE이고, 열간상태 주행 및 모달 분석을 실시하였다. The test vehicle, HYUNDAI MOTORS 1.6L Diesel AT, is a 2012 model with a total mileage of 107,000 km. The test mode was CVS-75 MODE, and hot running and modal analysis were performed.
【표 3】 Table 3
비교예 2 0.022 1 .792 0 .90 14. 18 Comparative Example 2 0.022 1 .792 0 .90 14. 18
실시예 4 0.017 0.919 0.43 15.23 Example 4 0.017 0.919 0.43 15.23
증감율 -23.2 -48 .7 -51 .9 7.4 상기 시험 결과에 나타난 바와 같이, 상기 실시예 3의 연료를 사용하는 경우, 비교예 2의 연료에 비하여, HC , 매연 배출량이 3~40% 정도 개선되는 경향이 보이며, 약 4.8% 정도 수준으로 연비가 개선되는 것으로 나타났다. 상기 실시예 4의 연료를 사용하는 경우, 비교예 2의 연료에 비하여, HC , ΝΟχ , 매연 배출량이 25-50% 정도 개선되는 경향이 보이며, 약 7% 정도 수준으로 연비가 개선되는 것으로 나타났다. 아래는 세부 phase별 시험 결과를 분석한 것으로 소형차 시험모드 (국내 CVS-75 모드)의 아래 phase 1 , phase2 , phase3 구간에서 발생한 dat a를 분류한 후 분석한 것이다. 국내 CVS-75 모드는 미연방에서 사용하는 FTP- 75모드와 동일하며, 아침의 출근시간과 도심의 정체구간 그리고 사무실에서 일좀 보다가 외근을 나가는 고속구간등을 골고루 엮어서 실 주행패턴을 모사하여 만들어진 모드이다. 7.23 As shown in the test results, when the fuel of Example 3 is used, HC and soot emissions are improved by about 3 to 40% compared to the fuel of Comparative Example 2. The fuel efficiency is improved by about 4.8%. In the case of using the fuel of Example 4, compared with the fuel of Comparative Example 2, HC, ΝΟχ, soot emission showed a tendency to be improved by about 25-50%, and the fuel economy was improved to about 7%. The following is a detailed analysis of the test results for each phase. After analyzing the dat a in the phase 1, phase 2, and phase 3 sections of the compact vehicle test mode (domestic CVS-75 mode), it is analyzed. The CVS-75 mode in Korea is the same as the FTP-75 mode used in the United States.It is a mode created by simulating the actual driving pattern by evenly combining the morning rush hour, the congestion section in the city, and the high-speed section out of the office. to be.
l l
500 厘 » 15∞ 2幡 2500 500 厘 »15∞ 2 幡 2500
Time(sec) Time (sec)
모드 총 시간은 1877초, 총 주행거리는 17.8km , 평균속도는 34km/h , 속도는 92km/h이다.
아래 phasel, phase2, phase3 구간 별로 상기 실시예 3의 연료, 실시예 4의 연료 및 비교예 2의 연료에 대하여, · 대한민국 인천에 소재한 인하공업전문대학 (Inha Technical College) 배출가스시험실 (EMISSION LABORATORY)에서 2016년 10월 18일에 배기가스와 연비시험을 실시한 결과를 하기 표 4 내지 표 6에 나타내었다. Mode total time is 1877 seconds, total distance is 17.8km, average speed is 34km / h, speed is 92km / h. For the fuel of Example 3, the fuel of Example 4 and the fuel of Comparative Example 2 for each of the following phasel, phase2, and phase3 sections: · Inha Technical College exhaust gas test laboratory (EMISSION LABORATORY) in Incheon, Korea In the results of the exhaust gas and fuel economy test on October 18, 2016 is shown in Tables 4 to 6.
【표 4】 Table 4
비교예 2 0.034 0.076 1.790 0.43 14.70 실시예 3 0.026 0.007 1.698 0.13 15.40 증감율 -23.7% -90.2% -5.2% -69.6% 4.7% 비교예 2 0.034 0.076 1.790 0.43 14.70 실시예 4 0.021 0.001 0.981 0.12 16.56 증감율 -38.5% -98.4% -45.2% -71.3% 12.7% 아래는 운전패턴별 시험 결과를 분석한 것으로, 상기 실시예 3의 연료, 실시예 4의 연료 및 비교예 2의 연료에 대하여, CVS 75 MODE 주행 중 가속, 약 가감속, 감속, 공회전 운전조건에서 발생한 data를 분류한 후 분석한 것이다. 먼저 가속운전조건에서의 결과를 하기 표 7에 나타내었다. Comparative Example 2 0.034 0.076 1.790 0.43 14.70 Example 3 0.026 0.007 1.698 0.13 15.40 Change -23.7% -90.2% -5.2% -69.6% 4.7% Comparative Example 2 0.034 0.076 1.790 0.43 14.70 Example 4 0.021 0.001 0.981 0.12 16.56 Change -38.5 % -98.4% -45.2% -71.3% 12.7% The test results for each driving pattern are analyzed below. For the fuel of Example 3, the fuel of Example 4, and the fuel of Comparative Example 2, the CVS 75 MODE is running. The data generated under acceleration, acceleration and deceleration, deceleration, and idling operation are classified and analyzed. First, the results in the acceleration operation conditions are shown in Table 7 below.
【표 7】 Table 7
상기 표 7에 나타난 바와 같이, 실시예 4의 연료를 적용할 경우, 연료소모율과 연비는 약 10% 내외로 개선되는 효과가 나타났으며, 특히 고속 (60km/이상)과 저속 (30km/이하)에서 가속할 경우 13~15% 연비가 개선되는 것으로 나타났다. HC는 고속에서 감소하는 경향이 나타나며, NOx의 경우 속도와 관계없이 40% 정도 동일하게 감소하는 경향이 나타났다.
약한가감속운전조건에서의 결과를 하기 표 8.에 나타내었다. As shown in Table 7, when the fuel of Example 4 is applied, the fuel consumption rate and fuel economy are improved to about 10%, especially high speed (60km / more) and low speed (30km / less) When accelerated from 13 to 15% improved fuel economy. HC showed a tendency to decrease at high speed, and NOx showed a tendency to decrease about 40% regardless of speed. The results under the weak acceleration and deceleration operation conditions are shown in Table 8.
【표 8】 Table 8
상기 표 8에 나타난 바와 같이, 약한 가감속 운전조건에서, 연료소모율은 전체적으로 약 2~9% 개선되는 효과가 나타났으며 특히 저속 운전시 약 13% 정도 연료소모율이 개선되는 것으로 나타났고, HC는 속도와 관계없이 20~40%정도 감소하는 경향이 나타났다. . As shown in Table 8, under weak acceleration and deceleration operation conditions, the fuel consumption rate was improved by 2 to 9% as a whole. Particularly, the fuel consumption rate was improved by about 13% at low speed. Regardless of speed, it tended to decrease by 20-40%. .
공회전조건에서의 결과를 하기 표 9에 나타내었다. The results in the idling conditions are shown in Table 9 below.
【표 9】 Table 9
상기 표 9에 나타난 바와 같이, 엔진 공회전 시에는 약 11%정도 연료소모량이 개선되는 효과가 나타났다. As shown in Table 9, when the engine idle, the fuel consumption was improved by about 11%.
3. 수분에 의한상변화 실험 . 3. Phase change experiment by moisture.
상기 제조예 5에서 만들어진 연료첨가제에 대하여, 휘발유와 경유에서의 수분에 의한 상변화 실험시험을 실시한 결과를 하기 표 10에 나타내었다. 【표 10] For the fuel additives prepared in Preparation Example 5, the results of conducting a phase change test by water in gasoline and diesel are shown in Table 10 below. Table 10
표 10에 나타난 바와 같이, 샘플 1에서는 휘발유 20i 에 연료첨가제 첨가한 상태에서 물을 0.5m l 첨가하였올 때 20분 후에도 0.5ml의 침전물을 유지하고, 5일 후에도 침전물이 0.5ml로 상 변화 없이 소수성을 유지 하였으나, 샘플 2와 3에서는 휘발유 20ml에 연료첨가제 6ml , 9ml . 첨가하고 물 0.5ml를 첨가 20분 후에는 상 변화가 없었으나 5일 후에는 투명하게 되어 상 변화가 발생하였다. As shown in Table 10, in Sample 1, when 0.5 ml of water was added to the gasoline 20i with 0.5 ml of water, 0.5 ml of precipitate was maintained even after 20 minutes, and the precipitate was 0.5 ml after 5 days without hydrophobicity. In Samples 2 and 3, 20 ml of gasoline was added to 6 ml and 9 ml of fuel additive. There was no phase change 20 minutes after the addition of 0.5 ml of water, but after 5 days it became transparent and a phase change occurred.
샘플 4 , 5 , 6에서는 경유에 연료첨가제 첨가량을 각각 3ml , 6ml , 9ml를 넣고 각각 0.5ml의 물을 첨가하였을 때 침전물의 발생이 20분 후에는 1.0ml , 2.0ml , 3. Oml로 상변화가 발생하였으나, 5일 후에는 상 변화의 폭이 커져 3ml , 6ml , 8ml로 상변화가 많이 발생하였다. In samples 4, 5, and 6, 3 ml, 6 ml, and 9 ml of fuel additives were added to diesel, and 0.5 ml of water was added, respectively. After 5 days, the width of the phase change was increased, and a lot of phase changes occurred in 3ml, 6ml, and 8ml.
이를 통해, 바이오알코올이 휘발유에서는 5일동안 소수성을 유지하고 상변화가 발생하지 않는 경우 (샘플 1)가 있음을 확인하였고, 경유의
경우에는 바이오알코올은 경유에 희석되지 않으나, 연료첨가제는 경유에도 투명하게 희석이 되는 것을 확인 하였다.
Through this, it was confirmed that bioalcohol maintains hydrophobicity for 5 days in gasoline and there is no phase change (sample 1). In this case, the bioalcohol is not diluted in diesel, but the fuel additive was confirmed to be transparently diluted in diesel.
Claims
【청구항 1】 [Claim 1]
물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과, 중량평균 분자량이 50 g/mol 내지 250 g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150 t 온도에서 반응시키는 단계를 포함하는, 연료첨가제 제조방법 . 40 ° C of at least one aqueous reaction solution selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mol to 250 g / mol. Reacting at a temperature of from 150 to 150 ton, the fuel additive manufacturing method.
【청구항 2】 [Claim 2]
제 1항에 있어서, The method of claim 1,
상기 알킬렌글리콜 모노알킬에테르계 용매에 대한 수성 반웅액의 부피비율이 0. 1 내지 1.5인, 연료첨가제 제조방법. A volume ratio of the aqueous semicoagulant to the alkylene glycol monoalkyl ether solvent is 0.01 to 1.5, the fuel additive manufacturing method.
【청구항 3] [Claim 3]
제 1항에 있어서, The method of claim 1,
상기 극성 유기화합물 수용액은, The polar organic compound aqueous solution,
알코올 , 케톤, 에테르, 에스터, 아세탈, 과산화물, 및 에폭사이드로 이루어진 군에서 선택된 1종 이상의 극성 유기화합물 및 물을 포함하는, 연료첨가제 제조방법 . A method for producing a fuel additive, comprising water, at least one polar organic compound selected from the group consisting of alcohols, ketones, ethers, esters, acetals, peroxides, and epoxides.
【청구항 4】 [Claim 4]
제 1항에 있어서, The method of claim 1,
상기 알킬렌글리콜 모노알킬에테르계 용매는, The alkylene glycol monoalkyl ether solvent,
알킬렌글리콜 모노알킬에테르, 디알킬렌글리콜 모노알킬에테르, 트리알킬렌글리콜 모노알킬에테르 및 이의 에스터화물로 이루어진 군에서 선택된 1종 이상을 포함하는, 연료첨가제 제조방법 . · A method for producing a fuel additive, comprising at least one selected from the group consisting of alkylene glycol monoalkyl ethers, dialkylene glycol monoalkyl ethers, trialkylene glycol monoalkyl ethers and esters thereof. ·
【청구항 5】 [Claim 5]
제 1항에 있어서, The method of claim 1,
상기 분리된 상층액을 열처리하여 저비점 불순물을 제거하는 단계에서,
열처리는 6( C 내지 150 °C 온도에서 10초 내지 30시간동안 진행되는 것을 특징으로하는, 연료첨가제 제조방법 . In the step of removing the low boiling point impurities by heat-treating the separated supernatant, Heat treatment is characterized in that for 10 seconds to 30 hours at a temperature of 6 (C to 150 ° C, fuel additive manufacturing method.
【청구항 6】 [Claim 6]
제 1항에 있어세 Tax in Clause 1
상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액, 알킬렌글리콜 모노알킬에테르계 용매 및 무극성. 유기용매를 40 °C 내지 150 °C 온도조건에서 반응시키는 단계는, 산소, 이산화탄소, 및 일산화탄소로 이루어진 군에서 선택된 1종 이상의 기체 분위기에서 진행되는 것을 특징으로 하는, 연료첨가제 제조방법. At least one aqueous reaction solution selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, an alkylene glycol monoalkyl ether solvent, and nonpolar. The step of reacting the organic solvent at a temperature condition of 40 ° C to 150 ° C, characterized in that the progress in one or more gas atmosphere selected from the group consisting of oxygen, carbon dioxide, and carbon monoxide, fuel additive manufacturing method.
【청구항 7] [Claim 7]
제 1항에 있어서, The method of claim 1,
상기 물, 극성 유기화합물 수용액, 및 소듐염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반응액과, 중량평균 분자량이 50 g/mo l 내지 250 g/mo l인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150 °C 온도에서 반응시키는 단계 이후, At least one aqueous reaction solution selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous sodium salt solution, and an alkylene glycol monoalkyl ether solvent having a weight average molecular weight of 50 g / mo l to 250 g / mo l After the step of reacting at a temperature of 40 ° C to 150 ° C,
상기 반응 결과물을 열처리하여 저비점 불순물을 제거하는 단계;를 더 포함하는ᅳ 연료첨가제 제조방법. And heat-treating the reaction product to remove low-boiling impurities.
【청구항 8】 [Claim 8]
제 7항에 있어서, The method of claim 7, wherein
상기 반응 결과물을 열처리하여 저비점 불순물을 제거하는 단계 이후, 액상의 탄화수소화합물을 전체 연료첨가제 부피를 기준으로 0. 1부피 % 내지 30부피 ¾로 첨가하는 단계를 더 포함하는, 연료첨가제 제조방법 . After the step of heat-treating the reaction product to remove the low boiling impurities, further comprising the step of adding a liquid hydrocarbon compound from 0.1% to 30% by volume ¾ based on the total fuel additive volume, fuel additive manufacturing method.
【청구항 9】 [Claim 9]
제 1항에 있어서, The method of claim 1,
상기 물, 극성 유기화합물 수용액, 및 소듬염 수용액으로 이루어진 군에서 선택된 1종 이상의 수성 반웅액과, 중량평균 분자량이 50 g/mo l 내지 250
g/mol인 알킬렌글리콜 모노알킬에테르계 용매를 40°C 내지 150 °C 온도에서 반웅시키는 단계 이후, At least one aqueous reaction mixture selected from the group consisting of water, an aqueous solution of a polar organic compound, and an aqueous salt solution, and a weight average molecular weight of 50 g / mo l to 250 After the step of reacting the alkylene glycol monoalkyl ether solvent of g / mol at a temperature of 40 ° C to 150 ° C,
상기 반웅 결과물에 무극성 유기용매를 첨가하는 단계;를 더 포함하는, 연료첨가제 제조방법. Adding a non-polar organic solvent to the reaction product further comprising; fuel additive manufacturing method.
【청구항 10】 [Claim 10]
제 9항에 있어서, The method of claim 9,
상기 알킬렌글리콜 모노알킬에테르계 용매에 대한 무극성 유기용매의 부피비율이 0.5 내지 1인, 연료첨가제 제조방법. The volume ratio of the nonpolar organic solvent to the alkylene glycol monoalkyl ether solvent is 0.5 to 1, fuel additive manufacturing method.
【청구항 11】 [Claim 11]
제 1항의 연료첨가제 제조방법에 의해 얻어진 연료첨가제 및 탄화수소계 연료를 포함하는, 연료. 【청구항 12】 A fuel comprising a fuel additive and a hydrocarbon-based fuel obtained by the fuel additive manufacturing method of claim 1. [Claim 12]
제 11항에 있어서, The method of claim 11,
상기 연료첨가제는 전체 연료 부피를 기준으로 0.05 부피 % 내지 50 부피 %로 포함되는 연료. 【청구항 13】 The fuel additive comprises 0.05% by volume to 50% by volume based on the total fuel volume. [Claim 13]
제 11항에 있어서, The method of claim 11,
상기 탄화수소계 연료는 석탄액화연료, 오리멀전, 휘발유, 경유, 등유, 중유, 항공가솔린, 및 제트연료로 이루어진 군에서 선택된 1종 이상을 포함하는, 연료.
The hydrocarbon fuel includes at least one selected from the group consisting of liquefied coal fuel, oral emulsion, gasoline, diesel, kerosene, heavy oil, aviation gasoline, and jet fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880029378.0A CN110730815B (en) | 2017-04-10 | 2018-03-26 | Method for preparing fuel additive and fuel using same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0046062 | 2017-04-10 | ||
KR20170046062 | 2017-04-10 | ||
KR10-2018-0033910 | 2018-03-23 | ||
KR1020180033910A KR101954918B1 (en) | 2017-04-10 | 2018-03-23 | Manufacturing method of fuel additive and fuel using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190533A1 true WO2018190533A1 (en) | 2018-10-18 |
Family
ID=63792574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/003498 WO2018190533A1 (en) | 2017-04-10 | 2018-03-26 | Method for preparing fuel additive and fuel using same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110730815B (en) |
WO (1) | WO2018190533A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113293040A (en) * | 2021-07-07 | 2021-08-24 | 中改低碳科技(上海)有限公司 | Plateau field tank diesel power propellant and preparation method thereof |
CN113293039A (en) * | 2021-07-07 | 2021-08-24 | 中改低碳科技(上海)有限公司 | Anti-haze treatment agent for reducing soot emission of internal combustion engine and preparation method thereof |
KR102496061B1 (en) * | 2022-08-08 | 2023-02-06 | 오존층살리고 주식회사 | Fuel additive composition for smoke reduction of internal combustion engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090013115A (en) * | 2007-07-30 | 2009-02-04 | 이피캠텍 주식회사 | Fuel additive composition |
JP4287911B2 (en) * | 1997-02-07 | 2009-07-01 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Diesel additives to improve cetane number, lubricity, and stability |
KR20100097938A (en) * | 2009-02-27 | 2010-09-06 | 지에스칼텍스 주식회사 | Method of manufacturing glycerol di-t-butyl ether |
KR20120064310A (en) * | 2010-12-09 | 2012-06-19 | 한정상 | Fuel additives and method for manufacturing the same |
KR101231638B1 (en) * | 2012-07-09 | 2013-02-08 | 이남영 | Composition of fuel-additives |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4749382A (en) * | 1981-10-29 | 1988-06-07 | Nalco Chemical Company | Stable oil dispersible metal salt solutions |
US5380346A (en) * | 1992-06-12 | 1995-01-10 | Fritz; James E. | Fortified hydrocarbon and process for making and using the same |
AU2007243536A1 (en) * | 2006-04-27 | 2007-11-08 | New Generation Biofuels, Inc. | Biofuel composition and method of producing a biofuel |
CN102559334B (en) * | 2011-12-14 | 2013-10-23 | 山西华顿实业有限公司 | Corrosion inhibitor for alcohol ether fuel and preparation method thereof |
CN105623754B (en) * | 2016-01-13 | 2018-05-18 | 山东星火知识产权服务有限公司 | A kind of gasoline cleanliness modifier and preparation method thereof |
CN106381179B (en) * | 2016-11-08 | 2018-04-24 | 马鞍山纽泽科技服务有限公司 | A kind of gasoline additive and preparation method thereof |
-
2018
- 2018-03-26 WO PCT/KR2018/003498 patent/WO2018190533A1/en active Application Filing
- 2018-03-26 CN CN201880029378.0A patent/CN110730815B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4287911B2 (en) * | 1997-02-07 | 2009-07-01 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Diesel additives to improve cetane number, lubricity, and stability |
KR20090013115A (en) * | 2007-07-30 | 2009-02-04 | 이피캠텍 주식회사 | Fuel additive composition |
KR20100097938A (en) * | 2009-02-27 | 2010-09-06 | 지에스칼텍스 주식회사 | Method of manufacturing glycerol di-t-butyl ether |
KR20120064310A (en) * | 2010-12-09 | 2012-06-19 | 한정상 | Fuel additives and method for manufacturing the same |
KR101231638B1 (en) * | 2012-07-09 | 2013-02-08 | 이남영 | Composition of fuel-additives |
Also Published As
Publication number | Publication date |
---|---|
CN110730815B (en) | 2022-01-18 |
CN110730815A (en) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018190533A1 (en) | Method for preparing fuel additive and fuel using same | |
KR101954918B1 (en) | Manufacturing method of fuel additive and fuel using the same | |
Cao et al. | Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core–shell microspheres | |
US7837747B2 (en) | Single phase hydrous hydrocarbon-based fuel, methods for producing the same and compositions for use in such method | |
CA2662765A1 (en) | Cerium dioxide nanoparticle-containing fuel additive | |
US8057557B2 (en) | Fuel additive | |
JP2008024822A (en) | Additive for alcohol-containing fuel oil, fuel oil containing the additive for alcohol-containing fuel oil, and method for producing fuel oil containing the additive for alcohol-containing fuel oil | |
Tsai et al. | Effects of blending ethanol with gasoline on the performance of motorcycle catalysts and airborne pollutant emissions | |
Kim et al. | Life cycle assessment of LPG and diesel vehicles in Korea | |
CN101921636A (en) | Gasoline additive for purifying tail gas | |
CN101139534A (en) | Fuel oil cleaning agent and preparation method thereof | |
KR101287026B1 (en) | Fuel-additive composition and fuel composition comprising the same | |
Udo et al. | Concentrations of Monocyclic Aromatics Hydrocarbons: Benzene, toluene, ethylbenzene, and xylene (BETX) in gasoline samples distributed in Uyo, Niger Delta, Nigeria | |
Wen et al. | Effects of different gasoline additives on fuel consumption and emissions in a vehicle equipped with the GDI engine | |
Liebuvienė et al. | Ensuring ecology of cargo transportation by road transport | |
JP3940885B2 (en) | Hydrocarbon fuel composition | |
CN108753383A (en) | A kind of application of fuel assistants and preparation method thereof and the fuel assistants | |
BR112019006319A2 (en) | method to improve the oxidative stability of a lubricant composition, and, use of a gasoline composition. | |
US20090008608A1 (en) | Sodium/silicon "treated" water | |
CN111826239A (en) | Formula and preparation method of combustion chamber cleaning and maintenance agent | |
JP2003277775A (en) | Process for producing low-pollution fuel | |
WO2001007540A2 (en) | Hydrocarbon fuel composition containing an ester | |
CN101586048A (en) | A kind of gasoline cleaning agent | |
WO1999021942A1 (en) | Combustion catalyst and catalyzed fuels with enhanced combustion efficiency and mileage | |
Dhanapal et al. | An experimental investigation on ethanol blends and 10% ethanol+ isobutanol-gasoline mixtures operated single cylinder four stroke SI bajaj engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18783844 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18783844 Country of ref document: EP Kind code of ref document: A1 |