+

WO2018190167A1 - Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine - Google Patents

Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine Download PDF

Info

Publication number
WO2018190167A1
WO2018190167A1 PCT/JP2018/014067 JP2018014067W WO2018190167A1 WO 2018190167 A1 WO2018190167 A1 WO 2018190167A1 JP 2018014067 W JP2018014067 W JP 2018014067W WO 2018190167 A1 WO2018190167 A1 WO 2018190167A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
combustion engine
internal combustion
wear
manufacturing
Prior art date
Application number
PCT/JP2018/014067
Other languages
French (fr)
Japanese (ja)
Inventor
圭太郎 宍戸
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880019413.0A priority Critical patent/CN110446845A/en
Publication of WO2018190167A1 publication Critical patent/WO2018190167A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/10Making specific metal objects by operations not covered by a single other subclass or a group in this subclass pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston for an internal combustion engine.
  • the piston of an internal combustion engine has a piston head, and a wear resistant ring is fixed to the piston head, and a piston ring groove is provided in the wear resistant ring.
  • a wear resistant ring is fixed to the piston head, and a piston ring groove is provided in the wear resistant ring.
  • the wear-resistant ring member is set in a mold and the piston main body is cast, whereby the piston head A piston with a wear-resistant ring is manufactured.
  • This type of piston has room to improve the bondability between the wear-resistant ring and the piston body.
  • the piston of the internal combustion engine preferably has an intermediate layer containing aluminum between the piston body and the wear-resistant ring.
  • the intermediate layer further includes an additive that improves the wettability of the aluminum.
  • the piston of the internal combustion engine according to the embodiment of the present invention can improve the bondability between the wear resistant ring and the piston main body.
  • FIG. 1 schematically shows a cross section of a part of an engine taken along a plane passing through the axis of one cylinder of the first embodiment.
  • FIG. 2 is a perspective view of the piston of the first embodiment, showing a cross section cut by a plane passing through the axis of the piston.
  • FIG. 3 shows an enlarged part of a piston head portion in the piston cross section of FIG.
  • FIG. 3 is a diagram schematically showing a mold and a wear-resistant ring member installed in the mold in a step of casting the piston of the first embodiment, and shows a cross section cut by a plane passing through the axis of the wear-resistant ring member.
  • FIG. 3 is a view of a wear-resistant ring member installed in a mold and a part of the mold as viewed obliquely in the process of casting the piston of the first embodiment.
  • FIG. 3 is a cross-sectional view of a part of the alfin-treated abrasion resistant ring member according to the first embodiment, showing a cross section cut along a plane passing through the axis of the abrasion resistant ring member.
  • FIG. 5 is a cross-sectional view of an intermediate material before forming a piston groove in a step of machining the piston of the first embodiment, taken along a plane passing through its axis, and shows a part of the piston head portion in an enlarged manner.
  • An internal combustion engine (engine) 100 shown in FIG. 1 is a 4-stroke gasoline engine and is applied to a vehicle such as an automobile.
  • the engine 100 includes a piston 1, a cylinder block 101, a cylinder head 104, a connecting rod (connecting rod) 105, a combustion chamber 106, a valve 107, an ignition device 108, and an oil jet 109.
  • a crankshaft that is an output shaft of the engine is rotatably installed.
  • the cylinder block 101 includes a cylindrical cylinder sleeve (cylinder liner) 102.
  • the inner peripheral side of the cylinder liner 102 functions as an inner wall of the cylinder (cylinder bore) 10.
  • the piston 1 is accommodated in the cylinder 10 so as to be reciprocally movable.
  • the cylinder head 104 is installed in the cylinder block 101 so as to close the opening of the cylinder 10.
  • a combustion chamber 106 is defined between the piston 1 and the cylinder head 104.
  • the cylinder head 104 is provided with a valve 107, a fuel injection nozzle, and an ignition device 108.
  • the valve 107 has two intake valves and two exhaust valves.
  • the engine 100 includes a supercharging system such as turbocharging. Cooling water circulates in the passage 103 inside the cylinder liner 102.
  • the oil jet 105 is installed in the cylinder block 101 so that its nozzle faces the back surface of the piston 1 (surface opposite to the combustion chamber 106).
  • the piston 1 has a piston main body 2 and a wear-resistant ring 3.
  • the piston body 2 includes an aluminum alloy. This aluminum alloy is, for example, AC8A (specified in JIS H 5202, hereinafter the same).
  • the piston main body 2 has a bottomed cylindrical shape, and integrally includes a piston head (crown portion) 4, a piston boss (apron portion) 5, and a piston skirt (skirt portion) 6.
  • the piston head 4 has a crown surface portion 40 and a land portion 41 integrally.
  • the cross section of the piston head 4 (crown surface portion 40) cut along a plane orthogonal to the moving direction of the piston 1 inside the cylinder 10 is substantially circular.
  • a line passing through the center of the circle and parallel to the moving direction is referred to as an axis of the piston 1.
  • the direction in which the axis extends (the above moving direction) is referred to as the axis direction.
  • the crown surface portion 40 is on one side in the axial direction of the piston head 4.
  • the land portion 41 extends from the outer peripheral side of the crown surface portion 40 to the other side in the axial direction.
  • On the outer periphery of the land portion 41 there are three annular piston ring grooves (ring grooves) 411, 412, and 413.
  • Each ring groove 411, 412, 413 extends in the direction around the axis of the piston 1 (circumferential direction) and surrounds the entire circumference of the land portion 41.
  • the ring grooves 411, 412, 413 are arranged in this order from one side in the axial direction to the other side.
  • Each ring groove 411, 412, 413 is provided with a piston ring.
  • the ring groove 411 is a top ring groove, and a top ring 71 is installed as a first pressure ring (compression ring).
  • the ring groove 412 is a second ring groove, and a second ring 72 is installed as a second pressure ring.
  • the ring groove 413 is an oil ring groove, and an oil ring 73 is installed as an oil control ring.
  • An oil relief hole is opened at the bottom of the ring groove 413. The oil relief hole opens on the inner peripheral surface of the land portion 41.
  • the top ring 71 and the second ring 72 are formed of, for example, high carbon steel, martensitic stainless steel, or the like, and are flat plate members having a substantially C shape in plan view in which a joint is formed at one place in the circumferential direction.
  • the oil ring 73 has, for example, a three-piece structure in which two flat members are provided and a center ring is sandwiched between them.
  • Piston boss 5 and piston skirt 6 extend from piston head 4 (land portion 41) to the other side in the axial direction (opposite side of combustion chamber 15 with respect to piston head 4).
  • the inner peripheral sides of the piston skirt 6 and the piston boss 5 are hollow.
  • Each piston boss 5 has a pin boss 50.
  • Each pin boss 50 has a piston pin hole 51.
  • the piston pin hole 51 extends through the pin boss 50 in the radial direction of the piston 1.
  • the piston skirt 6 is sandwiched between the piston bosses 5 and 5 in the circumferential direction of the piston 1. Both piston skirts 6 and 6 are connected by a piston boss 5.
  • the end of the piston pin 8 is fitted into the piston pin hole 51.
  • the piston 1 is connected to one end side (small end portion) of the connecting rod 105 via the piston pin 8.
  • the other end side (large end portion) of the connecting rod 105 is connected to the crankshaft.
  • the wear-resistant ring 3 includes Ni-resist cast iron and is fixed to the inside of the piston head 4 (an installation site of the top ring 71 in the piston head 4).
  • the wear-resistant ring 3 is an annular member that surrounds the outer periphery of the piston head 4.
  • a line passing through the center of the circle of the ring and perpendicular to the plane including the ring is called the axis of the wear resistant ring 3.
  • the axis of the wear-resistant ring 3 substantially coincides with the axis of the piston 1.
  • the inner circumferential surface 31 of the wear-resistant ring 3 is a curved surface convex toward the axis of the wear-resistant ring 3 (inward in the radial direction), and a cross section cut by a plane passing through the axis is semicircular. Both side surfaces 32, 33 in the axial direction of the wear-resistant ring 3 have a planar shape perpendicular to the axis of the wear-resistant ring 3.
  • the outer circumferential surface 34 of the wear-resistant ring 3 is cylindrical, and its outer diameter dimension (distance from the axis of the wear-resistant ring 3) substantially matches the outer diameter dimension of the piston head 4 (distance from the axis of the piston 1). .
  • the outer peripheral surface 34 forms a part of the outer peripheral surface of the piston head 4 (is flush).
  • a ring groove 411 is opened at the center of the outer peripheral surface 34 in the height direction (the axial direction of the wear resistant ring 3).
  • the bottom surface of the ring groove 411 extends in the axial direction of the wear-resistant ring 3, and the inner surface other than the bottom surface of the ring groove 411 is substantially parallel to both side surfaces 32 and 33 in the axial direction of the wear-resistant ring 3.
  • the intermediate layer 30 includes an aluminum alloy and an additive.
  • the aluminum alloy is, for example, AC3A (specified in JIS H ⁇ 5202, hereinafter the same).
  • the additive includes sodium Na.
  • the proportion of the mass of Na in the intermediate layer 30 is 9 ppm or more and 1% or less. Note that the additive may contain a substance other than Na.
  • the manufacturing process of the piston 1 includes a wear-resistant ring member forming process, an alfin treatment process, a casting process, a heat treatment process, and a machining process.
  • the wear-resistant ring member forming step the base material of the wear-resistant ring 3 (the wear-resistant ring member 3A) is formed using Ni-resist cast iron as a material.
  • the shape of the wear-resistant ring member 3A is the shape of the wear-resistant ring 3 before the outer peripheral side (the outer peripheral surface 34 and the ring groove 411) is formed by machining.
  • the outer peripheral surface 34A of the wear resistant ring member 3A is cylindrical, and its outer diameter dimension (distance from the axis of the wear resistant ring member 3A) is slightly larger than the outer diameter dimension of the piston head 4.
  • the shape of the inner peripheral surface 31A of the wear resistant ring member 3A is the same as the shape of the inner peripheral surface 31 of the wear resistant ring 3.
  • Both side surfaces 32A, 33A in the axial direction of the wear resistant ring member 3A are slightly radially outward from both side surfaces 32, 33 in the axial direction of the wear resistant ring 3.
  • the mixed material includes an aluminum alloy AC3A and an additive (Na).
  • the ratio of the mass of Na in the mixed material is 9 ppm or more and 1% or less.
  • the surface of the wear resistant ring member 3A is alfined. That is, the wear resistant ring member 3A is immersed in the molten mixed material, and the surface of the wear resistant ring member 3A is covered with the mixed material.
  • a molecular bond is generated between AC3A and Niresist cast iron, and an alloy film 30A containing a compound of AC3A and Niresist cast iron is formed on the surface.
  • This film 30A contains Na.
  • the wear resistant ring member 3A on which the film 30A is formed is referred to as a member 300.
  • the prototype (intermediate material) of the piston body 2 is cast by the gravity casting method, and the wear resistant ring member 3A is cast into the intermediate material.
  • the mold includes a lower mold 91, an upper mold 92, and a core 93.
  • the lower mold 91 has a cylindrical portion 910.
  • the cylindrical portion 910 functions as a mold for the outer periphery of the intermediate material.
  • a stepped portion 911 is provided at the upper end of the cylindrical portion 910.
  • the upper die 92 closes the opening of the lower die 91 (cylindrical portion 910) and functions as a die on the crown surface portion 40 side of the intermediate material. As shown in FIG.
  • the core 93 is a sand mold (sand core), and functions as a mold on the inner circumference and the other side in the axial direction of the intermediate material.
  • the core 93 is installed in the lower mold 91.
  • the member 300 is installed on the step portion 911 of the lower mold 91.
  • the axis of the wear resistant ring member 3A substantially coincides with the axis of the cylindrical portion 910.
  • Both side surfaces 32A and 33A in the axial direction of the wear-resistant ring member 3A extend substantially horizontally and are substantially orthogonal to the axis of the cylindrical portion 910.
  • the upper mold 92 is installed on the lower mold 91.
  • the member 300 is sandwiched between the lower mold 91 (step 911) and the upper mold 92.
  • the molten metal for example, the molten aluminum alloy AC8A
  • the intermediate material in which the wear-resistant ring member 3A is cast on the outer peripheral side of the piston head 4 (original mold) is formed.
  • the alloy film 30A between the intermediate material (the prototype of the piston head 4) and the wear resistant ring member 3A is a future intermediate layer 30.
  • heat treatment In the heat treatment process, heat treatment is performed. Thereby, the property of the cast intermediate material is improved and adjusted to an appropriate strength and hardness.
  • the intermediate material is machined with a lathe.
  • the piston head 4 is cut to form a crown surface 400.
  • the outer diameter of the piston main body 2 such as the outer periphery of the piston head 4 and the piston skirt 6 is finished.
  • a part (outer peripheral side) of the wear resistant ring member 3A is cut together with the outer circumference of the piston head 4 to form a prototype 3B of the wear resistant ring 3.
  • the outer peripheral surface of the piston head 4 including the outer peripheral surface 34 of the prototype 3B as a part thereof is finished.
  • the piston pin hole 51 and the ring grooves 411 to 413 are formed by cutting (the ring groove 411 is formed in the master 3B).
  • the piston 1 (the wear resistant ring 3 and the piston main body 2) as shown in FIGS. 2 and 3 is completed.
  • the ring groove 411 may be formed in the wear-resistant ring member 3A before the casting process (after the alfin treatment process).
  • the crown surface 400 of the piston 1 is exposed to the combustion gas inside the combustion chamber 106.
  • the piston 1 reciprocates in the cylinder 10 by receiving the combustion pressure generated in the combustion chamber 106 during the expansion stroke on the crown surface 400. This reciprocating movement is converted into a rotational motion by the connecting rod 105 and output to the crankshaft.
  • the piston main body 2 includes the aluminum alloy AC8A, it is possible to reduce the weight of the piston 1 and improve the heat dissipation.
  • the piston rings 71 to 73 and the piston skirt 6 slide against the inner wall of the cylinder 10.
  • the heat transferred from the combustion chamber 106 to the piston head 4 is released by being transferred to the cylinder liner 102 and the cooling water therein through the piston ring 71 and the like.
  • the heat is also released when oil adheres to the inner peripheral side (back side) of the piston 1 and flows out. This oil adhesion is performed by, for example, the injection of oil from the oil jet 109.
  • the combustion pressure in the combustion chamber 106 is high because the engine 100 includes the supercharging system. In addition, if the engine 100 is intended to reduce fuel consumption and output, the temperature of the combustion chamber 106 increases.
  • the piston ring 71 and the like are also required to have high wear resistance, and the piston ring 71 and the like having high hardness are used. For example, since the high hardness piston ring 71 collides with the inner wall of the ring groove 411, the inner wall of the ring groove 411 is likely to be worn or deformed. On the other hand, the ring groove 411 is formed in the wear-resistant ring 3.
  • the wear-resistant ring 3 formed from Ni-resist cast iron has higher hardness (Rockwell hardness, Vickers hardness, etc.) than the piston body 2 formed from the aluminum alloy AC8A, and is excellent in wear resistance even at high temperatures. Therefore, wear and deformation of the inner wall of the ring groove 411 can be suppressed, and gas leakage and oil leakage through the outer periphery of the piston 1 can be suppressed.
  • the material of the wear-resistant ring 3 is not limited to Ni-resist cast iron, but may be any material that has higher hardness than the piston body 2 and excellent wear resistance. In the present embodiment, since the wear resistant ring 3 is made of Ni-resist cast iron, the linear expansion coefficient of the wear resistant ring 3 is close to that of aluminum (alloy AC8A), and an increase in thermal stress during engine operation can be suppressed.
  • the wear resistant ring member 3A As a pretreatment for the casting process of the piston 1, the wear resistant ring member 3A is immersed in a mixed material containing an aluminum alloy AC3A (alphine treatment). Thereby, the alloy film 30A is formed. Therefore, in the casting process, the wettability of the wear resistant ring member 3A (member 300) with the aluminum alloy AC8A that is the material of the piston main body 2 is improved. Compared to the case without the film 30A, the surface tension of the molten aluminum alloy AC8A in contact with the wear resistant ring member 3A (film 30A) is lowered. Since the adhesion between the molten metal and the wear resistant ring member 3A (member 300) is improved, the wear resistant ring member 3A is more firmly cast inside the piston main body 2.
  • Piston body 2 contains aluminum alloy AC8A. That is, the piston main body 2 has aluminum as a main component, like the alloy film 30A (intermediate layer 30). Thereby, since the adhesiveness between the piston main body 2 (molten metal) and the membrane 30A is further improved, better bonding can be obtained between the piston main body 2 and the wear resistant ring member 3A.
  • the alloy film 30A (intermediate layer 30) only needs to contain aluminum.
  • silicon Si may not be contained (pure aluminum may be used).
  • the film 30A (intermediate layer 30) is made of an aluminum alloy AC3A and contains silicon Si.
  • the melting point of the metal for the alfin processing becomes low because the aluminum that is the metal for the alfin processing contains Si. Therefore, better bonding can be obtained between the piston main body 2 and the wear resistant ring member 3A. That is, when the melting point of the alfin processing metal is high, in the casting process of the piston main body 2, the film 30A is partially solidified and is difficult to be combined with the piston main body 2 (molten metal).
  • the film 30A maintains a highly fluid (molten) state, and has the above-mentioned bowl shape. Hard to become. Therefore, the adhesion between the piston main body 2 (the molten metal) and the membrane 30A is further improved, so that a better bond can be obtained between the piston main body 2 and the wear resistant ring member 3A.
  • the thickness of the alloy film 30A (intermediate layer 30) is 1 mm or less. Therefore, the joint strength between the piston body 2 and the wear resistant ring member 3A can be improved. For example, if the member 300 is installed in the mold 91 and is gripped with a tool (scissors or the like), the gripped part of the membrane 30A is marked, and the joint property may be deteriorated at this part. If the thickness of the film 30A (intermediate layer 30) is 1 mm or less, such inconvenience can be remarkably suppressed. This inventor discovered this.
  • Alloy film 30A (intermediate layer 30) contains sodium Na as an additive to the metal for alfin processing.
  • Na has a function of improving the wettability of the aluminum alloy AC3A, that is, the wettability of the film 30A. Therefore, in the casting process, the wettability of the wear resistant ring member 3A (member 300) with the aluminum alloy AC8A that is the material of the piston main body 2 is further improved.
  • the surface tension of the film 30A in contact with the molten aluminum alloy AC8A is lowered. Since the adhesion between the molten metal and the wear resistant ring member 3A (member 300) is improved, the wear resistant ring member 3A is more firmly cast inside the piston main body 2.
  • Figure 8 shows an example in which Na was added to the metal for AC3A for the alphin treatment that covers the wear resistant ring member 3A in the alphin treatment process (the mass ratio of Na is 9 ppm to 12 ppm) and an example in which Na was not added to the AC3A.
  • the rate of occurrence of poor bonding between the wear-resistant ring 3 and the piston main body 2 (occurrence rate of individuals in which defects were recognized in the penetrant inspection after machining) is shown. In the case where Na was not added, the appearance rate of bonding failure was 25%, whereas in the case where Na was added, the appearance rate was about 2%.
  • FIG. 10 and 11 show experimental results in which a molten metal 13 of an aluminum alloy AC8A, which is a material of the piston main body 2, is poured into the test piece 14 of the wear resistant ring member 3A (member 300).
  • the test piece 14 in FIG. 10 is covered with an alfin-treating metal AC3A to which Na is not added.
  • the test piece 14 in FIG. 11 is covered with AC3A to which Na is added (the mass ratio of Na is 28 ppm).
  • the test piece 14 was placed on the pedestal 12 in a state of being inclined at a predetermined angle, and the molten metal 13 of AC8A was poured onto the pedestal 12 from above.
  • the molten metal 13 solidified while flowing in the direction indicated by the arrow 11.
  • the joining area of the molten metal 13 in the test piece 14 is about 60% larger.
  • the alloy film 30A (intermediate layer 30) of the wear resistant ring member 3A contains Na, the adhesion between the molten metal of the piston body 2 and the wear resistant ring member 3A (member 300) is improved. Occurrence of poor bonding of the wear resistant ring 3 can be suppressed.
  • the film 30A (AC3A, which is an alfin processing metal) covering the wear resistant ring member 3A installed in the mold 91 or the like maintains a molten high temperature state. Therefore, even if a flux is applied to the surface of the film 30A, the flux evaporates at a high temperature and is difficult to apply.
  • the flux is not applied to the surface of the film 30A, but an additive (Na) is included in the material of the film 30A. Therefore, in the casting process, the wettability of the film 30A can be improved even if the wear resistant ring member 3A (member 300) installed in the mold 91 or the like is in a high temperature state.
  • the casting method of the piston 1 is not limited to the gravity casting method, and may be a low pressure casting method or the like. Further, the specific configuration of the mold is not limited to that of the present embodiment.
  • the additive of the alloy film 30A may be any surface active element of aluminum (alloy) that is the material of the film 30A, that is, an element that reduces the surface tension of the molten aluminum (alloy).
  • the additive contains Na. Na is highly effective in reducing the surface tension of molten aluminum among the above elements. Therefore, sufficient wettability can be easily obtained with a smaller amount of additive.
  • the mass ratio of the additive, Na, in the intermediate layer 30 (alloy film 30A) is 9 ppm or more.
  • the wettability of aluminum (alloy AC3A) that is, the wettability of the membrane 30A is sufficiently improved, and the wear resistance between the material of the piston body 2 (AC8A)
  • the wettability of the ring member 3A (member 300) can be sufficiently improved. This inventor discovered this.
  • the mass ratio in the intermediate layer (alloy film 30A) of Na as an additive is 1% or less.
  • the upper limit of the ratio of Na as described above, it is possible to suppress a situation in which the structure of the intermediate layer 30 is chemically changed and becomes brittle. This inventor discovered this. As a result, it is possible to suppress a decrease in the bondability between the piston body 2 and the wear resistant ring 3.
  • the configuration will be described.
  • members and structures common to the first embodiment are denoted by the same reference numerals as in the first embodiment, and description thereof is omitted.
  • the molten magnesium alloy is poured into a mold (where the wear resistant ring member 3A is disposed).
  • the intermediate material of the piston main body 2 is cast. Therefore, the piston main body 2 includes a magnesium alloy.
  • the mixed material in the Alfin treatment step contains pure aluminum and sodium Na as an additive. Therefore, the intermediate layer 30 includes pure aluminum and an additive (Na).
  • Other configurations and manufacturing steps are the same as those in the first embodiment.
  • the piston body 2 includes a magnesium alloy, the weight of the piston 1 can be reduced.
  • the wear-resistant ring 3 formed from Ni-resist cast iron has a higher hardness than the piston main body 2 formed from a magnesium alloy. Therefore, wear and deformation of the inner wall of the ring groove 711 can be suppressed.
  • the alloy film 30A formed by Alfin treatment reduces the surface tension of the molten magnesium alloy in contact with the wear resistant ring member 3A, and the adhesion between the molten metal and the wear resistant ring member 3A (member 300). Will improve.
  • the film 30A (intermediate layer 30) is made of pure aluminum and does not contain silicon Si.
  • the embrittlement (decrease in material strength) of the structure of the piston main body 2 that can occur when Si is mixed with magnesium in the piston main body 2 can be suppressed.
  • the addition of Na to the film 30A reduces the surface tension of the film 30A in contact with the molten magnesium alloy, and improves the adhesion between the molten metal and the wear resistant ring member 3A (member 300).
  • Other functions and effects are the same as those of the first embodiment.
  • the engine format is arbitrary.
  • the engine is not limited to a 4-stroke engine and may be a 2-stroke engine. It is not limited to a spark ignition engine (gasoline engine), but may be a compression ignition engine (diesel engine).
  • the fuel supply method may be an in-cylinder direct injection type that directly injects into the cylinder (combustion chamber), or a port injection type that injects into the intake port.
  • An engine mounted on a ship or the like is not limited to a vehicle.
  • the intermediate layer of the present invention can be applied to any piston that has a high in-cylinder load during combustion and has a wear-resistant ring.
  • the shape of the piston (piston body) is arbitrary.
  • an annular passage for circulating a cooling medium may be provided inside the piston head and on the inner peripheral side of the wear-resistant ring.
  • a part of the wear-resistant ring may be used as the outer peripheral wall of the annular passage.
  • the intermediate layer of the present invention may be provided only on a part of the surface of the wear-resistant ring between the piston head and the wear-resistant ring.
  • a piston of an internal combustion engine includes an aluminum alloy or a magnesium alloy, a piston main body having a piston head and a skirt portion integral with the piston head, and the piston main body.
  • a wear-resistant ring having a higher hardness and having a piston ring groove, the wear-resistant ring being fixed to the piston head, and between the piston head and the wear-resistant ring, and wetting of aluminum and the aluminum
  • an intermediate layer containing an additive for improving the properties includes an aluminum alloy or a magnesium alloy, a piston main body having a piston head and a skirt portion integral with the piston head, and the piston main body.
  • the additive contains at least one of sodium, bismuth, barium, lithium, lead, thallium, strontium, and antimony.
  • the additive comprises sodium.
  • the mass ratio of the additive sodium in the intermediate layer is 9 ppm or more.
  • the mass ratio of sodium as the additive in the intermediate layer is 1% or less.
  • the intermediate layer has a thickness of 1 mm or less.
  • the piston main body portion includes an aluminum alloy.
  • the intermediate layer includes silicon.
  • the piston main body portion includes a magnesium alloy.
  • the intermediate layer does not contain silicon.
  • a wear-resistant ring cast into the body, and forming a base material for the wear-resistant ring with a material having a hardness higher than that of the piston main body, and an additive for improving aluminum and the wettability of the aluminum The step of covering the surface of the base material of the wear-resistant ring with the mixed material in a molten state, and the base material of the wear-resistant ring whose surface is covered with the mixed material are arranged in the casting mold of the piston main body portion A step of pouring a molten aluminum alloy or magnesium alloy into the casting mold in which the base material of the wear-resistant ring is disposed; And forming a grayed groove.
  • the additive contains at least one of sodium, bismuth, barium, lithium, lead, thallium, strontium, and antimony. (13) In another preferred embodiment, in any of the above embodiments, the additive comprises sodium. (14) In still another preferred embodiment, in any one of the above embodiments, the mass ratio of sodium as the additive in the mixed material is 9 ppm or more. (15) In still another preferred embodiment, in any one of the above embodiments, a mass ratio of the additive sodium in the mixed material is 1% or less. (16) In still another preferred embodiment, in any one of the above embodiments, the thickness of the layer formed of the mixed material between the piston head and the wear-resistant ring is 1 mm or less.
  • the piston main body is formed of the aluminum alloy.
  • the mixed material includes silicon.
  • the piston main body is formed of the magnesium alloy.
  • the mixed material does not contain silicon.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

According to the present invention, a piston of an internal-combustion engine includes a piston main body portion, an abrasion resistant ring, and an intermediate layer. The piston main body portion is formed from an aluminum alloy or a magnesium alloy, and includes a piston head and a skirt portion integral with the piston head. The abrasion resistant ring has a higher hardness than the piston main body portion, has a piston ring groove and is fixed to the piston head. The intermediate layer is disposed between the piston head and the abrasion resistant ring, and includes aluminum and an additive. The additive improves the wettability of the aluminum.

Description

内燃機関のピストン及び内燃機関のピストンの製造方法Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
 本発明は、内燃機関のピストンに関する。 The present invention relates to a piston for an internal combustion engine.
 内燃機関のピストンは、ピストンヘッドを有しており、ピストンヘッドには耐磨環が固定され、耐磨環にはピストンリング溝が設けられている。例えば特許文献1に開示されるピストンの製造工程では、ニレジスト鋳鉄製の耐磨環部材をアルフィン処理した後、この耐磨環部材を型にセットしてピストン本体部を鋳造することで、ピストンヘッドに耐磨環が鋳込まれたピストンが製造される。 The piston of an internal combustion engine has a piston head, and a wear resistant ring is fixed to the piston head, and a piston ring groove is provided in the wear resistant ring. For example, in the piston manufacturing process disclosed in Patent Document 1, after a Niresist cast iron wear-resistant ring member is subjected to Alfin treatment, the wear-resistant ring member is set in a mold and the piston main body is cast, whereby the piston head A piston with a wear-resistant ring is manufactured.
特開平5-237632号公報JP-A-5-237632
 この種のピストンでは、耐磨環とピストン本体部との接合性を向上する余地があった。 This type of piston has room to improve the bondability between the wear-resistant ring and the piston body.
 本発明の一実施形態に係る内燃機関のピストンは、好ましくは、ピストン本体部と耐磨環との間に、アルミニウムを含む中間層がある。中間層は、アルミニウムの濡れ性を向上させる添加剤をさらに含む。 The piston of the internal combustion engine according to one embodiment of the present invention preferably has an intermediate layer containing aluminum between the piston body and the wear-resistant ring. The intermediate layer further includes an additive that improves the wettability of the aluminum.
 よって、本発明の一実施形態に係る内燃機関のピストンは、耐磨環とピストン本体部との接合性を向上することができる。 Therefore, the piston of the internal combustion engine according to the embodiment of the present invention can improve the bondability between the wear resistant ring and the piston main body.
第1実施形態の1つのシリンダの軸線を通る平面でエンジンの一部を切った断面を模式的に示す。1 schematically shows a cross section of a part of an engine taken along a plane passing through the axis of one cylinder of the first embodiment. 第1実施形態のピストンの斜視図であり、ピストンの軸線を通る平面で切った断面を示す。FIG. 2 is a perspective view of the piston of the first embodiment, showing a cross section cut by a plane passing through the axis of the piston. 図2のピストンの断面におけるピストンヘッド部分の一部を拡大して示す。FIG. 3 shows an enlarged part of a piston head portion in the piston cross section of FIG. 第1実施形態のピストンを鋳造する工程における、型と、型に設置された耐磨環部材とを模式的に示す図であり、耐磨環部材の軸線を通る平面で切った断面を示す。FIG. 3 is a diagram schematically showing a mold and a wear-resistant ring member installed in the mold in a step of casting the piston of the first embodiment, and shows a cross section cut by a plane passing through the axis of the wear-resistant ring member. 第1実施形態のピストンを鋳造する工程における、型に設置された耐磨環部材と、型の一部とを斜めから見た図である。FIG. 3 is a view of a wear-resistant ring member installed in a mold and a part of the mold as viewed obliquely in the process of casting the piston of the first embodiment. 第1実施形態のアルフィン処理された耐磨環部材の一部の断面図であり、耐磨環部材の軸線を通る平面で切った断面を示す。FIG. 3 is a cross-sectional view of a part of the alfin-treated abrasion resistant ring member according to the first embodiment, showing a cross section cut along a plane passing through the axis of the abrasion resistant ring member. 第1実施形態のピストンを機械加工する工程における、ピストン溝を形成する前の中間材をその軸線を通る平面で切った断面図であり、ピストンヘッド部分の一部を拡大して示す。FIG. 5 is a cross-sectional view of an intermediate material before forming a piston groove in a step of machining the piston of the first embodiment, taken along a plane passing through its axis, and shows a part of the piston head portion in an enlarged manner. 耐磨環とピストン本体部との接合不良の出現率を、添加剤の有無に応じて示す棒グラフである。It is a bar graph which shows the appearance rate of the joining defect of a wear-resistant ring and a piston main-body part according to the presence or absence of an additive. 耐磨環とピストン本体部との接合性を試験する器具の模式図である。It is a schematic diagram of the instrument which tests the joining property of a wear-resistant ring and a piston main-body part. 中間層の材料に添加剤を含まない場合の接合性の試験結果を示す写真である。It is a photograph which shows the test result of bondability in case an additive is not included in the material of an intermediate | middle layer. 中間層の材料に添加剤を含む場合の接合性の試験結果を示す写真である。It is a photograph which shows the test result of bondability in case an additive is included in the material of an intermediate | middle layer.
 以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
 [第1実施形態]
  まず、構成を説明する。図1に示す内燃機関(エンジン)100は、4ストローク・ガソリンエンジンであり、自動車等の車両に適用される。エンジン100は、ピストン1、シリンダブロック101、シリンダヘッド104、コネクティングロッド(コンロッド)105、燃焼室106、バルブ107、点火装置108、及びオイルジェット109を備える。シリンダブロック101には、エンジンの出力軸であるクランクシャフトが回転可能に設置される。シリンダブロック101は、円筒状のシリンダスリーブ(シリンダライナ)102を備える。シリンダライナ102の内周側はシリンダ(シリンダボア)10の内壁として機能する。ピストン1は、シリンダ10の内部に、往復移動可能に収容される。シリンダヘッド104は、シリンダ10の開口を塞ぐようにシリンダブロック101に設置される。図1に示すようにピストン1が上死点にあるとき、ピストン1とシリンダヘッド104との間に、燃焼室106が区画される。シリンダヘッド104には、バルブ107と、燃料の噴射ノズルと、点火装置108とが設置される。バルブ107は2つの吸気バルブと2つの排気バルブを有する。エンジン100は、ターボ過給等の過給システムを備える。シリンダライナ102の内部の通路103には冷却水が循環する。オイルジェット105は、そのノズルがピストン1の背面(燃焼室106に対し反対側の面)に対向するように、シリンダブロック101に設置される。
[First embodiment]
First, the configuration will be described. An internal combustion engine (engine) 100 shown in FIG. 1 is a 4-stroke gasoline engine and is applied to a vehicle such as an automobile. The engine 100 includes a piston 1, a cylinder block 101, a cylinder head 104, a connecting rod (connecting rod) 105, a combustion chamber 106, a valve 107, an ignition device 108, and an oil jet 109. In the cylinder block 101, a crankshaft that is an output shaft of the engine is rotatably installed. The cylinder block 101 includes a cylindrical cylinder sleeve (cylinder liner) 102. The inner peripheral side of the cylinder liner 102 functions as an inner wall of the cylinder (cylinder bore) 10. The piston 1 is accommodated in the cylinder 10 so as to be reciprocally movable. The cylinder head 104 is installed in the cylinder block 101 so as to close the opening of the cylinder 10. As shown in FIG. 1, when the piston 1 is at the top dead center, a combustion chamber 106 is defined between the piston 1 and the cylinder head 104. The cylinder head 104 is provided with a valve 107, a fuel injection nozzle, and an ignition device 108. The valve 107 has two intake valves and two exhaust valves. The engine 100 includes a supercharging system such as turbocharging. Cooling water circulates in the passage 103 inside the cylinder liner 102. The oil jet 105 is installed in the cylinder block 101 so that its nozzle faces the back surface of the piston 1 (surface opposite to the combustion chamber 106).
 図2に示すように、ピストン1は、ピストン本体部2と耐磨環3を有する。ピストン本体部2はアルミニウム合金を含む。このアルミニウム合金は、例えばAC8A(JIS H 5202に規定されるもの。以下同じ)である。ピストン本体部2は、有底筒状であり、ピストンヘッド(冠部)4、ピストンボス(エプロン部)5、及びピストンスカート(スカート部)6を、一体に有する。ピストンヘッド4は、冠面部40とランド部41を、一体に有する。シリンダ10の内部におけるピストン1の移動方向に対し直交する平面で切ったピストンヘッド4(冠面部40)の断面は略円形である。この円の中心を通り、かつ上記移動方向と平行な線をピストン1の軸線という。軸線が延びる方向(上記移動方向)を軸線方向という。冠面部40は、ピストンヘッド4における軸線方向一方側にある。冠面部40の軸線方向一方側には冠面(頂面)400がある。 As shown in FIG. 2, the piston 1 has a piston main body 2 and a wear-resistant ring 3. The piston body 2 includes an aluminum alloy. This aluminum alloy is, for example, AC8A (specified in JIS H 5202, hereinafter the same). The piston main body 2 has a bottomed cylindrical shape, and integrally includes a piston head (crown portion) 4, a piston boss (apron portion) 5, and a piston skirt (skirt portion) 6. The piston head 4 has a crown surface portion 40 and a land portion 41 integrally. The cross section of the piston head 4 (crown surface portion 40) cut along a plane orthogonal to the moving direction of the piston 1 inside the cylinder 10 is substantially circular. A line passing through the center of the circle and parallel to the moving direction is referred to as an axis of the piston 1. The direction in which the axis extends (the above moving direction) is referred to as the axis direction. The crown surface portion 40 is on one side in the axial direction of the piston head 4. There is a crown surface (top surface) 400 on one side in the axial direction of the crown surface portion 40.
 ランド部41は、冠面部40の外周側から軸線方向他方側に延びる。ランド部41の外周には、3つの環状のピストンリング溝(リング溝)411,412,413がある。各リング溝411,412,413は、ピストン1の軸線の周り方向(周方向)に延びてランド部41の全周を取り囲む。リング溝411,412,413は、軸線方向の一方側から他方側にこの順に並ぶ。各リング溝411,412,413にはピストンリングが設置される。リング溝411はトップリング溝であり、第1圧力リング(コンプレッションリング)としてのトップリング71が設置される。リング溝412はセカンドリング溝であり、第2圧力リングとしてのセカンドリング72が設置される。リング溝413はオイルリング溝であり、オイルコントロールリングとしてのオイルリング73が設置される。なお、リング溝413の底部にはオイル逃がし穴が開口する。オイル逃がし穴はランド部41の内周面に開口する。トップリング71及びセカンドリング72は、例えば高炭素鋼やマルテンサイト系ステンレス鋼等により形成され、周方向の一箇所に合い口が形成された平面視略C形の平板状部材である。オイルリング73は、例えば上記平板状部材を2つ備え、これらの間にセンターリングが挟まる3ピース構造である。 The land portion 41 extends from the outer peripheral side of the crown surface portion 40 to the other side in the axial direction. On the outer periphery of the land portion 41, there are three annular piston ring grooves (ring grooves) 411, 412, and 413. Each ring groove 411, 412, 413 extends in the direction around the axis of the piston 1 (circumferential direction) and surrounds the entire circumference of the land portion 41. The ring grooves 411, 412, 413 are arranged in this order from one side in the axial direction to the other side. Each ring groove 411, 412, 413 is provided with a piston ring. The ring groove 411 is a top ring groove, and a top ring 71 is installed as a first pressure ring (compression ring). The ring groove 412 is a second ring groove, and a second ring 72 is installed as a second pressure ring. The ring groove 413 is an oil ring groove, and an oil ring 73 is installed as an oil control ring. An oil relief hole is opened at the bottom of the ring groove 413. The oil relief hole opens on the inner peripheral surface of the land portion 41. The top ring 71 and the second ring 72 are formed of, for example, high carbon steel, martensitic stainless steel, or the like, and are flat plate members having a substantially C shape in plan view in which a joint is formed at one place in the circumferential direction. The oil ring 73 has, for example, a three-piece structure in which two flat members are provided and a center ring is sandwiched between them.
 ピストンボス5及びピストンスカート6は、ピストンヘッド4(ランド部41)から軸線方向他方側(ピストンヘッド4に対し燃焼室15の反対側)に延びる。ピストンスカート6及びピストンボス5の内周側は中空である。ピストンボス5は、ピストン1の径方向両側に一対ある。各ピストンボス5はピンボス50を有する。各ピンボス50はピストンピン穴51を有する。ピストンピン穴51は、ピンボス50を貫通してピストン1の径方向に延びる。ピストンスカート6は、ピストン1の径方向両側に一対ある。ピストンスカート6は、ピストン1の周方向で両ピストンボス5,5に挟まれる。両ピストンスカート6,6はピストンボス5によって連結される。ピストンピン穴51にはピストンピン8の端部が嵌まる。ピストン1は、ピストンピン8を介してコンロッド105の一端側(小端部)に連結される。コンロッド105の他端側(大端部)はクランクシャフトに連結される。 Piston boss 5 and piston skirt 6 extend from piston head 4 (land portion 41) to the other side in the axial direction (opposite side of combustion chamber 15 with respect to piston head 4). The inner peripheral sides of the piston skirt 6 and the piston boss 5 are hollow. There are a pair of piston bosses 5 on both radial sides of the piston 1. Each piston boss 5 has a pin boss 50. Each pin boss 50 has a piston pin hole 51. The piston pin hole 51 extends through the pin boss 50 in the radial direction of the piston 1. There are a pair of piston skirts 6 on both radial sides of the piston 1. The piston skirt 6 is sandwiched between the piston bosses 5 and 5 in the circumferential direction of the piston 1. Both piston skirts 6 and 6 are connected by a piston boss 5. The end of the piston pin 8 is fitted into the piston pin hole 51. The piston 1 is connected to one end side (small end portion) of the connecting rod 105 via the piston pin 8. The other end side (large end portion) of the connecting rod 105 is connected to the crankshaft.
 図3に示すように、耐磨環3は、ニレジスト鋳鉄を含み、ピストンヘッド4の内部(ピストンヘッド4におけるトップリング71の設置部位)に固定される。耐磨環3は、ピストンヘッド4の外周を取り囲む円環状の部材である。上記円環の円の中心を通り、かつ上記円環を含む平面に直交する線を、耐磨環3の軸線という。耐磨環3の軸線はピストン1の軸線に略一致する。耐磨環3の内周面31は、耐磨環3の軸線に向って(径方向内側に)凸の曲面状であり、上記軸線を通る平面で切った断面が半円状である。耐磨環3の軸線方向両側面32,33は、耐磨環3の軸線に直交する平面状である。耐磨環3の外周面34は円筒状であり、その外径寸法(耐磨環3の軸線からの距離)がピストンヘッド4の外径寸法(ピストン1の軸線からの距離)に略一致する。外周面34はピストンヘッド4の外周面の一部をなす(面一である)。外周面34における高さ方向(耐磨環3の軸線方向)の中央部にリング溝411が開口する。リング溝411の底面は耐磨環3の軸線方向に延び、リング溝411の底面以外の内面は耐磨環3の軸線方向両側面32,33に略平行である。 As shown in FIG. 3, the wear-resistant ring 3 includes Ni-resist cast iron and is fixed to the inside of the piston head 4 (an installation site of the top ring 71 in the piston head 4). The wear-resistant ring 3 is an annular member that surrounds the outer periphery of the piston head 4. A line passing through the center of the circle of the ring and perpendicular to the plane including the ring is called the axis of the wear resistant ring 3. The axis of the wear-resistant ring 3 substantially coincides with the axis of the piston 1. The inner circumferential surface 31 of the wear-resistant ring 3 is a curved surface convex toward the axis of the wear-resistant ring 3 (inward in the radial direction), and a cross section cut by a plane passing through the axis is semicircular. Both side surfaces 32, 33 in the axial direction of the wear-resistant ring 3 have a planar shape perpendicular to the axis of the wear-resistant ring 3. The outer circumferential surface 34 of the wear-resistant ring 3 is cylindrical, and its outer diameter dimension (distance from the axis of the wear-resistant ring 3) substantially matches the outer diameter dimension of the piston head 4 (distance from the axis of the piston 1). . The outer peripheral surface 34 forms a part of the outer peripheral surface of the piston head 4 (is flush). A ring groove 411 is opened at the center of the outer peripheral surface 34 in the height direction (the axial direction of the wear resistant ring 3). The bottom surface of the ring groove 411 extends in the axial direction of the wear-resistant ring 3, and the inner surface other than the bottom surface of the ring groove 411 is substantially parallel to both side surfaces 32 and 33 in the axial direction of the wear-resistant ring 3.
 耐磨環3とピストンヘッド4との間に中間層30がある。中間層30は、耐磨環3の内周面31の全範囲及び軸線方向両側面32,33の全範囲に接してある。中間層30は、耐磨環3の外周面34及びリング溝411を覆わない。中間層30の厚さは平均して1mm以下であり、より好ましくは中間層30の厚さの最大値が1mm以下である。中間層30はアルミニウム合金及び添加剤を含む。上記アルミニウム合金は、例えばAC3A(JIS H 5202に規定されるもの。以下同じ)である。添加剤は、ナトリウムNaを含む。中間層30におけるNaの質量の割合は9ppm以上、1%以下である。なお、添加剤は、Na以外の物質を含んでもよい。 There is an intermediate layer 30 between the wear-resistant ring 3 and the piston head 4. The intermediate layer 30 is in contact with the entire range of the inner peripheral surface 31 of the wear-resistant ring 3 and the entire range of both side surfaces 32 and 33 in the axial direction. The intermediate layer 30 does not cover the outer peripheral surface 34 and the ring groove 411 of the wear resistant ring 3. The average thickness of the intermediate layer 30 is 1 mm or less, and more preferably, the maximum value of the thickness of the intermediate layer 30 is 1 mm or less. The intermediate layer 30 includes an aluminum alloy and an additive. The aluminum alloy is, for example, AC3A (specified in JIS H。5202, hereinafter the same). The additive includes sodium Na. The proportion of the mass of Na in the intermediate layer 30 is 9 ppm or more and 1% or less. Note that the additive may contain a substance other than Na.
 以下、ピストン1の製造方法を説明する。ピストン1の製造工程は、耐磨環部材形成工程、アルフィン処理工程、鋳造工程、熱処理工程、及び機械加工工程を含む。耐磨環部材形成工程で、ニレジスト鋳鉄を材料(素材)として耐磨環3の母材(耐磨環部材3A)を形成する。図6に示すように、耐磨環部材3Aの形状は、外周側(外周面34及びリング溝411)を機械加工により形成する前の耐磨環3の形状である。耐磨環部材3Aの外周面34Aは円筒状であり、その外径寸法(耐磨環部材3Aの軸線からの距離)はピストンヘッド4の外径寸法よりも若干大きい。耐磨環部材3Aの内周面31Aの形状は、耐磨環3の内周面31の形状と同じである。耐磨環部材3Aの軸線方向両側面32A,33Aは、耐磨環3の軸線方向両側面32,33よりも若干径方向外側に広がる。 Hereinafter, a method for manufacturing the piston 1 will be described. The manufacturing process of the piston 1 includes a wear-resistant ring member forming process, an alfin treatment process, a casting process, a heat treatment process, and a machining process. In the wear-resistant ring member forming step, the base material of the wear-resistant ring 3 (the wear-resistant ring member 3A) is formed using Ni-resist cast iron as a material. As shown in FIG. 6, the shape of the wear-resistant ring member 3A is the shape of the wear-resistant ring 3 before the outer peripheral side (the outer peripheral surface 34 and the ring groove 411) is formed by machining. The outer peripheral surface 34A of the wear resistant ring member 3A is cylindrical, and its outer diameter dimension (distance from the axis of the wear resistant ring member 3A) is slightly larger than the outer diameter dimension of the piston head 4. The shape of the inner peripheral surface 31A of the wear resistant ring member 3A is the same as the shape of the inner peripheral surface 31 of the wear resistant ring 3. Both side surfaces 32A, 33A in the axial direction of the wear resistant ring member 3A are slightly radially outward from both side surfaces 32, 33 in the axial direction of the wear resistant ring 3.
 アルフィン処理工程で、まず混合材料を準備する。混合材料はアルミニウム合金AC3A及び添加剤(Na)を含む。混合材料中におけるNaの質量の割合は9ppm以上、1%以下である。この混合材料により耐磨環部材3Aの表面をアルフィン処理する。すなわち、溶融している状態の混合材料に耐磨環部材3Aを浸漬し、上記混合材料により耐磨環部材3Aの表面を覆う。これにより、図6に示すように、AC3Aとニレジスト鋳鉄との間に分子的結合を生じ、AC3Aとニレジスト鋳鉄との化合物を含む合金膜30Aが上記表面に形成される。この膜30AはNaを含む。以下、膜30Aが形成された耐磨環部材3Aを部材300という。 In the Alfin treatment process, first prepare the mixed material. The mixed material includes an aluminum alloy AC3A and an additive (Na). The ratio of the mass of Na in the mixed material is 9 ppm or more and 1% or less. With this mixed material, the surface of the wear resistant ring member 3A is alfined. That is, the wear resistant ring member 3A is immersed in the molten mixed material, and the surface of the wear resistant ring member 3A is covered with the mixed material. As a result, as shown in FIG. 6, a molecular bond is generated between AC3A and Niresist cast iron, and an alloy film 30A containing a compound of AC3A and Niresist cast iron is formed on the surface. This film 30A contains Na. Hereinafter, the wear resistant ring member 3A on which the film 30A is formed is referred to as a member 300.
 鋳造工程で、重力鋳造法により、ピストン本体部2の原型(中間材)を鋳造すると共に、耐磨環部材3Aを上記中間材に鋳込む。図4に示すように、鋳型は、下金型91、上金型92、及び中子93を有する。下金型91は円筒部910を有する。円筒部910は上記中間材の外周の型として機能する。円筒部910の上端には段差部911がある。上金型92は、下金型91(円筒部910)の開口を塞ぎ、上記中間材の冠面部40側の型として機能する。図5に示すように、中子93は砂型(砂中子)であり、上記中間材の内周及び軸線方向他方側の型として機能する。まず、下金型91に中子93を設置する。その後、部材300を下金型91の段差部911に設置する。この状態で、耐磨環部材3Aの軸線は円筒部910の軸線と実質的に一致する。耐磨環部材3Aの軸線方向両側面32A,33Aは実質的に水平に広がり、円筒部910の軸線に対し実質的に直交する。さらに、上金型92を下金型91に設置する。部材300は、下金型91(段差部911)と上金型92との間に挟まれる。こうして型91~93等により形成された空間94に、湯口90を介して、溶湯、例えば溶融しているアルミニウム合金AC8Aが導かれる。この溶湯が凝固することで、ピストンヘッド4(の原型)の外周側に耐磨環部材3Aが鋳込まれた上記中間材が形成される。上記中間材(ピストンヘッド4の原型)と耐磨環部材3Aとの間の合金膜30Aは、将来の中間層30である。 In the casting process, the prototype (intermediate material) of the piston body 2 is cast by the gravity casting method, and the wear resistant ring member 3A is cast into the intermediate material. As shown in FIG. 4, the mold includes a lower mold 91, an upper mold 92, and a core 93. The lower mold 91 has a cylindrical portion 910. The cylindrical portion 910 functions as a mold for the outer periphery of the intermediate material. A stepped portion 911 is provided at the upper end of the cylindrical portion 910. The upper die 92 closes the opening of the lower die 91 (cylindrical portion 910) and functions as a die on the crown surface portion 40 side of the intermediate material. As shown in FIG. 5, the core 93 is a sand mold (sand core), and functions as a mold on the inner circumference and the other side in the axial direction of the intermediate material. First, the core 93 is installed in the lower mold 91. Thereafter, the member 300 is installed on the step portion 911 of the lower mold 91. In this state, the axis of the wear resistant ring member 3A substantially coincides with the axis of the cylindrical portion 910. Both side surfaces 32A and 33A in the axial direction of the wear-resistant ring member 3A extend substantially horizontally and are substantially orthogonal to the axis of the cylindrical portion 910. Further, the upper mold 92 is installed on the lower mold 91. The member 300 is sandwiched between the lower mold 91 (step 911) and the upper mold 92. In this way, the molten metal, for example, the molten aluminum alloy AC8A, is introduced into the space 94 formed by the molds 91 to 93 and the like through the gate 90. By solidifying the molten metal, the intermediate material in which the wear-resistant ring member 3A is cast on the outer peripheral side of the piston head 4 (original mold) is formed. The alloy film 30A between the intermediate material (the prototype of the piston head 4) and the wear resistant ring member 3A is a future intermediate layer 30.
 熱処理工程で、熱処理を行う。これにより、鋳造された上記中間材の性質を改善して適当な強度・硬さに調整する。 In the heat treatment process, heat treatment is performed. Thereby, the property of the cast intermediate material is improved and adjusted to an appropriate strength and hardness.
 機械加工工程で、上記中間材を旋盤等により機械加工する。図7に示すように、ピストンヘッド4を切削加工し、冠面400を形成する。また、ピストンヘッド4やピストンスカート6の外周等、ピストン本体部2の外径を仕上げる。ピストンヘッド4の外周とともに耐磨環部材3Aの一部(外周側)を切削加工し、耐磨環3の原型3Bを形成する。言換えると、原型3Bの外周面34をその一部として含むピストンヘッド4の外周面を仕上げる。また、切削加工によりピストンピン穴51やリング溝411~413を形成する(原型3Bにリング溝411を形成する)。これにより、図2及び図3に示すようなピストン1(耐磨環3及びピストン本体部2)を完成する。なお、鋳造工程前(アルフィン処理工程後)に耐磨環部材3Aにリング溝411を形成しておいてもよい。 In the machining process, the intermediate material is machined with a lathe. As shown in FIG. 7, the piston head 4 is cut to form a crown surface 400. Further, the outer diameter of the piston main body 2 such as the outer periphery of the piston head 4 and the piston skirt 6 is finished. A part (outer peripheral side) of the wear resistant ring member 3A is cut together with the outer circumference of the piston head 4 to form a prototype 3B of the wear resistant ring 3. In other words, the outer peripheral surface of the piston head 4 including the outer peripheral surface 34 of the prototype 3B as a part thereof is finished. Further, the piston pin hole 51 and the ring grooves 411 to 413 are formed by cutting (the ring groove 411 is formed in the master 3B). Thereby, the piston 1 (the wear resistant ring 3 and the piston main body 2) as shown in FIGS. 2 and 3 is completed. Note that the ring groove 411 may be formed in the wear-resistant ring member 3A before the casting process (after the alfin treatment process).
 次に、作用効果を説明する。エンジン100の作動時、ピストン1の冠面400は燃焼室106の内部の燃焼ガスに暴露される。ピストン1は、膨張行程時に燃焼室106で発生した燃焼圧を冠面400に受けることで、シリンダ10の内部を往復移動する。この往復移動がコンロッド105により回転運動に変換され、クランクシャフトに出力される。ここで、ピストン本体部2は、アルミニウム合金AC8Aを含むため、ピストン1の軽量化や放熱性向上等を図ることができる。ピストンリング71~73及びピストンスカート6はシリンダ10の内壁に対し摺動する。燃焼室106からピストンヘッド4に伝わった熱は、ピストンリング71等を介してシリンダライナ102およびその内部の冷却水に伝わることで放出される。また、上記熱は、ピストン1の内周側(裏側)にオイルが付着し流出することでも放出される。このオイルの付着は、例えばオイルジェット109からのオイルの噴射により行われる。 Next, the function and effect will be described. When the engine 100 is in operation, the crown surface 400 of the piston 1 is exposed to the combustion gas inside the combustion chamber 106. The piston 1 reciprocates in the cylinder 10 by receiving the combustion pressure generated in the combustion chamber 106 during the expansion stroke on the crown surface 400. This reciprocating movement is converted into a rotational motion by the connecting rod 105 and output to the crankshaft. Here, since the piston main body 2 includes the aluminum alloy AC8A, it is possible to reduce the weight of the piston 1 and improve the heat dissipation. The piston rings 71 to 73 and the piston skirt 6 slide against the inner wall of the cylinder 10. The heat transferred from the combustion chamber 106 to the piston head 4 is released by being transferred to the cylinder liner 102 and the cooling water therein through the piston ring 71 and the like. The heat is also released when oil adheres to the inner peripheral side (back side) of the piston 1 and flows out. This oil adhesion is performed by, for example, the injection of oil from the oil jet 109.
 エンジン100が過給システムを備えることで、燃焼室106の燃焼圧が高い。また、エンジン100の低燃費化や高出力化を図ろうとすると、燃焼室106の温度は高くなる。こうしてピストン100に作用する荷重(筒内荷重)が高くなると、ピストンリング71等にも高い耐摩耗性が要求され、硬度の高いピストンリング71等が使用される。例えばリング溝411の内壁には高硬度のピストンリング71が衝突することになるため、リング溝411の内壁の磨耗や変形のおそれが高くなる。これに対し、リング溝411が耐磨環3に形成されている。ニレジスト鋳鉄から形成された耐磨環3は、アルミニウム合金AC8Aから形成されたピストン本体部2よりも硬度(ロックウェル硬さ、ビッカース硬さ等)が高く、高温時においても耐摩耗性に優れる。よって、リング溝411の内壁の磨耗や変形を抑制し、ピストン1の外周を介したガス漏れやオイル漏れを抑制できる。なお、耐磨環3の材料は、ニレジスト鋳鉄に限らず、ピストン本体部2よりも硬度が高く、耐磨耗性に優れた材料であればよい。本実施形態では、耐磨環3がニレジスト鋳鉄を材料とするため、耐磨環3の線膨張係数がアルミニウム(合金AC8A)に近く、エンジン作動時の熱応力の増大を抑制可能である。 The combustion pressure in the combustion chamber 106 is high because the engine 100 includes the supercharging system. In addition, if the engine 100 is intended to reduce fuel consumption and output, the temperature of the combustion chamber 106 increases. When the load (in-cylinder load) acting on the piston 100 is increased in this way, the piston ring 71 and the like are also required to have high wear resistance, and the piston ring 71 and the like having high hardness are used. For example, since the high hardness piston ring 71 collides with the inner wall of the ring groove 411, the inner wall of the ring groove 411 is likely to be worn or deformed. On the other hand, the ring groove 411 is formed in the wear-resistant ring 3. The wear-resistant ring 3 formed from Ni-resist cast iron has higher hardness (Rockwell hardness, Vickers hardness, etc.) than the piston body 2 formed from the aluminum alloy AC8A, and is excellent in wear resistance even at high temperatures. Therefore, wear and deformation of the inner wall of the ring groove 411 can be suppressed, and gas leakage and oil leakage through the outer periphery of the piston 1 can be suppressed. The material of the wear-resistant ring 3 is not limited to Ni-resist cast iron, but may be any material that has higher hardness than the piston body 2 and excellent wear resistance. In the present embodiment, since the wear resistant ring 3 is made of Ni-resist cast iron, the linear expansion coefficient of the wear resistant ring 3 is close to that of aluminum (alloy AC8A), and an increase in thermal stress during engine operation can be suppressed.
 ピストン1の鋳造工程の前処理として、アルミニウム合金AC3Aを含む混合材料に耐磨環部材3Aを浸漬する(アルフィン処理)。これにより、合金膜30Aが形成される。よって、鋳造工程において、ピストン本体部2の材料であるアルミニウム合金AC8Aとの間の耐磨環部材3A(部材300)の濡れ性が改善される。膜30Aがない場合に比べ、耐磨環部材3A(膜30A)に接触するアルミニウム合金AC8Aの溶湯の表面張力が低下する。上記溶湯と耐磨環部材3A(部材300)との接着性が向上するため、耐磨環部材3Aがピストン本体部2の内部に、より強固に鋳包まれる。 As a pretreatment for the casting process of the piston 1, the wear resistant ring member 3A is immersed in a mixed material containing an aluminum alloy AC3A (alphine treatment). Thereby, the alloy film 30A is formed. Therefore, in the casting process, the wettability of the wear resistant ring member 3A (member 300) with the aluminum alloy AC8A that is the material of the piston main body 2 is improved. Compared to the case without the film 30A, the surface tension of the molten aluminum alloy AC8A in contact with the wear resistant ring member 3A (film 30A) is lowered. Since the adhesion between the molten metal and the wear resistant ring member 3A (member 300) is improved, the wear resistant ring member 3A is more firmly cast inside the piston main body 2.
 ピストン本体部2はアルミニウム合金AC8Aを含む。すなわち、ピストン本体部2が合金膜30A(中間層30)と同じくアルミニウムを主成分としている。これにより、ピストン本体部2(の溶湯)と膜30Aとの接着性がより向上するため、ピストン本体部2と耐磨環部材3Aとの間でより良好な接合を得ることができる。 Piston body 2 contains aluminum alloy AC8A. That is, the piston main body 2 has aluminum as a main component, like the alloy film 30A (intermediate layer 30). Thereby, since the adhesiveness between the piston main body 2 (molten metal) and the membrane 30A is further improved, better bonding can be obtained between the piston main body 2 and the wear resistant ring member 3A.
 なお、合金膜30A(中間層30)は、アルミニウムを含んでいればよく、例えばシリコンSiを含まなくてもよい(純アルミニウムでもよい)。本実施形態では、膜30A(中間層30)はアルミニウム合金AC3Aを材料としており、シリコンSiを含む。このように、アルフィン処理用金属であるアルミニウムがSiを含有していることで、アルフィン処理用金属(混合材料)の融点が低くなる。よって、ピストン本体部2と耐磨環部材3Aとの間でより良好な接合を得ることができる。すなわち、アルフィン処理用金属の融点が高いと、ピストン本体部2の鋳造工程において、膜30Aが部分的に固まった粥状になり、ピストン本体部2(の溶湯)と結合しにくい。これに対し、アルフィン処理用金属の融点を低くすることで、鋳造工程において仮に部材300の温度が低下しても、膜30Aが流動性の高い(溶融した)状態を維持し、上記粥状になりにくい。よって、ピストン本体部2(の溶湯)と膜30Aとの接着性がより向上するため、ピストン本体部2と耐磨環部材3Aとの間で更に良好な接合を得ることができる。 The alloy film 30A (intermediate layer 30) only needs to contain aluminum. For example, silicon Si may not be contained (pure aluminum may be used). In the present embodiment, the film 30A (intermediate layer 30) is made of an aluminum alloy AC3A and contains silicon Si. Thus, the melting point of the metal for the alfin processing (mixed material) becomes low because the aluminum that is the metal for the alfin processing contains Si. Therefore, better bonding can be obtained between the piston main body 2 and the wear resistant ring member 3A. That is, when the melting point of the alfin processing metal is high, in the casting process of the piston main body 2, the film 30A is partially solidified and is difficult to be combined with the piston main body 2 (molten metal). On the other hand, by lowering the melting point of the metal for alfin treatment, even if the temperature of the member 300 is lowered in the casting process, the film 30A maintains a highly fluid (molten) state, and has the above-mentioned bowl shape. Hard to become. Therefore, the adhesion between the piston main body 2 (the molten metal) and the membrane 30A is further improved, so that a better bond can be obtained between the piston main body 2 and the wear resistant ring member 3A.
 合金膜30A(中間層30)の厚さは1mm以下である。よって、ピストン本体部2と耐磨環部材3Aとの間の接合強度を向上することができる。例えば、部材300を金型91に設置するため、これを道具(ハサミ等)で掴むと、膜30Aにおける上記掴んだ箇所に跡が付いてしまい、この箇所で接合性が低下するおそれがある。膜30A(中間層30)の厚さが1mm以下であれば、このような不都合を顕著に抑制できる。このことを、本発明者は見出した。 The thickness of the alloy film 30A (intermediate layer 30) is 1 mm or less. Therefore, the joint strength between the piston body 2 and the wear resistant ring member 3A can be improved. For example, if the member 300 is installed in the mold 91 and is gripped with a tool (scissors or the like), the gripped part of the membrane 30A is marked, and the joint property may be deteriorated at this part. If the thickness of the film 30A (intermediate layer 30) is 1 mm or less, such inconvenience can be remarkably suppressed. This inventor discovered this.
 合金膜30A(中間層30)は、アルフィン処理用金属への添加剤として、ナトリウムNaを含む。Naは、アルミニウム合金AC3Aの濡れ性すなわち膜30Aの濡れ性を向上させる機能を有する。よって、鋳造工程において、ピストン本体部2の材料であるアルミニウム合金AC8Aとの間の耐磨環部材3A(部材300)の濡れ性がより改善される。膜30AがNaを含まない場合に比べ、アルミニウム合金AC8Aの溶湯に接触する膜30Aの表面張力が低下する。上記溶湯と耐磨環部材3A(部材300)との接着性が向上するため、耐磨環部材3Aがピストン本体部2の内部に、より強固に鋳包まれる。 Alloy film 30A (intermediate layer 30) contains sodium Na as an additive to the metal for alfin processing. Na has a function of improving the wettability of the aluminum alloy AC3A, that is, the wettability of the film 30A. Therefore, in the casting process, the wettability of the wear resistant ring member 3A (member 300) with the aluminum alloy AC8A that is the material of the piston main body 2 is further improved. Compared with the case where the film 30A does not contain Na, the surface tension of the film 30A in contact with the molten aluminum alloy AC8A is lowered. Since the adhesion between the molten metal and the wear resistant ring member 3A (member 300) is improved, the wear resistant ring member 3A is more firmly cast inside the piston main body 2.
 図8は、アルフィン処理工程において耐磨環部材3Aを覆うアルフィン処理用金属AC3AにNaを添加した例(Naの質量割合は9ppm~12ppm)と、AC3AにNaを添加しなかった例のそれぞれについて、耐磨環3とピストン本体部2との接合不良の出現率(機械加工後における浸透探傷試験において欠陥が認められた個体数の発生割合)を示す。Naを添加しなかった例では接合不良の出現率が25%であるのに対し、Naを添加した例では上記出現率が2%程度であった。 Figure 8 shows an example in which Na was added to the metal for AC3A for the alphin treatment that covers the wear resistant ring member 3A in the alphin treatment process (the mass ratio of Na is 9 ppm to 12 ppm) and an example in which Na was not added to the AC3A. The rate of occurrence of poor bonding between the wear-resistant ring 3 and the piston main body 2 (occurrence rate of individuals in which defects were recognized in the penetrant inspection after machining) is shown. In the case where Na was not added, the appearance rate of bonding failure was 25%, whereas in the case where Na was added, the appearance rate was about 2%.
 また、図10及び図11は、耐磨環部材3A(部材300)の試験片14に、ピストン本体部2の材料であるアルミニウム合金AC8Aの溶湯13を注いだ実験結果を示す。図10の試験片14は、Naを添加しないアルフィン処理用金属AC3Aにより覆われたものである。図11の試験片14は、Naを添加したAC3A(Naの質量割合は28ppm)により覆われたものである。図9に示すように、上記試験片14を所定の角度で傾けた状態で台座12に設置し、これに上方からAC8Aの溶湯13を注いだ。溶湯13は矢印11で示される方向に流れながら凝固した。図10の例に比べ、図11の例は、試験片14における溶湯13の接合面積が60%程度大きい。以上のように、耐磨環部材3Aの合金膜30A(中間層30)がNaを含むことで、ピストン本体部2の溶湯と耐磨環部材3A(部材300)との密着性が改善し、耐磨環3の接合不良の発生を抑制することができる。 10 and 11 show experimental results in which a molten metal 13 of an aluminum alloy AC8A, which is a material of the piston main body 2, is poured into the test piece 14 of the wear resistant ring member 3A (member 300). The test piece 14 in FIG. 10 is covered with an alfin-treating metal AC3A to which Na is not added. The test piece 14 in FIG. 11 is covered with AC3A to which Na is added (the mass ratio of Na is 28 ppm). As shown in FIG. 9, the test piece 14 was placed on the pedestal 12 in a state of being inclined at a predetermined angle, and the molten metal 13 of AC8A was poured onto the pedestal 12 from above. The molten metal 13 solidified while flowing in the direction indicated by the arrow 11. Compared to the example of FIG. 10, in the example of FIG. 11, the joining area of the molten metal 13 in the test piece 14 is about 60% larger. As described above, since the alloy film 30A (intermediate layer 30) of the wear resistant ring member 3A contains Na, the adhesion between the molten metal of the piston body 2 and the wear resistant ring member 3A (member 300) is improved. Occurrence of poor bonding of the wear resistant ring 3 can be suppressed.
 なお、合金膜30Aの濡れ性を向上させるため、膜30AにNaを添加するのではなく、膜30Aの表面にフラックスを塗布することも考えられる。しかし、重力鋳造法で用いられる金型91等の表面には断熱性のある塗型剤がコーティングされるのが通常である。このため、金型91等に設置された耐磨環部材3Aを覆う膜30A(アルフィン処理用金属であるAC3A)は、溶融した高温状態を維持する。よって、膜30Aの表面にフラックスを塗布しようとしても、フラックスは高温により蒸発してしまい、塗布は困難である。これに対し、本実施形態では、膜30Aの表面にフラックスを塗布するのではなく、膜30Aの材料中に添加剤(Na)を含む。よって、鋳造工程において、金型91等に設置された耐磨環部材3A(部材300)が高温状態であっても、膜30Aの濡れ性を向上させることができる。なお、ピストン1の鋳造方法は、重力鋳造法にかぎらず、低圧鋳造法等でもよい。また、鋳型の具体的な構成は本実施形態のものに限られない。 In order to improve the wettability of the alloy film 30A, it is also conceivable to apply a flux to the surface of the film 30A instead of adding Na to the film 30A. However, the surface of the die 91 or the like used in the gravity casting method is usually coated with a heat insulating coating agent. For this reason, the film 30A (AC3A, which is an alfin processing metal) covering the wear resistant ring member 3A installed in the mold 91 or the like maintains a molten high temperature state. Therefore, even if a flux is applied to the surface of the film 30A, the flux evaporates at a high temperature and is difficult to apply. On the other hand, in this embodiment, the flux is not applied to the surface of the film 30A, but an additive (Na) is included in the material of the film 30A. Therefore, in the casting process, the wettability of the film 30A can be improved even if the wear resistant ring member 3A (member 300) installed in the mold 91 or the like is in a high temperature state. The casting method of the piston 1 is not limited to the gravity casting method, and may be a low pressure casting method or the like. Further, the specific configuration of the mold is not limited to that of the present embodiment.
 なお、合金膜30A(中間層30)の添加剤は、膜30Aの材料であるアルミニウム(合金)の界面活性元素、すなわち上記アルミニウム(合金)の溶湯の表面張力を低下させる元素であればよく、Naに限られない。具体的には、Naの他に、ビスマスBi、バリウムBa、リチウムLi、鉛Pb、タリウムTl、ストロンチウムSr、及びアンチモンSbが、上記のような元素として機能しうる。これらのうち少なくとも1つを膜30A(中間層30)の材料に添加することで、膜30Aの濡れ性を向上させることができる。本実施形態では、添加剤はNaを含む。Naは、上記元素のうち、アルミニウム溶湯の表面張力を低下させる効果が高い。よって、より少量の添加剤により、充分な濡れ性を容易に得ることができる。 Note that the additive of the alloy film 30A (intermediate layer 30) may be any surface active element of aluminum (alloy) that is the material of the film 30A, that is, an element that reduces the surface tension of the molten aluminum (alloy). Not limited to Na. Specifically, in addition to Na, bismuth Bi, barium Ba, lithium Li, lead Pb, thallium Tl, strontium Sr, and antimony Sb can function as the above elements. By adding at least one of these to the material of the film 30A (intermediate layer 30), the wettability of the film 30A can be improved. In this embodiment, the additive contains Na. Na is highly effective in reducing the surface tension of molten aluminum among the above elements. Therefore, sufficient wettability can be easily obtained with a smaller amount of additive.
 添加剤であるNaの中間層30(合金膜30A)における質量の割合は9ppm以上である。Naの割合の下限を上記のように設定することで、アルミニウム(合金AC3A)の濡れ性すなわち膜30Aの濡れ性を充分に改善し、ピストン本体部2の材料(AC8A)との間の耐磨環部材3A(部材300)の濡れ性を充分に向上しうる。このことを本発明者は見出した。 The mass ratio of the additive, Na, in the intermediate layer 30 (alloy film 30A) is 9 ppm or more. By setting the lower limit of the Na ratio as described above, the wettability of aluminum (alloy AC3A), that is, the wettability of the membrane 30A is sufficiently improved, and the wear resistance between the material of the piston body 2 (AC8A) The wettability of the ring member 3A (member 300) can be sufficiently improved. This inventor discovered this.
 添加剤であるNaの中間層(合金膜30A)における質量の割合は1%以下である。Naの割合の上限を上記のように設定することで、中間層30の組織が化学的に変化して脆化する事態を抑制できる。このことを本発明者は見出した。これにより、ピストン本体部2と耐磨環3との接合性の低下を抑制することができる。 The mass ratio in the intermediate layer (alloy film 30A) of Na as an additive is 1% or less. By setting the upper limit of the ratio of Na as described above, it is possible to suppress a situation in which the structure of the intermediate layer 30 is chemically changed and becomes brittle. This inventor discovered this. As a result, it is possible to suppress a decrease in the bondability between the piston body 2 and the wear resistant ring 3.
 [第2実施形態]
  まず、構成を説明する。以下、第1実施形態と共通する部材や構造については第1実施形態と同じ符号を付して、説明を省略する。鋳造工程で、マグネシウム合金の溶湯を、(耐磨環部材3Aが配置された)鋳型に流し込む。これによりピストン本体部2の中間材を鋳造する。よって、ピストン本体部2は、マグネシウム合金を含む。アルフィン処理工程における混合材料は、純アルミニウム、及び添加剤としてのナトリウムNaを含む。よって、中間層30は、純アルミニウム及び添加剤(Na)を含む。他の構成及び製造工程は第1実施形態と同じである。
[Second Embodiment]
First, the configuration will be described. Hereinafter, members and structures common to the first embodiment are denoted by the same reference numerals as in the first embodiment, and description thereof is omitted. In the casting process, the molten magnesium alloy is poured into a mold (where the wear resistant ring member 3A is disposed). Thereby, the intermediate material of the piston main body 2 is cast. Therefore, the piston main body 2 includes a magnesium alloy. The mixed material in the Alfin treatment step contains pure aluminum and sodium Na as an additive. Therefore, the intermediate layer 30 includes pure aluminum and an additive (Na). Other configurations and manufacturing steps are the same as those in the first embodiment.
 次に、作用効果を説明する。ピストン本体部2はマグネシウム合金を含むため、ピストン1の軽量化等を図ることができる。ニレジスト鋳鉄から形成された耐磨環3は、マグネシウム合金から形成されたピストン本体部2よりも硬度が高い。よって、リング溝711の内壁の磨耗や変形を抑制できる。鋳造工程では、アルフィン処理により形成された合金膜30Aにより、耐磨環部材3Aに接触するマグネシウム合金の溶湯の表面張力が低下し、上記溶湯と耐磨環部材3A(部材300)との接着性が向上する。膜30A(中間層30)は純アルミニウムを材料としており、シリコンSiを含まない。よって、ピストン本体部2のマグネシウムにSiが混ざることで起こりうるピストン本体部2の組織の脆化(材料強度の低下)を抑制できる。鋳造工程では、膜30AへのNaの添加により、マグネシウム合金の溶湯に接触する膜30Aの表面張力が低下し、上記溶湯と耐磨環部材3A(部材300)との接着性が向上する。他の作用効果は第1実施形態と同じである。 Next, the function and effect will be described. Since the piston body 2 includes a magnesium alloy, the weight of the piston 1 can be reduced. The wear-resistant ring 3 formed from Ni-resist cast iron has a higher hardness than the piston main body 2 formed from a magnesium alloy. Therefore, wear and deformation of the inner wall of the ring groove 711 can be suppressed. In the casting process, the alloy film 30A formed by Alfin treatment reduces the surface tension of the molten magnesium alloy in contact with the wear resistant ring member 3A, and the adhesion between the molten metal and the wear resistant ring member 3A (member 300). Will improve. The film 30A (intermediate layer 30) is made of pure aluminum and does not contain silicon Si. Therefore, the embrittlement (decrease in material strength) of the structure of the piston main body 2 that can occur when Si is mixed with magnesium in the piston main body 2 can be suppressed. In the casting process, the addition of Na to the film 30A reduces the surface tension of the film 30A in contact with the molten magnesium alloy, and improves the adhesion between the molten metal and the wear resistant ring member 3A (member 300). Other functions and effects are the same as those of the first embodiment.
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、エンジンの形式は任意である。エンジンは、4ストロークエンジンに限らず2ストロークエンジンであってもよい。火花点火機関(ガソリン機関)に限らず、圧縮点火機関(ディーゼルエンジン)であってもよい。燃料の供給方式は、シリンダ(燃焼室)内に直接噴射する筒内直噴式でもよいし、吸気ポートに噴射するポート噴射式でもよい。車両に限らず船舶等に搭載されるエンジンであってもよい。燃焼時の筒内荷重が高く、耐磨環を有するピストンであれば、本発明の中間層を適用可能である。ピストン(ピストン本体部)の形状は任意である。例えば、ピストンヘッドの内部であって耐磨環の内周側に、冷却媒体が流通するための環状通路があってもよい。この場合、環状通路の外周壁として耐磨環の一部を用いてもよい。この場合のように、ピストンヘッドと耐磨環との間において、耐磨環の表面の一部にのみ本発明の中間層があってもよい。
[Other Embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on drawing, the specific structure of this invention is not limited to embodiment, The design change etc. of the range which does not deviate from the summary of invention are included. Even if it exists, it is included in this invention. For example, the engine format is arbitrary. The engine is not limited to a 4-stroke engine and may be a 2-stroke engine. It is not limited to a spark ignition engine (gasoline engine), but may be a compression ignition engine (diesel engine). The fuel supply method may be an in-cylinder direct injection type that directly injects into the cylinder (combustion chamber), or a port injection type that injects into the intake port. An engine mounted on a ship or the like is not limited to a vehicle. The intermediate layer of the present invention can be applied to any piston that has a high in-cylinder load during combustion and has a wear-resistant ring. The shape of the piston (piston body) is arbitrary. For example, an annular passage for circulating a cooling medium may be provided inside the piston head and on the inner peripheral side of the wear-resistant ring. In this case, a part of the wear-resistant ring may be used as the outer peripheral wall of the annular passage. As in this case, the intermediate layer of the present invention may be provided only on a part of the surface of the wear-resistant ring between the piston head and the wear-resistant ring.
 [実施形態から把握しうる技術的思想]
  以上説明した実施形態から把握しうる技術的思想(または技術的解決策。以下同じ。)について、以下に記載する。
(1) 本技術的思想の内燃機関のピストンは、その1つの態様において、アルミニウム合金又はマグネシウム合金を含み、ピストンヘッド及び前記ピストンヘッドと一体のスカート部を有するピストン本体部と、前記ピストン本体部よりも硬度が高く、ピストンリング溝がある耐磨環であって、前記ピストンヘッドに固定された耐磨環と、前記ピストンヘッドと前記耐磨環との間にあり、アルミニウム及び前記アルミニウムの濡れ性を向上させる添加剤を含む中間層とを有する。
(2) より好ましい態様では、前記態様において、前記添加剤は、ナトリウム、ビスマス、バリウム、リチウム、鉛、タリウム、ストロンチウム、及びアンチモンの少なくとも1つを含む。
(3) 別の好ましい態様では、前記態様のいずれかにおいて、前記添加剤はナトリウムを含む。
(4) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記添加剤であるナトリウムの前記中間層における質量の割合は9ppm以上である。
(5) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記添加剤であるナトリウムの前記中間層における質量の割合は1%以下である。
(6) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記中間層の厚さは1mm以下である。
(7) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記ピストン本体部はアルミニウム合金を含む。
(8) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記中間層はシリコンを含む。
(9) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記ピストン本体部はマグネシウム合金を含む。
(10) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記中間層はシリコンを含まない。
(11) また、本技術的思想の内燃機関のピストンの製造方法は、その1つの態様において、前記ピストンは、ピストンヘッド及び前記ピストンヘッドと一体のスカート部を有するピストン本体部と、前記ピストンヘッドに鋳込まれた耐磨環とを備え、前記ピストン本体部よりも硬度が高い材料により前記耐磨環の母材を形成する工程と、アルミニウム及び前記アルミニウムの濡れ性を向上させる添加剤を含み溶融している状態の混合材料により前記耐磨環の母材の表面を覆う工程と、表面が前記混合材料により覆われた前記耐磨環の母材を前記ピストン本体部の鋳造型に配置する工程と、溶融している状態のアルミニウム合金又はマグネシウム合金を、前記耐磨環の母材が配置された前記鋳造型に流し込む工程と、前記耐磨環の母材にピストンリング溝を形成する工程とを含む。
(12) より好ましい態様では、前記態様において、前記添加剤は、ナトリウム、ビスマス、バリウム、リチウム、鉛、タリウム、ストロンチウム、及びアンチモンの少なくとも1つを含む。
(13) 別の好ましい態様では、前記態様のいずれかにおいて、前記添加剤はナトリウムを含む。
(14) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記添加剤であるナトリウムの前記混合材料中における質量の割合は9ppm以上である。
(15) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記添加剤であるナトリウムの前記混合材料中における質量の割合は1%以下である。
(16) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記ピストンヘッドと前記耐磨環との間に前記混合材料により形成される層の厚さは1mm以下である。
(17) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記ピストン本体部を前記アルミニウム合金により形成する。
(18) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記混合材料はシリコンを含む。
(19) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記ピストン本体部を前記マグネシウム合金により形成する。
(20) さらに別の好ましい態様では、前記態様のいずれかにおいて、前記混合材料はシリコンを含まない。
[Technical ideas that can be grasped from the embodiment]
The technical idea (or technical solution, the same applies hereinafter) that can be understood from the embodiment described above will be described below.
(1) A piston of an internal combustion engine according to the present technical idea, in one aspect thereof, includes an aluminum alloy or a magnesium alloy, a piston main body having a piston head and a skirt portion integral with the piston head, and the piston main body. A wear-resistant ring having a higher hardness and having a piston ring groove, the wear-resistant ring being fixed to the piston head, and between the piston head and the wear-resistant ring, and wetting of aluminum and the aluminum And an intermediate layer containing an additive for improving the properties.
(2) In a more preferred embodiment, in the above embodiment, the additive contains at least one of sodium, bismuth, barium, lithium, lead, thallium, strontium, and antimony.
(3) In another preferred embodiment, in any of the above embodiments, the additive comprises sodium.
(4) In still another preferred embodiment, in any one of the above embodiments, the mass ratio of the additive sodium in the intermediate layer is 9 ppm or more.
(5) In still another preferred embodiment, in any one of the above embodiments, the mass ratio of sodium as the additive in the intermediate layer is 1% or less.
(6) In still another preferred embodiment, in any of the above embodiments, the intermediate layer has a thickness of 1 mm or less.
(7) In still another preferred embodiment, in any one of the above embodiments, the piston main body portion includes an aluminum alloy.
(8) In still another preferred embodiment, in any of the above embodiments, the intermediate layer includes silicon.
(9) In still another preferred embodiment, in any one of the above embodiments, the piston main body portion includes a magnesium alloy.
(10) In still another preferred embodiment, in any of the above embodiments, the intermediate layer does not contain silicon.
(11) Further, according to one aspect of the manufacturing method of the piston of the internal combustion engine of the present technical idea, the piston includes a piston head and a piston main body having a skirt portion integrated with the piston head, and the piston head. A wear-resistant ring cast into the body, and forming a base material for the wear-resistant ring with a material having a hardness higher than that of the piston main body, and an additive for improving aluminum and the wettability of the aluminum The step of covering the surface of the base material of the wear-resistant ring with the mixed material in a molten state, and the base material of the wear-resistant ring whose surface is covered with the mixed material are arranged in the casting mold of the piston main body portion A step of pouring a molten aluminum alloy or magnesium alloy into the casting mold in which the base material of the wear-resistant ring is disposed; And forming a grayed groove.
(12) In a more preferred embodiment, in the above embodiment, the additive contains at least one of sodium, bismuth, barium, lithium, lead, thallium, strontium, and antimony.
(13) In another preferred embodiment, in any of the above embodiments, the additive comprises sodium.
(14) In still another preferred embodiment, in any one of the above embodiments, the mass ratio of sodium as the additive in the mixed material is 9 ppm or more.
(15) In still another preferred embodiment, in any one of the above embodiments, a mass ratio of the additive sodium in the mixed material is 1% or less.
(16) In still another preferred embodiment, in any one of the above embodiments, the thickness of the layer formed of the mixed material between the piston head and the wear-resistant ring is 1 mm or less.
(17) In still another preferred aspect, in any one of the aspects, the piston main body is formed of the aluminum alloy.
(18) In still another preferred embodiment, in any of the above embodiments, the mixed material includes silicon.
(19) In still another preferred aspect, in any one of the aspects, the piston main body is formed of the magnesium alloy.
(20) In still another preferred embodiment, in any of the above embodiments, the mixed material does not contain silicon.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本願は、2017年4月12日付出願の日本国特許出願第2017-079015号に基づく優先権を主張する。2017年4月12日付出願の日本国特許出願第2017-079015号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-0799015 filed on Apr. 12, 2017. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-0799015 filed on April 12, 2017 is incorporated herein by reference in its entirety.
1   ピストン2   ピストン本体部3   耐磨環30  中間層411 ピストンリング溝6   ピストンスカート(スカート部)100 エンジン(内燃機関) 1 piston 2 piston body 3 wear ring 30 intermediate layer 411 piston ring groove 6 piston skirt (skirt part) 100 engine (internal combustion engine)

Claims (20)

  1.  内燃機関のピストンであって、
     アルミニウム合金又はマグネシウム合金を含むピストン本体部であって、ピストンヘッドと、該ピストンヘッドと一体のスカート部とを有する前記ピストン本体部と、
     前記ピストン本体部よりも硬度が高く、ピストンリング溝がある耐磨環であって、前記ピストンヘッドに固定された前記耐磨環と、
     前記ピストンヘッドと前記耐磨環との間にあり、アルミニウム及び前記アルミニウムの濡れ性を向上させる添加剤を含む中間層とを有する、 内燃機関のピストン。
    A piston of an internal combustion engine,
    A piston main body including an aluminum alloy or a magnesium alloy, the piston main body having a piston head and a skirt portion integral with the piston head;
    A wear-resistant ring having a higher hardness than the piston main body and having a piston ring groove, the wear-resistant ring fixed to the piston head,
    A piston for an internal combustion engine having an intermediate layer between the piston head and the wear-resistant ring and containing aluminum and an additive for improving the wettability of the aluminum.
  2.  請求項1に記載の内燃機関のピストンにおいて、
     前記添加剤は、ナトリウム、ビスマス、バリウム、リチウム、鉛、タリウム、ストロンチウム、及びアンチモンの少なくとも1つを含む、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    The internal combustion engine piston, wherein the additive includes at least one of sodium, bismuth, barium, lithium, lead, thallium, strontium, and antimony.
  3.  請求項2に記載の内燃機関のピストンにおいて、
     前記添加剤はナトリウムを含む、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 2,
    A piston for an internal combustion engine, wherein the additive comprises sodium.
  4.  請求項3に記載の内燃機関のピストンにおいて、
     前記添加剤であるナトリウムの前記中間層における質量の割合は9ppm以上である、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 3,
    The piston of an internal combustion engine, wherein a mass ratio of the additive sodium in the intermediate layer is 9 ppm or more.
  5.  請求項3に記載の内燃機関のピストンにおいて、
     前記添加剤であるナトリウムの前記中間層における質量の割合は1%以下である、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 3,
    The piston of an internal combustion engine, wherein a mass ratio of the additive sodium in the intermediate layer is 1% or less.
  6.  請求項1に記載の内燃機関のピストンにおいて、
     前記中間層の厚さは1mm以下である、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    The piston of an internal combustion engine, wherein the intermediate layer has a thickness of 1 mm or less.
  7.  請求項1に記載の内燃機関のピストンにおいて、
     前記ピストン本体部はアルミニウム合金を含む、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    A piston for an internal combustion engine, wherein the piston body includes an aluminum alloy.
  8.  請求項7に記載の内燃機関のピストンにおいて、
     前記中間層はシリコンを含む、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 7,
    The piston of an internal combustion engine, wherein the intermediate layer includes silicon.
  9.  請求項1に記載の内燃機関のピストンにおいて、
     前記ピストン本体部はマグネシウム合金を含む、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    The piston main body portion includes a magnesium alloy and is a piston of an internal combustion engine.
  10.  請求項9に記載の内燃機関のピストンにおいて、
     前記中間層はシリコンを含まない、内燃機関のピストン。
    The piston of the internal combustion engine according to claim 9,
    The piston of an internal combustion engine, wherein the intermediate layer does not contain silicon.
  11.  内燃機関のピストンの製造方法であって、
     前記ピストンは、
     ピストンヘッドと、前記ピストンヘッドと一体のスカート部とを有するピストン本体部と、
     前記ピストンヘッドに鋳込まれた耐磨環とを備え、
     前記製造方法は、
     前記ピストン本体部よりも硬度が高い材料により前記耐磨環の母材を形成する工程と、
     アルミニウム及び前記アルミニウムの濡れ性を向上させる添加剤を含み溶融している状態の混合材料により、前記耐磨環の母材の表面を覆う工程と、
     表面が前記混合材料により覆われた前記耐磨環の母材を、前記ピストン本体部の鋳造型に配置する工程と、
     溶融している状態のアルミニウム合金又はマグネシウム合金を、前記耐磨環の母材が配置された前記鋳造型に流し込む工程と、
     前記耐磨環の母材にピストンリング溝を形成する工程とを含む、
     内燃機関のピストンの製造方法。
    A method of manufacturing a piston for an internal combustion engine,
    The piston is
    A piston body having a piston head and a skirt portion integral with the piston head;
    With a wear-resistant ring cast into the piston head,
    The manufacturing method includes:
    Forming the base material of the wear-resistant ring with a material having higher hardness than the piston main body, and
    Covering the surface of the base material of the wear-resistant ring with a mixed material containing aluminum and an additive for improving the wettability of the aluminum and in a molten state;
    Placing the base material of the wear-resistant ring, the surface of which is covered with the mixed material, in a casting mold of the piston body part;
    Pouring a molten aluminum alloy or magnesium alloy into the casting mold in which the base material of the wear-resistant ring is disposed;
    Forming a piston ring groove in the base material of the wear-resistant ring,
    A method for manufacturing a piston of an internal combustion engine.
  12.  請求項11に記載の内燃機関のピストンの製造方法において、
     前記添加剤は、ナトリウム、ビスマス、バリウム、リチウム、鉛、タリウム、ストロンチウム、及びアンチモンの少なくとも1つを含む、内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of the internal-combustion engine according to claim 11,
    The method for manufacturing a piston of an internal combustion engine, wherein the additive includes at least one of sodium, bismuth, barium, lithium, lead, thallium, strontium, and antimony.
  13.  請求項12に記載の内燃機関のピストンの製造方法において、
     前記添加剤はナトリウムを含む、内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 12,
    The method for manufacturing a piston of an internal combustion engine, wherein the additive contains sodium.
  14.  請求項13に記載の内燃機関のピストンの製造方法において、
     前記添加剤であるナトリウムの前記混合材料中における質量の割合は9ppm以上である、内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 13,
    The method for producing a piston of an internal combustion engine, wherein a mass ratio of the additive sodium in the mixed material is 9 ppm or more.
  15.  請求項13に記載の内燃機関のピストンの製造方法において、
     前記添加剤であるナトリウムの前記混合材料中における質量の割合は1%以下である、内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 13,
    The method for manufacturing a piston of an internal combustion engine, wherein a ratio of mass of the additive sodium in the mixed material is 1% or less.
  16.  請求項11に記載の内燃機関のピストンの製造方法において、
     前記ピストンヘッドと前記耐磨環との間に前記混合材料により形成される層の厚さは1mm以下である、内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of the internal-combustion engine according to claim 11,
    A method for manufacturing a piston of an internal combustion engine, wherein a thickness of a layer formed of the mixed material between the piston head and the wear-resistant ring is 1 mm or less.
  17.  請求項11に記載の内燃機関のピストンの製造方法において、
     前記ピストン本体部を前記アルミニウム合金により形成する、内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of the internal-combustion engine according to claim 11,
    A method for manufacturing a piston of an internal combustion engine, wherein the piston main body is formed of the aluminum alloy.
  18.  請求項17に記載の内燃機関のピストンの製造方法において、
     前記混合材料はシリコンを含む、内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 17,
    The method for manufacturing a piston of an internal combustion engine, wherein the mixed material includes silicon.
  19.  請求項11に記載の内燃機関のピストンの製造方法において、
     前記ピストン本体部を前記マグネシウム合金により形成する、内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of the internal-combustion engine according to claim 11,
    A method for manufacturing a piston of an internal combustion engine, wherein the piston body is formed of the magnesium alloy.
  20.  請求項19に記載の内燃機関のピストンの製造方法において、
     前記混合材料はシリコンを含まない、内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 19,
    The method for manufacturing a piston of an internal combustion engine, wherein the mixed material does not contain silicon.
PCT/JP2018/014067 2017-04-12 2018-04-02 Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine WO2018190167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880019413.0A CN110446845A (en) 2017-04-12 2018-04-02 The manufacturing method of the piston of the piston and internal combustion engine of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-079015 2017-04-12
JP2017079015A JP2018178848A (en) 2017-04-12 2017-04-12 Piston of internal combustion engine and method for manufacturing piston of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018190167A1 true WO2018190167A1 (en) 2018-10-18

Family

ID=63792529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014067 WO2018190167A1 (en) 2017-04-12 2018-04-02 Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine

Country Status (3)

Country Link
JP (1) JP2018178848A (en)
CN (1) CN110446845A (en)
WO (1) WO2018190167A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160845B (en) * 2020-09-30 2023-03-10 上海齐耀动力技术有限公司 Stirling engine and one-way throttling type piston dynamic sealing mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142889A (en) * 1992-11-12 1994-05-24 Unisia Jecs Corp Manufacture of composite aluminum member
JP2009299621A (en) * 2008-06-16 2009-12-24 Toyota Motor Corp Piston with wear resistant ring and method for manufacturing same
JP2010523869A (en) * 2007-04-05 2010-07-15 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4229071A1 (en) * 1992-09-01 1994-03-03 Kolbenschmidt Ag Light alloy piston, for internal combustion engines - comprises insert made of pressed, sintered chips of metallic material
JP3314141B2 (en) * 1996-03-26 2002-08-12 マツダ株式会社 Preformed body for compounding, composite aluminum-based metal part obtained by compounding the preformed body, and method for producing the same
CN1517539B (en) * 2003-01-16 2011-03-30 王江 A piston with a wear-resistant ring groove surface
JP2011236772A (en) * 2010-05-07 2011-11-24 Isuzu Motors Ltd Abrasion resistant ring using particle-dispersed aluminum alloy composite material, aluminum alloy piston thereof and method of manufacturing the same
JP5337142B2 (en) * 2010-12-28 2013-11-06 日立オートモティブシステムズ株式会社 Piston for internal combustion engine, method for manufacturing the piston, and sliding member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142889A (en) * 1992-11-12 1994-05-24 Unisia Jecs Corp Manufacture of composite aluminum member
JP2010523869A (en) * 2007-04-05 2010-07-15 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston for internal combustion engine
JP2009299621A (en) * 2008-06-16 2009-12-24 Toyota Motor Corp Piston with wear resistant ring and method for manufacturing same

Also Published As

Publication number Publication date
JP2018178848A (en) 2018-11-15
CN110446845A (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US4548126A (en) Piston with local inorganic fiber reinforcement and method of making the same
US7726273B2 (en) High strength steel cylinder liner for diesel engine
JPH0419345A (en) Cylinder block for internal combustion engine and manufacture thereof
EP0809050A1 (en) Piston for an internal combustion engine and method of making a piston
WO2018190167A1 (en) Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine
JP5003652B2 (en) Cylinder block
JPH05240347A (en) Piston abrasion-proof ring for engine
CN114525504B (en) Valve seat of automobile cylinder cover
WO2018029903A1 (en) Internal combustion engine piston and method for manufacturing internal combustion engine piston
CN109519295A (en) Aluminium cylinder blocks component and its manufacturing method
JPH1082345A (en) Piston for internal combustion engine and its manufacture
JP6246187B2 (en) Assembly for an internal combustion engine comprising a piston and a crankcase
US10578049B2 (en) Thermal barrier coating for engine combustion component
JP3635473B2 (en) Piston for internal combustion engine and manufacturing method thereof
Reddy et al. Experimental analysis of coated engine cylinder liners
JP2023039250A (en) Piston, internal combustion engine, and manufacturing method of piston
WO2020059371A1 (en) Method for manufacturing piston for internal combustion engine
JPH0476252A (en) Concatenated type cylinder liners for internal combustion engine
JPS61126356A (en) Light metallic cylinder block for internal-combustion engine
JP2007138891A (en) Cylinder block and cylinder block assembly
MAHLE GmbH Piston function, requirements, and types
WO2018131356A1 (en) Piston for internal combustion engine
JPH1144251A (en) Piston of two cycle engine
JPH0138277Y2 (en)
JPS5985358A (en) Production of cylinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784215

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载