+

WO2018190088A1 - 感放射線性組成物及びレジストパターン形成方法 - Google Patents

感放射線性組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
WO2018190088A1
WO2018190088A1 PCT/JP2018/011022 JP2018011022W WO2018190088A1 WO 2018190088 A1 WO2018190088 A1 WO 2018190088A1 JP 2018011022 W JP2018011022 W JP 2018011022W WO 2018190088 A1 WO2018190088 A1 WO 2018190088A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
group
acid
sensitive composition
organic acid
Prior art date
Application number
PCT/JP2018/011022
Other languages
English (en)
French (fr)
Inventor
恭志 中川
裕介 浅野
岳彦 成岡
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019512399A priority Critical patent/JP7071660B2/ja
Priority to KR1020197029415A priority patent/KR20190129916A/ko
Publication of WO2018190088A1 publication Critical patent/WO2018190088A1/ja
Priority to US16/595,884 priority patent/US20200041898A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions

Definitions

  • the present invention relates to a radiation-sensitive composition and a resist pattern forming method.
  • Common radiation-sensitive compositions used for fine processing by lithography are irradiation with far-ultraviolet rays such as ArF excimer laser light and KrF excimer laser light, electromagnetic waves such as extreme ultraviolet rays (EUV), and charged particle beams such as electron beams.
  • An acid is generated in the exposed portion, and a chemical reaction using this acid as a catalyst causes a difference in dissolution rate in the developer between the exposed portion and the unexposed portion to form a resist pattern on the substrate.
  • the formed resist pattern can be used as a mask or the like in substrate processing.
  • Such a radiation-sensitive composition is required to improve resist performance as the processing technique becomes finer.
  • the types of polymers, acid generators, and other components used in the composition, the molecular structure, and the like have been studied, and further their combinations have been studied in detail (Japanese Patent Laid-Open No. 11-125907, (See JP-A-8-146610 and JP-A-2000-298347).
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a radiation-sensitive composition and a resist pattern forming method that are excellent in developability and sensitivity.
  • the invention made to solve the above-mentioned problems contains particles (hereinafter also referred to as “[A] particles”) and a solvent (hereinafter also referred to as “[B] solvent”), and the above [A] particles.
  • the molecular weight of said (x) organic acid and (y) compound is 120 or more.
  • R 1 is an n-valent organic group
  • X is an alcoholic hydroxyl group, —NCO or —NHR a
  • R a is a hydrogen atom or a monovalent organic group
  • n is an integer of 2 to 4.
  • a plurality of X are the same or different.
  • Another invention made to solve the above-mentioned problems is a step of applying the radiation-sensitive composition to at least one surface side of a substrate, and a step of exposing a resist film formed by the coating step And a step of developing the exposed resist film.
  • organic acid refers to an organic compound that exhibits acidity.
  • the radiation-sensitive composition of the present invention is excellent in developability and sensitivity. According to the resist pattern forming method of the present invention, a good resist pattern can be formed with high sensitivity. Therefore, the radiation-sensitive composition and the resist pattern forming method can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
  • the radiation-sensitive composition contains [A] particles and a [B] solvent.
  • the radiation-sensitive composition may contain a radiation-sensitive acid generator (hereinafter, also referred to as “[C] acid generator”) as a suitable component, and in a range not impairing the effects of the present invention, Other optional components may be contained.
  • the radiation-sensitive composition is excellent in developability and sensitivity by containing [A] particles.
  • the [A] particles include (a) a metal part and (b) an organic part formed by a hydrolyzate of a metal compound, and (b) an organic part (x) an organic acid and (y) a compound.
  • the solubility of the [B] solvent of the particles can be made moderate, and as a result, the composition of the [A] particles and the [B] solvent is improved. Can be formed.
  • the solubility of the particles in the developer can be made moderate, and as a result, the developability of the radiation-sensitive composition is improved. Furthermore, the change in the solubility of the [A] particles before and after exposure can be increased, and as a result, the sensitivity of the radiation-sensitive composition is improved.
  • each component will be described.
  • the metal-containing component includes (a) a metal portion and (b) an organic portion.
  • the particle contains (a) a metal part and (b) an organic part means that (a) the metal part and (b) the organic part are chemically bonded, and (a) It is a concept including both the case where the metal part and (b) the organic part are not chemically bonded.
  • Examples of the chemical bond when chemically bonded include a covalent bond, a coordination bond, and a hydrogen bond.
  • the metal portion is (p) a hydrolyzate or hydrolysis condensate of a metal compound or a combination thereof.
  • the metal compound is a metal compound having a hydrolyzable group.
  • Examples of the metal element constituting the metal compound include Group 3 to Group 16 metal elements.
  • Examples of Group 3 metal elements include scandium, yttrium, lanthanum, and cerium.
  • Examples of Group 4 metal elements include titanium, zirconium, hafnium, and the like.
  • Examples of Group 5 metal elements include vanadium, niobium, and tantalum.
  • Examples of Group 6 metal elements include chromium, molybdenum, and tungsten.
  • Examples of Group 7 metal elements include manganese and rhenium.
  • Examples of group 8 metal elements include iron, ruthenium, and osmium.
  • Examples of Group 9 metal elements include cobalt, rhodium, iridium,
  • Examples of Group 10 metal elements include nickel, palladium, and platinum.
  • Group 11 metal elements include copper, silver, and gold.
  • Group 12 metal elements include zinc, cadmium, mercury, etc.
  • Examples of Group 13 metal elements include aluminum, gallium, and indium.
  • Examples of Group 14 metal elements include germanium, tin, lead, etc. Antimony, bismuth, etc. as Group 15 metal elements
  • Examples of the Group 16 metal element include tellurium.
  • (p) as a metal element constituting the metal compound Group 4, Group 5, Group 6, Group 8, Group 9, Group 10, Group 12, Group 13 or A metal element belonging to Group 14 and from the fourth period to the seventh period is preferable, and zirconium, hafnium, nickel, cobalt, tin, indium, titanium, ruthenium, tantalum, tungsten, or zinc is more preferable.
  • the metal compound may have one or more metal elements.
  • Examples of the hydrolyzable group possessed by the metal compound include a halogen atom, an alkoxy group, and an acyloxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, and a t-butoxy group.
  • acyloxy group examples include formyloxy group, acetoxy group, propionyloxy group, n-butyryloxy group, t-butyryloxy group, t-amylyloxy group, n-hexanecarbonyloxy group, n-octanecarbonyloxy group and the like. Can be mentioned.
  • the hydrolyzable group is preferably a halogen atom or an alkoxy group, more preferably a chlorine atom, an ethoxy group or a t-butoxy group.
  • the (p) hydrolysis condensate of the metal compound is (p) a metal compound and a semimetal unless the effects of the present invention are impaired. It may be a hydrolysis condensate with a compound containing an atom. That is, (a) the metal oxide may contain a metalloid atom as long as the effects of the present invention are not impaired. Examples of the metalloid atom include boron and arsenic.
  • the content of metalloid atoms in the hydrolyzed condensate of the metal compound is usually less than 50 atomic% with respect to the total of metal atoms and metalloid atoms in the hydrolyzed condensate.
  • the content rate of the said half-metal atom As an upper limit of the content rate of the said half-metal atom, 30 atomic% is preferable with respect to the sum total of the metal atom and half-metal atom in the said hydrolysis-condensation product, and 10 atomic% is more preferable.
  • Examples of the (p) metal compound include a compound represented by the following formula (A) (hereinafter also referred to as “metal compound (p-1)”).
  • metal compound (p-1) a compound represented by the following formula (A) (hereinafter also referred to as “metal compound (p-1)”).
  • M is a metal atom.
  • L is a ligand.
  • a is an integer of 0-2.
  • Y is a hydrolyzable group selected from a halogen atom, an alkoxy group and an acyloxy group.
  • b is an integer of 2 to 6.
  • a plurality of Y are the same or different.
  • L is a ligand not corresponding to Y.
  • Examples of the metal atom represented by M include (p) an atom of an element exemplified as a metal element constituting a metal compound.
  • Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
  • Examples of the monodentate ligand include a hydroxo ligand, a carboxy ligand, an amide ligand, an ammonia ligand, and the like.
  • amide ligand examples include unsubstituted amide ligand (NH 2 ), methylamide ligand (NHMe), dimethylamide ligand (NMe 2 ), diethylamide ligand (NEt 2 ), and dipropylamide. And a ligand (NPr 2 ).
  • polydentate ligand examples include hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, ⁇ -dicarboxylic acid ester, hydrocarbon having ⁇ bond, and diphosphine.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, and salicylic acid ester.
  • Examples of the ⁇ -diketone include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and the like.
  • ⁇ -ketoester examples include acetoacetate ester, ⁇ -alkyl substituted acetoacetate ester, ⁇ -ketopentanoic acid ester, benzoyl acetate ester, 1,3-acetone dicarboxylic acid ester and the like.
  • Examples of the ⁇ -dicarboxylic acid ester include malonic acid diester, ⁇ -alkyl substituted malonic acid diester, ⁇ -cycloalkyl substituted malonic acid diester, ⁇ -aryl substituted malonic acid diester, and the like.
  • hydrocarbon having a ⁇ bond examples include chain olefins such as ethylene and propylene; Cyclic olefins such as cyclopentene, cyclohexene, norbornene; Chain dienes such as butadiene and isoprene; Cyclic dienes such as cyclopentadiene, methylcyclopentadiene, pentamethylcyclopentadiene, cyclohexadiene, norbornadiene; Examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, hexamethylbenzene, naphthalene, and indene.
  • chain olefins such as ethylene and propylene
  • Cyclic olefins such as cyclopentene, cyclohexene, norbornene
  • Chain dienes such as butadiene and isoprene
  • Cyclic dienes such as cyclopentadiene, methylcyclopen
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 2,2′-bis (diphenyl). Phosphino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • halogen atom, alkoxy group and acyloxy group represented by Y can be the same as those described for the hydrolyzable group.
  • B is preferably from 2 to 4, more preferably 2 or 4.
  • the metal compound is preferably a metal halide that is neither hydrolyzed nor hydrolyzed or a metal alkoxide that is neither hydrolyzed nor hydrolyzed.
  • Examples of the metal compound include zirconium chloride (IV), zirconium (IV) n-butoxide, zirconium (IV) n-propoxide, zirconium (IV) isopropoxide, zirconium (IV) di-n-butoxide, Bis (2,4-pentanedionate), aminopropyltriethoxyzirconium (IV), 2- (3,4-epoxycyclohexyl) ethyltrimethoxyzirconium (IV), ⁇ -glycidoxypropyltrimethoxyzirconium (IV) , 3-isocyanopropyltrimethoxyzirconium (IV), 3-isocyanopropyltriethoxyzirconium (IV), triethoxymono (acetylacetonato) zirconium (IV), tri-n-propoxymono (acetylacetonato) zirconium ( V), tri-i-propoxymono (acetylace
  • the metal compound is preferably zirconium (IV) chloride, hafnium (IV) chloride, tungsten (IV) ethoxide, zinc (II) chloride or tin (IV) t-butoxide.
  • Examples of a method for obtaining a hydrolyzate and / or hydrolysis condensate of a metal compound include (p) a method in which a metal compound is hydrolyzed and / or hydrolyzed and condensed in water. In this case, you may add the other compound which has a hydrolysable group as needed. Moreover, you may react by adding an organic solvent to water.
  • the lower limit of the amount of water used in this reaction is preferably 1 mole, more preferably 10 moles, and even more preferably 50 moles, relative to the hydrolyzable group of the (p) metal compound.
  • the upper limit of the amount of water is preferably 1,000 times mol, more preferably 500 times mol, and even more preferably 300 times mol.
  • the lower limit of the reaction temperature is preferably 0 ° C, more preferably 40 ° C.
  • 150 degreeC is preferable and 100 degreeC is more preferable.
  • the lower limit of the reaction time is preferably 1 minute, and more preferably 10 minutes.
  • the upper limit of the time is preferably 10 hours, and more preferably 1 hour.
  • reaction solution containing a metal part may be used after the reaction to remove the solvent used, but without removing it after the reaction, (b) the organic part is added as it is, and [A] particle synthesis reaction Can also be done.
  • (B) Organic part (B) The organic moiety is (x) an organic acid or an anion of this (x) organic acid, (y) a compound, or a combination thereof. (X) The molecular weight of the organic acid and (y) compound is 120 or more.
  • the organic acid is an organic compound that exhibits acidity.
  • the molecular weight of the organic acid is 120 or more.
  • the lower limit of the pKa of the organic acid is preferably 0, more preferably 1, more preferably 1.5, and particularly preferably 3.
  • the upper limit of the pKa is preferably 7, more preferably 6, more preferably 5.5, and particularly preferably 5.
  • the pKa of the (x) organic acid refers to the first acid dissociation constant, that is, the logarithmic value of the dissociation constant with respect to the dissociation of the first proton.
  • pKa refers to what is generally used as an index indicating the acid strength of the target substance.
  • the pKa value of the organic acid can be determined by measurement by a conventional method. Moreover, the calculation value using well-known software, such as "ACD / Labs" of Advanced Chemistry Development, can also be used.
  • the organic acid may be a low molecular compound or a high molecular compound, but a low molecular compound is preferable from the viewpoint of adjusting the interaction with the metal atom to a moderately weak one.
  • the low molecular compound means a compound having a molecular weight of 1,500 or less
  • the high molecular compound means a compound having a molecular weight of more than 1,500.
  • organic acid examples include carboxylic acid, sulfonic acid, sulfinic acid, organic phosphinic acid, organic phosphonic acid, phenols, enol, thiol, acid imide, oxime, sulfonamide and the like.
  • carboxylic acid examples include heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-ethylhexanoic acid, 1-cyclohexene-1-carboxylic acid, 3-cyclohexene-1-carboxylic acid, oleic acid, stearic acid, and linol.
  • Acid linolenic acid, arachidonic acid, salicylic acid, benzoic acid, 3,5-dihydroxybenzoic acid, p-aminobenzoic acid, dichloroacetic acid, trichloroacetic acid, pentafluoropropionic acid, gallic acid, shikimic acid, (-)-camphanic acid
  • Monocarboxylic acids such as acid, 5-norbornene-2-carboxylic acid, 5-hydroxy-2,3-norbornanedicarboxylic acid ⁇ -lactone
  • Dicarboxylic acids such as adipic acid, sebacic acid, phthalic acid, tartaric acid
  • Examples thereof include carboxylic acids having 3 or more carboxy groups such as citric acid.
  • sulfonic acid examples include benzenesulfonic acid and p-toluenesulfonic acid.
  • sulfinic acid examples include benzenesulfinic acid and p-toluenesulfinic acid.
  • organic phosphinic acid examples include methylphenylphosphinic acid and diphenylphosphinic acid.
  • organic phosphonic acid examples include t-butylphosphonic acid, cyclohexylphosphonic acid, and phenylphosphonic acid.
  • phenols examples include monovalent phenols such as 2,6-xylenol and naphthol; Divalent phenols such as methylhydroquinone and 1,2-naphthalenediol; Examples thereof include trivalent or higher phenols such as pyrogallol and 2,3,6-naphthalenetriol.
  • Examples of the enol include 3-oxo-5-hydroxy-4-heptene and 4-oxo-6-hydroxy-5-nonene.
  • thiol examples include octane thiol and decane thiol.
  • the acid imide examples include carboxylic acid imides such as 3-phenylmaleimide, 3-phenylsuccinimide, and di (trifluorobutanecarboxylic acid) imide; Examples thereof include sulfonic acid imides such as di (trifluorobutanesulfonic acid) imide.
  • oxime examples include aldoximes such as salicylaldoxime; And ketoximes such as cyclododecanone oxime.
  • sulfonamide examples include benzenesulfonamide and toluenesulfonamide.
  • the organic acid is preferably a carboxylic acid from the viewpoint of further improving the developability and sensitivity of the radiation-sensitive composition.
  • L is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • n is an integer of 1 to 10.
  • m is 2 or more, the plurality of Ls are the same or different.
  • Examples of the divalent hydrocarbon group having 1 to 10 carbon atoms represented by L include, for example, a divalent chain hydrocarbon group having 1 to 10 carbon atoms and a divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms. And a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • Examples of the divalent chain hydrocarbon group having 1 to 10 carbon atoms include alkanediyl groups such as methanediyl group and ethanediyl group; Alkenediyl groups such as ethenediyl group and propenediyl group; Examples include alkynediyl groups such as ethynediyl group and propenediyl group.
  • divalent alicyclic hydrocarbon group having 3 to 10 carbon atoms examples include divalent alicyclic saturated hydrocarbon groups such as cyclopentanediyl group, cyclohexanediyl group and norbornanediyl group; And divalent alicyclic unsaturated hydrocarbon groups such as a cyclopentenediyl group, a cyclohexenediyl group, and a norbornenediyl group.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 10 carbon atoms include arenediyl groups such as benzenediyl group, toluenediyl group, naphthalenediyl group; Examples thereof include arenediylalkanediyl groups such as benzenediylmethanediyl group and benzenediylethanediyl group.
  • L is preferably a single bond.
  • M is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • organic acid (x-1) 5-hydroxy-2,3-norbornanedicarboxylic acid ⁇ -lactone is preferable.
  • the anion of the organic acid is usually formed by transferring the proton of the acidic group from (x) the organic acid used for forming the [A] particles to (a) the metal portion. Moreover, it can also form by using the salt of (x) organic acid for formation of [A] particle
  • ((Y) compound) (Y)
  • the compound is a compound represented by the following formula (1).
  • the molecular weight of the compound is 120 or more.
  • R 1 is an n-valent organic group.
  • X is an alcoholic hydroxyl group, —NCO or —NHR a .
  • R a is a hydrogen atom or a monovalent organic group.
  • n is an integer of 2 to 4. Several X is the same or different.
  • Examples of the n-valent organic group represented by R 1 include an n-valent hydrocarbon group, an n-valent heteroatom-containing group containing a group having a heteroatom between carbon-carbons of the hydrocarbon group, Examples include an n-valent group in which a part or all of the hydrogen atoms of the hydrocarbon group and heteroatom-containing group are substituted with a substituent.
  • n-valent hydrocarbon group examples include: Alkanes such as butane and pentane; alkenes such as butene and pentene; chain hydrocarbons having 4 to 30 carbon atoms such as alkynes such as butyne and pentyne, cycloalkanes such as cyclobutane, cyclopentane, cyclohexane, norbornane and adamantane, cyclobutene, C4-C30 alicyclic hydrocarbons such as cycloalkene such as cyclopentene, cyclohexene and norbornene, C6-C30 such as arenes such as benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene and anthracene And a group obtained by removing n hydrogen atoms from a hydrocarbon such as an aromatic hydrocarbon.
  • Alkanes such as
  • Examples of the group having a hetero atom include a group having at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a phosphorus atom, and a sulfur atom, and the like, such as —O—, —NH—, And —CO—, —S—, a combination of these, and the like. Of these, —O— is preferable.
  • substituents include: Halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; Alkoxy groups such as methoxy group, ethoxy group, propoxy group; Alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group; Alkoxycarbonyloxy groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group; Acyl groups such as formyl group, acetyl group, propionyl group, butyryl group, benzoyl group; A cyano group, a nitro group, etc. are mentioned.
  • Halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • Alkoxy groups such as methoxy group, ethoxy group, propoxy group
  • Alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group
  • Alkoxycarbonyloxy groups such
  • N is preferably 2 or 3, and more preferably 2.
  • alcoholic hydroxyl group represented by X refers to an —OH group bonded to a saturated carbon atom in the organic group of R 1 .
  • saturated carbon atom refers to a carbon atom that does not constitute a double bond, triple bond, or aromatic ring.
  • Examples of the monovalent organic group represented by R a in —NHR a include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a group having a hetero atom between carbon and carbon of the hydrocarbon group. Examples include a hetero atom-containing group, a group obtained by substituting some or all of the hydrogen atoms of the hydrocarbon group and hetero atom-containing group with a substituent.
  • R a is preferably a monovalent hydrocarbon group, more preferably a monovalent chain hydrocarbon group, still more preferably an alkyl group, and particularly preferably a methyl group.
  • n 2 a divalent chain hydrocarbon group, a divalent aromatic hydrocarbon group or a divalent heteroatom-containing group is preferable, an alkanediyl group, an alkenediyl group, an arenediyl group or an alkanediyloxyalkanediyl More preferred are octanediyl, octenediyl, xylenediyl or butanediyloxybutanediyl.
  • n 3 a trivalent chain hydrocarbon group is preferable, an alkanetriyl group is more preferable, and a 1,2,3-hexanetriyl group is more preferable.
  • n 4 a tetravalent chain hydrocarbon group is preferable, an alkanetetrayl group is more preferable, and a 1,2,3,4-butanetetrayl group is more preferable.
  • Examples of the compound (A) include compounds represented by the following formulas (1-1) to (1-3) (hereinafter also referred to as “compounds (1-1) to (1-3)”). It is done.
  • R 1 , R a and n are as defined in the above formula (1).
  • Examples of the compound (1-1) include Assuming that n is 2, Alkylene glycols such as octanediol and decanediol; Dialkylene glycols such as dibutylene glycol and tripropylene glycol; Cycloalkylene glycols such as cyclooctanediol, cyclohexanedimethanol, norbornanedimethanol, adamantanediol; Aromatic ring-containing glycols such as 1,4-benzenedimethanol and 2,6-naphthalenediethanol; And dihydric phenols such as methyl hydroquinone Assuming that n is 3, Alkanetriols such as 1,2,3-octanetriol; Cycloalkanetriols such as 1,2,3-cyclooctanetriol, 1,2,3-cyclooctanetrimethanol; Aromatic ring-containing glycols such as 1,2,4-benzenetrimethanol and 2,3,6-naphthale
  • n 4 Alkanetetraols such as erythritol and pentaerythritol; Cycloalkanetetraols such as 1,2,4,5-cyclohexanetetraol; Aromatic ring-containing tetraols such as 1,2,4,5-benzenetetramethanol; And tetravalent phenols such as 1,2,4,5-benzenetetraol.
  • n is preferably 2 or 3, more preferably alkylene glycol, dialkylene glycol or alkanetriol, and even more preferably octanediol, dibutylene glycol or 1,2,3-octanetriol.
  • n 2
  • Linear diisocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate; Alicyclic diisocyanates such as 1,4-cyclohexane diisocyanate and isophorone diisocyanate; And aromatic diisocyanates such as tolylene diisocyanate, 1,4-benzene diisocyanate, 4,4′-diphenylmethane diisocyanate, etc.
  • Chain triisocyanates such as trimethylene triisocyanate; Alicyclic triisocyanates such as 1,2,4-cyclohexane triisocyanate; Aromatic triisocyanates such as 1,2,4-benzenetriisocyanate and the like, Assuming that n is 4, Chain tetraisocyanates such as tetramethylenetetraisocyanate; Alicyclic tetraisocyanates such as 1,2,4,5-cyclohexanetetraisocyanate; And aromatic tetraisocyanates such as 1,2,4,5-benzenetetraisocyanate. Among these, those having n of 2 are preferable, chain diisocyanates are more preferable, and hexamethylene diisocyanate is more preferable.
  • Examples of the compound (1-3) include Assuming that n is 2, Chain diamines such as octamethylenediamine and decamethylenediamine; Cycloaliphatic diamines such as cyclooctanediamine and di (aminomethyl) cyclooctane; Aromatic diamines such as 1,4-diamino-2,5-dimethylbenzene and 4,4′-diaminodiphenylmethane, etc.
  • Chain diamines such as octamethylenediamine and decamethylenediamine
  • Cycloaliphatic diamines such as cyclooctanediamine and di (aminomethyl) cyclooctane
  • Aromatic diamines such as 1,4-diamino-2,5-dimethylbenzene and 4,4′-diaminodiphenylmethane, etc.
  • Linear triamines such as triaminooctane and triaminodecane; Alicyclic triamines such as 1,2,4-triaminocyclohexane; And aromatic triamines such as 1,2,4-triaminobenzene, etc.
  • n 4
  • Linear tetraamines such as tetraaminohexane; Alicyclic tetraamines such as 1,2,4,5-tetraaminocyclohexane, 2,3,5,6-tetraaminonorbornane; Aromatic tetraamines such as 1,2,4,5-tetraaminobenzene and the like can be mentioned.
  • those having n of 2 are preferred, chain diamines are more preferred, and diaminooctane is more preferred.
  • the organic acid and the (y) compound include an alicyclic structure having 5 to 12 carbon atoms or an aliphatic heterocyclic structure having 3 to 20 ring members having an oxygen atom, a sulfur atom and / or a nitrogen atom as ring constituent atoms Those having the following are preferred.
  • (X) By using what has the said structure as an organic acid and (y) compound, the solubility of [A] particle
  • the lower limit of the molecular weight of the organic acid and the (y) compound is 120, preferably 122, more preferably 124, still more preferably 126, particularly preferably 130, more particularly preferably 150, and even more particularly 170. 190 is most preferred.
  • the upper limit of the molecular weight is, for example, 400, and 300 is preferable.
  • the lower limit of the Onishi parameter of (x) organic acid and (y) compound is preferably 4, more preferably 5, more preferably 6, and particularly preferably 7.
  • the “Onishi parameter” is a numerical value calculated by (total number of atoms in compound) / ((number of carbon atoms in compound) ⁇ (number of oxygen atoms in compound)).
  • the hydrodynamic radius of the particle by dynamic light scattering analysis is preferably less than 20 nm, more preferably 15 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the hydrodynamic radius is preferably 1.0 nm or more, more preferably 1.5 nm or more, further preferably 2.0 nm, and particularly preferably 2.5 nm.
  • the “hydrodynamic radius” means a harmonic average particle diameter based on scattered light intensity measured by a DLS (Dynamic Light Scattering) method using a light scattering measuring device.
  • the (x) organic acid or the anion of (x) the organic acid, the (y) compound, or a combination thereof is a hydrolyzate or hydrolysis condensate of the above (p) metal compound, or these It is preferably coordinated to one or more metal atoms in the combination.
  • the solubility of the [A] particles in the [B] solvent can be made more appropriate, and as a result, the developability of the radiation-sensitive composition. In addition, the sensitivity can be further improved.
  • the lower limit of the content of [A] particles is preferably 80% by mass and more preferably 85% by mass with respect to the total solid content of the radiation-sensitive composition. As an upper limit of the said content, it is 100 mass%, for example.
  • the “total solid content” of the radiation-sensitive composition refers to the sum of components other than [B] solvent.
  • [A] Particle Synthesis Method [A] The particles can be obtained by mixing (a) a metal part and (b) an organic part. Accordingly, [A] particles are obtained by (x) a reaction liquid containing (a) a metal part obtained by hydrolysis reaction and / or hydrolysis condensation reaction of a metal compound, (b) (x) organic acid of (b) organic part, (X) It can synthesize
  • a solvent will not be specifically limited if it is a solvent which can melt
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvents examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl propionate; Hydroxycarboxylic acid ester solvents such as ethyl lactate and n-butyl glycolate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; Examples thereof include carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl propionate
  • Hydroxycarboxylic acid ester solvents such as ethyl lactate and n-butyl glyco
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • the solvent is preferably an ester solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent, and even more preferably propylene glycol monomethyl ether acetate.
  • the radiation-sensitive composition may contain one or more [B] solvents.
  • the radiation-sensitive composition may contain a [C] acid generator.
  • the [C] acid generator is a compound that generates an acid by light or heat, and the radiation-sensitive composition can further improve developability by further containing the [C] acid generator.
  • a low molecular compound form hereinafter referred to as “[C] acid generator”
  • [C] acid generator a low molecular compound form
  • Examples of the [C] acid generator include onium salt compounds and N-sulfonyloxyimide compounds.
  • a thermal acid generator that generates an acid or a base by heat is preferable, and an onium salt compound is particularly preferable.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, ammonium salts, and the like.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept- Examples include 2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, and the like.
  • Examples of the tetrahydrothiophenium salt include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona. Examples include fluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium perfluoro-n-octanesulfonate.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, and the like.
  • ammonium salts include ammonium formate, ammonium maleate, ammonium fumarate, ammonium benzoate, ammonium p-aminobenzoate, ammonium p-toluenesulfonate, ammonium methanesulfonate, ammonium trifluoromethanesulfonate, trifluoroethanesulfone.
  • An ammonium acid etc. are mentioned.
  • N-sulfonyloxyimide compounds include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy). ) Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide and the like.
  • the acid generator is preferably an onium salt compound, more preferably a sulfonium salt, still more preferably a triphenylsulfonium salt, and particularly preferably triphenylsulfonium trifluoromethanesulfonate.
  • the said radiation sensitive composition contains a [C] acid generator
  • a [C] acid generator as a minimum of content of a [C] acid generator, 0.1 mass part is preferable with respect to 100 mass parts of [A] particle
  • the radiation-sensitive composition may contain one or more [C] acid generators.
  • ⁇ Method for preparing radiation-sensitive composition for example, [A] particles, [B] solvent, and optionally [C] acid generator and other optional components are mixed in a predetermined ratio.
  • the obtained mixture is mixed with a pore size. It can be prepared by filtering with a filter of about 0.2 ⁇ m.
  • 0.1 mass% is preferred, 0.5 mass% is more preferred, 1 mass% is still more preferred, and 3 mass% is especially preferred.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 15% by mass, and particularly preferably 7% by mass.
  • the resist pattern forming method includes a step of coating the radiation-sensitive composition on at least one surface side of a substrate (hereinafter also referred to as “coating step”), and a resist film formed by the coating step. And a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
  • the radiation sensitive composition is applied to at least one surface side of the substrate.
  • the substrate include a silicon wafer and a wafer coated with aluminum.
  • a coating method of the said radiation sensitive composition For example, well-known methods, such as a spin coat method, etc. are mentioned.
  • the amount of the radiation-sensitive composition to be applied is adjusted so that the formed resist film has a desired thickness.
  • substrate in order to volatilize a solvent, you may perform prebaking (PB). As a minimum of the temperature of PB, 30 degreeC is preferable and 50 degreeC is more preferable.
  • the lower limit of the PB time is preferably 10 seconds, and more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • 10 nm is preferred, 20 nm is more preferred, and 30 nm is still more preferred.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, and even more preferably 100 nm. In this way, a resist film is formed.
  • the resist film formed by the coating step is exposed.
  • this exposure is performed by irradiating with radiation through a mask having a predetermined pattern through an immersion exposure liquid such as water.
  • the immersion exposure liquid a liquid having a refractive index larger than that of air is usually used. Specific examples include pure water, long-chain or cyclic aliphatic compounds, and the like.
  • the exposure apparatus irradiates radiation, and the resist film is formed through a mask having a predetermined pattern. Exposure.
  • Examples of the radiation include far ultraviolet rays such as visible light, ultraviolet rays, ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), and extreme ultraviolet rays (depending on the type of radiation-sensitive acid generator used). Extreme Ultraviolet (EUV), 13.5 nm), electromagnetic waves such as X-rays, charged particle beams such as electron beams and ⁇ rays, etc. are appropriately selected and used.
  • EUV Extreme Ultraviolet
  • ArF excimer laser light, KrF excimer laser Light, EUV, X-ray or electron beam is preferable
  • ArF excimer laser light, EUV or electron beam is more preferable
  • EUV or electron beam is more preferable.
  • exposure conditions such as exposure amount, can be suitably selected according to the blending composition of the radiation sensitive composition, the type of additive, and the like.
  • PEB post-exposure baking
  • This PEB allows the [A] particle modification reaction and the like to proceed smoothly.
  • the heating conditions for PEB are appropriately adjusted depending on the composition of the radiation-sensitive composition, but the lower limit of the PEB temperature is preferably 30 ° C, more preferably 50 ° C, and even more preferably 80 ° C.
  • 250 degreeC is preferable, 200 degreeC is more preferable, 180 degreeC is further more preferable, and 160 degreeC is especially preferable.
  • the lower limit of the PEB time is preferably 10 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • an organic material is formed on the substrate to be used.
  • a system or inorganic antireflection film may be formed.
  • a protective film can be provided on the resist film as disclosed in, for example, JP-A-5-188598.
  • the resist film exposed in the exposure step is developed.
  • the developer used for the development include an aqueous alkali solution (alkaline developer) and an organic solvent-containing solution (organic solvent developer). Thereby, a predetermined resist pattern is formed.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, ethyl Dimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0
  • TMAH tetramethylammonium hydroxide
  • An aqueous solution in which at least one alkaline compound such as 5-nonene is dissolved is used.
  • a TMAH aqueous solution is preferable and a 2.38 mass% TMAH aqueous solution is more preferable.
  • organic solvent-containing liquid examples include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and liquids containing organic solvents.
  • organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and liquids containing organic solvents.
  • an organic solvent the 1 type (s) or 2 or more types of the solvent illustrated as the [B] solvent of the above-mentioned radiation sensitive composition are mentioned, for example.
  • ester solvents and ketone solvents are preferable.
  • the ester solvent an acetate solvent is preferable, and n-butyl acetate is more preferable.
  • the ketone solvent is preferably a chain ketone, more preferably 2-heptanone.
  • an organic solvent in an organic solvent content liquid 80 mass% is preferred, 90 mass% is more preferred, 95 mass% is still more preferred, and 99 mass% is especially preferred.
  • components other than the organic solvent in the organic solvent-containing liquid include water and silicone oil.
  • the developer is preferably a liquid containing an organic solvent, preferably a hydrocarbon solvent, a ketone solvent, an alcohol solvent or an ester solvent, and more preferably hexane, 2-heptanone, methanol, 2-propanol or butyl acetate.
  • an organic solvent preferably a hydrocarbon solvent, a ketone solvent, an alcohol solvent or an ester solvent, and more preferably hexane, 2-heptanone, methanol, 2-propanol or butyl acetate.
  • These developers may be used alone or in combination of two or more.
  • the substrate is washed with water or the like and dried.
  • the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
  • the DLS analysis measured [A] particle
  • [Synthesis Examples 4 to 13] [A] particles were synthesized in the same manner as in Synthesis Examples 1 to 3 except that the types and amounts of the (p) metal compound and (b) organic moiety compound used as the synthesis raw material were as shown in Table 1 below. did.
  • “ ⁇ ” is indicated, and “DLS analysis of generated particles” is described as “no particle generation”, particle generation is not recognized in the particle synthesis reaction and particle recovery is possible. Indicates no.
  • what is described as “insoluble in an organic solvent” indicates that the particles could be generated and recovered, but the analysis could not be performed because the particles were insoluble in the organic solvent.
  • the Onishi parameter “ ⁇ ” in Synthesis Example 6 indicates that the number of carbon atoms ⁇ the number of oxygen atoms in acetic acid is zero.
  • Example 1 [A] 100 parts by mass of (P-1) as particles are dissolved in 2,400 parts by mass of (B-1) as a [B] solvent, and the resulting solution is filtered through a membrane filter having a pore size of 0.20 ⁇ m. Then, a radiation sensitive composition (S-1) was prepared.
  • PEB is performed in the clean track ACT-8 at 90 ° C. or 170 ° C. for 60 seconds, and then in the clean track ACT-8 using an organic solvent shown in Table 3 below. Development was performed by paddle method at 1 ° C. for 1 minute to form a negative resist pattern.
  • sensitivity Dose in the case of more than the film thickness is 40nm portion in the exposed area, 100 .mu.C / cm 2 less than the case, the sensitivity is a "AA" (very good), in the case of less than 100 .mu.C / cm 2 or more 400 ⁇ C / cm 2 "A "(Good)” and 400 B / cm 2 or more were evaluated as “B” (poor).
  • the radiation-sensitive compositions of the examples are excellent in developability and sensitivity.
  • an electron beam was used for the exposure of the resist film, but it is known that the basic resist characteristics are similar even when short wavelength radiation such as EUV is used. It is also known that there is a correlation. Therefore, according to the radiation sensitive composition, it is presumed that developability and sensitivity are excellent even in the case of EUV exposure.
  • the radiation-sensitive composition of the present invention is excellent in developability and sensitivity. According to the resist pattern forming method of the present invention, a good resist pattern can be formed with high sensitivity. Therefore, the radiation-sensitive composition and the resist pattern forming method can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明は、粒子と、溶媒とを含有し、上記粒子が、加水分解性基を有する金属化合物の加水分解物若しくは加水分解縮合物又はこれらの組み合わせと、有機酸若しくはこの有機酸のアニオン、下記式(1)で表される第1化合物又はこれらの組み合わせとを含み、上記有機酸及び第1化合物の分子量が120以上である感放射線性組成物である。下記式(1)中、R1は、n価の有機基である。Xは、アルコール性水酸基、-NCO又は-NHRaである。Raは、水素原子又は1価の有機基である。nは、2~4の整数である。

Description

感放射線性組成物及びレジストパターン形成方法
 本発明は、感放射線性組成物及びレジストパターン形成方法に関する。
 リソグラフィーによる微細加工に用いられる一般的な感放射線性組成物は、ArFエキシマレーザー光、KrFエキシマレーザー光等の遠紫外線、極端紫外線(EUV)等の電磁波、電子線等の荷電粒子線などの照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部及び未露光部で現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成する。形成されたレジストパターンは、基板加工におけるマスク等として用いることができる。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト性能を向上させることが要求される。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類、分子構造等が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 これにより、現状、パターンの微細化は線幅40nm以下のレベルまで進展しているが、感放射線性組成物には、さらに高いレジスト性能が要求されており、特に、露光部と未露光部との溶解コントラストが高く、現像性に優れると共に、EUV及び電子線を用いた場合でも、高感度でレジストパターンを形成できることが求められている。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、現像性及び感度に優れる感放射線性組成物及びレジストパターン形成方法を提供することにある。
 上記課題を解決するためになされた発明は、粒子(以下、「[A]粒子」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有し、上記[A]粒子が、加水分解性基を有する金属化合物(以下、「(p)金属化合物」ともいう)の加水分解物若しくは加水分解縮合物又はこれらの組み合わせ(以下、「(a)金属部分」ともいう)と、有機酸(以下、「(x)有機酸」ともいう)若しくはこの(x)有機酸のアニオン、下記式(1)で表される第1化合物(以下、「(y)化合物」ともいう)又はこれらの組み合わせ(以下、「(b)有機部分」ともいう)とを含み、上記(x)有機酸及び(y)化合物の分子量が120以上である感放射線性組成物である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、n価の有機基である。Xは、アルコール性水酸基、-NCO又は-NHRである。Rは、水素原子又は1価の有機基である。nは、2~4の整数である。複数のXは同一又は異なる。)
 上記課題を解決するためになされた別の発明は、基板の少なくとも一方の面側に、当該感放射線性組成物を塗工する工程と、上記塗工工程により形成されたレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備えるレジストパターン形成方法である。
 ここで、「有機酸」とは、酸性を示す有機化合物をいう。
 本発明の感放射線性組成物は、現像性及び感度に優れる。本発明のレジストパターン形成方法によれば、高い感度で良好なレジストパターンを形成することができる。従って、当該感放射線性組成物及びレジストパターン形成方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
<感放射線性組成物>
 当該感放射線性組成物は、[A]粒子と[B]溶媒とを含有する。当該感放射線性組成物は、好適成分として、感放射線性酸発生体(以下、「[C]酸発生体」ともいう)を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
 当該感放射線性組成物は、[A]粒子を含有することで、現像性及び感度に優れる。当該感放射線性組成物が上記構成を備えることで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]粒子は金属化合物の加水分解物等で形成される(a)金属部分と、(b)有機部分とを含み、(b)有機部分の(x)有機酸及び(y)化合物の分子量を上記特定値以上とすることにより、粒子の[B]溶媒の溶解性を適度なものとすることができ、その結果、[A]粒子と[B]溶媒との組成物を良好に形成することができる。また、粒子の現像液への溶解性を適度なものとすることができ、その結果、当該感放射線性組成物の現像性が向上する。さらに、露光前後での[A]粒子の溶解性の変化をより大きくすることができ、その結果、当該感放射線性組成物の感度が向上する。以下、各成分について説明する。
<[A]粒子>
 [A]金属含有成分は、(a)金属部分と(b)有機部分とを含む。ここで、「粒子が(a)金属部分と(b)有機部分とを含む」とは、(a)金属部分と(b)有機部分とが化学的に結合している場合、及び(a)金属部分と(b)有機部分とが化学的に結合していない場合の両方を含む概念である。化学的に結合している場合の化学結合としては、例えば共有結合、配位結合、水素結合等が挙げられる。
[(a)金属部分]
 (a)金属部分は、(p)金属化合物の加水分解物若しくは加水分解縮合物又はこれらの組み合わせである。
((p)金属化合物))
 (p)金属化合物は、加水分解性基を有する金属化合物である。
 (p)金属化合物を構成する金属元素としては、例えば第3族~第16族の金属元素等が挙げられる。
 第3族の金属元素としては、例えばスカンジウム、イットリウム、ランタン、セリウム等が、
 第4族の金属元素としては、例えばチタン、ジルコニウム、ハフニウム等が、
 第5族の金属元素としては、例えばバナジウム、ニオブ、タンタル等が、
 第6族の金属元素としては、例えばクロム、モリブデン、タングステン等が、
 第7族の金属元素としては、マンガン、レニウム等が、
 第8族の金属元素としては、鉄、ルテニウム、オスミウム等が、
 第9族の金属元素としては、コバルト、ロジウム、イリジウム等が、
 第10族の金属元素としては、ニッケル、パラジウム、白金等が、
 第11族の金属元素としては、銅、銀、金等が、
 第12族の金属元素としては、亜鉛、カドミウム、水銀等が、
 第13族の金属元素としては、アルミニウム、ガリウム、インジウム等が、
 第14族の金属元素としては、ゲルマニウム、スズ、鉛等が、
 第15族の金属元素としては、アンチモン、ビスマス等が、
 第16族の金属元素としては、テルル等が挙げられる。
 これらの中で、(p)金属化合物を構成する金属元素としては、第4族、第5族、第6族、第8族、第9族、第10族、第12族、第13族又は第14族かつ第4周期から第7周期までの金属元素が好ましく、ジルコニウム、ハフニウム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン又は亜鉛がより好ましい。(p)金属化合物を構成する金属元素を上記のものとすることで、二次電子の生成をより効果的に促進でき、感度をより向上させることができる。また、レジスト膜の露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上でき、現像性をより向上させることができる。(p)金属化合物は、金属元素を1種又は2種以上有していてもよい。
 (p)金属化合物が有する加水分解性基としては、例えばハロゲン原子、アルコキシ基、アシロキシ基等が挙げられる。
 上記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基等が挙げられる。
 上記アシロキシ基としては、例えばホルミルオキシ基、アセトキシ基、プロピオニルオキシ基、n-ブチリルオキシ基、t-ブチリルオキシ基、t-アミリルオキシ基、n-ヘキサンカルボニロキシ基、n-オクタンカルボニロキシ基等が挙げられる。
 上記加水分解性基としては、ハロゲン原子又はアルコキシ基が好ましく、塩素原子、エトキシ基又はt-ブトキシ基がより好ましい。
 (a)金属部分が(p)金属化合物の加水分解縮合物である場合、この(p)金属化合物の加水分解縮合物は、本発明の効果を損なわない限り、(p)金属化合物と半金属原子を含む化合物との加水分解縮合物であってもよい。すなわち、(a)金属酸化物には、本発明の効果を損なわない範囲内で半金属原子が含まれていてもよい。上記半金属原子としては、例えばホウ素、ヒ素等が挙げられる。(p)金属化合物の加水分解縮合物における半金属原子の含有率としては、この加水分解縮合物中の金属原子及び半金属原子の合計に対し、通常50原子%未満である。上記半金属原子の含有率の上限としては、上記加水分解縮合物中の金属原子及び半金属原子の合計に対し、30原子%が好ましく、10原子%がより好ましい。
 (p)金属化合物としては、例えば下記式(A)で表される化合物(以下、「金属化合物(p-1)」ともいう)等が挙げられる。このような金属化合物(p-1)を用いることで、安定な(a)金属部分を形成でき、その結果、当該感放射線性組成物の現像性及び感度をより向上させることができる。
Figure JPOXMLDOC01-appb-C000004
 上記式(A)中、Mは、金属原子である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは同一又は異なる。Yは、ハロゲン原子、アルコキシ基及びアシロキシ基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは同一又は異なる。なお、LはYに該当しない配位子である。
 Mで表される金属原子としては、例えば(p)金属化合物を構成する金属元素として例示した元素の原子等が挙げられる。
 Lで表される配位子としては、単座配位子及び多座配位子が挙げられる。
 上記単座配位子としては、例えばヒドロキソ配位子、カルボキシ配位子、アミド配位子、アンモニア配位子等が挙げられる。
 上記アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHMe)、ジメチルアミド配位子(NMe)、ジエチルアミド配位子(NEt)、ジプロピルアミド配位子(NPr)等が挙げられる。
 上記多座配位子としては、例えばヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、β-ジカルボン酸エステル、π結合を有する炭化水素、ジホスフィン等が挙げられる。
 上記ヒドロキシ酸エステルとしては例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。
 上記β-ジケトンとしては、例えば2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン等が挙げられる。
 上記β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。
 上記β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。
 上記π結合を有する炭化水素としては、例えば
 エチレン、プロピレン等の鎖状オレフィン;
 シクロペンテン、シクロヘキセン、ノルボルネン等の環状オレフィン;
 ブタジエン、イソプレン等の鎖状ジエン;
 シクロペンタジエン、メチルシクロペンタジエン、ペンタメチルシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン;
 ベンゼン、トルエン、キシレン、ヘキサメチルベンゼン、ナフタレン、インデン等の芳香族炭化水素などが挙げられる。
 上記ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。
 Yで表されるハロゲン原子、アルコキシ基及びアシロキシ基の例示及び好適なものとしては、上記加水分解性基において説明したものと同様とすることができる。
 bとしては、2~4が好ましく、2又は4がより好ましい。bを上記数値とすることで、(a)金属部分における金属原子の含有率を高め、[A]粒子による二次電子の発生をより効果的に促進でき、その結果、当該感放射線性組成物の感度をより向上できる。
 (p)金属化合物としては、加水分解も加水分解縮合もしていない金属ハロゲン化物又は加水分解も加水分解縮合もしていない金属アルコキシドが好ましい。
 (p)金属化合物としては、例えば
 塩化ジルコニウム(IV)、ジルコニウム(IV)n-ブトキシド、ジルコニウム(IV)n-プロポキシド、ジルコニウム(IV)イソプロポキシド、ジルコニウム(IV)・ジn-ブトキシド・ビス(2,4-ペンタンジオナート)、アミノプロピルトリエトキシジルコニウム(IV)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシジルコニウム(IV)、γ-グリシドキシプロピルトリメトキシジルコニウム(IV)、3-イソシアノプロピルトリメトキシジルコニウム(IV)、3-イソシアノプロピルトリエトキシジルコニウム(IV)、トリエトキシモノ(アセチルアセトナート)ジルコニウム(IV)、トリ-n-プロポキシモノ(アセチルアセトナート)ジルコニウム(IV)、トリ-i-プロポキシモノ(アセチルアセトナート)ジルコニウム(IV)、ジn-ブトキシビス(アセチルアセトナート)ジルコニウム(IV)、トリ(3-メタクリロキシプロピル)メトキシジルコニウム(IV)、トリ(3-アクリロキシプロピル)メトキシジルコニウム(IV)等のジルコニウム含有化合物;
 塩化ハフニウム(IV)、ハフニウム(IV)エトキシド、ハフニウム(IV)イソプロポキシド、ビス(シクロペンタジエニル)ハフニウム(IV)ジクロリド等のハフニウム含有化合物;
 チタン(IV)n-ブトキシド、チタン(IV)n-プロポキシド、チタン(IV)・トリn-ブトキシド・ステアレート、チタンブトキシドオリゴマー、アミノプロピルトリメトキシチタン(IV)、トリエトキシモノ(アセチルアセトナート)チタン(IV)、トリ-n-プロポキシモノ(アセチルアセトナート)チタン(IV)、トリ-i-プロポキシモノ(アセチルアセトナート)チタン(IV)、ジイソプロポキシビス(アセチルアセトナート)チタン(IV)、ジn-ブトキシビス(アセチルアセトナート)チタン(IV)等のチタン含有化合物;
 タンタル(V)エトキシド等のタンタル含有化合物;
 タングステン(V)メトキシド、タングステン(VI)エトキシド、タングステン(IV)エトキシド、ビス(シクロペンタジエニル)タングステン(IV)ジクロリド等のタングステン含有化合物;
 塩化鉄等の鉄含有化合物;
 ジアセタト[(S)-(-)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル]ルテニウム(II)等のルテニウム含有化合物;
 ジクロロ[エチレンビス(ジフェニルホスフィン)]コバルト(II)等のコバルト化合物;
 塩化ニッケル(II)等のニッケル含有化合物;
 塩化亜鉛(II)、亜鉛(II)イソプロポキシド、酢酸亜鉛二水和物等の亜鉛含有化合物;
 インジウム(III)イソプロポキシド等のインジウム含有化合物;
 スズ(IV)t-ブトキシド、スズ(IV)イソプロポキシド等のスズ含有化合物などが挙げられる。
 (p)金属化合物としては、塩化ジルコニウム(IV)、塩化ハフニウム(IV)、タングステン(IV)エトキシド、塩化亜鉛(II)又はスズ(IV)t-ブトキシドが好ましい。
 (p)金属化合物の加水分解物及び/又は加水分解縮合物を得る方法としては、例えば(p)金属化合物を水中で加水分解反応及び/又は加水分解縮合反応させる方法等が挙げられる。この場合、必要に応じて加水分解性基を有する他の化合物を添加してもよい。また、水に有機溶媒を添加して反応を行ってもよい。この反応に用いる水の量の下限としては、(p)金属化合物が有する加水分解性基に対し、1倍モルが好ましく、10倍モルがより好ましく、50倍モルがさらに好ましい。上記水の量の上限としては、1,000倍モルが好ましく、500倍モルがより好ましく、300倍モルがさらに好ましい。加水分解縮合反応における水の量を上記範囲とすることで、(a)金属部分における金属原子の含有率を高めることができ、その結果、当該感放射線性組成物の現像性及び感度をより向上できる。
 上記反応の温度の下限としては、0℃が好ましく、40℃がより好ましい。上記温度の上限としては、150℃が好ましく、100℃がより好ましい。
 上記反応の時間の下限としては、1分が好ましく、10分がより好ましい。上記時間の上限としては、10時間が好ましく、1時間がより好ましい。
 (a)金属部分を含む反応溶液は、使用した溶媒を反応後に除去してもよいが、反応後に除去することなく、そのまま、(b)有機部分を添加して、[A]粒子の合成反応を行うこともできる。
[(b)有機部分]
 (b)有機部分は、(x)有機酸若しくはこの(x)有機酸のアニオン、(y)化合物又はこれらの組み合わせである。(x)有機酸及び(y)化合物の分子量は120以上である。
((x)有機酸)
 (x)有機酸は、酸性を示す有機化合物である。(x)有機酸の分子量は120以上である。
 (x)有機酸のpKaの下限としては0が好ましく、1がより好ましく、1.5がさらに好ましく、3が特に好ましい。一方、上記pKaの上限としては、7が好ましく、6がより好ましく、5.5がさらに好ましく、5が特に好ましい。(x)有機酸のpKaを上記範囲とすることで、金属原子との相互作用を適度に弱いものに調整することができ、その結果、当該感放射線性組成物の現像性及び感度をより向上できる。ここで、(x)有機酸が多価の酸である場合、(x)有機酸のpKaとは、第1酸解離定数、すなわち、1つめのプロトンの解離に対する解離定数の対数値をいう。ここでpKaとは、対象物質の酸強度を示す指標として一般的に用いられているものを指す。(x)有機酸のpKa値は、常法により測定して求めることができる。また、Advanced Chemistry Development社の「ACD/Labs」等の公知のソフトウェアを用いた計算値を用いることもできる。
 (x)有機酸は、低分子化合物でもよく、高分子化合物でもよいが、金属原子との相互作用をより適度に弱いものに調整する観点から、低分子化合物が好ましい。ここで、低分子化合物とは、分子量が1,500以下の化合物をいい、高分子化合物とは、分子量が1,500超の化合物をいう。
 (x)有機酸としては、例えばカルボン酸、スルホン酸、スルフィン酸、有機ホスフィン酸、有機ホスホン酸、フェノール類、エノール、チオール、酸イミド、オキシム、スルホンアミド等が挙げられる。
 上記カルボン酸としては、例えば
 ヘプタン酸、オクタン酸、ノナン酸、デカン酸、2-エチルヘキサン酸、1-シクロヘキセン-1-カルボン酸、3-シクロヘキセン-1-カルボン酸、オレイン酸、ステアリン酸、リノール酸、リノレン酸、アラキドン酸、サリチル酸、安息香酸、3,5-ジヒドロキシ安息香酸、p-アミノ安息香酸、ジクロロ酢酸、トリクロロ酢酸、ペンタフルオロプロピオン酸、没食子酸、シキミ酸、(-)-カンファン酸、5-ノルボルネン-2-カルボン酸、5-ヒドロキシ-2,3-ノルボルナンジカルボン酸γ-ラクトン等のモノカルボン酸;
 アジピン酸、セバシン酸、フタル酸、酒石酸等のジカルボン酸;
 クエン酸等の3以上のカルボキシ基を有するカルボン酸などが挙げられる。
 上記スルホン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 上記スルフィン酸としては、例えばベンゼンスルフィン酸、p-トルエンスルフィン酸等が挙げられる。
 上記有機ホスフィン酸としては、例えばメチルフェニルホスフィン酸、ジフェニルホスフィン酸等が挙げられる。
 上記有機ホスホン酸としては、例えばt-ブチルホスホン酸、シクロヘキシルホスホン酸、フェニルホスホン酸等が挙げられる。
 上記フェノール類としては、例えば2,6-キシレノール、ナフトール等の1価のフェノール類;
 メチルハイドロキノン、1,2-ナフタレンジオール等の2価のフェノール類;
 ピロガロール、2,3,6-ナフタレントリオール等の3価以上のフェノール類などが挙げられる。
 上記エノールとしては、例えば3-オキソ-5-ヒドロキシ-4-へプテン、4-オキソ-6-ヒドロキシ-5-ノネン等が挙げられる。
 上記チオールとしては、例えばオクタンチオール、デカンチオール等が挙げられる。
 上記酸イミドとしては、例えば
 3-フェニルマレイミド、3-フェニルコハク酸イミド、ジ(トリフルオロブタンカルボン酸)イミド等のカルボン酸イミド;
 ジ(トリフルオロブタンスルホン酸)イミド等のスルホン酸イミドなどが挙げられる。
 上記オキシムとしては、例えば
 サリチルアルドキシム等のアルドキシム;
 シクロドデカノンオキシム等のケトキシムなどが挙げられる。
 上記スルホンアミドとしては、例えばベンゼンスルホンアミド、トルエンスルホンアミド等が挙げられる。
 (x)有機酸としては、当該感放射線性組成物の現像性及び感度をより向上する観点から、カルボン酸が好ましく、(-)-カンファン酸、3,5-ジヒドロキシ安息香酸、1-シクロヘキサン-1-カルボン酸、3-シクロヘキセン-1-カルボン酸、5-ノルボルネン-2-カルボン酸又は下記式(2)で表される化合物(以下、「有機酸(x-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記式(2)中、Lは、単結合又は炭素数1~10の2価の炭化水素基である。nは、1~10の整数である。mが2以上の場合、複数のLは同一又は異なる。
 Lで表される炭素数1~10の2価の炭化水素基としては、例えば炭素数1~10の2価の鎖状炭化水素基、炭素数3~10の2価の脂環式炭化水素基、炭素数6~10の2価の芳香族炭化水素基等が挙げられる。
 炭素数1~10の2価の鎖状炭化水素基としては、例えば
 メタンジイル基、エタンジイル基等のアルカンジイル基;
 エテンジイル基、プロペンジイル基等のアルケンジイル基;
 エチンジイル基、プロペンジイル基等のアルキンジイル基などが挙げられる。
 炭素数3~10の2価の脂環式炭化水素基としては、例えば
 シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基等の2価の脂環式飽和炭化水素基;
 シクロペンテンジイル基、シクロヘキセンジイル基、ノルボルネンジイル基等の2価の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~10の2価の芳香族炭化水素基としては、例えば
 ベンゼンジイル基、トルエンジイル基、ナフタレンジイル基等のアレーンジイル基;
 ベンゼンジイルメタンジイル基、ベンゼンジイルエタンジイル基等のアレーンジイルアルカンジイル基などが挙げられる。
 Lとしては、単結合が好ましい。
 mとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
 有機酸(x-1)としては、5-ヒドロキシ-2,3-ノルボルナンジカルボン酸γ-ラクトンが好ましい。
((x)有機酸のアニオン)
 (x)有機酸のアニオンは、通常、[A]粒子の形成に用いた(x)有機酸から酸性基のプロトンが(a)金属部分へ移行することにより形成される。また、[A]粒子の形成に、(x)有機酸の塩を用いることによって形成することもできる。
((y)化合物)
 (y)化合物は、下記式(1)で表される化合物である。(y)化合物の分子量は120以上である。
Figure JPOXMLDOC01-appb-C000006
 上記式(1)中、Rは、n価の有機基である。Xは、アルコール性水酸基、-NCO又は-NHRである。Rは、水素原子又は1価の有機基である。nは、2~4の整数である。複数のXは同一又は異なる。
 上記Rで表されるn価の有機基としては、例えば、n価の炭化水素基、この炭化水素基の炭素-炭素間にヘテロ原子を有する基を含むn価のヘテロ原子含有基、上記炭化水素基及びヘテロ原子含有基が有する一部又は全部の水素原子を置換基で置換したn価の基等が挙げられる。
 上記n価の炭化水素基としては、例えば、
 ブタン、ペンタン等のアルカン;ブテン、ペンテン等のアルケン;ブチン、ペンチン等のアルキンなどの炭素数4~30の鎖状炭化水素、シクロブタン、シクロペンタン、シクロヘキサン、ノルボルナン、アダマンタン等のシクロアルカン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン等のシクロアルケンなどの炭素数4~30の脂環式炭化水素、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、ジメチルナフタレン、アントラセン等のアレーンなどの炭素数6~30の芳香族炭化水素などの炭化水素からn個の水素原子を除いた基等が挙げられる。
 上記ヘテロ原子を有する基としては、例えば、酸素原子、窒素原子、ケイ素原子、リン原子及びイオウ原子からなる群より選ばれる少なくとも1種を有する基等が挙げられ、-O-、-NH-、-CO-、-S-、これらを組み合わせた基等が挙げられる。これらの中で、-O-が好ましい。
 上記置換基としては、例えば、
 フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;
 メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;
 メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;
 メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基;
 ホルミル基、アセチル基、プロピオニル基、ブチリル基、ベンゾイル基等のアシル基;
 シアノ基、ニトロ基などが挙げられる。
 上記nとしては、2又は3が好ましく、2がより好ましい。
 Xで表される「アルコール性水酸基」とは、Rの有機基における飽和炭素原子に結合する-OH基をいう。「飽和炭素原子」とは、二重結合、三重結合又は芳香環を構成していない炭素原子をいう。
 上記-NHRのRで表される1価の有機基としては、例えば、炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間にヘテロ原子を有する基を含むヘテロ原子含有基、上記炭化水素基及びヘテロ原子含有基が有する一部又は全部の水素原子を置換基で置換した基等が挙げられる。Rとしては、1価の炭化水素基が好ましく、1価の鎖状炭化水素基がより好ましく、アルキル基がさらに好ましく、メチル基が特に好ましい。
 上記Rとしては、
 nが2のものとして、2価の鎖状炭化水素基、2価の芳香族炭化水素基又は2価のヘテロ原子含有基が好ましく、アルカンジイル基、アルケンジイル基、アレーンジイル基又はアルカンジイルオキシアルカンジイル基がより好ましく、オクタンジイル基、オクテンジイル基、キシレンジイル基又はブタンジイルオキシブタンジイル基がさらに好ましい。
 nが3のものとして、3価の鎖状炭化水素基が好ましく、アルカントリイル基がより好ましく、1,2,3-ヘキサントリイル基がさらに好ましい。
 nが4のものとして、4価の鎖状炭化水素基が好ましく、アルカンテトライル基がより好ましく、1,2,3,4-ブタンテトライル基がさらに好ましい。
 化合物(A)としては、例えば、下記式(1-1)~(1-3)で表される化合物(以下、「化合物(1-1)~(1-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式(1-1)~(1-3)中、R、R及びnは、上記式(1)と同義である。
 化合物(1-1)としては、例えば、
 nが2のものとして、
 オクタンジオール、デカンジオール等のアルキレングリコール;
 ジブチレングリコール、トリプロピレングリコール等のジアルキレングリコール;
 シクロオクタンジオール、シクロヘキサンジメタノール、ノルボルナンジメタノール、アダマンタンジオール等のシクロアルキレングリコール;
 1,4-ベンゼンジメタノール、2,6-ナフタレンジメタノール等の芳香環含有グリコール;
 メチルハイドロキノン等の2価フェノールなどが挙げられ、
 nが3のものとして、
 1,2,3-オクタントリオール等のアルカントリオール;
 1,2,3-シクロオクタントリオール、1,2,3-シクロオクタントリメタノール等のシクロアルカントリオール;
 1,2,4-ベンゼントリメタノール、2,3,6-ナフタレントリメタノール等の芳香環含有グリコール;
 ピロガロール、2,3,6-ナフタレントリオール等の3価フェノール等が挙げられ、
 nが4のものとして、
 エリスリトール、ペンタエリスリトール等のアルカンテトラオール;
 1,2,4,5-シクロヘキサンテトラオール等のシクロアルカンテトラオール;
 1,2,4,5-ベンゼンテトラメタノール等の芳香環含有テトラオール;
 1,2,4,5-ベンゼンテトラオール等の4価フェノールなどが挙げられる。
 これらの中で、nが2又は3のものが好ましく、アルキレングリコール、ジアルキレングリコール又はアルカントリオールがより好ましく、オクタンジオール、ジブチレングリコール又は1,2,3-オクタントリオールがさらに好ましい。
 化合物(1-2)としては、例えば、
 nが2のものとして、
 トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の鎖状ジイソシアネート;
 1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート等の脂環式ジイソシアネート;
 トリレンジイソシアネート、1,4-ベンゼンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート等の芳香族ジイソシアネートなどが挙げられ、
 nが3のものとして、
 トリメチレントリイソシアネート等の鎖状トリイソシアネート;
 1,2,4-シクロヘキサントリイソシアネート等の脂環式トリイソシアネート;
 1,2,4-ベンゼントリイソシアネート等の芳香族トリイソシアネートなどが挙げられ、
 nが4のものとして、
 テトラメチレンテトライソシアネート等の鎖状テトライソシアネート;
 1,2,4,5-シクロヘキサンテトライソシアネート等の脂環式テトライソシアネート;
 1,2,4,5-ベンゼンテトライソシアネート等の芳香族テトライソシアネートなどが挙げられる。
 これらの中で、nが2のものが好ましく、鎖状ジイソシアネートがより好ましく、ヘキサメチレンジイソシアネートがさらに好ましい。
 化合物(1-3)としては、例えば、
 nが2のものとして、
 オクタメチレンジアミン、デカメチレンジアミン等の鎖状ジアミン;
 シクロオクタンジアミン、ジ(アミノメチル)シクロオクタン等の脂環式ジアミン;
 1,4-ジアミノ-2,5-ジメチルベンゼン、4,4’-ジアミノジフェニルメタン等の芳香族ジアミンなどが挙げられ、
 nが3のものとして、
 トリアミノオクタン、トリアミノデカン等の鎖状トリアミン;
 1,2,4-トリアミノシクロヘキサン等の脂環式トリアミン;
 1,2,4-トリアミノベンゼン等の芳香族トリアミンなどが挙げられ、
 nが4のものとして、
 テトラアミノヘキサン等の鎖状テトラアミン;
 1,2,4,5-テトラアミノシクロヘキサン、2,3,5,6-テトラアミノノルボルナン等の脂環式テトラアミン;
 1,2,4,5-テトラアミノベンゼン等の芳香族テトラアミンなどが挙げられる。
 これらの中で、nが2のものが好ましく、鎖状ジアミンがより好ましく、ジアミノオクタンがさらに好ましい。
 (x)有機酸及び(y)化合物としては、炭素数5~12の脂環構造又は酸素原子、硫黄原子及び/又は窒素原子を環構成原子とする環員数3~20の脂肪族複素環構造を有するものが好ましい。(x)有機酸及び(y)化合物として上記構造を有するものを用いることで、[A]粒子の溶解性をより適度なものとすることができ、当該感放射線性組成物の現像性及び感度をより向上させることができる。
 (b)有機部分としては、(x)有機酸又は(x)有機酸のアニオンが好ましく、(x)有機酸がより好ましい。
 (x)有機酸及び(y)化合物の分子量の下限としては、120であり、122が好ましく、124がより好ましく、126がさらに好ましく、130が特に好ましく、150がより特に好ましく、170がさらに特に好ましく、190が最も好ましい。上記分子量の上限としては、例えば400であり、300が好ましい。(x)有機酸及び(y)化合物の分子量を上記範囲とすることで、[A]粒子の溶解性をより適度なものとすることができ、当該感放射線性組成物の現像性及び感度をより向上させることができる。
 (x)有機酸及び(y)化合物の大西パラメーターの下限としては、4が好ましく、5がより好ましく、6がさらに好ましく、7が特に好ましい。大西パラメーターの上限としては、20が好ましく、18がより好ましく、16がさらに好ましく、14が特に好ましい。(x)有機酸及び(y)化合物の大西パラメーターを上記範囲とすることで、[A]粒子の溶解性をより適度なものとすることができ、当該感放射線性組成物の現像性をより向上させることができる。
 「大西パラメーター」とは、(化合物中の総原子数)/((化合物中の炭素原子数)-(化合物中の酸素原子数))により算出される数値である。
 [A]粒子の動的光散乱法分析による流体力学半径としては、20nm未満が好ましく、15nm以下がより好ましく、10nm以下がさらに好ましく、5nm以下が特に好ましい。一方、上記流体力学半径としては、1.0nm以上が好ましく、1.5nm以上がより好ましく、2.0nmがさらに好ましく、2.5nmが特に好ましい。[A]粒子の流体力学半径を上記範囲とすることで、当該感放射線性組成物の感度をより向上させることができる。この「流体力学半径」とは、光散乱測定装置を用いたDLS(Dynamic Light Scattering)法で測定される散乱光強度基準の調和平均粒子径を意味する。
 [A]粒子において、上記(x)有機酸若しくは(x)有機酸のアニオン、上記(y)化合物又はこれらの組み合わせは、上記(p)金属化合物の加水分解物若しくは加水分解縮合物又はこれらの組み合わせにおける1又は複数の金属原子に配位していることが好ましい。[A]粒子が上記配位構造を有することで、[A]粒子の[B]溶媒への溶解性をより適度なものとすることができ、その結果、当該感放射線性組成物の現像性及び感度をより向上させることができる。
 [A]粒子の含有量の下限としては、当該感放射線性組成物の全固形分に対して、80質量%が好ましく、85質量%がより好ましい。上記含有量の上限としては、例えば100質量%である。当該感放射線性組成物の「全固形分」とは、[B]溶媒以外の成分の総和をいう。
<[A]粒子の合成方法>
 [A]粒子は、(a)金属部分と(b)有機部分とを混合することにより得ることができる。従って、[A]粒子は、(x)金属化合物の加水分解反応及び/又は加水分解縮合反応により得られる(a)金属部分を含む反応液に、(b)有機部分の(x)有機酸、(x)有機酸のアニオン及び/又は(y)化合物を添加することによって合成することができる。
<[B]溶媒>
 [B]溶媒は、少なくとも[A]粒子及び必要に応じて含有される[C]酸発生体等を溶解又は分散可能な溶媒であれば特に限定されない。
 [B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、プロピオン酸エチル等のモノカルボン酸エステル系溶媒;
 エチルラクテート、グリコール酸n-ブチル等のヒドロキシカルボン酸エステル系溶媒;
 プロピレングリコールアセテート等の多価アルコールカルボキシレート系溶媒;
 プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。
 [B]溶媒としては、エステル系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテートがさらに好ましい。当該感放射線性組成物は、[B]溶媒を1種又は2種以上含有していてもよい。
<[C]酸発生体>
 当該感放射線性組成物は[C]酸発生体を含有していてもよい。[C]酸発生体は、光又は熱によって酸を発生する化合物であり、当該感放射線性組成物は、[C]酸発生体をさらに含有することで、現像性をより向上させることができる。当該感放射線性組成物における[C]酸発生体の含有形態としては、低分子化合物の形態(以下、「[C]酸発生剤」と称する)でも、[A]粒子の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [C]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物等が挙げられる。[C]酸発生体としては、熱によって酸又は塩基を発生する熱酸発生体が好ましく、中でもオニウム塩化合物が好ましい。
 オニウム塩化合物としては、例えば、スルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、アンモニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート等が挙げられる。
 アンモニウム塩としては、例えば蟻酸アンモニウム、マレイン酸アンモニウム、フマル酸アンモニウム、安息香酸アンモニウム、p-アミノ安息香酸アンモニウム、p-トルエンスルホン酸アンモニウム、メタンスルホン酸アンモニウム、トリフルオロメタンスルホン酸アンモニウム、トリフルオロエタンスルホン酸アンモニウム等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 [C]酸発生剤としては、オニウム塩化合物が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウム塩がさらに好ましく、トリフェニルスルホニウムトリフルオロメタンスルホネートが特に好ましい。
 当該感放射線性組成物が[C]酸発生剤を含有する場合、[C]酸発生剤の含有量の下限としては、[A]粒子100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、5質量部がさらに好ましい。上記含有量の上限としては、100質量部が好ましく、50質量部がより好ましく、20質量部がさらに好ましい。[C]酸発生剤の含有量を上記範囲とすることで、当該感放射線性組成物の現像性及び感度をさらに向上させることができる。当該感放射線性組成物は、[C]酸発生体を1種又は2種以上含有していてもよい。
<その他の任意成分>
 その他の任意成分としては、例えば界面活性剤等が挙げられる。
<感放射線性組成物の調製方法>
 当該感放射線性組成物は、例えば[A]粒子、[B]溶媒及び必要に応じて[C]酸発生体等の任意成分を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のフィルターでろ過することにより調製できる。当該感放射線性組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、3質量%が特に好ましい。一方、上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましく、7質量%が特に好ましい。
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板の少なくとも一方の面側に、当該感放射線性組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。
 当該レジストパターン形成方法によれば、上述の当該感放射線性組成物を用いるので、高い感度で良好なレジストパターンを形成することができる。以下、各工程について説明する。
[塗工工程]
 本工程では、基板の少なくとも一方の面側に、当該感放射線性組成物を塗工する。上記基板としては、例えばシリコンウェハ、アルミニウムで被覆したウェハ等が挙げられる。当該感放射線性組成物の塗工方法としては、特に限定されないが、例えばスピンコート法等の公知の方法等が挙げられる。当該感放射線性組成物を塗工する際には、形成されるレジスト膜が所望の厚みとなるように、塗工する当該感放射線性組成物の量を調整する。なお当該感放射線性組成物を基板上に塗工した後、溶媒を揮発させるためにプレベーク(PB)を行ってもよい。PBの温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。PBの時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。レジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましく、30nmがさらに好ましい。上記平均厚みの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましい。このようにして、レジスト膜が形成される。
[露光工程]
 本工程では、上記塗工工程により形成されたレジスト膜を露光する。この露光は、場合によっては、水等の液浸露光液を介し、所定のパターンを有するマスクを介して放射線を照射することにより行う。
 液浸露光液としては、通常、空気より屈折率の大きい液体を使用する。具体的には、例えば純水、長鎖又は環状の脂肪族化合物等が挙げられる。この液浸露光液を介した状態、すなわち、レンズとレジスト膜との間に液浸露光液を満たした状態で、露光装置から放射線を照射し、所定のパターンを有するマスクを介してレジスト膜を露光する。
 上記放射線としては、使用される感放射線性酸発生剤の種類に応じて、可視光線、紫外線、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)等の遠紫外線、極端紫外線(Extreme Ultraviolet(EUV)、13.5nm)、X線等の電磁波、電子線、α線等の荷電粒子線等から適宜選定されて使用されるが、これらの中でも、ArFエキシマレーザー光、KrFエキシマレーザー光、EUV、X線又は電子線が好ましく、ArFエキシマレーザー光、EUV又は電子線がより好ましく、EUV又は電子線がさらに好ましい。なお、露光量等の露光条件は、当該感放射線性組成物の配合組成、添加剤の種類等に応じて適宜選定することができる。
 露光後のレジスト膜に対し、加熱処理(以下、「露光後加熱(ポストエクスポージャーベーク、PEB)」ともいう)を行うことが好ましい。このPEBにより、[A]粒子の変性反応等を円滑に進行させることができる。PEBの加熱条件は、感放射線性組成物の配合組成によって適宜調整されるが、PEBの温度の下限としては、30℃が好ましく、50℃がより好ましく、80℃がさらに好ましい。上記温度の上限としては、250℃が好ましく、200℃がより好ましく、180℃がさらに好ましく、160℃が特に好ましい。PEBの温度を上記下限以上とすることで、当該感放射線性組成物の現像性をより向上させることができる。PEBの温度を上記上限以下とすることで、当該感放射線性組成物の感度をより向上させることができる。PEBの時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。
 また、感放射線性組成物の潜在能力を最大限に引き出すため、例えば特公平6-12452号公報、特開昭59-93448号公報等に開示されているように、使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5-188598号公報等に開示されているように、レジスト膜上に保護膜を設けることもできる。
[現像工程]
 本工程では、上記露光工程で露光されたレジスト膜を現像する。この現像に用いる現像液としては、例えばアルカリ水溶液(アルカリ現像液)、有機溶媒含有液(有機溶媒現像液)等が挙げられる。これにより、所定のレジストパターンが形成される。
 アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解した水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒含有液としては、例えば炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、又は有機溶媒を含有する液が挙げられる。有機溶媒としては、例えば上述の感放射線性組成物の[B]溶媒として例示した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒及びケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。有機溶媒含有液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。有機溶媒含有液中の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 現像液としては、有機溶媒含有液が好ましく、炭化水素系溶媒、ケトン系溶媒、アルコール系溶媒又はエステル溶媒が好ましく、ヘキサン、2-ヘプタノン、メタノール、2-プロパノール又は酢酸ブチルがより好ましい。
 これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水等で洗浄し、乾燥することが一般的である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、DLS分析は[A]粒子を酢酸プロピレングリコールモノメチルエーテルに溶解し、3質量%の溶液として測定を行った。
<[A]粒子の合成>
[合成例1]
 反応容器に塩化ジルコニウム(IV)3mmolを仕込み、容器を氷水で冷却しながら25gの水を15分かけて滴下した。滴下中、内温が反応時の発熱により80℃を超えないよう制御した。滴下後、透明な水溶液となったのを確認し、氷冷した状態でここに水125gと、(-)-カンファン酸(分子量198、大西パラメータ:4.67)21mmolを加えた。次に、反応溶液を内温65℃まで加温し、この温度において6時間撹拌を継続した。加温中に白色粒子が溶液中に生成した。さらに、内温80℃で撹拌を10時間継続した。その後、加温された状態でろ過を行い、白色粒子を回収し、この粒子を3回水で洗浄した。洗浄後、25℃で減圧乾燥を12時間行うことで、粒子(P-1)を良好な収率で得た。プロトンNMR分析から、この粒子は(-)-カンファン酸を配位子として有するものであることが確認され、また、蛍光X線分析によりジルコニウムを含む粒子であることも確認された。この粒子のDLS分析による粒径は2.0nmを平均粒径とする分布と90.5nmを平均粒径とする分布が存在し、面積比は前者が20%、後者が80%であった。
[合成例2]
 反応容器に塩化ジルコニウム(IV)3mmolを仕込み、容器を氷水で冷却しながら25gの水を15分かけて滴下した。滴下中、内温が反応時の発熱により80℃を超えないよう制御した。滴下後、透明な水溶液となったのを確認し、氷冷した状態でここに水125gと、(-)-カンファン酸(分子量198、大西パラメータ:4.67)9mmolを加えた。次に、反応溶液を内温65℃まで加温し、この温度において6時間撹拌を継続した。加温中に白色粒子が溶液中に生成した。その後、加温された状態でろ過を行い、白色粒子を回収し、この粒子を3回水で洗浄した。洗浄後、25℃で減圧乾燥を12時間行うことで、粒子(P-2)を良好な収率で得た。プロトンNMR分析から、この粒子は(-)-カンファン酸を配位子として有するものであることが確認され、また、蛍光X線分析によりジルコニウムを含む粒子であることも確認された。この粒子のDLS分析による粒径は3.0nmを平均粒径とする分布のみが存在し、また、20nmを超える粒子径の存在比(面積比)は1%未満であった。
[合成例3]
 反応容器に塩化ジルコニウム(IV)3mmolを仕込み、容器を氷水で冷却しながら25gの水を15分かけて滴下した。滴下中、内温が反応時の発熱により80℃を超えないよう制御した。滴下後、透明な水溶液となったのを確認し、氷冷した状態でここに水125gと、メタクリル酸(分子量86、大西パラメータ:6.00)21mmolを加えた。次に、反応溶液を内温65℃まで加温し、この温度において6時間撹拌を継続した。さらに、内温80℃で撹拌を10時間継続した。80℃の加温中に白色粒子が溶液中に生成した。その後、加温された状態でろ過を行い、白色粒子を回収し、この粒子を3回水で洗浄した。洗浄後、25℃で減圧乾燥を12時間行うことで、粒子(P-3)を良好な収率で得た。プロトンNMR分析から、この粒子はメタクリル酸を配位子として有するものであることが確認され、また蛍光X線分析によりジルコニウムを含む粒子であることも確認された。この粒子のDLS分析による粒径は1.8nmを平均粒径とする分布のみが存在し、また20nmを超える粒子径の存在比(面積比)は1%未満であった。
[合成例4~13]
 合成原料の(p)金属化合物及び(b)有機部分の化合物の種類及び使用量を下記表1に示す通りにした以外は、上記合成例1~3と同様にして、[A]粒子を合成した。なお、[A]粒子の項において「-」とあり、「生成粒子のDLS分析」において「粒子生成無し」との記載があるものは、粒子合成反応において粒子生成が認められず粒子回収ができなかったことを示す。また、「有機溶媒に不溶」との記載があるものは、粒子生成・回収はできたものの、この粒子が有機溶媒に不溶であるために分析が実施できなかったことを示す。合成例6における大西パラメータの「∞」は、酢酸における炭素原子数-酸素原子数がゼロであることを示す。
Figure JPOXMLDOC01-appb-T000008
<感放射線性組成物の調製>
 感放射線性組成物の調製に用いた[B]溶媒及び[C]酸発生剤について以下に示す。
[[B]溶媒]
 B-1:プロピレングリコールモノメチルエーテルアセテート
[[C]酸発生剤]
 C-1:トリフェニルスルホニウムトリフルオロメタンスルホネート
[実施例1]
 [A]粒子としての(P-1)100質量部を、[B]溶媒としての(B-1)2,400質量部に溶解させ、得られた溶液を孔径0.20μmのメンブランフィルターでろ過し、感放射線性組成物(S-1)を調製した。
[実施例2~8並びに比較例1及び2]
 下記表2に示す種類及び含有量の各成分を用いた以外は、実施例1と同様にして、感放射線性組成物(S-2)~(S-10)を調製した。表2中の「-」は該当する成分を用いなかったことを示す。
Figure JPOXMLDOC01-appb-T000009
<レジストパターンの形成>
[実施例1~8並びに比較例1及び2]
 東京エレクトロン社の「クリーントラックACT-8」内で、シリコンウェハ上に上記調製した感放射線性組成物をスピンコートした後、90℃、60秒の条件でPBを行い、平均厚み50nmのレジスト膜を形成した。簡易型の電子線描画装置(日立製作所社の「HL800D」、出力50KeV、電流密度5.0A/cm)を用いてレジスト膜に電子線を照射し、パターニングを行った。パターニング方法として、0.5cm四方の領域に所定の露光量を照射する操作を、10μC/cmから400μC/cmまで、10μm/cm刻みで合計40点行った。
 電子線の照射後、上記クリーントラックACT-8内で、90℃又は170℃で、60秒間PEBを行い、次いで上記クリーントラックACT-8内で、下記表3に示す有機溶媒を用いて、23℃で1分間、パドル法により現像し、ネガ型レジストパターンを形成した。
<評価>
 上記形成したレジストパターンについて下記方法により測定を行い、感放射線性組成物の現像性及び感度を評価した。評価結果を表3に合わせて示す。
[現像性]
 上記形成したレジストパターンにおける未露光部の現像後の平均厚みが5nm未満の場合、現像性は「A」(良好)と、5nm以上である場合は「B」(不良)と評価とした。
[感度]
 露光部の膜厚が40nmを超える場合の照射量が、100μC/cm未満の場合、感度は「AA」(非常に良好)と、100μC/cm以上400μC/cm未満の場合は「A」(良好)と、400μC/cm以上の場合は「B」(不良)と評価した。
Figure JPOXMLDOC01-appb-T000010
 表3の結果から、実施例の感放射線性組成物は、現像性及び感度に優れていることが分かる。本実施例においては、レジスト膜の露光に電子線を使用したが、EUV等の短波長放射線を使用した場合でも、基本的なレジスト特性は類似していることが知られており、それらの間に相関性があることも知られている。従って、当該感放射線性組成物によれば、EUV露光の場合においても、現像性及び感度が優れていると推測される。
 本発明の感放射線性組成物は、現像性及び感度に優れる。本発明のレジストパターン形成方法によれば、高い感度で良好なレジストパターンを形成することができる。従って、当該感放射線性組成物及びレジストパターン形成方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (12)

  1.  粒子と、
     溶媒と
     を含有し、
     上記粒子が、
     加水分解性基を有する金属化合物の加水分解物若しくは加水分解縮合物又はこれらの組み合わせと、
     有機酸若しくはこの有機酸のアニオン、下記式(1)で表される第1化合物又はこれらの組み合わせと
     を含み、
     上記有機酸及び第1化合物の分子量が120以上である感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、n価の有機基である。Xは、アルコール性水酸基、-NCO又は-NHRである。Rは、水素原子又は1価の有機基である。nは、2~4の整数である。複数のXは同一又は異なる。)
  2.  上記粒子が、
     加水分解性基を有する金属化合物の加水分解物若しくは加水分解縮合物又はこれらの組み合わせと、
     有機酸若しくはこの有機酸のアニオン又はこれらの組み合わせと
     を含む請求項1に記載の感放射線性組成物。
  3.  上記有機酸及び第1化合物の大西パラメーターが4以上20以下である請求項1又は請求項2に記載の感放射線性組成物。
  4.  上記有機酸がカルボン酸である請求項1、請求項2又は請求項3に記載の感放射線性組成物。
  5.  上記有機酸が下記式(2)で表される請求項4に記載の感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Lは、単結合又は炭素数1~10の2価の炭化水素基である。mは、1~10の整数である。mが2以上の場合、複数のLは同一又は異なる。)
  6.  上記金属化合物を構成する金属元素が、ジルコニウム、ハフニウム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン、亜鉛又はこれらの組み合わせを含む請求項1から請求項5のいずれか1項に記載の感放射線性組成物。
  7.  上記粒子の動的光散乱法分析による流体力学半径が20nm未満である請求項1から請求項6のいずれか1項に記載の感放射線性組成物。
  8.  感放射線性酸発生体をさらに含有する請求項1から請求項7のいずれか1項に記載の感放射線性組成物。
  9.  上記有機酸若しくはこの有機酸のアニオン、上記第1化合物又はこれらの組み合わせが、上記加水分解性基を有する金属化合物の加水分解物若しくは加水分解縮合物又はこれらの組み合わせにおける1又は複数の金属原子に配位している請求項1に記載の感放射線性組成物。
  10.  基板の少なくとも一方の面側に、請求項1から請求項9のいずれか1項に記載の感放射線性組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備えるレジストパターン形成方法。
  11.  上記現像工程で用いる現像液が、有機溶媒含有液である請求項10に記載のレジストパターン形成方法。
  12.  上記露光工程で用いる放射線が、極端紫外線又は電子線である請求項10又は請求項11に記載のレジストパターン形成方法。
PCT/JP2018/011022 2017-04-11 2018-03-20 感放射線性組成物及びレジストパターン形成方法 WO2018190088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019512399A JP7071660B2 (ja) 2017-04-11 2018-03-20 感放射線性組成物及びレジストパターン形成方法
KR1020197029415A KR20190129916A (ko) 2017-04-11 2018-03-20 감방사선성 조성물 및 레지스트 패턴 형성 방법
US16/595,884 US20200041898A1 (en) 2017-04-11 2019-10-08 Radiation-sensitive composition and resist pattern-forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-078210 2017-04-11
JP2017078210 2017-04-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/595,884 Continuation US20200041898A1 (en) 2017-04-11 2019-10-08 Radiation-sensitive composition and resist pattern-forming method

Publications (1)

Publication Number Publication Date
WO2018190088A1 true WO2018190088A1 (ja) 2018-10-18

Family

ID=63792378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011022 WO2018190088A1 (ja) 2017-04-11 2018-03-20 感放射線性組成物及びレジストパターン形成方法

Country Status (5)

Country Link
US (1) US20200041898A1 (ja)
JP (1) JP7071660B2 (ja)
KR (1) KR20190129916A (ja)
TW (1) TW201842405A (ja)
WO (1) WO2018190088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085414A1 (ja) 2021-11-15 2023-05-19 日産化学株式会社 多環芳香族炭化水素系光硬化性樹脂組成物
WO2023204287A1 (ja) 2022-04-22 2023-10-26 日産化学株式会社 レジスト下層膜形成用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075500A (ja) * 2013-10-04 2015-04-20 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP2015219246A (ja) * 2014-05-13 2015-12-07 Jsr株式会社 パターン形成方法
JP2016027084A (ja) * 2014-07-04 2016-02-18 富士フイルム株式会社 硬化性組成物、硬化膜の製造方法、硬化膜、タッチパネル及び表示装置
JP2016177203A (ja) * 2015-03-20 2016-10-06 Jsr株式会社 パターン形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146610A (ja) 1994-11-17 1996-06-07 Nippon Zeon Co Ltd レジスト組成物及びそれを用いたパターン形成方法
JP3991462B2 (ja) 1997-08-18 2007-10-17 Jsr株式会社 感放射線性樹脂組成物
US6136501A (en) 1998-08-28 2000-10-24 Shipley Company, L.L.C. Polymers and photoresist compositions comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075500A (ja) * 2013-10-04 2015-04-20 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP2015219246A (ja) * 2014-05-13 2015-12-07 Jsr株式会社 パターン形成方法
JP2016027084A (ja) * 2014-07-04 2016-02-18 富士フイルム株式会社 硬化性組成物、硬化膜の製造方法、硬化膜、タッチパネル及び表示装置
JP2016177203A (ja) * 2015-03-20 2016-10-06 Jsr株式会社 パターン形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085414A1 (ja) 2021-11-15 2023-05-19 日産化学株式会社 多環芳香族炭化水素系光硬化性樹脂組成物
WO2023204287A1 (ja) 2022-04-22 2023-10-26 日産化学株式会社 レジスト下層膜形成用組成物

Also Published As

Publication number Publication date
JPWO2018190088A1 (ja) 2020-02-20
JP7071660B2 (ja) 2022-05-19
US20200041898A1 (en) 2020-02-06
TW201842405A (zh) 2018-12-01
KR20190129916A (ko) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6572899B2 (ja) パターン形成方法
US11796912B2 (en) Radiation-sensitive composition and pattern-forming method
JP6666564B2 (ja) 感放射線性組成物及びパターン形成方法
JP6871520B2 (ja) 感放射線性組成物及びパターン形成方法
US20200004144A1 (en) Radiation-sensitive composition and pattern-forming method
JPWO2016088655A1 (ja) フォトレジスト組成物及びその製造方法並びにレジストパターン形成方法
WO2017169440A1 (ja) 感放射線性組成物及びパターン形成方法
JP2018017780A (ja) 感放射線性組成物及びパターン形成方法
US10108088B2 (en) Radiation-sensitive composition and pattern-forming method
US10120277B2 (en) Radiation-sensitive composition and pattern-forming method
JP7327392B2 (ja) パターン形成方法及び感放射線性組成物
US20190258161A1 (en) Radiation-sensitive composition and pattern-forming method
JP7071660B2 (ja) 感放射線性組成物及びレジストパターン形成方法
WO2019220878A1 (ja) 感放射線性組成物及びパターン形成方法
US20190094691A1 (en) Radiation-sensitive composition and pattern-forming method
JP2019144553A (ja) 感放射線性組成物及びパターン形成方法
JPWO2017141756A1 (ja) 感放射線性組成物及びパターン形成方法
WO2020040092A1 (ja) パターン形成方法及び感放射線性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512399

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029415

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783827

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载