WO2018190020A1 - Combined power storage system - Google Patents
Combined power storage system Download PDFInfo
- Publication number
- WO2018190020A1 WO2018190020A1 PCT/JP2018/007879 JP2018007879W WO2018190020A1 WO 2018190020 A1 WO2018190020 A1 WO 2018190020A1 JP 2018007879 W JP2018007879 W JP 2018007879W WO 2018190020 A1 WO2018190020 A1 WO 2018190020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- type battery
- power
- capacity
- battery
- storage system
- Prior art date
Links
- 239000002131 composite material Substances 0.000 claims description 30
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a composite power storage system.
- Patent Document 1 discloses a vehicle in which a high-power assembled battery (hereinafter referred to as a power-type battery) excellent in output characteristics and a high-capacity assembled battery (hereinafter referred to as a capacity-type battery) are arranged.
- a power-type battery a high-power assembled battery
- a capacity-type battery a high-capacity assembled battery
- the composite power storage system described in Patent Documents 1 and 2 mainly uses a capacity type battery, and when the capacity type battery alone cannot respond to the output request from the driver or the regenerative power at the time of deceleration, the power type battery is used. It is assumed to be used. For this reason, the load by charging / discharging accumulate
- An object of the present invention is to suppress battery deterioration.
- a power type battery and a capacity type battery are provided, the power type battery and the capacity type battery are directly connected in parallel with each other, and the power type battery and the capacity type battery are connected to the motor via the power converter.
- a composite power storage system in which the resistance value of the wiring from the battery to the power converter is smaller than the resistance value of the wiring from the capacitive battery to the power converter.
- the structure of the composite electrical storage system in one Embodiment of this invention and the electric vehicle carrying it is shown.
- the voltage range of the power type battery and capacity type battery of the composite electrical storage system in one Embodiment of this invention is shown.
- the electric circuit model of the composite electrical storage system in one Embodiment of this invention is shown.
- An example of the current characteristic of each battery with respect to charging / discharging electric current in the electric circuit model of the composite electrical storage system in this invention is shown.
- An example of the relationship figure of the battery capacity and battery resistance of the composite electrical storage system in this invention is shown. 1 shows an example of a configuration of a composite power storage system according to the present invention.
- 1 shows an example of a configuration of a composite power storage system according to the present invention.
- FIG. 1 shows a configuration of a composite power storage system 100 according to the present embodiment and an electric vehicle 10 equipped with the same.
- the electric vehicle 10 includes a composite power storage system 100 including a power type battery 13 and a capacity type battery 14 connected in parallel to the power type battery 13.
- the power type battery 13 or the capacity type battery 14 may be referred to as a battery.
- the power type battery 13 and the capacity type battery 14 are used in combination. Since the power type battery 13 and the capacity type battery 14 are directly connected in parallel, the discharge current during travel of the electric vehicle 10 and the charge current during regeneration are distributed according to the resistance ratio of both batteries. For this reason, compared with the case where the capacity type battery 14 is mainly used, a load reduces and it leads to suppression of deterioration of a battery. Furthermore, since the power type battery 13 and the capacity type battery 14 are directly connected in parallel, a junction box for arbitrarily controlling connection and disconnection as in the conventional case is unnecessary, and the structure can be simplified. This also leads to cost reduction of the composite power storage system 100.
- the capacity-type battery 14 and the power-type battery 13 may be greatly different during operation of the electric vehicle 10. In such a state, it is difficult to directly connect the capacity type battery 14 and the power type battery 13. In the prior art method, it is necessary to provide respective input terminals for the capacity type battery 14 and the power type battery 13 on the input side of the inverter 12. For this reason, there is a concern that the system configuration becomes complicated in the prior art and the cost of the system increases.
- One embodiment of the present invention solves the above problems.
- the composite power storage system 100 is connected to the motor generator 11 via an inverter 12 (power converter) that is a power converter.
- wiring is performed such that the resistance value of the wiring from the power type battery 13 to the inverter 12 is smaller than the resistance value of the wiring from the capacity type battery 14 to the inverter 12.
- the wiring from the power type battery 13 to the inverter 12 is wired so as to be shorter than the wiring from the capacity type battery 14 to the inverter 12. Or you may wire so that the cross-sectional area of the wiring from the power type battery 13 to the inverter 12 may become larger than the wiring from the capacity type battery 14 and the inverter 12.
- the inverter 12, the power type battery 13, and the capacity type battery 14 are controlled by an ECU 15 (“ECU” is an abbreviation for “Electronic Control Unit”).
- the motor generator 11 is an AC machine, for example, an induction machine or a synchronous machine.
- DC power is output from the power type battery 13 and the capacity type battery 14 to the inverter 12.
- the inverter 12 converts DC power supplied from the power type battery 13 and the capacity type battery 14 into three-phase AC power.
- the motor generator 11 is rotationally driven as an electric motor by the three-phase AC power output from the inverter 12. Thereby, the electric vehicle 10 travels.
- the electric vehicle 10 When the electric vehicle 10 is decelerated or braked, that is, when the motor generator 11 is regenerated, the AC power generated by the motor generator 11 is converted into DC power by operating the inverter 12 as a rectifier, and the power type The battery 13 and the capacity type battery 14 are charged. When the electric vehicle 10 is parked, the capacity type battery 14 and the power type battery 13 are charged by a charging device (not shown). 1 may be configured by separate motors and generators.
- the power type battery 13 is superior in power density to the capacity type battery 14 but has a smaller capacity (Ah).
- a power type battery 13 for example, a lithium ion battery or a nickel metal hydride battery is applied.
- a power storage device such as a lithium ion capacitor or an electric twentieth layer capacitor having the same high output characteristics (so-called power type power storage device) may be used.
- these batteries and capacitors are collectively referred to as “power type batteries”.
- the output density of the capacity type battery 14 is inferior to that of the power type battery 13, it is excellent in energy density and has a large capacity (Ah).
- a capacity type battery 14 a lithium ion battery, a lithium ion semi-solid battery, a lithium solid battery, a lead battery, a nickel zinc battery, etc. are applied.
- the lithium ion battery used as the power type battery 13 and the lithium ion battery used as the capacity type battery 14 have different configurations such as electrode materials.
- FIG. 2 shows voltage ranges of the power type battery 13 and the capacity type battery 14 to be considered when constructing the composite power storage system 100 according to the present embodiment.
- the voltage range of the series connection of the power type battery 13 and the voltage range of the series connection of the capacity type battery 14 are configured to overlap each other. This is because, when there is no overlap, a charging current always flows from a battery having a high voltage to a battery having a low voltage, so that it is difficult to function with the composite power storage system 100.
- the voltage range of the usable range (23) is set to “upper limit value (24) ⁇ lower limit value (25)”, and this voltage width is increased in consideration of the voltage range of the power supply target and the performance of the battery to be used.
- the series number of the power type battery 13 and the capacity type battery 14 is determined.
- the power-type battery 13 and the capacity-type battery 14 are connected without a current control element such as a DCDC converter, and the current during charging / discharging is uniquely determined by the characteristics of the power-type battery 13 and the capacity-type battery 14. Therefore, these batteries need to be optimally combined so that the composite power storage system 100 exhibits desired characteristics. The reason will be described with reference to FIG.
- FIG. 3 is a diagram modeling a state in which the power type battery 13 and the capacity type battery 14 are connected in parallel, and an electric circuit model of the composite power storage system 100 in one embodiment of the present invention.
- the fluctuation of the voltage of the battery due to charging / discharging was simulated by the capacitor unit, and the internal resistance of the battery and the wiring resistance from the battery to the inverter 12 were simulated by electric resistance.
- the electric resistance R 1 and the capacitor capacity C 1 are based on the power type battery 13.
- the initial battery voltage, that is, the state of charge is V (0), and the total current of the power type battery 13 and the capacity type battery 14 is I. At this time, the voltage of the battery when the current I changes can be expressed by the following formulas (1) and (2).
- the currents of the power type battery 13 and the capacity type battery 14 can be expressed by the following formulas (3) and (4).
- FIG. 4 shows an example of the current characteristics of each battery.
- the currents of the power type battery 13 and the capacity type battery 14 are distributed according to the ratio of the resistance, and the current from the power type battery 13 decreases as time passes, and the capacity The current of the type battery 14 increases.
- the resistance ratio of the power type battery 13 and the capacity type battery 14 is as large as possible.
- the power type battery 13 is manufactured so that the resistance value of the battery becomes small from the viewpoint of improving output characteristics. For this reason, if the capacity is the same, the resistance of the power type battery 13 is smaller than that of the capacity type battery 14. However, in the composite power storage system 100 according to the present embodiment, the capacity of the power type battery 13 is smaller than that of the capacity type battery 14 from the viewpoint of supplying and absorbing a large current fluctuation in a short time by the power type battery 13.
- FIG. 5 shows an example of a relationship diagram between the battery capacity and the battery resistance of the composite power storage system according to the present invention.
- FIG. 5 shows an example of a difference in resistance value between the power type battery 13 and the capacity type battery 14 when the capacities are different.
- the horizontal axis represents the capacity of the battery, and the vertical axis represents the magnitude of the resistance.
- the resistance of the power type battery 13 and the capacity type battery 14 generally tends to decrease as the capacity increases.
- the resistance of the power type battery 13 is smaller than that of the capacity type battery 14 if the capacity is the same.
- the composite power storage system is constructed using the power type battery 13 having the white circle capacity and the capacity type battery 14 having the black circle capacity in FIG.
- the resistance of the capacity type battery 14 and the power type battery 13 is different due to the difference in capacity.
- the difference is smaller.
- the power type battery 13 cannot supply or absorb large current fluctuations during acceleration or deceleration. From the above, when the composite power storage system 100 is constructed, it is desirable to reduce not only the resistance value of each battery but also the resistance value including the wiring.
- FIG. 6 shows an example of the configuration of the composite power storage system in the present embodiment.
- the wiring between the power type battery 13 and the inverter 12 is performed so that the power type battery 13 can charge and discharge a large current in a short time. Is made shorter than the wiring between the capacity type battery 14 and the inverter 12, the resistance of the wiring can be reduced.
- FIG. 7 shows another example of the configuration of the composite power storage system in the present embodiment. Also in this case, by increasing the cross-sectional area of the wiring between the power type battery 13 and the inverter 12 as compared with the wiring between the capacity type battery 14 and the inverter 12, the resistance of the wiring can be reduced, and the power type battery 13 can be shortened in a short time. A large current can be charged and discharged.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Inverter Devices (AREA)
Abstract
A combined power storage system having a power-type battery and a capacity-type battery, wherein: the power-type battery and the capacity-type battery are directly connected in parallel to each other; the power-type battery and the capacity-type battery are connected to a motor via a power converter; the resistance value of wiring from the power-type battery to the power converter is smaller than the resistance value of wiring from the capacity-type battery to the converter; and, e.g., the length of the wiring from the power-type battery to the power converter is less than the length of the wiring from the capacity-type battery to the power converter. This makes it possible to distribute the discharge and charge currents generated during travel of an electric automobile to the power-type battery, therefore making it possible to inhibit degradation of the capacity-type battery.
Description
本発明は、複合蓄電システムに関する。
The present invention relates to a composite power storage system.
ハイブリッド車両や電気自動車等の電動車両には、充放電可能な二次電池が搭載されており、車両の仕様に応じて搭載される二次電池の容量や出力特性などの性能が決定される。近年、電動車両の性能をより向上、例えば、航続距離の増加や、出力トルクの増加等を可能にするために、一つの電動車両に二種類以上の電池を搭載する複合蓄電システムが提案されている。例えば、特許文献1には、出力特性に優れた高出力型組電池(以後、パワー型電池)と、高容量型組電池(以後、容量型電池)とを配置した車両が開示されている。さらに、このような電動車両で主として高容量型電池を用いる場合、特許文献2のように、容量型電池とインバータ等の電力変換器との間の送電線の長さを、パワー型電池と電力変換器の送電線の長さよりも短くし、送電損失を低減させて、より効率的な電力の授受が可能な電動車両、および、複合蓄電システムが開示されている。
An electric vehicle such as a hybrid vehicle or an electric vehicle is equipped with a chargeable / dischargeable secondary battery, and the performance such as capacity and output characteristics of the secondary battery is determined according to the specification of the vehicle. In recent years, in order to further improve the performance of electric vehicles, for example, to increase the cruising distance and output torque, a composite power storage system in which two or more types of batteries are mounted on one electric vehicle has been proposed. Yes. For example, Patent Document 1 discloses a vehicle in which a high-power assembled battery (hereinafter referred to as a power-type battery) excellent in output characteristics and a high-capacity assembled battery (hereinafter referred to as a capacity-type battery) are arranged. Further, when a high capacity battery is mainly used in such an electric vehicle, the length of the power transmission line between the capacity battery and a power converter such as an inverter is set to An electric vehicle and a composite power storage system are disclosed that are shorter than the length of a power transmission line of a converter, reduce power transmission loss, and can transfer power more efficiently.
特許文献1および2に記載の複合蓄電システムは、主として容量型電池を使用し、ドライバーからの出力要求や減速時の回生電力に対して容量型電池のみでは応えられない場合に、パワー型電池を使用することを想定している。このため、充放電による負荷が容量型電池に蓄積し、容量型電池の劣化が進む場合がある。
The composite power storage system described in Patent Documents 1 and 2 mainly uses a capacity type battery, and when the capacity type battery alone cannot respond to the output request from the driver or the regenerative power at the time of deceleration, the power type battery is used. It is assumed to be used. For this reason, the load by charging / discharging accumulate | stores in a capacity type battery, and deterioration of a capacity type battery may advance.
本発明は、電池の劣化を抑制することを目的とする。
An object of the present invention is to suppress battery deterioration.
上記課題を解決するための特徴は例えば以下のとおりである。
The features for solving the above problems are as follows, for example.
パワー型電池と容量型電池とを有し、パワー型電池と容量型電池とが互いに直に並列接続され、パワー型電池と容量型電池とが電力変換器を介してモータに接続され、パワー型電池から電力変換器までの配線の抵抗値は、容量型電池から電力変換器までの配線の抵抗値よりも小さい複合蓄電システム。
A power type battery and a capacity type battery are provided, the power type battery and the capacity type battery are directly connected in parallel with each other, and the power type battery and the capacity type battery are connected to the motor via the power converter. A composite power storage system in which the resistance value of the wiring from the battery to the power converter is smaller than the resistance value of the wiring from the capacitive battery to the power converter.
本発明によれば、電気自動車の走行時に発生する放電および充電の電流をパワー型電池に配分することができるため、容量型電池の劣化を抑制することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, since the discharge and charging currents generated when the electric vehicle is traveling can be distributed to the power type battery, the deterioration of the capacity type battery can be suppressed. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
図1は、本実施例である複合蓄電システム100並びにそれを搭載する電気自動車10の構成を示す。
FIG. 1 shows a configuration of a composite power storage system 100 according to the present embodiment and an electric vehicle 10 equipped with the same.
図1に示すように、電気自動車10は、パワー型電池13と、パワー型電池13に並列接続される容量型電池14とを含む複合蓄電システム100を備える。以下では、パワー型電池13または容量型電池14を電池と称する場合がある、電気自動車10では、パワー型電池13および容量型電池14が併用されている。パワー型電池13と容量型電池14が直に並列接続されているため、電気自動車10の走行時の放電電流や回生時の充電電流は、両電池の抵抗の比により配分される。このため、主として容量型電池14を使用する場合に比べて負荷が低減し、電池の劣化の抑制に繋がる。さらに、パワー型電池13と容量型電池14とが直に並列接続されていることから、従来のような接続と断線を任意に制御するためのジャンクションボックスが不要となり、構造が簡素化できるため、複合蓄電システム100の低コスト化にも繋がる。
As shown in FIG. 1, the electric vehicle 10 includes a composite power storage system 100 including a power type battery 13 and a capacity type battery 14 connected in parallel to the power type battery 13. Hereinafter, the power type battery 13 or the capacity type battery 14 may be referred to as a battery. In the electric vehicle 10, the power type battery 13 and the capacity type battery 14 are used in combination. Since the power type battery 13 and the capacity type battery 14 are directly connected in parallel, the discharge current during travel of the electric vehicle 10 and the charge current during regeneration are distributed according to the resistance ratio of both batteries. For this reason, compared with the case where the capacity type battery 14 is mainly used, a load reduces and it leads to suppression of deterioration of a battery. Furthermore, since the power type battery 13 and the capacity type battery 14 are directly connected in parallel, a junction box for arbitrarily controlling connection and disconnection as in the conventional case is unnecessary, and the structure can be simplified. This also leads to cost reduction of the composite power storage system 100.
電池の充放電に伴い、電池の電圧は変化するため、電気自動車10の稼働中に容量型電池14とパワー型電池13の電圧が大きく異なる場合が発生し得る。このような状態で容量型電池14とパワー型電池13を直に繋ぐことは困難である。従来技術の方法では、インバータ12の入力側には容量型電池14用とパワー型電池13用にそれぞれの入力端子を設ける必要がある。このため、従来技術ではシステム構成が複雑になり、システムが高コスト化する懸念がある。本発明の一実施形態は、上記の課題を解決するものである。
Since the battery voltage changes as the battery is charged / discharged, the capacity-type battery 14 and the power-type battery 13 may be greatly different during operation of the electric vehicle 10. In such a state, it is difficult to directly connect the capacity type battery 14 and the power type battery 13. In the prior art method, it is necessary to provide respective input terminals for the capacity type battery 14 and the power type battery 13 on the input side of the inverter 12. For this reason, there is a concern that the system configuration becomes complicated in the prior art and the cost of the system increases. One embodiment of the present invention solves the above problems.
複合蓄電システム100は、電力変換装置であるインバータ12(電力変換器)を介して、モータジェネレータ11と接続される。本発明の実施形態では、パワー型電池13からインバータ12までの配線の抵抗値が、容量型電池14とインバータ12までの配線の抵抗値よりも小さくなるように配線する。具体的には、パワー型電池13からインバータ12までの配線の長さが、容量型電池14とインバータ12までの配線よりも短くなるように配線する。或いは、パワー型電池13からインバータ12までの配線の断面積が、容量型電池14とインバータ12までの配線よりも大きくなるように配線しても良い。なお、インバータ12、パワー型電池13、容量型電池14は、ECU15(“ECU”は“Electronic Control Unit”の略)によって制御される。
The composite power storage system 100 is connected to the motor generator 11 via an inverter 12 (power converter) that is a power converter. In the embodiment of the present invention, wiring is performed such that the resistance value of the wiring from the power type battery 13 to the inverter 12 is smaller than the resistance value of the wiring from the capacity type battery 14 to the inverter 12. Specifically, the wiring from the power type battery 13 to the inverter 12 is wired so as to be shorter than the wiring from the capacity type battery 14 to the inverter 12. Or you may wire so that the cross-sectional area of the wiring from the power type battery 13 to the inverter 12 may become larger than the wiring from the capacity type battery 14 and the inverter 12. The inverter 12, the power type battery 13, and the capacity type battery 14 are controlled by an ECU 15 (“ECU” is an abbreviation for “Electronic Control Unit”).
ここで、モータジェネレータ11は交流機、例えば、誘導機や同期機である。パワー型電池13および、容量型電池14からインバータ12へ直流電力が出力される。インバータ12は、パワー型電池13および容量型電池14から供給される直流電力を三相交流電力に変換する。インバータ12が出力する三相交流電力によって、モータジェネレータ11が電動機として回転駆動される。これにより、電気自動車10が走行する。
Here, the motor generator 11 is an AC machine, for example, an induction machine or a synchronous machine. DC power is output from the power type battery 13 and the capacity type battery 14 to the inverter 12. The inverter 12 converts DC power supplied from the power type battery 13 and the capacity type battery 14 into three-phase AC power. The motor generator 11 is rotationally driven as an electric motor by the three-phase AC power output from the inverter 12. Thereby, the electric vehicle 10 travels.
容量型電池14だけではモータジェネレータ11への供給電力が不足する場合、例えば電気自動車10の加速時などにおいては、パワー型電池13からも、インバータ12を介してモータジェネレータ11に電力が供給される。
When the power supply to the motor generator 11 is insufficient with only the capacity type battery 14, for example, when the electric vehicle 10 is accelerated, power is also supplied from the power type battery 13 to the motor generator 11 via the inverter 12. .
電気自動車10の減速時あるいは制動時などにおいて、すなわちモータジェネレータ11の回生時において、モータジェネレータ11で発電される交流電力は、インバータ12を整流装置として動作させることにより直流電力に変換され、パワー型電池13および、容量型電池14に蓄電される。電気自動車10の駐車時には、容量型電池14およびパワー型電池13は、図示しない充電装置によって充電される。なお、図1におけるモータジェネレータ11は、それぞれ別体のモータおよびジェネレータによって構成されても良い。
When the electric vehicle 10 is decelerated or braked, that is, when the motor generator 11 is regenerated, the AC power generated by the motor generator 11 is converted into DC power by operating the inverter 12 as a rectifier, and the power type The battery 13 and the capacity type battery 14 are charged. When the electric vehicle 10 is parked, the capacity type battery 14 and the power type battery 13 are charged by a charging device (not shown). 1 may be configured by separate motors and generators.
パワー型電池13は、容量型電池14よりも、出力密度に優れるが容量(Ah)は小さい。このようなパワー型電池13としては、例えば、リチウムイオン電池やニッケル水素電池などが適用される。また、パワー型電池13に代えて、これと同様の高出力特性を有するリチウムイオンキャパシタや電気二十層キャパシタなどの蓄電装置(言わば、パワー型蓄電装置)を用いても良い。なお、以下においては、これらの電池およびキャパシタを含めて、「パワー型電池」と総称する。
The power type battery 13 is superior in power density to the capacity type battery 14 but has a smaller capacity (Ah). As such a power type battery 13, for example, a lithium ion battery or a nickel metal hydride battery is applied. Further, instead of the power type battery 13, a power storage device such as a lithium ion capacitor or an electric twentieth layer capacitor having the same high output characteristics (so-called power type power storage device) may be used. In the following, these batteries and capacitors are collectively referred to as “power type batteries”.
容量型電池14は、パワー型電池13よりも出力密度は劣るものの、エネルギー密度に優れ容量(Ah)が大きい。このような容量型電池14としては、リチウムイオン電池、リチウムイオン半固体電池、リチウム固体電池、鉛電池、ニッケル亜鉛電池などが適用される。なお、パワー型電池13として用いるリチウムイオン電池と、容量型電池14として用いるリチウムイオン電池は、電極材料などの構成が異なる。
Although the output density of the capacity type battery 14 is inferior to that of the power type battery 13, it is excellent in energy density and has a large capacity (Ah). As such a capacity type battery 14, a lithium ion battery, a lithium ion semi-solid battery, a lithium solid battery, a lead battery, a nickel zinc battery, etc. are applied. The lithium ion battery used as the power type battery 13 and the lithium ion battery used as the capacity type battery 14 have different configurations such as electrode materials.
上記のように、本実施例によれば、パワー型電池13および容量型電池14を併用して、使用する電池全体として、電池容量を確保しながらも電池出力を高めたり、電池出力を確保しながらも電池容量を高めたりすることができる。
図2は、本実施形態に関する複合蓄電システム100を構築する際に考慮すべきパワー型電池13および容量型電池14の電圧範囲、を示す。図2に示すように、パワー型電池13の直列接続の電圧範囲と容量型電池14の直列接続の電圧範囲は、オーバーラップするように構成する。この理由は、オーバーラップが無い場合は、電圧の高い電池から低い電池に常に充電電流が流れるため、複合蓄電システム100と機能することが難しいためである。使用可能範囲(23)の電圧幅を、「上限値(24)-下限値(25)」として、電力供給対象の電圧範囲や使用する電池の性能などを考慮しつつ、この電圧幅が大きくなるように、パワー型電池13および容量型電池14の直列数を決定する。 As described above, according to the present embodiment, thepower type battery 13 and the capacity type battery 14 are used in combination to increase the battery output while securing the battery capacity or to secure the battery output as the whole battery to be used. However, the battery capacity can be increased.
FIG. 2 shows voltage ranges of thepower type battery 13 and the capacity type battery 14 to be considered when constructing the composite power storage system 100 according to the present embodiment. As shown in FIG. 2, the voltage range of the series connection of the power type battery 13 and the voltage range of the series connection of the capacity type battery 14 are configured to overlap each other. This is because, when there is no overlap, a charging current always flows from a battery having a high voltage to a battery having a low voltage, so that it is difficult to function with the composite power storage system 100. The voltage range of the usable range (23) is set to “upper limit value (24) −lower limit value (25)”, and this voltage width is increased in consideration of the voltage range of the power supply target and the performance of the battery to be used. Thus, the series number of the power type battery 13 and the capacity type battery 14 is determined.
図2は、本実施形態に関する複合蓄電システム100を構築する際に考慮すべきパワー型電池13および容量型電池14の電圧範囲、を示す。図2に示すように、パワー型電池13の直列接続の電圧範囲と容量型電池14の直列接続の電圧範囲は、オーバーラップするように構成する。この理由は、オーバーラップが無い場合は、電圧の高い電池から低い電池に常に充電電流が流れるため、複合蓄電システム100と機能することが難しいためである。使用可能範囲(23)の電圧幅を、「上限値(24)-下限値(25)」として、電力供給対象の電圧範囲や使用する電池の性能などを考慮しつつ、この電圧幅が大きくなるように、パワー型電池13および容量型電池14の直列数を決定する。 As described above, according to the present embodiment, the
FIG. 2 shows voltage ranges of the
加えて、パワー型電池13と容量型電池14はDCDCコンバータなどの電流制御素子を介さずに接続されており、充放電時の電流はパワー型電池13と容量型電池14の特性によって一意に決まるため、これらの電池は複合蓄電システム100が所望の特性を発揮するように最適に組み合わせる必要がある。その理由について図3を用いて説明する。
In addition, the power-type battery 13 and the capacity-type battery 14 are connected without a current control element such as a DCDC converter, and the current during charging / discharging is uniquely determined by the characteristics of the power-type battery 13 and the capacity-type battery 14. Therefore, these batteries need to be optimally combined so that the composite power storage system 100 exhibits desired characteristics. The reason will be described with reference to FIG.
図3は、パワー型電池13と容量型電池14が並列接続された状態をモデル化した図、本発明の一実施形態における複合蓄電システム100の電気回路モデルである。充放電による電池の電圧の変動をキャパシタ部で模擬し、電池の内部抵抗および電池からインバータ12まで配線抵抗を電気抵抗にて模擬した。パワー型電池13を基準として電気抵抗をR1,キャパシタ容量をC1とする。一方、容量型電池14はキャパシタ容量C2=mC1、R2=nR1とする。初期の電池電圧即ち充電状態をV(0)とし、パワー型電池13と容量型電池14の合計の電流をIとする。このとき、電流Iが変化したときの電池の電圧は下記の式(1)および式(2)で表すことができる。
FIG. 3 is a diagram modeling a state in which the power type battery 13 and the capacity type battery 14 are connected in parallel, and an electric circuit model of the composite power storage system 100 in one embodiment of the present invention. The fluctuation of the voltage of the battery due to charging / discharging was simulated by the capacitor unit, and the internal resistance of the battery and the wiring resistance from the battery to the inverter 12 were simulated by electric resistance. The electric resistance R 1 and the capacitor capacity C 1 are based on the power type battery 13. On the other hand, the capacity type battery 14 has a capacitor capacity C 2 = mC 1 and R 2 = nR 1 . The initial battery voltage, that is, the state of charge is V (0), and the total current of the power type battery 13 and the capacity type battery 14 is I. At this time, the voltage of the battery when the current I changes can be expressed by the following formulas (1) and (2).
さらに、上記の式を変形すると、パワー型電池13と容量型電池14のそれぞれの電流は以下の式(3)および式(4)で表すことができる。
Furthermore, when the above formula is modified, the currents of the power type battery 13 and the capacity type battery 14 can be expressed by the following formulas (3) and (4).
式(3)および式(4)を元に、電流がステップ的に変化した場合のパワー型電池13と容量型電池14の応答、本発明における複合蓄電システム100の電気回路モデルにおける、充放電電流に対する各電池の電流特性の一例を図4に示す。電流が変化した直後の時刻t=0では、パワー型電池13と容量型電池14の電流は抵抗の比に応じて配分され、時間の経過につれて、パワー型電池13からの電流が低下し、容量型電池14の電流が大きくなる。図4から明らかなように、パワー型電池13が加速時や減速時における短時間の大きな電流変化を供給、吸収するためには、パワー型電池13と容量型電池14の抵抗比は出来るだけ大きくするのが良い。一般的に、パワー型電池13は出力特性を向上させる観点から、電池の抵抗値が小さくなるように作製されている。このため、同じ容量であれば、パワー型電池13は容量型電池14よりも抵抗が小さくなる。しかし、本実施例に関わる複合蓄電システム100は、短時間の大きな電流の変動をパワー型電池13で供給、吸収する観点から、パワー型電池13の容量は容量型電池14に比べて小さくなる。
Based on Formula (3) and Formula (4), the response of the power type battery 13 and the capacity type battery 14 when the current changes stepwise, the charge / discharge current in the electric circuit model of the composite power storage system 100 in the present invention FIG. 4 shows an example of the current characteristics of each battery. At time t = 0 immediately after the current changes, the currents of the power type battery 13 and the capacity type battery 14 are distributed according to the ratio of the resistance, and the current from the power type battery 13 decreases as time passes, and the capacity The current of the type battery 14 increases. As is apparent from FIG. 4, in order for the power type battery 13 to supply and absorb a large current change in a short time during acceleration and deceleration, the resistance ratio of the power type battery 13 and the capacity type battery 14 is as large as possible. Good to do. In general, the power type battery 13 is manufactured so that the resistance value of the battery becomes small from the viewpoint of improving output characteristics. For this reason, if the capacity is the same, the resistance of the power type battery 13 is smaller than that of the capacity type battery 14. However, in the composite power storage system 100 according to the present embodiment, the capacity of the power type battery 13 is smaller than that of the capacity type battery 14 from the viewpoint of supplying and absorbing a large current fluctuation in a short time by the power type battery 13.
図5に、本発明における複合蓄電システムの電池容量と電池抵抗の関係図の一例を示す。図5に容量が異なる場合のパワー型電池13と容量型電池14の抵抗値の違いの一例を示す。横軸は電池の容量、縦軸は抵抗の大きさを示す。図に示すように、パワー型電池13と容量型電池14は、一般的に容量が大きくなるほど抵抗が小さくなる傾向がある。さらに、パワー型電池13の抵抗は同じ容量であれば、容量型電池14の抵抗よりも小さい。しかし、図5の白丸の容量のパワー型電池13と、黒丸の容量の容量型電池14を用いて複合蓄電システムを構築した場合は、容量の違いにより容量型電池14とパワー型電池13の抵抗差は小さくなる。このような場合は、パワー型電池13を搭載しても、加速時や減速時の大きな電流変動をパワー型電池13で供給、吸収できない。以上から、複合蓄電システム100を構築する場合は、各電池の抵抗値だけでなく、配線も含めた抵抗値の低減が望ましい。
FIG. 5 shows an example of a relationship diagram between the battery capacity and the battery resistance of the composite power storage system according to the present invention. FIG. 5 shows an example of a difference in resistance value between the power type battery 13 and the capacity type battery 14 when the capacities are different. The horizontal axis represents the capacity of the battery, and the vertical axis represents the magnitude of the resistance. As shown in the figure, the resistance of the power type battery 13 and the capacity type battery 14 generally tends to decrease as the capacity increases. Furthermore, the resistance of the power type battery 13 is smaller than that of the capacity type battery 14 if the capacity is the same. However, when the composite power storage system is constructed using the power type battery 13 having the white circle capacity and the capacity type battery 14 having the black circle capacity in FIG. 5, the resistance of the capacity type battery 14 and the power type battery 13 is different due to the difference in capacity. The difference is smaller. In such a case, even if the power type battery 13 is mounted, the power type battery 13 cannot supply or absorb large current fluctuations during acceleration or deceleration. From the above, when the composite power storage system 100 is constructed, it is desirable to reduce not only the resistance value of each battery but also the resistance value including the wiring.
図6に、本実施例における複合蓄電システムの構成の一例を示す。上述のように、パワー型電池13と容量型電池14を互いに直に並列接続するシステムでは、パワー型電池13が短時間に大電流を充放電できるよう、パワー型電池13とインバータ12間の配線を容量型電池14とインバータ12間の配線よりも短くすることで、配線の抵抗を小さく出来る。
FIG. 6 shows an example of the configuration of the composite power storage system in the present embodiment. As described above, in the system in which the power type battery 13 and the capacity type battery 14 are directly connected in parallel with each other, the wiring between the power type battery 13 and the inverter 12 is performed so that the power type battery 13 can charge and discharge a large current in a short time. Is made shorter than the wiring between the capacity type battery 14 and the inverter 12, the resistance of the wiring can be reduced.
同じく、図7に、本実施例における複合蓄電システムの構成の別の一例を示す。この場合も、パワー型電池13とインバータ12間の配線を容量型電池14とインバータ12間の配線よりも断面積を大きくすることで、配線の抵抗を小さく出来、パワー型電池13が短時間に大電流を充放電することが可能となる。
Similarly, FIG. 7 shows another example of the configuration of the composite power storage system in the present embodiment. Also in this case, by increasing the cross-sectional area of the wiring between the power type battery 13 and the inverter 12 as compared with the wiring between the capacity type battery 14 and the inverter 12, the resistance of the wiring can be reduced, and the power type battery 13 can be shortened in a short time. A large current can be charged and discharged.
なお、本実施形態の図6および図7では、パワー型電池13とインバータ12および容量型電池14とインバータ12間は既に回路が接続されていることを想定し、各電池とインバータ12間の接続、切断を切り替えられるスイッチまたはジャンクションボックスを記載していないが、各電池とインバータ12間にスイッチやジャンクションボックスがあっても良い。図6および図7を組み合わせた構成としてもよい。
6 and 7 of this embodiment, it is assumed that a circuit is already connected between the power type battery 13 and the inverter 12 and between the capacity type battery 14 and the inverter 12, and the connection between each battery and the inverter 12 is assumed. Although a switch or junction box that can be switched off is not described, a switch or junction box may be provided between each battery and the inverter 12. It is good also as a structure which combined FIG. 6 and FIG.
10 電気自動車,11 モータジェネレータ,12 インバータ,13 パワー型電池,14 容量型電池,15 ECU,100 複合蓄電システム
10 electric vehicle, 11 motor generator, 12 inverter, 13 power type battery, 14 capacity type battery, 15 ECU, 100 combined power storage system
Claims (4)
- パワー型電池と容量型電池とを有し、
前記パワー型電池と前記容量型電池とが互いに直に並列接続され、
前記パワー型電池と前記容量型電池とが電力変換器を介してモータに接続され、
前記パワー型電池から前記電力変換器までの配線の抵抗値は、前記容量型電池から前記電力変換器までの配線の抵抗値よりも小さい複合蓄電システム。 It has a power type battery and a capacity type battery,
The power type battery and the capacity type battery are directly connected in parallel with each other;
The power type battery and the capacity type battery are connected to a motor via a power converter,
A composite power storage system in which a resistance value of wiring from the power type battery to the power converter is smaller than a resistance value of wiring from the capacity type battery to the power converter. - 請求項1において、
前記パワー型電池から前記電力変換器までの配線の長さは、前記容量型電池から前記電力変換器までの配線の長さよりも短い複合蓄電システム。 In claim 1,
The composite power storage system, wherein a length of wiring from the power type battery to the power converter is shorter than a length of wiring from the capacity type battery to the power converter. - 請求項1において、
前記パワー型電池から前記電力変換器までの配線の断面積は、前記容量型電池から前記電力変換器までの配線の断面積よりも大きい複合蓄電システム。 In claim 1,
The composite power storage system, wherein a cross-sectional area of wiring from the power type battery to the power converter is larger than a cross-sectional area of wiring from the capacity type battery to the power converter. - 請求項1において、
前記パワー型電池の電圧範囲と前記容量型電池の電圧範囲は、オーバーラップしている複合蓄電システム。 In claim 1,
A power storage system in which a voltage range of the power type battery and a voltage range of the capacity type battery overlap.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017077249A JP2018182856A (en) | 2017-04-10 | 2017-04-10 | Composite power storage system |
JP2017-077249 | 2017-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190020A1 true WO2018190020A1 (en) | 2018-10-18 |
Family
ID=63793234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007879 WO2018190020A1 (en) | 2017-04-10 | 2018-03-01 | Combined power storage system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018182856A (en) |
WO (1) | WO2018190020A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007506395A (en) * | 2003-09-15 | 2007-03-15 | エレクトロバヤ インク. | Energy storage device for loads with variable power consumption |
WO2015098790A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社 村田製作所 | Battery pack |
WO2016167012A1 (en) * | 2015-04-15 | 2016-10-20 | 株式会社豊田自動織機 | Power supply device |
-
2017
- 2017-04-10 JP JP2017077249A patent/JP2018182856A/en active Pending
-
2018
- 2018-03-01 WO PCT/JP2018/007879 patent/WO2018190020A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007506395A (en) * | 2003-09-15 | 2007-03-15 | エレクトロバヤ インク. | Energy storage device for loads with variable power consumption |
WO2015098790A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社 村田製作所 | Battery pack |
WO2016167012A1 (en) * | 2015-04-15 | 2016-10-20 | 株式会社豊田自動織機 | Power supply device |
Also Published As
Publication number | Publication date |
---|---|
JP2018182856A (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9809128B2 (en) | System for multiple energy storage and management and method of making same | |
US9290107B2 (en) | System and method for energy management in an electric vehicle | |
US8922057B2 (en) | System for multiple energy storage and management and method of making same | |
JP5605436B2 (en) | Electric vehicle and control method thereof | |
US9000614B2 (en) | System for multiple energy storage and management and method of making same | |
JP5660102B2 (en) | Vehicle power supply | |
JP6235529B2 (en) | Electric vehicle and battery pack | |
EP2353925B1 (en) | Power supply apparatus for vehicle | |
JP6527785B2 (en) | Drive device and transportation equipment | |
US8829719B2 (en) | System for multiple energy storage and management and method of making same | |
CN103222148A (en) | Vehicle battery system and method for controlling same | |
JP3960557B1 (en) | Hybrid storage device for electric vehicle and electric vehicle | |
US10158246B2 (en) | Energy storage device, transport apparatus, and control method | |
JP6194344B2 (en) | Driving device and transportation equipment | |
JP2007174867A (en) | Power supply unit for vehicle | |
JP2022088964A (en) | Power supply system | |
Abuaish et al. | Single-phase bidirectional integrated onboard battery charger for EVs featuring a battery-supercapacitor hybrid energy storage system | |
WO2018190020A1 (en) | Combined power storage system | |
JP6698169B2 (en) | Storage battery system | |
Ortúzar | Design, implementation and evaluation of an auxiliary energy system for electric vehicles, based on ultracapacitors and buck-boost converter | |
JP2017041974A (en) | Drive apparatus and control method therefor, and transport machine | |
Raman et al. | Development of a light electric car with body integrated super capacitors | |
Mazgut et al. | Possibilities optimizing energy consumption of electric vehicle | |
JP2019022245A (en) | Composite power storage system and control method for the same | |
JP2014200149A (en) | Power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18784015 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18784015 Country of ref document: EP Kind code of ref document: A1 |