WO2018190172A1 - 光学フィルム、偏光板、および画像表示装置 - Google Patents
光学フィルム、偏光板、および画像表示装置 Download PDFInfo
- Publication number
- WO2018190172A1 WO2018190172A1 PCT/JP2018/014121 JP2018014121W WO2018190172A1 WO 2018190172 A1 WO2018190172 A1 WO 2018190172A1 JP 2018014121 W JP2018014121 W JP 2018014121W WO 2018190172 A1 WO2018190172 A1 WO 2018190172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base film
- film
- optical film
- layer
- resin
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/50—OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
Definitions
- the present invention relates to an optical film, a polarizing plate, and an image display device.
- an optical film in which a functional layer (surface treatment layer) such as a hard coat layer, an antiglare layer, or an antireflection layer is formed on one side of a base film made of an acrylic resin is known (Patent Document 1). .
- the surface treatment layer can be formed by applying the resin composition to one side of the base film and drying or curing.
- Such an optical film can be used as, for example, a protective film for a polarizer or a front plate of an image display device.
- the base film in the step of drying the resin composition, the base film may be wrinkled due to heat shrinkage, which may cause poor appearance.
- the resin composition is dried at a low temperature in order to prevent problems due to heat shrinkage as described above, there is a problem that the adhesion between the base film and the surface treatment layer becomes insufficient.
- the present invention has been made to solve the above-described conventional problems, and its main purpose is an optical film having high adhesion between the base film and the surface treatment layer, a polarizing plate provided with such an optical film, And it is providing the image display apparatus provided with such a polarizing plate.
- the optical film of the present invention is an optical film including a base film which is a stretched film containing an acrylic resin, and a surface treatment layer formed on one side of the base film, and the base material in the optical film
- the film has a maximum elongation of 0.40% or more until reaching the softening point in TMA measurement in which the temperature is increased from 24 ° C. to 150 ° C. at 5 ° C./min while applying a tensile load of 98 mN / min.
- the base film includes the acrylic resin and core-shell particles dispersed in the acrylic resin.
- the base film contains 5 to 50 parts by weight of the core-shell type particles with respect to 100 parts by weight of the acrylic resin.
- the acrylic resin has at least one selected from the group consisting of a glutarimide unit, a lactone ring unit, a maleic anhydride unit, a maleimide unit, and a glutaric anhydride unit.
- the said surface treatment layer is a hardened layer of the resin composition apply
- the surface treatment layer is at least one selected from the group consisting of a hard coat layer, an antiglare layer, and an antireflection layer.
- a polarizing plate is provided.
- the polarizing plate includes a polarizer and a protective layer disposed on one side of the polarizer, and the protective layer is the optical film.
- an image display device is provided.
- the image display device includes the polarizing plate.
- an optical film having high adhesion between the base film and the surface treatment layer is provided.
- a polarizing plate and an image display apparatus provided with such a polarizing plate can be provided.
- FIG. 1 is a schematic cross-sectional view of an optical film according to one embodiment of the present invention.
- the optical film 100 includes a base film 10 and a surface treatment layer 20 formed on one side of the base film 10.
- the base film 10 is a stretched film containing an acrylic resin.
- the base film 10 has a maximum elongation of 0.40% until reaching the softening point in TMA measurement in which the temperature is increased from 24 ° C. to 150 ° C. at 5 ° C./min while applying a tensile load of 98 mN / min in a predetermined direction. That's it.
- the predetermined direction is typically at least one of a longitudinal direction and a short direction (a direction perpendicular to the longitudinal direction) of the base film.
- the predetermined direction is typically a direction along at least one side of the base film.
- the base film 10 includes an acrylic resin and core-shell type particles dispersed in the acrylic resin.
- the base film 10 preferably contains 5 to 50 parts by weight of core-shell type particles with respect to 100 parts by weight of the acrylic resin.
- the acrylic resin preferably has at least one selected from the group consisting of a glutarimide unit, a lactone ring unit, a maleic anhydride unit, a maleimide unit, and a glutaric anhydride unit.
- the surface treatment layer 20 is typically a cured layer of a resin composition applied on the base film 10.
- the surface treatment layer 20 is preferably at least one selected from the group consisting of a hard coat layer, an antiglare layer, and an antireflection layer. According to the optical film, the penetration of the composition forming the surface treatment layer 20 into the base film 10 can be promoted. As a result, the adhesion between the base film 10 and the surface treatment layer 20 can be improved by the anchoring effect (anchor effect).
- the resin composition when the surface treatment layer 20 is formed by applying a resin composition on the base film 10 and drying and curing the resin composition, the resin composition may be dried at a low temperature. Sufficient adhesion between the material film 10 and the surface treatment layer 20 can be realized. Therefore, it can suppress that a base film produces wrinkles with the heat at the time of drying a resin composition.
- Base film B-1 Characteristics of Base Film
- the base film is a stretched film containing an acrylic resin as described above, and the temperature is increased from 24 ° C. to 150 ° C. at 5 ° C./min while applying a tensile load of 98 mN / min in a predetermined direction.
- the maximum elongation until reaching the softening point is 0.40% or more.
- the maximum elongation is preferably 0.50% or more, and more preferably 0.60% or more.
- the upper limit of the maximum elongation is preferably 2.0%.
- the base film includes an acrylic resin and core-shell particles dispersed in the acrylic resin.
- the thickness of the base film is preferably 5 ⁇ m to 150 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m.
- the base film preferably has substantially optical isotropy.
- substantially optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm. Say something.
- the in-plane retardation Re (550) is more preferably 0 nm to 5 nm, further preferably 0 nm to 3 nm, and particularly preferably 0 nm to 2 nm.
- Thickness direction retardation Rth (550) is more preferably ⁇ 5 nm to +5 nm, further preferably ⁇ 3 nm to +3 nm, and particularly preferably ⁇ 2 nm to +2 nm.
- Re (550) and Rth (550) of the base film are within such ranges, adverse effects on display characteristics can be prevented when the optical film is applied to an image display device.
- Rth (550) is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C.
- nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction)
- ny is in the direction orthogonal to the slow axis in the plane (that is, the fast axis direction).
- nz is the refractive index in the thickness direction
- d is the thickness (nm) of the film.
- the light transmittance at 380 nm when the thickness of the base film is 30 ⁇ m is preferably as high as possible. Specifically, the light transmittance is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more. If the light transmittance is within such a range, desired transparency can be ensured.
- the light transmittance can be measured, for example, by a method according to ASTM-D-1003.
- the haze is preferably 5% or less, more preferably 3% or less, still more preferably 1.5% or less, and particularly preferably 1% or less.
- the film can have a good clear feeling.
- the optical film is used as a protective layer for the viewing-side polarizing plate of the image display device, the display content can be visually recognized well.
- YI at a thickness of 30 ⁇ m of the base film is preferably 1.27 or less, more preferably 1.25 or less, further preferably 1.23 or less, and particularly preferably 1.20 or less. If YI exceeds 1.3, the optical transparency may be insufficient.
- the b value (a measure of hue according to Hunter's color system) at a thickness of 30 ⁇ m of the base film is preferably less than 1.5, more preferably 1.0 or less. If the b value is 1.5 or more, an undesired color may appear.
- the b value is obtained by, for example, cutting a base film sample into a 3 cm square and measuring the hue using a high-speed integrating sphere type spectral transmittance measuring machine (trade name DOT-3C: manufactured by Murakami Color Research Laboratory). It can be obtained by evaluating the hue according to Hunter's color system.
- the moisture permeability of the base film is preferably 300 g / m 2 ⁇ 24 hr or less, more preferably 250 g / m 2 ⁇ 24 hr or less, still more preferably 200 g / m 2 ⁇ 24 hr or less, particularly preferably 150 g / m 2 ⁇ 24 hr or less. And most preferably 100 g / m 2 ⁇ 24 hr or less.
- a polarizing plate excellent in durability and moisture resistance can be obtained when used as a protective layer for a polarizer.
- the tensile strength of the base film is preferably 10 MPa or more and less than 100 MPa, more preferably 30 MPa or more and less than 100 MPa. If it is less than 10 MPa, sufficient mechanical strength may not be exhibited. If it exceeds 100 MPa, the workability may be insufficient.
- the tensile strength can be measured according to, for example, ASTM-D-882-61T.
- the tensile elongation of the base film is preferably 1.0% or more, more preferably 3.0% or more, and further preferably 5.0% or more.
- the upper limit of tensile elongation is, for example, 100%. If the tensile elongation is less than 1%, the toughness may be insufficient.
- the tensile elongation can be measured according to, for example, ASTM-D-882-61T.
- the tensile modulus of the base film is preferably 0.5 GPa or more, more preferably 1 GPa or more, and further preferably 2 GPa or more.
- the upper limit of the tensile modulus is, for example, 20 GPa. If the tensile modulus is less than 0.5 GPa, sufficient mechanical strength may not be exhibited.
- the tensile elastic modulus can be measured, for example, according to ASTM-D-882-61T.
- the base film may contain any appropriate additive depending on the purpose.
- additives include ultraviolet absorbers; hindered phenol-based, phosphorus-based, sulfur-based and other antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; glass fibers, carbon fibers, etc.
- Near-infrared absorbers include flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate and antimony oxide; antistatic agents such as anionic, cationic and nonionic surfactants; inorganic pigments and organic pigments And coloring agents such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers and inorganic fillers; plasticizers;
- An additive may be added at the time of superposition
- the type, number, combination, addition amount, and the like of the additive can be appropriately set according to the purpose.
- the acrylic resin typically contains alkyl (meth) acrylate as a main component as a monomer unit.
- (meth) acryl means acrylic and / or methacrylic.
- alkyl (meth) acrylate constituting the main skeleton of the acrylic resin include linear or branched alkyl groups having 1 to 18 carbon atoms. These can be used alone or in combination.
- any appropriate copolymerization monomer may be introduced into the acrylic resin by copolymerization. The type, number, copolymerization ratio, and the like of such copolymerization monomers can be appropriately set according to the purpose.
- the constituent components (monomer units) of the main skeleton of the acrylic resin will be described later with reference to the general formula (2).
- the acrylic resin preferably has at least one selected from a glutarimide unit, a lactone ring unit, a maleic anhydride unit, a maleimide unit and a glutaric anhydride unit.
- An acrylic resin having a lactone ring unit is described in, for example, Japanese Patent Application Laid-Open No. 2008-181078, and the description of the publication is incorporated herein by reference.
- the glutarimide unit is preferably represented by the following general formula (1):
- R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
- R 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon
- a cycloalkyl group having 3 to 12 carbon atoms or an aryl group having 6 to 10 carbon atoms is shown.
- R 1 and R 2 are each independently a hydrogen atom or a methyl group
- R 3 is a hydrogen atom, a methyl group, a butyl group, or a cyclohexyl group. More preferably, R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a methyl group.
- R 4 represents a hydrogen atom or a methyl group
- R 5 represents a hydrogen atom or an optionally substituted aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms. Show.
- the substituent include halogen and hydroxyl group.
- Specific examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t- (meth) acrylate.
- R 5 is preferably a hydrogen atom or a methyl group. Accordingly, particularly preferred alkyl (meth) acrylates are methyl acrylate or methyl methacrylate.
- the acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units in which R 1 , R 2 and R 3 in the general formula (1) are different.
- the content ratio of the glutarimide unit in the acrylic resin is preferably 2 mol% to 50 mol%, more preferably 2 mol% to 45 mol%, still more preferably 2 mol% to 40 mol%, and particularly preferably 2 mol%. % To 35 mol%, most preferably 3 mol% to 30 mol%.
- the content ratio is less than 2 mol%, the effects expressed from the glutarimide unit (for example, high optical characteristics, high mechanical strength, excellent adhesiveness with a polarizer, thinning) are sufficiently exerted. There is a risk that it will not be.
- the content ratio exceeds 50 mol%, for example, heat resistance and transparency may be insufficient.
- the acrylic resin may include only a single alkyl (meth) acrylate unit, or may include a plurality of alkyl (meth) acrylate units in which R 4 and R 5 in the general formula (2) are different. Also good.
- the content ratio of the alkyl (meth) acrylate unit in the acrylic resin is preferably 50 mol% to 98 mol%, more preferably 55 mol% to 98 mol%, still more preferably 60 mol% to 98 mol%, particularly preferably. Is from 65 mol% to 98 mol%, most preferably from 70 mol% to 97 mol%. If the content ratio is less than 50 mol%, the effects expressed from the alkyl (meth) acrylate unit (for example, high heat resistance and high transparency) may not be sufficiently exhibited. If the content is more than 98 mol%, the resin is brittle and easily cracked, and high mechanical strength cannot be exhibited sufficiently, which may result in poor productivity.
- the acrylic resin may contain units other than glutarimide units and alkyl (meth) acrylate units.
- the acrylic resin can contain, for example, 0 to 10% by weight of an unsaturated carboxylic acid unit that is not involved in the intramolecular imidation reaction described later.
- the content ratio of the unsaturated carboxylic acid unit is preferably 0 to 5% by weight, more preferably 0 to 1% by weight. When the content is in such a range, transparency, retention stability and moisture resistance can be maintained.
- the acrylic resin may contain copolymerizable vinyl monomer units (other vinyl monomer units) other than those described above.
- vinyl monomers include acrylonitrile, methacrylonitrile, ethacrylonitrile, allyl glycidyl ether, maleic anhydride, itaconic anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, acrylic Aminoethyl acid, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, cyclohexylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, 2 -Isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acryloy
- Styrene monomers such as styrene and ⁇ -methylstyrene are preferable.
- the content of other vinyl monomer units is preferably 0 to 1% by weight, more preferably 0 to 0.1% by weight. If it is such a range, the expression of the phase difference and the fall of transparency which are not desired can be suppressed.
- the imidization ratio in the acrylic resin is preferably 2.5% to 20.0%. If the imidation ratio is in such a range, a resin excellent in heat resistance, transparency and molding processability can be obtained, and the occurrence of kogation and a decrease in mechanical strength during film molding can be prevented.
- the imidization rate is represented by a ratio of a glutarimide unit and an alkyl (meth) acrylate unit. This ratio can be obtained from, for example, the NMR spectrum, IR spectrum, etc. of the acrylic resin.
- the imidization ratio can be determined by 1 H-NMR measurement of the resin using 1 H NMR BRUKER Avance III (400 MHz).
- the peak area derived from the O—CH 3 proton of alkyl (meth) acrylate in the vicinity of 3.5 to 3.8 ppm is defined as A, and N—CH 3 of glutarimide in the vicinity of 3.0 to 3.3 ppm.
- the acid value of the acrylic resin is preferably 0.10 mmol / g to 0.50 mmol / g. If the acid value is within such a range, a resin having a good balance of heat resistance, mechanical properties and molding processability can be obtained. If the acid value is too small, there may be problems such as an increase in cost due to the use of a modifier for adjusting to a desired acid value, and generation of a gel-like material due to the remaining modifier. When the acid value is too large, foaming at the time of film forming (for example, at the time of melt extrusion) tends to occur, and the productivity of the molded product tends to decrease.
- the acid value is the content of carboxylic acid units and carboxylic anhydride units in the acrylic resin. In the present embodiment, the acid value can be calculated by, for example, a titration method described in WO2005 / 054311 or JP-A-2005-23272.
- the weight average molecular weight of the acrylic resin is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, still more preferably 10,000 to 500,000, particularly preferably 50,000 to 500,000, and most preferably 60000 to 150,000.
- a weight average molecular weight can be calculated
- the acrylic resin has a Tg (glass transition temperature) of preferably 110 ° C. or higher, more preferably 115 ° C. or higher, further preferably 120 ° C. or higher, particularly preferably 125 ° C. or higher, and most preferably 130 ° C. or higher. If Tg is 110 degreeC or more, the polarizing plate containing the base film obtained from such resin will become easily excellent in durability.
- the upper limit value of Tg is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, further preferably 285 ° C. or lower, particularly preferably 200 ° C. or lower, and most preferably 160 ° C. or lower. If Tg is in such a range, the moldability can be excellent.
- the acrylic resin can be produced, for example, by the following method. This method comprises (I) an alkyl (meth) acrylate monomer corresponding to the alkyl (meth) acrylate unit represented by the general formula (2), an unsaturated carboxylic acid monomer and / or a precursor thereof To obtain a copolymer (a); and (II) treating the copolymer (a) with an imidizing agent to give a copolymer (a) in the copolymer (a).
- An intramolecular imidation reaction of the alkyl (meth) acrylate monomer unit and the unsaturated carboxylic acid monomer and / or its precursor monomer unit is carried out to share the glutarimide unit represented by the general formula (1). Introducing into the polymer.
- Examples of the unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, crotonic acid, ⁇ -substituted acrylic acid, and ⁇ -substituted methacrylic acid.
- Examples of the precursor monomer include acrylamide and methacrylamide. These may be used alone or in combination.
- a preferred unsaturated carboxylic acid monomer is acrylic acid or methacrylic acid, and a preferred precursor monomer is acrylamide.
- Any appropriate method can be used as a method for treating the copolymer (a) with an imidizing agent.
- Specific examples include a method using an extruder and a method using a batch type reaction vessel (pressure vessel).
- the method using an extruder includes heating and melting the copolymer (a) using an extruder and treating it with an imidizing agent.
- any appropriate extruder can be used as the extruder.
- Specific examples include a single screw extruder, a twin screw extruder, and a multi-screw extruder.
- any appropriate batch type reaction vessel pressure vessel can be used.
- the imidizing agent any appropriate compound can be used as long as the glutarimide unit represented by the general formula (1) can be generated.
- Specific examples of the imidizing agent include amines containing aliphatic hydrocarbon groups such as methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, i-butylamine, tert-butylamine, n-hexylamine, Examples include aromatic hydrocarbon group-containing amines such as aniline, benzylamine, toluidine, and trichloroaniline, and alicyclic hydrocarbon group-containing amines such as cyclohexylamine.
- a urea compound that generates such an amine by heating can be used.
- the urea compound include urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea.
- the imidizing agent is preferably methylamine, ammonia, or cyclohexylamine, more preferably methylamine.
- a ring closure accelerator may be added as necessary.
- the amount of the imidizing agent used in the imidization is preferably 0.5 to 10 parts by weight, more preferably 0.5 to 6 parts by weight with respect to 100 parts by weight of the copolymer (a). It is. If the amount of the imidizing agent used is less than 0.5 parts by weight, the desired imidization rate is often not achieved. As a result, the heat resistance of the resulting resin becomes extremely insufficient, which may induce appearance defects such as burnt after molding. When the amount of the imidizing agent used exceeds 10 parts by weight, the imidizing agent remains in the resin, and the imidizing agent may induce appearance defects such as burnt after molding and foaming.
- the production method of the present embodiment can include treatment with an esterifying agent in addition to the imidization as necessary.
- esterifying agent examples include dimethyl carbonate, 2,2-dimethoxypropane, dimethyl sulfoxide, triethyl orthoformate, trimethyl orthoacetate, trimethyl orthoformate, diphenyl carbonate, dimethyl sulfate, methyl toluene sulfonate, methyl trifluoromethane sulfonate, Methyl acetate, methanol, ethanol, methyl isocyanate, p-chlorophenyl isocyanate, dimethylcarbodiimide, dimethyl-t-butylsilyl chloride, isopropenyl acetate, dimethylurea, tetramethylammonium hydroxide, dimethyldiethoxysilane, tetra-N-butoxysilane , Dimethyl (trimethylsilane) phosphite, trimethyl phosphite , Trimethyl phosphate, tricresyl phosphate, diazomethane, ethylene oxide
- the addition amount of the esterifying agent can be set so that the acid value of the acrylic resin becomes a desired value.
- the acrylic resin and other resins may be used in combination. That is, a monomer component constituting an acrylic resin and a monomer component constituting another resin may be copolymerized, and the copolymer may be used for film formation described later in Section B-4; A blend with the resin may be used for film formation.
- resins include, for example, styrene resins, polyethylene, polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, and other thermoplastic resins, phenolic Examples thereof include thermosetting resins such as resins, melamine resins, polyester resins, silicone resins, and epoxy resins.
- the type and blending amount of the resin to be used in combination can be appropriately set according to the purpose and the properties desired for the obtained film.
- a styrene resin preferably, acrylonitrile-styrene copolymer
- phase difference controlling agent preferably, acrylonitrile-styrene copolymer
- the content of the acrylic resin in the blend of the acrylic resin and the other resin is preferably 50% by weight to 100% by weight, more preferably 60% by weight to 100%. % By weight, more preferably 70% by weight to 100% by weight, particularly preferably 80% by weight to 100% by weight. When the content is less than 50% by weight, the high heat resistance and high transparency inherent in the acrylic resin may not be sufficiently reflected.
- the core-shell type particles are preferably blended in an amount of 5 to 50 parts by weight, more preferably 5 to 40 parts by weight with respect to 100 parts by weight of the acrylic resin.
- the core-shell type particles typically have a core made of a rubber-like polymer and a coating layer made of a glassy polymer and covering the core.
- the core-shell type particle may have one or more layers made of a glassy polymer as the innermost layer or the intermediate layer.
- the Tg of the rubbery polymer constituting the core is preferably 20 ° C. or less, more preferably ⁇ 60 ° C. to 20 ° C., and further preferably ⁇ 60 ° C. to 10 ° C. If the Tg of the rubbery polymer constituting the core exceeds 20 ° C, the mechanical strength of the acrylic resin may not be sufficiently improved.
- the Tg of the glassy polymer (hard polymer) constituting the coating layer is preferably 50 ° C. or higher, more preferably 50 ° C. to 140 ° C., and further preferably 60 ° C. to 130 ° C. When Tg of the glassy polymer constituting the coating layer is lower than 50 ° C., the heat resistance of the acrylic resin may be lowered.
- the core content in the core-shell type particles is preferably 30% to 95% by weight, more preferably 50% to 90% by weight.
- the ratio of the glassy polymer layer in the core is 0 to 60% by weight, preferably 0 to 45% by weight, and more preferably 10 to 40% by weight with respect to 100% by weight of the total amount of the core.
- the content of the coating layer in the core-shell type particle is preferably 5% by weight to 70% by weight, more preferably 10% by weight to 50% by weight.
- the core-shell particles dispersed in the acrylic resin may have a flat shape.
- the core-shell type particles can be flattened by stretching described later in Section B-4.
- the length / thickness ratio of the flattened core-shell type particles is 7.0 or less.
- the length / thickness ratio is preferably 6.5 or less, and more preferably 6.3 or less.
- the length / thickness ratio is preferably 4.0 or more, more preferably 4.5 or more, and further preferably 5.0 or more.
- the “ratio of length / thickness” means the ratio of the representative length and thickness of the core-shell type particle in plan view.
- the “representative length” means a diameter when the shape in plan view is circular, a long diameter when the shape is elliptical, and a diagonal length when the shape is rectangular or polygonal.
- the ratio can be obtained, for example, by the following procedure. The cross section of the obtained film was photographed with a transmission electron microscope (for example, acceleration voltage 80 kV, RuO 4 dyeing ultrathin section method), and the long core-shell type particles present in the obtained photograph (cross section close to the representative length) The ratio can be obtained by extracting 30 pieces in order from the one obtained and calculating (average length) / (average thickness).
- a base film according to an embodiment of the present invention typically includes the above acrylic resin (in the case of using another resin in combination, a blend with the other resin) and core-shell type particles. It can be formed by a method comprising filming the composition. Further, the method of forming the base film can include stretching the film.
- the average particle diameter of the core-shell type particles used for film formation is preferably 1 nm to 500 nm.
- the average particle diameter of the core is preferably 50 nm to 300 nm, more preferably 70 nm to 300 nm.
- Arbitrary appropriate methods can be employ
- Specific examples include cast coating methods (for example, casting methods), extrusion molding methods, injection molding methods, compression molding methods, transfer molding methods, blow molding methods, powder molding methods, FRP molding methods, calendar molding methods, and hot presses. Law.
- the extrusion molding method or the cast coating method is preferable. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained.
- Particularly preferred is an extrusion method. This is because it is not necessary to consider the problem due to the residual solvent. Among these, an extrusion method using a T die is preferable from the viewpoint of film productivity and ease of subsequent stretching treatment.
- the molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the resulting film, and the like.
- any appropriate stretching method and stretching conditions for example, stretching temperature, stretching ratio, stretching speed, stretching direction
- the stretching method include free end stretching, fixed end stretching, free end contraction, and fixed end contraction. These may be used alone, may be used simultaneously, or may be used sequentially.
- the stretching direction can be an appropriate direction depending on the purpose. Specifically, a length direction, a width direction, a thickness direction, and an oblique direction are mentioned.
- the stretching direction may be one direction (uniaxial stretching), two directions (biaxial stretching), or three or more directions. In the embodiment of the present invention, typically, uniaxial stretching in the length direction, simultaneous biaxial stretching in the length direction and width direction, and sequential biaxial stretching in the length direction and width direction may be employed. Biaxial stretching (simultaneous or sequential) is preferable. This is because the in-plane phase difference can be easily controlled and optical isotropy can be easily realized.
- Stretching temperature is the optical properties, mechanical properties and thickness desired for the base film, type of resin used, film thickness used, stretching method (uniaxial stretching or biaxial stretching), stretch ratio, stretch It can vary depending on speed and the like.
- the stretching temperature is preferably Tg to Tg + 50 ° C., more preferably Tg + 15 ° C. to Tg + 50 ° C., and most preferably Tg + 35 ° C. to Tg + 50 ° C.
- stretching at such temperature the base film which has a suitable characteristic may be obtained.
- the specific stretching temperature is, for example, 110 ° C. to 200 ° C., preferably 120 ° C. to 190 ° C., and more preferably 150 ° C. to 190 ° C.
- the stretching temperature is in such a range, the base of the composition that forms the surface treatment layer when the surface treatment layer is formed on the obtained base film by appropriately adjusting the draw ratio and the stretching speed. Penetration into the material film can be further promoted, and an optical film having high adhesion between the base film and the surface treatment layer can be obtained.
- the stretching ratio is also the same as the stretching temperature: optical properties, mechanical properties and thickness, type of resin used, film thickness used, stretching method (uniaxial stretching or biaxial stretching), stretching temperature, stretching It can vary depending on speed and the like.
- the ratio (TD / MD) of the stretching ratio in the width direction (TD) and the stretching ratio in the length direction (MD) is preferably 1.0 to 1.5, more preferably Is 1.0 to 1.4, more preferably 1.0 to 1.3.
- the plane magnification (product of the draw ratio in the length direction and the draw ratio in the width direction) when employing biaxial stretching is preferably 2.0 to 6.0, more preferably 3.0 to 5.5, and more preferably 3.5 to 5.2.
- the draw ratio is in such a range, the base of the composition that forms the surface treatment layer when the surface treatment layer is formed on the obtained base film by appropriately adjusting the drawing temperature and the drawing speed. Penetration into the material film can be further promoted, and an optical film having high adhesion between the base film and the surface treatment layer can be obtained.
- Stretching speed is also the same as stretching temperature: optical properties, mechanical properties and thickness, type of resin used, film thickness used, stretching method (uniaxial stretching or biaxial stretching), stretching temperature, stretching It can change depending on the magnification or the like.
- the stretching speed is preferably 3% / second to 20% / second, more preferably 3% / second to 15% / second, and further preferably 3% / second to 10% / second.
- biaxial stretching is employed, the stretching speed in one direction and the stretching speed in the other direction may be the same or different. If the stretching speed is in such a range, the base of the composition that forms the surface treatment layer when the surface treatment layer is formed on the obtained base film by appropriately adjusting the stretching temperature and the stretching ratio. Penetration into the material film can be further promoted, and an optical film having high adhesion between the base film and the surface treatment layer can be obtained.
- the base film can be formed.
- the surface treatment layer is any suitable functional layer formed on one side of the base film according to the function required for the optical film.
- Specific examples of the surface treatment layer include a hard coat layer, an antiglare layer, and an antireflection layer.
- the thickness of the surface treatment layer is preferably 3 ⁇ m to 20 ⁇ m, more preferably 5 ⁇ m to 15 ⁇ m.
- the surface treatment layer is typically a cured layer of the resin composition formed on the base film.
- the step of forming the surface treatment layer includes forming a coating layer by applying a resin composition for forming the surface treatment layer on the base film, and drying and curing the coating layer to form a surface treatment layer. Can be included. Drying and curing the coating layer can include heating the coating layer.
- the resin composition preferably contains a solvent for dilution.
- the heating temperature of the coating layer can be set to any appropriate temperature according to the composition of the resin composition, and is preferably set to be equal to or lower than the glass transition temperature of the acrylic resin contained in the base film. If it heats at the temperature below the glass transition temperature of the acrylic resin contained in a base film, the optical film by which the deformation
- the heating temperature of the coating layer is, for example, 50 ° C. to 140 ° C., preferably 60 ° C. to 100 ° C. By heating at such a heating temperature, an optical film excellent in adhesion between the base film and the surface treatment layer can be obtained.
- the hard coat layer is a layer that imparts scratch resistance, chemical resistance, and the like to the surface of the substrate film.
- the hard coat layer preferably has a hardness of H or higher, more preferably 3H or higher, in a pencil hardness test.
- the pencil hardness test can be measured according to JIS K 5400.
- the resin composition for forming the hard coat layer may contain, for example, a curable compound that can be cured by heat, light (such as ultraviolet rays), or an electron beam. Details of the hard coat layer and the resin composition for forming the hard coat layer are described in, for example, JP-A-2014-240955. This publication is incorporated herein by reference in its entirety.
- the antiglare layer is a layer for preventing reflection of external light by scattering and reflecting light.
- the resin composition for forming an antiglare layer can contain, for example, a curable compound that can be cured by heat, light (such as ultraviolet rays), or an electron beam.
- the antiglare layer typically has a fine uneven shape on the surface. Examples of a method for forming such a fine concavo-convex shape include a method in which fine particles are contained in the curable compound. Details of the antiglare layer and the resin composition for forming the antiglare layer are described in, for example, JP-A-2017-32711. This publication is incorporated herein by reference in its entirety.
- the antireflection layer is a layer for preventing reflection of external light.
- the resin composition for forming the antireflection layer can contain, for example, a curable compound that can be cured by heat, light (such as ultraviolet rays), or an electron beam.
- the antireflection layer may be a single layer composed of only one layer or a plurality of layers composed of two or more layers. Details of the antireflection layer and the resin composition for forming the antireflection layer are described in, for example, JP-A-2012-155050. This publication is incorporated herein by reference in its entirety.
- the present invention also includes a polarizing plate using such an optical film.
- the polarizing plate has a polarizer and the optical film of the present invention disposed on one side of the polarizer.
- the optical film can be bonded to the polarizer on the base film side and function as a protective layer for the polarizer.
- the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
- polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
- PVA polyvinyl alcohol
- polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
- a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
- the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
- the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
- the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
- the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
- a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
- a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
- a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
- a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
- stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
- the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
- the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
- Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
- the thickness of the polarizer is, for example, 1 ⁇ m to 80 ⁇ m. In one embodiment, the thickness of the polarizer is preferably 1 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 15 ⁇ m.
- the polarizing plate described in the above section D can be applied to an image display device. Therefore, the present invention also includes an image display device using such a polarizing plate.
- Typical examples of the image display device include a liquid crystal display device and an organic electroluminescence (EL) display device. Since the image display apparatus employs a configuration well known in the industry, detailed description thereof is omitted.
- thermomechanical analyzer manufactured by Hitachi High-Tech Science Co., Ltd., model number “TMA7100”
- the measurement sample is attached to the measurement jig, and the length of the measurement sample is 98 mN / min.
- the maximum elongation until reaching the softening point was measured when the temperature was raised from 24 ° C. to 150 ° C. at 5 ° C./min while applying a tensile load.
- the maximum elongation was calculated using the following formula.
- Maximum elongation (%) (sample length at maximum elongation ⁇ initial sample length) / initial sample length ⁇ 100
- the maximum elongation of the measurement sample A corresponds to the maximum elongation in the longitudinal direction of the base film
- the maximum elongation of the measurement sample B is the maximum elongation in the short side direction (direction perpendicular to the longitudinal direction) of the base film. Corresponds to the rate.
- (2) Evaluation of adhesion The adhesion of the surface treatment layer to the substrate film was evaluated according to the cross-cut peel test (number of cross-cuts: 100) of JIS K-5400, and determined by the following indices. ⁇ : Number of cross-cut peeled is 0 ⁇ : Number of cross-cut peeled is 1 or more
- compositions A to C were prepared as resin compositions for forming the surface treatment layer.
- Composition A 4-HBA manufactured by Osaka Organic Chemical Industry Co., Ltd.
- NK Oligo UA-53H-80BK manufactured by Shin-Nakamura Chemical Co., Ltd.
- Biscote # 300 manufactured by Osaka Organic Chemical Industry Co., Ltd.
- A-GLY-9E manufactured by Shin-Nakamura Chemical Co., Ltd.
- IRGACURE907 manufactured by BASF
- the obtained imidized MS resin is represented by a general formula (1), a glutarimide unit (R 1 and R 3 are methyl groups, R 2 is a hydrogen atom), and a general formula (2) ( It had a (meth) acrylic acid ester unit (R 4 and R 5 are methyl groups), and a styrene unit.
- a meshing type co-rotating twin screw extruder having a diameter of 15 mm was used.
- the set temperature of each temperature control zone of the extruder is 230 ° C.
- the screw rotation speed is 150 rpm
- MS resin is supplied at 2.0 kg / hr
- the supply amount of monomethylamine is 2 parts by weight with respect to 100 parts by weight of MS resin.
- MS resin was introduced from the hopper, and the resin was melted and filled with a kneading block, and then monomethylamine was injected from the nozzle. A seal ring was placed at the end of the reaction zone to fill the resin.
- the by-product after reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to -0.08 MPa.
- the resin that came out as a strand from a die provided at the exit of the extruder was cooled in a water tank and then pelletized with a pelletizer.
- the imidization rate of the obtained imidized MS resin was 5.0%, and the acid value was 0.5 mmol / g. 100 parts by weight of the imidized MS resin obtained above and 10 parts by weight of core-shell type particles were put into a single screw extruder, melt mixed, and a film was formed through a T die to obtain an extruded film.
- the obtained extruded film was simultaneously biaxially stretched twice in the length direction and the width direction at a stretching temperature of 160 ° C.
- the stretching speed was 10% / second in both the length direction and the width direction.
- the base film A was produced.
- the thickness of the obtained base film A was 30 ⁇ m.
- the maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film A were measured.
- the results are shown in Table 1. 2.
- the composition A was applied so that the thickness after curing was 6 ⁇ m to form a coating layer.
- the coating layer was dried at 70 ° C. and UV cured to obtain an optical film 1 in which a hard coat layer was formed on one side of the base film A.
- the optical film 1 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 2 A hard coat layer is formed on one side of the base film A in the same manner as in Example 1 except that the hard coat layer is formed by applying and drying and curing the composition B on one side of the base film A. The formed optical film 2 was obtained. The optical film 2 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 3 An anti-glare layer is formed on one side of the base film A in the same manner as in Example 1 except that the anti-glare layer is formed by applying and curing the composition C on one side of the base film A. An optical film 3 was obtained. The optical film 3 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 4> 1 Production of Base Film A base film B was produced in the same manner as in Example 1, except that the amount of the core-shell type particles was 15 parts by weight, and the stretching temperature of the extruded film was 152 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film B were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 4 having a hard coat layer formed on one side of the base film B was obtained in the same manner as in Example 1 except that the base film B was used. The optical film 4 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 5> 1 Preparation of base film 100 parts by weight of imidized MS resin obtained above and 10 parts by weight of core-shell type particles are put into a single-screw extruder, melt mixed, and an extruded film is obtained by forming a film through a T-die. It was. The obtained extruded film was simultaneously biaxially stretched twice in the length direction and the width direction at a stretching temperature of 160 ° C. The stretching speed was 10% / second in both the length direction and the width direction. Thus, the base film C was produced. The thickness of the obtained base film C was 40 ⁇ m. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film C were measured. The results are shown in Table 1. 2.
- An optical film 5 having a hard coat layer formed on one side of the base film C was obtained in the same manner as in Example 1 except that the base film C was used.
- the optical film 5 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 6> Preparation of base film 100 parts by weight of imidized MS resin obtained above and 10 parts by weight of core-shell type particles are put into a single-screw extruder, melt mixed, and an extruded film is obtained by forming a film through a T-die. It was. The obtained extruded film was simultaneously biaxially stretched twice in the length direction and the width direction at a stretching temperature of 160 ° C. The stretching speed was 10% / second in both the length direction and the width direction. Thus, the base film D was produced. The obtained base film D had a thickness of 35 ⁇ m. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film D were measured. The results are shown in Table 1. 2.
- An optical film 6 having a hard coat layer formed on one side of the base film D was obtained in the same manner as in Example 1 except that the base film D was used.
- the optical film 6 was subjected to adhesion evaluation. The results are shown in Table 1.
- Production of Base Film A base film E was produced in the same manner as in Example 1 except that the stretching temperature of the extruded film was 150 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film E were measured. The results are shown in Table 1. 2.
- Production of Optical Film An optical film 7 having a hard coat layer formed on one side of the base film E was obtained in the same manner as in Example 1 except that the base film E was used. The optical film 7 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 8> 1 Production of Base Film A base film F was produced in the same manner as in Example 1 except that the amount of the core-shell type particles was 23 parts by weight and the stretching temperature of the extruded film was 152 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film F were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 8 having a hard coat layer formed on one side of the base film F was obtained in the same manner as in Example 1 except that the base film F was used. The optical film 8 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 9> 1 Production of Base Film A base film G was produced in the same manner as in Example 1 except that the core-shell type particles were not blended. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film G were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 9 having a hard coat layer formed on one side of the base film G was obtained in the same manner as in Example 1 except that the base film G was used. The optical film 9 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 10> 1 Production of Base Film A base film H was produced in the same manner as in Example 1 except that the stretching temperature of the extruded film was 140 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film H were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 10 having a hard coat layer formed on one side of the base film H was obtained in the same manner as in Example 1 except that the base film H was used. The optical film 10 was subjected to adhesion evaluation. The results are shown in Table 1.
- Production of Base Film A base film I was produced in the same manner as in Example 1 except that the amount of the core-shell type particles was 23 parts by weight and the stretch temperature of the extruded film was 137 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film I were measured. The results are shown in Table 1. 2.
- Production of Optical Film An optical film 11 having a hard coat layer formed on one side of the base film I was obtained in the same manner as in Example 1 except that the base film I was used. The optical film 11 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 12> 1 Production of Base Film A base film J was produced in the same manner as in Example 1 except that the core-shell type particles were not blended and the stretch temperature of the extruded film was 155 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film J were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 12 having a hard coat layer formed on one side of the base film J was obtained in the same manner as in Example 1 except that the base film J was used. The optical film 12 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 13> 1 Production of Base Film A base film K was produced in the same manner as in Example 1 except that the amount of the core-shell type particles was 5 parts by weight and the stretch temperature of the extruded film was 140 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film K were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 13 having a hard coat layer formed on one side of the base film K was obtained in the same manner as in Example 1 except that the base film K was used. The optical film 13 was subjected to adhesion evaluation. The results are shown in Table 1.
- Example 14> 1 Production of Base Film A base film L was produced in the same manner as in Example 1 except that the core-shell type particles were not blended and the stretch temperature of the extruded film was 150 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film L were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 14 having a hard coat layer formed on one side of the base film L was obtained in the same manner as in Example 1 except that the base film L was used. The optical film 14 was subjected to adhesion evaluation. The results are shown in Table 1.
- ⁇ Comparative Example 1> Production of Base Film A base film M was produced in the same manner as in Example 1 except that the amount of the core-shell type particles was 3 parts by weight and the stretch temperature of the extruded film was 140 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film M were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 15 having a hard coat layer formed on one side of the base film M was obtained in the same manner as in Example 1 except that the base film M was used. The optical film 15 was subjected to adhesion evaluation. The results are shown in Table 1.
- ⁇ Comparative example 2> Production of Base Film A base film N was produced in the same manner as in Example 1 except that the core-shell type particles were not blended and the stretch temperature of the extruded film was 140 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film N were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 16 having a hard coat layer formed on one side of the base film N was obtained in the same manner as in Example 1 except that the base film N was used. The optical film 16 was subjected to adhesion evaluation. The results are shown in Table 1.
- ⁇ Comparative Example 5> Production of Base Film A base film O was produced in the same manner as in Example 1 except that the core-shell type particles were not blended and the stretch temperature of the extruded film was 130 ° C. The maximum elongation in the longitudinal direction and the maximum elongation in the short direction of the base film O were measured. The results are shown in Table 1. 2. Production of Optical Film An optical film 19 having a hard coat layer formed on one side of the base film O was obtained in the same manner as in Example 1 except that the base film O was used. The optical film 19 was subjected to adhesion evaluation. The results are shown in Table 1.
- the optical film of the present invention is suitably used as a protective layer for a polarizer.
- the polarizing plate having the optical film of the present invention as a protective layer is suitably used for an image display device.
- image display devices include portable devices such as personal digital assistants (PDAs), smart phones, mobile phones, watches, digital cameras, and portable game machines; OA devices such as personal computer monitors, notebook computers, and copy machines; video cameras, Household electrical equipment such as TVs and microwave ovens; Back monitors, monitors for car navigation systems, car audio equipment such as car audios; display equipment such as digital signage and commercial store information monitors; security equipment such as monitoring monitors; It can be used for various applications such as nursing care / medical devices such as nursing monitors and medical monitors.
- PDAs personal digital assistants
- OA devices such as personal computer monitors, notebook computers, and copy machines
- video cameras Household electrical equipment such as TVs and microwave ovens
- Back monitors monitors for car navigation systems, car audio equipment such as car audios
- display equipment
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
- Time-Division Multiplex Systems (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
1つの実施形態においては、上記基材フィルムが、上記アクリル系樹脂と、上記アクリル系樹脂に分散されたコアシェル型粒子と、を含む。
1つの実施形態においては、上記基材フィルムが、上記アクリル系樹脂100重量部に対して、上記コアシェル型粒子を5重量部~50重量部含有する。
1つの実施形態においては、上記アクリル系樹脂が、グルタルイミド単位、ラクトン環単位、無水マレイン酸単位、マレイミド単位および無水グルタル酸単位からなる群から選択される少なくとも1つを有する。
1つの実施形態においては、上記表面処理層が、上記基材フィルム上に塗布された樹脂組成物の硬化層である。
1つの実施形態においては、上記表面処理層が、ハードコート層、防眩層および反射防止層からなる群から選択される少なくとも1つである。
本発明の別の局面によれば、偏光板が提供される。この偏光板は、偏光子と、上記偏光子の片側に配置された保護層と、を含み、上記保護層が上記光学フィルムである。
本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記偏光板を備える。
図1は、本発明の1つの実施形態による光学フィルムの概略断面図である。光学フィルム100は、基材フィルム10と、基材フィルム10の片側に形成された表面処理層20と、を含む。基材フィルム10はアクリル系樹脂を含有する延伸フィルムである。基材フィルム10は、所定方向に98mN/minの引張荷重を加えながら24℃から150℃まで5℃/minで昇温するTMA測定において、軟化点に至るまでの最大伸び率が0.40%以上である。基材フィルムの最大伸び率は、必要に応じてTMA測定に適したサイズに裁断し、熱機械分析装置を用いて測定することができる。基材フィルムが長尺状または長方形状である場合、上記所定方向は、代表的には基材フィルムの長手方向および短手方向(長手方向に直交する方向)の少なくともいずれか一方である。基材フィルムが正方形状である場合、上記所定方向は、代表的には、基材フィルムの少なくともいずれかの辺に沿った方向である。1つの実施形態においては、基材フィルム10は、アクリル系樹脂と、アクリル系樹脂に分散されたコアシェル型粒子と、を含む。この場合、基材フィルム10は、好ましくは、アクリル系樹脂100重量部に対して、コアシェル型粒子を5重量部~50重量部含有する。アクリル系樹脂は、好ましくは、グルタルイミド単位、ラクトン環単位、無水マレイン酸単位、マレイミド単位および無水グルタル酸単位からなる群から選択される少なくとも1つを有する。表面処理層20は、代表的には、基材フィルム10上に塗布された樹脂組成物の硬化層である。表面処理層20は、好ましくは、ハードコート層、防眩層および反射防止層からなる群から選択される少なくとも1つである。上記光学フィルムによれば、表面処理層20を形成する組成物の基材フィルム10への浸透が促進され得る。その結果、アンカリング効果(アンカー効果)によって、基材フィルム10と表面処理層20との密着性が向上し得る。特に、基材フィルム10上に樹脂組成物を塗布し、樹脂組成物を乾燥および硬化させることにより表面処理層20を形成する場合に、上記樹脂組成物を低温乾燥させた場合であっても基材フィルム10と表面処理層20との十分な密着性を実現し得る。したがって、樹脂組成物を乾燥する際の熱によって基材フィルムにシワが発生することを抑制し得る。
B-1.基材フィルムの特性
基材フィルムは、上記のとおり、アクリル系樹脂を含有する延伸フィルムであり、所定方向に98mN/minの引張荷重を加えながら24℃から150℃まで5℃/minで昇温するTMA測定において、軟化点に至るまでの最大伸び率が0.40%以上である。上記最大伸び率は、好ましくは0.50%以上であり、より好ましくは0.60%以上である。一方で、上記最大伸び率の上限は、好ましくは2.0%である。上記最大伸び率が高すぎると、光学フィルムを偏光子に貼り合わせて偏光子の保護層として用いた場合に、偏光子との収縮率の差に起因して偏光子にクラックが生じる場合がある。1つの実施形態においては、基材フィルムは、アクリル系樹脂と、アクリル系樹脂に分散されたコアシェル型粒子と、を含む。基材フィルムの厚みは、好ましくは5μm~150μmであり、より好ましくは10μm~100μmである。
YI=[(1.28X-1.06Z)/Y]×100
B-2-1.アクリル系樹脂の構成
アクリル系樹脂としては、任意の適切なアクリル系樹脂が採用され得る。アクリル系樹脂は、代表的には、モノマー単位として、アルキル(メタ)アクリレートを主成分として含有する。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。アクリル系樹脂の主骨格を構成するアルキル(メタ)アクリレートとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~18のものを例示できる。これらは単独であるいは組み合わせて使用することができる。さらに、アクリル系樹脂には、任意の適切な共重合モノマーを共重合により導入してもよい。このような共重合モノマーの種類、数、共重合比等は目的に応じて適切に設定され得る。アクリル系樹脂の主骨格の構成成分(モノマー単位)については、一般式(2)を参照しながら後述する。
イミド化率Im(%)={B/(A+B)}×100
上記アクリル系樹脂は、例えば、以下の方法で製造することができる。この方法は、(I)一般式(2)で表されるアルキル(メタ)アクリレート単位に対応するアルキル(メタ)アクリレート単量体と、不飽和カルボン酸単量体および/またはその前駆体単量体と、を共重合して共重合体(a)を得ること;および、(II)該共重合体(a)をイミド化剤にて処理することにより、当該共重合体(a)中のアルキル(メタ)アクリレート単量体単位と不飽和カルボン酸単量体および/またはその前駆体単量体単位の分子内イミド化反応を行い、一般式(1)で表されるグルタルイミド単位を共重合体中に導入すること;を含む。
本発明の実施形態においては、上記アクリル系樹脂と他の樹脂とを併用してもよい。すなわち、アクリル系樹脂を構成するモノマー成分と他の樹脂を構成するモノマー成分とを共重合し、当該共重合体をB-4項で後述するフィルム形成に供してもよく;アクリル系樹脂と他の樹脂とのブレンドをフィルム形成に供してもよい。他の樹脂としては、例えば、スチレン系樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなどの他の熱可塑性樹脂、フェノール系樹脂、メラミン系樹脂、ポリエステル系樹脂、シリコーン系樹脂、エポキシ系樹脂などの熱硬化性樹脂が挙げられる。併用する樹脂の種類および配合量は、目的および得られるフィルムに所望される特性等に応じて適切に設定され得る。例えば、スチレン系樹脂(好ましくは、アクリロニトリル-スチレン共重合体)は、位相差制御剤として併用され得る。
上記基材フィルムにおいて、コアシェル型粒子は、アクリル系樹脂100重量部に対して、好ましくは5重量部~50重量部、より好ましくは5重量部~40重量部配合される。これにより、基材フィルム上に表面処理層を形成した場合に、表面処理層を形成する組成物の基材フィルムへの浸透がさらに促進され得、基材フィルムと表面処理層との密着性が高い光学フィルムが得られ得る。
本発明の実施形態による基材フィルムは、代表的には、上記アクリル系樹脂(その他の樹脂を併用する場合には、当該その他の樹脂とのブレンド)およびコアシェル型粒子を含む組成物をフィルム形成することを含む方法により形成され得る。さらに、基材フィルムを形成する方法は、上記フィルムを延伸することを含み得る。
表面処理層は、光学フィルムに求められる機能に応じて基材フィルムの片側に形成された任意の適切な機能層である。表面処理層の具体例としては、ハードコート層、防眩層、および反射防止層等が挙げられる。表面処理層の厚みは、好ましくは3μm~20μmであり、より好ましくは5μm~15μmである。
ハードコート層は、基材フィルムの表面に耐擦傷性および耐薬品性等を付与する層である。ハードコート層は、鉛筆硬度試験で好ましくはH以上、より好ましくは3H以上の硬度を有する。鉛筆硬度試験は、JIS K 5400に準じて測定され得る。ハードコート層形成用の樹脂組成物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る硬化性化合物を含み得る。ハードコート層およびハードコート層形成用の樹脂組成物の詳細は、例えば特開2014-240955号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
防眩層は、光を散乱して反射させることで、外光の映り込みを防止するための層である。防眩層形成用の樹脂組成物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る硬化性化合物を含み得る。防眩層は、代表的には、表面に微細凹凸形状を有する。このような微細凹凸形状を形成する方法としては、例えば、上記硬化性化合物に微粒子を含有させる方法が挙げられる。防眩層および防眩層形成用の樹脂組成物の詳細は、例えば特開2017-32711号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
反射防止層は、外光の反射を防止するための層である。反射防止層形成用の樹脂組成物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る硬化性化合物を含み得る。反射防止層は、1層のみからなる単層であっても良いし、2層以上からなる複数層であっても良い。反射防止層および反射防止層形成用の樹脂組成物の詳細は、例えば特開2012-155050号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
上記AからC項に記載の光学フィルムは、偏光板に適用され得る。したがって、本発明は、そのような光学フィルムを用いた偏光板も包含する。代表的には、偏光板は、偏光子と、偏光子の片側に配置された本発明の光学フィルムと、を有する。光学フィルムは、その基材フィルム側が偏光子と貼り合わせられ、偏光子の保護層として機能し得る。
上記D項に記載の偏光板は、画像表示装置に適用され得る。したがって、本発明は、そのような偏光板を用いた画像表示装置も包含する。画像表示装置の代表例としては、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置が挙げられる。画像表示装置は業界で周知の構成が採用されるので、詳細な説明は省略する。
(1)基材フィルムの最大伸び率(TMA測定)
基材フィルムを幅4mm×長さ20mmのサイズに裁断して、初期長さが20mmの測定サンプルとした。なお、基材フィルムの長手方向が長さ方向となるように裁断して得られる測定サンプルAと、基材フィルムの長手方向に直交する方向が長さ方向となるように裁断して得られる測定サンプルBとを用意した。
測定サンプルAおよび測定サンプルBのそれぞれについて、熱機械分析装置(日立ハイテクサイエンス社製、型番「TMA7100」)を用いて、測定サンプルを測定冶具に取り付け、測定サンプルの長さ方向に98mN/minの引張荷重を加えながら24℃から150℃まで5℃/minで昇温したときの、軟化点に至るまでの最大伸び率を測定した。
なお、最大伸び率は以下の式を用いて算出した。
最大伸び率(%)=(最大伸び時のサンプル長-初期サンプル長)/初期サンプル長×100
測定サンプルAの最大伸び率は、基材フィルムの長手方向の最大伸び率に対応し、測定サンプルBの最大伸び率は、基材フィルムの短手方向(長手方向に直交する方向)の最大伸び率に対応する。
(2)密着性評価
表面処理層の基材フィルムに対する密着性を、JIS K-5400の碁盤目剥離試験(碁盤目数:100個)に準じて評価し、以下の指標により判定した。
〇:碁盤目剥離数が0個
×:碁盤目剥離数が1個以上
表面処理層形成用の樹脂組成物として、以下の組成物A~Cを用意した。
(1)組成物A
4-HBA(大阪有機化学工業(株)製)16重量部、NKオリゴUA-53H-80BK(新中村化学工業(株)製)32重量部、ビスコート#300(大阪有機化学工業(株)製)48重量部、A-GLY-9E(新中村化学工業(株)製)4重量部、IRGACURE907(BASF製)2.4重量部を混合し、それぞれMIBK:PGM=50:50の溶媒で固形分濃度42.0%となるよう希釈して得られるUV硬化性樹脂。
(2)組成物B
ビスコート#300(大阪有機化学工業(株)製)100重量部、IRGACURE907(BASF製)2.4重量部を混合し、MIBK:PGM=50:50の溶媒で固形分濃度42.0%となるよう希釈して得られるUV硬化性樹脂。
(3)組成物C
4-HBA(大阪有機化学工業(株)製)20重量部、NKオリゴUA-53H-80BK(新中村化学工業(株)製)40重量部、ビスコート#300(大阪有機化学工業(株)製)60重量部、IRGACURE907(BASF製)5重量部、テクポリマーSSX-103DXE(積水化成品工業(株)製)0.5重量部を混合し、それぞれトルエン:MEK=70:30の溶媒で固形分濃度40.0%となるよう希釈して得られるUV硬化性樹脂。
1.基材フィルムの作製
MS樹脂(MS-200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:5%)した。得られたイミド化MS樹脂は、一般式(1)で表されるグルタルイミド単位(R1およびR3はメチル基、R2は水素原子である)、一般式(2)で表される(メタ)アクリル酸エステル単位(R4およびR5はメチル基である)、およびスチレン単位を有していた。なお、上記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpmとし、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂100重量部に対して2重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融および充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンを、ベント口の圧力を-0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。得られたイミド化MS樹脂のイミド化率は5.0%、酸価は0.5mmol/gであった。
上記で得られたイミド化MS樹脂100重量部とコアシェル型粒子10重量部とを単軸押出機に投入して溶融混合し、Tダイを通してフィルム形成することにより押出フィルムを得た。得られた押出フィルムを、延伸温度160℃で長さ方向および幅方向にそれぞれ2倍に同時二軸延伸した。延伸速度は、長さ方向および幅方向ともに10%/秒であった。
このようにして、基材フィルムAを作製した。得られた基材フィルムAの厚みは30μmであった。基材フィルムAの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムAの片側に、硬化後の厚みが6μmとなるように組成物Aを塗布して塗布層を形成した。次いで、上記塗布層を、70℃で乾燥させるとともにUV硬化させることにより、基材フィルムAの片側にハードコート層が形成された光学フィルム1を得た。上記光学フィルム1を密着性評価に供した。結果を表1に示す。
上記基材フィルムAの片側に、組成物Bを塗布して乾燥および硬化させることによりハードコート層を形成したこと以外は実施例1と同様にして、基材フィルムAの片側にハードコート層が形成された光学フィルム2を得た。上記光学フィルム2を密着性評価に供した。結果を表1に示す。
上記基材フィルムAの片側に、組成物Cを塗布して硬化させることにより防眩層を形成したこと以外は実施例1と同様にして、基材フィルムAの片側に防眩層が形成された光学フィルム3を得た。上記光学フィルム3を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子の配合量を15重量部としたこと、および押出フィルムの延伸温度を152℃としたこと以外は実施例1と同様にして、基材フィルムBを作製した。基材フィルムBの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムBを用いたこと以外は実施例1と同様にして、基材フィルムBの片側にハードコート層が形成された光学フィルム4を得た。上記光学フィルム4を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
上記で得られたイミド化MS樹脂100重量部とコアシェル型粒子10重量部とを単軸押出機に投入して溶融混合し、Tダイを通してフィルム形成することにより押出フィルムを得た。得られた押出フィルムを、延伸温度160℃で長さ方向および幅方向にそれぞれ2倍に同時二軸延伸した。延伸速度は、長さ方向および幅方向ともに10%/秒であった。
このようにして、基材フィルムCを作製した。得られた基材フィルムCの厚みは40μmであった。基材フィルムCの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムCを用いたこと以外は実施例1と同様にして、基材フィルムCの片側にハードコート層が形成された光学フィルム5を得た。上記光学フィルム5を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
上記で得られたイミド化MS樹脂100重量部とコアシェル型粒子10重量部とを単軸押出機に投入して溶融混合し、Tダイを通してフィルム形成することにより押出フィルムを得た。得られた押出フィルムを、延伸温度160℃で長さ方向および幅方向にそれぞれ2倍に同時二軸延伸した。延伸速度は、長さ方向および幅方向ともに10%/秒であった。
このようにして、基材フィルムDを作製した。得られた基材フィルムDの厚みは35μmであった。基材フィルムDの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムDを用いたこと以外は実施例1と同様にして、基材フィルムDの片側にハードコート層が形成された光学フィルム6を得た。上記光学フィルム6を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
押出フィルムの延伸温度を150℃としたこと以外は実施例1と同様にして、基材フィルムEを作製した。基材フィルムEの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムEを用いたこと以外は実施例1と同様にして、基材フィルムEの片側にハードコート層が形成された光学フィルム7を得た。上記光学フィルム7を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子の配合量を23重量部としたこと、および押出フィルムの延伸温度を152℃としたこと以外は実施例1と同様にして、基材フィルムFを作製した。基材フィルムFの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムFを用いたこと以外は実施例1と同様にして、基材フィルムFの片側にハードコート層が形成された光学フィルム8を得た。上記光学フィルム8を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子を配合しなかったこと以外は実施例1と同様にして、基材フィルムGを作製した。基材フィルムGの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムGを用いたこと以外は実施例1と同様にして、基材フィルムGの片側にハードコート層が形成された光学フィルム9を得た。上記光学フィルム9を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
押出フィルムの延伸温度を140℃としたこと以外は実施例1と同様にして、基材フィルムHを作製した。基材フィルムHの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムHを用いたこと以外は実施例1と同様にして、基材フィルムHの片側にハードコート層が形成された光学フィルム10を得た。上記光学フィルム10を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子の配合量を23重量部としたこと、および押出フィルムの延伸温度を137℃としたこと以外は実施例1と同様にして、基材フィルムIを作製した。基材フィルムIの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムIを用いたこと以外は実施例1と同様にして、基材フィルムIの片側にハードコート層が形成された光学フィルム11を得た。上記光学フィルム11を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子を配合しなかったこと、および押出フィルムの延伸温度を155℃としたこと以外は実施例1と同様にして、基材フィルムJを作製した。基材フィルムJの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムJを用いたこと以外は実施例1と同様にして、基材フィルムJの片側にハードコート層が形成された光学フィルム12を得た。上記光学フィルム12を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子の配合量を5重量部としたこと、および押出フィルムの延伸温度を140℃としたこと以外は実施例1と同様にして、基材フィルムKを作製した。基材フィルムKの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムKを用いたこと以外は実施例1と同様にして、基材フィルムKの片側にハードコート層が形成された光学フィルム13を得た。上記光学フィルム13を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子を配合しなかったこと、および押出フィルムの延伸温度を150℃としたこと以外は実施例1と同様にして、基材フィルムLを作製した。基材フィルムLの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムLを用いたこと以外は実施例1と同様にして、基材フィルムLの片側にハードコート層が形成された光学フィルム14を得た。上記光学フィルム14を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子の配合量を3重量部としたこと、および押出フィルムの延伸温度を140℃としたこと以外は実施例1と同様にして、基材フィルムMを作製した。基材フィルムMの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムMを用いたこと以外は実施例1と同様にして、基材フィルムMの片側にハードコート層が形成された光学フィルム15を得た。上記光学フィルム15を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子を配合しなかったこと、および押出フィルムの延伸温度を140℃としたこと以外は実施例1と同様にして、基材フィルムNを作製した。基材フィルムNの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムNを用いたこと以外は実施例1と同様にして、基材フィルムNの片側にハードコート層が形成された光学フィルム16を得た。上記光学フィルム16を密着性評価に供した。結果を表1に示す。
上記基材フィルムNの片側に、組成物Bを塗布して乾燥および硬化させることによりハードコート層を形成したこと以外は比較例2と同様にして、基材フィルムNの片側にハードコート層が形成された光学フィルム17を得た。上記光学フィルム17を密着性評価に供した。結果を表1に示す。
上記基材フィルムNの片側に、組成物Cを塗布して乾燥および硬化させることにより防眩層を形成したこと以外は比較例2と同様にして、基材フィルムNの片側に防眩層が形成された光学フィルム18を得た。上記光学フィルム18を密着性評価に供した。結果を表1に示す。
1.基材フィルムの作製
コアシェル型粒子を配合しなかったこと、および押出フィルムの延伸温度を130℃としたこと以外は実施例1と同様にして、基材フィルムOを作製した。基材フィルムOの長手方向の最大伸び率および短手方向の最大伸び率を測定した。結果を表1に示す。
2.光学フィルムの作製
上記基材フィルムOを用いたこと以外は実施例1と同様にして、基材フィルムOの片側にハードコート層が形成された光学フィルム19を得た。上記光学フィルム19を密着性評価に供した。結果を表1に示す。
20 表面処理層
100 光学フィルム
Claims (8)
- アクリル系樹脂を含有する延伸フィルムである基材フィルムと、該基材フィルムの片側に形成された表面処理層とを含む光学フィルムであり、
前記光学フィルム中の基材フィルムは、98mN/minの引張荷重を加えながら24℃から150℃まで5℃/minで昇温するTMA測定において、軟化点に至るまでの最大伸び率が0.40%以上である、光学フィルム。 - 前記基材フィルムが、前記アクリル系樹脂と、該アクリル系樹脂に分散されたコアシェル型粒子と、を含む、請求項1に記載の光学フィルム。
- 前記基材フィルムが、前記アクリル系樹脂100重量部に対して、前記コアシェル型粒子を5重量部~50重量部含有する、請求項2に記載の光学フィルム。
- 前記アクリル系樹脂が、グルタルイミド単位、ラクトン環単位、無水マレイン酸単位、マレイミド単位および無水グルタル酸単位からなる群から選択される少なくとも1つを有する、請求項1から3のいずれかに記載の光学フィルム。
- 前記表面処理層が、前記基材フィルム上に塗布された樹脂組成物の硬化層である、請求項1から4のいずれかに記載の光学フィルム。
- 前記表面処理層が、ハードコート層、防眩層および反射防止層からなる群から選択される少なくとも1つである、請求項1から5のいずれかに記載の光学フィルム。
- 偏光子と、該偏光子の片側に配置された保護層と、を含み、
前記保護層が請求項1から6のいずれかに記載の光学フィルムである、偏光板。 - 請求項7に記載の偏光板を備える、画像表示装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019512438A JP7083339B2 (ja) | 2017-04-10 | 2018-04-02 | 光学フィルム、偏光板、および画像表示装置 |
CN201880024168.2A CN110537115B (zh) | 2017-04-10 | 2018-04-02 | 光学膜、偏振片及图像显示装置 |
KR1020197029379A KR102695631B1 (ko) | 2017-04-10 | 2018-04-02 | 광학 필름, 편광판, 및 화상표시장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-077604 | 2017-04-10 | ||
JP2017077604 | 2017-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190172A1 true WO2018190172A1 (ja) | 2018-10-18 |
Family
ID=63792435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014121 WO2018190172A1 (ja) | 2017-04-10 | 2018-04-02 | 光学フィルム、偏光板、および画像表示装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7083339B2 (ja) |
KR (1) | KR102695631B1 (ja) |
CN (1) | CN110537115B (ja) |
TW (1) | TWI763824B (ja) |
WO (1) | WO2018190172A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021240882A1 (ja) * | 2020-05-28 | 2021-12-02 | 日東電工株式会社 | 位相差層および粘着剤層付偏光板およびそれを用いた有機エレクトロルミネセンス表示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007026659A1 (ja) * | 2005-08-30 | 2007-03-08 | Nitto Denko Corporation | 偏光子保護フィルム、偏光板、および画像表示装置 |
WO2008136346A1 (ja) * | 2007-04-26 | 2008-11-13 | Zeon Corporation | 表示画面用保護フィルムおよび偏光板 |
JP2011510352A (ja) * | 2008-01-23 | 2011-03-31 | エルジー・ケム・リミテッド | 位相差フィルム、その製造方法、およびこれを含む液晶表示装置 |
JP2012504783A (ja) * | 2008-10-02 | 2012-02-23 | エルジー・ケム・リミテッド | 光学フィルム及びその製造方法 |
JP2016004242A (ja) * | 2014-06-19 | 2016-01-12 | 株式会社カネカ | 積層体および該積層体を用いた偏光板 |
WO2016185722A1 (ja) * | 2015-05-21 | 2016-11-24 | 株式会社日本触媒 | 樹脂組成物およびフィルム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001174601A (ja) * | 1999-12-17 | 2001-06-29 | Hoya Corp | 光学製品 |
JP2003238562A (ja) * | 2002-02-07 | 2003-08-27 | Hoya Corp | 環状ジスルフィド化合物およびその製造方法 |
JP2007316366A (ja) | 2006-05-26 | 2007-12-06 | Nippon Shokubai Co Ltd | 偏光子保護フィルム、偏光板、および画像表示装置 |
US20120225274A1 (en) * | 2009-11-13 | 2012-09-06 | Mitsui Chemicals, Inc. | Film and uses thereof |
CN103380175B (zh) * | 2011-02-21 | 2015-11-25 | 株式会社钟化 | 丙烯酸类树脂膜 |
JP6128629B2 (ja) * | 2011-04-22 | 2017-05-17 | 日東電工株式会社 | 光学積層体 |
US8969696B2 (en) * | 2012-08-01 | 2015-03-03 | Richard Wiley | Acoustic decoupling device |
JP2016139027A (ja) * | 2015-01-28 | 2016-08-04 | 日東電工株式会社 | 偏光板および液晶表示装置 |
JP2016224182A (ja) * | 2015-05-28 | 2016-12-28 | 日東電工株式会社 | 偏光板および液晶表示装置 |
JP2017026939A (ja) * | 2015-07-27 | 2017-02-02 | 日東電工株式会社 | 偏光板および液晶表示装置 |
JP2016218478A (ja) | 2016-09-13 | 2016-12-22 | 住友化学株式会社 | アクリル系樹脂フィルム及び偏光板 |
-
2018
- 2018-04-02 CN CN201880024168.2A patent/CN110537115B/zh active Active
- 2018-04-02 KR KR1020197029379A patent/KR102695631B1/ko active Active
- 2018-04-02 WO PCT/JP2018/014121 patent/WO2018190172A1/ja active Application Filing
- 2018-04-02 JP JP2019512438A patent/JP7083339B2/ja active Active
- 2018-04-10 TW TW107112248A patent/TWI763824B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007026659A1 (ja) * | 2005-08-30 | 2007-03-08 | Nitto Denko Corporation | 偏光子保護フィルム、偏光板、および画像表示装置 |
WO2008136346A1 (ja) * | 2007-04-26 | 2008-11-13 | Zeon Corporation | 表示画面用保護フィルムおよび偏光板 |
JP2011510352A (ja) * | 2008-01-23 | 2011-03-31 | エルジー・ケム・リミテッド | 位相差フィルム、その製造方法、およびこれを含む液晶表示装置 |
JP2012504783A (ja) * | 2008-10-02 | 2012-02-23 | エルジー・ケム・リミテッド | 光学フィルム及びその製造方法 |
JP2016004242A (ja) * | 2014-06-19 | 2016-01-12 | 株式会社カネカ | 積層体および該積層体を用いた偏光板 |
WO2016185722A1 (ja) * | 2015-05-21 | 2016-11-24 | 株式会社日本触媒 | 樹脂組成物およびフィルム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021240882A1 (ja) * | 2020-05-28 | 2021-12-02 | 日東電工株式会社 | 位相差層および粘着剤層付偏光板およびそれを用いた有機エレクトロルミネセンス表示装置 |
JP2021189259A (ja) * | 2020-05-28 | 2021-12-13 | 日東電工株式会社 | 位相差層および粘着剤層付偏光板およびそれを用いた有機エレクトロルミネセンス表示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110537115B (zh) | 2023-02-17 |
JP7083339B2 (ja) | 2022-06-10 |
KR20190132410A (ko) | 2019-11-27 |
TW201842364A (zh) | 2018-12-01 |
CN110537115A (zh) | 2019-12-03 |
TWI763824B (zh) | 2022-05-11 |
JPWO2018190172A1 (ja) | 2020-02-20 |
KR102695631B1 (ko) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI798213B (zh) | 偏光板及圖像顯示裝置 | |
JP2022009348A (ja) | 偏光板の製造方法 | |
JP2018155812A (ja) | 偏光子保護フィルム、偏光板および画像表示装置 | |
WO2018190172A1 (ja) | 光学フィルム、偏光板、および画像表示装置 | |
WO2018190173A1 (ja) | 光学フィルム、偏光板、および画像表示装置 | |
JP7083341B2 (ja) | 光学積層体、偏光板、および画像表示装置 | |
WO2018190175A1 (ja) | 光学積層体、偏光板、および画像表示装置 | |
JP2018155809A5 (ja) | ||
TWI802559B (zh) | 偏光元件保護膜之製造方法 | |
JP2018155811A (ja) | 偏光板および画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18784807 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019512438 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197029379 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18784807 Country of ref document: EP Kind code of ref document: A1 |