+

WO2018189850A1 - Electron microscope - Google Patents

Electron microscope Download PDF

Info

Publication number
WO2018189850A1
WO2018189850A1 PCT/JP2017/015072 JP2017015072W WO2018189850A1 WO 2018189850 A1 WO2018189850 A1 WO 2018189850A1 JP 2017015072 W JP2017015072 W JP 2017015072W WO 2018189850 A1 WO2018189850 A1 WO 2018189850A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron microscope
image
objective lens
sample
lens coil
Prior art date
Application number
PCT/JP2017/015072
Other languages
French (fr)
Japanese (ja)
Inventor
長沖 功
圭司 田村
孝史 藤井
小林 隆幸
甲子男 影山
勉 和田
大海 三瀬
暁哉 広田
稲田 宏
拓 上ノ内
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to PCT/JP2017/015072 priority Critical patent/WO2018189850A1/en
Publication of WO2018189850A1 publication Critical patent/WO2018189850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Definitions

  • the present invention relates to an electron microscope.
  • CLEM light-electron correlation microscopy
  • Patent Document 1 describes an apparatus provided with an optical microscope in a transmission electron microscope.
  • the object of the present invention is to provide a constant energy by inverting the polarity of the coil on one side in an objective lens in which coils of the same number of turns are arranged on the upper and lower sides of the sample and pole piece and an auxiliary lens is incorporated in the magnetic path.
  • the objective is to provide an electron microscope that can reduce the sample drift by reducing the magnetic field in the vicinity of the sample and realizing an extremely low magnification of 50 times.
  • the degree of coincidence can be calculated by performing correlation calculation using an overlay technique for matching the optical microscope and the electron microscope image.
  • an embodiment of the present invention is an electron microscope including an electron source for irradiating a sample with an electron beam and a detector for detecting electrons generated from the sample by the electron beam irradiation.
  • an electron microscope comprising an upper objective lens coil and a lower objective lens coil, wherein the polarities of the upper objective lens coil and the lower objective lens coil are reversed.
  • observation efficiency is improved because image observation with less drift can be performed by switching between a 50 ⁇ ultra-low magnification image close to a light microscope image and high-definition observation.
  • FIG. 1 is a schematic configuration diagram of a scanning fluoroscopic electron microscope according to an embodiment of the present invention.
  • On-axis magnetic field and magnetic saturation diagram at objective current value at extremely low magnification according to an embodiment of the present invention The on-axis magnetic field and magnetic saturation diagram when the object polarity is switched at the time of extremely low magnification according to the embodiment of the present invention.
  • the flowchart figure of the seamless function which concerns on embodiment of this invention.
  • the flowchart figure of the seamless function and objective aperture control which concern on embodiment of this invention.
  • GUI image of seamless function according to an embodiment of the present invention The GUI image of the seamless function and objective aperture control which concern on embodiment of this invention.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • STEM scanning transmission electron microscope
  • STEM scanning transmission electron microscope
  • FIG. 1 is a schematic configuration diagram of a transmission electron microscope according to an embodiment of the present invention.
  • the electron microscope apparatus shown in this figure includes an electron gun 1, first and second irradiation lens coils 2 and 3, first and second deflection coils (scanning coils) 4 and 5, and an objective lens coil 6.
  • a sample holder 53 for holding the sample 70 (see FIG. 3) is disposed on the optical axis.
  • the objective lens coils 6 and 7 shown in the figure are strong excitation lenses (see FIGS. 3 and 4), and lenses are formed on the upper and lower sides of the sample.
  • FIG. 2 is a diagram showing a GUI displaying an extremely low magnification image related to the present invention in the electron microscope apparatus according to the embodiment of the present invention.
  • a typical electron microscope sample is placed on a 3 mm mesh and placed on a sample holder for observation.
  • the maximum field of view is 2 mm because the surrounding 0.5 mm is pressed by the sample holder.
  • the electron microscope section according to the present embodiment is configured so that the electron gun 1, the converging electron lens formed by the irradiation lens coils 2 and 3, and the electron beam generated by the electron gun 1 are placed on the sample 70 (see FIG. 3).
  • a transmission electron microscope image is formed by the deflection coils 4 and 5 for adjusting the brightness, the sample holder 53 holding the sample 70, the objective lens for imaging the sample, and the objective auxiliary lens 8.
  • the formed transmission electron microscope image is magnified by the intermediate lenses 9 and 10 and the imaging lenses 11 and 12, and is displayed on the fluorescent screen 49 or the TV camera 56.
  • a part of the hardware shown in FIG. 1 such as the sensor 35, HDD 36, monitor controller 38, RAM 45, ROM 46, and image capture interface 48, a recording control device 95 for recording a microscopic image displayed on the monitor 39, etc. Is installed.
  • FIG. 3 is a detailed view of the objective lens, in which the objective lens coils 6 and 7 are arranged vertically symmetrically, and the auxiliary lens 8 is arranged in the magnetic path.
  • LOWMAG extremely low magnification image
  • the value of current that flows through the objective lens when forming a very low magnification image (LOWMAG) is about 1/10 or less of the value of current that flows through the objective lens when forming a high-definition image (ZOOM).
  • FIG. 4 shows an objective lens according to an embodiment of the present invention, in which objective lens coils 6 and 7 are vertically symmetrically arranged with an upper objective lens coil 6 and a lower objective lens coil 7, and an auxiliary lens 8 is provided in the magnetic path. It is arranged.
  • an on-axis magnetic field when the polarity of the objective lens coil 7 is reversed with respect to the objective lens coil 6 is shown. Since a magnetic field for forming a very low magnification image (LOWMAG) can be formed, an extremely low magnification image can be obtained with a small amount of current flowing through the objective lens coils 6 and 7 from which a high definition image (ZOOM) can be obtained. Since there is no difference, the temperature remains constant and sample drift does not occur. The polarity of the upper objective lens coil and the lower objective lens coil are reversed, and the field of view is searched with the magnetic field cancelled, so the field of view does not move even when moving from extremely low magnification observation to high definition observation. The sample can be easily observed.
  • LOWMAG very low
  • the temperature of the coil does not change because the magnetic field around the sample is reduced to such an extent that the electron beam applied to the sample by the auxiliary lens can be collimated and the current value of the lens coil is constant at extremely low magnification and high-definition observation. .
  • the polarity of the upper objective lens coil and the lower objective lens coil may be reversed and controlled by a control unit or the like so as to cancel the magnetic field.
  • FIG. 5 is a flowchart according to the embodiment of the present invention, and uses an extremely low magnification image (LOWMAG) in which the polarity of the objective lens coil in FIG. 4 is reversed.
  • LOWMAG extremely low magnification image
  • ZOOM high-definition image
  • LOWMAG very low-magnification image
  • the control unit or the like may perform control to automatically switch from the high-definition observation mode to the ultra-low magnification observation mode.
  • FIG. 6 is a flowchart according to the embodiment of the present invention, and uses an extremely low magnification image (LOWMAG) in a state where the polarity of the objective lens coil in FIG. 4 is reversed.
  • LOWMAG extremely low magnification image
  • the objective lens coil current is kept constant from ZOOM to LOWMAG, and the objective aperture is automatically output to enable observation of the entire field of view with a minimum magnification of 50.
  • seamless is turned off, it stops at the lowest magnification in ZOOM mode, and the entire field of view can be obtained in the same way as switching to LOW MAG. In this case, it is necessary to manually turn the objective aperture out of the optical axis.
  • control unit controls the objective aperture so that it can control IN / OUT from the optical axis, and the objective aperture is adjusted to automatically switch from the high-definition observation mode to the ultra-low magnification observation mode. It may be configured to perform IN / OUT control.
  • FIG. 7 is a control GUI example according to the embodiment of the present invention, and the operation of FIG. 5 can be performed by checking the Seamless Zoom check box.
  • FIG. 8 is an example of a control GUI according to the embodiment of the present invention, and the operation of FIG. 6 can be performed by checking the checkbox of Seamless ⁇ ⁇ ⁇ ⁇ Zoom and IN / OUT of OBJ.ap.
  • Fig. 9 shows an example of a pneumatic drive objective diaphragm mechanism. It is possible to in / out the objective diaphragm from the optical axis with air.
  • FIG. 10 shows an example in which an optical microscope image is displayed on the electron microscope control GUI in the control GUI example according to the embodiment of the present invention. Since an optical microscope usually has color information, it can be displayed in color on the GUI.
  • FIG. 11 is a flowchart according to the embodiment of the present invention, and obtains magnification data from an optical microscope and performs image composition processing.
  • image enlargement processing is performed, and then magnification data is acquired.
  • the image composition processing loop is executed to acquire the image data in the “TemMap” folder.
  • the size of the acquired image data is calculated and the image size is confirmed.
  • the image size is 10 pixels or more and less than 512 pixels
  • the image position is calculated and combined with the Stageimage area.
  • an image composition processing loop is performed, the Stageimage area is redrawn, and the enlargement process ends.
  • the overlay technique for matching the optical microscope image and the electron microscope image which will be described below, it is possible to automatically calculate the amount of movement of X and Y. You can also.
  • Discrete Fourier images F1 (m, n) and F2 (m, n) of f1 (m, n) and f2 (m, n) are defined by (Equation 1) and (Equation 2), respectively.
  • F2 (u, v) B (u, v) ej ⁇ (u, v)
  • u 0,1,2 ... M-1
  • V 0,1,2, ... N-1
  • a (u, v) and B (u, v) are amplitude spectra
  • ⁇ (u, v) and ⁇ (u, v) are phase spectra.
  • phase correlation if there is parallel movement of an image between two images, the position of the correlation peak is shifted by the amount of movement.
  • a peak occurs at a position of ⁇ G (pixel) from the center of the correlation strength image. For example, if there is a shift of 2 pixels in the X direction between two images, the composite image becomes a two-cycle wave. When this is subjected to inverse Fourier transform, a correlation intensity image is obtained, and a peak is generated at a position shifted by 2 pixels from the center.
  • This ⁇ G (pixel) corresponds to a movement amount on the light receiving surface of the detector, and ⁇ G is converted into a movement amount ⁇ x on the sample surface.
  • the composite image becomes a wave of 1.5 cycles.
  • a ⁇ peak appears at a position shifted by 1.5 pixels from the center of the correlation strength image, but since there is no 1.5 pixel, the value of the ⁇ peak is assigned to the first pixel and the second pixel.
  • the correlation intensity image is a ⁇ peak, the similarity between the two images is evaluated based on the peak height of the correlation intensity image.
  • the control unit of the present embodiment has an image processing function for measuring the movement amount of at least two images, and can measure the movement amount of the optical microscope image and the electron microscope image. .
  • FIG. 12 shows an example in which an optical microscope image is displayed on the electron microscope control GUI in a control GUI example that is an interface according to the embodiment of the present invention. Thereby, it is possible to superimpose the optical microscope image and the electron microscope image and to specify the area at the specified position.
  • FIG. 13 shows an example in which an optical microscope image is displayed on the electron microscope control GUI in the control GUI example according to the embodiment of the present invention. It is possible to superimpose an optical microscope and an electron microscope and to specify an area at a specified position.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Conventionally, in order to observe the entirety of a sample, the objective lens current is lowered to 1/6 of the current value used normally, reducing the magnetic field in the vicinity of the sample and achieving 50-fold magnification. Because of this, when a normally used observation magnification is set, the rising current is a factor in the occurrence of sample drift. In order to solve the problem, an electron microscope is provided, comprising an electron source irradiating an electron beam onto a sample, and a detector detecting electrons arising from the sample due to the electron beam irradiation, characterized in that, in the electron microscope, an upper objective lens coil and a lower objective lens coil are provided above and below the sample, the polarities of the upper objective lens coil and the lower objective lens coil being inverted with respect to one another.

Description

電子顕微鏡electronic microscope
 本発明は電子顕微鏡に関する。 The present invention relates to an electron microscope.
 顕微鏡には様々な種類があり、ナノテク分野、材料分野、医学・生物分野と幅広い用途で使用されている。医学・生物分野では、細胞や組織の微細構造の解明のため電子顕微鏡が利用される一方、分子レベルでのタンパク質の局在や挙動を観察するため、光学顕微鏡の一種である蛍光顕微鏡の活用が進んでいる。
 昨今は、電子顕微鏡と蛍光顕微鏡のように、異なる種類の顕微鏡を用いて観察する光-電子相関顕微鏡法(Correlative Light and Electron Microscopy(以下CLEM))が盛んに使用されている。CLEMは、蛍光顕微鏡で観察した場所を電子顕微鏡で観察し、2つの方法から得られた観察画像を比較して相関を取ることにより、ナノレベルの分解能で、分子特異的な局在を解析することが期待されている。
There are various types of microscopes, and they are used in a wide range of applications such as nanotechnology, materials, and medicine / biology. In the medical / biological field, an electron microscope is used to elucidate the fine structure of cells and tissues. On the other hand, in order to observe the localization and behavior of proteins at the molecular level, a fluorescence microscope, which is a type of optical microscope, is used. Progressing.
In recent years, light-electron correlation microscopy (hereinafter referred to as CLEM), in which observation is performed using different types of microscopes, such as electron microscopes and fluorescence microscopes, has been actively used. CLEM analyzes the location specific to a molecule with nano-level resolution by observing the location observed with a fluorescence microscope with an electron microscope, comparing the observation images obtained from the two methods, and correlating them. It is expected that.
 この種の観察を行うためには、光学顕微鏡像を取得するだけでなく電子顕微鏡のLOWMAG(極低倍像観察)やPC制御できるニューマ駆動対物絞り、画像を重ね合わせする画像処理技術を備えている。 In order to perform this type of observation, not only optical microscope images but also electron microscope LOWMAG (low-magnification observation), a PC-controlled pneumatic drive objective aperture, and image processing technology that superimposes images are provided. Yes.
 特許文献1は、透過電子顕微鏡に光学顕微鏡を備える装置が記載されている。 Patent Document 1 describes an apparatus provided with an optical microscope in a transmission electron microscope.
特開2015-141899号公報Japanese Patent Laying-Open No. 2015-141899
 電子顕微鏡を利用した試料観察では、光学顕微鏡像と電子顕微鏡像の相関を行い、検査効率を向上するCLEMが医学生物分野において重要となっている。しかし、倍率領域・観察項目が異なる顕微鏡同士での同一箇所の観察は、容易ではない。医学生物向けの電子顕微鏡は、CLEM対応しており光顕像に近い50倍の極低倍像と高精細観察の切り替えを頻繁に行う。従来は、試料全体を見る場合は、対物レンズ電流を通常使用する電流値の1/6程度に下げて試料近傍に磁場を小さくして50倍を実現していた。このため、通常使用する観察倍率にすると電流が増加して試料ドリフトが発生する要因となっていた。 In sample observation using an electron microscope, CLEM that improves the inspection efficiency by correlating an optical microscope image and an electron microscope image is important in the field of medical biology. However, it is not easy to observe the same part with microscopes having different magnification areas and observation items. Electron microscopes for medical organisms are compatible with CLEM, and frequently switch between 50x ultra-low magnification images close to light microscopic images and high-definition observations. Conventionally, when the entire sample is viewed, the objective lens current is reduced to about 1/6 of the current value that is normally used, and the magnetic field is reduced in the vicinity of the sample to achieve 50 times. For this reason, when the observation magnification used normally is used, the current increases, causing a sample drift.
 特許文献1に記載されているような透過電子顕微鏡の場合、高精細観察時から極低倍観察切り替え時には対物絞りを光軸に入れたり外したりする必要がありPC制御できる機構が必要となっている。 In the case of a transmission electron microscope as described in Patent Document 1, it is necessary to insert or remove the objective aperture on the optical axis when switching from high-definition observation to ultra-low magnification observation, and a mechanism capable of PC control is necessary. Yes.
 本発明の目的は、試料並びにポールピースの上下対照に同じ巻き数のコイルを配置して、磁路に補助レンズを組み込んだ対物レンズにおいて、片側のコイルの極性を反転させて、エネルギーを一定のまま試料近傍の磁場を小さくして50倍の極低倍を実現して、試料ドリフトが低減できる電子顕微鏡を提供することである。本実施例によって、本光学顕微鏡と電子顕微鏡像を一致させるための重ね合わせ技術により相関計算を行い、一致度を算出することも可能である。 The object of the present invention is to provide a constant energy by inverting the polarity of the coil on one side in an objective lens in which coils of the same number of turns are arranged on the upper and lower sides of the sample and pole piece and an auxiliary lens is incorporated in the magnetic path. The objective is to provide an electron microscope that can reduce the sample drift by reducing the magnetic field in the vicinity of the sample and realizing an extremely low magnification of 50 times. According to the present embodiment, the degree of coincidence can be calculated by performing correlation calculation using an overlay technique for matching the optical microscope and the electron microscope image.
 上記課題を解決するため、本発明の実施例は試料に電子線を照射する電子源と、電子線の照射により試料から発生する電子を検出する検出器を備えた電子顕微鏡において、試料の上下に上対物レンズコイルおよび下対物レンズコイルを備え、上対物レンズコイルと下対物レンズコイルの極性は反転していることを特徴とする電子顕微鏡を提供する。 In order to solve the above problems, an embodiment of the present invention is an electron microscope including an electron source for irradiating a sample with an electron beam and a detector for detecting electrons generated from the sample by the electron beam irradiation. Provided is an electron microscope comprising an upper objective lens coil and a lower objective lens coil, wherein the polarities of the upper objective lens coil and the lower objective lens coil are reversed.
 本発明によれば、光顕像に近い50倍の極低倍像と高精細観察の切り替えでドリフトが少ない像観察が行えるため観察効率が上がる。 According to the present invention, observation efficiency is improved because image observation with less drift can be performed by switching between a 50 × ultra-low magnification image close to a light microscope image and high-definition observation.
本発明の実施の形態に係る走査型透視電子顕微鏡の概略構成図。1 is a schematic configuration diagram of a scanning fluoroscopic electron microscope according to an embodiment of the present invention. 本発明の実施の形態に係る極低倍電子顕微鏡像表示した図。The figure which displayed the ultra-low magnification electron microscope image based on embodiment of this invention. 本発明の実施の形態に係る極低倍時の対物電流値での軸上磁場と磁気飽和図On-axis magnetic field and magnetic saturation diagram at objective current value at extremely low magnification according to an embodiment of the present invention 本発明の実施の形態に係る極低倍時の対物極性切り替えしたときの軸上磁場と磁気飽和図。The on-axis magnetic field and magnetic saturation diagram when the object polarity is switched at the time of extremely low magnification according to the embodiment of the present invention. 本発明の実施の形態に係るシームレス機能のフローチャート図。The flowchart figure of the seamless function which concerns on embodiment of this invention. 本発明の実施の形態に係るシームレス機能と対物絞り制御のフローチャート図。The flowchart figure of the seamless function and objective aperture control which concern on embodiment of this invention. 本発明の実施の形態に係るシームレス機能のGUI画像GUI image of seamless function according to an embodiment of the present invention 本発明の実施の形態に係るシームレス機能と対物絞り制御のGUI画像。The GUI image of the seamless function and objective aperture control which concern on embodiment of this invention. 本発明の実施の形態に係るCLEM表示画面の一例。An example of the CLEM display screen which concerns on embodiment of this invention. 本発明の実施の形態に係る画像重ね合わせ表示のフローチャート図。The flowchart figure of the image superposition display which concerns on embodiment of this invention. 本発明の実施の形態に係る画像重ね合わせ表示画面の一例。An example of the image superimposition display screen which concerns on embodiment of this invention. 本発明の実施の形態に係るCLEM表示画面の一例。An example of the CLEM display screen which concerns on embodiment of this invention. 本発明の実施の形態に係る光学顕微鏡画像を電子顕微鏡制御GUIに表示した一例An example of displaying an optical microscope image according to an embodiment of the present invention on an electron microscope control GUI
 以下、本発明の実施の形態について図面を用いて説明する。なお、以下では、透過電子顕微鏡(TEM)を例に挙げて説明するが、本発明は、走査型電子顕微鏡(SEM)、走査透過型電子顕微鏡(STEM)および走査型透過電子顕微鏡を含む電子顕微鏡ばかりでなく、荷電粒子線装置にも適用可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, a transmission electron microscope (TEM) will be described as an example, but the present invention is an electron microscope including a scanning electron microscope (SEM), a scanning transmission electron microscope (STEM), and a scanning transmission electron microscope. It can be applied not only to a charged particle beam apparatus.
 図1は本発明の実施の形態に係る透過電子顕微鏡の概略構成図である。この図に示す電子顕微鏡装置は、電子銃1と、第1及び第2の照射レンズコイル2,3と、第1及び第2の偏向コイル(走査コイル)4,5と、対物レンズコイル6と、第1及び第2の電磁式試料イメージ移動用コイル7,8と、第1及び第2の中間レンズコイル9,10と、第1及び第2の投射レンズコイル11,12と、励磁電源13~23と、デジタルアナログ変換器(DAC)24~34と、マイクロプロッセサ(MPU)35と、ハードディスクドライブ(HDD)36と、演算装置(ALU)37と、モニタコントローラ(CRTコントローラ)38と、モニタ(CRT)39と、インターフェース(I/F)40,41と、倍率切替用ロータリーエンコーダ(RE)42と、入力用ロータリーエンコーダ(RE)43と、キーボード44と、マウス57と、RAM45と、ROM46と、画像取込みインターフェース48を備えている。光軸上には、試料70(図3参照)を保持する試料ホルダ53が配置されている。図に示した対物レンズコイル6、7は強励磁レンズであり(図3、4参照)、試料の上側と下側にレンズが形成されている。 FIG. 1 is a schematic configuration diagram of a transmission electron microscope according to an embodiment of the present invention. The electron microscope apparatus shown in this figure includes an electron gun 1, first and second irradiation lens coils 2 and 3, first and second deflection coils (scanning coils) 4 and 5, and an objective lens coil 6. , First and second electromagnetic sample image moving coils 7, 8, first and second intermediate lens coils 9, 10, first and second projection lens coils 11, 12, and excitation power supply 13 23, digital-analog converters (DACs) 24 to 34, a microprocessor (MPU) 35, a hard disk drive (HDD) 36, an arithmetic unit (ALU) 37, a monitor controller (CRT controller) 38, A monitor (CRT) 39, interfaces (I / F) 40 and 41, a magnification switching rotary encoder (RE) 42, an input rotary encoder (RE) 43, and a key And over de 44, a mouse 57, and a RAM 45, a ROM 46, an interface 48 image capture. A sample holder 53 for holding the sample 70 (see FIG. 3) is disposed on the optical axis. The objective lens coils 6 and 7 shown in the figure are strong excitation lenses (see FIGS. 3 and 4), and lenses are formed on the upper and lower sides of the sample.
 図2は、本発明の実施の形態に係る電子顕微鏡装置のうち本発明に関する極低倍率画像を表示したGUIを示した図である。この図において、一般的な電子顕微鏡の試料は3mm径のメッショに試料をのせて試料ホルダーに設置して観察する。このため周辺の0.5mm位
は試料ホルダーにより押さえてあるため最大の視野は2mm径となっている。本実施の形態に係る電子顕微鏡部は、電子銃1と、照射レンズコイル2,3によって形成された収束電子レンズと、電子銃1で発生された電子線を試料70(図3参照)上で明るさを調整する偏向コイル4,5と、試料70が保持された試料ホルダ53と、試料を結像する対物レンズ、対物補助レンズ8により透過電子顕微鏡像が形成される。形成された透過電子顕微鏡像は、中間レンズ9,10と結像レンズ11,12により拡大して蛍光板49もしくはTVカメラ56に像取り込み顕微鏡像を表示するモニタ39と、コンピュータ80には、マイクロプロッセサ35、HDD36、モニタコントローラ38、RAM45、ROM46、および画像取込みインターフェース48等の図1に示したハードウェアの一部と、モニタ39に表示される顕微鏡像を録画するための録画制御装置95などが搭載されている。
FIG. 2 is a diagram showing a GUI displaying an extremely low magnification image related to the present invention in the electron microscope apparatus according to the embodiment of the present invention. In this figure, a typical electron microscope sample is placed on a 3 mm mesh and placed on a sample holder for observation. For this reason, the maximum field of view is 2 mm because the surrounding 0.5 mm is pressed by the sample holder. The electron microscope section according to the present embodiment is configured so that the electron gun 1, the converging electron lens formed by the irradiation lens coils 2 and 3, and the electron beam generated by the electron gun 1 are placed on the sample 70 (see FIG. 3). A transmission electron microscope image is formed by the deflection coils 4 and 5 for adjusting the brightness, the sample holder 53 holding the sample 70, the objective lens for imaging the sample, and the objective auxiliary lens 8. The formed transmission electron microscope image is magnified by the intermediate lenses 9 and 10 and the imaging lenses 11 and 12, and is displayed on the fluorescent screen 49 or the TV camera 56. A part of the hardware shown in FIG. 1 such as the sensor 35, HDD 36, monitor controller 38, RAM 45, ROM 46, and image capture interface 48, a recording control device 95 for recording a microscopic image displayed on the monitor 39, etc. Is installed.
 図3は対物レンズの詳細図であり、対物レンズコイル6、7が上下対称に配置されており、磁路に補助レンズ8が配置さている。極低倍像(LOWMAG)を形成させるときは、通常は対物レンズコイル6、7に少ない電流を流して軸上磁場を小さくさせてから、試料に電子線を照射させるのみで使用する。この、極低倍像(LOWMAG)を形成するときに対物レンズに流す電流値は、高精細像(ZOOM)を形成するときに対物レンズに流す電流値の約1/10以下となる。そのため、極低倍像(LOWMAG)から高精細像(ZOOM)に移動するとき、対物レンズコイルのエネルギーに大きな差が発生する。このエネルギーの差によって温度変化が生じ、試料ドリフトが発生するため、極低倍の観察から高精細の観察に移ると視野が移動することがある。 FIG. 3 is a detailed view of the objective lens, in which the objective lens coils 6 and 7 are arranged vertically symmetrically, and the auxiliary lens 8 is arranged in the magnetic path. When an extremely low magnification image (LOWMAG) is formed, it is usually used only by irradiating the sample with an electron beam after flowing a small current through the objective lens coils 6 and 7 to reduce the axial magnetic field. The value of current that flows through the objective lens when forming a very low magnification image (LOWMAG) is about 1/10 or less of the value of current that flows through the objective lens when forming a high-definition image (ZOOM). Therefore, when moving from a very low magnification image (LOWMAG) to a high definition image (ZOOM), a large difference occurs in the energy of the objective lens coil. Due to this energy difference, a temperature change occurs and sample drift occurs, so that the field of view may move when switching from very low magnification observation to high definition observation.
 図4は、本発明の実施の形態に係る対物レンズで、対物レンズコイル6、7が上下対称に上対物レンズコイル6、下対物レンズコイル7と配置されており、磁路に補助レンズ8が配置さている。本発明では対物レンズコイル6に対して対物レンズコイル7の極性を反転させた場合の軸上磁場を示す。極低倍像(LOWMAG)を形成するための磁場が形成できるため、高精細像(ZOOM)が得られる対物レンズコイル6、7に少ない電流を流したまま極低倍像が得られるため、エネルギー差が生じないため温度が一定となって試料ドリフトが発生しない。上対物レンズコイルと下対物レンズコイルの極性は反転させて、磁場を相殺させた状態で視野探しをするため、極低倍の観察から高精細の観察に移しても、視野が移動することなく容易に試料を観察することができる。 FIG. 4 shows an objective lens according to an embodiment of the present invention, in which objective lens coils 6 and 7 are vertically symmetrically arranged with an upper objective lens coil 6 and a lower objective lens coil 7, and an auxiliary lens 8 is provided in the magnetic path. It is arranged. In the present invention, an on-axis magnetic field when the polarity of the objective lens coil 7 is reversed with respect to the objective lens coil 6 is shown. Since a magnetic field for forming a very low magnification image (LOWMAG) can be formed, an extremely low magnification image can be obtained with a small amount of current flowing through the objective lens coils 6 and 7 from which a high definition image (ZOOM) can be obtained. Since there is no difference, the temperature remains constant and sample drift does not occur. The polarity of the upper objective lens coil and the lower objective lens coil are reversed, and the field of view is searched with the magnetic field cancelled, so the field of view does not move even when moving from extremely low magnification observation to high definition observation. The sample can be easily observed.
 補助レンズにより試料に照射する電子線を平行照射にできる程度に試料周辺の磁場を小さくして極低倍率と高精細観察でのレンズコイルの電流値が一定であるためコイルの温度変化が発生しない。なお、上対物レンズコイルと下対物レンズコイルの極性は反転させて、磁場を相殺させるように制御部等で制御させてもよい。 The temperature of the coil does not change because the magnetic field around the sample is reduced to such an extent that the electron beam applied to the sample by the auxiliary lens can be collimated and the current value of the lens coil is constant at extremely low magnification and high-definition observation. . The polarity of the upper objective lens coil and the lower objective lens coil may be reversed and controlled by a control unit or the like so as to cancel the magnetic field.
 図5は、本発明の実施の形態に係るフローチャートで図4の対物レンズコイルの極性を反転させた状態での極低倍像(LOWMAG)を使用することとする。シームレスONにすると高精細像(ZOOM)から極低倍像(LOWMAG)に対物レンズコイルの電流を一定にしたままで移行することができる。このため最低倍率50の全体視野観察が行える。シームレスをOFFの場合は、ZOOMモード(高精細モード)の最低倍率で止まり、LOWMAG(極低倍像)に切り替えると同様に全体視野が得られる。なお、制御部等が、高精細観察モードから極低倍観察モードに自動的に切り替える制御を行ってもよい。 FIG. 5 is a flowchart according to the embodiment of the present invention, and uses an extremely low magnification image (LOWMAG) in which the polarity of the objective lens coil in FIG. 4 is reversed. When seamlessly ON, it is possible to shift from a high-definition image (ZOOM) to a very low-magnification image (LOWMAG) while keeping the current of the objective lens coil constant. Therefore, it is possible to observe the entire field of view at the minimum magnification of 50. When seamless is turned off, it stops at the minimum magnification of ZOOM mode (high definition mode), and the entire field of view can be obtained in the same way when switching to LOWMAG (very low magnification image). Note that the control unit or the like may perform control to automatically switch from the high-definition observation mode to the ultra-low magnification observation mode.
 図6は、本発明の実施の形態に係るフローチャートで図4の対物レンズコイルの極性を反転させた状態での極低倍像(LOWMAG)を使用することとする。シームレスONと対物絞り自動制御を併用した場合は、とZOOMからLOWMAGに対物レンズコイルの電流を一定にしたままで移行して、対物絞りを自動でOUTして最低倍率50の全体視野観察が行える。シームレスをOFFの場合は、ZOOMモードの最低倍率で止まり、LOW MAGに切り替えると同様に全体視野が得られる。この場合は、手動で対物絞りを光軸からOUTする必要がある。 FIG. 6 is a flowchart according to the embodiment of the present invention, and uses an extremely low magnification image (LOWMAG) in a state where the polarity of the objective lens coil in FIG. 4 is reversed. When both seamless ON and objective aperture automatic control are used together, the objective lens coil current is kept constant from ZOOM to LOWMAG, and the objective aperture is automatically output to enable observation of the entire field of view with a minimum magnification of 50. . When seamless is turned off, it stops at the lowest magnification in ZOOM mode, and the entire field of view can be obtained in the same way as switching to LOW MAG. In this case, it is necessary to manually turn the objective aperture out of the optical axis.
 なお、制御部等が、対物絞りが光軸からIN/OUTの制御が行えるように制御し、高精細観察モードから極低倍観察モードに自動的に切り替えするときに合わせて対物絞りが光軸からIN/OUTの制御を行うように構成してもよい。 In addition, the control unit controls the objective aperture so that it can control IN / OUT from the optical axis, and the objective aperture is adjusted to automatically switch from the high-definition observation mode to the ultra-low magnification observation mode. It may be configured to perform IN / OUT control.
 図7は、本発明の実施の形態に係る制御GUI例でSeamless Zoomのチェックボックスにチェックを入れると図5の動作が行える。 FIG. 7 is a control GUI example according to the embodiment of the present invention, and the operation of FIG. 5 can be performed by checking the Seamless Zoom check box.
 図8は、本発明の実施の形態に係る制御GUI例でSeamless Zoomのチェックボックス並びにOBJ.apのIN/OUTにチェックを入れると図6の動作が行える。 FIG. 8 is an example of a control GUI according to the embodiment of the present invention, and the operation of FIG. 6 can be performed by checking the checkbox of Seamless チ ェ ッ ク Zoom and IN / OUT of OBJ.ap.
 図9にはニューマ駆動の対物絞り機構例で、エアーにて対物絞りを光軸からIN/OUTすることが可能である。 Fig. 9 shows an example of a pneumatic drive objective diaphragm mechanism. It is possible to in / out the objective diaphragm from the optical axis with air.
 図10は、本発明の実施の形態に係る制御GUI例で光学顕微鏡画像を電子顕微鏡制御GUIに表示した例となっている。光学顕微鏡は通常カラー情報を持っているためGUI上でもカラー表示することが可能となっている。 FIG. 10 shows an example in which an optical microscope image is displayed on the electron microscope control GUI in the control GUI example according to the embodiment of the present invention. Since an optical microscope usually has color information, it can be displayed in color on the GUI.
 図11は、本発明の実施の形態に係るフローチャートで、光学顕微鏡から倍率データを取得して、画像合成処理を行なう。まず、画像の拡大処理を行い、次に倍率データの取得を行う。その後画像合成処理ループを実施し、「TemMap」フォルダにある画像データの取得を行う。次に、取得した画像データのサイズを計算し、画像サイズ確認する。このとき、画像サイズが10 pixel以上であって、512pixel未満の場合は画像位置を計算し、Stageimage領域に合成する。その後、画像合成処理ループを実施し、Stageimage領域の再描画を行い、拡大処理が終了する。この時、以下に説明する光学顕微鏡像と電子顕微鏡像を一致させるための重ね合わせ技術を用いると自動的にX,Yの移動量を計算することが可能となるため重ね合わせを自動で行うこともできる。 FIG. 11 is a flowchart according to the embodiment of the present invention, and obtains magnification data from an optical microscope and performs image composition processing. First, image enlargement processing is performed, and then magnification data is acquired. After that, the image composition processing loop is executed to acquire the image data in the “TemMap” folder. Next, the size of the acquired image data is calculated and the image size is confirmed. At this time, if the image size is 10 pixels or more and less than 512 pixels, the image position is calculated and combined with the Stageimage area. After that, an image composition processing loop is performed, the Stageimage area is redrawn, and the enlargement process ends. At this time, if the overlay technique for matching the optical microscope image and the electron microscope image, which will be described below, is used, it is possible to automatically calculate the amount of movement of X and Y. You can also.
 次に、本発明の実施の形態に係る、具体的な移動量を計算し、一致度を算出することによる、光学顕微鏡像と電子顕微鏡像を一致させるための重ね合わせ技術を説明する。 Next, a superposition technique for matching an optical microscope image and an electron microscope image by calculating a specific movement amount and calculating a matching degree according to the embodiment of the present invention will be described.
 (1)移動量を計算する手段
 まず、画像相関の例を用いて、上記した構成を有する透過電子顕微鏡の動作を説明する。透過像1の一部を切り取った画像を透過像3としてM×Nの画素数で記憶装置に登録画像としてf1(m、n)として記録する。次に記録モード後に取込んだ画像を透過像2をM×Nの画素数で記憶装置に参照画像としてf2(m、n)として記録する。
(1) Means for calculating movement amount First, the operation of the transmission electron microscope having the above-described configuration will be described using an example of image correlation. An image obtained by cutting out a part of the transmission image 1 is recorded as a transmission image 3 as a registered image f1 (m, n) in the storage device with the number of pixels of M × N. Next, the image captured after the recording mode is recorded as f2 (m, n) as a reference image in the storage device with the transmission image 2 having the number of pixels of M × N.
  但し、どちらも自然画像とし、m=0,1,2,・・・M-1、 n=0,1,2,・・・N-1である。 However, both are natural images, and m = 0, 1, 2,... M-1 and n = 0, 1, 2,.
 f1(m,n) 、f2(m,n)の離散フーリエ画像F1(m,n) 、F2(m,n)はそれぞれ(数1)、(数2)で定義される。
(数1)     F1(u,v)=A(u,v)ejθ(u,v)          
(数2)     F2(u,v)=B(u,v)ejφ(u,v)          
        但し、u=0,1,2・・・M-1、 V=0,1,2,・・・N-1
 A(u,v)、B(u,v)は振幅スペクトル、θ(u,v)、φ(u,v)は位相スペクトル。
Discrete Fourier images F1 (m, n) and F2 (m, n) of f1 (m, n) and f2 (m, n) are defined by (Equation 1) and (Equation 2), respectively.
(Equation 1) F1 (u, v) = A (u, v) ejθ (u, v)
(Expression 2) F2 (u, v) = B (u, v) ejφ (u, v)
However, u = 0,1,2 ... M-1, V = 0,1,2, ... N-1
A (u, v) and B (u, v) are amplitude spectra, and θ (u, v) and φ (u, v) are phase spectra.
  位相相関では、2画像間で像の平行移動があった場合には相関のピークの位置が移動量だけずれる。 In phase correlation, if there is parallel movement of an image between two images, the position of the correlation peak is shifted by the amount of movement.
 以下に移動量の導出方法を説明する。 The following explains how to derive the movement amount.
  まず、原画像f2(m,n)が、x方向にr’だけ移動したとしてf4(m,n)=f2(m+r’,n)とする。 First, assuming that the original image f2 (m, n) has moved by r ′ in the x direction, f4 (m, n) = f2 (m + r ′, n).
 (数2)を(数3)のように変形する。
(数3)     F4(u,v)      = ΣΣ f2(m+r’,n)e -j2π(mu/M+nv/N)
           =B(u,v)ej(φ+2πr’u/M)      
 振幅スペクトルB(u,v)を定数とすることにより、画像のコントラストに依存しない位相画像となる。f4の位相画像F’4 (u,v)は式(4)となる。
(数4)     F4’(u,v)      =  ej(φ+2πr’u/M)  
 位相画像F’1(u,v)にF’2(u,v)の複素供役を乗ずることによって合成画像H14(u,v)は(数5)となる。
(数5)     H14(u,v)=F’1(u,v)(F’2(u,v))*
               = ej(θ-φ-2πru/M )     
 相関強度画像G14(r,s)は、合成画像H14(u,v)を逆フーリエ変換することによって(数6)となる。
(数6)     G14(r,s)=ΣΣ(H14(u,v)) ej2π(ur/M+us/N)
           =ΣΣ(ej(θ-φ-2πr’u/M )) ej2π(ur/M+us/N)
           =G12(r-r’)      
 (数6)より、2つの画像間でX方向に位置ずれ量r’が存在する場合、相関強度画像のピークの位置は-r’だけずれる。また、位相成分で相関計算するため、2つの画像で明るさやコントラストに違いがあっても移動量の計算が行える。2つの画像間でX方向に位置ずれ量が存在する場合は、相関強度画像の中心よりΔG(pixel)の位置にピークが発生する。 例えば2つの画像間でX方向に2pixelのずれがあると、合成画像は2周期の波になる。これを逆フーリエ変換すると相関強度画像となり、中心から2pixelずれた位置にピークが発生する。このΔG(pixel)は検出器の受光面での移動量相当し、ΔGを試料面上の移動量Δxに変換する。検出器の受光面の径L、受光面上での透過電子顕微鏡の倍率M、検出器の受光面の画素数Lmとすると(数7)に示す。
(数7)Δx=ΔG(pixel)×L/Lm(pixel)/M             
Δxは2つ画像間の試料面上での移動量となる。
(2)一致度を計算する手段
  次に画像間移動量や倍率、回転角度の精度について説明する。位相成分のみを用いた相関計算では、数学上位相のみを使用しているため相関強度に現れるピークはδピークとなる。例えば2つの画像間で1.5画素ずれると合成画像は1.5周期の波となる。これを逆フーリエ変換すると、相関強度画像の中心より1.5pixelずれた位置にδピークが立つが、1.5の画素は存在しないので、δピークの値は1pixel目と2pixel目に振り分けられる。 ここで一致度が高い画素の重心を取って、この振り分けられた値から真のδピーク位置を計算すると1/10pixel程度の精度を計算結果が得られる。また、相関強度画像がδピークのため、2つの画像間における類似性の評価を相関強度画像のピークの高さによって行なう。画像f1(m、n)、ピークの高さPeak(pixel)とすると一致度(%)を(数8)に示す。
(数8)  一致度(%)=( Peak )/( m × n )×100    
  例えば処理画素数は128pixel×128pixelでPeakが16384(pixel)の場合は、一致度=(16384)/(128×128)×100=100 (%)となる。
上述した算出方法等を用いて、本実施例の制御部等は、少なくとも2枚以上の画像の移動量を測定する画像処理機能を有し、光学顕微鏡像と電子顕微鏡像の移動量を測定できる。さらに画像を移動する画像移動機能を有し、測定した画像間の移動量より自動的に光学顕微鏡像と電子顕微鏡像の重ね合わせが行える。 図12は、本発明の実施の形態に係るインターフェースである制御GUI例で光学顕微鏡画像を電子顕微鏡制御GUIに表示した例となっている。これによって、光学顕微鏡像と電子顕微鏡像の重ね合わせや指定位置での領域指定も行える。
(Formula 2) is transformed into (Formula 3).
(Expression 3) F4 (u, v) = ΣΣ f2 (m + r ′, n) e−j2π (mu / M + nv / N)
= B (u, v) ej (φ + 2πr'u / M)
By setting the amplitude spectrum B (u, v) as a constant, a phase image independent of the contrast of the image is obtained. The phase image F′4 (u, v) of f4 is expressed by equation (4).
(Equation 4) F4 ′ (u, v) = ej (φ + 2πr′u / M)
By multiplying the phase image F′1 (u, v) by the complex function of F′2 (u, v), the synthesized image H14 (u, v) becomes (Expression 5).
(Expression 5) H14 (u, v) = F'1 (u, v) (F'2 (u, v)) *
= Ej (θ-φ-2πru / M)
The correlation intensity image G14 (r, s) is expressed by (Equation 6) by performing inverse Fourier transform on the composite image H14 (u, v).
(Expression 6) G14 (r, s) = ΣΣ (H14 (u, v)) ej2π (ur / M + us / N)
= ΣΣ (ej (θ-φ-2πr'u / M)) ej2π (ur / M + us / N)
= G12 (r-r ')
From (Equation 6), when there is a positional shift amount r ′ in the X direction between two images, the peak position of the correlation strength image is shifted by −r ′. In addition, since the correlation calculation is performed using the phase component, the movement amount can be calculated even if there is a difference in brightness or contrast between the two images. When there is a positional shift amount in the X direction between two images, a peak occurs at a position of ΔG (pixel) from the center of the correlation strength image. For example, if there is a shift of 2 pixels in the X direction between two images, the composite image becomes a two-cycle wave. When this is subjected to inverse Fourier transform, a correlation intensity image is obtained, and a peak is generated at a position shifted by 2 pixels from the center. This ΔG (pixel) corresponds to a movement amount on the light receiving surface of the detector, and ΔG is converted into a movement amount Δx on the sample surface. Assuming that the diameter L of the light receiving surface of the detector, the magnification M of the transmission electron microscope on the light receiving surface, and the number of pixels Lm of the light receiving surface of the detector are shown in (Expression 7).
(Expression 7) Δx = ΔG (pixel) × L / Lm (pixel) / M
Δx is the amount of movement on the sample surface between the two images.
(2) Means for calculating the degree of coincidence Next, the amount of movement between images, magnification, and accuracy of the rotation angle will be described. In the correlation calculation using only the phase component, since only the phase is used mathematically, the peak appearing in the correlation strength is the δ peak. For example, if the image is shifted by 1.5 pixels between two images, the composite image becomes a wave of 1.5 cycles. When this is subjected to inverse Fourier transform, a δ peak appears at a position shifted by 1.5 pixels from the center of the correlation strength image, but since there is no 1.5 pixel, the value of the δ peak is assigned to the first pixel and the second pixel. Here, taking the center of gravity of the pixel having a high degree of coincidence and calculating the true δ peak position from the assigned value, the calculation result can be obtained with an accuracy of about 1/10 pixel. Further, since the correlation intensity image is a δ peak, the similarity between the two images is evaluated based on the peak height of the correlation intensity image. Assuming that image f1 (m, n) and peak height Peak (pixel) are given, the degree of coincidence (%) is shown in (Equation 8).
(Equation 8) Matching degree (%) = (Peak) / (m × n) × 100
For example, when the number of processed pixels is 128 pixels × 128 pixels and the peak is 16384 (pixels), the degree of coincidence = (16384) / (128 × 128) × 100 = 100 (%).
Using the calculation method described above, the control unit of the present embodiment has an image processing function for measuring the movement amount of at least two images, and can measure the movement amount of the optical microscope image and the electron microscope image. . Furthermore, it has an image moving function for moving images, and can automatically superimpose an optical microscope image and an electron microscope image based on the measured movement amount between images. FIG. 12 shows an example in which an optical microscope image is displayed on the electron microscope control GUI in a control GUI example that is an interface according to the embodiment of the present invention. Thereby, it is possible to superimpose the optical microscope image and the electron microscope image and to specify the area at the specified position.
 図13は、本発明の実施の形態に係る制御GUI例で光学顕微鏡画像を電子顕微鏡制御GUIに表示した例となっている。光学顕微鏡と電子顕微鏡の重ね合わせや指定位置での領域指定も行える。 FIG. 13 shows an example in which an optical microscope image is displayed on the electron microscope control GUI in the control GUI example according to the embodiment of the present invention. It is possible to superimpose an optical microscope and an electron microscope and to specify an area at a specified position.
 1…電子銃、2…第1照射レンズコイル、3…第2照射レンズコイル、4…第1偏向コイル、5…第2偏向コイル、6…対物レンズコイル、7…対物レンズコイル、8…対物補助レンズコイル、9…第1中間レンズコイル、10…第2中間レンズコイル、11…第1投射レンズコイル、12…第2投射レンズコイル、13~23…励磁電源、24~34…DAC、35…マイクロプロッセサ、36…記憶装置、37…演算装置、38…モニタコントローラ、39…モニタ、40~41…I/F、42…倍率切替用ロータリーエンコーダ、43…入力用ロータリーエンコーダ、44…キーボード、45…RAM、46…ROM、47… 光学像取り込みインターフェース 、48…画像取込みインターフェース、49…蛍光板56…TVカメラ、 DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... 1st irradiation lens coil, 3 ... 2nd irradiation lens coil, 4 ... 1st deflection coil, 5 ... 2nd deflection coil, 6 ... Objective lens coil, 7 ... Objective lens coil, 8 ... Objective Auxiliary lens coil, 9 ... first intermediate lens coil, 10 ... second intermediate lens coil, 11 ... first projection lens coil, 12 ... second projection lens coil, 13-23 ... excitation power source, 24-34 ... DAC, 35 ... Microprocessor, 36 ... Storage device, 37 ... Calculation device, 38 ... Monitor controller, 39 ... Monitor, 40-41 ... I / F, 42 ... Rotary encoder for switching magnification, 43 ... Rotary encoder for input, 44 ... Keyboard 45 ... RAM, 46 ... ROM, 47 ... 47optical image capture interface, 48 ... image capture interface, 49 ... fluorescent screen 56 ... TV camera,

Claims (8)

  1.  試料に電子線を照射する電子源と、
     前記電子線の照射により前記試料から発生する電子を検出する検出器を備えた電子顕微鏡において、
     前記試料の上下に上対物レンズコイルおよび下対物レンズコイルを備え、
     前記上対物レンズコイルと前記下対物レンズコイルの極性は反転していることを特徴とする電子顕微鏡。
    An electron source for irradiating the sample with an electron beam;
    In an electron microscope equipped with a detector that detects electrons generated from the sample by irradiation of the electron beam,
    An upper objective lens coil and a lower objective lens coil are provided above and below the sample,
    An electron microscope characterized in that the polarities of the upper objective lens coil and the lower objective lens coil are reversed.
  2.  請求項1に記載の電子顕微鏡において、
    さらに、前記上対物レンズコイルと前記下対物レンズコイルの極性は反転させて、磁場を相殺させるようの制御する制御部をさらに備えることを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    The electron microscope further comprises a control unit that controls to reverse the polarities of the upper objective lens coil and the lower objective lens coil to cancel the magnetic field.
  3.  請求項1に記載の電子顕微鏡において、
     さらに、磁路に内蔵した補助レンズを備え、
     極低倍率観察時と高精細観察時におけるレンズコイルの電流値が一定にすることを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    In addition, it has an auxiliary lens built in the magnetic path,
    An electron microscope characterized in that a current value of a lens coil is made constant during observation at extremely low magnification and during high-definition observation.
  4.  請求項2に記載の電子顕微鏡において、
     前記制御部は、高精細観察モードから極低倍観察モードに自動的に切り替えるように制御する電子顕微鏡。
    The electron microscope according to claim 2,
    The control unit controls the electron microscope to automatically switch from the high-definition observation mode to the ultra-low magnification observation mode.
  5.  請求項4に記載の電子顕微鏡において、
     前記制御部は、対物絞りが光軸からIN/OUTの制御が行えるように制御し、高精細観察モードから極低倍観察モードに自動的に切り替えするときに合わせて対物絞りが光軸からIN/OUTの制御を行う電子顕微鏡。
    The electron microscope according to claim 4,
    The control unit controls the objective aperture so that IN / OUT can be controlled from the optical axis, and when the automatic switching from the high-definition observation mode to the ultra-low magnification observation mode is performed, the objective aperture is adjusted from the optical axis to IN. Electron microscope that controls / OUT.
  6.  請求項2に記載の電子顕微鏡において、
     極低倍像と光学顕微鏡画像を取得するインターフェースを有し、極低倍像と光学顕微鏡画像の重ね合わせが行える電子顕微鏡。
    The electron microscope according to claim 2,
    An electron microscope that has an interface for acquiring ultra-low magnification images and optical microscope images and can superimpose ultra-low magnification images and optical microscope images.
  7.  請求項5に記載の電子顕微鏡において、
     前記制御部は、少なくとも2枚以上の画像の移動量を測定する画像処理機能を有し、光学顕微鏡像と電子顕微鏡像の移動量を測定できる電子顕微鏡。
    The electron microscope according to claim 5,
    The control unit has an image processing function for measuring a movement amount of at least two or more images, and can measure the movement amount of an optical microscope image and an electron microscope image.
  8.  請求項7に記載の電子顕微鏡において、
     前記制御部は、さらに画像を移動する画像移動機能を有し、測定した画像間の移動量より自動的に光学顕微鏡像と電子顕微鏡像の重ね合わせが行える電子顕微鏡。
    The electron microscope according to claim 7,
    The control unit further has an image moving function for moving an image, and can automatically superimpose an optical microscope image and an electron microscope image based on a movement amount between measured images.
PCT/JP2017/015072 2017-04-13 2017-04-13 Electron microscope WO2018189850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015072 WO2018189850A1 (en) 2017-04-13 2017-04-13 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015072 WO2018189850A1 (en) 2017-04-13 2017-04-13 Electron microscope

Publications (1)

Publication Number Publication Date
WO2018189850A1 true WO2018189850A1 (en) 2018-10-18

Family

ID=63793207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015072 WO2018189850A1 (en) 2017-04-13 2017-04-13 Electron microscope

Country Status (1)

Country Link
WO (1) WO2018189850A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757460A (en) * 1980-09-22 1982-04-06 Internatl Precision Inc Electron microscope
JPS57151160A (en) * 1981-03-16 1982-09-18 Internatl Precision Inc Electron lens
JPS58119146A (en) * 1982-01-11 1983-07-15 Jeol Ltd Electron microscope
JPS59171442A (en) * 1983-03-17 1984-09-27 Jeol Ltd Objective lenses for electron microscopes, etc.
JPS6063866A (en) * 1983-09-19 1985-04-12 Hitachi Ltd Objective lens movable diaphragm device of electron microscope
JPS6079653A (en) * 1983-10-06 1985-05-07 Jeol Ltd Objective for electron microscope or similar device
JPH04324239A (en) * 1991-04-23 1992-11-13 Jeol Ltd Objective lens in electron microscope
JPH0992191A (en) * 1995-09-26 1997-04-04 Hitachi Ltd electronic microscope
JP2000311645A (en) * 1999-04-28 2000-11-07 Hitachi Ltd electronic microscope
JP2007052972A (en) * 2005-08-17 2007-03-01 Institute Of Physical & Chemical Research Charged particle beam system
US20150262784A1 (en) * 2012-09-14 2015-09-17 Delmic B.V. Integrated optical and charged particle inspection apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757460A (en) * 1980-09-22 1982-04-06 Internatl Precision Inc Electron microscope
JPS57151160A (en) * 1981-03-16 1982-09-18 Internatl Precision Inc Electron lens
JPS58119146A (en) * 1982-01-11 1983-07-15 Jeol Ltd Electron microscope
JPS59171442A (en) * 1983-03-17 1984-09-27 Jeol Ltd Objective lenses for electron microscopes, etc.
JPS6063866A (en) * 1983-09-19 1985-04-12 Hitachi Ltd Objective lens movable diaphragm device of electron microscope
JPS6079653A (en) * 1983-10-06 1985-05-07 Jeol Ltd Objective for electron microscope or similar device
JPH04324239A (en) * 1991-04-23 1992-11-13 Jeol Ltd Objective lens in electron microscope
JPH0992191A (en) * 1995-09-26 1997-04-04 Hitachi Ltd electronic microscope
JP2000311645A (en) * 1999-04-28 2000-11-07 Hitachi Ltd electronic microscope
JP2007052972A (en) * 2005-08-17 2007-03-01 Institute Of Physical & Chemical Research Charged particle beam system
US20150262784A1 (en) * 2012-09-14 2015-09-17 Delmic B.V. Integrated optical and charged particle inspection apparatus

Similar Documents

Publication Publication Date Title
Schmidt et al. Double aberration correction in a low-energy electron microscope
JP3998556B2 (en) High resolution X-ray microscope
JP6173862B2 (en) electronic microscope
US20090084955A1 (en) Charged particle beam equipment and charged particle microscopy
EP2091063B1 (en) Electron beam observation device using a pre-specimen magnetic field as image-forming lens and specimen observation method
Ercius et al. Operation of TEAM I in a user environment at NCEM
JP5603421B2 (en) Charged particle beam equipment with automatic aberration correction method
JP5727564B2 (en) Method for investigating and correcting aberrations in charged particle lens systems
US12176179B2 (en) Method, device and system for reducing off-axial aberration in electron microscopy
JP5205306B2 (en) Scanning electron microscope
US20140197312A1 (en) Electron microscope and sample observation method
CN108463869B (en) Charged particle beam device and optical axis adjusting method thereof
EP1852890A1 (en) Electron microscope and composite irradiation lens
JP6533665B2 (en) Electron microscope and aberration measurement method
JP6266467B2 (en) Electron microscope and monochromator adjustment method
JP5134826B2 (en) Charged particle beam equipment
WO2018189850A1 (en) Electron microscope
JP6554066B2 (en) Electron microscope for magnetic field measurement and magnetic field measurement method
US20050167607A1 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
JP6239260B2 (en) Transmission electron microscope
EP1557864A1 (en) X-ray microscopic inspection apparatus
JP2007212468A (en) X-ray microscopic inspection apparatus with high-resolution capability
JP2008181778A (en) Automatic axis matching method of charged particle beam device and charged particle beam device
JP2004146192A (en) Sample observation method by transmission electron microscope
Dunin-Borkowski et al. The prospect of three-dimensional induction mapping inside magnetic nanostructures by combining electron holography with electron tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载