+

WO2018189830A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018189830A1
WO2018189830A1 PCT/JP2017/014991 JP2017014991W WO2018189830A1 WO 2018189830 A1 WO2018189830 A1 WO 2018189830A1 JP 2017014991 W JP2017014991 W JP 2017014991W WO 2018189830 A1 WO2018189830 A1 WO 2018189830A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor
temperature
outdoor fan
outdoor heat
Prior art date
Application number
PCT/JP2017/014991
Other languages
French (fr)
Japanese (ja)
Inventor
暁 八柳
石橋 晃
前田 剛志
中村 伸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/014991 priority Critical patent/WO2018189830A1/en
Priority to JP2019512100A priority patent/JP6808023B2/en
Publication of WO2018189830A1 publication Critical patent/WO2018189830A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to a refrigeration cycle apparatus with improved drainage of an outdoor heat exchanger that functions as an evaporator.
  • a refrigeration cycle apparatus including an outdoor heat exchanger that functions as an evaporator, such as an air conditioner, is known.
  • an outdoor heat exchanger that functions as an evaporator under low temperature outdoor air conditions
  • moisture contained in the outdoor air is condensed on the surface of the outdoor heat exchanger, and the surface of the outdoor heat exchanger Frost formation occurs.
  • a heat exchanger used as an outdoor heat exchanger a plurality of plate-like fins arranged in parallel with a prescribed fin pitch interval, and a plurality of fins penetrating the fins along the parallel arrangement direction of the fins
  • a fin-and-tube heat exchanger including a heat transfer tube is known.
  • the conventional refrigeration cycle apparatus provided with the outdoor heat exchanger that functions as an evaporator performs a defrosting operation in which frost adhering to the outdoor heat exchanger is melted and discharged as water. For example, in the defrosting operation, high-temperature and high-pressure refrigerant discharged from the compressor is caused to flow into the outdoor heat exchanger, thereby melting frost attached to the outdoor heat exchanger.
  • the frost adhering to the outdoor heat exchanger is melted, and most of the water is discharged as water to the outside of the housing that houses the outdoor heat exchanger.
  • some water may stay on the surfaces of the heat transfer tubes and fins without being discharged outside the casing.
  • the water that cannot be drained in the defrosting operation and stays in the outdoor heat exchanger is solidified by heat exchange with the low-temperature refrigerant when the outdoor heat exchanger functions again as an evaporator after the defrosting operation. For this reason, it becomes a factor which inhibits heat exchange with the air supplied with the outdoor fan, and the refrigerant
  • water tends to stay on the upper and lower surfaces of the heat transfer tube, and such a problem becomes significant.
  • the conventional refrigeration cycle apparatus provided with the outdoor heat exchanger functioning as an evaporator has a refrigeration cycle in which water generated by frost melting during defrosting operation is prevented from staying in the outdoor heat exchanger.
  • Devices have also been proposed.
  • the refrigeration cycle apparatus described in Patent Document 1 performs fan defrosting operation control for rotating an outdoor fan before normal operation for causing the outdoor heat exchanger to function as an evaporator after completion of the defrosting operation.
  • the refrigeration cycle apparatus described in Patent Document 1 is caused by frost melting during defrosting operation by discharging water staying in the outdoor heat exchanger to the outside of the outdoor heat exchanger by blowing air from the outdoor fan. Water is prevented from staying in the outdoor heat exchanger.
  • the refrigeration cycle apparatus described in Patent Document 1 performs fan defrosting operation control between a defrosting operation and a normal operation in which the outdoor heat exchanger functions as an evaporator. Thereby, the refrigeration cycle apparatus described in Patent Document 1 suppresses the retention of water generated by frost melting during the defrosting operation in the outdoor heat exchanger, and improves the drainage of the outdoor heat exchanger. . However, since the refrigeration cycle apparatus described in Patent Document 1 needs to perform fan defrosting operation control between the defrosting operation and the normal operation, the next normal operation from the start of the defrosting operation, that is, from the end of the normal operation. The time until the start will be longer.
  • the refrigeration cycle apparatus described in Patent Document 1 has a problem that the average heating capacity in the use-side heat exchanger for a certain period of time is reduced by repeating the normal operation and the defrosting operation. That is, the refrigeration cycle apparatus described in Patent Document 1 has a problem that it is impossible to achieve both improvement in drainage of the outdoor heat exchanger and suppression of reduction in average heating capacity.
  • the average heating capacity corresponds to the average heating capacity in a predetermined time by repeating the heating operation and the defrosting operation when, for example, a refrigeration cycle apparatus is used as an air conditioner.
  • the present invention has been made in order to solve the above-described problems, and provides a refrigeration cycle apparatus that can improve drainage of an outdoor heat exchanger and can suppress a decrease in average heating capacity. For the purpose.
  • the refrigeration cycle apparatus accommodates an outdoor heat exchanger that functions as an evaporator, an outdoor fan that blows air to the outdoor heat exchanger, the outdoor heat exchanger and the outdoor fan, and discharges water to the bottom.
  • a drain hole detection device that detects water discharged from the drain hole, and a control device that controls a defrosting operation of the outdoor heat exchanger. During the defrosting operation with the outdoor fan stopped, the outdoor fan is operated when the drainage detection device detects water.
  • the outdoor heat exchanger is accommodated in the housing. For this reason, the water discharged
  • the refrigeration cycle apparatus which concerns on this invention detects that the water is discharged
  • the water can be discharged from the outdoor heat exchanger by blowing air from the outdoor fan. That is, in the refrigeration cycle apparatus according to the present invention, the water staying in the outdoor heat exchanger can be discharged outside the outdoor heat exchanger by the outdoor fan during the defrosting operation.
  • the refrigeration cycle apparatus according to the present invention can suppress an increase in the time from the start of the defrosting operation, that is, from the end of the normal operation to the start of the next normal operation. Therefore, the refrigeration cycle apparatus according to the present invention can improve the drainage of the outdoor heat exchanger, and can also suppress a decrease in average heating capacity.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerant flow during the cooling operation is indicated by a broken line arrow
  • the refrigerant flow during the heating operation is indicated by a solid line arrow.
  • the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3, an indoor fan 6, an expansion device 4, an outdoor heat exchanger 100, and an outdoor fan 7.
  • the compressor 2, the indoor heat exchanger 3, the expansion device 4, and the outdoor heat exchanger 100 are connected by a refrigerant pipe to form a refrigerant circuit.
  • the compressor 2 compresses the refrigerant.
  • the refrigerant compressed by the compressor 2 is discharged and sent to the indoor heat exchanger 3.
  • the compressor 2 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor.
  • the indoor heat exchanger 3 functions as a condenser during heating operation.
  • the indoor heat exchanger 3 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or a plate heat exchange It can be composed of a container or the like.
  • the expansion device 4 expands and decompresses the refrigerant that has passed through the indoor heat exchanger 3.
  • the expansion device 4 may be constituted by an electric expansion valve that can adjust the flow rate of the refrigerant, for example.
  • an electric expansion valve As the expansion device 4, not only an electric expansion valve but also a mechanical expansion valve employing a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
  • the outdoor heat exchanger 100 functions as an evaporator during heating operation. As with the indoor heat exchanger 3, the outdoor heat exchanger 100 can use heat exchangers having various configurations. In the first embodiment, the outdoor heat exchanger 100 is configured by a fin-and-tube heat exchanger. The outdoor heat exchanger 100 will be described in detail later.
  • the indoor fan 6 is provided in the vicinity of the indoor heat exchanger 3 and supplies heat exchange fluid to the indoor heat exchanger 3.
  • the outdoor fan 7 is provided in the vicinity of the outdoor heat exchanger 100 and supplies outdoor air, which is a heat exchange fluid, to the outdoor heat exchanger 100. That is, the outdoor fan 7 blows air to the outdoor heat exchanger 100.
  • the air conditioner 1 includes a housing 10 that houses at least the outdoor heat exchanger 100 and the outdoor fan 7.
  • a drain hole 13 for discharging water from the inside of the housing 10 to the outside of the housing 10 is formed in the lower portion of the housing 10.
  • the housing 10 is also formed with a suction port 11 and an air outlet 12. That is, when the outdoor fan 7 rotates in the housing 10, outdoor air that exchanges heat with the outdoor heat exchanger 100 is sucked into the housing 10 from the suction port 11, and the outdoor air that exchanges heat with the outdoor heat exchanger 100 is absorbed. It is configured to be blown out of the housing 10 from the air outlet 12.
  • the expansion device 4 and the compressor 2 may be accommodated in the housing 10.
  • the air conditioner 1 includes a flow path switching device 5 provided on the discharge side of the compressor 2 in order to enable a cooling operation in addition to a heating operation.
  • the flow path switching device 5 is, for example, a four-way valve.
  • the flow path switching device 5 switches the connection destination of the discharge port of the compressor 2 to the indoor heat exchanger 3 or the outdoor heat exchanger 100. That is, the flow path switching device 5 switches the refrigerant flow between the heating operation and the cooling operation.
  • the flow path switching device 5 switches between the discharge port of the compressor 2 and the indoor heat exchanger 3 and connects the suction port of the compressor 2 and the outdoor heat exchanger 100 during heating operation. It is done.
  • the flow path switching device 5 is switched so as to connect the discharge port of the compressor 2 and the outdoor heat exchanger 100 and to connect the suction port of the compressor 2 and the indoor heat exchanger 3 during the cooling operation. . That is, during the cooling operation, the outdoor heat exchanger 100 functions as a condenser, and the indoor heat exchanger 3 functions as an evaporator.
  • the air conditioner 1 also includes a plurality of detection devices and the components of the air conditioner 1 (the frequency of the compressor 2, the opening of the expansion device 4, the flow path switching device based on the detection values of these detection devices. 5, the rotational speed of the indoor fan 6, the rotational speed of the outdoor fan 7, etc.). As will be described later, the control device 30 also controls the defrosting operation of the outdoor heat exchanger 100.
  • the housing 10 is provided with a first temperature detection device 21 that detects the temperature of the outdoor air sucked into the housing 10 by the outdoor fan 7, for example, in the vicinity of the suction port 11.
  • the first temperature detection device 21 is, for example, a thermistor.
  • the outdoor heat exchanger 100 is provided with a second temperature detection device 22 that detects the temperature of the outdoor heat exchanger 100.
  • the second temperature detection device 22 is, for example, a thermistor.
  • the casing 10 is provided with a drainage detection device 23 that detects water discharged from the drain hole 13, for example, on a wall surface that forms the drain hole 13. In the first embodiment, an electrode type sensor is used as the waste water detection device 23.
  • An electrode type sensor detects the presence or absence of water based on a difference in current value when a voltage is applied between electrodes.
  • the drainage detection device 23 is not limited to an electrode sensor, and various sensors capable of detecting the presence or absence of water, such as an infrared sensor and a vibration sensor, can be adopted as the drainage detection device 23.
  • a flow rate sensor or the like that can detect a specific flow rate of water discharged from the drain hole 13 may be used as the drainage detection device 23.
  • the control device 30 is configured by dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. .
  • a CPU also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor
  • control device 30 When the control device 30 is dedicated hardware, the control device 30 is, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination of these. Applicable. Each functional unit realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • each function executed by the control device 30 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in a memory.
  • the CPU implements each function of the control device 30 by reading and executing a program stored in the memory.
  • the memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • control device 30 may be realized by dedicated hardware and a part may be realized by software or firmware.
  • the control device 30 includes a defrost determining unit 31, a control unit 32, a storage unit 33, and the like as functional units.
  • the defrost determining unit 31 determines whether to start the defrost operation during the heating operation.
  • the method for determining whether or not the defrost determining unit 31 starts the defrosting operation is not particularly limited, and a known method may be used.
  • the defrost determination unit 31 has a detection temperature of the second temperature detection device 22 that is lower than a specified temperature. In such a case, the start of the defrosting operation may be determined.
  • the defrost determining unit 31 may determine the start of the defrost operation when the temperature of the outdoor heat exchanger 100 becomes lower than the specified temperature.
  • the defrost determination part 31 may determine the start of a defrost operation, when the accumulation time of heating operation becomes more than regulation time.
  • the air conditioning apparatus 1 includes the first temperature detection device 21 that detects the temperature of the outdoor air as in the first embodiment
  • the defrost determination unit 31 detects the temperature detected by the first temperature detection device.
  • the start of the defrosting operation may be determined.
  • the defrost determining unit 31 performs the defrost operation when the temperature detected by the second temperature detection device 22 is lower than the specified temperature. Determine the start of.
  • the defrost determination part 31 determines completion
  • the method for determining whether or not the defrost determining unit 31 ends the defrosting operation is not particularly limited, and a known method may be used.
  • the defrost determination unit 31 has a detection temperature of the second temperature detection device 22 that is higher than a specified temperature. In such a case, the end of the defrosting operation may be determined.
  • the defrost determining unit 31 may end the start of the defrost operation when the temperature of the outdoor heat exchanger 100 becomes higher than the specified temperature.
  • the defrost determination part 31 may determine completion
  • the defrost determining unit 31 performs the defrost operation when the detected temperature of the second temperature detecting device 22 is higher than the specified temperature. Determine the end of.
  • the control unit 32 operates and stops the compressor 2 based on the detection value of the detection device included in the air conditioner 1, a command from a remote controller (not shown), the frequency at the time of operation of the compressor 2, the throttle device 4. Open / close, opening degree of the expansion device 4, flow path of the flow path switching device 5, operation and stop of the indoor fan 6, rotation speed when the indoor fan 6 is operated, operation and stop of the outdoor fan 7, outdoor fan 7 is used to control the rotational speed during operation.
  • the control part 32 performs control which operates the outdoor fan 7 during the defrost operation of the outdoor heat exchanger 100 based on the quantity of the water which the waste_water
  • the storage unit 33 stores a comparison value used for comparison with the detection value of the detection device included in the air conditioner 1, information necessary for the operation of the air conditioner 1, and the like.
  • the compressor 2 As shown in FIG. 1, by operating the compressor 2, high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 2.
  • the refrigerant flows according to the broken line arrows.
  • the high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the outdoor heat exchanger 100 functioning as a condenser via the flow path switching device 5.
  • the outdoor heat exchanger 100 heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the outdoor air supplied by the outdoor fan 7.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase).
  • the high-pressure liquid refrigerant sent out from the outdoor heat exchanger 100 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 4.
  • the two-phase refrigerant flows into the indoor heat exchanger 3 that functions as an evaporator.
  • the indoor heat exchanger 3 heat exchange is performed between the refrigerant flowing in the two-phase state and the air in the air-conditioning target space supplied by the indoor fan 6, and the liquid refrigerant of the two-phase refrigerant evaporates. It becomes a low-pressure gas refrigerant (single phase).
  • the air-conditioning target space such as the room is cooled.
  • the low-pressure gas refrigerant sent out from the indoor heat exchanger 3 flows into the compressor 2 via the flow path switching device 5, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 2 again. Thereafter, this cycle is repeated.
  • the compressor 2 As shown in FIG. 1, by operating the compressor 2, high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 2.
  • the refrigerant flows according to solid arrows.
  • the high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the indoor heat exchanger 3 that functions as a condenser via the flow path switching device 5.
  • the indoor heat exchanger 3 heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the air in the air-conditioned space supplied by the indoor fan 6.
  • the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase). By this heat exchange, the air-conditioning target space such as a room is heated.
  • the high-pressure liquid refrigerant sent out from the indoor heat exchanger 3 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 4.
  • the two-phase refrigerant flows into the outdoor heat exchanger 100 that functions as an evaporator.
  • heat exchange is performed between the refrigerant flowing in the two-phase state and the outdoor air supplied by the outdoor fan 7, and the liquid refrigerant evaporates out of the two-phase refrigerant, resulting in a low pressure.
  • Gas refrigerant single phase
  • the low-pressure gas refrigerant sent out from the outdoor heat exchanger 100 flows into the compressor 2 via the flow path switching device 5, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 2 again. Thereafter, this cycle is repeated.
  • the refrigerant flowing out of the evaporator is a gas refrigerant (single phase).
  • the indoor heat exchanger 3 functions as an evaporator
  • the outdoor heat exchanger 100 functions as an evaporator.
  • the evaporator when heat exchange is performed between the air supplied from the fan and the refrigerant flowing inside the heat transfer tubes constituting the evaporator, moisture in the air is condensed, Water droplets form on the surface of the evaporator. Some of the water droplets generated on the surface of the evaporator fall downward along the surfaces of the fins and the heat transfer tubes, and are discharged as drain water to the outside of the evaporator.
  • the drain water discharged from the outdoor heat exchanger 100 is discharged out of the housing 10 through a drain hole 13 formed in the lower portion of the housing 10.
  • the outdoor heat exchanger 100 functions as an evaporator during heating operation in a low outside air temperature state. For this reason, the moisture in the air may form frost on the outdoor heat exchanger 100 during the heating operation. For this reason, in an air conditioner or the like capable of heating operation, “defrosting operation” for removing frost adhering to the outdoor heat exchanger during heating operation is usually performed.
  • the “defrosting operation” is a hot gas (high-temperature high-pressure gas refrigerant) from the compressor 2 to the outdoor heat exchanger 100 in order to melt and remove frost attached to the outdoor heat exchanger 100 functioning as an evaporator. It is a driving to supply.
  • the control unit 32 switches the flow path of the flow path switching device 5 to the flow path during the cooling operation. Thereby, the flow path between the discharge port of the compressor 2 and the outdoor heat exchanger 100 is opened, and hot gas is supplied from the compressor 2 to the outdoor heat exchanger 100. And the frost adhering to the outdoor heat exchanger 100 is melt
  • the channel switching device 5 corresponds to the channel switching device of the present invention. That is, in the first embodiment, the flow path switching device 5 is used as a flow path opening / closing device.
  • the flow path switching device is not limited to the flow path switching device 5 as long as it is a device that opens and closes the flow path between the discharge port of the compressor 2 and the outdoor heat exchanger 100.
  • a bypass refrigerant pipe that connects the discharge port of the compressor 2 and the outdoor heat exchanger 100 and an opening / closing device that opens and closes the flow path of the bypass refrigerant pipe
  • the compressor 2 can be hot from the compressor 2 to the outdoor heat exchanger 100.
  • a defrosting operation for supplying gas is also conventionally known.
  • such a bypass pipe and an opening / closing device may be used as the channel opening / closing device of the present invention.
  • FIG. 2 is a control flowchart for the defrosting operation in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a time flow diagram showing operations of the compressor and the outdoor fan during the defrosting operation in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIGS. 2 and 3 the detailed operation during the defrosting operation of the air-conditioning apparatus 1 according to Embodiment 1 will be described with reference to FIGS. 2 and 3.
  • the air conditioning apparatus 1 performs the heating operation (step S1).
  • the operation of the air conditioner 1 during the heating operation is as described above. That is, the compressor 2 and the outdoor fan 7 are operating during the heating operation.
  • This heating operation is continued while the temperature detected by the second temperature detection device 22 is equal to or higher than the specified temperature Th1 (No in step S2).
  • the defrost determining unit 31 determines the start of the defrost operation.
  • the specified temperature Th1 is stored in the storage unit 33, for example.
  • the specified temperature Th1 corresponds to the second specified temperature of the present invention.
  • the specified temperature Th1 is set to ⁇ 6 ° C., for example.
  • the control unit 32 stops the compressor 2 and the outdoor fan 7 (step S3), and the flow of the flow path switching device 5 is the same as that during the cooling operation. Switch to the road (step S4). And the control part 32 starts a defrost driving
  • step S5 the control unit 32 operates the compressor 2.
  • hot gas is supplied to the outdoor heat exchanger 100 from the compressor 2, and the frost adhering to the outdoor heat exchanger 100 begins to melt
  • water generated by thawing hereinafter, defrosted water
  • the defrost water is affected by gravity and moves to the lower part of the outdoor heat exchanger 100.
  • the defrost water falling to the lower portion of the housing 10 is discharged out of the housing 10 through the drain hole 13.
  • the defrost water discharged from the drain hole 13 to the outside of the housing 10 is detected by the drainage detection device 23.
  • the control unit In step S7 and subsequent steps 32, the frost drainage drainage control is performed.
  • the air conditioner 1 performs a defrosting air discharge operation in the defrosting operation.
  • the prescribed flow rate W1 is stored in the storage unit 33, for example.
  • the prescribed flow rate W1 corresponds to the first prescribed flow rate of the present invention.
  • the drainage detection device 23 uses an electrode sensor that detects the presence or absence of water. For this reason, the waste water detection device 23 according to the first embodiment can detect whether or not the defrost water is discharged from the drain hole 13. Therefore, in the first embodiment, the specified flow rate W1 is set to 0 m 3 / sec.
  • the flow sensor etc. which can detect the specific flow volume of the defrost water which flows through the drain hole 13 as the waste_water
  • defrost water is discharged outside the outdoor heat exchanger 100.
  • a part of defrost water may adhere to the surface of the outdoor heat exchanger 100 and stay in the outdoor heat exchanger 100 in some cases.
  • the defrost water staying in the outdoor heat exchanger 100 is re-solidified by exchanging heat with the low-temperature refrigerant when the outdoor heat exchanger 100 functions as an evaporator again after the defrosting operation. For this reason, it becomes a factor which inhibits heat exchange with the outdoor air supplied with the outdoor fan 7, and the refrigerant
  • the defrosting air discharge control that discharges the defrost water that has accumulated in the outdoor heat exchanger 100 to the outside of the outdoor heat exchanger 100 due to the blowing of the outdoor fan 7.
  • the control unit 32 operates the outdoor fan 7.
  • the control unit 32 operates the outdoor fan 7 at, for example, a specified rotational speed stored in the storage unit 33. That is, the control device 30 operates the outdoor fan 7 when the drainage detection device 23 detects more water than the specified flow rate W1 during the defrosting operation with the outdoor fan 7 stopped.
  • the frost melting of the outdoor heat exchanger 100 further proceeds, and the discharge of the defrost water is also promoted by the blowing from the outdoor fan 7. For this reason, out of the amount of heat supplied from the hot gas, the amount of heat consumed for the temperature rise and melting of frost and the temperature rise of water is reduced, and the amount of heat is used to raise the temperature of the outdoor heat exchanger 100. . Therefore, the temperature of the outdoor heat exchanger 100, in other words, the detected temperature of the second temperature detection device 22 increases.
  • the defrost determination part 31 will determine completion
  • the control unit 32 stops the operation of the compressor 2 while continuing the operation of the outdoor fan 7. And a control part switches the flow path of the flow-path switching apparatus 5 to the flow path at the time of heating operation, restarts the compressor 2, and starts heating operation again.
  • the specified temperature Th2 corresponds to the second specified temperature of the present invention.
  • the specified temperature Th2 is stored in the storage unit 33, for example.
  • FIG. 4 is a perspective view showing an example of an outdoor heat exchanger of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • 5 and 6 are enlarged views of main parts of the outdoor heat exchanger shown in FIG.
  • the X direction is a lateral direction and represents a direction that is a short direction (width direction) of the fin 110 of the outdoor heat exchanger 100.
  • the Y direction is a lateral direction, and represents a direction that is a parallel arrangement direction of the fins 110 that constitute the same heat exchanging section (a windward side heat exchanger 101 or a leeward side heat exchanger 102 described later).
  • the Z direction is the vertical direction (gravity direction) and represents the direction that is the longitudinal direction of the fin 110.
  • a white arrow represents a flow direction of air supplied from the outdoor fan 7 to the outdoor heat exchanger 100.
  • the outdoor heat exchanger 100 according to the first embodiment is supplied with air from the outdoor fan 7 in the X direction.
  • FIG. 5 has shown the principal part when the outdoor heat exchanger 100 is observed in the Y direction.
  • FIG. 6 shows a main part when the outdoor heat exchanger 100 is observed in the X direction.
  • the outdoor heat exchanger 100 is, for example, a two-row heat exchanger, and includes an upwind heat exchanger 101 and a leeward heat exchanger 102.
  • the windward side heat exchanger 101 and the leeward side heat exchanger 102 are fin-and-tube heat exchangers, and are arranged in parallel along the X direction, which is the flow direction of air supplied from the outdoor fan 7.
  • One end of the heat transfer tube of the windward heat exchanger 101 is connected to the windward header collecting tube 103.
  • One end of the heat transfer tube of the leeward heat exchanger 102 is connected to the leeward header collecting tube 104.
  • the other end of the heat transfer tube of the leeward side heat exchanger 101 and the other end of the heat transfer tube of the leeward side heat exchanger 102 are connected to the inter-column connection member 105.
  • the outdoor heat exchanger 100 transmits one of the windward side heat exchanger 101 and the leeward side heat exchanger 102 from one of the windward side header collecting pipe 103 and the leeward side header collecting pipe 104.
  • the refrigerant is distributed to the heat pipe.
  • the refrigerant distributed to one heat transfer tube of the windward side heat exchanger 101 and the leeward side heat exchanger 102 passes through the inter-column connection member 105, and the refrigerant of the windward side heat exchanger 101 and the leeward side heat exchanger 102 It flows into the other heat transfer tube.
  • the refrigerant flowing into the other heat transfer pipes of the windward side heat exchanger 101 and the leeward side heat exchanger 102 joins at the other side of the windward side header collecting pipe 103 and the leeward side header collecting pipe 104, and is sucked by the compressor 2. It flows toward the mouth or squeezing device 4.
  • the windward side heat exchanger 101 and the leeward side heat exchanger 102 have the same configuration. For this reason, below, the wind-side heat exchanger 101 is demonstrated on behalf of both.
  • the exchanger 100 may be configured.
  • the windward side heat exchanger 101 includes fins 110 and heat transfer tubes 120 that penetrate the fins 110. Further, the fin 110 has an upper end portion 113 and a lower end portion 114. Further, the fin 110 has a first end 111 and a second end 112 in the lateral direction.
  • the windward side heat exchanger 101 includes a plurality of fins 110 and a plurality of heat transfer tubes 120.
  • the plurality of fins 110 are plate-shaped members that are long in the vertical direction.
  • the plurality of fins 110 are, for example, formed in a rectangular shape that is long in the vertical direction.
  • the plurality of fins 110 are arranged side by side with a predetermined fin pitch interval FP.
  • a plurality of through holes 115 having a shape corresponding to the outer peripheral shape of the heat transfer tube 120 are formed in each of the fins 110 at predetermined intervals in the vertical direction.
  • the heat transfer tubes 120 are inserted into these through holes 115. That is, the plurality of heat transfer tubes 120 are arranged side by side with a predetermined interval in the vertical direction.
  • the heat transfer tube 120 a heat transfer tube whose cross section is a flat shape such as a substantially elliptical shape or a substantially oval shape is used. For this reason, the through-hole formed in the fin 110 is also a flat shape.
  • the wind-side heat exchanger 101 is supplied with air from the first end 111 side by the outdoor fan 7.
  • the fin 110 is formed with a drainage region 117 in which a notch is not formed from the upper end 113 to the lower end 114 in a range closer to the second end 112 than the heat transfer tube 120. That is, the fin 110 is formed with a drainage region 117 in which a notch is not formed from the upper end portion 113 to the lower end portion 114 in a range downstream of the heat transfer tube 120 in the blowing direction of the outdoor fan 7.
  • a virtual straight line that connects the ends 122 of the heat transfer tubes 120 on the second end 112 side is defined as a virtual straight line 123.
  • no notch is formed between the virtual straight line 123 and the second end 112 from the upper end 113 to the lower end 114. That is, the drainage region 117 is between the virtual straight line 123 and the second end portion 112.
  • the upside heat exchanger 101 in other words, the outdoor heat exchanger 100
  • the fin 110 and the heat transfer tube 120 when performing the defrosting blast drainage control for operating the outdoor fan 7 during the defrosting operation, the fin 110 and the heat transfer tube 120.
  • the defrosted water adhering to the surface is carried to the drainage region 117 by the air blown from the outdoor fan 7.
  • region 117 slides down the drainage area
  • the drainage region 117 is not formed with a notch from the upper end 113 to the lower end 114. For this reason, when the defrost water slides down the drainage region 117 toward the lower end portion 114, the defrost water is not attracted to the notch by the surface tension. Therefore, when the wind-side heat exchanger 101, in other words, the outdoor heat exchanger 100 is configured as described above, when the defrosting blast drainage control for operating the outdoor fan 7 during the defrosting operation is performed, the defrosting is quickly performed. Water can be discharged from the outdoor heat exchanger 100, and the drainage of the outdoor heat exchanger 100 can be improved.
  • FIG. 7 is an essential part enlarged view showing another example of the outdoor heat exchanger of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • This FIG. 7 has shown another example of the outdoor heat exchanger 100 from the same observation direction as FIG.
  • a notch 116 that communicates with the through hole 115 and opens to the first end 111 side may be formed in the fin 110.
  • the heat transfer tube can be inserted into the through hole 115 through the notch 116, and the heat transfer tube 120 can be easily inserted into the through hole 115. That is, the outdoor heat exchanger 100 can be easily assembled.
  • the range that is on the downstream side of the heat transfer tube 120 in the blowing direction of the outdoor fan 7 it is necessary to dispose the drainage region 117. That is, as indicated by D1 in FIG. 7, it is necessary to blow air from the outdoor fan 7 to the outdoor heat exchanger 100 from the first end 111 side where the notch 116 is formed. Therefore, as shown by D2 in FIG.
  • the air-conditioning apparatus 1 includes the outdoor heat exchanger 100 that functions as an evaporator, the outdoor fan 7 that blows air to the outdoor heat exchanger 100, the outdoor heat exchanger 100, and the outdoor fan 7.
  • the housing 10 in which the drain hole 13 that accommodates and discharges water is formed in the lower part, the drainage detection device 23 that detects the water discharged from the drain hole 13, and the defrosting operation of the outdoor heat exchanger 100 are controlled.
  • a control device 30 is configured to operate the outdoor fan 7 when the drainage detection device 23 detects water during the defrosting operation with the outdoor fan 7 stopped.
  • the air conditioner 1 according to the first embodiment can discharge the defrosted water staying in the outdoor heat exchanger 100 by the blowing of the outdoor fan 7 to the outside of the outdoor heat exchanger 100. Therefore, the air conditioning apparatus 1 according to Embodiment 1 can improve the drainage of the outdoor heat exchanger 100.
  • the outdoor heat exchanger 100 is accommodated in the housing 10. For this reason, the defrost water discharged
  • the drainage detection device 23 can detect that the defrost water is discharged from the drain hole 13. And if the air conditioning apparatus 1 which concerns on this Embodiment 1 detects that the defrost water is discharged
  • the defrost water staying in the outdoor heat exchanger 100 can be discharged from the outdoor heat exchanger 100 by blowing from the outdoor fan 7 during the defrosting operation.
  • the air conditioning apparatus 1 which concerns on this Embodiment 1 can suppress that time from the time of a defrost operation start, ie, the end of heating operation, to the next heating operation start becoming long. Therefore, the air-conditioning apparatus 1 according to Embodiment 1 can improve the drainage of the outdoor heat exchanger 100, and the average heating capacity in a certain period of time is reduced by repeating the heating operation and the defrosting operation. Can be suppressed.
  • the outdoor heat exchanger 100 has the upper end part 113 and the lower end part 114, and has the 1st end part 111 and the 2nd end part 112 in the horizontal direction.
  • a fin 110 and a heat transfer tube 120 penetrating the fin 110 are provided, and air is supplied from the first end 111 side by the outdoor fan 7 during the defrosting operation.
  • a drainage region 117 in which notches are not formed from the upper end 113 to the lower end 114 is formed in a range closer to the second end 112 than the heat transfer tube 120. For this reason, the air conditioning apparatus 1 which concerns on this Embodiment 1 can further improve the drainage of the outdoor heat exchanger 100, and can further suppress the fall of an average heating capability.
  • Embodiment 2 FIG. In Embodiment 1, the outdoor fan 7 was continuously operated from the start of the defrosting air discharge control to the start of the heating operation.
  • the operation method of the outdoor fan 7 is not limited to the operation method shown in the first embodiment.
  • the operating time of the outdoor fan 7 may be changed according to the temperature of the outdoor air.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 8 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioner 1 according to the second embodiment includes a calculation unit 34 as a functional unit of the control device 30 in addition to the configuration described in the first embodiment.
  • the calculation unit 34 calculates the operating time of the outdoor fan 7 during the defrosting operation from the temperature detected by the first temperature detection device 21 that detects the temperature of the outdoor air.
  • the control part 32 of the control apparatus 30 is only during the operation time calculated by the calculation part 34 during the defrost operation, ie, during the defrost ventilation / drainage control.
  • the outdoor fan 7 is operated. That is, the control device 30 varies the operating time of the outdoor fan 7 during the defrosting operation according to the temperature detected by the first temperature detection device 21.
  • the drainage of the outdoor heat exchanger 100 can be improved by operating the outdoor fan 7 during the defrosting operation, that is, by performing the blast drainage control during the defrosting.
  • the defrosted water attached to the outdoor heat exchanger 100 May re-solidify.
  • the time until the defrost water re-solidifies is faster as the temperature of the outdoor air is lower.
  • the temperature difference between the outdoor air and hot gas is large, so the amount of heat of the hot gas that should be consumed for thawing residual frost is consumed by heat exchange with air. Will be.
  • the calculation unit 34 is configured to calculate the operating time of the outdoor fan 7 as the detected temperature of the first temperature detection device 21 that detects the temperature of the outdoor air is lower. That is, the control device 30 shortens the operating time of the outdoor fan 7 as the detected temperature of the first temperature detecting device 21 that detects the temperature of the outdoor air is lower.
  • FIG. 9 is a diagram illustrating an example of information for calculating the operating time of the outdoor fan during the defrosting operation, which is provided in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the storage unit 33 of the control device 30 stores a table as shown in FIG.
  • the calculation part 34 calculates the operating time of the outdoor fan 7 during a defrost operation using this table.
  • the calculation unit 34 assumes that re-solidification of defrost water does not occur.
  • the operation time of the outdoor fan 7 is calculated so that the outdoor fan 7 is continuously operated from the start of the defrosting air discharge control to the start of the heating operation.
  • the specified temperature Ta1 is set to 1 ° C., for example.
  • the calculation is performed.
  • the part 34 calculates the operation of the outdoor fan 7 from the start of the defrosting air discharge control as S seconds. That is, the calculation unit 34 operates the outdoor fan 7 for a time during which the defrost water does not resolidify, and improves the drainage of the outdoor heat exchanger 100.
  • the specified temperature Ta2 is set to ⁇ 3 ° C., for example.
  • the S second is set to 60 seconds, for example.
  • the calculation unit 34 performs the defrosting air discharge control.
  • the operation of the outdoor fan 7 from the start of is calculated as 0 seconds. That is, the control device 30 sets the operation time of the outdoor fan 7 to 0 seconds. In other words, the control device 30 prevents the outdoor fan 7 from operating.
  • the specified temperature Ta2 corresponds to the first specified temperature of the present invention.
  • the table shown in FIG. 9 is an example of information for calculating the operating time of the outdoor fan 7 during the defrosting operation.
  • FIG. 9 shows a table in which the range of the detected temperature of the first temperature detection device 21 is divided into three, it may be a table in which the range of the detected temperature of the first temperature detection device 21 is divided into two, or the first temperature detection It is good also as a table which divided
  • information for calculating the operating time of the outdoor fan 7 during the defrosting operation a relational expression between the detected temperature of the first temperature detecting device 21 and the operating time of the outdoor fan 7 during the defrosting operation is used. Also good. That is, the operating time of the outdoor fan 7 may be changed continuously according to the temperature detected by the first temperature detection device 21.
  • FIG. 10 is a control flowchart for the defrosting operation in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a time flow diagram showing the operations of the compressor and the outdoor fan during the defrosting operation in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioning apparatus 1 according to Embodiment 2 configured as described above operates as shown in FIGS. 10 and 11 during the defrosting operation.
  • step S11 as shown in FIG. , 12 are controlled.
  • the drainage detection device 23 detects that a larger amount of defrost water than the specified flow rate W1 is discharged from the drain hole 13 (Yes in step S6 in FIG. 2)
  • the calculation unit 34 in step S11 The operating time of the outdoor fan 7 during the defrosting operation is calculated from the detected temperature of the first temperature detecting device 21 that detects the temperature of the outdoor air.
  • the control unit 32 operates the outdoor fan 7 for the operation time calculated by the calculation unit 34. For this reason, as shown in FIG. 11, depending on the operating time of the outdoor fan 7, the outdoor fan 7 may stop before the defrosting operation ends (see point B in FIG. 11).
  • the control device 30 uses the detected temperature of the first temperature detection device 21 to increase the outdoor fan during the defrosting operation. 7 different operating hours.
  • the air conditioning apparatus 1 which concerns on this Embodiment 2 can prevent that defrost water re-solidifies during ventilation defrosting drain control at the time of defrost, and The effect that the defrosting time can be prevented from being prolonged due to the frost melting being delayed by the blowing of the outdoor fan 7 can be obtained.
  • Embodiment 3 The air conditioner 1 according to the third embodiment changes the operating time of the outdoor fan 7 depending on the progress of the defrost water discharge with respect to the air conditioner 1 shown in the first embodiment or the second embodiment. Control is added. Below, the example which added the said control to Embodiment 1 is demonstrated. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 12 is a control flowchart for the defrosting operation in the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 13 is a time flow diagram showing the operations of the compressor and the outdoor fan during the defrosting operation in the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the control in steps S21 and S22 is added to the defrosting blast drainage control shown in FIG. 2 of the first embodiment.
  • the drainage detection device 23 detects that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2 ( In step S21 in FIG. 12, the control unit 32 stops the outdoor fan 7 in step S22. That is, as shown at point C in FIG. 13, when the drainage detection device 23 detects that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2, the defrost operation is finished. Even if it does not do, the outdoor fan 7 will stop.
  • the prescribed flow rate W2 is stored in the storage unit 33, for example.
  • the prescribed flow rate W2 corresponds to the second prescribed flow rate of the present invention.
  • an electrode type sensor that detects the presence or absence of water is used as the drainage detection device 23.
  • the waste water detection device 23 according to the third embodiment can detect whether or not the defrost water is discharged from the drain hole 13. Therefore, in the third embodiment, the specified flow rate W2 is set to 0 m 3 / sec.
  • the flow sensor etc. which can detect the specific flow volume of the defrost water which flows through the drain hole 13 as the waste_water
  • step S21,22 when adding control of step S21,22 in the defrosting ventilation drainage control shown in FIG. 10 of Embodiment 2, if step S21,22 is added between step S12 and step S8, it is more. . Thereby, the power consumption in the outdoor fan 7 can be reduced without reducing the drainage of the outdoor heat exchanger 100.
  • the outdoor fan 7 is stopped in step S22.
  • the rotational speed of the outdoor fan 7 may be reduced to such an extent that the outdoor fan 7 is not stopped.
  • the outdoor fan 7 is stopped so that the power consumption of the outdoor fan 7 can be reduced most.
  • the rotational speed of the outdoor fan 7 is reduced to 0 rpm so that the power consumption of the outdoor fan 7 can be reduced most.
  • the control unit 32 operates the outdoor fan 7 during the defrosting operation.
  • the drainage detection device 23 detects that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2
  • the rotational speed of the outdoor fan 7 is reduced.
  • the air conditioning apparatus 1 which concerns on this Embodiment 3 is the outdoor fan 7 without reducing the drainage of the outdoor heat exchanger 100. It is also possible to obtain an effect that the power consumption can be reduced.
  • the refrigeration cycle apparatus according to the present invention has been described by taking the air conditioner 1 using the use side heat exchanger according to the present invention as the indoor heat exchanger 3 as an example.
  • the refrigeration cycle apparatus according to the present invention is not limited to the air conditioner.
  • the present invention can be implemented in various refrigeration cycle apparatuses having an outdoor heat exchanger housed in a housing, such as a hot water supply apparatus that heats water with the use side heat exchanger according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A refrigeration cycle device according to the present invention comprising an outdoor heat exchanger functioning as an evaporator, an outdoor fan for blowing air to the outdoor heat exchanger, a casing that accommodates the outdoor heat exchanger and the outdoor fan and has a drain hole for discharging water formed in the lower part of the casing, a discharge detection device for detecting water being discharged from the drain hole, and a control device for controlling an operation of defrosting the outdoor heat exchanger. The control device is configured so as to operate the blower fan when the discharge detection device has detected the water while the defrosting operation is being performed once the blower fan has been stopped.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、蒸発器として機能する室外熱交換器の排水性を向上させた冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus with improved drainage of an outdoor heat exchanger that functions as an evaporator.
 従来、例えば空気調和装置等、蒸発器として機能する室外熱交換器を備えた冷凍サイクル装置が知られている。このような冷凍サイクル装置においては、低温外気条件下で室外熱交換器を蒸発器として機能させた際、室外空気中に含まれる水分が室外熱交換器の表面で凝縮し、室外熱交換器表面に着霜が生じる。 Conventionally, a refrigeration cycle apparatus including an outdoor heat exchanger that functions as an evaporator, such as an air conditioner, is known. In such a refrigeration cycle apparatus, when the outdoor heat exchanger functions as an evaporator under low temperature outdoor air conditions, moisture contained in the outdoor air is condensed on the surface of the outdoor heat exchanger, and the surface of the outdoor heat exchanger Frost formation occurs.
 また、従来、室外熱交換器として用いられる熱交換器として、規定のフィンピッチ間隔を空けて並設された板状の複数のフィンと、フィンの並設方向に沿ってフィンを貫通する複数の伝熱管と、を備えたフィンアンドチューブ型の熱交換器が知られている。 Further, conventionally, as a heat exchanger used as an outdoor heat exchanger, a plurality of plate-like fins arranged in parallel with a prescribed fin pitch interval, and a plurality of fins penetrating the fins along the parallel arrangement direction of the fins A fin-and-tube heat exchanger including a heat transfer tube is known.
 室外熱交換器の表面に着霜が生じると、伝熱管内を流動する冷媒と伝熱管外の空気との熱交換が阻害され、熱交換器性能が低下する。また、フィン表面に付着した霜が成長することで、フィンが破損することもあり、着霜は装置の信頼性に影響を及ぼす。このため、蒸発器として機能する室外熱交換器を備えた従来の冷凍サイクル装置は、室外熱交換器に付着した霜を融解させて水として排出する、除霜運転が行われている。例えば、除霜運転では、圧縮機から吐出された高温高圧の冷媒を室外熱交換器に流入させることにより、室外熱交換器に付着した霜を融解させる。 When frost forms on the surface of the outdoor heat exchanger, heat exchange between the refrigerant flowing in the heat transfer tube and the air outside the heat transfer tube is hindered, and the heat exchanger performance is deteriorated. In addition, the frost attached to the fin surface grows and the fin may be damaged, and the frost affects the reliability of the apparatus. For this reason, the conventional refrigeration cycle apparatus provided with the outdoor heat exchanger that functions as an evaporator performs a defrosting operation in which frost adhering to the outdoor heat exchanger is melted and discharged as water. For example, in the defrosting operation, high-temperature and high-pressure refrigerant discharged from the compressor is caused to flow into the outdoor heat exchanger, thereby melting frost attached to the outdoor heat exchanger.
 除霜運転により、室外熱交換器に付着した霜は融解し、大部分は水として室外熱交換器を収容する筐体の外部へ排出される。しかしながら、一部の水は、筐体の外部へ排出されずに、伝熱管及びフィンの表面上に滞留する場合もある。このように除霜運転で排水しきれず室外熱交換器に滞留した水は、除霜運転の後に室外熱交換器が再び蒸発器として機能した際、低温冷媒と熱交換することで再凝固する。このため、室外ファンによって供給された空気と、伝熱管内を流動する冷媒との熱交換を阻害する要因となり、熱交換器性能が低下する。特に、断面が扁平形状である伝熱管を備えた扁平管熱交換器においては、伝熱管の上下面に水が滞留しやすいため、このような課題が顕著となる。 During the defrosting operation, the frost adhering to the outdoor heat exchanger is melted, and most of the water is discharged as water to the outside of the housing that houses the outdoor heat exchanger. However, some water may stay on the surfaces of the heat transfer tubes and fins without being discharged outside the casing. Thus, the water that cannot be drained in the defrosting operation and stays in the outdoor heat exchanger is solidified by heat exchange with the low-temperature refrigerant when the outdoor heat exchanger functions again as an evaporator after the defrosting operation. For this reason, it becomes a factor which inhibits heat exchange with the air supplied with the outdoor fan, and the refrigerant | coolant which flows through the inside of a heat exchanger tube, and heat exchanger performance falls. In particular, in a flat tube heat exchanger provided with a heat transfer tube having a flat cross section, water tends to stay on the upper and lower surfaces of the heat transfer tube, and such a problem becomes significant.
 このため、蒸発器として機能する室外熱交換器を備えた従来の冷凍サイクル装置には、除霜運転時に霜の融解によって生じた水が室外熱交換器に滞留することの抑制を図った冷凍サイクル装置も提案されている。例えば、特許文献1に記載の冷凍サイクル装置は、除霜運転終了後、室外熱交換器を蒸発器として機能させる通常運転の前に、室外ファンを回転させるファン除霜運転制御を行う。そして、特許文献1に記載の冷凍サイクル装置は、室外ファンからの送風によって、室外熱交換器に滞留している水を室外熱交換器の外部へ排出させ、除霜運転時に霜の融解によって生じた水が室外熱交換器に滞留することの抑制を図っている。 For this reason, the conventional refrigeration cycle apparatus provided with the outdoor heat exchanger functioning as an evaporator has a refrigeration cycle in which water generated by frost melting during defrosting operation is prevented from staying in the outdoor heat exchanger. Devices have also been proposed. For example, the refrigeration cycle apparatus described in Patent Document 1 performs fan defrosting operation control for rotating an outdoor fan before normal operation for causing the outdoor heat exchanger to function as an evaporator after completion of the defrosting operation. The refrigeration cycle apparatus described in Patent Document 1 is caused by frost melting during defrosting operation by discharging water staying in the outdoor heat exchanger to the outside of the outdoor heat exchanger by blowing air from the outdoor fan. Water is prevented from staying in the outdoor heat exchanger.
特許第4666061号公報Japanese Patent No. 4666061
 特許文献1に記載の冷凍サイクル装置は、除霜運転と、室外熱交換器を蒸発器として機能させる通常運転との間に、ファン除霜運転制御を行う。これにより、特許文献1に記載の冷凍サイクル装置は、除霜運転時に霜の融解によって生じた水が室外熱交換器に滞留することを抑制し、室外熱交換器の排水性を向上させている。しかしながら、特許文献1に記載の冷凍サイクル装置は、除霜運転と通常運転との間にファン除霜運転制御を行う必要があるため、除霜運転開始時つまり通常運転終了時から次回の通常運転開始時までの時間が長くなってしまう。このため、特許文献1に記載の冷凍サイクル装置は、通常運転と除霜運転とを繰り返すことによる一定時間における利用側熱交換器での平均加熱能力が低下してしまうという課題があった。すなわち、特許文献1に記載の冷凍サイクル装置は、室外熱交換器の排水性の向上と、平均加熱能力の低下の抑制とを両立できないという課題があった。なお、平均加熱能力とは、例えば冷凍サイクル装置を空気調和装置として用いる場合、暖房運転と除霜運転とを繰り返すことによる一定時間における平均暖房能力に相当するものである。 The refrigeration cycle apparatus described in Patent Document 1 performs fan defrosting operation control between a defrosting operation and a normal operation in which the outdoor heat exchanger functions as an evaporator. Thereby, the refrigeration cycle apparatus described in Patent Document 1 suppresses the retention of water generated by frost melting during the defrosting operation in the outdoor heat exchanger, and improves the drainage of the outdoor heat exchanger. . However, since the refrigeration cycle apparatus described in Patent Document 1 needs to perform fan defrosting operation control between the defrosting operation and the normal operation, the next normal operation from the start of the defrosting operation, that is, from the end of the normal operation. The time until the start will be longer. For this reason, the refrigeration cycle apparatus described in Patent Document 1 has a problem that the average heating capacity in the use-side heat exchanger for a certain period of time is reduced by repeating the normal operation and the defrosting operation. That is, the refrigeration cycle apparatus described in Patent Document 1 has a problem that it is impossible to achieve both improvement in drainage of the outdoor heat exchanger and suppression of reduction in average heating capacity. Note that the average heating capacity corresponds to the average heating capacity in a predetermined time by repeating the heating operation and the defrosting operation when, for example, a refrigeration cycle apparatus is used as an air conditioner.
 本発明は、上記のような課題を解決するためになされたもので、室外熱交換器の排水性を向上させることができ、平均加熱能力の低下も抑制することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and provides a refrigeration cycle apparatus that can improve drainage of an outdoor heat exchanger and can suppress a decrease in average heating capacity. For the purpose.
 本発明に係る冷凍サイクル装置は、蒸発器として機能する室外熱交換器と、前記室外熱交換器に送風する室外ファンと、前記室外熱交換器及び前記室外ファンを収容し、下部に水を排出するドレン孔が形成された筐体と、前記ドレン孔から排出される水を検出する排水検出装置と、前記室外熱交換器の除霜運転を制御する制御装置と、を備え、前記制御装置は、前記室外ファンを停止した状態で前記除霜運転を実行中、前記排水検出装置が水を検出した場合に前記室外ファンを稼働させる構成となっている。 The refrigeration cycle apparatus according to the present invention accommodates an outdoor heat exchanger that functions as an evaporator, an outdoor fan that blows air to the outdoor heat exchanger, the outdoor heat exchanger and the outdoor fan, and discharges water to the bottom. A drain hole detection device that detects water discharged from the drain hole, and a control device that controls a defrosting operation of the outdoor heat exchanger. During the defrosting operation with the outdoor fan stopped, the outdoor fan is operated when the drainage detection device detects water.
 除霜運転が開始され、室外熱交換器に付着した霜が融解して水が発生すると、この水の大部分は、室外熱交換器から排出される。本発明に係る冷凍サイクル装置においては、室外熱交換器は筐体に収容されている。このため、室外熱交換器から排出された水は、筐体の下部に形成されたドレン孔から、筐体の外部へ排出される。この際、本発明に係る冷凍サイクル装置においては、室外熱交換器に付着した霜の融解によって生じた水がドレン孔から排出されることを、排水検出装置で検出することができる。そして、本発明に係る冷凍サイクル装置は、ドレン孔から水が排出されていることを排水検出装置で検出すると、室外ファンを稼働させる。これにより、除霜運転時に霜の融解によって生じた水が室外熱交換器に滞留していた場合、室外ファンからの送風によって当該水を室外熱交換器から排出させることができる。すなわち、本発明に係る冷凍サイクル装置においては、除霜運転中に、室外ファンによって室外熱交換器に滞留している水を室外熱交換器の外部へ排出させることができる。このため、本発明に係る冷凍サイクル装置は、除霜運転開始時つまり通常運転終了時から次回の通常運転開始時までの時間が長くなってしまうことを抑制できる。したがって、本発明に係る冷凍サイクル装置は、室外熱交換器の排水性を向上させることができ、平均加熱能力の低下も抑制することができる。 When the defrosting operation is started and frost adhering to the outdoor heat exchanger is melted to generate water, most of the water is discharged from the outdoor heat exchanger. In the refrigeration cycle apparatus according to the present invention, the outdoor heat exchanger is accommodated in the housing. For this reason, the water discharged | emitted from the outdoor heat exchanger is discharged | emitted from the drain hole formed in the lower part of a housing | casing to the exterior of a housing | casing. At this time, in the refrigeration cycle apparatus according to the present invention, it is possible to detect that the water generated by melting of the frost adhering to the outdoor heat exchanger is discharged from the drain hole by the drainage detection device. And if the refrigeration cycle apparatus which concerns on this invention detects that the water is discharged | emitted from the drain hole with a waste_water | drain detection apparatus, an outdoor fan will be operated. Thereby, when the water produced by the melting of frost during the defrosting operation stays in the outdoor heat exchanger, the water can be discharged from the outdoor heat exchanger by blowing air from the outdoor fan. That is, in the refrigeration cycle apparatus according to the present invention, the water staying in the outdoor heat exchanger can be discharged outside the outdoor heat exchanger by the outdoor fan during the defrosting operation. For this reason, the refrigeration cycle apparatus according to the present invention can suppress an increase in the time from the start of the defrosting operation, that is, from the end of the normal operation to the start of the next normal operation. Therefore, the refrigeration cycle apparatus according to the present invention can improve the drainage of the outdoor heat exchanger, and can also suppress a decrease in average heating capacity.
本発明の実施の形態1に係る空気調和装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置における除霜運転時の制御フローチャート図である。It is a control flowchart figure at the time of the defrost operation in the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置における除霜運転時の圧縮機及び室外ファンの動作を示すタイムフロー図である。It is a time flow figure showing operation of a compressor and an outdoor fan at the time of defrosting operation in an air harmony device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の室外熱交換器の一例を示す斜視図である。It is a perspective view which shows an example of the outdoor heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 図4に示す室外熱交換器の要部拡大図である。It is a principal part enlarged view of the outdoor heat exchanger shown in FIG. 図4に示す室外熱交換器の要部拡大図である。It is a principal part enlarged view of the outdoor heat exchanger shown in FIG. 本発明の実施の形態1に係る空気調和装置の室外熱交換器の別の一例を示す要部拡大図である。It is a principal part enlarged view which shows another example of the outdoor heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置が備えた、除霜運転中の室外ファンの稼働時間を算出するための情報の一例を示す図である。It is a figure which shows an example of the information for calculating the operating time of the outdoor fan in the defrost operation with which the air conditioning apparatus which concerns on Embodiment 2 of this invention was equipped. 本発明の実施の形態2に係る空気調和装置における除霜運転時の制御フローチャート図である。It is a control flowchart figure at the time of the defrost operation in the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置における除霜運転時の圧縮機及び室外ファンの動作を示すタイムフロー図である。It is a time flow figure showing operation of a compressor and an outdoor fan at the time of defrosting operation in an air harmony device concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る空気調和装置における除霜運転時の制御フローチャート図である。It is a control flowchart figure at the time of the defrost driving | operation in the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和装置における除霜運転時の圧縮機及び室外ファンの動作を示すタイムフロー図である。It is a time flow figure showing operation of a compressor and an outdoor fan at the time of defrosting operation in an air harmony device concerning Embodiment 3 of the present invention.
 以下、図面を参照しながら、本発明に係る冷凍サイクル装置の一例について説明する。なお、以下の各実施の形態では、本発明に係る冷凍サイクル装置を空気調和装置として用いた場合を例に、換言すると本発明に係る利用側熱交換器を室内熱交換器として用いた場合を例に、本発明に係る冷凍サイクル装置の一例を説明する。 Hereinafter, an example of the refrigeration cycle apparatus according to the present invention will be described with reference to the drawings. In each of the following embodiments, a case where the refrigeration cycle apparatus according to the present invention is used as an air conditioner, in other words, a case where the use side heat exchanger according to the present invention is used as an indoor heat exchanger is described. An example of the refrigeration cycle apparatus according to the present invention will be described as an example.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の一例を示す冷媒回路図である。なお、図1では、冷房運転時の冷媒の流れを破線矢印で示し、暖房運転時の冷媒の流れを実線矢印で示している。始めに、図1を用い、本実施の形態1に係る空気調和装置1の構成について説明する。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 1, the refrigerant flow during the cooling operation is indicated by a broken line arrow, and the refrigerant flow during the heating operation is indicated by a solid line arrow. First, the configuration of the air-conditioning apparatus 1 according to Embodiment 1 will be described with reference to FIG.
[空気調和装置1の構成]
 図1に示すように、空気調和装置1は、圧縮機2、室内熱交換器3、室内ファン6、絞り装置4、室外熱交換器100、及び、室外ファン7を備えている。圧縮機2、室内熱交換器3、絞り装置4、及び室外熱交換器100が冷媒配管によって接続され、冷媒回路が形成されている。
[Configuration of Air Conditioner 1]
As shown in FIG. 1, the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3, an indoor fan 6, an expansion device 4, an outdoor heat exchanger 100, and an outdoor fan 7. The compressor 2, the indoor heat exchanger 3, the expansion device 4, and the outdoor heat exchanger 100 are connected by a refrigerant pipe to form a refrigerant circuit.
 圧縮機2は、冷媒を圧縮するものである。圧縮機2で圧縮された冷媒は、吐出されて室内熱交換器3へ送られる。圧縮機2は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、又は往復圧縮機等で構成することができる。 The compressor 2 compresses the refrigerant. The refrigerant compressed by the compressor 2 is discharged and sent to the indoor heat exchanger 3. The compressor 2 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor.
 室内熱交換器3は、暖房運転時、凝縮器として機能するものである。室内熱交換器3は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又はプレート熱交換器等で構成することができる。 The indoor heat exchanger 3 functions as a condenser during heating operation. The indoor heat exchanger 3 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or a plate heat exchange It can be composed of a container or the like.
 絞り装置4は、室内熱交換器3を経由した冷媒を膨張させて減圧するものである。絞り装置4は、例えば冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、絞り装置4としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又はキャピラリーチューブ等を適用することも可能である。 The expansion device 4 expands and decompresses the refrigerant that has passed through the indoor heat exchanger 3. The expansion device 4 may be constituted by an electric expansion valve that can adjust the flow rate of the refrigerant, for example. As the expansion device 4, not only an electric expansion valve but also a mechanical expansion valve employing a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
 室外熱交換器100は、暖房運転時、蒸発器として機能するものである。室外熱交換器100は、室内熱交換器3と同様に、種々の構成の熱交換器を用いることができる。なお、本実施の形態1では、フィンアンドチューブ型熱交換器で室外熱交換器100を構成している。室外熱交換器100については、後段で詳細に説明する。 The outdoor heat exchanger 100 functions as an evaporator during heating operation. As with the indoor heat exchanger 3, the outdoor heat exchanger 100 can use heat exchangers having various configurations. In the first embodiment, the outdoor heat exchanger 100 is configured by a fin-and-tube heat exchanger. The outdoor heat exchanger 100 will be described in detail later.
 室内ファン6は、室内熱交換器3の近傍に設けられており、室内熱交換器3に熱交換流体を供給するものである。
 室外ファン7は、室外熱交換器100の近傍に設けられており、室外熱交換器100に熱交換流体である室外空気を供給するものである。つまり、室外ファン7は、室外熱交換器100に送風するものである。
The indoor fan 6 is provided in the vicinity of the indoor heat exchanger 3 and supplies heat exchange fluid to the indoor heat exchanger 3.
The outdoor fan 7 is provided in the vicinity of the outdoor heat exchanger 100 and supplies outdoor air, which is a heat exchange fluid, to the outdoor heat exchanger 100. That is, the outdoor fan 7 blows air to the outdoor heat exchanger 100.
 また、空気調和装置1は、少なくとも室外熱交換器100及び室外ファン7を収容する筐体10を備えている。この筐体10の下部には、筐体10内から筐体10の外部へ水を排出するドレン孔13が形成されている。また、筐体10には、吸込口11及び吹出口12も形成されている。すなわち、筐体10内において室外ファン7が回転すると、室外熱交換器100と熱交換する室外空気が吸込口11から筐体10内に吸い込まれ、室外熱交換器100と熱交換した室外空気が吹出口12から筐体10外へ吹き出される構成となっている。なお、筐体10内に絞り装置4及び圧縮機2等を収容しても勿論よい。 In addition, the air conditioner 1 includes a housing 10 that houses at least the outdoor heat exchanger 100 and the outdoor fan 7. A drain hole 13 for discharging water from the inside of the housing 10 to the outside of the housing 10 is formed in the lower portion of the housing 10. The housing 10 is also formed with a suction port 11 and an air outlet 12. That is, when the outdoor fan 7 rotates in the housing 10, outdoor air that exchanges heat with the outdoor heat exchanger 100 is sucked into the housing 10 from the suction port 11, and the outdoor air that exchanges heat with the outdoor heat exchanger 100 is absorbed. It is configured to be blown out of the housing 10 from the air outlet 12. Of course, the expansion device 4 and the compressor 2 may be accommodated in the housing 10.
 また、空気調和装置1は、暖房運転に加えて冷房運転も可能とするため、圧縮機2の吐出側に設けられた流路切替装置5を備えている。流路切替装置5は、例えば四方弁等である。この流路切替装置5は、圧縮機2の吐出口の接続先を、室内熱交換器3又は室外熱交換器100に切り替えるものである。つまり、流路切替装置5は、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。詳しくは、流路切替装置5は、暖房運転時、圧縮機2の吐出口と室内熱交換器3とを接続し、圧縮機2の吸入口と室外熱交換器100とを接続するように切り替えられる。また、流路切替装置5は、冷房運転時、圧縮機2の吐出口と室外熱交換器100とを接続し、圧縮機2の吸入口と室内熱交換器3とを接続するように切り替えられる。すなわち、冷房運転時、室外熱交換器100が凝縮器として機能し、室内熱交換器3が蒸発器として機能する。 In addition, the air conditioner 1 includes a flow path switching device 5 provided on the discharge side of the compressor 2 in order to enable a cooling operation in addition to a heating operation. The flow path switching device 5 is, for example, a four-way valve. The flow path switching device 5 switches the connection destination of the discharge port of the compressor 2 to the indoor heat exchanger 3 or the outdoor heat exchanger 100. That is, the flow path switching device 5 switches the refrigerant flow between the heating operation and the cooling operation. Specifically, the flow path switching device 5 switches between the discharge port of the compressor 2 and the indoor heat exchanger 3 and connects the suction port of the compressor 2 and the outdoor heat exchanger 100 during heating operation. It is done. Further, the flow path switching device 5 is switched so as to connect the discharge port of the compressor 2 and the outdoor heat exchanger 100 and to connect the suction port of the compressor 2 and the indoor heat exchanger 3 during the cooling operation. . That is, during the cooling operation, the outdoor heat exchanger 100 functions as a condenser, and the indoor heat exchanger 3 functions as an evaporator.
 また、空気調和装置1は、複数の検出装置、及び、これらの検出装置の検出値に基づいて空気調和装置1の各構成(圧縮機2の周波数、絞り装置4の開度、流路切替装置5の流路、室内ファン6の回転数、室外ファン7の回転数等)を制御する制御装置30を備えている。後述のように、制御装置30は、室外熱交換器100の除霜運転も制御する。 The air conditioner 1 also includes a plurality of detection devices and the components of the air conditioner 1 (the frequency of the compressor 2, the opening of the expansion device 4, the flow path switching device based on the detection values of these detection devices. 5, the rotational speed of the indoor fan 6, the rotational speed of the outdoor fan 7, etc.). As will be described later, the control device 30 also controls the defrosting operation of the outdoor heat exchanger 100.
 具体的には、筐体10には、例えば吸込口11近傍に、室外ファン7によって筐体10に吸い込まれた室外空気の温度を検出する第1温度検出装置21が設けられている。第1温度検出装置21は、例えばサーミスタである。室外熱交換器100には、該室外熱交換器100の温度を検出する第2温度検出装置22が設けられている。第2温度検出装置22は、例えばサーミスタである。筐体10には、例えばドレン孔13を形成する壁面に、ドレン孔13から排出される水を検出する排水検出装置23が設けられている。本実施の形態1では、排水検出装置23として、電極式センサを用いている。電極式センサとは、電極間に電圧を印加した際の電流値の違いによって、水の有無を検出するものである。なお、排水検出装置23は電極式センサに限定されるものではなく、排水検出装置23として、赤外線センサ及び振動センサ等、水の有無を検出できる種々のセンサを採用することができる。また、ドレン孔13から排出される水の具体的な流量を検出できる流量センサ等を、排水検出装置23として用いてもよい。 Specifically, the housing 10 is provided with a first temperature detection device 21 that detects the temperature of the outdoor air sucked into the housing 10 by the outdoor fan 7, for example, in the vicinity of the suction port 11. The first temperature detection device 21 is, for example, a thermistor. The outdoor heat exchanger 100 is provided with a second temperature detection device 22 that detects the temperature of the outdoor heat exchanger 100. The second temperature detection device 22 is, for example, a thermistor. The casing 10 is provided with a drainage detection device 23 that detects water discharged from the drain hole 13, for example, on a wall surface that forms the drain hole 13. In the first embodiment, an electrode type sensor is used as the waste water detection device 23. An electrode type sensor detects the presence or absence of water based on a difference in current value when a voltage is applied between electrodes. The drainage detection device 23 is not limited to an electrode sensor, and various sensors capable of detecting the presence or absence of water, such as an infrared sensor and a vibration sensor, can be adopted as the drainage detection device 23. In addition, a flow rate sensor or the like that can detect a specific flow rate of water discharged from the drain hole 13 may be used as the drainage detection device 23.
 制御装置30は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。 The control device 30 is configured by dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. .
 制御装置30が専用のハードウェアである場合、制御装置30は、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、又はこれらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the control device 30 is dedicated hardware, the control device 30 is, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination of these. Applicable. Each functional unit realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
 制御装置30がCPUの場合、制御装置30が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置30の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the control device 30 is a CPU, each function executed by the control device 30 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory. The CPU implements each function of the control device 30 by reading and executing a program stored in the memory. Here, the memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 なお、制御装置30の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 It should be noted that a part of the functions of the control device 30 may be realized by dedicated hardware and a part may be realized by software or firmware.
 本実施の形態1に係る制御装置30は、機能部として、除霜決定部31、制御部32、及び記憶部33等を備えている。除霜決定部31は、暖房運転中に、除霜運転を開始するか否かを決定するものである。除霜決定部31が除霜運転を開始するか否かを決定する手法は、特に限定されるものではなく、公知の手法を用いればよい。例えば、本実施の形態1のように空気調和装置1が第2温度検出装置22を備えている場合、除霜決定部31は、第2温度検出装置22の検出温度が規定温度よりも低くなった場合、除霜運転の開始を決定してもよい。換言すると、除霜決定部31は、室外熱交換器100の温度が規定温度よりも低くなった場合、除霜運転の開始を決定してもよい。また例えば、除霜決定部31は、暖房運転の累積時間が規定時間以上となった場合、除霜運転の開始を決定してもよい。また例えば、本実施の形態1のように空気調和装置1が室外空気の温度を検出する第1温度検出装置21を備えている場合、除霜決定部31は、第1温度検出装置の検出温度が規定温度以下の条件で行われた暖房運転の累積時間が規定時間以上となった場合、除霜運転の開始を決定してもよい。なお、本実施の形態1に係る空気調和装置1においては、後述のように、除霜決定部31は、第2温度検出装置22の検出温度が規定温度よりも低くなった場合、除霜運転の開始を決定する。 The control device 30 according to the first embodiment includes a defrost determining unit 31, a control unit 32, a storage unit 33, and the like as functional units. The defrost determining unit 31 determines whether to start the defrost operation during the heating operation. The method for determining whether or not the defrost determining unit 31 starts the defrosting operation is not particularly limited, and a known method may be used. For example, when the air-conditioning apparatus 1 includes the second temperature detection device 22 as in the first embodiment, the defrost determination unit 31 has a detection temperature of the second temperature detection device 22 that is lower than a specified temperature. In such a case, the start of the defrosting operation may be determined. In other words, the defrost determining unit 31 may determine the start of the defrost operation when the temperature of the outdoor heat exchanger 100 becomes lower than the specified temperature. For example, the defrost determination part 31 may determine the start of a defrost operation, when the accumulation time of heating operation becomes more than regulation time. For example, when the air conditioning apparatus 1 includes the first temperature detection device 21 that detects the temperature of the outdoor air as in the first embodiment, the defrost determination unit 31 detects the temperature detected by the first temperature detection device. When the cumulative time of the heating operation performed under the condition that the temperature is equal to or lower than the specified temperature becomes equal to or longer than the specified time, the start of the defrosting operation may be determined. In the air-conditioning apparatus 1 according to Embodiment 1, as described later, the defrost determining unit 31 performs the defrost operation when the temperature detected by the second temperature detection device 22 is lower than the specified temperature. Determine the start of.
 また、除霜決定部31は、除霜運転中、除霜運転の終了を決定するものである。除霜決定部31が除霜運転を終了するか否かを決定する手法は、特に限定されるものではなく、公知の手法を用いればよい。例えば、本実施の形態1のように空気調和装置1が第2温度検出装置22を備えている場合、除霜決定部31は、第2温度検出装置22の検出温度が規定温度よりも高くなった場合、除霜運転の終了を決定してもよい。換言すると、除霜決定部31は、室外熱交換器100の温度が規定温度よりも高くなった場合、除霜運転の開始を終了してもよい。また例えば、除霜決定部31は、除霜運転の時間が規定時間以上となった場合、除霜運転の終了を決定してもよい。なお、本実施の形態1に係る空気調和装置1においては、後述のように、除霜決定部31は、第2温度検出装置22の検出温度が規定温度よりも高くなった場合、除霜運転の終了を決定する。 Moreover, the defrost determination part 31 determines completion | finish of a defrost operation during a defrost operation. The method for determining whether or not the defrost determining unit 31 ends the defrosting operation is not particularly limited, and a known method may be used. For example, when the air-conditioning apparatus 1 includes the second temperature detection device 22 as in the first embodiment, the defrost determination unit 31 has a detection temperature of the second temperature detection device 22 that is higher than a specified temperature. In such a case, the end of the defrosting operation may be determined. In other words, the defrost determining unit 31 may end the start of the defrost operation when the temperature of the outdoor heat exchanger 100 becomes higher than the specified temperature. For example, the defrost determination part 31 may determine completion | finish of a defrost operation, when the time of a defrost operation becomes more than regulation time. In the air conditioning apparatus 1 according to the first embodiment, as described later, the defrost determining unit 31 performs the defrost operation when the detected temperature of the second temperature detecting device 22 is higher than the specified temperature. Determine the end of.
 制御部32は、空気調和装置1が有する検出装置の検出値、図示せぬリモートコントローラーからの指令等に基づいて、圧縮機2の稼働及び停止、圧縮機2の稼働時の周波数、絞り装置4の開閉、絞り装置4の開時の開度、流路切替装置5の流路、室内ファン6の稼働及び停止、室内ファン6の稼働時の回転数、室外ファン7の稼働及び停止、室外ファン7の稼働時の回転数等を制御するものである。また、制御部32は、排水検出装置23が検出する水の量に基づいて、室外熱交換器100の除霜運転中に室外ファン7を稼働させる制御を行うものである。 The control unit 32 operates and stops the compressor 2 based on the detection value of the detection device included in the air conditioner 1, a command from a remote controller (not shown), the frequency at the time of operation of the compressor 2, the throttle device 4. Open / close, opening degree of the expansion device 4, flow path of the flow path switching device 5, operation and stop of the indoor fan 6, rotation speed when the indoor fan 6 is operated, operation and stop of the outdoor fan 7, outdoor fan 7 is used to control the rotational speed during operation. Moreover, the control part 32 performs control which operates the outdoor fan 7 during the defrost operation of the outdoor heat exchanger 100 based on the quantity of the water which the waste_water | drain detection apparatus 23 detects.
 記憶部33は、空気調和装置1が有する検出装置の検出値との比較に用いられる比較値、空気調和装置1の運転に必要な情報等を記憶するものである。 The storage unit 33 stores a comparison value used for comparison with the detection value of the detection device included in the air conditioner 1, information necessary for the operation of the air conditioner 1, and the like.
[空気調和装置1の動作]
 次に、空気調和装置1の動作について、冷媒の流れとともに説明する。まず、空気調和装置1が実行する冷房運転について説明する。なお、冷房運転時の冷媒の流れは、図1に破線矢印で示している。ここでは、室内熱交換器3の熱交換流体が空調対象空間の空気である場合を例に、空気調和装置1の動作について説明する。
[Operation of the air conditioner 1]
Next, operation | movement of the air conditioning apparatus 1 is demonstrated with the flow of a refrigerant | coolant. First, the cooling operation performed by the air conditioner 1 will be described. In addition, the flow of the refrigerant at the time of the cooling operation is indicated by broken line arrows in FIG. Here, the operation | movement of the air conditioning apparatus 1 is demonstrated to an example when the heat exchange fluid of the indoor heat exchanger 3 is the air of air-conditioning object space.
 図1に示すように、圧縮機2を稼働させることによって、圧縮機2から高温高圧のガス状態の冷媒が吐出される。以下、破線矢印にしたがって冷媒が流れる。詳しくは、圧縮機2から吐出された高温高圧のガス冷媒(単相)は、流路切替装置5を介して凝縮器として機能する室外熱交換器100に流れ込む。室外熱交換器100では、流れ込んだ高温高圧のガス冷媒と、室外ファン7によって供給される室外空気との間で熱交換が行われる。そして、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。 As shown in FIG. 1, by operating the compressor 2, high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 2. Hereinafter, the refrigerant flows according to the broken line arrows. Specifically, the high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the outdoor heat exchanger 100 functioning as a condenser via the flow path switching device 5. In the outdoor heat exchanger 100, heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the outdoor air supplied by the outdoor fan 7. The high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase).
 室外熱交換器100から送り出された高圧の液冷媒は、絞り装置4によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室内熱交換器3に流れ込む。室内熱交換器3では、流れ込んだ二相状態の冷媒と、室内ファン6によって供給される空調対象空間の空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内等の空調対象空間が冷却されることになる。室内熱交換器3から送り出された低圧のガス冷媒は、流路切替装置5を介して圧縮機2に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機2から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant sent out from the outdoor heat exchanger 100 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 4. The two-phase refrigerant flows into the indoor heat exchanger 3 that functions as an evaporator. In the indoor heat exchanger 3, heat exchange is performed between the refrigerant flowing in the two-phase state and the air in the air-conditioning target space supplied by the indoor fan 6, and the liquid refrigerant of the two-phase refrigerant evaporates. It becomes a low-pressure gas refrigerant (single phase). By this heat exchange, the air-conditioning target space such as the room is cooled. The low-pressure gas refrigerant sent out from the indoor heat exchanger 3 flows into the compressor 2 via the flow path switching device 5, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 2 again. Thereafter, this cycle is repeated.
 次に、空気調和装置1が実行する暖房運転について説明する。なお、暖房運転時の冷媒の流れは、図1に実線矢印で示している。 Next, the heating operation performed by the air conditioner 1 will be described. In addition, the flow of the refrigerant | coolant at the time of heating operation is shown by the solid line arrow in FIG.
 図1に示すように、圧縮機2を稼働させることによって、圧縮機2から高温高圧のガス状態の冷媒が吐出される。以下、実線矢印にしたがって冷媒が流れる。詳しくは、圧縮機2から吐出された高温高圧のガス冷媒(単相)は、流路切替装置5を介して凝縮器として機能する室内熱交換器3に流れ込む。室内熱交換器3では、流れ込んだ高温高圧のガス冷媒と、室内ファン6によって供給される空調対象空間の空気との間で熱交換が行われる。そして、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内等の空調対象空間が暖房されることになる。 As shown in FIG. 1, by operating the compressor 2, high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 2. Hereinafter, the refrigerant flows according to solid arrows. Specifically, the high-temperature and high-pressure gas refrigerant (single phase) discharged from the compressor 2 flows into the indoor heat exchanger 3 that functions as a condenser via the flow path switching device 5. In the indoor heat exchanger 3, heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the air in the air-conditioned space supplied by the indoor fan 6. The high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant (single phase). By this heat exchange, the air-conditioning target space such as a room is heated.
 室内熱交換器3から送り出された高圧の液冷媒は、絞り装置4によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室外熱交換器100に流れ込む。室外熱交換器100では、流れ込んだ二相状態の冷媒と、室外ファン7によって供給される室外空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。 The high-pressure liquid refrigerant sent out from the indoor heat exchanger 3 becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant by the expansion device 4. The two-phase refrigerant flows into the outdoor heat exchanger 100 that functions as an evaporator. In the outdoor heat exchanger 100, heat exchange is performed between the refrigerant flowing in the two-phase state and the outdoor air supplied by the outdoor fan 7, and the liquid refrigerant evaporates out of the two-phase refrigerant, resulting in a low pressure. Gas refrigerant (single phase).
 室外熱交換器100から送り出された低圧のガス冷媒は、流路切替装置5を介して圧縮機2に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機2から吐出される。以下、このサイクルが繰り返される。 The low-pressure gas refrigerant sent out from the outdoor heat exchanger 100 flows into the compressor 2 via the flow path switching device 5, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 2 again. Thereafter, this cycle is repeated.
 上記の冷房運転及び暖房運転の際、圧縮機2に冷媒が液状態で流入すると、液圧縮を起こし、圧縮機2の故障の原因となってしまう。このため、蒸発器から流出する冷媒はガス冷媒(単相)となっていることが望ましい。冷房運転時では、室内熱交換器3が蒸発器として機能し、暖房運転時では、室外熱交換器100が蒸発器として機能している。 When the refrigerant flows into the compressor 2 in the liquid state during the cooling operation and the heating operation described above, liquid compression occurs, causing the compressor 2 to malfunction. For this reason, it is desirable that the refrigerant flowing out of the evaporator is a gas refrigerant (single phase). During the cooling operation, the indoor heat exchanger 3 functions as an evaporator, and during the heating operation, the outdoor heat exchanger 100 functions as an evaporator.
 ここで、蒸発器では、ファンから供給される空気と、蒸発器を構成している伝熱管の内部を流動する冷媒との間で熱交換が行われる際に、空気中の水分が凝縮し、蒸発器の表面に水滴が生ずる。蒸発器の表面に生じた水滴の一部は、フィン及び伝熱管の表面を伝って下方に落下していき、ドレン水として蒸発器の外部へ排出される。また、蒸発器が室外熱交換器100の場合、室外熱交換器100から排出されたドレン水は、筐体10の下部に形成されたドレン孔13から筐体10外へ排出される。 Here, in the evaporator, when heat exchange is performed between the air supplied from the fan and the refrigerant flowing inside the heat transfer tubes constituting the evaporator, moisture in the air is condensed, Water droplets form on the surface of the evaporator. Some of the water droplets generated on the surface of the evaporator fall downward along the surfaces of the fins and the heat transfer tubes, and are discharged as drain water to the outside of the evaporator. When the evaporator is the outdoor heat exchanger 100, the drain water discharged from the outdoor heat exchanger 100 is discharged out of the housing 10 through a drain hole 13 formed in the lower portion of the housing 10.
 また、室外熱交換器100は、低外気温状態となっている暖房運転時に、蒸発器として機能する。このため、暖房運転時、空気中の水分が室外熱交換器100に着霜することがある。このため、暖房運転が可能な空気調和装置等では、通常、暖房運転中に室外熱交換器に付着した霜を除去する「除霜運転」を行うようになっている。 In addition, the outdoor heat exchanger 100 functions as an evaporator during heating operation in a low outside air temperature state. For this reason, the moisture in the air may form frost on the outdoor heat exchanger 100 during the heating operation. For this reason, in an air conditioner or the like capable of heating operation, “defrosting operation” for removing frost adhering to the outdoor heat exchanger during heating operation is usually performed.
 「除霜運転」とは、蒸発器として機能する室外熱交換器100に付着した霜を融解させて除去するために、圧縮機2から室外熱交換器100にホットガス(高温高圧のガス冷媒)を供給する運転のことである。本実施の形態1に係る空気調和装置1においては、除霜運転を開始する場合、制御部32が流路切替装置5の流路を冷房運転時の流路に切り替える。これにより、圧縮機2の吐出口と室外熱交換器100との間の流路が開かれ、圧縮機2から室外熱交換器100に、ホットガスが供給される。そして、室外熱交換器100に付着した霜は、室外熱交換器100に供給されるホットガスによって融解される。 The “defrosting operation” is a hot gas (high-temperature high-pressure gas refrigerant) from the compressor 2 to the outdoor heat exchanger 100 in order to melt and remove frost attached to the outdoor heat exchanger 100 functioning as an evaporator. It is a driving to supply. In the air conditioning apparatus 1 according to Embodiment 1, when the defrosting operation is started, the control unit 32 switches the flow path of the flow path switching device 5 to the flow path during the cooling operation. Thereby, the flow path between the discharge port of the compressor 2 and the outdoor heat exchanger 100 is opened, and hot gas is supplied from the compressor 2 to the outdoor heat exchanger 100. And the frost adhering to the outdoor heat exchanger 100 is melt | dissolved by the hot gas supplied to the outdoor heat exchanger 100. FIG.
 ここで、流路切替装置5が、本発明の流路開閉装置に相当する。つまり、本実施の形態1では、流路切替装置5を流路開閉装置として用いている。なお、流路開閉装置は、圧縮機2の吐出口と室外熱交換器100との間の流路を開閉する装置であれば、流路切替装置5に限定されるものではない。例えば、圧縮機2の吐出口と室外熱交換器100とを接続するバイパス冷媒配管と、該バイパス冷媒配管の流路を開閉する開閉装置とを用い、圧縮機2から室外熱交換器100にホットガスを供給する除霜運転も、従来より知られている。このようなバイパス配管及び開閉装置を本発明の流路開閉装置として用いても勿論よい。 Here, the channel switching device 5 corresponds to the channel switching device of the present invention. That is, in the first embodiment, the flow path switching device 5 is used as a flow path opening / closing device. The flow path switching device is not limited to the flow path switching device 5 as long as it is a device that opens and closes the flow path between the discharge port of the compressor 2 and the outdoor heat exchanger 100. For example, by using a bypass refrigerant pipe that connects the discharge port of the compressor 2 and the outdoor heat exchanger 100 and an opening / closing device that opens and closes the flow path of the bypass refrigerant pipe, the compressor 2 can be hot from the compressor 2 to the outdoor heat exchanger 100. A defrosting operation for supplying gas is also conventionally known. Of course, such a bypass pipe and an opening / closing device may be used as the channel opening / closing device of the present invention.
[空気調和装置1の除霜運転時の動作]
 図2は、本発明の実施の形態1に係る空気調和装置における除霜運転時の制御フローチャート図である。また、図3は、本発明の実施の形態1に係る空気調和装置における除霜運転時の圧縮機及び室外ファンの動作を示すタイムフロー図である。以下、図2及び図3を用いて、本実施の形態1に係る空気調和装置1の除霜運転時の詳細動作について説明する。
[Operation at the time of defrosting operation of the air conditioner 1]
FIG. 2 is a control flowchart for the defrosting operation in the air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 3 is a time flow diagram showing operations of the compressor and the outdoor fan during the defrosting operation in the air-conditioning apparatus according to Embodiment 1 of the present invention. Hereinafter, the detailed operation during the defrosting operation of the air-conditioning apparatus 1 according to Embodiment 1 will be described with reference to FIGS. 2 and 3.
 例えば図示せぬリモートコントローラー等から制御装置30へ暖房運転の指令がされると、空気調和装置1は、暖房運転を行う(ステップS1)。暖房運転時の空気調和装置1の動作は、上述の通りである。すなわち、暖房運転時、圧縮機2及び室外ファン7は、稼働している。この暖房運転は、第2温度検出装置22の検出温度が規定温度Th1以上の間、継続される(ステップS2のNo)。一方、第2温度検出装置22の検出温度が規定温度Th1より小さくなると(ステップS2のYes)、除霜決定部31は、除霜運転の開始を決定する。規定温度Th1は、例えば記憶部33に記憶されている。
 ここで、規定温度Th1が、本発明の第2規定温度に相当する。なお、本実施の形態1では、規定温度Th1を例えば-6℃としている。
For example, when a heating operation command is issued from a remote controller (not shown) to the control device 30, the air conditioning apparatus 1 performs the heating operation (step S1). The operation of the air conditioner 1 during the heating operation is as described above. That is, the compressor 2 and the outdoor fan 7 are operating during the heating operation. This heating operation is continued while the temperature detected by the second temperature detection device 22 is equal to or higher than the specified temperature Th1 (No in step S2). On the other hand, when the detected temperature of the second temperature detection device 22 becomes lower than the specified temperature Th1 (Yes in step S2), the defrost determining unit 31 determines the start of the defrost operation. The specified temperature Th1 is stored in the storage unit 33, for example.
Here, the specified temperature Th1 corresponds to the second specified temperature of the present invention. In the first embodiment, the specified temperature Th1 is set to −6 ° C., for example.
 除霜決定部31が除霜運転の開始を決定すると、制御部32は、圧縮機2及び室外ファン7を停止させ(ステップS3)、流路切替装置5の流路を冷房運転時と同じ流路に切り替える(ステップS4)。そして、制御部32は、ステップS5以降において、除霜運転を開始する。すなわち、制御部32は、除霜決定部31が除霜運転の開始を決定した際、圧縮機2の吐出口と室外熱交換器100との間の流路を開くように流路開閉装置である流路切替装置5を制御し、圧縮機2で圧縮された冷媒を室外熱交換器100に供給することにより、室外熱交換器100を除霜する。 When the defrost determining unit 31 determines the start of the defrosting operation, the control unit 32 stops the compressor 2 and the outdoor fan 7 (step S3), and the flow of the flow path switching device 5 is the same as that during the cooling operation. Switch to the road (step S4). And the control part 32 starts a defrost driving | operation after step S5. That is, when the defrost determining unit 31 determines the start of the defrosting operation, the control unit 32 is a channel opening / closing device that opens the channel between the discharge port of the compressor 2 and the outdoor heat exchanger 100. The outdoor heat exchanger 100 is defrosted by controlling a certain flow path switching device 5 and supplying the refrigerant compressed by the compressor 2 to the outdoor heat exchanger 100.
 詳しくは、ステップS5において、制御部32は、圧縮機2を稼働させる。これにより、圧縮機2から室外熱交換器100にホットガスが供給され、室外熱交換器100に付着した霜が融解し始める。霜の融解開始直後は、融解によって生じた水(以降、除霜水)は霜に吸収されるか、霜が排水経路を閉塞していることにより、室外熱交換器100内に滞留する。そして、融解の進行に伴い霜の量が減少すると、除霜水は重力の影響を受け、室外熱交換器100の下部へと移動する。そして、この除霜水は、室外熱交換器100の下端部から離脱して、筐体10の下部へ落下していく。その後、筐体10の下部へ落下した除霜水は、ドレン孔13より筐体10外へと排出される。 Specifically, in step S5, the control unit 32 operates the compressor 2. Thereby, hot gas is supplied to the outdoor heat exchanger 100 from the compressor 2, and the frost adhering to the outdoor heat exchanger 100 begins to melt | dissolve. Immediately after the start of frost melting, water generated by thawing (hereinafter, defrosted water) is absorbed in the frost or stays in the outdoor heat exchanger 100 because the frost blocks the drainage path. When the amount of frost decreases with the progress of melting, the defrost water is affected by gravity and moves to the lower part of the outdoor heat exchanger 100. And this defrost water leaves | separates from the lower end part of the outdoor heat exchanger 100, and falls to the lower part of the housing | casing 10. FIG. Thereafter, the defrost water falling to the lower portion of the housing 10 is discharged out of the housing 10 through the drain hole 13.
 ドレン孔13より筐体10外へと排出される除霜水は、排水検出装置23によって検出される。そして、ドレン孔13から規定流量W1よりも多くの除霜水が排出されていることが排水検出装置23によって検出されると(図2のステップS6のYes、図3のA点)、制御部32は、ステップS7以降において、除霜時送風排水制御を行う。換言すると、図3に示すように、空気調和装置1は、除霜運転内において、除霜時送風排水動作を行う。規定流量W1は、例えば記憶部33に記憶されている。 The defrost water discharged from the drain hole 13 to the outside of the housing 10 is detected by the drainage detection device 23. When the drainage detection device 23 detects that more defrosted water is discharged from the drain hole 13 than the prescribed flow rate W1 (Yes in step S6 in FIG. 2, point A in FIG. 3), the control unit In step S7 and subsequent steps 32, the frost drainage drainage control is performed. In other words, as shown in FIG. 3, the air conditioner 1 performs a defrosting air discharge operation in the defrosting operation. The prescribed flow rate W1 is stored in the storage unit 33, for example.
 ここで、規定流量W1が、本発明の第1規定流量に相当する。なお、上述のように、本実施の形態1では、排水検出装置23として、水の有無を検出する電極式センサを用いている。このため、本実施の形態1に係る排水検出装置23は、ドレン孔13から除霜水が排出されているか否かを検出できることとなる。したがって、本実施の形態1では、規定流量W1を0m/secとしている。なお、排水検出装置23として、ドレン孔13を流れる除霜水の具体的な流量を検出できる流量センサ等を用いる場合、規定流量W1を0m/sec以外の値にしても勿論よい。 Here, the prescribed flow rate W1 corresponds to the first prescribed flow rate of the present invention. As described above, in the first embodiment, the drainage detection device 23 uses an electrode sensor that detects the presence or absence of water. For this reason, the waste water detection device 23 according to the first embodiment can detect whether or not the defrost water is discharged from the drain hole 13. Therefore, in the first embodiment, the specified flow rate W1 is set to 0 m 3 / sec. In addition, when using the flow sensor etc. which can detect the specific flow volume of the defrost water which flows through the drain hole 13 as the waste_water | drain detection apparatus 23, of course, you may make prescribed flow rate W1 into values other than 0 m < 3 > / sec.
 除霜水の大部分は室外熱交換器100の外部へ排出される。しかしながら、除霜水の一部が、室外熱交換器100の表面に付着し、室外熱交換器100に滞留する場合がある。このように室外熱交換器100に滞留した除霜水は、除霜運転の後に室外熱交換器100が再び蒸発器として機能した際、低温冷媒と熱交換することで再凝固する。このため、室外ファン7によって供給された室外空気と、伝熱管内を流動する冷媒との熱交換を阻害する要因となり、室外熱交換器100の熱交換性能が低下する。そこで、本実施の形態1に係る空気調和装置1においては、室外ファン7の送風によって室外熱交換器100に滞留した除霜水を室外熱交換器100の外部へ排出させる除霜時送風排水制御を行う。具体的には、ステップS7において、制御部32は、室外ファン7を稼働する。この際、制御部32は、例えば記憶部33に記憶されている規定回転数で、室外ファン7を稼働する。すなわち、制御装置30は、室外ファン7を停止した状態で除霜運転を実行中、排水検出装置23が規定流量W1よりも多くの水を検出した場合、室外ファン7を稼働する。 Most of the defrost water is discharged outside the outdoor heat exchanger 100. However, a part of defrost water may adhere to the surface of the outdoor heat exchanger 100 and stay in the outdoor heat exchanger 100 in some cases. In this way, the defrost water staying in the outdoor heat exchanger 100 is re-solidified by exchanging heat with the low-temperature refrigerant when the outdoor heat exchanger 100 functions as an evaporator again after the defrosting operation. For this reason, it becomes a factor which inhibits heat exchange with the outdoor air supplied with the outdoor fan 7, and the refrigerant | coolant which flows through the inside of a heat exchanger tube, and the heat exchange performance of the outdoor heat exchanger 100 falls. Therefore, in the air conditioner 1 according to the first embodiment, the defrosting air discharge control that discharges the defrost water that has accumulated in the outdoor heat exchanger 100 to the outside of the outdoor heat exchanger 100 due to the blowing of the outdoor fan 7. I do. Specifically, in step S7, the control unit 32 operates the outdoor fan 7. At this time, the control unit 32 operates the outdoor fan 7 at, for example, a specified rotational speed stored in the storage unit 33. That is, the control device 30 operates the outdoor fan 7 when the drainage detection device 23 detects more water than the specified flow rate W1 during the defrosting operation with the outdoor fan 7 stopped.
 除霜時送風排水制御により、室外熱交換器100の霜の融解がさらに進行し、除霜水の排出も室外ファン7からの送風により促進される。このため、ホットガスからの供給熱量のうち、霜の昇温と融解、及び水の昇温に消費される熱量は減少し、室外熱交換器100の昇温に熱量が使用されるようになる。したがって、室外熱交換器100の温度、換言すると、第2温度検出装置22の検出温度が上昇していく。そして、第2温度検出装置22の検出温度が規定温度Th2より高くなると(ステップS8のYes)、除霜決定部31は除霜運転の終了を決定し、制御部32はステップS1に戻って再び暖房運転を開始する。具体的には、図3に示すように、制御部32は、室外ファン7の稼働を継続したまま、圧縮機2の稼働を停止させる。そして、制御部は、流路切替装置5の流路を暖房運転時の流路に切り替え、圧縮機2を再起動させて、再び暖房運転を開始する。
 ここで、規定温度Th2が、本発明の第2規定温度に相当する。規定温度Th2は、例えば記憶部33に記憶されている。
By the frost drainage drainage control, the frost melting of the outdoor heat exchanger 100 further proceeds, and the discharge of the defrost water is also promoted by the blowing from the outdoor fan 7. For this reason, out of the amount of heat supplied from the hot gas, the amount of heat consumed for the temperature rise and melting of frost and the temperature rise of water is reduced, and the amount of heat is used to raise the temperature of the outdoor heat exchanger 100. . Therefore, the temperature of the outdoor heat exchanger 100, in other words, the detected temperature of the second temperature detection device 22 increases. And if the detection temperature of the 2nd temperature detection apparatus 22 becomes higher than regulation temperature Th2 (Yes of step S8), the defrost determination part 31 will determine completion | finish of a defrost operation, and the control part 32 will return to step S1 and again Start heating operation. Specifically, as illustrated in FIG. 3, the control unit 32 stops the operation of the compressor 2 while continuing the operation of the outdoor fan 7. And a control part switches the flow path of the flow-path switching apparatus 5 to the flow path at the time of heating operation, restarts the compressor 2, and starts heating operation again.
Here, the specified temperature Th2 corresponds to the second specified temperature of the present invention. The specified temperature Th2 is stored in the storage unit 33, for example.
[室外熱交換器100の詳細]
 最後に、本実施の形態1に係る室外熱交換器100の一例を紹介する。
[Details of outdoor heat exchanger 100]
Finally, an example of the outdoor heat exchanger 100 according to the first embodiment will be introduced.
 図4は、本発明の実施の形態1に係る空気調和装置の室外熱交換器の一例を示す斜視図である。図5及び図6は、図4に示す室外熱交換器の要部拡大図である。なお、図4以降において、X方向は、横方向であり、室外熱交換器100のフィン110の短手方向(幅方向)となる方向を表している。Y方向は、横方向であり、同一の熱交換部(後述の風上側熱交換器101又は風下側熱交換器102)を構成するフィン110の並設方向となる方向を表している。Z方向は、上下方向(重力方向)であり、フィン110の長手方向となる方向を表している。白抜き矢印は、室外ファン7から室外熱交換器100へ供給される空気の流れ方向を表している。図4からわかるように、本実施の形態1に係る室外熱交換器100は、室外ファン7からX方向に空気が供給される。また、図5は、Y方向に室外熱交換器100を観察した際の、要部を示している。また、図6は、X方向に室外熱交換器100を観察した際の、要部を示している。 FIG. 4 is a perspective view showing an example of an outdoor heat exchanger of the air-conditioning apparatus according to Embodiment 1 of the present invention. 5 and 6 are enlarged views of main parts of the outdoor heat exchanger shown in FIG. In FIG. 4 and subsequent figures, the X direction is a lateral direction and represents a direction that is a short direction (width direction) of the fin 110 of the outdoor heat exchanger 100. The Y direction is a lateral direction, and represents a direction that is a parallel arrangement direction of the fins 110 that constitute the same heat exchanging section (a windward side heat exchanger 101 or a leeward side heat exchanger 102 described later). The Z direction is the vertical direction (gravity direction) and represents the direction that is the longitudinal direction of the fin 110. A white arrow represents a flow direction of air supplied from the outdoor fan 7 to the outdoor heat exchanger 100. As can be seen from FIG. 4, the outdoor heat exchanger 100 according to the first embodiment is supplied with air from the outdoor fan 7 in the X direction. Moreover, FIG. 5 has shown the principal part when the outdoor heat exchanger 100 is observed in the Y direction. FIG. 6 shows a main part when the outdoor heat exchanger 100 is observed in the X direction.
 室外熱交換器100は、例えば二列構造の熱交換器であり、風上側熱交換器101及び風下側熱交換器102を備えている。これら風上側熱交換器101及び風下側熱交換器102は、フィンアンドチューブ型熱交換器であり、室外ファン7から供給される空気の流れ方向であるX方向に沿って並設されている。風上側熱交換器101の伝熱管の一端は、風上側ヘッダ集合管103に接続されている。風下側熱交換器102の伝熱管の一端は、風下側ヘッダ集合管104に接続されている。また、風上側熱交換器101の伝熱管の他端と、風下側熱交換器102の伝熱管の他端とは、列間接続部材105に接続されている。 The outdoor heat exchanger 100 is, for example, a two-row heat exchanger, and includes an upwind heat exchanger 101 and a leeward heat exchanger 102. The windward side heat exchanger 101 and the leeward side heat exchanger 102 are fin-and-tube heat exchangers, and are arranged in parallel along the X direction, which is the flow direction of air supplied from the outdoor fan 7. One end of the heat transfer tube of the windward heat exchanger 101 is connected to the windward header collecting tube 103. One end of the heat transfer tube of the leeward heat exchanger 102 is connected to the leeward header collecting tube 104. Further, the other end of the heat transfer tube of the leeward side heat exchanger 101 and the other end of the heat transfer tube of the leeward side heat exchanger 102 are connected to the inter-column connection member 105.
 つまり、本実施の形態1に係る室外熱交換器100は、風上側ヘッダ集合管103及び風下側ヘッダ集合管104の一方から、風上側熱交換器101及び風下側熱交換器102の一方の伝熱管に冷媒が分配される。そして、風上側熱交換器101及び風下側熱交換器102の一方の伝熱管に分配された冷媒は、列間接続部材105を介して、風上側熱交換器101及び風下側熱交換器102の他方の伝熱管に流入する。その後、風上側熱交換器101及び風下側熱交換器102の他方の伝熱管に流入した冷媒は、風上側ヘッダ集合管103及び風下側ヘッダ集合管104の他方で合流し、圧縮機2の吸入口又は絞り装置4の方へ流れていく。 That is, the outdoor heat exchanger 100 according to the first embodiment transmits one of the windward side heat exchanger 101 and the leeward side heat exchanger 102 from one of the windward side header collecting pipe 103 and the leeward side header collecting pipe 104. The refrigerant is distributed to the heat pipe. Then, the refrigerant distributed to one heat transfer tube of the windward side heat exchanger 101 and the leeward side heat exchanger 102 passes through the inter-column connection member 105, and the refrigerant of the windward side heat exchanger 101 and the leeward side heat exchanger 102 It flows into the other heat transfer tube. Thereafter, the refrigerant flowing into the other heat transfer pipes of the windward side heat exchanger 101 and the leeward side heat exchanger 102 joins at the other side of the windward side header collecting pipe 103 and the leeward side header collecting pipe 104, and is sucked by the compressor 2. It flows toward the mouth or squeezing device 4.
 なお、本実施の形態1では、風上側熱交換器101及び風下側熱交換器102は、同様の構成となっている。このため、以下では、双方を代表して、風上側熱交換器101について説明する。なお、風上側熱交換器101又は風下側熱交換器102の一方で室外熱交換器100の熱交換負荷を賄える場合、風上側熱交換器101又は風下側熱交換器102の一方のみで室外熱交換器100を構成しても勿論よい。 In the first embodiment, the windward side heat exchanger 101 and the leeward side heat exchanger 102 have the same configuration. For this reason, below, the wind-side heat exchanger 101 is demonstrated on behalf of both. In addition, when one side of the windward side heat exchanger 101 or the leeward side heat exchanger 102 can cover the heat exchange load of the outdoor heat exchanger 100, only one of the windward side heat exchanger 101 or the leeward side heat exchanger 102 has outdoor heat. Of course, the exchanger 100 may be configured.
 図5及び図6に示すように、風上側熱交換器101は、フィン110と、フィン110を貫通する伝熱管120とを備えている。また、フィン110は、上端部113及び下端部114を有している。また、フィン110は、横方向に第1端部111及び第2端部112を有している。 As shown in FIGS. 5 and 6, the windward side heat exchanger 101 includes fins 110 and heat transfer tubes 120 that penetrate the fins 110. Further, the fin 110 has an upper end portion 113 and a lower end portion 114. Further, the fin 110 has a first end 111 and a second end 112 in the lateral direction.
 詳しくは、風上側熱交換器101は、複数のフィン110及び複数の伝熱管120を備えている。複数のフィン110は、上下方向に長い板形状の部材である。複数のフィン110は、例えば、上下方向に長い矩形状に形成されている。そして、複数のフィン110は、規定のフィンピッチ間隔FPを空けて並設されている。また、フィン110のそれぞれには、伝熱管120の外周形状に対応した形状の貫通孔115が、上下方向に規定の間隔を空けて複数形成されている。そして、これらの貫通孔115に、伝熱管120が挿入されている。すなわち、複数の伝熱管120は、上下方向に規定の間隔を空けて並設されている。
 なお、本実施の形態1においては、伝熱管120として、断面が略楕円形状又は略長円形状等の扁平形状となっている伝熱管を用いている。このため、フィン110に形成された貫通孔も、扁平形状となっている。
Specifically, the windward side heat exchanger 101 includes a plurality of fins 110 and a plurality of heat transfer tubes 120. The plurality of fins 110 are plate-shaped members that are long in the vertical direction. The plurality of fins 110 are, for example, formed in a rectangular shape that is long in the vertical direction. The plurality of fins 110 are arranged side by side with a predetermined fin pitch interval FP. In addition, a plurality of through holes 115 having a shape corresponding to the outer peripheral shape of the heat transfer tube 120 are formed in each of the fins 110 at predetermined intervals in the vertical direction. The heat transfer tubes 120 are inserted into these through holes 115. That is, the plurality of heat transfer tubes 120 are arranged side by side with a predetermined interval in the vertical direction.
In the first embodiment, as the heat transfer tube 120, a heat transfer tube whose cross section is a flat shape such as a substantially elliptical shape or a substantially oval shape is used. For this reason, the through-hole formed in the fin 110 is also a flat shape.
 ここで、風上側熱交換器101は、第1端部111側から室外ファン7によって空気が供給される。また、フィン110には、伝熱管120よりも第2端部112側となる範囲に、上端部113から下端部114にわたって切り欠きが形成されていない排水領域117が形成されている。すなわち、フィン110には、室外ファン7の送風方向において伝熱管120よりも下流側となる範囲に、上端部113から下端部114にわたって切り欠きが形成されていない排水領域117が形成されている。詳しくは、図5に示すように、伝熱管120の第2端部112側の端部122同士を接続する仮想直線を、仮想直線123と定義する。この場合、本実施の形態1に係るフィン110においては、当該仮想直線123と第2端部112との間には、上端部113から下端部114にわたって切り欠きが形成されていない。すなわち、仮想直線123と第2端部112との間が排水領域117となっている。 Here, the wind-side heat exchanger 101 is supplied with air from the first end 111 side by the outdoor fan 7. Further, the fin 110 is formed with a drainage region 117 in which a notch is not formed from the upper end 113 to the lower end 114 in a range closer to the second end 112 than the heat transfer tube 120. That is, the fin 110 is formed with a drainage region 117 in which a notch is not formed from the upper end portion 113 to the lower end portion 114 in a range downstream of the heat transfer tube 120 in the blowing direction of the outdoor fan 7. Specifically, as shown in FIG. 5, a virtual straight line that connects the ends 122 of the heat transfer tubes 120 on the second end 112 side is defined as a virtual straight line 123. In this case, in the fin 110 according to the first embodiment, no notch is formed between the virtual straight line 123 and the second end 112 from the upper end 113 to the lower end 114. That is, the drainage region 117 is between the virtual straight line 123 and the second end portion 112.
 このように風上側熱交換器101換言すると室外熱交換器100を構成することにより、除霜運転中に室外ファン7を稼働させる除霜時送風排水制御を行った際、フィン110及び伝熱管120の表面に付着している除霜水は、室外ファン7からの送風によって、排水領域117へと運ばれる。そして、排水領域117へと運ばれた除霜水は、重力によって、下端部114の方へ排水領域117を滑り落ちる。そして、下端部114へ到達した除霜水は、該下端部114から落下し、風上側熱交換器101換言すると室外熱交換器100から排出される。 In this way, by configuring the upside heat exchanger 101, in other words, the outdoor heat exchanger 100, when performing the defrosting blast drainage control for operating the outdoor fan 7 during the defrosting operation, the fin 110 and the heat transfer tube 120. The defrosted water adhering to the surface is carried to the drainage region 117 by the air blown from the outdoor fan 7. And the defrost water conveyed to the drainage area | region 117 slides down the drainage area | region 117 toward the lower end part 114 with gravity. And the defrost water which reached | attained the lower end part 114 falls from this lower end part 114, and in other words, is discharged | emitted from the outdoor heat exchanger 100 in the windward side heat exchanger 101.
 上述のように、排水領域117には、上端部113から下端部114にわたって切り欠きが形成されていない。このため、除霜水が下端部114の方へ排水領域117を滑り落ちる際、除霜水が表面張力によって切り欠きに引きつけられることがない。したがって、このように風上側熱交換器101換言すると室外熱交換器100を構成することにより、除霜運転中に室外ファン7を稼働させる除霜時送風排水制御を行った際、早期に除霜水を室外熱交換器100から排出させることができ、室外熱交換器100の排水性を向上させることができる。 As described above, the drainage region 117 is not formed with a notch from the upper end 113 to the lower end 114. For this reason, when the defrost water slides down the drainage region 117 toward the lower end portion 114, the defrost water is not attracted to the notch by the surface tension. Therefore, when the wind-side heat exchanger 101, in other words, the outdoor heat exchanger 100 is configured as described above, when the defrosting blast drainage control for operating the outdoor fan 7 during the defrosting operation is performed, the defrosting is quickly performed. Water can be discharged from the outdoor heat exchanger 100, and the drainage of the outdoor heat exchanger 100 can be improved.
 なお、本実施の形態1に係る室外熱交換器100を、以下のように構成してもよい。
 図7は、本発明の実施の形態1に係る空気調和装置の室外熱交換器の別の一例を示す要部拡大図である。この図7は、図5と同じ観察方向から、室外熱交換器100の別の一例を示している。
 図7に示すように、フィン110に、貫通孔115と連通し、第1端部111側に開口する切り欠き116を形成してもよい。このようにフィン110に切り欠き116を形成することにより、切り欠き116を通して貫通孔115へ伝熱管を挿入することができ、貫通孔115への伝熱管120の挿入が容易となる。すなわち、室外熱交換器100の組立を容易とすることができる。
In addition, you may comprise the outdoor heat exchanger 100 which concerns on this Embodiment 1 as follows.
FIG. 7 is an essential part enlarged view showing another example of the outdoor heat exchanger of the air-conditioning apparatus according to Embodiment 1 of the present invention. This FIG. 7 has shown another example of the outdoor heat exchanger 100 from the same observation direction as FIG.
As shown in FIG. 7, a notch 116 that communicates with the through hole 115 and opens to the first end 111 side may be formed in the fin 110. By forming the notch 116 in the fin 110 in this manner, the heat transfer tube can be inserted into the through hole 115 through the notch 116, and the heat transfer tube 120 can be easily inserted into the through hole 115. That is, the outdoor heat exchanger 100 can be easily assembled.
 ここで、除霜運転中に除霜時送風排水制御を行った際、室外熱交換器100の排水性を向上させるには、室外ファン7の送風方向において伝熱管120よりも下流側となる範囲に、排水領域117を配置する必要がある。すなわち、図7にD1で示すように、室外ファン7から室外熱交換器100への送風は、切り欠き116が形成された第1端部111側から行う必要がある。このため、図7にD2で示すように、暖房運転時に室外ファン7が第2端部112側から室外熱交換器100へ送風する構成の場合、除霜時送風排水制御を行うときには、室外ファン7を暖房運転時とは逆方向に回転させ、室外ファン7の送風方向を図7のD1方向にする。 Here, in order to improve the drainage performance of the outdoor heat exchanger 100 when performing the defrosting ventilation drainage control during the defrosting operation, the range that is on the downstream side of the heat transfer tube 120 in the blowing direction of the outdoor fan 7 In addition, it is necessary to dispose the drainage region 117. That is, as indicated by D1 in FIG. 7, it is necessary to blow air from the outdoor fan 7 to the outdoor heat exchanger 100 from the first end 111 side where the notch 116 is formed. Therefore, as shown by D2 in FIG. 7, when the outdoor fan 7 blows air from the second end 112 side to the outdoor heat exchanger 100 during the heating operation, when performing the defrosting air discharge control, the outdoor fan 7 is rotated in the opposite direction to that during the heating operation, and the blowing direction of the outdoor fan 7 is set to the direction D1 in FIG.
 以上、本実施の形態1に係る空気調和装置1は、蒸発器として機能する室外熱交換器100と、室外熱交換器100に送風する室外ファン7と、室外熱交換器100及び室外ファン7を収容し、下部に水を排出するドレン孔13が形成された筐体10と、ドレン孔13から排出される水を検出する排水検出装置23と、室外熱交換器100の除霜運転を制御する制御装置30と、を備えている。また、制御装置30は、室外ファン7を停止した状態で除霜運転を実行中、排水検出装置23が水を検出した場合に室外ファン7を稼働させる構成となっている。 As described above, the air-conditioning apparatus 1 according to Embodiment 1 includes the outdoor heat exchanger 100 that functions as an evaporator, the outdoor fan 7 that blows air to the outdoor heat exchanger 100, the outdoor heat exchanger 100, and the outdoor fan 7. The housing 10 in which the drain hole 13 that accommodates and discharges water is formed in the lower part, the drainage detection device 23 that detects the water discharged from the drain hole 13, and the defrosting operation of the outdoor heat exchanger 100 are controlled. And a control device 30. The control device 30 is configured to operate the outdoor fan 7 when the drainage detection device 23 detects water during the defrosting operation with the outdoor fan 7 stopped.
 本実施の形態1に係る空気調和装置1は、室外ファン7の送風によって室外熱交換器100に滞留した除霜水を室外熱交換器100の外部へ排出させることができる。したがって、本実施の形態1に係る空気調和装置1は、室外熱交換器100の排水性を向上させることができる。 The air conditioner 1 according to the first embodiment can discharge the defrosted water staying in the outdoor heat exchanger 100 by the blowing of the outdoor fan 7 to the outside of the outdoor heat exchanger 100. Therefore, the air conditioning apparatus 1 according to Embodiment 1 can improve the drainage of the outdoor heat exchanger 100.
 ここで、除霜運転が開始され、室外熱交換器100に付着した霜が融解して除霜水が発生すると、除霜水の大部分は、室外熱交換器100から排出される。本実施の形態1に係る空気調和装置1は、室外熱交換器100は筐体10に収容されている。このため、室外熱交換器100から排出された除霜水は、筐体10の下部に形成されたドレン孔13から、筐体10の外部へ排出される。この際、本実施の形態1に係る空気調和装置1においては、除霜水がドレン孔13から排出されることを、排水検出装置23で検出することができる。そして、本実施の形態1に係る空気調和装置1は、ドレン孔13から除霜水が排出されていることを排水検出装置23で検出すると、室外ファン7を稼働させる。 Here, when the defrosting operation is started and frost adhering to the outdoor heat exchanger 100 is melted to generate defrost water, most of the defrost water is discharged from the outdoor heat exchanger 100. In the air conditioner 1 according to Embodiment 1, the outdoor heat exchanger 100 is accommodated in the housing 10. For this reason, the defrost water discharged | emitted from the outdoor heat exchanger 100 is discharged | emitted from the drain hole 13 formed in the lower part of the housing | casing 10 to the exterior of the housing | casing 10. FIG. At this time, in the air-conditioning apparatus 1 according to Embodiment 1, the drainage detection device 23 can detect that the defrost water is discharged from the drain hole 13. And if the air conditioning apparatus 1 which concerns on this Embodiment 1 detects that the defrost water is discharged | emitted from the drain hole 13 with the waste_water | drain detection apparatus 23, the outdoor fan 7 will be operated.
 これにより、除霜運転時に、室外ファン7からの送風によって、室外熱交換器100に滞留している除霜水を室外熱交換器100から排出させることができる。このため、本実施の形態1に係る空気調和装置1は、除霜運転開始時つまり暖房運転終了時から次回の暖房運転開始時までの時間が長くなってしまうことを抑制できる。したがって、本実施の形態1に係る空気調和装置1は、室外熱交換器100の排水性を向上させることができ、暖房運転と除霜運転とを繰り返すことによる一定時間における平均暖房能力の低下も抑制することができる。 Thereby, the defrost water staying in the outdoor heat exchanger 100 can be discharged from the outdoor heat exchanger 100 by blowing from the outdoor fan 7 during the defrosting operation. For this reason, the air conditioning apparatus 1 which concerns on this Embodiment 1 can suppress that time from the time of a defrost operation start, ie, the end of heating operation, to the next heating operation start becoming long. Therefore, the air-conditioning apparatus 1 according to Embodiment 1 can improve the drainage of the outdoor heat exchanger 100, and the average heating capacity in a certain period of time is reduced by repeating the heating operation and the defrosting operation. Can be suppressed.
 また、本実施の形態1に係る空気調和装置1においては、室外熱交換器100は、上端部113及び下端部114を有し、横方向に第1端部111及び第2端部112を有するフィン110と、フィン110を貫通する伝熱管120と、を備え、除霜運転中、第1端部111側から室外ファン7によって空気が供給される構成である。また、フィン110は、伝熱管120よりも第2端部112側となる範囲に、上端部113から下端部114にわたって切り欠きが形成されていない排水領域117が形成されている。このため、本実施の形態1に係る空気調和装置1は、室外熱交換器100の排水性をさらに向上させることができ、平均暖房能力の低下をさらに抑制することができる。 Moreover, in the air conditioning apparatus 1 which concerns on this Embodiment 1, the outdoor heat exchanger 100 has the upper end part 113 and the lower end part 114, and has the 1st end part 111 and the 2nd end part 112 in the horizontal direction. A fin 110 and a heat transfer tube 120 penetrating the fin 110 are provided, and air is supplied from the first end 111 side by the outdoor fan 7 during the defrosting operation. Further, in the fin 110, a drainage region 117 in which notches are not formed from the upper end 113 to the lower end 114 is formed in a range closer to the second end 112 than the heat transfer tube 120. For this reason, the air conditioning apparatus 1 which concerns on this Embodiment 1 can further improve the drainage of the outdoor heat exchanger 100, and can further suppress the fall of an average heating capability.
実施の形態2.
 実施の形態1では、除霜時送風排水制御の開始から暖房運転の開始まで、室外ファン7を継続して稼働させていた。しかしながら、室外ファン7の稼働方法は、実施の形態1で示した稼働方法に限定されるものではない。例えば、本実施の形態2に示すように、室外空気の温度に応じて、室外ファン7の稼働時間を変更させてもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In Embodiment 1, the outdoor fan 7 was continuously operated from the start of the defrosting air discharge control to the start of the heating operation. However, the operation method of the outdoor fan 7 is not limited to the operation method shown in the first embodiment. For example, as shown in the second embodiment, the operating time of the outdoor fan 7 may be changed according to the temperature of the outdoor air. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図8は、本発明の実施の形態2に係る空気調和装置の一例を示す冷媒回路図である。
 本実施の形態2に係る空気調和装置1は、実施の形態1で説明した構成に加え、制御装置30の機能部として、算出部34を備えている。算出部34は、室外空気の温度を検出する第1温度検出装置21の検出温度から、除霜運転中における室外ファン7の稼働時間を算出するものである。そして、本実施の形態2に係る空気調和装置1においては、制御装置30の制御部32は、除霜運転中、つまり除霜時送風排水制御中、算出部34で算出された稼働時間だけ、室外ファン7を稼働させる。すなわち、制御装置30は、第1温度検出装置21の検出温度によって、除霜運転中における室外ファン7の稼働時間を異ならせる。
FIG. 8 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus according to Embodiment 2 of the present invention.
The air conditioner 1 according to the second embodiment includes a calculation unit 34 as a functional unit of the control device 30 in addition to the configuration described in the first embodiment. The calculation unit 34 calculates the operating time of the outdoor fan 7 during the defrosting operation from the temperature detected by the first temperature detection device 21 that detects the temperature of the outdoor air. And in the air conditioning apparatus 1 which concerns on this Embodiment 2, the control part 32 of the control apparatus 30 is only during the operation time calculated by the calculation part 34 during the defrost operation, ie, during the defrost ventilation / drainage control. The outdoor fan 7 is operated. That is, the control device 30 varies the operating time of the outdoor fan 7 during the defrosting operation according to the temperature detected by the first temperature detection device 21.
 上述のように、除霜運転時に室外ファン7を稼働させることにより、つまり除霜時送風排水制御を行うことにより、室外熱交換器100の排水性を向上させることができる。しかしながら、室外空気の温度が氷点下となっている場合、除霜時送風排水制御の開始から暖房運転の開始まで室外ファン7を継続して稼働させると、室外熱交換器100に付着した除霜水が再凝固する場合がある。この除霜水が再凝固するまでの時間は、室外空気の温度が低いほど早い。また、室外空気の温度が氷点下となっている場合、室外空気とホットガスとの温度差が大きいため、本来残霜の融解に消費されるべきホットガスの熱量が、空気との熱交換で消費されてしまう。このため、霜の融解が遅れて、除霜時間が長くなってしまう。そこで、算出部34は、室外空気の温度を検出する第1温度検出装置21の検出温度が低い程、室外ファン7の稼働時間を短く算出する構成となっている。すなわち、制御装置30は、室外空気の温度を検出する第1温度検出装置21の検出温度が低い程、室外ファン7の稼働時間を短くする。 As described above, the drainage of the outdoor heat exchanger 100 can be improved by operating the outdoor fan 7 during the defrosting operation, that is, by performing the blast drainage control during the defrosting. However, when the temperature of the outdoor air is below freezing point, if the outdoor fan 7 is continuously operated from the start of the defrosting ventilation drainage control to the start of the heating operation, the defrosted water attached to the outdoor heat exchanger 100 May re-solidify. The time until the defrost water re-solidifies is faster as the temperature of the outdoor air is lower. Also, when the temperature of outdoor air is below freezing point, the temperature difference between the outdoor air and hot gas is large, so the amount of heat of the hot gas that should be consumed for thawing residual frost is consumed by heat exchange with air. Will be. For this reason, melting of frost is delayed, and the defrosting time becomes long. Therefore, the calculation unit 34 is configured to calculate the operating time of the outdoor fan 7 as the detected temperature of the first temperature detection device 21 that detects the temperature of the outdoor air is lower. That is, the control device 30 shortens the operating time of the outdoor fan 7 as the detected temperature of the first temperature detecting device 21 that detects the temperature of the outdoor air is lower.
 図9は、本発明の実施の形態2に係る空気調和装置が備えた、除霜運転中の室外ファンの稼働時間を算出するための情報の一例を示す図である。
 例えば、制御装置30の記憶部33は、図9に示すような、テーブルを記憶している。そして、算出部34は、このテーブルを用いて、除霜運転中における室外ファン7の稼働時間を算出する。
FIG. 9 is a diagram illustrating an example of information for calculating the operating time of the outdoor fan during the defrosting operation, which is provided in the air-conditioning apparatus according to Embodiment 2 of the present invention.
For example, the storage unit 33 of the control device 30 stores a table as shown in FIG. And the calculation part 34 calculates the operating time of the outdoor fan 7 during a defrost operation using this table.
 詳しくは、第1温度検出装置21の検出温度T1が規定温度Ta1以上の場合、換言すると室外空気温度が規定温度Ta1以上の場合、算出部34は、除霜水の再凝固が生じないとして、除霜時送風排水制御の開始から暖房運転の開始まで室外ファン7を継続して稼働させるよう、室外ファン7の稼働時間を算出する。なお、本実施の形態2では、規定温度Ta1を例えば1℃としている。 Specifically, when the detected temperature T1 of the first temperature detection device 21 is equal to or higher than the specified temperature Ta1, in other words, when the outdoor air temperature is equal to or higher than the specified temperature Ta1, the calculation unit 34 assumes that re-solidification of defrost water does not occur. The operation time of the outdoor fan 7 is calculated so that the outdoor fan 7 is continuously operated from the start of the defrosting air discharge control to the start of the heating operation. In the second embodiment, the specified temperature Ta1 is set to 1 ° C., for example.
 また、第1温度検出装置21の検出温度T1が規定温度Ta2以上で規定温度Ta1より低くなっている場合、換言すると室外空気温度が規定温度Ta2以上で規定温度Ta1より低くなっている場合、算出部34は、除霜時送風排水制御の開始からの室外ファン7の稼働をS秒と算出する。すなわち、算出部34は、除霜水の再凝固が生じない時間だけ室外ファン7を稼働させ、室外熱交換器100の排水性を向上させる。なお、本実施の形態2では、規定温度Ta2を例えば-3℃としている。また、S秒を例えば60秒としている。 Further, when the detected temperature T1 of the first temperature detecting device 21 is equal to or higher than the specified temperature Ta2 and lower than the specified temperature Ta1, in other words, when the outdoor air temperature is equal to or higher than the specified temperature Ta2 and lower than the specified temperature Ta1, the calculation is performed. The part 34 calculates the operation of the outdoor fan 7 from the start of the defrosting air discharge control as S seconds. That is, the calculation unit 34 operates the outdoor fan 7 for a time during which the defrost water does not resolidify, and improves the drainage of the outdoor heat exchanger 100. In the second embodiment, the specified temperature Ta2 is set to −3 ° C., for example. Further, the S second is set to 60 seconds, for example.
 また、第1温度検出装置21の検出温度T1が規定温度Ta2より低くなっている場合、換言すると室外空気温度が規定温度Ta2より低くなっている場合、算出部34は、除霜時送風排水制御の開始からの室外ファン7の稼働を0秒と算出する。すなわち、制御装置30は、室外ファン7の稼働時間を0秒とする。換言すると、制御装置30は、室外ファン7を稼働させないようにする。室外空気温度が規定温度Ta2より低くなっている場合、除霜水が再凝固するまでの時間が短く、室外ファン7の送風による室外熱交換器100の排水性の向上効果が得られる前に、除霜水が再凝固してしまうからである。
 ここで、本実施の形態2では、規定温度Ta2が、本発明の第1規定温度に相当する。
In addition, when the detected temperature T1 of the first temperature detection device 21 is lower than the specified temperature Ta2, in other words, when the outdoor air temperature is lower than the specified temperature Ta2, the calculation unit 34 performs the defrosting air discharge control. The operation of the outdoor fan 7 from the start of is calculated as 0 seconds. That is, the control device 30 sets the operation time of the outdoor fan 7 to 0 seconds. In other words, the control device 30 prevents the outdoor fan 7 from operating. When the outdoor air temperature is lower than the specified temperature Ta2, the time until the defrost water is re-solidified is short, and before the effect of improving the drainage of the outdoor heat exchanger 100 by the blowing of the outdoor fan 7 is obtained, This is because the defrost water is solidified again.
Here, in the second embodiment, the specified temperature Ta2 corresponds to the first specified temperature of the present invention.
 なお、図9に示したテーブルは、除霜運転中の室外ファン7の稼働時間を算出するための情報の一例である。図9は第1温度検出装置21の検出温度の範囲を3分割したテーブルとなっていたが、第1温度検出装置21の検出温度の範囲を2分割したテーブルとしてもよいし、第1温度検出装置21の検出温度の範囲を4つ以上に分割したテーブルとしてもよい。また、除霜運転中の室外ファン7の稼働時間を算出するための情報として、第1温度検出装置21の検出温度と除霜運転中の室外ファン7の稼働時間との関係式等を用いてもよい。すなわち、第1温度検出装置21の検出温度に応じて、室外ファン7の稼働時間を連続的に変更してもよい。 The table shown in FIG. 9 is an example of information for calculating the operating time of the outdoor fan 7 during the defrosting operation. Although FIG. 9 shows a table in which the range of the detected temperature of the first temperature detection device 21 is divided into three, it may be a table in which the range of the detected temperature of the first temperature detection device 21 is divided into two, or the first temperature detection It is good also as a table which divided | segmented the range of the detected temperature of the apparatus 21 into four or more. Further, as information for calculating the operating time of the outdoor fan 7 during the defrosting operation, a relational expression between the detected temperature of the first temperature detecting device 21 and the operating time of the outdoor fan 7 during the defrosting operation is used. Also good. That is, the operating time of the outdoor fan 7 may be changed continuously according to the temperature detected by the first temperature detection device 21.
[空気調和装置1の除霜運転時の動作]
 図10は、本発明の実施の形態2に係る空気調和装置における除霜運転時の制御フローチャート図である。また、図11は、本発明の実施の形態2に係る空気調和装置における除霜運転時の圧縮機及び室外ファンの動作を示すタイムフロー図である。
 上述のように構成された本実施の形態2に係る空気調和装置1は、除霜運転時、図10及び図11のように動作する。
[Operation at the time of defrosting operation of the air conditioner 1]
FIG. 10 is a control flowchart for the defrosting operation in the air-conditioning apparatus according to Embodiment 2 of the present invention. FIG. 11 is a time flow diagram showing the operations of the compressor and the outdoor fan during the defrosting operation in the air-conditioning apparatus according to Embodiment 2 of the present invention.
The air conditioning apparatus 1 according to Embodiment 2 configured as described above operates as shown in FIGS. 10 and 11 during the defrosting operation.
 具体的には、本実施の形態2に係る空気調和装置1においては、除霜運転中、実施の形態1の図2で示したステップS7の制御に替えて、図10に示すようにステップS11,12の制御を行う。詳しくは、ドレン孔13から規定流量W1よりも多くの除霜水が排出されていることが排水検出装置23によって検出されると(図2のステップS6のYes)、ステップS11において算出部34は、室外空気の温度を検出する第1温度検出装置21の検出温度から、除霜運転中における室外ファン7の稼働時間を算出する。そして、ステップS12において制御部32は、算出部34で算出された稼働時間だけ、室外ファン7を稼働させる。このため、図11に示すように、室外ファン7の稼働時間によっては、除霜運転が終了する前に、室外ファン7が停止する場合もある(図11の点B参照)。 Specifically, in the air conditioning apparatus 1 according to the second embodiment, during the defrosting operation, instead of the control of step S7 shown in FIG. 2 of the first embodiment, step S11 as shown in FIG. , 12 are controlled. Specifically, when the drainage detection device 23 detects that a larger amount of defrost water than the specified flow rate W1 is discharged from the drain hole 13 (Yes in step S6 in FIG. 2), the calculation unit 34 in step S11 The operating time of the outdoor fan 7 during the defrosting operation is calculated from the detected temperature of the first temperature detecting device 21 that detects the temperature of the outdoor air. In step S <b> 12, the control unit 32 operates the outdoor fan 7 for the operation time calculated by the calculation unit 34. For this reason, as shown in FIG. 11, depending on the operating time of the outdoor fan 7, the outdoor fan 7 may stop before the defrosting operation ends (see point B in FIG. 11).
 以上、本実施の形態2に係る空気調和装置1においては、実施の形態1に示した構成に加え、制御装置30は、第1温度検出装置21の検出温度によって、除霜運転中における室外ファン7の稼働時間を異ならせる。このため、本実施の形態2に係る空気調和装置1は、実施の形態1で示した効果に加え、除霜時送風排水制御中に除霜水が再凝固することを防止できるという効果、及び、室外ファン7の送風によって霜の融解が遅れて除霜時間が長くなってしまうことを防止できるという効果を得ることができる。 As described above, in the air conditioner 1 according to the second embodiment, in addition to the configuration shown in the first embodiment, the control device 30 uses the detected temperature of the first temperature detection device 21 to increase the outdoor fan during the defrosting operation. 7 different operating hours. For this reason, in addition to the effect shown in Embodiment 1, the air conditioning apparatus 1 which concerns on this Embodiment 2 can prevent that defrost water re-solidifies during ventilation defrosting drain control at the time of defrost, and The effect that the defrosting time can be prevented from being prolonged due to the frost melting being delayed by the blowing of the outdoor fan 7 can be obtained.
実施の形態3.
 本実施の形態3に係る空気調和装置1は、実施の形態1又は実施の形態2で示した空気調和装置1に対して、除霜水の排出進行度合いによって室外ファン7の稼働時間を変更する制御を追加したものである。以下では、実施の形態1に当該制御を追加した例について説明する。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 3 FIG.
The air conditioner 1 according to the third embodiment changes the operating time of the outdoor fan 7 depending on the progress of the defrost water discharge with respect to the air conditioner 1 shown in the first embodiment or the second embodiment. Control is added. Below, the example which added the said control to Embodiment 1 is demonstrated. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
 図12は、本発明の実施の形態3に係る空気調和装置における除霜運転時の制御フローチャート図である。また、図13は、本発明の実施の形態3に係る空気調和装置における除霜運転時の圧縮機及び室外ファンの動作を示すタイムフロー図である。
 本実施の形態3に係る空気調和装置1においては、実施の形態1の図2で示した除霜時送風排水制御の中に、ステップS21,22の制御が追加されている。
FIG. 12 is a control flowchart for the defrosting operation in the air-conditioning apparatus according to Embodiment 3 of the present invention. FIG. 13 is a time flow diagram showing the operations of the compressor and the outdoor fan during the defrosting operation in the air-conditioning apparatus according to Embodiment 3 of the present invention.
In the air conditioner 1 according to the third embodiment, the control in steps S21 and S22 is added to the defrosting blast drainage control shown in FIG. 2 of the first embodiment.
 具体的には、ステップS7において室外ファン7が稼働された後、ドレン孔13から排出される除霜水の流量が規定流量W2以下となっていることが排水検出装置23によって検出されると(図12のステップS21のYes)、ステップS22において制御部32は、室外ファン7を停止させる。つまり、図13のC点に示すように、ドレン孔13から排出される除霜水の流量が規定流量W2以下となっていることが排水検出装置23によって検出されると、除霜運転が終了していなくても室外ファン7が停止することとなる。規定流量W2は、例えば記憶部33に記憶されている。 Specifically, when the outdoor fan 7 is operated in step S7, the drainage detection device 23 detects that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2 ( In step S21 in FIG. 12, the control unit 32 stops the outdoor fan 7 in step S22. That is, as shown at point C in FIG. 13, when the drainage detection device 23 detects that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2, the defrost operation is finished. Even if it does not do, the outdoor fan 7 will stop. The prescribed flow rate W2 is stored in the storage unit 33, for example.
 ここで、規定流量W2が、本発明の第2規定流量に相当する。なお、本実施の形態3に係る空気調和装置1においても、実施の形態1と同様に、排水検出装置23として、水の有無を検出する電極式センサを用いている。このため、本実施の形態3に係る排水検出装置23は、ドレン孔13から除霜水が排出されているか否かを検出できることとなる。したがって、本実施の形態3では、規定流量W2を0m/secとしている。なお、排水検出装置23として、ドレン孔13を流れる除霜水の具体的な流量を検出できる流量センサ等を用いる場合、規定流量W2を0m/sec以外の値にしても勿論よい。 Here, the prescribed flow rate W2 corresponds to the second prescribed flow rate of the present invention. Note that, also in the air conditioner 1 according to the third embodiment, as in the first embodiment, an electrode type sensor that detects the presence or absence of water is used as the drainage detection device 23. For this reason, the waste water detection device 23 according to the third embodiment can detect whether or not the defrost water is discharged from the drain hole 13. Therefore, in the third embodiment, the specified flow rate W2 is set to 0 m 3 / sec. In addition, when using the flow sensor etc. which can detect the specific flow volume of the defrost water which flows through the drain hole 13 as the waste_water | drain detection apparatus 23, of course, you may make prescribed flow rate W2 into values other than 0 m < 3 > / sec.
 ドレン孔13から排出される除霜水の流量が規定流量W2以下になっているということは、ほぼ全ての除霜水が筐体10外へ排出された状態になっているということである。このため、このような状態で室外ファン7を稼働させても、室外熱交換器100の排水性の向上には、あまり寄与しない。すなわち、このような状態で室外ファン7を停止することにより、室外熱交換器100の排水性を低下させることなく、室外ファン7での消費電力を低減することができる。 The fact that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2 means that almost all the defrost water is discharged to the outside of the housing 10. For this reason, even if the outdoor fan 7 is operated in such a state, it does not contribute much to the improvement of drainage of the outdoor heat exchanger 100. That is, by stopping the outdoor fan 7 in such a state, the power consumption in the outdoor fan 7 can be reduced without reducing the drainage of the outdoor heat exchanger 100.
 なお、実施の形態2の図10で示した除霜時送風排水制御の中にステップS21,22の制御を追加する場合、ステップS12とステップS8との間にステップS21,22を追加すればより。これにより、室外熱交換器100の排水性を低下させることなく、室外ファン7での消費電力を低減することができる。 In addition, when adding control of step S21,22 in the defrosting ventilation drainage control shown in FIG. 10 of Embodiment 2, if step S21,22 is added between step S12 and step S8, it is more. . Thereby, the power consumption in the outdoor fan 7 can be reduced without reducing the drainage of the outdoor heat exchanger 100.
 また、本実施の形態3では、ステップS22において室外ファン7を停止させた。しかしながら、ステップS22において、室外ファン7を停止させない程度に、室外ファン7の回転数を低下させてもよい。このように室外ファン7の回転数を制御しても、室外熱交換器100の排水性を低下させることなく、室外ファン7での消費電力を低減することができる。なお、本実施の形態3では、室外ファン7の消費電力を最も低減できるよう、室外ファン7を停止させている。換言すると、本実施の形態3では、室外ファン7の消費電力を最も低減できるよう、室外ファン7の回転数を0rpmまで低減させている。 In the third embodiment, the outdoor fan 7 is stopped in step S22. However, in step S22, the rotational speed of the outdoor fan 7 may be reduced to such an extent that the outdoor fan 7 is not stopped. Thus, even if the rotational speed of the outdoor fan 7 is controlled, the power consumption in the outdoor fan 7 can be reduced without reducing the drainage of the outdoor heat exchanger 100. In the third embodiment, the outdoor fan 7 is stopped so that the power consumption of the outdoor fan 7 can be reduced most. In other words, in Embodiment 3, the rotational speed of the outdoor fan 7 is reduced to 0 rpm so that the power consumption of the outdoor fan 7 can be reduced most.
 以上、本実施の形態3に係る空気調和装置1においては、実施の形態1又は実施の形態2で示した構成に加え、制御部32は、除霜運転中に室外ファン7を稼働させている際、ドレン孔13から排出される除霜水の流量が規定流量W2以下となっていることが排水検出装置23によって検出された場合、室外ファン7の回転数を低下させる構成となっている。このため、本実施の形態3に係る空気調和装置1は、実施の形態1又は実施の形態2で示した効果に加え、室外熱交換器100の排水性を低下させることなく、室外ファン7での消費電力を低減することができるという効果を得ることもできる。 As described above, in the air-conditioning apparatus 1 according to the third embodiment, in addition to the configuration shown in the first or second embodiment, the control unit 32 operates the outdoor fan 7 during the defrosting operation. At this time, when the drainage detection device 23 detects that the flow rate of the defrost water discharged from the drain hole 13 is equal to or less than the specified flow rate W2, the rotational speed of the outdoor fan 7 is reduced. For this reason, in addition to the effect shown in Embodiment 1 or Embodiment 2, the air conditioning apparatus 1 which concerns on this Embodiment 3 is the outdoor fan 7 without reducing the drainage of the outdoor heat exchanger 100. It is also possible to obtain an effect that the power consumption can be reduced.
 なお、実施の形態1~実施の形態3では、本発明に係る利用側熱交換器を室内熱交換器3として用いた空気調和装置1を例に、本発明に係る冷凍サイクル装置を説明した。しかしながら、本発明に係る冷凍サイクル装置は、空気調和装置のみに限定されるものではない。例えば、本発明に係る利用側熱交換器で水を加熱する給湯装置等、筐体内に収容された室外熱交換器を有する種々の冷凍サイクル装置に、本発明を実施することができる。 In Embodiments 1 to 3, the refrigeration cycle apparatus according to the present invention has been described by taking the air conditioner 1 using the use side heat exchanger according to the present invention as the indoor heat exchanger 3 as an example. However, the refrigeration cycle apparatus according to the present invention is not limited to the air conditioner. For example, the present invention can be implemented in various refrigeration cycle apparatuses having an outdoor heat exchanger housed in a housing, such as a hot water supply apparatus that heats water with the use side heat exchanger according to the present invention.
 1 空気調和装置、2 圧縮機、3 室内熱交換器、4 絞り装置、5 流路切替装置、6 室内ファン、7 室外ファン、10 筐体、11 吸込口、12 吹出口、13 ドレン孔、21 第1温度検出装置、22 第2温度検出装置、23 排水検出装置、30 制御装置、31 除霜決定部、32 制御部、33 記憶部、34 算出部、100 室外熱交換器、101 風上側熱交換器、102 風下側熱交換器、103 風上側ヘッダ集合管、104 風下側ヘッダ集合管、105 列間接続部材、110 フィン、111 第1端部、112 第2端部、113 上端部、114 下端部、115 貫通孔、116 切り欠き、117 排水領域、120 伝熱管、122 端部、123 仮想直線。 1 air conditioner, 2 compressor, 3 indoor heat exchanger, 4 throttling device, 5 flow path switching device, 6 indoor fan, 7 outdoor fan, 10 housing, 11 inlet, 12 outlet, 13 drain hole, 21 1st temperature detection device, 22 2nd temperature detection device, 23 Waste water detection device, 30 Control device, 31 Defrost determination unit, 32 Control unit, 33 Storage unit, 34 Calculation unit, 100 Outdoor heat exchanger, 101 Windward heat Exchanger, 102 leeward heat exchanger, 103 leeward header collecting pipe, 104 leeward header collecting pipe, 105 inter-row connecting member, 110 fin, 111 first end, 112 second end, 113 upper end, 114 Lower end, 115 through hole, 116 notch, 117 drainage area, 120 heat transfer tube, 122 end, 123 virtual straight line.

Claims (14)

  1.  蒸発器として機能する室外熱交換器と、
     前記室外熱交換器に送風する室外ファンと、
     前記室外熱交換器及び前記室外ファンを収容し、下部に水を排出するドレン孔が形成された筐体と、
     前記ドレン孔から排出される水を検出する排水検出装置と、
     前記室外熱交換器の除霜運転を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記室外ファンを停止した状態で前記除霜運転を実行中、前記排水検出装置が水を検出した場合に前記室外ファンを稼働させる構成である冷凍サイクル装置。
    An outdoor heat exchanger that functions as an evaporator,
    An outdoor fan that blows air to the outdoor heat exchanger;
    A housing in which the outdoor heat exchanger and the outdoor fan are accommodated and a drain hole for discharging water is formed in the lower part;
    A waste water detection device for detecting water discharged from the drain hole;
    A control device for controlling the defrosting operation of the outdoor heat exchanger;
    With
    The control device includes:
    A refrigerating cycle device configured to operate the outdoor fan when the drainage detection device detects water during the defrosting operation in a state where the outdoor fan is stopped.
  2.  前記制御装置は、
     前記室外ファンを停止した状態で前記除霜運転を実行中、前記排水検出装置が第1規定流量よりも多くの水を検出した場合、前記室外ファンを稼働させる構成である請求項1に記載の冷凍サイクル装置。
    The control device includes:
    2. The configuration according to claim 1, wherein the outdoor fan is operated when the drainage detection device detects more water than the first specified flow rate while the defrosting operation is being performed with the outdoor fan stopped. Refrigeration cycle equipment.
  3.  前記制御装置は、
     前記室外熱交換器の前記除霜運転の開始及び終了を決定する除霜決定部と、
     前記除霜決定部が前記除霜運転の開始を決定した際、前記室外ファンを停止して前記除霜運転を開始し、前記除霜運転中に、前記排水検出装置が検出する水の量に基づいて停止中の前記室外ファンを稼働させる制御部と、
     を備えた請求項1又は請求項2に記載の冷凍サイクル装置。
    The control device includes:
    A defrost determining unit that determines the start and end of the defrosting operation of the outdoor heat exchanger;
    When the defrosting determination unit determines the start of the defrosting operation, the outdoor fan is stopped and the defrosting operation is started. During the defrosting operation, the amount of water detected by the drainage detection device is set. A control unit for operating the outdoor fan that is stopped based on,
    The refrigeration cycle apparatus according to claim 1 or 2, further comprising:
  4.  前記室外熱交換器は、
     上端部及び下端部を有し、横方向に第1端部及び第2端部を有するフィンと、
     前記フィンを貫通する伝熱管と、
     を備え、
     前記除霜運転中、前記第1端部側から前記室外ファンによって空気が供給される構成であり、
     前記フィンは、前記伝熱管よりも前記第2端部側となる範囲に、前記上端部から前記下端部にわたって切り欠きが形成されていない排水領域が形成されている請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
    The outdoor heat exchanger is
    A fin having an upper end and a lower end, and having a first end and a second end in the lateral direction;
    A heat transfer tube passing through the fin;
    With
    During the defrosting operation, air is supplied from the first end side by the outdoor fan,
    The drainage region in which notches are not formed from the upper end portion to the lower end portion is formed in a range where the fin is closer to the second end portion than the heat transfer tube. The refrigeration cycle apparatus according to any one of the above.
  5.  前記室外ファンによって前記筐体に吸い込まれた空気の温度を検出する第1温度検出装置を備え、
     前記制御装置は、前記第1温度検出装置の検出温度によって、前記除霜運転中における前記室外ファンの稼働時間を異ならせる構成である請求項1~請求項4のいずれか一項に記載の冷凍サイクル装置。
    A first temperature detecting device for detecting a temperature of air sucked into the housing by the outdoor fan;
    The refrigeration according to any one of claims 1 to 4, wherein the control device is configured to vary an operation time of the outdoor fan during the defrosting operation according to a temperature detected by the first temperature detection device. Cycle equipment.
  6.  前記制御装置は、前記第1温度検出装置の検出温度が低い程、前記稼働時間を短くする構成である請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, wherein the control device is configured to shorten the operation time as the temperature detected by the first temperature detection device is lower.
  7.  前記制御装置は、前記第1温度検出装置の検出温度が第1規定温度より低い場合、前記稼働時間を0秒とする構成である請求項5又は請求項6に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5 or 6, wherein the control device is configured to set the operation time to 0 seconds when the temperature detected by the first temperature detection device is lower than a first specified temperature.
  8.  前記制御装置は、前記第1温度検出装置の検出温度から、前記除霜運転中における前記室外ファンの前記稼働時間を算出する算出部を備えている請求項5~請求項7のいずれか一項に記載の冷凍サイクル装置。 8. The control device according to claim 5, further comprising a calculating unit that calculates the operating time of the outdoor fan during the defrosting operation from the temperature detected by the first temperature detecting device. The refrigeration cycle apparatus described in 1.
  9.  前記制御装置は、前記除霜運転中に前記室外ファンを稼働させている際、前記ドレン孔から排出される水の流量が第2規定流量以下となっていることが前記排水検出装置によって検出された場合、前記室外ファンの回転数を低下させる構成である請求項1~請求項8のいずれか一項に記載の冷凍サイクル装置。 When the outdoor fan is operating during the defrosting operation, the controller detects that the flow rate of water discharged from the drain hole is equal to or less than a second specified flow rate. The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigeration cycle apparatus is configured to reduce a rotation speed of the outdoor fan.
  10.  前記制御装置は、前記除霜運転中に前記室外ファンを稼働させている際、前記ドレン孔から排出される水の流量が前記第2規定流量以下となっていることが前記排水検出装置によって検出された場合、前記室外ファンを停止する構成である請求項9に記載の冷凍サイクル装置。 When the outdoor fan is operating during the defrosting operation, the control device detects that the flow rate of water discharged from the drain hole is equal to or less than the second specified flow rate. The refrigeration cycle apparatus according to claim 9, wherein the outdoor fan is stopped when the outdoor fan is stopped.
  11.  前記室外熱交換器の温度を検出する第2温度検出装置を備え、
     前記制御装置は、前記第2温度検出装置の温度が第2規定温度より低くなった場合、前記除霜運転を開始する構成である請求項1~請求項10のいずれか一項に記載の冷凍サイクル装置。
    A second temperature detection device for detecting the temperature of the outdoor heat exchanger;
    The refrigeration according to any one of claims 1 to 10, wherein the control device is configured to start the defrosting operation when a temperature of the second temperature detection device becomes lower than a second specified temperature. Cycle equipment.
  12.  前記制御装置は、前記第2温度検出装置の温度が第3規定温度より高くなった場合、前記除霜運転を終了する構成である請求項11に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 11, wherein the control device is configured to end the defrosting operation when a temperature of the second temperature detection device becomes higher than a third specified temperature.
  13.  圧縮機と、
     前記圧縮機の吐出口と前記室外熱交換器との間の流路を開閉する流路開閉装置と、
     を備え、
     前記制御装置は、前記除霜運転を開始する際、前記圧縮機の吐出口と前記室外熱交換器との間の流路を開くように前記流路開閉装置を制御し、前記圧縮機で圧縮された冷媒を前記室外熱交換器に供給することにより、前記室外熱交換器を除霜する構成である請求項1~請求項12のいずれか一項に記載の冷凍サイクル装置。
    A compressor,
    A flow path opening and closing device for opening and closing a flow path between the discharge port of the compressor and the outdoor heat exchanger;
    With
    When the control device starts the defrosting operation, the control device controls the flow path opening / closing device to open a flow path between the discharge port of the compressor and the outdoor heat exchanger, and the compressor compresses the flow. The refrigeration cycle apparatus according to any one of claims 1 to 12, wherein the outdoor heat exchanger is defrosted by supplying the cooled refrigerant to the outdoor heat exchanger.
  14.  利用側熱交換器と、
     前記圧縮機の吐出側に設けられ、前記圧縮機の前記吐出口の接続先を、前記利用側熱交換器又は前記室外熱交換器に切り替える流路切替装置と、
     を備え、
     前記流路切替装置が前記流路開閉装置として用いられる請求項13に記載の冷凍サイクル装置。
    A use side heat exchanger;
    A flow path switching device that is provided on the discharge side of the compressor and switches the connection destination of the discharge port of the compressor to the use side heat exchanger or the outdoor heat exchanger;
    With
    The refrigeration cycle apparatus according to claim 13, wherein the flow path switching device is used as the flow path switching device.
PCT/JP2017/014991 2017-04-12 2017-04-12 Refrigeration cycle device WO2018189830A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/014991 WO2018189830A1 (en) 2017-04-12 2017-04-12 Refrigeration cycle device
JP2019512100A JP6808023B2 (en) 2017-04-12 2017-04-12 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014991 WO2018189830A1 (en) 2017-04-12 2017-04-12 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018189830A1 true WO2018189830A1 (en) 2018-10-18

Family

ID=63793718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014991 WO2018189830A1 (en) 2017-04-12 2017-04-12 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6808023B2 (en)
WO (1) WO2018189830A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094908A (en) * 2019-05-23 2019-08-06 浙江正理生能科技有限公司 Air source heat pump exits the control method of defrost
JP2021143771A (en) * 2020-03-10 2021-09-24 株式会社富士通ゼネラル Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112594867A (en) * 2020-12-10 2021-04-02 珠海格力电器股份有限公司 Defrosting control method, device and system of air conditioner and nonvolatile storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146378U (en) * 1984-08-30 1986-03-27 株式会社東芝 air conditioner
JPS63290370A (en) * 1987-05-21 1988-11-28 ダイキン工業株式会社 Defrosting operation control device for air conditioning equipment
JPH06147603A (en) * 1992-11-06 1994-05-27 Matsushita Seiko Co Ltd Defroster
JPH09243210A (en) * 1996-03-12 1997-09-19 Fujitsu General Ltd Control method for air conditioner and apparatus therefor
JP2013221713A (en) * 2012-04-18 2013-10-28 Mitsubishi Electric Corp Heat exchanger, and heat pump device
JP2015034655A (en) * 2013-08-08 2015-02-19 株式会社富士通ゼネラル Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146378U (en) * 1984-08-30 1986-03-27 株式会社東芝 air conditioner
JPS63290370A (en) * 1987-05-21 1988-11-28 ダイキン工業株式会社 Defrosting operation control device for air conditioning equipment
JPH06147603A (en) * 1992-11-06 1994-05-27 Matsushita Seiko Co Ltd Defroster
JPH09243210A (en) * 1996-03-12 1997-09-19 Fujitsu General Ltd Control method for air conditioner and apparatus therefor
JP2013221713A (en) * 2012-04-18 2013-10-28 Mitsubishi Electric Corp Heat exchanger, and heat pump device
JP2015034655A (en) * 2013-08-08 2015-02-19 株式会社富士通ゼネラル Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094908A (en) * 2019-05-23 2019-08-06 浙江正理生能科技有限公司 Air source heat pump exits the control method of defrost
JP2021143771A (en) * 2020-03-10 2021-09-24 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP6808023B2 (en) 2021-01-06
JPWO2018189830A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6580149B2 (en) Refrigeration cycle equipment
JP5626439B2 (en) Refrigeration equipment
JP6071648B2 (en) Air conditioner
JP6768546B2 (en) Air conditioner
CN108700357B (en) Refrigerating plant
US11029067B2 (en) Refrigeration apparatus with defrost during heating operation
WO2009150824A1 (en) Refrigeration apparatus
JP2010096474A (en) Air-conditioning control device and air conditioning system
WO2014170982A1 (en) Heat pump device and air-conditioning system
WO2018189830A1 (en) Refrigeration cycle device
JP6733424B2 (en) Air conditioner
US20170198955A1 (en) Refrigeration apparatus
JP7034227B1 (en) Air conditioner and management device
JP2009162393A (en) Air conditioner
JP7422948B2 (en) air conditioner
JP2013029307A (en) Refrigerating device
JP2009299987A (en) Refrigerating device
KR101203995B1 (en) Air conditioner and defrosting method
JP2021162250A (en) Heat pump cycle device
JP2013108729A (en) Air conditioner
JP2011242097A (en) Refrigerating apparatus
CN111373205B (en) Air conditioner
KR20070064908A (en) Air conditioner and its operation method
JP7400583B2 (en) air conditioner
JP6906088B1 (en) Air conditioner and management device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905774

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载