+

WO2018190347A1 - Heat curable resin composition, cured film, substrate with cured film, electronic component, and inkjet ink - Google Patents

Heat curable resin composition, cured film, substrate with cured film, electronic component, and inkjet ink Download PDF

Info

Publication number
WO2018190347A1
WO2018190347A1 PCT/JP2018/015135 JP2018015135W WO2018190347A1 WO 2018190347 A1 WO2018190347 A1 WO 2018190347A1 JP 2018015135 W JP2018015135 W JP 2018015135W WO 2018190347 A1 WO2018190347 A1 WO 2018190347A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
cured film
epoxy
weight
compound
Prior art date
Application number
PCT/JP2018/015135
Other languages
French (fr)
Japanese (ja)
Inventor
彩子 菊地
智嗣 古田
信太 諸越
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020237023498A priority Critical patent/KR20230110377A/en
Priority to JP2019512533A priority patent/JP7092117B2/en
Priority to CN201880023961.0A priority patent/CN110494469B/en
Priority to KR1020197027441A priority patent/KR102716106B1/en
Publication of WO2018190347A1 publication Critical patent/WO2018190347A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a thermosetting resin composition, a cured film, a substrate with a cured film, an electronic component, and an inkjet ink. More specifically, a thermosetting resin composition containing a specific compound, a cured film formed from the composition, a substrate with a cured film having the cured film, and an electronic component having the cured film or the substrate with a cured film And to the composition.
  • a touch panel type input device in which a liquid crystal display device or an organic electroluminescence device and a position detection device are combined has become widespread.
  • a touch panel type input device is an input device that detects a contact position when a finger or the tip of a pen is brought into contact with a display screen.
  • detection methods for touch panel type input devices such as a resistance film method and a capacitance method.
  • the capacitance method uses a device having a structure in which X and Y electrodes are arranged in a matrix on a glass substrate, and detects a change in capacitance caused by contact of a fingertip or the like as a change in current. It is a method.
  • a jumper is formed of ITO (Indium Tin Oxide) or the like at the overlapping portion of the X and Y electrodes, and the X and Y electrodes are not in contact with each other.
  • a transparent insulating film is provided.
  • the transparent insulating film is required to have high hardness, high transparency, adhesion to glass or ITO, etc., resistance to ethanol and isopropyl alcohol (IPA) used in the substrate cleaning process, low water absorption from the viewpoint of process Sex is required.
  • the capacitive touch panel may be provided with an insulating overcoat to flatten the X and Y electrodes, for example.
  • this overcoat requires prevention of degassing, high hardness, high transparency, adhesion to glass and ITO, resistance to ethanol and isopropyl alcohol (IPA) used in the substrate cleaning process, and low water absorption. Is done.
  • Patent Literature 1 discloses a thermosetting resin composition containing a polyester amide acid having a specific structure, an epoxy resin, an epoxy curing agent, and the like.
  • Patent Document 2 discloses a thermosetting resin composition containing a polyester amide acid having a specific structure, an epoxy compound having a fluorene skeleton, and a curing agent.
  • Patent Document 3 discloses a thermosetting resin composition containing a polyimide precursor having a specific structural unit and an epoxy compound bonded to a fluorene structure with a biphenyl ether chain.
  • Patent Documents 1 to 3 do not discuss the low temperature curability of the thermosetting resin composition, the physical properties of the cured film obtained by low temperature curing, the chemical resistance, and the like.
  • Patent Document 2 describes that a thermosetting resin composition is heated at 120 ° C. to obtain a cured film, and obtained by curing the thermosetting resin composition at a low temperature of 120 ° C.
  • the cured film has poor chemical resistance to ethanol, IPA and the like, has a high water absorption rate, and is required to be improved for use as a transparent insulating film.
  • thermosetting resin composition when the property of forming a cured film having good properties by low-temperature firing property, that is, low-temperature firing is enhanced, the storage stability before curing is lowered. There is a tendency.
  • a cured product with properties such as chemical resistance that can be used for both the transparent insulating film and the overcoat is formed by low-temperature firing in order to simplify the line and improve the yield.
  • thermosetting resin composition has not been realized yet.
  • An object of the present invention is to provide a thermosetting resin composition that can be cured at a low temperature of 120 ° C. or lower and has good storage stability before low-temperature curing, and has both high low-temperature curability and high storage stability. In addition, it has high hardness, high transparency, adhesion to glass and ITO, low water absorption, and other cured films with good chemical resistance to ethanol and IPA used in the substrate cleaning process. It is in providing the thermosetting resin composition which can form, and its use.
  • the present inventors have intensively studied to solve the above problems. As a result, by incorporating a thiol compound in the thermosetting resin composition, low temperature curing is improved while maintaining high storage stability before curing, and a cured film having good chemical resistance and the like can be formed. I found it.
  • the present invention is based on the findings and has the following configuration.
  • thermosetting resin composition containing a polyester amide acid (A), an epoxy compound (B) having a fluorene skeleton, and a thiol compound (E) having a plurality of thiol groups in the molecule.
  • the thiol compound (E) is pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryl) Oxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (3-mercaptopropio) ), Dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and the following formula (8 From the group consisting of glycoluril derivatives A barre was one or more compounds, thermosetting resin composition according to [1].
  • thermosetting resin composition according to [1] or [2], wherein the content of the thiol compound (E) is 0.1 to 35 parts by weight with respect to 100 parts by weight of all the epoxy compounds.
  • thermosetting resin composition Any one of [1] to [4], wherein the content of the epoxy compound (B) having the fluorene skeleton is 10 to 400 parts by weight with respect to 100 parts by weight of the polyester amide acid (A).
  • the thermosetting resin composition according to item.
  • thermosetting resin composition according to any one of [1] to [5], wherein the polyester amic acid (A) has a weight average molecular weight of 2,000 to 20,000.
  • thermosetting resin composition obtained from the thermosetting resin composition according to any one of [1] to [9].
  • the electronic component according to [12] which is a touch panel type input device.
  • An inkjet ink comprising the thermosetting resin composition according to any one of [1] to [9].
  • thermosetting resin composition of the present invention can achieve both low-temperature curing at 120 ° C. or lower and storage stability before curing by containing the thiol compound (E). Moreover, the cured film with the balance which has a low water absorption and also has tolerance to ethanol and IPA can be formed. Furthermore, since a cured film excellent in heat resistance and mechanical properties can be formed, the thermosetting resin composition of the present invention is very practical, for example, a transparent insulating film for touch panels and The overcoat can be produced with high productivity and can be suitably used for these applications.
  • thermosetting resin composition of the present invention (hereinafter also referred to as “composition”), a method for preparing the composition, a method for forming a cured film, a substrate with a cured film, and an electronic component will be described in detail.
  • Thermosetting resin composition contains a polyester amide acid (A), an epoxy compound (B) having a fluorene skeleton, and a thiol compound (E).
  • the composition of the present invention may contain additives in addition to the above components, and the additives may be colored or colorless.
  • the epoxy compound (B) having an fluorene skeleton and the epoxy compound (B) have the same meaning.
  • low temperature curing at 120 ° C. or lower is possible, and the storage stability of the composition is compatible, high hardness, high transparency, adhesion to glass and ITO, low water absorption
  • a cured film having excellent balance in resistance to ethanol and IPA used in the substrate cleaning step can be obtained. For this reason, it is possible to produce the transparent insulating film and overcoat for touch panels with high productivity, and it can be used suitably for these uses.
  • the composition of this invention becomes the thing excellent in the said effect by containing a polyester amide acid (A), an epoxy compound (B), and a thiol compound (E).
  • A polyester amide acid
  • B epoxy compound
  • E thiol compound
  • a cured film excellent in resistance to low water absorption, ethanol and IPA which can be fired at a low temperature of 120 ° C. or lower and also has the storage stability of the composition, is obtained.
  • Conventional compositions composed of polyester amide acid, and compositions composed of an epoxy compound having a fluorene skeleton and an epoxy curing agent can be baked at a low temperature of 120 ° C. or less and have both storage stability, low water absorption, ethanol and A cured film excellent in IPA resistance was not obtained.
  • the composition of the present invention is a composition having an effect which cannot be expected from the conventional composition, and is a composition containing polyester amic acid (A) and an epoxy compound (B) having a fluorene skeleton.
  • polyester amide acid (A) The polyester amide acid (A) used in the present invention is not particularly limited, but is preferably a compound having an ester bond, an amide bond, and a carboxyl group, and specifically represented by formulas (3) and (4). It is more preferable that the compound has a structural unit.
  • a polyester amic acid (A) in combination with a specific epoxy compound (B) and a thiol compound (E), it has excellent resistance to a substrate cleaning solution such as ethanol and IPA, and also has high hardness. Thus, a composition capable of forming a cured film having high transparency and excellent adhesion to glass and ITO can be obtained.
  • Polyester amide acid (A) may use only 1 type, and may mix and use 2 or more types.
  • R 1 is independently a tetravalent organic group having 1 to 30 carbon atoms
  • R 2 is a divalent organic group having 1 to 40 carbon atoms
  • R 3 is a divalent organic group having 1 to 20 carbon atoms. Group.
  • R 1 is independently a tetravalent organic group having 2 to 25 carbon atoms from the viewpoint that a compound having good compatibility with other components in the composition is obtained and a highly transparent cured film is obtained. It is preferably a tetravalent organic group having 2 to 20 carbon atoms, and more preferably a group represented by the formula (5).
  • R 4 represents —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 —, —R 5 —, or —COO—R 5 —OCO— (R 5 represents Independently, it is an alkyl group having 1 to 4 carbon atoms.)
  • R 2 has 2 to 2 carbon atoms.
  • a divalent organic group of 35 is preferable, a divalent organic group having 2 to 30 carbon atoms is more preferable, and a group represented by the formula (6) is more preferable.
  • R 6 represents —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 —, —R 7 — or —O—ph—R 8 —ph—O—).
  • a ph is a benzene ring
  • R 8 is, -O -, - CO -, - SO 2 -, - C (CF 3) 2 - or -R 7 -.
  • R 7 is Independently, it is an alkyl group having 1 to 4 carbon atoms.
  • R 3 is preferably a divalent organic group having 2 to 15 carbon atoms, a group represented by the formula (7), -R 10 -NR 11 -R 12 - (R 10 and R 12 are independently an alkylene having 1 to 8 carbon atoms, R 11 is hydrogen or at least one hydrogen carbon atoms which may be have 1-8 substituted with a hydroxyl
  • R 11 is hydrogen or at least one hydrogen carbon atoms which may be have 1-8 substituted with a hydroxyl
  • An alkylene group having 2 to 15 carbon atoms, or at least one hydrogen atom of alkylene having 2 to 15 carbon atoms may be substituted with hydroxyl, and may have —O—. More preferably, it is more preferably a divalent alkylene having 2 to 6 carbon atoms.
  • R 9 is —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 —, —R 7 —, or —ph—R 8 —ph— (ph Is a benzene ring, and R 8 is —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 — or —R 7 —.
  • R 7 is independently carbon (It is an alkyl group of the number 1 to 4.)
  • the polyester amic acid (A) is a compound obtained by reacting a component containing a tetracarboxylic dianhydride (a1), a component containing a diamine (a2) and a component containing a polyvalent hydroxy compound (a3).
  • a component containing tetracarboxylic dianhydride (a1), a component containing diamine (a2), a component containing polyvalent hydroxy compound (a3) and a component containing monohydric alcohol (a4) It is also preferable that it is a compound obtained.
  • R 1 is independently a tetracarboxylic dianhydride residue
  • R 2 is a diamine residue
  • R 3 is a polyvalent hydroxy compound residue.
  • a reaction solvent (a5) or the like may be used.
  • the component containing the tetracarboxylic dianhydride (a1) only needs to contain the tetracarboxylic dianhydride (a1), and may contain other compounds other than this compound. The same applies to the other components described above.
  • Each of (a1) to (a5) and the like may be used alone or in combination of two or more.
  • the polyester amide acid (A) When the polyester amide acid (A) has an acid anhydride group at the molecular end, it is preferably a compound obtained by reacting a monohydric alcohol (a4) if necessary.
  • the polyester amide acid (A) obtained by using the monohydric alcohol (a4) tends to be a compound having excellent compatibility with the epoxy compound (B) and the thiol compound (E), and also has excellent coating properties. Tends to be obtained.
  • Tetracarboxylic dianhydride (a1) The tetracarboxylic dianhydride (a1) is not particularly limited, but specific examples include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetra Carboxylic dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,2 ′, 3 3′-diphenylsulfonetetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylethertetracarboxylic dianhydride, 2 , 2 ′, 3,3′-diphenyl ether tetracarboxy
  • 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl ether is used because a compound having good transparency can be obtained.
  • Tetracarboxylic dianhydride, 2,2- [bis (3,4-dicarboxyphenyl)] hexafluoropropane dianhydride and ethylene glycol bis (anhydrotrimellitate) (trade name TMEG-100, Shin Nippon Rika (3)
  • 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride are particularly preferable.
  • the diamine (a2) is not particularly limited, and specific examples thereof include 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, bis [4- (4-amino Phenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [3- (4-aminophenoxy) phenyl] sulfone, [4- (4-aminophenoxy) phenyl] [3- (4 -Aminophenoxy) phenyl] sulfone, [4- (3-aminophenoxy) phenyl] [3- (4-aminophenoxy) phenyl] sulfone and 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoro Propane is
  • 3,3′-diaminodiphenylsulfone and bis [4- (3-aminophenoxy) phenyl] sulfone are preferable, and 3,3′-diaminodiphenylsulfone is preferable from the viewpoint of obtaining a compound having good transparency. Is particularly preferred.
  • Polyvalent hydroxy compound (a3) is not particularly limited as long as it is a compound having two or more hydroxy groups. Specific examples thereof include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and polyethylene glycol having a molecular weight of 1,000 or less.
  • ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol and 1,8-octanediol are preferable, and 1,4- Butanediol, 1,5-pentanediol and 1,6-hexanediol are particularly preferable from the viewpoint of good solubility in the reaction solvent (a5).
  • the monohydric alcohol (a4) is not particularly limited as long as it is a compound having one hydroxy group. Specific examples include methanol, ethanol, 1-propanol, isopropyl alcohol, allyl alcohol, benzyl alcohol, hydroxyethyl methacrylate, propylene glycol.
  • a monovalent alcohol (a4 ) Is more preferably benzyl alcohol.
  • reaction solvent (a5) is not particularly limited, but specific examples include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether. Acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, N-methyl-2-pyrrolidone and N, N-dimethylacetamide.
  • reaction solvent (a5) examples include these solvents, but if these solvents are in a proportion of 30% by weight or less with respect to the total amount of the solvent used in the reaction, other than the solvent A mixed solvent obtained by mixing other solvents can also be used.
  • the method for synthesizing the polyester amic acid (A) is not particularly limited, but the tetracarboxylic dianhydride (a1), the diamine (a2), the polyvalent hydroxy compound (a3), and, if necessary, the monohydric alcohol (a4).
  • a method of reacting as an essential component is preferred, and this reaction is more preferably carried out in the reaction solvent (a5).
  • the order of adding each component during this reaction is not particularly limited. That is, the tetracarboxylic dianhydride (a1), the diamine (a2) and the polyvalent hydroxy compound (a3) may be simultaneously added to the reaction solvent (a5) to cause the reaction, or the diamine (a2) and the polyvalent hydroxy compound may be reacted. After (a3) is dissolved in the reaction solvent (a5), the reaction may be carried out by adding tetracarboxylic dianhydride (a1), or tetracarboxylic dianhydride (a1) and diamine ( After reacting a2) in advance, the polyhydroxy compound (a3) may be added to the reaction product for reaction, and either method can be used. The monohydric alcohol (a4) may be added at any point in the reaction.
  • a synthetic reaction may be performed by adding a compound having 3 or more acid anhydride groups in order to increase the weight average molecular weight of the obtained polyesteramic acid (A).
  • Specific examples of the compound having 3 or more acid anhydride groups include a styrene-maleic anhydride copolymer.
  • the polyester amide acid synthesized in this way contains the structural units represented by the above formulas (3) and (4), and the ends thereof are derived from the raw materials tetracarboxylic dianhydride, diamine or polyhydroxy compound, respectively. It is an acid anhydride group, an amino group or a hydroxy group, or a group derived from a component other than these compounds (for example, a monohydric alcohol residue).
  • the relationship of the formula (1) is preferably 0.7 ⁇ Z / Y ⁇ 7.0, and more preferably 1.3 ⁇ Z / Y ⁇ 7.0.
  • the relationship of the formula (2) is preferably 0.3 ⁇ (Y + Z) /X ⁇ 1.2, and more preferably 0.4 ⁇ (Y + Z) /X ⁇ 1.0.
  • the amount of the monohydric alcohol (a4) used in the reaction is Z ′ mol
  • the amount used is not particularly limited, but is preferably 0.1 ⁇ Z ′ / X ⁇ 5.0, more preferably Is 0.2 ⁇ Z ′ / X ⁇ 4.0.
  • reaction solvent (a5) When the reaction solvent (a5) is used in an amount of 100 parts by weight or more based on 100 parts by weight of the total of the tetracarboxylic dianhydride (a1), the diamine (a2) and the polyvalent hydroxy compound (a3), the reaction proceeds smoothly. Therefore, it is preferable.
  • the reaction is preferably performed at 40 to 200 ° C. for 0.2 to 20 hours.
  • polyester amide acid (A) The weight average molecular weight measured by gel permeation chromatography (GPC) of the polyester amic acid (A) is soluble in the solvent (F), and particularly in combination with the epoxy compound (B) and the thiol compound (E). From the viewpoint of obtaining a cured film having a balance of transparency, adhesion to glass and ITO, and chemical resistance, it is preferably 2,000 to 30,000, preferably 3,000 to 30,000. It is more preferable. Specifically, this weight average molecular weight can be measured by the method described in Examples described later.
  • the viscosity of the polyester amide acid (A) is preferably 5 to 200 mPa ⁇ s at 25 ° C., more preferably from the viewpoint of handling the polyester amide acid (A) to be obtained and adjusting the weight average molecular weight to the above-mentioned preferable range. Is 10 to 150 mPa ⁇ s, more preferably 15 to 100 mPa ⁇ s.
  • the content of the polyester amic acid (A) is 100 in terms of the solid content of the composition of the present invention (residue excluding the solvent) from the viewpoint that a cured film having high transparency and excellent chemical resistance is obtained. It is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, and further preferably 5 to 50% by weight with respect to the weight%.
  • Epoxy compound having a fluorene skeleton (B)
  • the epoxy compound (B) used in the present invention is not particularly limited as long as it is an epoxy compound having a fluorene skeleton.
  • Such an epoxy compound (B) has a high decomposition temperature and excellent heat stability. For this reason, in addition to the said effects, such as high transparency, the cured film which has these effects together can be obtained.
  • the epoxy compound (B) may be used alone or in combination of two or more.
  • the epoxy equivalent of the epoxy compound (B) is preferably 200 to 550 g / eq, more preferably 220 to 490 g / eq, still more preferably 240 to 480 g from the viewpoint that a cured film having excellent chemical resistance can be obtained. / Eq.
  • the epoxy equivalent of the epoxy compound (B) can be measured, for example, by the method described in JIS K7236.
  • the refractive index of the epoxy compound (B) is preferably 1.50 to 1.75, more preferably 1.52 to 1.73, from the viewpoint of obtaining a cured film excellent in high transparency. More preferably, it is 1.54 to 1.71.
  • the refractive index of the epoxy compound (B) can be measured by, for example, the method described in JIS K7105 or JIS K7142.
  • the epoxy compound (B) may be obtained by synthesis or may be a commercially available product.
  • Examples of commercially available epoxy compounds (B) include OGSOL PG-100 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.64, epoxy equivalent 260 g / eq), OGSOL CG-500 (trade name, Osaka Gas Chemical Co., Ltd., refractive index 1.70, epoxy equivalent 310 g / eq), OGSOL EG-200 (trade name, Osaka Gas Chemical Co., Ltd., refractive index 1.62, epoxy equivalent 290 g / eq), OGSOL EG-250 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.58, epoxy equivalent 395 g / eq), OGSOL EG-280 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.56) Epoxy equivalent 460 g / eq), OGSOL CG-400 (trade
  • the content of the epoxy compound (B) is such that a cured film having excellent balance of heat resistance, chemical resistance and adhesion to glass and ITO can be obtained, and the solid content of the composition of the present invention (from the composition) Residue excluding solvent) is preferably 1 to 90 parts by weight, more preferably 3 to 80 parts by weight, still more preferably 5 to 70 parts by weight, and 100 parts by weight of polyester amic acid (A) with respect to 100 parts by weight. On the other hand, it is preferably 10 to 400 parts by weight, more preferably 20 to 350 parts by weight, still more preferably 30 to 300 parts by weight.
  • the thiol compound (E) used in the present invention is not particularly limited as long as it has a plurality of thiol groups in the molecule, but preferably includes an oxygen atom in addition to the thiol group.
  • a cured film can be formed at a low temperature of 120 ° C. or less and the storage stability of the composition And both.
  • the composition which can form the cured film provided with the balance which has low water absorption and also has tolerance to ethanol and IPA is obtained.
  • thiol compound (E) pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (3-mercaptopropionate), Dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and glycol of the following chemical formula (8) Examples include uril derivatives.
  • pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3 , 5-triazine-2,4,6 (1H, 3H, 5H) -trione and trimethylolpropane tris (3-mercaptobutyrate) are preferred because a composition having good storage stability can be obtained.
  • Pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione, trimethylolpropane tris (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -Ethyl] -isocyanurate, trimethylolpropane tris (3-mercaptopropionate), and a glycoluril derivative represented by the formula (8) are preferable because a cured film having excellent heat resistance can be obtained.
  • the thiol compound (E) may be obtained by synthesis or may be a commercially available product.
  • Examples of commercially available thiol compounds (E) include “Karenz MT PE1”, “Karenz MT BD1”, “Karenz MT NR1”, “TPMB” (trade name, manufactured by Showa Denko KK), “DPMP”. , “PEMP”, “TEMPIC”, “TMMP” (trade name, manufactured by SC Organic Chemical Co., Ltd.) and “TS-G” (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.).
  • the content of the thiol compound (E) is as follows: low-temperature curability at 120 ° C. or lower, storage stability of the composition, resistance to ethanol and IPA, and a cured film excellent in low water absorption can be obtained.
  • the content of the thiol compound (E) is preferably 0.1 to 35 parts by weight, more preferably 0.2 to 30 parts by weight, with respect to 100 parts by weight of the total epoxy compounds contained in the solid content of the composition. More preferably, it is 0.3 to 25 parts by weight.
  • the content of the thiol compound (E) is preferably 1 to 350 parts by weight, more preferably 2 to 320 parts per 100 parts by weight of the epoxy curing agent (C). Part by weight, more preferably 3 to 300 parts by weight.
  • the composition of the present invention may contain additives other than the polyester amic acid (A), the epoxy compound (B) and the thiol compound (E) depending on the intended properties.
  • the additive include an epoxy curing agent (C), a solvent (F), an epoxy compound (e), a polyimide resin, a polymerizable monomer, an antistatic agent, a coupling agent (f), a pH adjuster, and a rust inhibitor.
  • you may contain a pigment or dye according to a desired use. Only one type of additive may be used, or two or more types may be mixed and used.
  • Epoxy curing agent (C) The composition of the present invention may contain an epoxy curing agent (C) that accelerates the epoxy curing reaction by reacting itself. By adding the epoxy curing agent (C), a cured film having excellent heat resistance and chemical resistance can be obtained.
  • the thiol compound (E) is not included in the epoxy curing agent (C).
  • the epoxy curing agent (C) is a compound different from the polyester amide acid (A). Specific examples include an acid anhydride curing agent, a polyamine curing agent, a polyphenol curing agent, and a catalyst curing agent. However, acid anhydride curing agents are preferred from the standpoint of color resistance and heat resistance.
  • As the epoxy curing agent (C) only one kind may be used, or two or more kinds may be mixed and used.
  • the acid anhydride curing agent include, for example, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phthalic anhydride, trimellitic anhydride (active hydrogen content equivalent of 64 0.0), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (active hydrogen content equivalent 77.5), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (active hydrogen content) Equivalent 111.0), 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (active hydrogen equivalent 75.0) And aromatic polycarboxylic anhydrides such as styrene-maleic anhydride copolymers.
  • aromatic polycarboxylic anhydrides such as styrene-
  • trimellitic anhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 4,4 ′, and the like are obtained because a composition having excellent solubility in the solvent (F) can be obtained.
  • -(Hexafluoroisopropylidene) diphthalic anhydride is particularly preferred.
  • 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride is particularly preferable from the viewpoint of obtaining a cured film having a high glass transition temperature.
  • carboxylic acid curing agent examples include maleic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, and dimer acid.
  • the dimer acid can be obtained, for example, by polymerizing an unsaturated fatty acid using a Lewis acid and a Bronsted acid as a catalyst. Dimer acid can be produced by a known method (eg, JP-A-9-12712).
  • unsaturated fatty acids include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, linoleic acid, pinolenic acid, eleostearic acid, Mead acid, dihomo- ⁇ -linolenic acid, eicosatrienoic acid, stearidonic acid, arachidonic acid, eicosatetraenoic acid, adrenic acid, bosepentaenoic acid, ozbond acid, succinic acid, tetracosapentanoic acid, docosahexaenoic acid, nisic acid Is mentioned.
  • the carbon number of the unsaturated fatty acid is usually 4 to 24, preferably 14 to 20.
  • the resulting mixture when dimer acid is produced using linoleic acid, the resulting mixture generally contains dimer acid having 36 carbon atoms as a main component, but monomer acid having 18 carbon atoms and trimer acid having 54 carbon atoms are also minor components.
  • dimer acid having 36 carbon atoms as a main component
  • monomer acid having 18 carbon atoms and trimer acid having 54 carbon atoms are also minor components.
  • trimer acid having 54 carbon atoms are also minor components.
  • a small amount is included, and various structures derived from raw materials are included.
  • the content of the epoxy curing agent (C) is the composition of the present invention from the viewpoints of having good chemical resistance to chemicals such as ethanol and IPA, good adhesion to glass and ITO, and obtaining a cured film with high surface hardness. It is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, still more preferably 0 to 30 parts by weight based on 100 parts by weight of the solid content of the product (residue obtained by removing the solvent from the composition) The amount is preferably 0 to 300 parts by weight, more preferably 0 to 200 parts by weight, and still more preferably 0 to 100 parts by weight with respect to 100 parts by weight of the total epoxy compound.
  • the ratio of the total epoxy compound to be used and the epoxy curing agent (C) is such that a composition having excellent solubility in the solvent (F) is obtained, and a cured film having high transparency, excellent heat resistance, chemical resistance, and low water absorption.
  • the amount of groups capable of reacting with epoxy groups such as acid anhydride groups and carboxyl groups in the epoxy curing agent is 0 to 1.5 times the amount of epoxy groups in all epoxy compounds used. It is preferably an equivalent, more preferably 0 to 1.2 times equivalent, and more preferably 0 to 0.8 times equivalent, since the chemical resistance of the resulting cured film is further improved.
  • solvent (F) The composition of the present invention can be obtained, for example, by dissolving the polyester amide acid (A), the epoxy compound (B), and the thiol compound (E) in the solvent (F). Therefore, the solvent (F) is preferably a solvent that can dissolve the polyester amide acid (A), the epoxy compound (B), and the thiol compound (E). Moreover, even if it is a solvent which does not dissolve polyester amide acid (A), epoxy compound (B) and thiol compound (E) alone, it can be used as solvent (F) by mixing with other solvents. There is a case. Only 1 type may be used for a solvent (F), and 2 or more types may be mixed and used for it.
  • Examples of the solvent (F) include ethyl lactate, ethanol, ethylene glycol, propylene glycol, glycerin, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether.
  • the composition of the present invention includes ethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, Diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ⁇ -butyrolactone, diethylene glycol monoethyl ether (ECa), diethylene glycol monobutyl ether (DB), methyl 2-hydroxyisobutyrate (HBM) ), Tetraethylene glycol dimethyl ether (MTEM), dimethyl sulfoxide and Idemitsu Kosan Co., Ltd. At least one member selected from the group consisting of manufacturing Ekuamido (trade name), it is preferably contained as the solvent (F).
  • Epoxy compound (e) In the present invention, a compound having at least one oxirane ring or oxetane ring is referred to as an epoxy compound.
  • the epoxy compound (e) refers to an epoxy compound other than the epoxy compound (B).
  • the epoxy compound (e) a compound having two or more oxirane rings is preferably used, and the epoxy compound (e) may be used alone or in combination of two or more.
  • Examples of the epoxy compound (e) include bisphenol A type epoxy compounds, glycidyl ester type epoxy compounds, alicyclic epoxy compounds, silica fine particle-containing epoxy compounds, monomers having an oxirane ring, monomers having an oxirane ring, and others. And a copolymer with the above monomer.
  • Examples of the monomer having an oxirane ring include glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, methyl glycidyl (meth) acrylate, and a compound represented by the following formula (9).
  • (meth) acrylate refers to acrylate and / or methacrylate
  • (meth) acryl refers to acryl and / or methacryl.
  • R is independently a group selected from alkyl having 1 to 45 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl; in alkyl having 1 to 45 carbons, at least One hydrogen may be replaced by fluorine, and any non-adjacent —CH 2 — may be replaced by —O— or —CH ⁇ CH—; the alkyl in arylalkyl has 1 to 10 carbon atoms Any non-adjacent —CH 2 — of the alkyl may be replaced by —O—; R 1 and R 2 are each independently selected from alkyl of 1 to 4 carbons, cyclopentyl, cyclohexyl and phenyl a group; X 1 is oxiranyl, Okishiraniren, 3,4-epoxycyclohexyl, or oxetanyl and Okisetaniren 1 It is a group having one.
  • monomers that copolymerize with monomers having an oxirane ring include, for example, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, styrene, methylstyrene, chloro Examples include methylstyrene, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, N-cyclohexylmaleimide, and N-phenylmaleimide.
  • Preferred examples of the polymer of the monomer having an oxirane ring and the copolymer of the monomer having an oxirane ring and another monomer include polyglycidyl methacrylate, a copolymer of methyl methacrylate and glycidyl methacrylate, benzyl methacrylate and glycidyl methacrylate.
  • Examples thereof include a polymer and a copolymer of styrene and glycidyl methacrylate. It is preferable that the composition of the present invention contains these epoxy compounds since the heat resistance of the cured film formed from the composition is further improved.
  • epoxy compound (e) examples include, for example, an epoxy compound “jER807” (epoxy equivalent 160 to 175 g / eq), “jER815”, “jER825” (epoxy equivalent 170 to 180 g / eq), “jER827” (epoxy 180-190 g / eq), “jER828” (epoxy equivalents 184-194 g / eq), “jER190P”, “jER191P”, “jER1001” (epoxy equivalents 450-500 g / eq), “jER1002” (epoxy equivalents 600- 700 g / eq), “jER1004” (epoxy equivalents 875-975 g / eq), “jER1004AF” (epoxy equivalents 875-975 g / eq), “jER1007” (epoxy equivalents 1750-2200 g / eq), “jER1010” (epoxy
  • NANOPOX C620 is a compound obtained by reacting Celoxide 2021P (60 parts by weight) with hydroxyl group-containing silica (40 parts by weight). Among these, a composition containing “NANOPOX C620” is preferable because a cured film having high hardness can be obtained. A composition containing “ADEKA RESIN EP-4088S” is preferable because a cured film having particularly good chemical resistance can be obtained.
  • concentration of the epoxy compound (e) in the composition of this invention is not specifically limited, From the point of being able to obtain the cured film which is excellent in heat resistance and the adhesiveness with respect to glass or ITO, etc. of the composition of this invention. It is preferably contained in an amount of 0 to 50% by weight and more preferably 0 to 40% by weight in 100% by weight of the solid content (residue obtained by removing the solvent from the composition).
  • the polyimide resin is not particularly limited as long as it has an imide group.
  • a polyimide resin may use only 1 type and may mix and use 2 or more types.
  • the polyimide resin can be obtained, for example, by imidizing polyamic acid obtained by reacting acid dianhydride and diamine.
  • acid dianhydride the tetracarboxylic dianhydride (a1) which can be used for the synthesis
  • diamine examples include diamine (a2) that can be used for the synthesis of polyester amic acid (A).
  • the concentration of the polyimide resin in 100% by weight of the composition of the present invention is not particularly limited, but a cured film having better heat resistance and chemical resistance can be obtained. In this respect, 0.1 to 20% by weight is preferable, and 0.1 to 10% by weight is more preferable.
  • Polymerizable monomer examples include monofunctional polymerizable monomers, bifunctional (meth) acrylates, and trifunctional or higher polyfunctional (meth) acrylates. As the polymerizable monomer, only one type may be used, or two or more types may be mixed and used.
  • the concentration of the polymerizable monomer in the composition of the present invention is not particularly limited, but a cured film having a better chemical resistance and surface hardness can be obtained. From 10 to 80% by weight, preferably 20 to 70% by weight is contained in 100% by weight of the solid content of the composition of the present invention (residue obtained by removing the solvent from the composition). Is more preferable.
  • Examples of the monofunctional polymerizable monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, Methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, tricyclo [5.2.1.0 2, 6] decanyl (meth) acrylate, glycerol model (Meth)
  • bifunctional (meth) acrylate examples include bisphenol F ethylene oxide modified di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene Glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol di (meth) acrylate monostearate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,4-cyclohexanedimethanol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanedi Ruji (meth) acrylate, trimethylolpropane di (meth
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and epichlorohydrin modified tri Methylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerol tri (meth) acrylate, epichlorohydrin modified glycerol tri (meth) acrylate, diglycerin tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, penta Erythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, alkyl-modified dipen Erythritol penta (meth)
  • the antistatic agent can be used to prevent the composition of the present invention from being charged.
  • the composition of the present invention contains an antistatic agent, 0 in 100% by weight of the composition of the present invention. It is preferably used in an amount of 0.01 to 1% by weight.
  • a known antistatic agent can be used as the antistatic agent. Specific examples include metal oxides such as tin oxide, tin oxide / antimony oxide composite oxide, tin oxide / indium oxide composite oxide; and quaternary ammonium salts. Only one type of antistatic agent may be used, or a mixture of two or more types may be used.
  • the coupling agent (f) is not particularly limited, and a known coupling agent such as a silane coupling agent can be used for the purpose of improving adhesion to glass or ITO.
  • the coupling agent (f) excludes a coupling agent containing an oxirane ring.
  • the coupling agent (f) is based on 100% by weight of the solid content of the composition of the present invention (residue obtained by removing the solvent from the composition). It is preferable to add and use so that it may become 10 weight% or less. Only 1 type may be used for a coupling agent (f), and 2 or more types may be mixed and used for it.
  • silane coupling agent examples include trialkoxysilane compounds and dialkoxysilane compounds.
  • ⁇ -vinylpropyltrimethoxysilane, ⁇ -acryloylpropyltrimethoxysilane, ⁇ -methacryloylpropyltrimethoxysilane, and ⁇ -isocyanatopropyltriethoxysilane are particularly preferable.
  • antioxidant When the composition of the present invention contains the antioxidant (g), it is possible to prevent deterioration when the cured film obtained from the composition is exposed to high temperature or light.
  • the antioxidant (g) When the composition of the present invention contains an antioxidant (g), the antioxidant (g) is a solid content of the composition excluding the antioxidant (g) (residue obtained by removing the solvent from the composition). It is preferable to add 0.1 to 3 parts by weight to 100 parts by weight. Only 1 type may be used for antioxidant (g), and 2 or more types may be mixed and used for it.
  • antioxidant (g) examples include hindered amine compounds and hindered phenol compounds.
  • composition of the present invention contains the surfactant (h), a composition having improved wettability, leveling properties and coatability to the base substrate can be obtained, and the composition of the present invention is a surfactant.
  • the surfactant (h) is preferably used in an amount of 0.01 to 1% by weight based on 100% by weight of the composition of the present invention. Only 1 type may be used for surfactant (h), and 2 or more types may be mixed and used for it.
  • surfactant (h) for example, trade names “BYK-300”, “BYK-306”, “BYK-335”, “BYK-” can be used, for example, in order to improve the coating property of the composition of the present invention.
  • 310 “ BYK-341 ”,“ BYK-344 ”,“ BYK-370 ”(manufactured by Big Chemie Japan Co., Ltd.) and other silicon surfactants; trade names“ BYK-354 ”,“ BYK-358 ” Acrylic surfactants such as “BYK-361” (manufactured by Big Chemie Japan Co., Ltd.); trade names “DFX-18”, “Factent 250”, “Factent 251” (manufactured by Neos), Fluorosurfactants such as “Megafac RS-72-K” (manufactured by DIC Corporation) can be used.
  • Epoxy curing accelerator (i) refers to an agent that accelerates the epoxy curing reaction without reacting itself. In the present invention, the thiol compound (E) is not included in the epoxy curing agent (C). As the epoxy curing accelerator (i), “DBU”, “U-CAT”, “U-” can be used because the curing temperature of the composition of the present invention can be lowered or the curing time can be shortened.
  • Each of the epoxy curing accelerators (i) may be used alone or in combination of two or more.
  • the content of the epoxy curing accelerator (i) is preferably 10 to 200 parts by weight, more preferably 20 to 180 parts by weight, and even more preferably 30 to 150 parts by weight with respect to 100 parts by weight of the epoxy curing agent (C). is there.
  • Examples of the pigment or dye pigment include silicon carbide, alumina, magnesia, silica, zinc oxide, low-order titanium oxide, and graphite.
  • Examples of the dye include azo dyes, azomethine dyes, xanthene dyes, and quinone dyes.
  • Examples of azo dyes include “VALIFAST BLACK 3810”, “VALIFAST BLACK 3820”, “VALIFAST RED 3304”, “VALIFAST RED 3320”, and “OIL BLACK 860” (trade names, manufactured by Orient Chemical Industry Co., Ltd.). It is done.
  • Each of the pigment and the dye may be used alone or in combination of two or more.
  • composition of the preparation the present invention thermosetting resin composition, polyester amide acid (A), epoxy compound (B) and a thiol compound (E), an epoxy curing agent optionally (C) and solvent (D ) And other additives.
  • the composition of the present invention is an epoxy compound (B), a thiol compound (E), and an epoxy curing agent that is used as necessary, with the reaction solution or mixed solution obtained during the synthesis of the polyester amide acid (A) as it is. It can also be prepared by mixing with (C), solvent (F), other additives and the like.
  • the cured film of the present invention is not particularly limited as long as it is a film obtained by curing the composition of the present invention.
  • the cured film of the present invention can be obtained, for example, by applying the composition of the present invention on a substrate and heating.
  • the coating method and the curing method in the method for forming a cured film using the composition of the present invention will be described.
  • composition of the present invention on a substrate can be performed by spray coating, spin coating, roll coating, dipping, slit coating, bar coating, gravure printing, flexographic printing. It can be performed by a conventionally known method such as a printing method, an offset printing method, a dispenser method, a screen printing method and an ink jet printing method.
  • a gravure printing method in the case of forming a transparent insulating film provided so that the X and Y electrodes are not in contact with each other, a gravure printing method, a flexographic printing method, an offset printing method, in that pattern formation is easy Printing methods such as a dispenser method, a screen printing method and an ink jet printing method are preferred.
  • an overcoat from the composition of the present invention, spin coating, slit coating, gravure printing, flexographic printing, offset printing, dispenser, A coating method such as a screen printing method is preferred.
  • the substrate is not particularly limited, and a known substrate can be used.
  • glass that conforms to various standards such as FR-1, FR-3, FR-4, CEM-3, or E668.
  • a substrate made of metal such as stainless steel may be a substrate having a layer made of these metals on the surface); indium tin oxide (ITO), aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), zirconium Silicate (zircon), magnesium oxide (magnesia), titanium Aluminum, barium titanate, lead titanate (PT), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), lithium niobate, lithium tantalate,
  • thermosetting resin composition After applying the composition of the present invention, a cured film can be obtained by heating the composition applied on the substrate.
  • a method for forming a cured film in this manner preferably, after applying the composition of the present invention, the solvent is removed by heating (drying treatment) by heating with a hot plate or an oven, etc. Further, a method of further heating (curing treatment) is used.
  • the conditions for the drying process vary depending on the types and blending ratios of the components contained in the composition to be used. Usually, the heating temperature is 70 to 120 ° C., and the heating time is 5 to 15 minutes for an oven and 1 for a hot plate. ⁇ 10 minutes.
  • a curing treatment is usually performed at 80 to 300 ° C, preferably 90 to 200 ° C.
  • a cured film can be obtained usually by heat treatment for 10 to 120 minutes.
  • the curing process is not limited to the heat treatment, and may be a process such as ultraviolet ray, ion beam, electron beam, or gamma ray irradiation.
  • the composition of this invention contains the polyester amide acid (A), an epoxy compound (B), and a thiol compound (E), low temperature curability is favorable. For this reason, the cured film which is excellent in chemical-resistance etc. can be formed by low-temperature baking of 120 degrees C or less. Therefore, it is possible to form a cured film even on a resin film substrate such as PET that is difficult to perform the curing process at a high temperature.
  • the substrate with a cured film of the present invention is not particularly limited as long as it has the cured film of the present invention, but at least one selected from the group consisting of the above-mentioned substrates, particularly glass substrates, ITO substrates, and resin film substrates. It is preferable to have the above-mentioned cured film on a kind of substrate.
  • a substrate with a cured film for example, on the substrate of glass, ITO, PET, PEN, etc., the composition of the present invention is applied to the entire surface or a predetermined pattern (line shape, etc.) by the coating method, Then, it can form by passing through the drying process and hardening process which were demonstrated above.
  • Electronic component An electronic component of the present invention is an electronic component having the above-described cured film or substrate with a cured film.
  • Examples of such electronic components include color filters, various optical materials such as LED light emitting elements and light receiving elements, and touch panels.
  • the touch panel can be manufactured, for example, by combining a liquid crystal display device or an organic electroluminescence device and a position detection device.
  • a position detection device for example, a cured film (transparent insulating film) of the present invention is formed on a substrate on which a wiring (X electrode) made of a conductive material such as ITO is formed so as to cover the wiring.
  • a wiring (Y electrode) made of a conductive material such as ITO is formed so as to be orthogonal to the X electrode, and then an overcoat is formed with the cured film of the present invention so as to cover the entire surface of the substrate. It is done.
  • the cured film transparent insulating film
  • the composition of the present invention usually formed in a pattern by a printing method or the like by using the composition of the present invention, and usually the front surface by a coating method or the like.
  • the overcoat formed can be formed of a single composition. Therefore, by using the composition of the present invention, it is possible to simplify the line and improve the yield when manufacturing electronic components.
  • EG-200 OGSOL EG200 (trade name, manufactured by Osaka Gas Chemical Co., Ltd.), epoxy resin having a fluorene skeleton (epoxy equivalent 290, weight average molecular weight 2,000 or less)
  • ⁇ Epoxy compound (e)> C620: NANOPOX C620 (trade name, manufactured by EVONIK), epoxy resin containing 40% nanosilica EP4088S: Adeka Resin EP-4088S (trade name, manufactured by ADEKA Corporation)
  • TMA trimellitic anhydride ODPA: 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride 6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • TDA 4- (2,5 -Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride
  • P-1025 Pripol 1025
  • PE1 Pentaerythritol tetrakis (3-mercaptobutyrate) (trade name Karenz MT PE1, manufactured by Showa Denko KK)
  • PE1 AG Pentaerythritol tetrakis (3-mercaptobutyrate) (trade name Karenz MT PE1 AG, a refined product of PE1, manufactured by Showa Denko KK)
  • BD1 1,4-bis (3-mercaptobutyryloxy) butane (trade name Karenz MT BD1, manufactured by Showa Denko KK)
  • NR1 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (trade name Karenz MT NR1, Showa Denko) (Made by Co., Ltd.)
  • TPMB Trimethylolpropane tris (3-mercaptobutyrate)
  • DPMP Dip
  • MTM Triethylene glycol dimethyl ether (trade name: Hisolv MTM, manufactured by Toho Chemical Industry Co., Ltd.)
  • EDM Diethylene glycol ethyl methyl ether
  • HBM Methyl 2-hydroxyisobutyrate
  • GBL ⁇ -butyrolactone
  • C11Z 2-Undecylimidazole (trade name Curesol C11Z, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
  • I1010 Irganox 1010 (trade name, manufactured by BASF)
  • RS-72K Fluorine-based liquid repellent (trade name: Mega-Fac RS-72K, manufactured by DIC Corporation)
  • polyester amic acid was synthesized as shown below (Synthesis Example 1).
  • Synthesis Example 1 A 1000 ml separable flask equipped with a thermometer, a stirring blade, a raw material charging inlet and a nitrogen gas inlet was charged with 46.96 g of dehydrated and purified MP31.93 g of BDOH, 25.54 g of BzOH and 183.20 g of ODPA under a dry nitrogen stream. Stir at 130 ° C. for 3 hours. Thereafter, the reaction solution was cooled to 25 ° C., 29.33 g of DDS and 183.04 g of MPM were added, and stirred at 20 to 30 ° C. for 2 hours, and then stirred at 115 ° C. for 1 hour. Thereafter, by cooling to 30 ° C. or lower, a pale yellow transparent 30% by weight solution of polyester amic acid was obtained.
  • the rotational viscosity of this solution was 28.2 mPa ⁇ s.
  • the rotational viscosity is a value measured at 25 ° C. using an E-type viscometer (trade name: TVE-22LT, manufactured by Toki Sangyo Co., Ltd.) (hereinafter the same).
  • the weight average molecular weight of the obtained polyester amide acid was 4,200.
  • the weight average molecular weight of the polyester amide acid was measured as follows.
  • the obtained polyester amic acid was diluted with N, N-dimethylformamide (DMF) so that the concentration of the polyester amic acid was about 1% by weight, and GPC apparatus: manufactured by JASCO Corporation, Chrom Nav (differential refraction).
  • GPC apparatus manufactured by JASCO Corporation, Chrom Nav (differential refraction).
  • RI-2031 Plus the ratio meter was measured by a GPC method using a developing agent, and determined by polystyrene conversion.
  • Three columns GF-1G7B, GF-510HQ and GF-310HQ manufactured by Showa Denko Co., Ltd. were connected in this order, and the column was measured under conditions of a column temperature of 40 ° C. and a flow rate of 0.5 ml / min. (same as below).
  • Example 1 A 100 ml three-necked flask equipped with a stirring blade was purged with nitrogen, and 7.37 g of the polyester amic acid (A) solution obtained in Synthesis Example 1 (the amount of the polyester amic acid (A) in the solution was 2. 21g), 8.85 g of EG-200 (the amount of the epoxy compound (B) is 4.43 g), 0.35 of S510, 0.66 g of TMA, 22.42 g of HBM, 0.04 g of I1010, RS- 0.08 g of 72K was charged for each. Then, it stirred at 25 degreeC (room temperature) for 1 hour, and dissolved each component uniformly. Next, 0.31 g of PE1 was added and stirred at 25 ° C. for 1 hour, followed by filtration with a membrane filter (material: PTFE, pore size: 1 ⁇ m) to obtain a thermosetting resin-containing composition as a filtrate.
  • a membrane filter material: PTFE, pore size: 1 ⁇ m
  • Comparative Examples 1 to 8 curable resin compositions were prepared in the same manner as in Example 1 except that the type and amount of each component were changed as shown in Table 4. In Comparative Examples 2 to 6, each reaction accelerator shown in Table 4 was blended instead of the thiol compound (E).
  • thermosetting resin compositions of Examples 1 to 13 and Comparative Examples 1 to 6 (hereinafter referred to as “composition” as appropriate), the viscosity (rotational viscosity) immediately after production was measured. As shown in Tables 2 to 3, the thermosetting resin compositions of the examples were suitable as inks for inkjet. On the other hand, the compositions of Comparative Examples 2 to 6 to which the epoxy curing accelerator (i) was added instead of the thiol compound (E) were immediately after the addition of the epoxy curing accelerator (i) except for Comparative Example 2. In this case, a solid was deposited, and an ink usable for inkjet could not be prepared (indicated by x in Table 4).
  • composition containing the polyester amic acid (A) and the epoxy compound (B) having a fluorene skeleton cannot be prepared by adding the epoxy curing accelerator (i), or the storage stability is increased. It can be said that there is a tendency to get worse.
  • the aluminum foil of the aluminum foil with a cured film produced using the method described above was peeled off to obtain a single film of the cured film after firing the composition.
  • After measuring the weight (A) before immersion of this single membrane it was immersed in ultrapure water at room temperature for 24 hours to wipe off water droplets adhering to the membrane surface with a nonwoven fabric, and the weight of the single membrane after immersion ( B) was measured.
  • the water absorption was determined by the following formula.
  • Water absorption rate (%) [(BA) / A] ⁇ 100
  • Tables 2 to 4 show the results of measuring the water absorption of the single cured films formed using the compositions of Examples and Comparative Examples.
  • a coating film was formed using the compositions according to Examples 1 to 13 and Comparative Examples 1 to 6 under the following conditions to obtain a substrate on which a coating film before curing was formed.
  • Substrate Glass substrate (10cm square)
  • Application method inkjet printing Printer: DMP-2831 (manufactured by FUJIFILM Dimatix)
  • Head DMC-11610 (manufactured by FUJIFILM Dimatix)
  • Printing conditions Head temperature 30 ° C., voltage 20V, drive waveform Dimatix Model Fluid 2, drive frequency 5 kHz, dot spacing 15-20 ⁇ m, single-sided two-layer printing
  • composition was cured by drying and main firing under the following conditions to obtain a sample substrate having a cured film formed on the substrate.
  • substrate about the cured film of the obtained sample board
  • substrate weight reduction temperature and chemical resistance were evaluated by the method mentioned later.
  • the 1% weight reduction temperature (Td1) and 5% weight reduction temperature (Td5) of the cured film were measured. Further, the glass transition temperature (Tg) of the cured film was also measured.
  • the measurement results of each example are shown in Table 2 and Table 3.
  • Td1 and Td5 tended to increase due to the absence of TMA. From this result, it can be said that it is preferable that the composition containing the thiol compound (E) does not contain TMA which is an acid anhydride in order to form a cured product having good thermal stability.
  • Example 2 and Comparative Examples 1 and 2 were applied to the entire area of one surface of the glass plate so that the film thickness after firing was about 1 ⁇ m, and fired under the following conditions to obtain a glass substrate with a cured film. Then, the film thickness (A) before the treatment of the cured film was measured. ⁇ Curing conditions> ⁇ Baking process Yamato Scientific Co., Ltd.
  • the glass substrate with a cured film was immersed in ethanol at 50 ° C. for 10 minutes (hereinafter abbreviated as EtOH treatment), and immersed in isopropyl alcohol at 50 ° C. for 10 minutes (hereinafter referred to as IPA treatment). (Abbreviation) was applied separately, and the film thickness (B) after immersion of the cured film was measured.
  • EtOH treatment ethanol at 50 ° C. for 10 minutes
  • IPA treatment isopropyl alcohol at 50 ° C. for 10 minutes
  • the film thickness (C) after the heating of a cured film was measured.
  • the remaining film ratio (%) after the immersion treatment and after the heat treatment in the chemical resistance test is as follows: It calculated
  • Remaining film rate after immersion treatment [Film thickness after immersion (B) / film thickness before treatment (A)] ⁇ 100
  • Remaining film rate after immersion treatment and heat treatment (%) [Film thickness after heating (C) / Film thickness before treatment (A)] ⁇ 100
  • Blank, remaining film ratio after heating (%) [Blank film thickness (D) / film thickness before processing (A)] ⁇ 100
  • the cured films of Examples 2 and 2-1 were compared with the cured films of Comparative Examples 1 and 1-1 with respect to both the EtOH treatment and the IPA treatment. The rate has increased. From this result, it was found that the chemical resistance of the dura was improved by adding the thiol compound (E) to the composition. In addition, the cured films of Examples 2, 2-1 and 2-2 yielded cured films having a lower water absorption than the cured films of Comparative Examples 1-2, 2, 2-1, and 2-2. It was. From this result, it was found that a cured film having a low water absorption can be obtained by blending the thiol compound (E) with the composition.
  • Comparative Examples 7 to 9 In Comparative Examples 7 to 9, curable resin compositions were prepared in the same manner as in Example 1, except that the types and amounts of each component were changed as shown in Tables 6 and 7.
  • the content of the thiol compound (E) is preferably higher than 0.312 parts by weight in 100 parts by weight of the solid content, and preferably higher than 0.564 parts by weight in 100 parts by weight of the total epoxy compound.
  • the composition in which the thiol compound (E) was blended had TMA as an acid anhydride as the epoxy curing agent (C). It turned out that it becomes the composition which can form hardened
  • any of Examples 14 to 17 and 22 containing TMA and Examples 18 to 21 containing no TMA were compared with Comparative Examples 7 and 8 containing no thiol compound (E).
  • the storage stability was comparable. From this result, the content of the thiol compound (E) in 40 parts by weight of the composition is in the range of 0.02 to 0.69 parts by weight (0.05 to 1.8 parts by weight in 100 parts by weight of the composition). If it is inside, it can be said that the storage stability of a composition can be maintained favorable. From the same viewpoint, the content of the thiol compound (E) is in the range of 0.3 to 8.7 parts by weight in 100 parts by weight of the solid content, and 0.4 to 0.4 in 100 parts by weight of the total epoxy compound. It can be said that it is preferable to be within the range of 13.9 parts by weight.
  • Example 23 to 42 curable resin compositions were prepared in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Tables 8 to 10.
  • Tables 8 to 10 the viscosity, storage stability (viscosity), chemical-resistance, and thermal stability were evaluated using the evaluation method mentioned above. The results are shown in Tables 8 to 10.
  • thermosetting resin composition of the present invention is suitable as an ink composition for inkjet excellent in storage stability, and can form a cured product excellent in chemical resistance and thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The heat curable resin composition according to the present invention is provided as a heat curable resin composition showing both high low-temperature curability and high storage stability such that the heat curable resin composition allows low-temperature curing at 120ºC or less and shows good storage stability before low-temperature curing. The heat curable resin composition comprises a polyester amide acid (A), an epoxy compound (B) having a fluorene skeleton, and a thiol compound (E) having a plurality of thiol groups in a molecule, and thus, the heat curable resin composition enables low-temperature curing while maintaining good storage stability until low-temperature curing.

Description

熱硬化性樹脂組成物、硬化膜、硬化膜付き基板、電子部品およびインクジェット用インクThermosetting resin composition, cured film, substrate with cured film, electronic component and inkjet ink
 本発明は、熱硬化性樹脂組成物、硬化膜、硬化膜付き基板、電子部品およびインクジェット用インクに関する。さらに詳しくは、特定の化合物を含む熱硬化性樹脂組成物、該組成物から形成された硬化膜、該硬化膜を有する硬化膜付き基板、および、該硬化膜または硬化膜付き基板を有する電子部品および該組成物に関する。 The present invention relates to a thermosetting resin composition, a cured film, a substrate with a cured film, an electronic component, and an inkjet ink. More specifically, a thermosetting resin composition containing a specific compound, a cured film formed from the composition, a substrate with a cured film having the cured film, and an electronic component having the cured film or the substrate with a cured film And to the composition.
 近年、入力装置として、液晶表示装置または有機エレクトロルミネッセンス装置と位置検出装置とを組み合わせたタッチパネル型入力装置が普及している。タッチパネル型入力装置は表示画面上に、指やペンの先を接触させたときに、その接触位置を検出する入力装置である。タッチパネル型入力装置には各種検出方式が存在し、抵抗膜方式、静電容量方式等がある。 In recent years, as an input device, a touch panel type input device in which a liquid crystal display device or an organic electroluminescence device and a position detection device are combined has become widespread. A touch panel type input device is an input device that detects a contact position when a finger or the tip of a pen is brought into contact with a display screen. There are various detection methods for touch panel type input devices, such as a resistance film method and a capacitance method.
 例えば、静電容量方式は、ガラス基板上に、XおよびY電極をマトリックス状に配置した構造を有する装置を用い、指先などが接触することで生じる静電容量の変化を、電流変化として検出する方式である。 For example, the capacitance method uses a device having a structure in which X and Y electrodes are arranged in a matrix on a glass substrate, and detects a change in capacitance caused by contact of a fingertip or the like as a change in current. It is a method.
 前記の電極を形成する際、XおよびY位置を認識するため、XおよびY電極の重なり部分にITO(酸化インジウムスズ)などでジャンパーを形成し、また、XおよびY電極が互いに接触しないように透明絶縁膜が設けられる。前記透明絶縁膜には、高硬度、高透明性、ガラスやITOに対する密着性などが要求され、プロセス上の観点から基板の洗浄工程に用いられるエタノールやイソプロピルアルコール(IPA)への耐性、低吸水性などが要求される。 When forming the electrodes, in order to recognize the X and Y positions, a jumper is formed of ITO (Indium Tin Oxide) or the like at the overlapping portion of the X and Y electrodes, and the X and Y electrodes are not in contact with each other. A transparent insulating film is provided. The transparent insulating film is required to have high hardness, high transparency, adhesion to glass or ITO, etc., resistance to ethanol and isopropyl alcohol (IPA) used in the substrate cleaning process, low water absorption from the viewpoint of process Sex is required.
 また、前記静電容量方式のタッチパネルには、例えば、XおよびY電極上を平坦化させる等のために、絶縁性のオーバーコートを設ける場合がある。このオーバーコートは平坦性に加え、脱ガス防止、高硬度、高透明性、ガラスやITOに対する密着性、基板の洗浄工程に用いられるエタノールやイソプロピルアルコール(IPA)への耐性、低吸水性が要求される。 In addition, the capacitive touch panel may be provided with an insulating overcoat to flatten the X and Y electrodes, for example. In addition to flatness, this overcoat requires prevention of degassing, high hardness, high transparency, adhesion to glass and ITO, resistance to ethanol and isopropyl alcohol (IPA) used in the substrate cleaning process, and low water absorption. Is done.
 タッチパネルでは、製造コストを削減するなどの理由から、従来使用されていたガラスからPET(ポリエチレンテレフタレート)のようなプラスチックへ一部または総代替が検討されている。また、製造の省エネ化、低コスト化を考慮して低い焼成温度で硬化できる材料が求められている。 For touch panels, partial or total replacement from conventionally used glass to plastics such as PET (polyethylene terephthalate) is being considered for reasons such as reducing manufacturing costs. In addition, there is a demand for a material that can be cured at a low firing temperature in consideration of manufacturing energy saving and cost reduction.
 前記透明絶縁膜またはオーバーコートに使用できる高透明絶縁材料については各種組成物が検討されている。
 例えば、特許文献1には、特定構造のポリエステルアミド酸、エポキシ樹脂、エポキシ硬化剤などを含む熱硬化性樹脂組成物が開示されている。特許文献2には、特定構造のポリエステルアミド酸、フルオレン骨格を有するエポキシ化合物および硬化剤を含む熱硬化性樹脂組成物が開示されている。特許文献3には、特定の構造単位を有するポリイミド前駆体、フルオレン構造にビフェニルエーテル鎖で結合したエポキシ化合物を含む熱硬化性樹脂組成物が開示されている。
Various compositions have been studied for highly transparent insulating materials that can be used for the transparent insulating film or overcoat.
For example, Patent Literature 1 discloses a thermosetting resin composition containing a polyester amide acid having a specific structure, an epoxy resin, an epoxy curing agent, and the like. Patent Document 2 discloses a thermosetting resin composition containing a polyester amide acid having a specific structure, an epoxy compound having a fluorene skeleton, and a curing agent. Patent Document 3 discloses a thermosetting resin composition containing a polyimide precursor having a specific structural unit and an epoxy compound bonded to a fluorene structure with a biphenyl ether chain.
特開2005-105264号公報JP 2005-105264 A WO2015/012395号パンフレットWO2015 / 012395 pamphlet 特開2015-078253号公報Japanese Patent Laying-Open No. 2015-0778253
 ガラスからプラスチックへの代替にあたり、例えばPETの耐熱性を考慮した場合、120℃以下の低温焼成が要求される。
 しかしながら、特許文献1~3には、熱硬化性樹脂組成物の低温硬化性、低温硬化によって得られる硬化膜の物理的性質や薬品耐性等についてなんら検討されていない。特許文献2には、熱硬化性樹脂組成物を120℃で加熱して硬化膜を得ることが記されているが、当該熱硬化性樹脂組成物を120℃の低温で硬化させて得られた硬化膜は、エタノールやIPAなどに対する耐薬品性が悪く、吸水率も高く、透明絶縁膜として使用するためには、改良が求められている。また、熱硬化性樹脂組成物の低温硬化性を検討した結果、低温焼成性すなわち低温焼成によって良好な性質を備えた硬化膜を形成可能な性質を高めると、硬化前における保存安定性が低下する傾向にある。
 タッチパネル型入力装置を製造するに際して、ラインの簡略化および歩留まり向上等の点から、前記透明絶縁膜およびオーバーコートのいずれにも使用できる耐薬品性等の性質を備えた硬化物を低温焼成によって形成する熱硬化性樹脂組成物が望ましいと考えられるが、このような熱硬化性樹脂組成物は未だ実現されていない。
When replacing glass with plastic, for example, when considering the heat resistance of PET, low-temperature baking at 120 ° C. or lower is required.
However, Patent Documents 1 to 3 do not discuss the low temperature curability of the thermosetting resin composition, the physical properties of the cured film obtained by low temperature curing, the chemical resistance, and the like. Patent Document 2 describes that a thermosetting resin composition is heated at 120 ° C. to obtain a cured film, and obtained by curing the thermosetting resin composition at a low temperature of 120 ° C. The cured film has poor chemical resistance to ethanol, IPA and the like, has a high water absorption rate, and is required to be improved for use as a transparent insulating film. Further, as a result of examining the low-temperature curability of the thermosetting resin composition, when the property of forming a cured film having good properties by low-temperature firing property, that is, low-temperature firing is enhanced, the storage stability before curing is lowered. There is a tendency.
When manufacturing a touch panel type input device, a cured product with properties such as chemical resistance that can be used for both the transparent insulating film and the overcoat is formed by low-temperature firing in order to simplify the line and improve the yield. However, such a thermosetting resin composition has not been realized yet.
 本発明の課題は、120℃以下の低温硬化が可能であり、かつ低温硬化前における保存安定性が良好な、高い低温硬化性と高い保存安定性とを両立する熱硬化性樹脂組成物を提供することにあり、さらに高硬度、高透明性、ガラスやITOに対する密着性、低吸水性等の性質を備えた、基板の洗浄工程で用いられるエタノールやIPAなどに対する耐薬品性が良好な硬化膜を形成することが可能な熱硬化性樹脂組成物、ならびにその用途を提供することにある。 An object of the present invention is to provide a thermosetting resin composition that can be cured at a low temperature of 120 ° C. or lower and has good storage stability before low-temperature curing, and has both high low-temperature curability and high storage stability. In addition, it has high hardness, high transparency, adhesion to glass and ITO, low water absorption, and other cured films with good chemical resistance to ethanol and IPA used in the substrate cleaning process. It is in providing the thermosetting resin composition which can form, and its use.
 本発明者らは、前記問題点を解決すべく鋭意検討を行った。その結果、熱硬化性樹脂組成物にチオール化合物を配合することによって、硬化前における保存安定性を高く維持しつつ低温硬化が向上すること、および耐薬品性等が良好な硬化膜を形成できることを見出した。本発明は、当該知見に基づいたものであり、以下の構成を備えている。 The present inventors have intensively studied to solve the above problems. As a result, by incorporating a thiol compound in the thermosetting resin composition, low temperature curing is improved while maintaining high storage stability before curing, and a cured film having good chemical resistance and the like can be formed. I found it. The present invention is based on the findings and has the following configuration.
[1] ポリエステルアミド酸(A)、フルオレン骨格を有するエポキシ化合物(B)、および分子内に複数のチオール基を有するチオール化合物(E)を含有する熱硬化性樹脂組成物。 [1] A thermosetting resin composition containing a polyester amide acid (A), an epoxy compound (B) having a fluorene skeleton, and a thiol compound (E) having a plurality of thiol groups in the molecule.
[2] 前記チオール化合物(E)が、ペンタエリスリトール テトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパン トリス(3-メルカプトプロピオネート)、トリメチロールエタン トリス(3-メルカプトプロピオネート)、ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリトール テトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートおよび下記の式(8)で示されるグリコールウリル誘導体からなる群から選ばれた1または2以上の化合物である、[1]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
[2] The thiol compound (E) is pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryl) Oxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (3-mercaptopropio) ), Dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and the following formula (8 From the group consisting of glycoluril derivatives A barre was one or more compounds, thermosetting resin composition according to [1].
Figure JPOXMLDOC01-appb-C000003
[3]
 前記チオール化合物(E)の含有量が、全エポキシ化合物の合計100重量部に対して、0.1~35重量部である、[1]または[2]に記載の熱硬化性樹脂組成物。
[3]
The thermosetting resin composition according to [1] or [2], wherein the content of the thiol compound (E) is 0.1 to 35 parts by weight with respect to 100 parts by weight of all the epoxy compounds.
[4] 前記フルオレン骨格を有するエポキシ化合物(B)は、エポキシ当量が200~550g/eqである、[1]、[2]または[3]に記載の熱硬化性樹脂組成物。 [4] The thermosetting resin composition according to [1], [2] or [3], wherein the epoxy compound (B) having the fluorene skeleton has an epoxy equivalent of 200 to 550 g / eq.
[5] 前記フルオレン骨格を有するエポキシ化合物(B)の含有量が、前記ポリエステルアミド酸(A)100重量部に対して、10~400重量部である[1]~[4]のいずれか1項に記載の熱硬化性樹脂組成物。 [5] Any one of [1] to [4], wherein the content of the epoxy compound (B) having the fluorene skeleton is 10 to 400 parts by weight with respect to 100 parts by weight of the polyester amide acid (A). The thermosetting resin composition according to item.
[6] 前記ポリエステルアミド酸(A)は重量平均分子量が、2,000~20,000である、[1]~[5]のいずれか1項に記載の熱硬化性樹脂組成物。 [6] The thermosetting resin composition according to any one of [1] to [5], wherein the polyester amic acid (A) has a weight average molecular weight of 2,000 to 20,000.
[7] 前記ポリエステルアミド酸(A)が、下記式(3)および(4)で示される構成単位を有する化合物である、請求項[1]~[6]のいずれか1項に記載の熱硬化性樹脂
組成物。
Figure JPOXMLDOC01-appb-C000004
(式(3)および(4)中、Rは独立に炭素数1~30の4価の有機基であり、Rは炭素数1~40の2価の有機基であり、Rは炭素数1~20の2価の有機基である。)
[7] The heat according to any one of [1] to [6], wherein the polyester amic acid (A) is a compound having a structural unit represented by the following formulas (3) and (4): Curable resin composition.
Figure JPOXMLDOC01-appb-C000004
(In the formulas (3) and (4), R 1 is independently a tetravalent organic group having 1 to 30 carbon atoms, R 2 is a divalent organic group having 1 to 40 carbon atoms, and R 3 is (It is a divalent organic group having 1 to 20 carbon atoms.)
[8] さらに溶媒(F)を含む、[1]~[7]のいずれか1項に記載の熱硬化性樹脂組成物。
[9] タッチパネル用である、[1]~[8]のいずれか1項に記載の熱硬化性樹脂組成物。
[8] The thermosetting resin composition according to any one of [1] to [7], further including a solvent (F).
[9] The thermosetting resin composition according to any one of [1] to [8], which is for a touch panel.
[10] [1]~[9]のいずれか1項に記載の熱硬化性樹脂組成物から得られる硬化膜。
[11] [10]に記載の硬化膜を有する硬化膜付き基板。
[12] [10]に記載の硬化膜または[11]に記載の硬化膜付き基板を有する電子部品。
[13] タッチパネル型入力装置である、[12]に記載の電子部品。
[14] [1]~[9]のいずれか1項に記載の熱硬化性樹脂組成物を含有することを特徴とするインクジェット用インク。
[10] A cured film obtained from the thermosetting resin composition according to any one of [1] to [9].
[11] A substrate with a cured film, comprising the cured film according to [10].
[12] An electronic component having the cured film according to [10] or the substrate with the cured film according to [11].
[13] The electronic component according to [12], which is a touch panel type input device.
[14] An inkjet ink comprising the thermosetting resin composition according to any one of [1] to [9].
 本発明の熱硬化性樹脂組成物は、チオール化合物(E)を含有することにより、120℃以下の低温硬化と硬化前における保存安定性とを両立することができる。また吸水率が低く、エタノールやIPAへの耐性も有するバランスを備えた硬化膜を形成することができる。さらに耐熱性、機械特性にも優れた硬化膜を形成することができるため、本発明の熱硬化性樹脂組成物は、非常に実用性の高いものであり、例えば、タッチパネル用の透明絶縁膜およびオーバーコートを生産性よく作製することが可能であり、これらの用途に好適に用いることができる。 The thermosetting resin composition of the present invention can achieve both low-temperature curing at 120 ° C. or lower and storage stability before curing by containing the thiol compound (E). Moreover, the cured film with the balance which has a low water absorption and also has tolerance to ethanol and IPA can be formed. Furthermore, since a cured film excellent in heat resistance and mechanical properties can be formed, the thermosetting resin composition of the present invention is very practical, for example, a transparent insulating film for touch panels and The overcoat can be produced with high productivity and can be suitably used for these applications.
 以下、本発明の熱硬化性樹脂組成物(以下「組成物」ともいう。)、該組成物の調製方法、硬化膜の形成方法、硬化膜付き基板および電子部品について詳細に説明する。 Hereinafter, the thermosetting resin composition of the present invention (hereinafter also referred to as “composition”), a method for preparing the composition, a method for forming a cured film, a substrate with a cured film, and an electronic component will be described in detail.
1.熱硬化性樹脂組成物
 本発明の組成物は、ポリエステルアミド酸(A)、フルオレン骨格を有するエポキシ化合物(B)、および、チオール化合物(E)を含有する。本発明の組成物は前記成分のほか、添加剤を含有してもよく、添加剤は有色、無色のどちらであってもよい。以下、フルオレン骨格を有するエポキシ化合物(B)とエポキシ化合物(B)は同等の意味を示す。
 このような本発明の組成物によれば、120℃以下の低温硬化が可能であり、組成物の保存安定性も両立する、高硬度、高透明性、ガラスやITOに対する密着性、低吸水性、基板の洗浄工程で用いられるエタノールやIPAへの耐性にバランスよく優れる硬化膜を得ることができる。このため、タッチパネル用の透明絶縁膜やオーバーコートを生産性よく作製することが可能であり、これらの用途に好適に用いることができる。
1. Thermosetting resin composition The composition of the present invention contains a polyester amide acid (A), an epoxy compound (B) having a fluorene skeleton, and a thiol compound (E). The composition of the present invention may contain additives in addition to the above components, and the additives may be colored or colorless. Hereinafter, the epoxy compound (B) having an fluorene skeleton and the epoxy compound (B) have the same meaning.
According to such a composition of the present invention, low temperature curing at 120 ° C. or lower is possible, and the storage stability of the composition is compatible, high hardness, high transparency, adhesion to glass and ITO, low water absorption A cured film having excellent balance in resistance to ethanol and IPA used in the substrate cleaning step can be obtained. For this reason, it is possible to produce the transparent insulating film and overcoat for touch panels with high productivity, and it can be used suitably for these uses.
 本発明の組成物は、ポリエステルアミド酸(A)、エポキシ化合物(B)、および、チオール化合物(E)を含有することで、前記効果に優れるものとなる。特に、120℃以下の低温焼成が可能であり、組成物の保存安定性も両立する、低吸水性、エタノールおよびIPAへの耐性に優れる硬化膜が得られる。
 従来の、ポリエステルアミド酸からなる組成物や、フルオレン骨格を有するエポキシ化合物およびエポキシ硬化剤からなる組成物では、120℃以下の低温焼成が可能で保存安定性も両立する、低吸水性、エタノールおよびIPA耐性に優れる硬化膜は得られなかった。
 従って、本発明の組成物は、従来の組成物からでは予期しえない効果を有する組成物であり、ポリエステルアミド酸(A)と、フルオレン骨格を有するエポキシ化合物(B)とを含有する組成物にチオール化合物(E)を添加することにより、従来のエポキシ硬化剤を含有する組成物とは異質な効果を奏するものである。
The composition of this invention becomes the thing excellent in the said effect by containing a polyester amide acid (A), an epoxy compound (B), and a thiol compound (E). In particular, a cured film excellent in resistance to low water absorption, ethanol and IPA, which can be fired at a low temperature of 120 ° C. or lower and also has the storage stability of the composition, is obtained.
Conventional compositions composed of polyester amide acid, and compositions composed of an epoxy compound having a fluorene skeleton and an epoxy curing agent, can be baked at a low temperature of 120 ° C. or less and have both storage stability, low water absorption, ethanol and A cured film excellent in IPA resistance was not obtained.
Therefore, the composition of the present invention is a composition having an effect which cannot be expected from the conventional composition, and is a composition containing polyester amic acid (A) and an epoxy compound (B) having a fluorene skeleton. By adding the thiol compound (E) to the composition, an effect different from that of the conventional composition containing an epoxy curing agent is obtained.
1.1. ポリエステルアミド酸(A)
 本発明で用いられるポリエステルアミド酸(A)は、特に制限されないが、エステル結合、アミド結合およびカルボキシル基を有する化合物であることが好ましく、具体的には、式(3)および(4)で示される構成単位を有する化合物であることがより好ましい。
 このようなポリエステルアミド酸(A)を特定のエポキシ化合物(B)およびチオール化合物(E)と組み合わせて使用することで、エタノールやIPAなどの基板の洗浄液への耐性に優れ、さらには、高硬度、高透明性、ガラスやITOに対する密着性に優れる硬化膜を形成可能な組成物が得られる。
 ポリエステルアミド酸(A)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.1. Polyester amide acid (A)
The polyester amide acid (A) used in the present invention is not particularly limited, but is preferably a compound having an ester bond, an amide bond, and a carboxyl group, and specifically represented by formulas (3) and (4). It is more preferable that the compound has a structural unit.
By using such a polyester amic acid (A) in combination with a specific epoxy compound (B) and a thiol compound (E), it has excellent resistance to a substrate cleaning solution such as ethanol and IPA, and also has high hardness. Thus, a composition capable of forming a cured film having high transparency and excellent adhesion to glass and ITO can be obtained.
Polyester amide acid (A) may use only 1 type, and may mix and use 2 or more types.
Figure JPOXMLDOC01-appb-C000005
(Rは独立に炭素数1~30の4価の有機基であり、Rは炭素数1~40の2価の有機基であり、Rは炭素数1~20の2価の有機基である。)
Figure JPOXMLDOC01-appb-C000005
(R 1 is independently a tetravalent organic group having 1 to 30 carbon atoms, R 2 is a divalent organic group having 1 to 40 carbon atoms, and R 3 is a divalent organic group having 1 to 20 carbon atoms. Group.)
 組成物中の他の成分との相溶性が良い化合物が得られ、高透明性の硬化膜が得られる等の点から、Rは独立に、炭素数2~25の4価の有機基であることが好ましく、炭素数2~20の4価の有機基であることがより好ましく、式(5)で表される基であることがさらに好ましい。 R 1 is independently a tetravalent organic group having 2 to 25 carbon atoms from the viewpoint that a compound having good compatibility with other components in the composition is obtained and a highly transparent cured film is obtained. It is preferably a tetravalent organic group having 2 to 20 carbon atoms, and more preferably a group represented by the formula (5).
Figure JPOXMLDOC01-appb-C000006
(式(5)において、Rは、-O-、-CO-、-SO-、-C(CF-、-R-または-COO-R-OCO-(Rは独立に、炭素数1~4のアルキル基である。)である。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (5), R 4 represents —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 —, —R 5 —, or —COO—R 5 —OCO— (R 5 represents Independently, it is an alkyl group having 1 to 4 carbon atoms.)
 組成物中の他の成分との相溶性が良い化合物が得られ、高透明性でガラスやITOへの密着性が良好な硬化膜が得られる等の点から、Rは、炭素数2~35の2価の有機基であることが好ましく、炭素数2~30の2価の有機基であることがより好ましく、式(6)で表される基であることがさらに好ましい。 From the viewpoints of obtaining a compound having good compatibility with other components in the composition and obtaining a cured film having high transparency and good adhesion to glass and ITO, R 2 has 2 to 2 carbon atoms. A divalent organic group of 35 is preferable, a divalent organic group having 2 to 30 carbon atoms is more preferable, and a group represented by the formula (6) is more preferable.
Figure JPOXMLDOC01-appb-C000007
(式(6)において、Rは、-O-、-CO-、-SO-、-C(CF-、-R-または-O-ph-R-ph-O-である(phはベンゼン環であり、Rは、-O-、-CO-、-SO-、-C(CF-または-R-である。)。なお、Rは独立に、炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000007
(In Formula (6), R 6 represents —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 —, —R 7 — or —O—ph—R 8 —ph—O—). (a ph is a benzene ring, R 8 is, -O -, - CO -, - SO 2 -, - C (CF 3) 2 - or -R 7 -. a a) in which. Incidentally, R 7 is Independently, it is an alkyl group having 1 to 4 carbon atoms.)
 高透明性の硬化膜が得られる等の点から、Rは、炭素数2~15の2価の有機基であることが好ましく、式(7)で表される基、-R10-NR11-R12-(R10およびR12は独立に、炭素数1~8のアルキレンであり、R11は、水素または少なくとも1つの水素がヒドロキシルで置換されていてもよい炭素数1~8のアルキルである。)、炭素数2~15のアルキレン、または、炭素数2~15のアルキレンの少なくとも1つの水素がヒドロキシルで置換されていてもよく、-O-を有していてもよい基であることがより好ましく、炭素数2~6の2価のアルキレンであることがさらに好ましい。 From viewpoint of high transparency of the cured film is obtained, R 3 is preferably a divalent organic group having 2 to 15 carbon atoms, a group represented by the formula (7), -R 10 -NR 11 -R 12 - (R 10 and R 12 are independently an alkylene having 1 to 8 carbon atoms, R 11 is hydrogen or at least one hydrogen carbon atoms which may be have 1-8 substituted with a hydroxyl An alkylene group having 2 to 15 carbon atoms, or at least one hydrogen atom of alkylene having 2 to 15 carbon atoms may be substituted with hydroxyl, and may have —O—. More preferably, it is more preferably a divalent alkylene having 2 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
(式(7)において、Rは、-O-、-CO-、-SO-、-C(CF-、-R-または-ph-R-ph-である(phはベンゼン環であり、Rは、-O-、-CO-、-SO-、-C(CF-または-R-である。)。なお、Rは独立に、炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula (7), R 9 is —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 —, —R 7 —, or —ph—R 8 —ph— (ph Is a benzene ring, and R 8 is —O—, —CO—, —SO 2 —, —C (CF 3 ) 2 — or —R 7 —.) Note that R 7 is independently carbon (It is an alkyl group of the number 1 to 4.)
 ポリエステルアミド酸(A)は、テトラカルボン酸二無水物(a1)を含む成分、ジアミン(a2)を含む成分および多価ヒドロキシ化合物(a3)を含む成分を反応させることにより得られる化合物であることが好ましく、テトラカルボン酸二無水物(a1)を含む成分、ジアミン(a2)を含む成分、多価ヒドロキシ化合物(a3)を含む成分および1価アルコール(a4)を含む成分を反応させることにより得られる化合物であることも好ましい。
 つまり、式(3)および(4)中、Rは独立に、テトラカルボン酸二無水物残基であり、Rはジアミン残基であり、Rは多価ヒドロキシ化合物残基であることが好ましい。
 なお、この反応の際には、反応溶媒(a5)等を用いてもよい。
 前記テトラカルボン酸二無水物(a1)を含む成分には、テトラカルボン酸二無水物(a1)が含まれていればよく、この化合物以外の他の化合物が含まれていてもよい。このことは、前記の他の成分についても同様である。
これらの(a1)~(a5)等はそれぞれ、1種のみを用いてもよく、2種以上を用いてもよい。
The polyester amic acid (A) is a compound obtained by reacting a component containing a tetracarboxylic dianhydride (a1), a component containing a diamine (a2) and a component containing a polyvalent hydroxy compound (a3). Preferably obtained by reacting a component containing tetracarboxylic dianhydride (a1), a component containing diamine (a2), a component containing polyvalent hydroxy compound (a3) and a component containing monohydric alcohol (a4). It is also preferable that it is a compound obtained.
That is, in formulas (3) and (4), R 1 is independently a tetracarboxylic dianhydride residue, R 2 is a diamine residue, and R 3 is a polyvalent hydroxy compound residue. Is preferred.
In this reaction, a reaction solvent (a5) or the like may be used.
The component containing the tetracarboxylic dianhydride (a1) only needs to contain the tetracarboxylic dianhydride (a1), and may contain other compounds other than this compound. The same applies to the other components described above.
Each of (a1) to (a5) and the like may be used alone or in combination of two or more.
 ポリエステルアミド酸(A)が分子末端に酸無水物基を有している場合には、必要により、1価アルコール(a4)を反応させた化合物であることが好ましい。1価アルコール(a4)を用いて得られるポリエステルアミド酸(A)は、エポキシ化合物(B)およびチオール化合物(E)との相溶性に優れる化合物になる傾向があるとともに、塗布性に優れる組成物が得られる傾向にある。 When the polyester amide acid (A) has an acid anhydride group at the molecular end, it is preferably a compound obtained by reacting a monohydric alcohol (a4) if necessary. The polyester amide acid (A) obtained by using the monohydric alcohol (a4) tends to be a compound having excellent compatibility with the epoxy compound (B) and the thiol compound (E), and also has excellent coating properties. Tends to be obtained.
1.1.1. テトラカルボン酸二無水物(a1)
 テトラカルボン酸二無水物(a1)としては特に制限されないが、具体例として、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,2-[ビス(3,4-ジカルボキシフェニル)]ヘキサフルオロプロパン二無水物およびエチレングリコールビス(アンヒドロトリメリテート)(商品名 TMEG-100、新日本理化(株)製)等の芳香族テトラカルボン酸二無水物;シクロブタンテトラカルボン酸二無水物、メチルシクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物およびシクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;ならびに、エタンテトラカルボン酸二無水物およびブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
1.1.1. Tetracarboxylic dianhydride (a1)
The tetracarboxylic dianhydride (a1) is not particularly limited, but specific examples include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetra Carboxylic dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,2 ′, 3 3′-diphenylsulfonetetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylethertetracarboxylic dianhydride, 2 , 2 ′, 3,3′-diphenyl ether tetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenyl ether tetracarboxylic dianhydride, 2,2- [bis (3,4-dicarboxyphenyl) ] Aromatic tetracarboxylic dianhydrides such as fluoropropane dianhydride and ethylene glycol bis (anhydrotrimellitate) (trade name TMEG-100, manufactured by Shin Nippon Rika Co., Ltd.); cyclobutanetetracarboxylic dianhydride, Cycloaliphatic tetracarboxylic dianhydrides such as methylcyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride and cyclohexanetetracarboxylic dianhydride; and ethanetetracarboxylic dianhydride and butanetetracarboxylic Aliphatic tetracarboxylic dianhydrides such as acid dianhydrides may be mentioned.
 これらの中でも透明性の良好な化合物が得られる等の点から、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエ-テルテトラカルボン酸二無水物、2,2-[ビス(3,4-ジカルボキシフェニル)]ヘキサフルオロプロパン二無水物およびエチレングリコールビス(アンヒドロトリメリテート)(商品名 TMEG-100、新日本理化(株)製)が好ましく、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物および3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物が特に好ましい。 Among these, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl ether is used because a compound having good transparency can be obtained. Tetracarboxylic dianhydride, 2,2- [bis (3,4-dicarboxyphenyl)] hexafluoropropane dianhydride and ethylene glycol bis (anhydrotrimellitate) (trade name TMEG-100, Shin Nippon Rika (3), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride are particularly preferable.
1.1.2. ジアミン(a2)
 ジアミン(a2)としては特に制限されないが、具体例として、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[3-(4-アミノフェノキシ)フェニル]スルホン、[4-(4-アミノフェノキシ)フェニル][3-(4-アミノフェノキシ)フェニル]スルホン、[4-(3-アミノフェノキシ)フェニル][3-(4-アミノフェノキシ)フェニル]スルホンおよび2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパンが挙げられる。
1.1.2. Diamine (a2)
The diamine (a2) is not particularly limited, and specific examples thereof include 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, bis [4- (4-amino Phenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [3- (4-aminophenoxy) phenyl] sulfone, [4- (4-aminophenoxy) phenyl] [3- (4 -Aminophenoxy) phenyl] sulfone, [4- (3-aminophenoxy) phenyl] [3- (4-aminophenoxy) phenyl] sulfone and 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoro Propane is mentioned.
 これらの中でも透明性の良好な化合物が得られる等の点から、3,3’-ジアミノジフェニルスルホンおよびビス[4-(3-アミノフェノキシ)フェニル]スルホンが好ましく、3,3’-ジアミノジフェニルスルホンが特に好ましい。 Among these, 3,3′-diaminodiphenylsulfone and bis [4- (3-aminophenoxy) phenyl] sulfone are preferable, and 3,3′-diaminodiphenylsulfone is preferable from the viewpoint of obtaining a compound having good transparency. Is particularly preferred.
1.1.3. 多価ヒドロキシ化合物(a3)
 多価ヒドロキシ化合物(a3)は、ヒドロキシ基を2つ以上有する化合物であれば特に制限されないが、具体例として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、分子量1,000以下のポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、分子量1,000以下のポリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、1,2,5-ペンタントリオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2,6-ヘキサントリオール、1,2-ヘプタンジオール、1,7-ヘプタンジオール、1,2,7-ヘプタントリオール、1,2-オクタンジオール、1,8-オクタンジオール、3,6-オクタンジオール、1,2,8-オクタントリオール、1,2-ノナンジオール、1,9-ノナンジオール、1,2,9-ノナントリオール、1,2-デカンジオール、1,10-デカンジオール、1,2,10-デカントリオール、1,2-ドデカンジオール、1,12-ドデカンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ビスフェノールA、ビスフェノールS、ビスフェノールF、ジエタノールアミンおよびトリエタノールアミンが挙げられる。
1.1.3. Polyvalent hydroxy compound (a3)
The polyvalent hydroxy compound (a3) is not particularly limited as long as it is a compound having two or more hydroxy groups. Specific examples thereof include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and polyethylene glycol having a molecular weight of 1,000 or less. , Propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol having a molecular weight of 1,000 or less, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2- Pentanediol, 1,5-pentanediol, 2,4-pentanediol, 1,2,5-pentanetriol, 1,2-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2 , 6- Xanthriol, 1,2-heptanediol, 1,7-heptanediol, 1,2,7-heptanetriol, 1,2-octanediol, 1,8-octanediol, 3,6-octanediol, 1,2 , 8-octanetriol, 1,2-nonanediol, 1,9-nonanediol, 1,2,9-nonanetriol, 1,2-decanediol, 1,10-decanediol, 1,2,10-decane Examples include triol, 1,2-dodecanediol, 1,12-dodecanediol, glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, bisphenol A, bisphenol S, bisphenol F, diethanolamine and triethanolamine.
 これらの中でもエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオールおよび1,8-オクタンジオールが好ましく、1,4-ブタンジオール、1,5-ペンタンジオールおよび1,6-ヘキサンジオールが反応溶媒(a5)への溶解性が良好である等の点から特に好ましい。 Among these, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol and 1,8-octanediol are preferable, and 1,4- Butanediol, 1,5-pentanediol and 1,6-hexanediol are particularly preferable from the viewpoint of good solubility in the reaction solvent (a5).
1.1.4. 1価アルコール(a4)
 1価アルコール(a4)は、ヒドロキシ基を1つ有する化合物であれば特に制限されないが、具体例として、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、アリルアルコール、ベンジルアルコール、ヒドロキシエチルメタクリレート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、フェノール、ボルネオール、マルトール、リナロール、テルピネオール、ジメチルベンジルカルビノールおよび3-エチル-3-ヒドロキシメチルオキセタンが挙げられる。
1.1.4. Monohydric alcohol (a4)
The monohydric alcohol (a4) is not particularly limited as long as it is a compound having one hydroxy group. Specific examples include methanol, ethanol, 1-propanol, isopropyl alcohol, allyl alcohol, benzyl alcohol, hydroxyethyl methacrylate, propylene glycol. Monoethyl ether, propylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, phenol, borneol, maltol, linalool, Terpineol, dimethylbenzyl carbinol and 3-ethyl- - it includes hydroxymethyl oxetane.
 これらの中でもイソプロピルアルコール、アリルアルコール、ベンジルアルコール、ヒドロキシエチルメタクリレート、プロピレングリコールモノエチルエーテルおよび3-エチル-3-ヒドロキシメチルオキセタンが好ましい。得られるポリエステルアミド酸(A)と、エポキシ化合物(B)およびチオール化合物(E)との相溶性や、得られる組成物のガラスやITO上への塗布性を考慮すると、1価のアルコール(a4)としては、ベンジルアルコールがより好ましい。 Of these, isopropyl alcohol, allyl alcohol, benzyl alcohol, hydroxyethyl methacrylate, propylene glycol monoethyl ether and 3-ethyl-3-hydroxymethyl oxetane are preferable. Considering the compatibility of the resulting polyester amic acid (A) with the epoxy compound (B) and the thiol compound (E) and the applicability of the resulting composition on glass or ITO, a monovalent alcohol (a4 ) Is more preferably benzyl alcohol.
1.1.5. 反応溶媒(a5)
 反応溶媒(a5)としては特に制限されないが、具体例として、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、乳酸エチル、シクロヘキサノン、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドが挙げられる。
1.1.5. Reaction solvent (a5)
The reaction solvent (a5) is not particularly limited, but specific examples include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether. Acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, N-methyl-2-pyrrolidone and N, N-dimethylacetamide.
 これらの中でも溶解性の点からプロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル、3-メトキシプロピオン酸メチルおよびN-メチル-2-ピロリドンが好ましい。
 なお、反応溶媒(a5)としては、具体的にはこれらの溶媒が挙げられるが、これらの溶媒に、前記反応に用いる溶媒全量に対して30重量%以下の割合であれば、該溶媒以外の他の溶媒を混合した混合溶媒を用いることもできる。
Among these, propylene glycol monomethyl ether acetate, diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether, methyl 3-methoxypropionate and N-methyl-2-pyrrolidone are preferable from the viewpoint of solubility.
Specific examples of the reaction solvent (a5) include these solvents, but if these solvents are in a proportion of 30% by weight or less with respect to the total amount of the solvent used in the reaction, other than the solvent A mixed solvent obtained by mixing other solvents can also be used.
《ポリエステルアミド酸(A)の合成》
 ポリエステルアミド酸(A)の合成方法は、特に制限されないが、テトラカルボン酸二無水物(a1)、ジアミン(a2)、多価ヒドロキシ化合物(a3)、および、必要により1価アルコール(a4)を必須成分として反応させる方法が好ましく、この反応を反応溶媒(a5)中で行うことがより好ましい。
<< Synthesis of Polyesteramide Acid (A) >>
The method for synthesizing the polyester amic acid (A) is not particularly limited, but the tetracarboxylic dianhydride (a1), the diamine (a2), the polyvalent hydroxy compound (a3), and, if necessary, the monohydric alcohol (a4). A method of reacting as an essential component is preferred, and this reaction is more preferably carried out in the reaction solvent (a5).
 この反応の際の各成分の添加順序は、特にこだわらない。即ち、テトラカルボン酸二無水物(a1)、ジアミン(a2)および多価ヒドロキシ化合物(a3)を同時に反応溶媒(a5)に加えて反応させてもよいし、ジアミン(a2)および多価ヒドロキシ化合物(a3)を反応溶媒(a5)中に溶解させた後、テトラカルボン酸二無水物(a1)を添加して反応させてもよいし、または、テトラカルボン酸二無水物(a1)とジアミン(a2)とを予め反応させた後、その反応生成物に多価ヒドロキシ化合物(a3)を添加して反応させてもよく、いずれの方法も用いることができる。
 なお、1価アルコール(a4)は反応のどの時点で添加してもよい。
The order of adding each component during this reaction is not particularly limited. That is, the tetracarboxylic dianhydride (a1), the diamine (a2) and the polyvalent hydroxy compound (a3) may be simultaneously added to the reaction solvent (a5) to cause the reaction, or the diamine (a2) and the polyvalent hydroxy compound may be reacted. After (a3) is dissolved in the reaction solvent (a5), the reaction may be carried out by adding tetracarboxylic dianhydride (a1), or tetracarboxylic dianhydride (a1) and diamine ( After reacting a2) in advance, the polyhydroxy compound (a3) may be added to the reaction product for reaction, and either method can be used.
The monohydric alcohol (a4) may be added at any point in the reaction.
 また、前記反応の際には、得られるポリエステルアミド酸(A)の重量平均分子量を大きくするために、酸無水物基を3個以上有する化合物を添加して合成反応を行ってもよい。酸無水物基を3個以上有する化合物の具体例としては、スチレン-無水マレイン酸共重合体を挙げることができる。 In the reaction, a synthetic reaction may be performed by adding a compound having 3 or more acid anhydride groups in order to increase the weight average molecular weight of the obtained polyesteramic acid (A). Specific examples of the compound having 3 or more acid anhydride groups include a styrene-maleic anhydride copolymer.
 このようにして合成されたポリエステルアミド酸は前記式(3)および(4)で示される構成単位を含み、その末端は原料であるテトラカルボン酸二無水物、ジアミンまたは多価ヒドロキシ化合物それぞれに由来する、酸無水物基、アミノ基またはヒドロキシ基であるか、またはこれら化合物以外の成分由来の基(例えば、1価アルコール残基)である。 The polyester amide acid synthesized in this way contains the structural units represented by the above formulas (3) and (4), and the ends thereof are derived from the raw materials tetracarboxylic dianhydride, diamine or polyhydroxy compound, respectively. It is an acid anhydride group, an amino group or a hydroxy group, or a group derived from a component other than these compounds (for example, a monohydric alcohol residue).
 前記反応の際の、テトラカルボン酸二無水物(a1)、ジアミン(a2)および多価ヒドロキシ化合物(a3)の使用量をそれぞれ、Xモル、YモルおよびZモルとした場合、X、YおよびZの間には、式(1)および式(2)の関係が成立することが好ましい。このような量で各成分を用いることで、下記溶媒(F)への溶解性が高いポリエステルアミド酸(A)が得られ、塗布性に優れる組成物が得られ、平坦性に優れる硬化膜を得ることができる。
    0.2≦Z/Y≦8.0 ・・・(1)
    0.2≦(Y+Z)/X≦1.5 ・・・(2)
When the amounts of tetracarboxylic dianhydride (a1), diamine (a2) and polyvalent hydroxy compound (a3) used in the reaction are X mol, Y mol and Z mol, respectively, X, Y and It is preferable that the relationship of Formula (1) and Formula (2) is established between Z. By using each component in such an amount, a polyester amide acid (A) having high solubility in the following solvent (F) can be obtained, a composition having excellent coatability can be obtained, and a cured film having excellent flatness can be obtained. Obtainable.
0.2 ≦ Z / Y ≦ 8.0 (1)
0.2 ≦ (Y + Z) /X≦1.5 (2)
 式(1)の関係は、好ましくは0.7≦Z/Y≦7.0であり、より好ましくは1.3≦Z/Y≦7.0である。また、式(2)の関係は、好ましくは0.3≦(Y+Z)/X≦1.2であり、より好ましくは0.4≦(Y+Z)/X≦1.0である。 The relationship of the formula (1) is preferably 0.7 ≦ Z / Y ≦ 7.0, and more preferably 1.3 ≦ Z / Y ≦ 7.0. The relationship of the formula (2) is preferably 0.3 ≦ (Y + Z) /X≦1.2, and more preferably 0.4 ≦ (Y + Z) /X≦1.0.
 前記反応の際の1価アルコール(a4)の使用量をZ’モルとした場合、その使用量は特に制限されないが、好ましくは0.1≦Z’/X≦5.0であり、より好ましくは0.2≦Z’/X≦4.0である。 When the amount of the monohydric alcohol (a4) used in the reaction is Z ′ mol, the amount used is not particularly limited, but is preferably 0.1 ≦ Z ′ / X ≦ 5.0, more preferably Is 0.2 ≦ Z ′ / X ≦ 4.0.
 反応溶媒(a5)は、テトラカルボン酸二無水物(a1)、ジアミン(a2)および多価ヒドロキシ化合物(a3)の合計100重量部に対し、100重量部以上使用すると、反応がスムーズに進行するため好ましい。 When the reaction solvent (a5) is used in an amount of 100 parts by weight or more based on 100 parts by weight of the total of the tetracarboxylic dianhydride (a1), the diamine (a2) and the polyvalent hydroxy compound (a3), the reaction proceeds smoothly. Therefore, it is preferable.
 前記反応は40~200℃で、0.2~20時間行うことが好ましい。 The reaction is preferably performed at 40 to 200 ° C. for 0.2 to 20 hours.
《ポリエステルアミド酸(A)の物性、使用量等》
 ポリエステルアミド酸(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量は、溶媒(F)に対する溶解性や、特にエポキシ化合物(B)およびチオール化合物(E)と併用することで、透明性、ガラスやITOに対する密着性および耐薬品性のバランスがとれた硬化膜が得られる等の観点から、2,000~30,000であることが好ましく、3,000~30,000であることがより好ましい。
 この重量平均分子量は、具体的には、後述する実施例に記載の方法で測定することができる。
<< Physical properties and usage of polyester amide acid (A) >>
The weight average molecular weight measured by gel permeation chromatography (GPC) of the polyester amic acid (A) is soluble in the solvent (F), and particularly in combination with the epoxy compound (B) and the thiol compound (E). From the viewpoint of obtaining a cured film having a balance of transparency, adhesion to glass and ITO, and chemical resistance, it is preferably 2,000 to 30,000, preferably 3,000 to 30,000. It is more preferable.
Specifically, this weight average molecular weight can be measured by the method described in Examples described later.
 ポリエステルアミド酸(A)の粘度は、得られるポリエステルアミド酸(A)の取り扱い性、重量平均分子量を前記好ましい範囲に調節する等の点から、25℃において好ましくは5~200mPa・s、より好ましくは10~150mPa・s、さらに好ましくは15~100mPa・sである。 The viscosity of the polyester amide acid (A) is preferably 5 to 200 mPa · s at 25 ° C., more preferably from the viewpoint of handling the polyester amide acid (A) to be obtained and adjusting the weight average molecular weight to the above-mentioned preferable range. Is 10 to 150 mPa · s, more preferably 15 to 100 mPa · s.
 ポリエステルアミド酸(A)の含有量は、高透明で耐薬品性に優れる硬化膜が得られる等の点から、本発明の組成物の固形分(該組成物から溶剤を除いた残分)100重量%に対し、好ましくは1~60重量%、より好ましくは5~55重量%、さらに好ましくは5~50重量%である。 The content of the polyester amic acid (A) is 100 in terms of the solid content of the composition of the present invention (residue excluding the solvent) from the viewpoint that a cured film having high transparency and excellent chemical resistance is obtained. It is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, and further preferably 5 to 50% by weight with respect to the weight%.
1.2. フルオレン骨格を有するエポキシ化合物(B)
 本発明に用いられるエポキシ化合物(B)は、フルオレン骨格を有するエポキシ化合物であれば特に限定されない。このようなエポキシ化合物(B)は、分解温度が高く、耐熱安定性に優れる。このため、高透明性などの前記効果に加え、これらの効果を併せ持つ硬化膜を得ることができる。
 エポキシ化合物(B)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.2. Epoxy compound having a fluorene skeleton (B)
The epoxy compound (B) used in the present invention is not particularly limited as long as it is an epoxy compound having a fluorene skeleton. Such an epoxy compound (B) has a high decomposition temperature and excellent heat stability. For this reason, in addition to the said effects, such as high transparency, the cured film which has these effects together can be obtained.
The epoxy compound (B) may be used alone or in combination of two or more.
 エポキシ化合物(B)のエポキシ当量は、耐薬品性に優れる硬化膜が得られる等の点から、好ましくは200~550g/eqであり、より好ましくは220~490g/eq、さらに好ましくは240~480g/eqである。
 エポキシ化合物(B)のエポキシ当量は、例えばJIS K7236に記載の方法で測定することができる。
The epoxy equivalent of the epoxy compound (B) is preferably 200 to 550 g / eq, more preferably 220 to 490 g / eq, still more preferably 240 to 480 g from the viewpoint that a cured film having excellent chemical resistance can be obtained. / Eq.
The epoxy equivalent of the epoxy compound (B) can be measured, for example, by the method described in JIS K7236.
 エポキシ化合物(B)の屈折率は、高透明性に優れる硬化膜が得られる等の点から、好ましくは1.50~1.75であり、より好ましくは1.52~1.73であり、さらに好ましくは1.54~1.71である。
 エポキシ化合物(B)の屈折率は、例えばJIS K7105やJIS K7142に記載の方法で測定することができる。
The refractive index of the epoxy compound (B) is preferably 1.50 to 1.75, more preferably 1.52 to 1.73, from the viewpoint of obtaining a cured film excellent in high transparency. More preferably, it is 1.54 to 1.71.
The refractive index of the epoxy compound (B) can be measured by, for example, the method described in JIS K7105 or JIS K7142.
 エポキシ化合物(B)は、合成して得てもよく、市販品でもよい。
 エポキシ化合物(B)の市販品としては、例えば、OGSOL PG-100(商品名、大阪ガスケミカル(株)製、屈折率1.64、エポキシ当量260g/eq)、OGSOL CG-500(商品名、大阪ガスケミカル(株)製、屈折率1.70、エポキシ当量310g/eq)、OGSOL EG-200(商品名、大阪ガスケミカル(株)製、屈折率1.62、エポキシ当量290g/eq)、OGSOL EG-250(商品名、大阪ガスケミカル(株)製、屈折率1.58、エポキシ当量395g/eq)、OGSOL EG-280(商品名、大阪ガスケミカル(株)製、屈折率1.56、エポキシ当量460g/eq)、OGSOL CG-400(商品名、大阪ガスケミカル(株)製、屈折率1.53、エポキシ当量540g/eq)が挙げられる。
The epoxy compound (B) may be obtained by synthesis or may be a commercially available product.
Examples of commercially available epoxy compounds (B) include OGSOL PG-100 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.64, epoxy equivalent 260 g / eq), OGSOL CG-500 (trade name, Osaka Gas Chemical Co., Ltd., refractive index 1.70, epoxy equivalent 310 g / eq), OGSOL EG-200 (trade name, Osaka Gas Chemical Co., Ltd., refractive index 1.62, epoxy equivalent 290 g / eq), OGSOL EG-250 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.58, epoxy equivalent 395 g / eq), OGSOL EG-280 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.56) Epoxy equivalent 460 g / eq), OGSOL CG-400 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.53, epoxy equivalent 540 g / q), and the like.
 エポキシ化合物(B)の含有量は、耐熱性、耐薬品性およびガラスやITOに対する密着性にバランスよく優れる硬化膜が得られる等の点から、本発明の組成物の固形分(該組成物から溶剤を除いた残分)100重量部に対し、好ましくは1~90重量部、より好ましくは3~80重量部、さらに好ましくは5~70重量部であり、ポリエステルアミド酸(A)100重量部に対し、好ましくは10~400重量部、より好ましくは20~350重量部、さらに好ましくは30~300重量部である。 The content of the epoxy compound (B) is such that a cured film having excellent balance of heat resistance, chemical resistance and adhesion to glass and ITO can be obtained, and the solid content of the composition of the present invention (from the composition) Residue excluding solvent) is preferably 1 to 90 parts by weight, more preferably 3 to 80 parts by weight, still more preferably 5 to 70 parts by weight, and 100 parts by weight of polyester amic acid (A) with respect to 100 parts by weight. On the other hand, it is preferably 10 to 400 parts by weight, more preferably 20 to 350 parts by weight, still more preferably 30 to 300 parts by weight.
1.3. チオール化合物(E)
 本発明で用いられるチオール化合物(E)は、分子内に複数のチオール基を有するものであればよく、特に制限はないが、チオール基に加えて酸素原子をも含んでいるものが好ましい。チオール化合物(E)を特定構造のポリエステルアミド酸(A)およびエポキシ化合物(B)と組み合わせて使用することで、120℃以下の低温により硬化膜が形成可能であることと組成物の保存安定性とを両立できる。また、吸水率が低く、エタノールやIPAへの耐性も有するバランスを備えた硬化膜を形成可能な組成物が得られる。チオール化合物(E)は、自身が反応してエポキシを硬化させる作用と、自身が反応することなくエポキシの反応を助ける作用とを両方備えているため、エポキシの硬化反応において、エポキシ硬化剤(C)およびエポキシ硬化促進剤(i)の両方の役目を果たしているといえる。チオール化合物(E)は1種のみを用いてもよく、2種以上を用いても良い。
1.3. Thiol compound (E)
The thiol compound (E) used in the present invention is not particularly limited as long as it has a plurality of thiol groups in the molecule, but preferably includes an oxygen atom in addition to the thiol group. By using the thiol compound (E) in combination with the polyester amide acid (A) and the epoxy compound (B) having a specific structure, a cured film can be formed at a low temperature of 120 ° C. or less and the storage stability of the composition And both. Moreover, the composition which can form the cured film provided with the balance which has low water absorption and also has tolerance to ethanol and IPA is obtained. Since the thiol compound (E) has both the action of reacting itself to cure the epoxy and the action of assisting the epoxy reaction without reacting itself, the epoxy curing agent (C ) And epoxy curing accelerator (i). Only 1 type may be used for a thiol compound (E), and 2 or more types may be used for it.
 チオール化合物(E)としては、ペンタエリスリトール テトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパン トリス(3-メルカプトプロピオネート)、トリメチロールエタン トリス(3-メルカプトプロピオネート)、ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリトール テトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートおよび下記の化学式(8)のグリコールウリル誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000009
As the thiol compound (E), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (3-mercaptopropionate), Dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and glycol of the following chemical formula (8) Examples include uril derivatives.
Figure JPOXMLDOC01-appb-C000009
 これらの中でも、ペンタエリスリトール テトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパン トリス(3-メルカプトブチレート)は保存安定性の良好な組成物が得られるため好ましい。また、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパン トリス(3-メルカプトブチレート)、ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリトール テトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールプロパン トリス(3-メルカプトプロピオネート)、および式(8)で示されるグリコールウリル誘導体は耐熱性に優れる硬化膜が得られるため好ましい。 Among these, pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3 , 5-triazine-2,4,6 (1H, 3H, 5H) -trione and trimethylolpropane tris (3-mercaptobutyrate) are preferred because a composition having good storage stability can be obtained. Pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione, trimethylolpropane tris (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -Ethyl] -isocyanurate, trimethylolpropane tris (3-mercaptopropionate), and a glycoluril derivative represented by the formula (8) are preferable because a cured film having excellent heat resistance can be obtained.
 チオール化合物(E)は合成して得てもよく、市販品でもよい。
 チオール化合物(E)の市販品としては、例えば、「カレンズMT PE1」、「カレンズMT BD1」、「カレンズMT NR1」、「TPMB」(以上商品名、昭和電工(株)製)、「DPMP」、「PEMP」、「TEMPIC」、「TMMP」(以上商品名、SC有機化学(株)製)、「TS-G」(商品名、四国化成工業(株)製)が挙げられる。
The thiol compound (E) may be obtained by synthesis or may be a commercially available product.
Examples of commercially available thiol compounds (E) include “Karenz MT PE1”, “Karenz MT BD1”, “Karenz MT NR1”, “TPMB” (trade name, manufactured by Showa Denko KK), “DPMP”. , “PEMP”, “TEMPIC”, “TMMP” (trade name, manufactured by SC Organic Chemical Co., Ltd.) and “TS-G” (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.).
 チオール化合物(E)の含有量は、120℃以下の低温硬化性および組成物の保存安定性、エタノールおよびIPAなどへの耐性、低吸水性に優れる硬化膜が得られる等の点から、本実施形態に係る組成物の固形分(該組成物から溶剤(溶媒)を除いた残分)100重量部に対し、好ましくは0.1~20重量部、より好ましくは0.15~18重量部、さらに好ましくは0.2~15重量部である。 The content of the thiol compound (E) is as follows: low-temperature curability at 120 ° C. or lower, storage stability of the composition, resistance to ethanol and IPA, and a cured film excellent in low water absorption can be obtained. Preferably 0.1 to 20 parts by weight, more preferably 0.15 to 18 parts by weight, based on 100 parts by weight of the solid content of the composition according to the form (residue obtained by removing the solvent (solvent) from the composition) More preferably, it is 0.2 to 15 parts by weight.
 チオール化合物(E)の含有量は、組成物の固形分に含まれる全エポキシ化合物の合計100重量部に対し、好ましくは0.1~35重量部、より好ましくは0.2~30重量部、さらに好ましくは0.3~25重量部である。 The content of the thiol compound (E) is preferably 0.1 to 35 parts by weight, more preferably 0.2 to 30 parts by weight, with respect to 100 parts by weight of the total epoxy compounds contained in the solid content of the composition. More preferably, it is 0.3 to 25 parts by weight.
 組成物がエポキシ硬化剤(C)を含有する場合、チオール化合物(E)の含有量は、エポキシ硬化剤(C)100重量部に対し、好ましくは1~350重量部、より好ましくは2~320重量部、さらに好ましくは3~300重量部である。 When the composition contains an epoxy curing agent (C), the content of the thiol compound (E) is preferably 1 to 350 parts by weight, more preferably 2 to 320 parts per 100 parts by weight of the epoxy curing agent (C). Part by weight, more preferably 3 to 300 parts by weight.
1.4. 添加剤
 本発明の組成物は、目的とする特性に応じて、ポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)以外の添加剤を含有してもよい。添加剤としては、例えば、エポキシ硬化剤(C)、溶媒(F)、エポキシ化合物(e)、ポリイミド樹脂、重合性モノマー、帯電防止剤、カップリング剤(f)、pH調整剤、防錆剤、防腐剤、防黴剤、酸化防止剤(g)、界面活性剤(h)、エポキシ硬化促進剤(i)、還元防止剤、蒸発促進剤、キレート化剤、水溶性ポリマーが挙げられる。また、所望の用途に応じて顔料または染料を含有してもよい。添加剤は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4. Additives The composition of the present invention may contain additives other than the polyester amic acid (A), the epoxy compound (B) and the thiol compound (E) depending on the intended properties. Examples of the additive include an epoxy curing agent (C), a solvent (F), an epoxy compound (e), a polyimide resin, a polymerizable monomer, an antistatic agent, a coupling agent (f), a pH adjuster, and a rust inhibitor. , Antiseptics, antifungal agents, antioxidants (g), surfactants (h), epoxy curing accelerators (i), reduction inhibitors, evaporation accelerators, chelating agents, water-soluble polymers. Moreover, you may contain a pigment or dye according to a desired use. Only one type of additive may be used, or two or more types may be mixed and used.
1.4.1. エポキシ硬化剤(C)
 本発明の組成物には、それ自身が反応することでエポキシの硬化反応を促進するエポキシ硬化剤(C)が配合されてもよい。エポキシ硬化剤(C)の配合により、耐熱性および耐薬品性に優れる硬化膜が得られる。本発明において、チオール化合物(E)は、エポキシ硬化剤(C)に含まれないものとする。
 エポキシ硬化剤(C)は、ポリエステルアミド酸(A)とは異なる化合物であり、具体的には、酸無水物系硬化剤、ポリアミン系硬化剤、ポリフェノール系硬化剤および触媒型硬化剤などが挙げられるが、耐着色性および耐熱性等の点から酸無水物系硬化剤が好ましい。
 エポキシ硬化剤(C)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.1. Epoxy curing agent (C)
The composition of the present invention may contain an epoxy curing agent (C) that accelerates the epoxy curing reaction by reacting itself. By adding the epoxy curing agent (C), a cured film having excellent heat resistance and chemical resistance can be obtained. In the present invention, the thiol compound (E) is not included in the epoxy curing agent (C).
The epoxy curing agent (C) is a compound different from the polyester amide acid (A). Specific examples include an acid anhydride curing agent, a polyamine curing agent, a polyphenol curing agent, and a catalyst curing agent. However, acid anhydride curing agents are preferred from the standpoint of color resistance and heat resistance.
As the epoxy curing agent (C), only one kind may be used, or two or more kinds may be mixed and used.
 酸無水物系硬化剤の具体例としては、例えば、無水マレイン酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水フタル酸、無水トリメリット酸(活性水素量当量64.0)、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(活性水素量当量77.5)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(活性水素量当量111.0)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物(活性水素量当量75.0)などの芳香族多価カルボン酸無水物、スチレン-無水マレイン酸共重合体が挙げられる。これらの中でも、溶媒(F)に対する溶解性に優れる組成物が得られる等の点から、無水トリメリット酸、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物が特に好ましい。また、ガラス転移温度の高い硬化膜が得られる等の点から3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物が特に好ましい。 Specific examples of the acid anhydride curing agent include, for example, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phthalic anhydride, trimellitic anhydride (active hydrogen content equivalent of 64 0.0), 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (active hydrogen content equivalent 77.5), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (active hydrogen content) Equivalent 111.0), 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (active hydrogen equivalent 75.0) And aromatic polycarboxylic anhydrides such as styrene-maleic anhydride copolymers. Of these, trimellitic anhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 4,4 ′, and the like are obtained because a composition having excellent solubility in the solvent (F) can be obtained. -(Hexafluoroisopropylidene) diphthalic anhydride is particularly preferred. Further, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride is particularly preferable from the viewpoint of obtaining a cured film having a high glass transition temperature.
 カルボン酸系硬化剤の具体例としては、マレイン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、ダイマー酸が挙げられる。 Specific examples of the carboxylic acid curing agent include maleic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, and dimer acid.
 ダイマー酸は、例えば、ルイス酸およびブレンステッド酸を触媒として用いて、不飽和脂肪酸の重合を行うことによって得られる。ダイマー酸は、公知の方法(例:特開平9-12712号公報)によって製造することができる。 The dimer acid can be obtained, for example, by polymerizing an unsaturated fatty acid using a Lewis acid and a Bronsted acid as a catalyst. Dimer acid can be produced by a known method (eg, JP-A-9-12712).
 不飽和脂肪酸としては、例えば、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸、リノール酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸、ボセオペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸、ドコサヘキサエン酸、ニシン酸が挙げられる。不飽和脂肪酸の炭素数は、通常4~24、好ましくは14~20である。 Examples of unsaturated fatty acids include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, linoleic acid, pinolenic acid, eleostearic acid, Mead acid, dihomo-γ-linolenic acid, eicosatrienoic acid, stearidonic acid, arachidonic acid, eicosatetraenoic acid, adrenic acid, bosepentaenoic acid, ozbond acid, succinic acid, tetracosapentanoic acid, docosahexaenoic acid, nisic acid Is mentioned. The carbon number of the unsaturated fatty acid is usually 4 to 24, preferably 14 to 20.
 例えば、リノール酸を用いてダイマー酸を製造する場合、得られる混合物は一般的に炭素数36のダイマー酸を主成分として含むが、炭素数18のモノマー酸および炭素数54のトリマー酸も副成分として少量含むのが一般的であり、原料由来の様々な構造を含む。 For example, when dimer acid is produced using linoleic acid, the resulting mixture generally contains dimer acid having 36 carbon atoms as a main component, but monomer acid having 18 carbon atoms and trimer acid having 54 carbon atoms are also minor components. As a general rule, a small amount is included, and various structures derived from raw materials are included.
 エポキシ硬化剤(C)の含有量は、エタノールやIPAなどの薬品に対する耐薬品性およびガラスやITOに対する密着性が良好で、表面硬度の高い硬化膜が得られる等の点から、本発明の組成物の固形分(該組成物から溶剤を除いた残分)100重量部に対し、好ましくは0~50重量部、より好ましくは0~40重量部、さらに好ましくは0~30重量部であり、全エポキシ化合物100重量部に対し、好ましくは0~300重量部、より好ましくは0~200重量部、さらに好ましくは0~100重量部である。 The content of the epoxy curing agent (C) is the composition of the present invention from the viewpoints of having good chemical resistance to chemicals such as ethanol and IPA, good adhesion to glass and ITO, and obtaining a cured film with high surface hardness. It is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, still more preferably 0 to 30 parts by weight based on 100 parts by weight of the solid content of the product (residue obtained by removing the solvent from the composition) The amount is preferably 0 to 300 parts by weight, more preferably 0 to 200 parts by weight, and still more preferably 0 to 100 parts by weight with respect to 100 parts by weight of the total epoxy compound.
 また、用いる全エポキシ化合物とエポキシ硬化剤(C)との比率は、溶媒(F)に対する溶解性に優れる組成物が得られ、高透明で耐熱性および耐薬品性、低吸水性に優れる硬化膜が得られる等の点から、用いる全エポキシ化合物中のエポキシ基量に対し、エポキシ硬化剤中の酸無水物基やカルボキシル基等のエポキシ基と反応し得る基の量が0~1.5倍当量であることが好ましく、0~1.2倍当量であることがより好ましく、0~0.8倍当量であると、得られる硬化膜の耐薬品性が一層向上するためさらに好ましい。なお、このとき、例えば、全エポキシ化合物として、エポキシ基を1つ有する化合物を1当量用い、エポキシ硬化剤(C)として、酸無水物基を1つ有する化合物を1当量用いる場合、全エポキシ化合物に対するエポキシ硬化剤(C)の量は、2倍当量であるとする。 Moreover, the ratio of the total epoxy compound to be used and the epoxy curing agent (C) is such that a composition having excellent solubility in the solvent (F) is obtained, and a cured film having high transparency, excellent heat resistance, chemical resistance, and low water absorption. The amount of groups capable of reacting with epoxy groups such as acid anhydride groups and carboxyl groups in the epoxy curing agent is 0 to 1.5 times the amount of epoxy groups in all epoxy compounds used. It is preferably an equivalent, more preferably 0 to 1.2 times equivalent, and more preferably 0 to 0.8 times equivalent, since the chemical resistance of the resulting cured film is further improved. At this time, for example, when 1 equivalent of a compound having one epoxy group is used as the total epoxy compound and 1 equivalent of a compound having one acid anhydride group is used as the epoxy curing agent (C), all the epoxy compounds It is assumed that the amount of the epoxy curing agent (C) is 2 times equivalent.
1.4.2. 溶媒(F)
 本発明の組成物は、例えば、ポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)を溶媒(F)に溶解して得ることができる。したがって、溶媒(F)は、ポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)を溶解することができる溶媒であることが好ましい。また、単独ではポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)を溶解しない溶媒であっても、他の溶媒と混合することによって、溶媒(F)として用いることが可能になる場合がある。
 溶媒(F)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.2. Solvent (F)
The composition of the present invention can be obtained, for example, by dissolving the polyester amide acid (A), the epoxy compound (B), and the thiol compound (E) in the solvent (F). Therefore, the solvent (F) is preferably a solvent that can dissolve the polyester amide acid (A), the epoxy compound (B), and the thiol compound (E). Moreover, even if it is a solvent which does not dissolve polyester amide acid (A), epoxy compound (B) and thiol compound (E) alone, it can be used as solvent (F) by mixing with other solvents. There is a case.
Only 1 type may be used for a solvent (F), and 2 or more types may be mixed and used for it.
 溶媒(F)としては、例えば、乳酸エチル、エタノール、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、シクロヘキサノン、1,3-ジオキソラン、エチレングリコールジメチルエーテル、1,4-ジオキサン、プロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、アニソール、ジプロピレングリコールジメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル(ECa)、ジエチレングリコールモノブチルエーテル(DB)、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、トリエチレングリコールジビニルエーテル、トリプロピレングリコールモノメチルエーテル、テトラエチレングリコールジメチルエーテル(MTEM)、テトラメチレングリコールモノビニルエーテル、2-メトキシエタノール、2-エトキシエタノール、安息香酸メチル、安息香酸エチル、1-ビニル-2-ピロリドン、1-ブチル-2-ピロリドン、1-エチル-2-ピロリドン、1-(2-ヒドロキシエチル)-2-ピロリドン、2-ピロリドン、N-メチル-2-ピロリドン、1-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、N-メチル-ε-カプロラクタム、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、ε-カプロラクトン、γ-ヘキサノラクトン、δ-ヘキサノラクトン、メチルエチルスルホキシド、2-ヒドロキシイソ酪酸メチル(HBM)、ジメチルスルホキシドおよび出光興産(株)製エクアミド(商品名)が挙げられる。 Examples of the solvent (F) include ethyl lactate, ethanol, ethylene glycol, propylene glycol, glycerin, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether. Acetate, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, cyclohexanone, 1,3-dioxolane, ethylene glycol dimethyl ether, 1,4-dioxane, propylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene Glico Monomethyl ether acetate, anisole, dipropylene glycol dimethyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, diethylene glycol monoethyl ether (ECa), diethylene glycol monobutyl ether (DB) , Ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol dibutyl ether, propylene glycol monobutyl ether, propylene glycol monoethyl ether, triethylene glycol divinyl ether, tripropylene glycol monomethyl Ether, tetraethylene glycol dimethyl ether (MTEM), tetramethylene glycol monovinyl ether, 2-methoxyethanol, 2-ethoxyethanol, methyl benzoate, ethyl benzoate, 1-vinyl-2-pyrrolidone, 1-butyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1- (2-hydroxyethyl) -2-pyrrolidone, 2-pyrrolidone, N-methyl-2-pyrrolidone, 1-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylpropionamide, N-methyl-ε-caprolactam, 1,3-dimethyl-2-imidazolidinone, γ-butyrolactone, α-acetyl-γ-butyrolactone, ε-caprolactone, γ -Hexanolactone, δ-Hexanolac Emissions, methyl ethyl sulfoxide, methyl 2-hydroxyisobutyrate (HBM), dimethyl sulfoxide and Idemitsu Kosan Co. Ekuamido (trade name).
 これらの中でも、ポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)の溶解性の点で、本発明の組成物は、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシプロピオン酸メチル、γ-ブチロラクトン、ジエチレングリコールモノエチルエーテル(ECa)、ジエチレングリコールモノブチルエーテル(DB)、2-ヒドロキシイソ酪酸メチル(HBM)、テトラエチレングリコールジメチルエーテル(MTEM)、ジメチルスルホキシドおよび出光興産(株)製エクアミド(商品名)からなる群より選択される少なくとも1種を、溶媒(F)として含むことが好ましい。 Among these, in terms of the solubility of the polyester amide acid (A), the epoxy compound (B), and the thiol compound (E), the composition of the present invention includes ethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, Diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, γ-butyrolactone, diethylene glycol monoethyl ether (ECa), diethylene glycol monobutyl ether (DB), methyl 2-hydroxyisobutyrate (HBM) ), Tetraethylene glycol dimethyl ether (MTEM), dimethyl sulfoxide and Idemitsu Kosan Co., Ltd. At least one member selected from the group consisting of manufacturing Ekuamido (trade name), it is preferably contained as the solvent (F).
1.4.3. エポキシ化合物(e)
 本発明では、オキシラン環またはオキセタン環を1つ以上有する化合物をエポキシ化合物という。本発明において、エポキシ化合物(e)は、エポキシ化合物(B)以外のエポキシ化合物を指す。
 エポキシ化合物(e)としては、オキシラン環を2つ以上有する化合物が好ましく用いられ、エポキシ化合物(e)は、1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.3. Epoxy compound (e)
In the present invention, a compound having at least one oxirane ring or oxetane ring is referred to as an epoxy compound. In the present invention, the epoxy compound (e) refers to an epoxy compound other than the epoxy compound (B).
As the epoxy compound (e), a compound having two or more oxirane rings is preferably used, and the epoxy compound (e) may be used alone or in combination of two or more.
 エポキシ化合物(e)としては、例えば、ビスフェノールA型エポキシ化合物、グリシジルエステル型エポキシ化合物、脂環式エポキシ化合物、シリカ微粒子含有エポキシ化合物、オキシラン環を有するモノマーの重合体、オキシラン環を有するモノマーと他のモノマーとの共重合体などが挙げられる。 Examples of the epoxy compound (e) include bisphenol A type epoxy compounds, glycidyl ester type epoxy compounds, alicyclic epoxy compounds, silica fine particle-containing epoxy compounds, monomers having an oxirane ring, monomers having an oxirane ring, and others. And a copolymer with the above monomer.
 オキシラン環を有するモノマーとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、次の式(9)で示される化合物が挙げられる。
 なお、本発明において、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートのことを指し、(メタ)アクリルとは、アクリルおよび/またはメタクリルのことを指す。
Examples of the monomer having an oxirane ring include glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, methyl glycidyl (meth) acrylate, and a compound represented by the following formula (9).
In the present invention, (meth) acrylate refers to acrylate and / or methacrylate, and (meth) acryl refers to acryl and / or methacryl.
Figure JPOXMLDOC01-appb-C000010
 式(9)中、Rは独立に、炭素数1~45のアルキル、炭素数4~8のシクロアルキル、アリールおよびアリールアルキルから選択される基であり;炭素数1~45のアルキルにおいて、少なくとも1つの水素はフッ素で置き換えられてもよく、隣接しない任意の-CH―は―O-または-CH=CH-で置き換えられてもよく;アリールアルキルにおけるアルキルの炭素数は1~10であり、該アルキルの隣接しない任意の-CH―は―O-で置き換えられてもよく;RおよびRはそれぞれ独立に、炭素数1~4のアルキル、シクロペンチル、シクロヘキシルおよびフェニルから選択される基であり;Xはオキシラニル、オキシラニレン、3,4-エポキシシクロヘキシル、オキセタニルおよびオキセタニレンのいずれか1つを有する基である。
Figure JPOXMLDOC01-appb-C000010
In the formula (9), R is independently a group selected from alkyl having 1 to 45 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl; in alkyl having 1 to 45 carbons, at least One hydrogen may be replaced by fluorine, and any non-adjacent —CH 2 — may be replaced by —O— or —CH═CH—; the alkyl in arylalkyl has 1 to 10 carbon atoms Any non-adjacent —CH 2 — of the alkyl may be replaced by —O—; R 1 and R 2 are each independently selected from alkyl of 1 to 4 carbons, cyclopentyl, cyclohexyl and phenyl a group; X 1 is oxiranyl, Okishiraniren, 3,4-epoxycyclohexyl, or oxetanyl and Okisetaniren 1 It is a group having one.
 オキシラン環を有するモノマーと共重合を行う他のモノマーとしては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3-エチル-3-オキセタニル)メチル(メタ)アクリレート、N-シクロヘキシルマレイミド、N-フェニルマレイミドが挙げられる。 Other monomers that copolymerize with monomers having an oxirane ring include, for example, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, styrene, methylstyrene, chloro Examples include methylstyrene, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, N-cyclohexylmaleimide, and N-phenylmaleimide.
 オキシラン環を有するモノマーの重合体およびオキシラン環を有するモノマーと他のモノマーとの共重合体の好ましい具体例としては、ポリグリシジルメタクリレート、メチルメタクリレートとグリシジルメタクリレートとの共重合体、ベンジルメタクリレートとグリシジルメタクリレートとの共重合体、n-ブチルメタクリレートとグリシジルメタクリレートとの共重合体、2-ヒドロキシエチルメタクリレートとグリシジルメタクリレートとの共重合体、(3-エチル-3-オキセタニル)メチルメタクリレートとグリシジルメタクリレートとの共重合体、スチレンとグリシジルメタクリレートとの共重合体が挙げられる。本発明の組成物がこれらのエポキシ化合物を含有すると、当該組成物から形成された硬化膜の耐熱性がさらに良好となるため好ましい。 Preferred examples of the polymer of the monomer having an oxirane ring and the copolymer of the monomer having an oxirane ring and another monomer include polyglycidyl methacrylate, a copolymer of methyl methacrylate and glycidyl methacrylate, benzyl methacrylate and glycidyl methacrylate. A copolymer of n-butyl methacrylate and glycidyl methacrylate, a copolymer of 2-hydroxyethyl methacrylate and glycidyl methacrylate, and a copolymer of (3-ethyl-3-oxetanyl) methyl methacrylate and glycidyl methacrylate. Examples thereof include a polymer and a copolymer of styrene and glycidyl methacrylate. It is preferable that the composition of the present invention contains these epoxy compounds since the heat resistance of the cured film formed from the composition is further improved.
 エポキシ化合物(e)の具体例としては、例えば、エポキシ化合物「jER807」(エポキシ当量160~175g/eq)、「jER815」、「jER825」(エポキシ当量170~180g/eq)、「jER827」(エポキシ当量180~190g/eq)、「jER828」(エポキシ当量184~194g/eq)、「jER190P」、「jER191P」、「jER1001」(エポキシ当量450~500g/eq)、「jER1002」(エポキシ当量600~700g/eq)、「jER1004」(エポキシ当量875~975g/eq)、「jER1004AF」(エポキシ当量875~975g/eq)、「jER1007」(エポキシ当量1750~2200g/eq)、「jER1010」(エポキシ当量3000~5000g/eq)、「jER157S70」(エポキシ当量200~220g/eq)、「jER1032H60」(エポキシ当量163~175g/eq)、「jER1256」(エポキシ当量7500~8500g/eq)(以上商品名、三菱化学(株)製)、「セロキサイド2021P」(エポキシ当量128~145g/eq)、「セロキサイド3000」、「EHPE-3150」(エポキシ当量170~190g/eq)、「EHPE-3150CE」(エポキシ当量147~157g/eq)(以上商品名、(株)ダイセル製)、「TECHMORE VG3101L」(商品名、(株)プリンテック製、エポキシ当量210g/eq)、「HP7200」(エポキシ当量254~264g/eq)、「HP7200H」(エポキシ当量272~284g/eq)、「HP7200HH」(エポキシ当量274~286g/eq)(以上商品名、DIC(株)製)、「NC―3000](エポキシ当量265~285g/eq)、「NC―3000H](エポキシ当量280~300g/eq)、「EOCN―102S」(エポキシ当量205~217g/eq)、「EOCN―103S」(エポキシ当量209~219g/eq)、「EOCN-104S」(エポキシ当量213~223g/eq)、「EPPN-501H」(エポキシ当量162~172g/eq)、「EPPN-501HY」(エポキシ当量163~175g/eq)、「EPPN-502H」(エポキシ当量158~178g/eq)、「EPPN-201」(エポキシ当量180~200g/eq)(以上商品名、日本化薬(株)製)、「TEP-G」(エポキシ当量160~180g/eq)(以上商品名、旭有機材(株)製)、「MA-DGIC(エポキシ当量140g/eq)」、「DA-MGIC」(エポキシ当量265g/eq)、「TG-G」(エポキシ当量92g/eq)(以上商品名、四国化成工業(株)製)、「TEPIC-VL](エポキシ当量125~145g/eq)(商品名、日産化学工業(株)製)、「NANOPOX C620」(商品名、EVONIK製、エポキシ当量約220g/eq)、「アデカレジン EP-4088S」(商品名、(株)ADEKA製、エポキシ当量170g/eq)、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、γ-グリシドキシプロピルトリメトキシシラン(エポキシ当量194g/eq)、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシランが挙げられる。「NANOPOX C620」はセロキサイド2021P(60重量部)に水酸基含有シリカ(40重量部)を反応させて得られる化合物である。これらの中でも、「NANOPOX C620」を含む組成物は硬度が高くなる硬化膜を得ることができるため好ましい。また、「アデカレジン EP-4088S」を含む組成物は耐薬品性が特に良好な硬化膜を得ることができるため好ましい。 Specific examples of the epoxy compound (e) include, for example, an epoxy compound “jER807” (epoxy equivalent 160 to 175 g / eq), “jER815”, “jER825” (epoxy equivalent 170 to 180 g / eq), “jER827” (epoxy 180-190 g / eq), “jER828” (epoxy equivalents 184-194 g / eq), “jER190P”, “jER191P”, “jER1001” (epoxy equivalents 450-500 g / eq), “jER1002” (epoxy equivalents 600- 700 g / eq), “jER1004” (epoxy equivalents 875-975 g / eq), “jER1004AF” (epoxy equivalents 875-975 g / eq), “jER1007” (epoxy equivalents 1750-2200 g / eq), “jER1010” (epoch (Equivalent 3000 to 5000 g / eq), “jER157S70” (epoxy equivalent 200 to 220 g / eq), “jER1032H60” (epoxy equivalent 163-175 g / eq), “jER1256” (epoxy equivalent 7500 to 8500 g / eq) Name, manufactured by Mitsubishi Chemical Corporation), “Celoxide 2021P” (epoxy equivalent 128 to 145 g / eq), “Celoxide 3000”, “EHPE-3150” (epoxy equivalent 170 to 190 g / eq), “EHPE-3150CE” ( Epoxy equivalents 147 to 157 g / eq) (trade name, manufactured by Daicel Corporation), “TECHMORE VG3101L” (trade name, manufactured by Printec Co., Ltd., epoxy equivalent 210 g / eq), “HP7200” (epoxy equivalents 254— 264g / eq), " P7200H "(epoxy equivalent 272 to 284 g / eq)," HP7200HH "(epoxy equivalent 274 to 286 g / eq) (above trade name, manufactured by DIC Corporation)," NC-3000 "(epoxy equivalent 265 to 285 g / eq) , “NC-3000H” (epoxy equivalent 280 to 300 g / eq), “EOCN-102S” (epoxy equivalent 205 to 217 g / eq), “EOCN-103S” (epoxy equivalent 209 to 219 g / eq), “EOCN-104S” (Epoxy equivalents 213 to 223 g / eq), "EPPN-501H" (epoxy equivalents 162 to 172 g / eq), "EPPN-501HY" (epoxy equivalents 163 to 175 g / eq), "EPPN-502H" (epoxy equivalents 158 ~ 178g / eq), "EPPN-201" (epoxy Equivalent 180-200 g / eq) (above trade name, Nippon Kayaku Co., Ltd.), “TEP-G” (epoxy equivalent 160-180 g / eq) (above trade name, Asahi Organic Materials Co., Ltd.), “ "MA-DGIC (epoxy equivalent 140 g / eq)", "DA-MGIC" (epoxy equivalent 265 g / eq), "TG-G" (epoxy equivalent 92 g / eq) , “TEPIC-VL” (epoxy equivalent 125-145 g / eq) (trade name, manufactured by Nissan Chemical Industries, Ltd.), “NANOPOX C620” (trade name, manufactured by EVONIK, epoxy equivalent approximately 220 g / eq), “Adeka Resin EP -4088S "(trade name, manufactured by ADEKA Corporation, epoxy equivalent 170 g / eq), N, N, N ', N'-tetraglycidyl-m-xylenediamine, 1,3- (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, γ-glycidoxypropyltrimethoxysilane (epoxy equivalent 194 g / eq) , Γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycidoxypropyltriethoxysilane. “NANOPOX C620” is a compound obtained by reacting Celoxide 2021P (60 parts by weight) with hydroxyl group-containing silica (40 parts by weight). Among these, a composition containing “NANOPOX C620” is preferable because a cured film having high hardness can be obtained. A composition containing “ADEKA RESIN EP-4088S” is preferable because a cured film having particularly good chemical resistance can be obtained.
 本発明の組成物中のエポキシ化合物(e)の濃度は特に限定されないが、耐熱性、およびガラスやITOに対する密着性にバランスよく優れる硬化膜が得られる等の点から、本発明の組成物の固形分(該組成物から溶剤を除いた残分)100重量%中に0~50重量%含まれていることが好ましく、0~40重量%含まれていることがより好ましい。 Although the density | concentration of the epoxy compound (e) in the composition of this invention is not specifically limited, From the point of being able to obtain the cured film which is excellent in heat resistance and the adhesiveness with respect to glass or ITO, etc. of the composition of this invention. It is preferably contained in an amount of 0 to 50% by weight and more preferably 0 to 40% by weight in 100% by weight of the solid content (residue obtained by removing the solvent from the composition).
1.4.4. ポリイミド樹脂
 ポリイミド樹脂としては、イミド基を有していれば特に限定されない。
 ポリイミド樹脂は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.4. The polyimide resin is not particularly limited as long as it has an imide group.
A polyimide resin may use only 1 type and may mix and use 2 or more types.
 ポリイミド樹脂は、例えば、酸二無水物とジアミンとを反応させて得られるポリアミド酸を、イミド化することで得られる。酸二無水物としては、例えば、ポリエステルアミド酸(A)の合成に用いることのできるテトラカルボン酸二無水物(a1)が挙げられる。ジアミンとしては、例えば、ポリエステルアミド酸(A)の合成に用いることのできるジアミン(a2)が挙げられる。 The polyimide resin can be obtained, for example, by imidizing polyamic acid obtained by reacting acid dianhydride and diamine. As an acid dianhydride, the tetracarboxylic dianhydride (a1) which can be used for the synthesis | combination of a polyester amide acid (A) is mentioned, for example. Examples of the diamine include diamine (a2) that can be used for the synthesis of polyester amic acid (A).
 本発明の組成物がポリイミド樹脂を含む場合、本発明の組成物100重量%中のポリイミド樹脂の濃度は特に限定されないが、耐熱性および耐薬品性がさらに良好である硬化膜が得られる等の点から、0.1~20重量%が好ましく、0.1~10重量%がさらに好ましい。 When the composition of the present invention contains a polyimide resin, the concentration of the polyimide resin in 100% by weight of the composition of the present invention is not particularly limited, but a cured film having better heat resistance and chemical resistance can be obtained. In this respect, 0.1 to 20% by weight is preferable, and 0.1 to 10% by weight is more preferable.
1.4.5. 重合性モノマー
 重合性モノマーとしては、例えば、単官能重合性モノマー、二官能(メタ)アクリレート、三官能以上の多官能(メタ)アクリレートが挙げられる。
 重合性モノマーは1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.5. Polymerizable monomer Examples of the polymerizable monomer include monofunctional polymerizable monomers, bifunctional (meth) acrylates, and trifunctional or higher polyfunctional (meth) acrylates.
As the polymerizable monomer, only one type may be used, or two or more types may be mixed and used.
 本発明の組成物が重合性モノマーを含む場合、本発明の組成物中の重合性モノマーの濃度は特に限定されないが、耐薬品性、表面硬度がさらに良好である硬化膜が得られる等の点から、本発明の組成物の固形分(該組成物から溶剤を除いた残分)100重量%中に10~80重量%含まれていることが好ましく、20~70重量%含まれていることがさらに好ましい。 When the composition of the present invention contains a polymerizable monomer, the concentration of the polymerizable monomer in the composition of the present invention is not particularly limited, but a cured film having a better chemical resistance and surface hardness can be obtained. From 10 to 80% by weight, preferably 20 to 70% by weight is contained in 100% by weight of the solid content of the composition of the present invention (residue obtained by removing the solvent from the composition). Is more preferable.
 単官能重合性モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカニル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、5-テトラヒドロフルフリルオキシカルボニルペンチル(メタ)アクリレート、ラウリルアルコールのエチレンオキシド付加物の(メタ)アクリレート、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、3-メチル-3-(メタ)アクリロキシメチルオキセタン、3-エチル-3-(メタ)アクリロキシメチルオキセタン、3-メチル-3-(メタ)アクリロキシエチルオキセタン、3-エチル-3-(メタ)アクリロキシエチルオキセタン、p-ビニルフェニル-3-エチルオキセタ-3-イルメチルエーテル、2-フェニル-3-(メタ)アクリロキシメチルオキセタン、2-トリフロロメチル-3-(メタ)アクリロキシメチルオキセタン、4-トリフロロメチル-2-(メタ)アクリロキシメチルオキセタン、(3-エチル-3-オキセタニル)メチル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、ビニルトルエン、N-シクロヘキシルマレイミド、N-フェニルマレイミド、(メタ)アクリルアミド、N-アクリロイルモルホリン、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、(メタ)アクリル酸、クロトン酸、α-クロルアクリル酸、ケイ皮酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、こはく酸モノ[2-(メタ)アクリロイロキシエチル]、マレイン酸モノ[2-(メタ)アクリロイロキシエチル]、シクロヘキセン-3,4-ジカルボン酸モノ[2-(メタ)アクリロイロキシエチル]が挙げられる。 Examples of the monofunctional polymerizable monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, Methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, tricyclo [5.2.1.0 2, 6] decanyl (meth) acrylate, glycerol model (Meth) acrylate, 5-tetrahydrofurfuryloxycarbonylpentyl (meth) acrylate, (meth) acrylate of ethylene oxide adduct of lauryl alcohol, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, 3,4-epoxycyclohexyl ( (Meth) acrylate, 3-methyl-3- (meth) acryloxymethyl oxetane, 3-ethyl-3- (meth) acryloxymethyl oxetane, 3-methyl-3- (meth) acryloxyethyl oxetane, 3-ethyl- 3- (meth) acryloxyethyl oxetane, p-vinylphenyl-3-ethyloxeta-3-ylmethyl ether, 2-phenyl-3- (meth) acryloxymethyl oxetane, 2-trifluoromethyl-3- (meth) Acryloxime Tyloxetane, 4-trifluoromethyl-2- (meth) acryloxymethyloxetane, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, styrene, methylstyrene, chloromethylstyrene, vinyltoluene, N-cyclohexylmaleimide , N-phenylmaleimide, (meth) acrylamide, N-acryloylmorpholine, polystyrene macromonomer, polymethylmethacrylate macromonomer, (meth) acrylic acid, crotonic acid, α-chloroacrylic acid, cinnamic acid, maleic acid, fumaric acid , Itaconic acid, citraconic acid, mesaconic acid, ω-carboxypolycaprolactone mono (meth) acrylate, succinic acid mono [2- (meth) acryloyloxyethyl], maleic acid mono [2- (meth) acryloyloxyethyl] , And chlorohexene-3,4-dicarboxylic acid mono [2- (meth) acryloyloxyethyl].
 二官能(メタ)アクリレートとしては、例えば、ビスフェノールFエチレンオキシド変性ジ(メタ)アクリレート、ビスフェノールAエチレンオキシド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキシド変性ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレートが挙げられる。 Examples of the bifunctional (meth) acrylate include bisphenol F ethylene oxide modified di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene Glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol di (meth) acrylate monostearate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,4-cyclohexanedimethanol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanedi Ruji (meth) acrylate, trimethylolpropane di (meth) acrylate, dipentaerythritol di (meth) acrylate.
 三官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、エピクロルヒドリン変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、エピクロルヒドリン変性グリセロールトリ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性リン酸トリ(メタ)アクリレート、トリス[(メタ)アクリロキシエチル]イソシアヌレート、カプロラクトン変性トリス[(メタ)アクリロキシエチル]イソシアヌレート、ウレタン(メタ)アクリレートが挙げられる。 Examples of the trifunctional or higher polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and epichlorohydrin modified tri Methylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerol tri (meth) acrylate, epichlorohydrin modified glycerol tri (meth) acrylate, diglycerin tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, penta Erythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, alkyl-modified dipen Erythritol penta (meth) acrylate, alkyl-modified dipentaerythritol tetra (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, ethylene oxide Examples include modified tri (meth) acrylate phosphate, tris [(meth) acryloxyethyl] isocyanurate, caprolactone-modified tris [(meth) acryloxyethyl] isocyanurate, and urethane (meth) acrylate.
1.4.6. 帯電防止剤
 帯電防止剤は、本発明の組成物の帯電を防止するために使用することができ、本発明の組成物が帯電防止剤を含む場合、本発明の組成物100重量%中、0.01~1重量%の量で用いられることが好ましい。
 帯電防止剤としては、公知の帯電防止剤を用いることができる。具体的には、酸化錫、酸化錫・酸化アンチモン複合酸化物、酸化錫・酸化インジウム複合酸化物などの金属酸化物;四級アンモニウム塩が挙げられる。
 帯電防止剤は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.6. The antistatic agent can be used to prevent the composition of the present invention from being charged. When the composition of the present invention contains an antistatic agent, 0 in 100% by weight of the composition of the present invention. It is preferably used in an amount of 0.01 to 1% by weight.
A known antistatic agent can be used as the antistatic agent. Specific examples include metal oxides such as tin oxide, tin oxide / antimony oxide composite oxide, tin oxide / indium oxide composite oxide; and quaternary ammonium salts.
Only one type of antistatic agent may be used, or a mixture of two or more types may be used.
1.4.7. カップリング剤(f)
 カップリング剤(f)としては、特に限定されるものではなく、ガラスやITOとの密着性を向上させる等の目的でシランカップリング剤などの公知のカップリング剤を用いることができる。本発明において、カップリング剤(f)にはオキシラン環を含むカップリング剤を除く。本発明の組成物がカップリング剤(f)を含む場合、カップリング剤(f)は、本発明の組成物の固形分(該組成物から溶剤を除いた残分)100重量%に対し、10重量%以下になるように添加して用いられることが好ましい。
 カップリング剤(f)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.7. Coupling agent (f)
The coupling agent (f) is not particularly limited, and a known coupling agent such as a silane coupling agent can be used for the purpose of improving adhesion to glass or ITO. In the present invention, the coupling agent (f) excludes a coupling agent containing an oxirane ring. When the composition of the present invention contains a coupling agent (f), the coupling agent (f) is based on 100% by weight of the solid content of the composition of the present invention (residue obtained by removing the solvent from the composition). It is preferable to add and use so that it may become 10 weight% or less.
Only 1 type may be used for a coupling agent (f), and 2 or more types may be mixed and used for it.
 シランカップリング剤としては、例えば、トリアルコキシシラン化合物、ジアルコキシシラン化合物が挙げられる。好ましくは、例えば、γ-ビニルプロピルトリメトキシシラン、γ-ビニルプロピルトリエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、N-アミノエチル-γ-イミノプロピルメチルジメトキシシラン、N-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-アミノエチル-γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-イソシアナートプロピルメチルジエトキシシラン、γ-イソシアナートプロピルトリエトキシシランが挙げられる。 Examples of the silane coupling agent include trialkoxysilane compounds and dialkoxysilane compounds. Preferably, for example, γ-vinylpropyltrimethoxysilane, γ-vinylpropyltriethoxysilane, γ-acryloylpropylmethyldimethoxysilane, γ-acryloylpropyltrimethoxysilane, γ-acryloylpropylmethyldiethoxysilane, γ-acryloylpropyl Triethoxysilane, γ-methacryloylpropylmethyldimethoxysilane, γ-methacryloylpropyltrimethoxysilane, γ-methacryloylpropylmethyldiethoxysilane, γ-methacryloylpropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltri Methoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, N-aminoethyl-γ-iminopropylmethyldi Toxisilane, N-aminoethyl-γ-aminopropyltrimethoxysilane, N-aminoethyl-γ-aminopropylmethyldiethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltri Ethoxysilane, N-phenyl-γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-mercaptopropyltri Examples include ethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, and γ-isocyanatopropyltriethoxysilane.
 これらの中でも、γ-ビニルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシランが特に好ましい。 Among these, γ-vinylpropyltrimethoxysilane, γ-acryloylpropyltrimethoxysilane, γ-methacryloylpropyltrimethoxysilane, and γ-isocyanatopropyltriethoxysilane are particularly preferable.
1.4.8. 酸化防止剤(g)
 本発明の組成物が酸化防止剤(g)を含有することで、該組成物から得られる硬化膜が高温または光に曝された場合の劣化を防止することができる。酸化防止剤(g)は、本発明の組成物が酸化防止剤(g)を含む場合、該酸化防止剤(g)を除く組成物の固形分(該組成物から溶剤を除いた残分)100重量部に対し、0.1~3重量部添加して用いることが好ましい。
 酸化防止剤(g)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.8. Antioxidant (g)
When the composition of the present invention contains the antioxidant (g), it is possible to prevent deterioration when the cured film obtained from the composition is exposed to high temperature or light. When the composition of the present invention contains an antioxidant (g), the antioxidant (g) is a solid content of the composition excluding the antioxidant (g) (residue obtained by removing the solvent from the composition). It is preferable to add 0.1 to 3 parts by weight to 100 parts by weight.
Only 1 type may be used for antioxidant (g), and 2 or more types may be mixed and used for it.
 酸化防止剤(g)としては、ヒンダードアミン系化合物、ヒンダードフェノール系化合物などが挙げられる。具体的には、IRGAFOS XP40、IRGAFOS XP60、IRGANOX 1010、IRGANOX 1035、IRGANOX 1076、IRGANOX 1135、IRGANOX 1520L(以上商品名、BASF社製)、アデカスタブ AO-20、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-80、アデカスタブ AO-330(以上商品名、(株)ADEKA社製)等が挙げられる。 Examples of the antioxidant (g) include hindered amine compounds and hindered phenol compounds. Specifically, IRGAFOS XP40, IRGAFOS XP60, IRGANOX 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 1520L (above trade names, manufactured by BASF), Adeka Stub AO-20, Adeka Stub AO-40, Ade 40 A-40 Adeka Stub AO-60, Adeka Stub AO-80, Adeka Stub AO-330 (trade name, manufactured by ADEKA Corporation) and the like.
1.4.9. 界面活性剤(h)
 本発明の組成物が界面活性剤(h)を含有することで、下地基板への濡れ性、レベリング性や塗布性が向上した組成物を得ることができ、本発明の組成物が界面活性剤(h)を含む場合、界面活性剤(h)は、本発明の組成物100重量%に対し、0.01~1重量%となる量で用いられることが好ましい。
 界面活性剤(h)は1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.9. Surfactant (h)
When the composition of the present invention contains the surfactant (h), a composition having improved wettability, leveling properties and coatability to the base substrate can be obtained, and the composition of the present invention is a surfactant. When (h) is included, the surfactant (h) is preferably used in an amount of 0.01 to 1% by weight based on 100% by weight of the composition of the present invention.
Only 1 type may be used for surfactant (h), and 2 or more types may be mixed and used for it.
 界面活性剤(h)としては、本発明の組成物の塗布性を向上できる等の点から、例えば、商品名「BYK-300」、「BYK-306」、「BYK-335」、「BYK-310」、「BYK-341」、「BYK-344」、「BYK-370」(ビックケミー・ジャパン(株)製)等のシリコン系界面活性剤;商品名「BYK-354」、「BYK-358」、「BYK-361」(ビックケミー・ジャパン(株)製)等のアクリル系界面活性剤;商品名「DFX-18」、「フタージェント250」、「フタージェント251」(ネオス(株)製)、「メガファックRS-72-K」(DIC(株)製)等のフッ素系界面活性剤が挙げられる。 As the surfactant (h), for example, trade names “BYK-300”, “BYK-306”, “BYK-335”, “BYK-” can be used, for example, in order to improve the coating property of the composition of the present invention. 310 ”,“ BYK-341 ”,“ BYK-344 ”,“ BYK-370 ”(manufactured by Big Chemie Japan Co., Ltd.) and other silicon surfactants; trade names“ BYK-354 ”,“ BYK-358 ” Acrylic surfactants such as “BYK-361” (manufactured by Big Chemie Japan Co., Ltd.); trade names “DFX-18”, “Factent 250”, “Factent 251” (manufactured by Neos), Fluorosurfactants such as “Megafac RS-72-K” (manufactured by DIC Corporation) can be used.
1.4.10.エポキシ硬化促進剤(i)
 エポキシ硬化促進剤(i)は、それ自身が反応することなく、エポキシの硬化反応を促進するものをいう。なお、本発明において、チオール化合物(E)は、エポキシ硬化剤(C)に含まれないものとする。
 エポキシ硬化促進剤(i)としては、本発明の組成物の硬化温度を低下させること、あるいは硬化時間を短縮させることができる等の点から、「DBU」、「U-CAT」、「U-CAT SA1」、「U-CAT SA102」、「U-CAT SA506」、「U-CAT SA603」、「U-CAT SA810」、「U-CAT 5002」、「U-CAT 5003」、「U-CAT 18X」、「U-CAT SA881」、「U-CAT 891」(以上商品名、サンアプロ(株)製)、「CP-001」、「NV-203-R4」(以上商品名、大阪ガスケミカル(株)製)等が挙げられる。
 エポキシ硬化促進剤(i)はそれぞれ、1種のみを用いてもよく、2種以上を用いてもよい。
1.4.10. Epoxy curing accelerator (i)
The epoxy curing accelerator (i) refers to an agent that accelerates the epoxy curing reaction without reacting itself. In the present invention, the thiol compound (E) is not included in the epoxy curing agent (C).
As the epoxy curing accelerator (i), “DBU”, “U-CAT”, “U-” can be used because the curing temperature of the composition of the present invention can be lowered or the curing time can be shortened. "CAT SA1", "U-CAT SA102", "U-CAT SA506", "U-CAT SA603", "U-CAT SA810", "U-CAT 5002", "U-CAT 5003", "U-CAT 18X ”,“ U-CAT SA881 ”,“ U-CAT 891 ”(trade name, manufactured by Sun Apro Co., Ltd.),“ CP-001 ”,“ NV-203-R4 ”(trade name, Osaka Gas Chemical ( Etc.).
Each of the epoxy curing accelerators (i) may be used alone or in combination of two or more.
 エポキシ硬化促進剤(i)の含有量は、エポキシ硬化剤(C)100重量部に対し、好ましくは10~200重量部、より好ましくは20~180重量部、さらに好ましくは30~150重量部である。 The content of the epoxy curing accelerator (i) is preferably 10 to 200 parts by weight, more preferably 20 to 180 parts by weight, and even more preferably 30 to 150 parts by weight with respect to 100 parts by weight of the epoxy curing agent (C). is there.
1.4.11. 顔料または染料
 顔料としては、炭化珪素、アルミナ、マグネシア、シリカ、酸化亜鉛、低次酸化チタンおよび黒鉛が挙げられる。
 染料としては、アゾ染料、アゾメチン染料、キサンテン染料、キノン染料が挙げられる。アゾ染料の例としては「VALIFAST BLACK 3810」、「VALIFAST BLACK 3820」、「VALIFAST RED 3304」、「VALIFAST RED 3320」、「OIL BLACK 860」(以上商品名、オリエント化学工業(株)製)が挙げられる。
 顔料および染料はそれぞれ、1種のみを用いてもよく、2種以上を混合して用いてもよい。
1.4.11. Examples of the pigment or dye pigment include silicon carbide, alumina, magnesia, silica, zinc oxide, low-order titanium oxide, and graphite.
Examples of the dye include azo dyes, azomethine dyes, xanthene dyes, and quinone dyes. Examples of azo dyes include “VALIFAST BLACK 3810”, “VALIFAST BLACK 3820”, “VALIFAST RED 3304”, “VALIFAST RED 3320”, and “OIL BLACK 860” (trade names, manufactured by Orient Chemical Industry Co., Ltd.). It is done.
Each of the pigment and the dye may be used alone or in combination of two or more.
2. 熱硬化性樹脂組成物の調製方法
 本発明の組成物は、ポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)と、必要に応じてエポキシ硬化剤(C)や溶媒(D)やその他の添加剤などとを混合することによって調製することができる。
 また、本発明の組成物は、ポリエステルアミド酸(A)の合成時に得られた反応液や混合液をそのまま、エポキシ化合物(B)、チオール化合物(E)、必要に応じて用いられるエポキシ硬化剤(C)や溶媒(F)、その他の添加剤などと混合することによって調製することもできる。
2. The composition of the preparation the present invention thermosetting resin composition, polyester amide acid (A), epoxy compound (B) and a thiol compound (E), an epoxy curing agent optionally (C) and solvent (D ) And other additives.
In addition, the composition of the present invention is an epoxy compound (B), a thiol compound (E), and an epoxy curing agent that is used as necessary, with the reaction solution or mixed solution obtained during the synthesis of the polyester amide acid (A) as it is. It can also be prepared by mixing with (C), solvent (F), other additives and the like.
3. 硬化膜の形成方法
 本発明の硬化膜は、前記本発明の組成物を硬化させることによって得られる膜であれば特に制限されない。本発明の硬化膜は、例えば、本発明の組成物を、基板上に塗布し、加熱することにより得ることができる。
 以下、本発明の組成物を用いた硬化膜の形成方法における、塗布方法および硬化方法について説明する。
3. Forming method of cured film The cured film of the present invention is not particularly limited as long as it is a film obtained by curing the composition of the present invention. The cured film of the present invention can be obtained, for example, by applying the composition of the present invention on a substrate and heating.
Hereinafter, the coating method and the curing method in the method for forming a cured film using the composition of the present invention will be described.
3.1. 熱硬化性樹脂組成物の塗布方法
 基板上への本発明の組成物の塗布は、スプレーコート法、スピンコート法、ロールコート法、ディッピング法、スリットコート法、バーコート法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、ディスペンサー法、スクリーン印刷法およびインクジェット印刷法など従来から公知の方法により行うことができる。
3.1. Application Method of Thermosetting Resin Composition Application of the composition of the present invention on a substrate can be performed by spray coating, spin coating, roll coating, dipping, slit coating, bar coating, gravure printing, flexographic printing. It can be performed by a conventionally known method such as a printing method, an offset printing method, a dispenser method, a screen printing method and an ink jet printing method.
 例えば、本発明の組成物から、前記XおよびY電極が接触しないように設けられる透明絶縁膜を形成する場合、パターン形成が容易であるという点で、グラビア印刷法、フレキソ印刷法、オフセット印刷法、ディスペンサー法、スクリーン印刷法およびインクジェット印刷法などの印刷法が好ましい。 For example, from the composition of the present invention, in the case of forming a transparent insulating film provided so that the X and Y electrodes are not in contact with each other, a gravure printing method, a flexographic printing method, an offset printing method, in that pattern formation is easy Printing methods such as a dispenser method, a screen printing method and an ink jet printing method are preferred.
 また、例えば、本発明の組成物からオーバーコートを形成する場合、全面印刷が容易であるという点で、スピンコート法、スリットコート法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、ディスペンサー法、スクリーン印刷法などの塗布法が好ましい。 Further, for example, in the case of forming an overcoat from the composition of the present invention, spin coating, slit coating, gravure printing, flexographic printing, offset printing, dispenser, A coating method such as a screen printing method is preferred.
 前記基板としては、特に限定されるものではなく公知の基板を用いることができるが、例えば、FR-1、FR-3、FR-4、CEM-3またはE668等の各種規格に適合する、ガラスエポキシ基板、ガラスコンポジット基板、紙フェノール基板、紙エポキシ基板、グリーンエポキシ基板、BT(ビスマレイミドトリアジン)レジン基板;銅、黄銅、リン青銅、ベリリウム銅、アルミニウム、金、銀、ニッケル、スズ、クロムまたはステンレス等の金属からなる基板(これらの金属からなる層を表面に有する基板であってもよい);酸化インジウムスズ(ITO)、酸化アルミニウム(アルミナ)、窒化アルミニウム、酸化ジルコニウム(ジルコニア)、ジルコニウムのケイ酸塩(ジルコン)、酸化マグネシウム(マグネシア)、チタン酸アルミニウム、チタン酸バリウム、チタン酸鉛(PT)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、ニオブ酸リチウム、タンタル酸リチウム、硫化カドニウム、硫化モリブデン、酸化ベリリウム(ベリリア)、酸化ケイ素(シリカ)、炭化ケイ素(シリコンカーバイト)、窒化ケイ素(シリコンナイトライド)、窒化ホウ素(ボロンナイトライド)、酸化亜鉛、ムライト、フェライト、ステアタイト、ホルステライト、スピネルまたはスポジュメン等の無機物からなる基板(これらの無機物を含む層を表面に有する基板であってもよい);PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンテレフタレート)、PCT(ポリシクロへキシレンジメチレンテレフタレート)、PPS(ポリフェニレンサルファイド)、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリアミド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリアミドイミド、エポキシ樹脂、アクリル樹脂、テフロン(登録商標)、熱可塑性エラストマーまたは液晶ポリマー等の樹脂からなる基板(これらの樹脂含む層を表面に有する基板であってもよい);シリコン、ゲルマニウムまたはガリウム砒素等の半導体基板;ガラス基板;酸化スズ、酸化亜鉛、ITOまたはATO(酸化アンチモンスズ)等の電極材料(配線)が表面に形成された基板;αGEL(アルファゲル)、βGEL(ベータゲル)、θGEL(シータゲル)またはγGEL(ガンマゲル)(以上、(株)タイカの登録商標)等のゲルシートが挙げられる。
 本発明の組成物は、好ましくはガラス基板、ITO基板や樹脂製フィルム基板上に塗布される。
The substrate is not particularly limited, and a known substrate can be used. For example, glass that conforms to various standards such as FR-1, FR-3, FR-4, CEM-3, or E668. Epoxy substrate, glass composite substrate, paper phenol substrate, paper epoxy substrate, green epoxy substrate, BT (bismaleimide triazine) resin substrate; copper, brass, phosphor bronze, beryllium copper, aluminum, gold, silver, nickel, tin, chromium or A substrate made of metal such as stainless steel (may be a substrate having a layer made of these metals on the surface); indium tin oxide (ITO), aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), zirconium Silicate (zircon), magnesium oxide (magnesia), titanium Aluminum, barium titanate, lead titanate (PT), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), lithium niobate, lithium tantalate, cadmium sulfide, molybdenum sulfide, beryllium oxide (beryllia) ), Silicon oxide (silica), silicon carbide (silicon carbide), silicon nitride (silicon nitride), boron nitride (boron nitride), zinc oxide, mullite, ferrite, steatite, holsterite, spinel or spojumen Substrates made of inorganic substances (may be substrates having a layer containing these inorganic substances on the surface); PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PCT (polycyclohexylene dimethylene) Terephthalate), PPS (polyphenylene sulfide), polycarbonate, polyacetal, polyphenylene ether, polyamide, polyarylate, polysulfone, polyethersulfone, polyetherimide, polyamideimide, epoxy resin, acrylic resin, Teflon (registered trademark), thermoplastic elastomer Or a substrate made of a resin such as a liquid crystal polymer (may be a substrate having a layer containing these resins on its surface); a semiconductor substrate such as silicon, germanium, or gallium arsenide; a glass substrate; tin oxide, zinc oxide, ITO, or ATO A substrate on which an electrode material (wiring) such as (antimony tin oxide) is formed; αGEL (alpha gel), βGEL (beta gel), θGEL (theta gel) or γGEL (gamma gel) (above Gel sheet of the registered trademark), and the like of the degeneration and the like.
The composition of the present invention is preferably applied on a glass substrate, an ITO substrate or a resin film substrate.
3.2. 熱硬化性樹脂組成物の硬化方法
 前記本発明の組成物を塗布した後に、基板上に塗布された組成物を加熱することで硬化膜を得ることができる。このようにして硬化膜を形成する方法としては、好ましくは、本発明の組成物を塗布した後にホットプレートまたはオーブンなどで加熱することにより、溶媒を気化などさせて除去し(乾燥処理)、その後、さらに加熱する(硬化処理)方法が用いられる。
3.2. Curing method of thermosetting resin composition After applying the composition of the present invention, a cured film can be obtained by heating the composition applied on the substrate. As a method for forming a cured film in this manner, preferably, after applying the composition of the present invention, the solvent is removed by heating (drying treatment) by heating with a hot plate or an oven, etc. Further, a method of further heating (curing treatment) is used.
 乾燥処理の条件は、用いる組成物に含まれる各成分の種類および配合割合によって異なるが、通常、加熱温度は70~120℃であり、加熱時間は、オーブンなら5~15分間、ホットプレートなら1~10分間である。このような乾燥処理により、基板上に形状を保持できる程度の塗膜を形成することができる。 The conditions for the drying process vary depending on the types and blending ratios of the components contained in the composition to be used. Usually, the heating temperature is 70 to 120 ° C., and the heating time is 5 to 15 minutes for an oven and 1 for a hot plate. ~ 10 minutes. By such a drying process, a coating film to the extent that the shape can be maintained can be formed on the substrate.
 前記塗膜を形成した後、通常80~300℃、好ましくは90~200℃で硬化処理をする。このとき、オーブンを用いた場合では、通常10~120分間加熱処理することで硬化膜を得ることができる。
 なお、硬化処理は、加熱処理に限定されず、紫外線、イオンビーム、電子線またはガンマ線照射などの処理でもよい。
 本発明の組成物は、ポリエステルアミド酸(A)、エポキシ化合物(B)およびチオール化合物(E)を含有しているから、低温硬化性が良好である。このため、120℃以下の低温焼成により、耐薬品性等に優れる硬化膜を形成することができる。したがって、硬化処理を高温で行うことが困難なPET等の樹脂製フィルム基板上であっても、硬化膜を形成することが可能である。
After forming the coating film, a curing treatment is usually performed at 80 to 300 ° C, preferably 90 to 200 ° C. At this time, in the case of using an oven, a cured film can be obtained usually by heat treatment for 10 to 120 minutes.
Note that the curing process is not limited to the heat treatment, and may be a process such as ultraviolet ray, ion beam, electron beam, or gamma ray irradiation.
Since the composition of this invention contains the polyester amide acid (A), an epoxy compound (B), and a thiol compound (E), low temperature curability is favorable. For this reason, the cured film which is excellent in chemical-resistance etc. can be formed by low-temperature baking of 120 degrees C or less. Therefore, it is possible to form a cured film even on a resin film substrate such as PET that is difficult to perform the curing process at a high temperature.
4. 硬化膜付き基板
 本発明の硬化膜付き基板は、本発明の硬化膜を有すれば特に制限されないが、前記基板、特に、ガラス基板、ITO基板および樹脂製フィルム基板からなる群より選ばれる少なくとも1種類の基板上に上述の硬化膜を有することが好ましい。
 このような硬化膜付き基板は、例えば、ガラス、ITO、PET、PEN等の基板上に、本発明の組成物を前記塗布法等によって全面または所定のパターン状(ライン状など)に塗布し、その後、前記で説明したような乾燥処理および硬化処理を経ることで、形成することができる。
4). Substrate with Cured Film The substrate with a cured film of the present invention is not particularly limited as long as it has the cured film of the present invention, but at least one selected from the group consisting of the above-mentioned substrates, particularly glass substrates, ITO substrates, and resin film substrates. It is preferable to have the above-mentioned cured film on a kind of substrate.
Such a substrate with a cured film, for example, on the substrate of glass, ITO, PET, PEN, etc., the composition of the present invention is applied to the entire surface or a predetermined pattern (line shape, etc.) by the coating method, Then, it can form by passing through the drying process and hardening process which were demonstrated above.
5. 電子部品
 本発明の電子部品は、上述の硬化膜または硬化膜付き基板を有する電子部品である。このような電子部品としては、カラーフィルター、LED発光素子および受光素子などの各種光学材料、タッチパネルなどが挙げられる。
5). Electronic component An electronic component of the present invention is an electronic component having the above-described cured film or substrate with a cured film. Examples of such electronic components include color filters, various optical materials such as LED light emitting elements and light receiving elements, and touch panels.
 タッチパネルは、例えば、液晶表示装置または有機エレクトロルミネッセンス装置と位置検出装置とを組み合わせることで製造することができる。
 ここで、位置検出装置としては、例えば、ITOなどの導電物質からなる配線(X電極)が形成された基板上に、該配線を覆うように本発明の硬化膜(透明絶縁膜)を形成し、次いで、X電極と直交するように、ITOなどの導電物質からなる配線(Y電極)を形成し、その後、基板全面を覆うように、本発明の硬化膜でオーバーコートを形成した装置が挙げられる。
The touch panel can be manufactured, for example, by combining a liquid crystal display device or an organic electroluminescence device and a position detection device.
Here, as the position detection device, for example, a cured film (transparent insulating film) of the present invention is formed on a substrate on which a wiring (X electrode) made of a conductive material such as ITO is formed so as to cover the wiring. Then, an apparatus in which a wiring (Y electrode) made of a conductive material such as ITO is formed so as to be orthogonal to the X electrode, and then an overcoat is formed with the cured film of the present invention so as to cover the entire surface of the substrate. It is done.
 このような装置の製造の際に、本発明の組成物を用いることで、通常、印刷法等でパターン状に形成される前記硬化膜(透明絶縁膜)、および、通常、塗布法等で前面に形成される前記オーバーコートを1種類の組成物で形成することができる。従って、本発明の組成物を用いることで、電子部品の製造に際して、ラインの簡略化および歩留まりの向上が可能となる。 In the production of such a device, the cured film (transparent insulating film) usually formed in a pattern by a printing method or the like by using the composition of the present invention, and usually the front surface by a coating method or the like. The overcoat formed can be formed of a single composition. Therefore, by using the composition of the present invention, it is possible to simplify the line and improve the yield when manufacturing electronic components.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。実施例で用いる、フルオレン骨格を有するエポキシ化合物(B)、エポキシ化合物(e)、エポキシ硬化剤(C)、チオール化合物(E)、溶媒(F)、エポキシ硬化促進剤(i)、酸化防止剤(g)、界面活性剤(h)、ポリエステルアミド酸(A)の合成に使用するテトラカルボン酸二無水物(a1)、ジアミン(a2)、多価ヒドロキシ化合物(a3)、1価アルコール(a4)、反応溶媒(a5)および多価酸無水物(a6)の名称ならびにその略号を示す。以下の記述にはこの略号を使用する。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. Epoxy compound (B) having a fluorene skeleton, epoxy compound (e), epoxy curing agent (C), thiol compound (E), solvent (F), epoxy curing accelerator (i), antioxidant used in Examples (G), surfactant (h), tetracarboxylic dianhydride (a1), diamine (a2), polyvalent hydroxy compound (a3), monohydric alcohol (a4) used for the synthesis of polyester amic acid (A) ), Names of the reaction solvent (a5) and polyhydric acid anhydride (a6) and their abbreviations. This abbreviation is used in the following description.
<ポリエステルアミド酸(A)>
 <テトラカルボン酸二無水物(a1)>
 ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
 <ジアミン(a2)>
 DDS:3,3’-ジアミノジフェニルスルホン
 <多価ヒドロキシ化合物(a3)>
 BDOH:1,4-ブタンジオール
 <1価アルコール(a4)>
 BzOH:ベンジルアルコール
 <反応溶媒(a5)>
 MPM:3-メトキシプロピオン酸メチル
<Polyester amide acid (A)>
<Tetracarboxylic dianhydride (a1)>
ODPA: 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride <Diamine (a2)>
DDS: 3,3′-diaminodiphenylsulfone <Polyvalent hydroxy compound (a3)>
BDOH: 1,4-butanediol <monohydric alcohol (a4)>
BzOH: benzyl alcohol <Reaction solvent (a5)>
MPM: methyl 3-methoxypropionate
 <エポキシ化合物(B)>
 EG-200:OGSOL EG200(商品名、大阪ガスケミカル(株)製)、フルオレン骨格を有するエポキシ樹脂(エポキシ当量290、重量平均分子量2,000以下)
<Epoxy compound (B)>
EG-200: OGSOL EG200 (trade name, manufactured by Osaka Gas Chemical Co., Ltd.), epoxy resin having a fluorene skeleton (epoxy equivalent 290, weight average molecular weight 2,000 or less)
 <エポキシ化合物(e)>
 C620:NANOPOX C620(商品名、EVONIK社製)、ナノシリカ40%含有エポキシ樹脂
 EP4088S:アデカレジン EP-4088S(商品名、(株)ADEKA製)
 S510:3-グリシドキシプロピルトリメトキシシラン(商品名 サイラエースS510、JNC(株)製)
<Epoxy compound (e)>
C620: NANOPOX C620 (trade name, manufactured by EVONIK), epoxy resin containing 40% nanosilica EP4088S: Adeka Resin EP-4088S (trade name, manufactured by ADEKA Corporation)
S510: 3-Glycidoxypropyltrimethoxysilane (trade name: Sila Ace S510, manufactured by JNC Corporation)
 <エポキシ硬化剤(C)>
 TMA:無水トリメリット酸
 ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
 6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
 TDA:4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物
 P-1025:プリポール1025
<Epoxy curing agent (C)>
TMA: trimellitic anhydride ODPA: 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride 6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride TDA: 4- (2,5 -Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride P-1025: Pripol 1025
 <チオール化合物(E)>
 PE1:ペンタエリスリトール テトラキス(3-メルカプトブチレート)(商品名 カレンズMT PE1、昭和電工(株)製)
 PE1 AG:ペンタエリスリトール テトラキス(3-メルカプトブチレート)(商品名 カレンズMT PE1 AG、PE1の精製品、昭和電工(株)製)
 BD1:1,4-ビス(3-メルカプトブチリルオキシ)ブタン(商品名 カレンズMT BD1、昭和電工(株)製)
 NR1:1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(商品名 カレンズMT NR1、昭和電工(株)製)
 TPMB:トリメチロールプロパン トリス(3-メルカプトブチレート)
 DPMP:ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)
 PEMP:ペンタエリスリトール テトラキス(3-メルカプトプロピオネート)
 TEMPIC:トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート
 TMMP:トリメチロールプロパン トリス(3-メルカプトプロピオネート) TSG:下記の化学式(8)で示されるグリコールウリル誘導体(商品名 TS-G、四国化成工業(株)製)
Figure JPOXMLDOC01-appb-C000011
<Thiol compound (E)>
PE1: Pentaerythritol tetrakis (3-mercaptobutyrate) (trade name Karenz MT PE1, manufactured by Showa Denko KK)
PE1 AG: Pentaerythritol tetrakis (3-mercaptobutyrate) (trade name Karenz MT PE1 AG, a refined product of PE1, manufactured by Showa Denko KK)
BD1: 1,4-bis (3-mercaptobutyryloxy) butane (trade name Karenz MT BD1, manufactured by Showa Denko KK)
NR1: 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (trade name Karenz MT NR1, Showa Denko) (Made by Co., Ltd.)
TPMB: Trimethylolpropane tris (3-mercaptobutyrate)
DPMP: Dipentaerythritol Hexakis (3-mercaptopropionate)
Pemp: pentaerythritol tetrakis (3-mercaptopropionate)
TEMPIC: Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate TMMP: Trimethylolpropane Tris (3-mercaptopropionate) TSG: Glycoluril derivative represented by the following chemical formula (8) (trade name TS -G, manufactured by Shikoku Chemicals Co., Ltd.)
Figure JPOXMLDOC01-appb-C000011
 <溶媒(F)>
 MTM:トリエチレングリコールジメチルエーテル(商品名 ハイソルブMTM、東邦化学工業(株)製)
 EDM:ジエチレングリコールエチルメチルエーテル
 HBM:2-ヒドロキシイソ酪酸メチル
 GBL:γ-ブチロラクトン
<Solvent (F)>
MTM: Triethylene glycol dimethyl ether (trade name: Hisolv MTM, manufactured by Toho Chemical Industry Co., Ltd.)
EDM: Diethylene glycol ethyl methyl ether HBM: Methyl 2-hydroxyisobutyrate GBL: γ-butyrolactone
<エポキシ硬化促進剤(i)>
 SA506:ジアザビシクロウンデセン(DBU)のp-トルエンスルホン酸塩(商品名 U-CAT SA506、サンアプロ(株)製)
 2E4MZ:1-シアノエチル-2-エチル-4-メチルイミダゾール(商品名 2E4MZ-CN、四国化成(株)製)
 C11Z:2-ウンデシルイミダゾール(商品名 キュアゾール C11Z、四国化成工業(株)製)
<Epoxy curing accelerator (i)>
SA506: p-toluenesulfonate of diazabicycloundecene (DBU) (trade name U-CAT SA506, manufactured by San Apro Co., Ltd.)
2E4MZ: 1-cyanoethyl-2-ethyl-4-methylimidazole (trade name 2E4MZ-CN, manufactured by Shikoku Kasei Co., Ltd.)
C11Z: 2-Undecylimidazole (trade name Curesol C11Z, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
<酸化防止剤(g)>
 I1010:Irganox1010(商品名、BASF社製)
<界面活性剤(h)>
 RS-72K:フッ素系で界面活性作用のある撥液剤(商品名 メガファックRS-72K、DIC(株)製)
<Antioxidant (g)>
I1010: Irganox 1010 (trade name, manufactured by BASF)
<Surfactant (h)>
RS-72K: Fluorine-based liquid repellent (trade name: Mega-Fac RS-72K, manufactured by DIC Corporation)
<ポリエステルアミド酸(A)>
 まず、ポリエステルアミド酸を以下に示すように合成した(合成例1)。
[合成例1]
 温度計、撹拌羽根、原料投入仕込み口および窒素ガス導入口を備えた1000mlのセパラブルフラスコに、脱水精製したMPM446.96g、BDOH31.93g、BzOH25.54gおよびODPA183.20gを仕込み、乾燥窒素気流下130℃で3時間撹拌した。その後、反応液を25℃まで冷却し、DDS29.33gおよびMPM183.04gを投入し、20~30℃で2時間撹拌した後、115℃で1時間撹拌した。その後、30℃以下に冷却することにより淡黄色透明なポリエステルアミド酸の30重量%溶液を得た。
<Polyester amide acid (A)>
First, polyester amic acid was synthesized as shown below (Synthesis Example 1).
[Synthesis Example 1]
A 1000 ml separable flask equipped with a thermometer, a stirring blade, a raw material charging inlet and a nitrogen gas inlet was charged with 46.96 g of dehydrated and purified MP31.93 g of BDOH, 25.54 g of BzOH and 183.20 g of ODPA under a dry nitrogen stream. Stir at 130 ° C. for 3 hours. Thereafter, the reaction solution was cooled to 25 ° C., 29.33 g of DDS and 183.04 g of MPM were added, and stirred at 20 to 30 ° C. for 2 hours, and then stirred at 115 ° C. for 1 hour. Thereafter, by cooling to 30 ° C. or lower, a pale yellow transparent 30% by weight solution of polyester amic acid was obtained.
 この溶液の回転粘度は28.2mPa・sであった。ここで、回転粘度は、E型粘度計(商品名 TVE-22LT、東機産業(株)製)を使用して25℃条件下で測定した値である(以下同じ)。 The rotational viscosity of this solution was 28.2 mPa · s. Here, the rotational viscosity is a value measured at 25 ° C. using an E-type viscometer (trade name: TVE-22LT, manufactured by Toki Sangyo Co., Ltd.) (hereinafter the same).
 また、得られたポリエステルアミド酸の重量平均分子量は、4,200であった。なお、ポリエステルアミド酸の重量平均分子量は以下のようにして測定した。
 得られたポリエステルアミド酸を、N,N-ジメチルホルムアミド(DMF)でポリエステルアミド酸の濃度が約1重量%になるように希釈し、GPC装置:日本分光(株)製、Chrom Nav (示差屈折率計 RI-2031 Plus)を用いて、前記希釈液を展開剤としてGPC法により測定し、ポリスチレン換算することにより求めた。カラムは、昭和電工(株)製カラムGF-1G7B、GF-510HQおよびGF-310HQの3本をこの順序に接続して使用し、カラム温度40℃、流速0.5ml/minの条件で測定した(以下同じ)。
Moreover, the weight average molecular weight of the obtained polyester amide acid was 4,200. The weight average molecular weight of the polyester amide acid was measured as follows.
The obtained polyester amic acid was diluted with N, N-dimethylformamide (DMF) so that the concentration of the polyester amic acid was about 1% by weight, and GPC apparatus: manufactured by JASCO Corporation, Chrom Nav (differential refraction). Using a ratio meter (RI-2031 Plus), the diluted solution was measured by a GPC method using a developing agent, and determined by polystyrene conversion. Three columns GF-1G7B, GF-510HQ and GF-310HQ manufactured by Showa Denko Co., Ltd. were connected in this order, and the column was measured under conditions of a column temperature of 40 ° C. and a flow rate of 0.5 ml / min. (same as below).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[実施例1]
 撹拌羽根を備えた100mlの三つ口フラスコを窒素置換し、合成例1で得られたポリエステルアミド酸(A)溶液を7.37g(当該溶液中のポリエステルアミド酸(A)の量は2.21g)、EG-200を8.85g(エポキシ化合物(B)の量は4.43g)、S510を0.35、TMAを0.66g、HBMを22.42g、I1010を0.04g、RS-72Kを0.08g、それぞれ仕込んだ。
 その後、25℃(室温)で1時間撹拌し、各成分を均一に溶解させた。次いで、PE1を0.31g投入し、25℃で1時間撹拌した後にメンブランフィルター(材質:PTFE、孔径:1μm)で濾過し、濾液として熱硬化性樹脂含有組成物を得た。
[Example 1]
A 100 ml three-necked flask equipped with a stirring blade was purged with nitrogen, and 7.37 g of the polyester amic acid (A) solution obtained in Synthesis Example 1 (the amount of the polyester amic acid (A) in the solution was 2. 21g), 8.85 g of EG-200 (the amount of the epoxy compound (B) is 4.43 g), 0.35 of S510, 0.66 g of TMA, 22.42 g of HBM, 0.04 g of I1010, RS- 0.08 g of 72K was charged for each.
Then, it stirred at 25 degreeC (room temperature) for 1 hour, and dissolved each component uniformly. Next, 0.31 g of PE1 was added and stirred at 25 ° C. for 1 hour, followed by filtration with a membrane filter (material: PTFE, pore size: 1 μm) to obtain a thermosetting resin-containing composition as a filtrate.
[実施例2~13]
 実施例2~13は、表2および表3に示すとおりに各成分の種類および仕込み量を変更したこと以外は実施例1と同様にして、硬化性樹脂組成物を調製した。なお、表中の各成分の仕込み量は重量(g)を示している(以下の表において同じ。)
[Examples 2 to 13]
In Examples 2 to 13, curable resin compositions were prepared in the same manner as in Example 1 except that the types and amounts of each component were changed as shown in Tables 2 and 3. In addition, the preparation amount of each component in the table indicates weight (g) (the same applies to the following tables).
[比較例1~8]
 比較例1~8は、表4に示すとおりに各成分の種類および仕込み量を変更したこと以外は実施例1と同様にして、硬化性樹脂組成物を調製した。比較例2~6では、チオール化合物(E)の代わりに、表4に示す各反応促進剤を配合した。
[Comparative Examples 1 to 8]
In Comparative Examples 1 to 8, curable resin compositions were prepared in the same manner as in Example 1 except that the type and amount of each component were changed as shown in Table 4. In Comparative Examples 2 to 6, each reaction accelerator shown in Table 4 was blended instead of the thiol compound (E).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[粘度]
 実施例1~13および比較例1~6の熱硬化性樹脂組成物(以下、適宜「組成物」という。)について、製造直後における粘度(回転粘度)を測定した。表2~表3に示すように、実施例の熱硬化性樹脂組成物の粘度はインクジェット用のインクとして好適であった。
 対して、チオール化合物(E)ではなく、エポキシ硬化促進剤(i)を添加した比較例2~6の組成物は、比較例2を除いて、エポキシ硬化促進剤(i)を添加した後すぐに固形物が析出し、インクジェット用に使用できるインクが作製できなかった(表4では×で示す)。この結果から、ポリエステルアミド酸(A)およびフルオレン骨格を有するエポキシ化合物(B)を含有する組成物は、エポキシ硬化促進剤(i)を添加することにより、インクが作製できなかったり、保存安定性が悪くなったりする傾向にあるといえる。
[viscosity]
For the thermosetting resin compositions of Examples 1 to 13 and Comparative Examples 1 to 6 (hereinafter referred to as “composition” as appropriate), the viscosity (rotational viscosity) immediately after production was measured. As shown in Tables 2 to 3, the thermosetting resin compositions of the examples were suitable as inks for inkjet.
On the other hand, the compositions of Comparative Examples 2 to 6 to which the epoxy curing accelerator (i) was added instead of the thiol compound (E) were immediately after the addition of the epoxy curing accelerator (i) except for Comparative Example 2. In this case, a solid was deposited, and an ink usable for inkjet could not be prepared (indicated by x in Table 4). From this result, the composition containing the polyester amic acid (A) and the epoxy compound (B) having a fluorene skeleton cannot be prepared by adding the epoxy curing accelerator (i), or the storage stability is increased. It can be said that there is a tendency to get worse.
[保存安定性(粘度)]
 実施例1~13および比較例1~2の組成物を、45℃条件下において7日間、14日間および30日間保存した後に粘度を測定した。表4に示すように、反応促進剤を含まない比較例1は、製造後の時間経過に伴う粘度上昇は認められなかった。しかし、製造直後の粘度が低かった比較例2の組成物は、45℃で7日間保存した後の粘度が製造直後の約2.3倍に上昇した。これに対して、チオール化合物(E)を含有する実施例1~13の組成物はいずれも、45℃で7日間保存した後における粘度が、製造直後の約1.3倍以下であった。この結果から、チオール化合物(E)を用いることで、エポキシ硬化促進剤(i)を配合するよりも保存安定性が良い組成物となることが分かった。
[Storage stability (viscosity)]
The viscosities were measured after the compositions of Examples 1 to 13 and Comparative Examples 1 and 2 were stored at 45 ° C. for 7, 14, and 30 days. As shown in Table 4, in Comparative Example 1 containing no reaction accelerator, no increase in viscosity was observed with the passage of time after production. However, the composition of Comparative Example 2, which had a low viscosity immediately after production, increased in viscosity after storage for 7 days at 45 ° C. by about 2.3 times. In contrast, the compositions of Examples 1 to 13 containing the thiol compound (E) all had a viscosity of about 1.3 times or less immediately after production after being stored at 45 ° C. for 7 days. From this result, it was found that the use of the thiol compound (E) resulted in a composition having better storage stability than the case where the epoxy curing accelerator (i) was blended.
[吸水率]
 実施例1~13および比較例2で得られた組成物を乾燥後の膜厚が30~70μmになるように、アルミ箔面上に塗布して塗膜を形成した。その後、各塗膜を下記の条件で硬化させ、膜厚50~100μmの硬化膜付きアルミ箔をそれぞれ得た。なお、比較例1の組成物は、120℃で30分間あるいは100℃で60分間で焼成したあとに、硬化膜が割れやすく、アルミ箔から一定の大きさで採取することができなかったため、吸水率を測定しなかった。
[Water absorption rate]
The compositions obtained in Examples 1 to 13 and Comparative Example 2 were applied on the aluminum foil surface to form a coating film so that the film thickness after drying was 30 to 70 μm. Thereafter, each coating film was cured under the following conditions to obtain an aluminum foil with a cured film having a thickness of 50 to 100 μm. In the composition of Comparative Example 1, the cured film was easily broken after firing at 120 ° C. for 30 minutes or 100 ° C. for 60 minutes, and it was not possible to extract the aluminum foil in a certain size. The rate was not measured.
 <硬化条件>
 ホットプレートを用いて、80℃に30分間保持し、組成物中の溶媒を蒸発させた後、以下の条件で焼成した。
   ヤマト科学(株)製クリーンオーブン DT-610
 温度設定
表2~4
  ・実施例1~13、比較例1および2:120℃、30分間
表5
  ・実施例2-1、比較例1-1および2-1:100℃、60分間
  ・実施例2-2、比較例1-2および2-2:120℃、60分間
 このようにして得られた硬化膜について、吸水性、ガラス転移温度、および機械特性の評価を実施した。
<Curing conditions>
Using a hot plate, the mixture was kept at 80 ° C. for 30 minutes to evaporate the solvent in the composition, and then fired under the following conditions.
Yamato Scientific Co., Ltd. clean oven DT-610
Temperature setting table 2 ~ 4
Examples 1 to 13, Comparative Examples 1 and 2: 120 ° C., 30 minutes Table 5
Example 2-1 and Comparative Examples 1-1 and 2-1: 100 ° C., 60 minutes Example 2-2, Comparative Examples 1-2 and 2-2: 120 ° C., 60 minutes The cured film was evaluated for water absorption, glass transition temperature, and mechanical properties.
 上述した方法を用いて作製した硬化膜付きアルミ箔のアルミ箔を引き剥がして、組成物を焼成した後の硬化膜の単独膜を得た。この単独膜の浸漬前の重量(A)を測定した後、超純水中に室温で24時間浸漬して、不織布で膜表面に付着している水滴をふき取り、浸漬後の単独膜の重量(B)を測定した。A、Bの測定結果を用いて、以下の式により吸水率を求めた。
 吸水率(%)=[(B-A)/A]×100
 実施例および比較例の各組成物を用いて形成した硬化膜の単独膜について、吸水率を測定した結果を表2~4に示す。
The aluminum foil of the aluminum foil with a cured film produced using the method described above was peeled off to obtain a single film of the cured film after firing the composition. After measuring the weight (A) before immersion of this single membrane, it was immersed in ultrapure water at room temperature for 24 hours to wipe off water droplets adhering to the membrane surface with a nonwoven fabric, and the weight of the single membrane after immersion ( B) was measured. Using the measurement results of A and B, the water absorption was determined by the following formula.
Water absorption rate (%) = [(BA) / A] × 100
Tables 2 to 4 show the results of measuring the water absorption of the single cured films formed using the compositions of Examples and Comparative Examples.
 表2~表3に示した実施例はいずれも、比較例2よりも吸水率が低く、チオール化合物(E)を用いることにより、吸水性の低い硬化膜が得られることが分かった。また、実施例1~8と実施例9~13の結果から、吸水率が低い硬化物を形成するためには、チオール化合物(E)を含有する組成物には酸無水物であるTMAを配合しないことが好ましいといえる。 All of the examples shown in Tables 2 to 3 have lower water absorption than Comparative Example 2, and it was found that a cured film having low water absorption can be obtained by using the thiol compound (E). Further, from the results of Examples 1 to 8 and Examples 9 to 13, in order to form a cured product having a low water absorption, the composition containing the thiol compound (E) is blended with TMA which is an acid anhydride. It can be said that it is preferable not to.
[熱安定性]
 上記の実施例1~13および比較例1~6に係る組成物を用いて以下の条件で塗膜を形成し、表面に硬化前の塗膜が形成された基板とした。
  基板:ガラス基板(10cm角)
  塗布方法:インクジェット印刷
  プリンター:DMP-2831(FUJIFILM Dimatix社製)
  ヘッド:DMC-11610(FUJIFILM Dimatix社製)
  印刷条件:ヘッド温度30℃、電圧20V、駆動波形Dimatix Model Fluid2、駆動周波数5kHz、ドット間スペース15~20μm、片面2層印刷
[Thermal stability]
A coating film was formed using the compositions according to Examples 1 to 13 and Comparative Examples 1 to 6 under the following conditions to obtain a substrate on which a coating film before curing was formed.
Substrate: Glass substrate (10cm square)
Application method: inkjet printing Printer: DMP-2831 (manufactured by FUJIFILM Dimatix)
Head: DMC-11610 (manufactured by FUJIFILM Dimatix)
Printing conditions: Head temperature 30 ° C., voltage 20V, drive waveform Dimatix Model Fluid 2, drive frequency 5 kHz, dot spacing 15-20 μm, single-sided two-layer printing
 その後、以下の条件で、乾燥、本焼成をすることにより組成物を硬化し、基板上に硬化膜が形成されたサンプル基板を得た。得られたサンプル基板の硬化膜について、後述する方法により、重量減少温度、および耐薬品性を評価した。
<硬化条件>
・焼成工程
   ヤマト科学(株)製クリーンオーブン DT-610
・温度設定
表2および3
  ・実施例1~13:120℃、30分間
表5
  ・実施例2-1、比較例1-1および2-1:100℃、60分間
  ・実施例2-2、比較例1-2および2-2:120℃、60分間
表6、8~10
  ・実施例14~19、23~42、比較例7~9:100℃、60分間
Thereafter, the composition was cured by drying and main firing under the following conditions to obtain a sample substrate having a cured film formed on the substrate. About the cured film of the obtained sample board | substrate, weight reduction temperature and chemical resistance were evaluated by the method mentioned later.
<Curing conditions>
・ Baking process Yamato Scientific Co., Ltd. clean oven DT-610
・ Temperature setting tables 2 and 3
Examples 1 to 13: Table 5 at 120 ° C. for 30 minutes
-Example 2-1 and Comparative Examples 1-1 and 2-1: 100 ° C, 60 minutes-Example 2-2, Comparative Examples 1-2 and 2-2: 120 ° C, 60 minutes Tables 6, 8 to 10
Examples 14 to 19, 23 to 42, Comparative Examples 7 to 9: 100 ° C., 60 minutes
 硬化膜の1%重量減少温度(Td1)および5%重量減少温度(Td5)を測定した。また、硬化膜のガラス転移温度(Tg)についても測定した。各実施例の測定結果を表2および表3に示す。表2および表3に示す実施例1~8と実施例9~13の結果を比較すると、TMAを配合しないことにより、Td1およびTd5が高くなる傾向が認められた。この結果から、熱安定性の良好な硬化物を形成するためには、チオール化合物(E)を含有する組成物が酸無水物であるTMAを含有しないことが好ましいといえる。 The 1% weight reduction temperature (Td1) and 5% weight reduction temperature (Td5) of the cured film were measured. Further, the glass transition temperature (Tg) of the cured film was also measured. The measurement results of each example are shown in Table 2 and Table 3. When the results of Examples 1 to 8 and Examples 9 to 13 shown in Table 2 and Table 3 were compared, Td1 and Td5 tended to increase due to the absence of TMA. From this result, it can be said that it is preferable that the composition containing the thiol compound (E) does not contain TMA which is an acid anhydride in order to form a cured product having good thermal stability.
[機械特性]
 実施例1~13の組成物を用いて形成した硬化膜はいずれも、機械的特性が良好であった。例えば、実施例1の組成物を用いて形成した硬化膜は、弾性率が1627(MPa)、強度が78.7(MPa)、伸度が11.5%であった。また、実施例9の組成物を用いて形成した硬化膜は、弾性率が1619(MPa)、強度が81.0(MPa)、伸度が10.1%であった。この結果から、チオール化合物(E)を含有する組成物は、TMAを含有するか否かに関わらず、機械的特性が良好な硬化膜を形成できることが分かった。
[Mechanical properties]
All cured films formed using the compositions of Examples 1 to 13 had good mechanical properties. For example, the cured film formed using the composition of Example 1 had an elastic modulus of 1627 (MPa), a strength of 78.7 (MPa), and an elongation of 11.5%. Moreover, the cured film formed using the composition of Example 9 had an elastic modulus of 1619 (MPa), a strength of 81.0 (MPa), and an elongation of 10.1%. From this result, it was found that the composition containing the thiol compound (E) can form a cured film having good mechanical properties regardless of whether or not it contains TMA.
[耐薬品性]
 実施例2ならびに比較例1および2の組成物を焼成後の膜厚が約1μmになるように、ガラス板の一面の全領域に塗布し、以下の条件で焼成して、硬化膜付きガラス基板とし、硬化膜の処理前の膜厚(A)を測定した。
<硬化条件>
・焼成工程
 ヤマト科学(株)製クリーンオーブン DT-610
 温度設定
表5 
  ・実施例2、比較例1および2:120℃、30分間
  ・実施例2-1、比較例1-1および2-1:100℃、60分間
  ・実施例2-2、比較例1-2および2-2:120℃、60分間
表6~表10
  ・実施例14~32、実施例42、比較例7および8:100℃、60分間
[chemical resistance]
The composition of Example 2 and Comparative Examples 1 and 2 were applied to the entire area of one surface of the glass plate so that the film thickness after firing was about 1 μm, and fired under the following conditions to obtain a glass substrate with a cured film. Then, the film thickness (A) before the treatment of the cured film was measured.
<Curing conditions>
・ Baking process Yamato Scientific Co., Ltd. clean oven DT-610
Temperature setting table 5
-Example 2, Comparative Examples 1 and 2: 120 ° C, 30 minutes-Example 2-1, Comparative Examples 1-1 and 2-1: 100 ° C, 60 minutes-Example 2-2, Comparative Example 1-2 And 2-2: 120 ° C., 60 minutes Table 6 to Table 10
Examples 14-32, Example 42, Comparative Examples 7 and 8: 100 ° C., 60 minutes
 その後、この硬化膜付きガラス基板に対して、エタノールに超音波50℃で10分間浸漬処理(以下、EtOH処理と略記)、イソプロピルアルコールに超音波50℃で10分間浸漬処理(以下、IPA処理と略記)を別々に施し、硬化膜の浸漬後の膜厚(B)を測定した。超音波を加えた条件下での耐薬品試験は、アズワン製ASU-10Mの超音波洗浄機を使用し、洗浄強弱のモードを強(Hi)に設定した。 Thereafter, the glass substrate with a cured film was immersed in ethanol at 50 ° C. for 10 minutes (hereinafter abbreviated as EtOH treatment), and immersed in isopropyl alcohol at 50 ° C. for 10 minutes (hereinafter referred to as IPA treatment). (Abbreviation) was applied separately, and the film thickness (B) after immersion of the cured film was measured. In the chemical resistance test under the condition of applying ultrasonic waves, an ASU-10M ultrasonic washer made by ASONE was used, and the mode of washing strength was set to strong (Hi).
 その後、150℃で5分間加熱処理を施し、硬化膜の加熱後の膜厚(C)を測定した。処理前の膜厚(A)、浸漬後の膜厚(B)および加熱後の膜厚(C)を用いて、耐薬品試験における浸漬処理後および加熱処理後の残膜率(%)を以下の式を用いて求めた。
浸漬処理後の残膜率(%)
 =[浸漬後の膜厚(B)/処理前の膜厚(A)]×100
浸漬処理および加熱処理後の残膜率(%)
 =[加熱後の膜厚(C)/処理前の膜厚(A)]×100
 また、浸漬処理を施さずに、加熱処理のみを施した硬化膜のブランクの膜厚(D)を測定した。
ブランク、加熱後の残膜率(%)
 =[ブランクの膜厚(D)/処理前の膜厚(A)]×100
Then, heat processing were performed for 5 minutes at 150 degreeC, and the film thickness (C) after the heating of a cured film was measured. Using the film thickness before treatment (A), the film thickness after immersion (B), and the film thickness after heating (C), the remaining film ratio (%) after the immersion treatment and after the heat treatment in the chemical resistance test is as follows: It calculated | required using the formula of.
Remaining film rate after immersion treatment (%)
= [Film thickness after immersion (B) / film thickness before treatment (A)] × 100
Remaining film rate after immersion treatment and heat treatment (%)
= [Film thickness after heating (C) / Film thickness before treatment (A)] × 100
Moreover, the film thickness (D) of the blank of the cured film which performed only the heat processing, without performing an immersion process was measured.
Blank, remaining film ratio after heating (%)
= [Blank film thickness (D) / film thickness before processing (A)] × 100
 実施例2、2-1および2-2ならびに比較例1、1-1、1-2、2、2-1および2-2について、耐薬品性、吸水率および熱安定性を評価した結果を表5に示す。 The results of evaluating chemical resistance, water absorption and thermal stability of Examples 2, 2-1 and 2-2 and Comparative Examples 1, 1-1, 1-2, 2, 2-1, and 2-2 are shown. Table 5 shows.
Figure JPOXMLDOC01-appb-T000016
 表5に示すように、実施例2および2-1の硬化膜は、比較例1および1-1の硬化膜と比較して、EtOH処理およびIPA処理のいずれの処理に対しても、残膜率が高くなった。この結果から、組成物にチオール化合物(E)を配合することにより、硬膜の耐薬品性が向上することが分かった。
 また、実施例2、2-1および2-2の硬化膜は、比較例1-2、2、2-1および2-2の硬化膜と比較して、吸水率の低い硬化膜が得られた。この結果から、組成物にチオール化合物(E)を配合することにより、吸水率が低い硬化膜が得られることが分かった。
Figure JPOXMLDOC01-appb-T000016
As shown in Table 5, the cured films of Examples 2 and 2-1 were compared with the cured films of Comparative Examples 1 and 1-1 with respect to both the EtOH treatment and the IPA treatment. The rate has increased. From this result, it was found that the chemical resistance of the dura was improved by adding the thiol compound (E) to the composition.
In addition, the cured films of Examples 2, 2-1 and 2-2 yielded cured films having a lower water absorption than the cured films of Comparative Examples 1-2, 2, 2-1, and 2-2. It was. From this result, it was found that a cured film having a low water absorption can be obtained by blending the thiol compound (E) with the composition.
[実施例14~22]
 実施例14~22は、表6および表7に示すとおりに各成分の種類および仕込み量を変更したこと以外は実施例1と同様にして、硬化性樹脂組成物を調製した。
[Examples 14 to 22]
In Examples 14 to 22, curable resin compositions were prepared in the same manner as in Example 1 except that the types and amounts of each component were changed as shown in Tables 6 and 7.
[比較例7~9]
 比較例7~9は、表6および表7に示すとおりに各成分の種類および仕込み量を変更したこと以外は実施例1と同様にして、硬化性樹脂組成物を調製した。
[Comparative Examples 7 to 9]
In Comparative Examples 7 to 9, curable resin compositions were prepared in the same manner as in Example 1, except that the types and amounts of each component were changed as shown in Tables 6 and 7.
 実施例および比較例について、上述した評価方法を用いて、粘度、保存安定性(粘度)、耐薬品性および熱安定性を評価した。その結果を表6および表7に示す。  For the Examples and Comparative Examples, the viscosity, storage stability (viscosity), chemical resistance and thermal stability were evaluated using the evaluation methods described above. The results are shown in Tables 6 and 7. *
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表6および表7に示すように、実施例14~16、18~20および22の硬化膜は、比較例7および8の硬化膜と比較して、EtOH処理およびIPA処理のいずれの処理に対しても、残膜率が高くなった。この結果から組成物にチオール化合物(E)を一定量以上配合することにより、硬化膜の耐薬品性が向上することが分かった。実施例14~22の結果よりチオール化合物(E)の含有量は、組成物40重量部中に0.025重量部より上であること(組成物100重量部中に0.063重量部より上)が好ましいといえる。組成物100重量部中の0.063重量部は、固形分(組成物から溶剤を除いた残分)100重量部中の0.312重量部に相当し、全エポキシ化合物(固形分中のエポキシ化合物の合計)100重量部中の0.564重量部に相当する。したがって、チオール化合物(E)の含有量は、固形分100重量部中に0.312重量部より上が好ましく、全エポキシ化合物100重量部中に0.564重量部より上が好ましいといえる。 As shown in Tables 6 and 7, the cured films of Examples 14 to 16, 18 to 20 and 22 were compared with the cured films of Comparative Examples 7 and 8 for either EtOH treatment or IPA treatment. However, the remaining film rate became high. From this result, it was found that the chemical resistance of the cured film was improved by blending a certain amount or more of the thiol compound (E) into the composition. From the results of Examples 14 to 22, the content of the thiol compound (E) is above 0.025 parts by weight in 40 parts by weight of the composition (above 0.063 parts by weight in 100 parts by weight of the composition). ) Is preferred. 0.063 parts by weight in 100 parts by weight of the composition corresponds to 0.312 parts by weight in 100 parts by weight of the solid content (residue obtained by removing the solvent from the composition), and the total epoxy compound (the epoxy in the solids) This corresponds to 0.564 parts by weight in 100 parts by weight of the total of the compounds. Therefore, it can be said that the content of the thiol compound (E) is preferably higher than 0.312 parts by weight in 100 parts by weight of the solid content, and preferably higher than 0.564 parts by weight in 100 parts by weight of the total epoxy compound.
 表6に示すように、実施例14および15と、実施例18および19との結果から、チオール化合物(E)を配合した組成物は、エポキシ硬化剤(C)として酸無水物であるTMAを含まないほうが、熱安定の高い硬化物を形成できる組成物となることが分かった。 As shown in Table 6, from the results of Examples 14 and 15 and Examples 18 and 19, the composition in which the thiol compound (E) was blended had TMA as an acid anhydride as the epoxy curing agent (C). It turned out that it becomes the composition which can form hardened | cured material with high heat stability, when it does not contain.
 また、表6および表7に示すように、TMAを含む実施例14~17、22およびTMAを含まない実施例18~21のいずれも、チオール化合物(E)を含有しない比較例7および8と同程度の保存安定性であった。この結果から、組成物40重量部中のチオール化合物(E)の含有量が0.02~0.69重量部(組成物100重量部中では、0.05~1.8重量部)の範囲内であれば、組成物の保存安定性を良好に維持できるといえる。同様の観点から、チオール化合物(E)の含有量は、固形分100重量部中に0.3~8.7重量部の範囲内であること、全エポキシ化合物100重量部中に0.4~13.9重量部の範囲内であることが好ましいといえる。 Further, as shown in Tables 6 and 7, any of Examples 14 to 17 and 22 containing TMA and Examples 18 to 21 containing no TMA were compared with Comparative Examples 7 and 8 containing no thiol compound (E). The storage stability was comparable. From this result, the content of the thiol compound (E) in 40 parts by weight of the composition is in the range of 0.02 to 0.69 parts by weight (0.05 to 1.8 parts by weight in 100 parts by weight of the composition). If it is inside, it can be said that the storage stability of a composition can be maintained favorable. From the same viewpoint, the content of the thiol compound (E) is in the range of 0.3 to 8.7 parts by weight in 100 parts by weight of the solid content, and 0.4 to 0.4 in 100 parts by weight of the total epoxy compound. It can be said that it is preferable to be within the range of 13.9 parts by weight.
[実施例23~42]
 実施例23~42は、表8~表10に示すとおりに各成分の種類および仕込み量を変更したこと以外は実施例1と同様にして、硬化性樹脂組成物を調製した。
 実施例および比較例について、上述した評価方法を用いて、粘度、保存安定性(粘度)、耐薬品性および熱安定性を評価した。その結果を表8~表10に示す。
[Examples 23 to 42]
In Examples 23 to 42, curable resin compositions were prepared in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Tables 8 to 10.
About an Example and a comparative example, the viscosity, storage stability (viscosity), chemical-resistance, and thermal stability were evaluated using the evaluation method mentioned above. The results are shown in Tables 8 to 10.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表8~表10に示すように、種々のチオール化合物(E)を配合することにより、保存安定性に優れた組成物となることが分かった。また、種々のチオール化合物(E)を配合した場合においても、組成物は、エポキシ硬化剤(C)として酸無水物TMAを含まないほうが、熱安定の高い硬化物を形成できる組成物となる傾向があることが分かった。 As shown in Tables 8 to 10, it was found that a composition having excellent storage stability was obtained by blending various thiol compounds (E). Even when various thiol compounds (E) are blended, the composition tends to be a composition that can form a cured product having high thermal stability when it does not contain the acid anhydride TMA as the epoxy curing agent (C). I found out that
 本発明の熱硬化性樹脂組成物は、保存安定性に優れたインクジェット用のインク組成物として好適であり、耐薬品性及び熱安定性に優れた硬化物を形成することができる。 The thermosetting resin composition of the present invention is suitable as an ink composition for inkjet excellent in storage stability, and can form a cured product excellent in chemical resistance and thermal stability.

Claims (14)

  1.  ポリエステルアミド酸(A)、フルオレン骨格を有するエポキシ化合物(B)、および分子内に複数のチオール基を有するチオール化合物(E)を含有する熱硬化性樹脂組成物。 Thermosetting resin composition containing polyester amide acid (A), epoxy compound (B) having a fluorene skeleton, and thiol compound (E) having a plurality of thiol groups in the molecule.
  2.  前記チオール化合物(E)が、ペンタエリスリトール テトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパン トリス(3-メルカプトプロピオネート)、トリメチロールエタン トリス(3-メルカプトプロピオネート)、ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリトール テトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレートおよび下記の式(8)で示されるグリコールウリル誘導体からなる群から選ばれた1または2以上の化合物である、請求項1に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    The thiol compound (E) is pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (3-mercaptopropionate), Dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate and the following formula (8) Selected from the group consisting of glycoluril derivatives Is one or more compounds, the thermosetting resin composition of claim 1.
    Figure JPOXMLDOC01-appb-C000001
  3.  前記チオール化合物(E)の含有量が、全エポキシ化合物の合計100重量部に対して、0.1~35重量部である、請求項1または2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the content of the thiol compound (E) is 0.1 to 35 parts by weight with respect to 100 parts by weight of all the epoxy compounds.
  4.  前記フルオレン骨格を有するエポキシ化合物(B)は、エポキシ当量が200~550g/eqである、請求項1、2または3に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, 2 or 3, wherein the epoxy compound (B) having a fluorene skeleton has an epoxy equivalent of 200 to 550 g / eq.
  5.  前記フルオレン骨格を有するエポキシ化合物(B)の含有量が、前記ポリエステルアミド酸(A)100重量部に対して、10~400重量部である請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。 The heat according to any one of claims 1 to 4, wherein the content of the epoxy compound (B) having a fluorene skeleton is 10 to 400 parts by weight with respect to 100 parts by weight of the polyester amic acid (A). Curable resin composition.
  6.  前記ポリエステルアミド酸(A)は重量平均分子量が、2,000~20,000である、請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物。 6. The thermosetting resin composition according to claim 1, wherein the polyester amic acid (A) has a weight average molecular weight of 2,000 to 20,000.
  7.  前記ポリエステルアミド酸(A)が、下記式(3)および(4)で示される構成単位を有する化合物である、請求項1~6のいずれか1項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)および(4)中、Rは独立に炭素数1~30の4価の有機基であり、Rは炭素数1~40の2価の有機基であり、Rは炭素数1~20の2価の有機基である。)
    The thermosetting resin composition according to any one of claims 1 to 6, wherein the polyester amic acid (A) is a compound having a structural unit represented by the following formulas (3) and (4).
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (3) and (4), R 1 is independently a tetravalent organic group having 1 to 30 carbon atoms, R 2 is a divalent organic group having 1 to 40 carbon atoms, and R 3 is (It is a divalent organic group having 1 to 20 carbon atoms.)
  8.  さらに溶媒(F)を含む、請求項1~7のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 7, further comprising a solvent (F).
  9.  タッチパネル用である、請求項1~8のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 8, which is used for a touch panel.
  10.  請求項1~9のいずれか1項に記載の熱硬化性樹脂組成物から得られる硬化膜。 A cured film obtained from the thermosetting resin composition according to any one of claims 1 to 9.
  11.  請求項10に記載の硬化膜を有する硬化膜付き基板。 A substrate with a cured film, comprising the cured film according to claim 10.
  12.  請求項10に記載の硬化膜または請求項11に記載の硬化膜付き基板を有する電子部品。 An electronic component having the cured film according to claim 10 or the substrate with the cured film according to claim 11.
  13.  タッチパネル型入力装置である、請求項12に記載の電子部品。 The electronic component according to claim 12, which is a touch panel type input device.
  14.  請求項1~9のいずれか一項に記載の熱硬化性樹脂組成物を含有することを特徴とするインクジェット用インク。 An ink-jet ink comprising the thermosetting resin composition according to any one of claims 1 to 9.
PCT/JP2018/015135 2017-04-13 2018-04-10 Heat curable resin composition, cured film, substrate with cured film, electronic component, and inkjet ink WO2018190347A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237023498A KR20230110377A (en) 2017-04-13 2018-04-10 Heat curable resin composition, cured film, substrate with cured film, electronic component, and inkjet ink
JP2019512533A JP7092117B2 (en) 2017-04-13 2018-04-10 Thermosetting resin composition, cured film, substrate with cured film, electronic components and ink for inkjet
CN201880023961.0A CN110494469B (en) 2017-04-13 2018-04-10 Thermosetting resin composition, cured film, substrate with cured film, electronic component, and ink for inkjet
KR1020197027441A KR102716106B1 (en) 2017-04-13 2018-04-10 Thermosetting resin composition, cured film, substrate with cured film attached, electronic component and ink for inkjet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017079798 2017-04-13
JP2017-079798 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018190347A1 true WO2018190347A1 (en) 2018-10-18

Family

ID=63793427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015135 WO2018190347A1 (en) 2017-04-13 2018-04-10 Heat curable resin composition, cured film, substrate with cured film, electronic component, and inkjet ink

Country Status (5)

Country Link
JP (1) JP7092117B2 (en)
KR (2) KR102716106B1 (en)
CN (1) CN110494469B (en)
TW (1) TWI758461B (en)
WO (1) WO2018190347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039179A1 (en) * 2020-08-21 2022-02-24 国立大学法人山形大学 Resin ink and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181276A (en) * 1999-12-27 2001-07-03 Nippon Steel Chem Co Ltd New aromatic episulfide compound, composition and cured material containing the same
JP2008033244A (en) * 2006-06-29 2008-02-14 Chisso Corp Composition for protective film, color filter substrate and liquid crystal display device
WO2009093467A1 (en) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. Polymerizable epoxy composition, and sealing material composition comprising the same
WO2013005441A1 (en) * 2011-07-06 2013-01-10 三井化学株式会社 Epoxy polymerizable composition and organic el device
JP2016138264A (en) * 2015-01-23 2016-08-04 Jnc株式会社 Thermo-curable resin composition, cured film, cured film-fitted substrate and electronic component
JP2018016786A (en) * 2016-07-13 2018-02-01 Jnc株式会社 Thermosetting composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569233B2 (en) 2003-09-09 2010-10-27 チッソ株式会社 Thermosetting resin composition and cured film
JP5125579B2 (en) 2008-02-15 2013-01-23 横浜ゴム株式会社 Curable resin composition
JP6036703B2 (en) * 2011-12-16 2016-11-30 株式会社スリーボンド Curable resin composition
WO2013171888A1 (en) * 2012-05-17 2013-11-21 太陽インキ製造株式会社 Alkali-development-type thermoset resin composition and printed circuit board
JP6288091B2 (en) * 2013-07-25 2018-03-07 Jnc株式会社 Thermosetting resin composition, cured film, substrate with cured film, and electronic component
CN105408417B (en) * 2013-07-25 2017-08-25 捷恩智株式会社 Thermosetting resin composition, cured film, substrate and electronic component with cured film
JP6206071B2 (en) 2013-10-15 2017-10-04 東レ株式会社 RESIN COMPOSITION, POLYIMIDE RESIN FILM USING THE SAME, COLOR FILTER CONTAINING THE SAME, TFT SUBSTRATE, DISPLAY DEVICE AND METHOD FOR PRODUCING THEM
TWI692505B (en) * 2014-11-18 2020-05-01 日商捷恩智股份有限公司 Photosensitive compositions and usage thereof
JP6687854B2 (en) 2015-01-23 2020-04-28 Jnc株式会社 Thermosetting resin composition, cured film, substrate with cured film, and electronic component
JP2020105232A (en) 2017-04-13 2020-07-09 Jnc株式会社 Thermosetting resin composition, cured film, substrate with cured film, electronic component and inkjet ink
JP2019139091A (en) 2018-02-13 2019-08-22 Jnc株式会社 Photosensitive composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181276A (en) * 1999-12-27 2001-07-03 Nippon Steel Chem Co Ltd New aromatic episulfide compound, composition and cured material containing the same
JP2008033244A (en) * 2006-06-29 2008-02-14 Chisso Corp Composition for protective film, color filter substrate and liquid crystal display device
WO2009093467A1 (en) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. Polymerizable epoxy composition, and sealing material composition comprising the same
WO2013005441A1 (en) * 2011-07-06 2013-01-10 三井化学株式会社 Epoxy polymerizable composition and organic el device
JP2016138264A (en) * 2015-01-23 2016-08-04 Jnc株式会社 Thermo-curable resin composition, cured film, cured film-fitted substrate and electronic component
JP2018016786A (en) * 2016-07-13 2018-02-01 Jnc株式会社 Thermosetting composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039179A1 (en) * 2020-08-21 2022-02-24 国立大学法人山形大学 Resin ink and electronic device

Also Published As

Publication number Publication date
JPWO2018190347A1 (en) 2020-02-27
TWI758461B (en) 2022-03-21
CN110494469A (en) 2019-11-22
KR20190132636A (en) 2019-11-28
TW201842066A (en) 2018-12-01
JP7092117B2 (en) 2022-06-28
CN110494469B (en) 2022-07-26
KR20230110377A (en) 2023-07-21
KR102716106B1 (en) 2024-10-11

Similar Documents

Publication Publication Date Title
JP6973461B2 (en) Thermosetting resin composition, cured film, substrate with cured film and electronic components
JP5895732B2 (en) Thermosetting ink composition and use thereof
JP6687854B2 (en) Thermosetting resin composition, cured film, substrate with cured film, and electronic component
JP2014132066A (en) Curable composition and its use
JP6729684B2 (en) Thermosetting resin composition, cured film, substrate with cured film, and electronic component
JP2016138264A (en) Thermo-curable resin composition, cured film, cured film-fitted substrate and electronic component
WO2018190346A1 (en) Thermosetting resin composition, cured film, substrate provided with cured film, electronic component, and ink jet ink
JP2016160420A (en) Thermosetting composition, cured film, substrate with cured film, electronic component, and display device
JP6288091B2 (en) Thermosetting resin composition, cured film, substrate with cured film, and electronic component
JP2019139091A (en) Photosensitive composition
JP7092117B2 (en) Thermosetting resin composition, cured film, substrate with cured film, electronic components and ink for inkjet
JP6996548B2 (en) Inkjet ink composition, cured film, substrate with cured film and electronic components
JP6733261B2 (en) Composition, method for producing cured film, member with cured film, electronic/electrical component, and method for producing member
JP5157831B2 (en) Composition comprising alkenyl-substituted nadiimide, solvent and curing agent and use of the composition part
JP6459553B2 (en) Inkjet ink, cured film, substrate with cured film, and electronic component
JP2019183044A (en) Thermosetting resin composition, inkjet ink using the same, cured film, substrate with cured film and electronic component
JP2017179128A (en) Cured article of thermosetting resin composition, substrate having cured article and manufacturing method of electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18785150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512533

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027441

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18785150

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载