WO2018187951A1 - Procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau - Google Patents
Procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau Download PDFInfo
- Publication number
- WO2018187951A1 WO2018187951A1 PCT/CN2017/080175 CN2017080175W WO2018187951A1 WO 2018187951 A1 WO2018187951 A1 WO 2018187951A1 CN 2017080175 W CN2017080175 W CN 2017080175W WO 2018187951 A1 WO2018187951 A1 WO 2018187951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- principal component
- component analysis
- kernel
- method based
- recognition method
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000000513 principal component analysis Methods 0.000 title claims abstract description 21
- 230000001815 facial effect Effects 0.000 title abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 238000012360 testing method Methods 0.000 claims abstract description 8
- 238000012549 training Methods 0.000 claims abstract description 8
- 230000000717 retained effect Effects 0.000 claims abstract description 4
- 238000000605 extraction Methods 0.000 claims abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 4
- 238000012847 principal component analysis method Methods 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 11
- 210000000554 iris Anatomy 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 230000037237 body shape Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 210000001525 retina Anatomy 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 208000029154 Narrow face Diseases 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
Definitions
- the invention relates to a face recognition method based on kernel principal component analysis, belonging to the field of biometric identification.
- Face recognition is a computer technology that achieves the purpose of identity identification by analyzing human facial visual features.
- the academic community gives a specific definition of face recognition in both broad and narrow sense.
- Generalized face recognition includes face detection, face representation, face identification, face expression analysis, and physical classification.
- Narrow face recognition is defined as a technology or system that enables identity verification, identity comparison, and identity lookup through facial features.
- biometrics mainly come from the following aspects: face, retina, iris, palmprint, fingerprint, voice, body shape, habits, etc. Therefore, based on the above, research is focused on identifying faces, retinas, and irises.
- the computer recognition technology of the corresponding features such as palm print, fingerprint, voice, body shape, keyboard stroke, signature, etc., has achieved important results.
- the advantage of face recognition lies in its natural and friendly characteristics.
- the so-called natural nature means that human beings also identify and confirm the identity of each other by observing and comparing human facial features.
- speech recognition and body shape recognition also have natural characteristics, while humans or other creatures usually do not pass fingerprints.
- Features such as iris distinguish individuals, so the above feature recognition does not have natural characteristics. Sign.
- the so-called friendliness means that the identification method does not increase the psychological burden of the authenticated person due to special treatment, and thus it is easier to obtain direct and true feature information.
- Fingerprint or iris recognition needs to use special techniques such as electronic pressure sensor or infrared to collect information.
- the above special collection technology is easy to be discovered, which greatly increases the possibility that the authenticated person avoids identity identification and reduces the efficiency of identity authentication.
- face recognition can directly obtain the face information of the authenticated person through simple image or video technology.
- This information collection method is not easy to be perceived, which increases the authenticity and reliability of the information.
- the structure of the same type of face has a high similarity. This feature can be used for face localization, but it greatly increases the difficulty of using individual facial features to identify individuals.
- the shape of the face is very unstable. Even at different viewing angles, the image features of the face are significantly different, and the face recognition technology is added. The complexity of the application.
- an object of the present invention is to provide a face recognition method based on kernel principal component analysis, comprising:
- Step 1 Calculate a kernel matrix for a given M training set data X[x 1 , x 2 , . . . , x M ];
- Step 2 Construct a centralization matrix H to solve the characteristic equation
- Step three calculating a vector
- Step 4 Extract the principal component, form the feature subspace, and obtain the principal component analysis of the face data. After the retained sample data set Y;
- Step 5 For the test data set X', project it into the feature subspace of the training set to obtain a test data set Y' after feature extraction;
- Step 6 Classify the sample Y' by the nearest neighbor classifier.
- the above step 4 is to extract the first k total contribution rates of 90% or more.
- the face recognition method based on kernel principal component analysis provided by the invention can greatly shorten the recognition time, and the core method is used to make up for the fact that the principal component analysis method and the linear discriminant analysis method cannot utilize the data in the middle.
- the shortcoming of linear information Compared with the prior art, the face recognition method based on kernel principal component analysis provided by the invention can greatly shorten the recognition time, and the core method is used to make up for the fact that the principal component analysis method and the linear discriminant analysis method cannot utilize the data in the middle. The shortcoming of linear information.
- the present invention provides a face recognition method based on kernel principal component analysis, and the present invention will be further described in detail in the following examples in order to clarify and clarify the objects, technical solutions and effects of the present invention. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
- the face recognition method based on kernel principal component analysis maps sample data from a low-dimensional space to a high-dimensional space by a kernel method, so that the PCA algorithm has the processing capability for nonlinear data.
- the principal component contains most of the useful information with informational value.
- the principal component analysis is to find the eigenvalues and eigenvectors of the matrix for the covariance matrix C:
- test data set X' it is projected into the feature subspace of the training set to obtain the feature extracted test data set Y'.
- the face recognition method based on kernel principal component analysis provided by the invention can greatly shorten the recognition time, and the core method is used to make up for the fact that the principal component analysis method and the linear discriminant analysis method cannot utilize the data in the middle.
- the shortcoming of linear information Compared with the prior art, the face recognition method based on kernel principal component analysis provided by the invention can greatly shorten the recognition time, and the core method is used to make up for the fact that the principal component analysis method and the linear discriminant analysis method cannot utilize the data in the middle. The shortcoming of linear information.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Image Analysis (AREA)
Abstract
L'invention concerne un procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau. Le procédé comprend les étapes consistant à : calculer une matrice de noyau pour M éléments de données d'ensemble d'apprentissage donné X[X1, X2, … , XM]; construire une matrice de centrage H et résoudre une équation caractéristique ; calculer un vecteur ; extraire un composant principal pour former un sous-espace caractéristique et obtenir un ensemble de données d'échantillon Y conservé après l'analyse de composante principale de données faciales ; projeter un ensemble de données de test X' au sous-espace caractéristique de l'ensemble d'apprentissage pour obtenir un ensemble de données de test Z' après extraction de caractéristiques ; et classifier et reconnaître l'échantillon Z' au moyen d'un classificateur voisin le plus proche. Le procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau peut raccourcir de manière significative le temps de reconnaissance. L'application d'un procédé de noyau peut résoudre complètement le défaut selon lequel des informations non linéaires dans des données ne peuvent pas être utilisées dans le procédé d'analyse de composant principal et le procédé d'analyse discriminante linéaire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080175 WO2018187951A1 (fr) | 2017-04-12 | 2017-04-12 | Procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080175 WO2018187951A1 (fr) | 2017-04-12 | 2017-04-12 | Procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018187951A1 true WO2018187951A1 (fr) | 2018-10-18 |
Family
ID=63792182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/080175 WO2018187951A1 (fr) | 2017-04-12 | 2017-04-12 | Procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018187951A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111914886A (zh) * | 2020-06-13 | 2020-11-10 | 宁波大学 | 一种基于在线简略核学习的非线性化工过程监测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1599917A (zh) * | 2001-12-03 | 2005-03-23 | 本田技研工业株式会社 | 使用Kernel Fisherfaces的面部识别 |
US20130142399A1 (en) * | 2011-12-04 | 2013-06-06 | King Saud University | Face recognition using multilayered discriminant analysis |
CN104361337A (zh) * | 2014-09-10 | 2015-02-18 | 苏州工业职业技术学院 | 计算和存储空间受限下的稀疏核主成分分析方法 |
-
2017
- 2017-04-12 WO PCT/CN2017/080175 patent/WO2018187951A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1599917A (zh) * | 2001-12-03 | 2005-03-23 | 本田技研工业株式会社 | 使用Kernel Fisherfaces的面部识别 |
US20130142399A1 (en) * | 2011-12-04 | 2013-06-06 | King Saud University | Face recognition using multilayered discriminant analysis |
CN104361337A (zh) * | 2014-09-10 | 2015-02-18 | 苏州工业职业技术学院 | 计算和存储空间受限下的稀疏核主成分分析方法 |
Non-Patent Citations (2)
Title |
---|
MA, WENQING: "A Weighted Kernel Principal Component Analysis and the Related Parameters Choice", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 September 2009 (2009-09-15), pages 15 - 35, ISSN: 1674-0246 * |
YANG, SHAOHUA: "A Face Recognition Method Based On Kernel-PCA", JOURNAL OF HE BEI UNIVERCITY OF SCIENCE AND TECHNOLOGY, vol. 22, no. 03, 30 September 2008 (2008-09-30), pages 45 - 48 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111914886A (zh) * | 2020-06-13 | 2020-11-10 | 宁波大学 | 一种基于在线简略核学习的非线性化工过程监测方法 |
CN111914886B (zh) * | 2020-06-13 | 2022-07-26 | 宁波大学 | 一种基于在线简略核学习的非线性化工过程监测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Iris recognition using independent component analysis | |
Sharma et al. | Biometric system-a review | |
Ashraf et al. | Multi-biometric sustainable approach for human appellative | |
Al-juboori et al. | Palm vein verification using Gabor filter | |
Shariatmadar et al. | A novel approach for Finger-Knuckle-Print recognition based on Gabor feature fusion | |
Elnasir et al. | Proposed scheme for palm vein recognition based on linear discrimination analysis and nearest neighbour classifier | |
WO2018187953A1 (fr) | Procédé de reconnaissance faciale faisant appel à un réseau neuronal | |
Shariatmadar et al. | Finger-Knuckle-Print recognition performance improvement via multi-instance fusion at the score level | |
Bakhshi et al. | A study based on various face recognition algorithms | |
Al-Juboori et al. | Biometric authentication system based on palm vein | |
WO2018187950A1 (fr) | Procédé de reconnaissance faciale basé sur une analyse discriminante de noyau | |
Darwish et al. | Multimodal face and ear images | |
WO2018187951A1 (fr) | Procédé de reconnaissance faciale basé sur une analyse de composant principal de noyau | |
Jagadeesh et al. | DBC based Face Recognition using DWT | |
CN108491802A (zh) | 基于联合加权差分激励和双Gabor方向的掌纹交叉匹配识别方法 | |
Lu et al. | Multimodal biometric identification approach based on face and palmprint | |
Ariffin et al. | Image Fusion for Single-trait Multimodal Biometrics: A Brief Review | |
Shariatmadar et al. | An efficient method for finger-knuckle-print recognition based on information fusion | |
Nayak et al. | Modeling self-Principal Component Analysis for age invariant face recognition | |
Al-Taie et al. | The effect of distance similarity measures on the performance of face, ear and palm biometric systems | |
Arora et al. | Age invariant face recogntion using stacked autoencoder deep neural network | |
WO2018187952A1 (fr) | Procédé d'approximation de noyau en analyse discriminante basé sur un réseau neuronal | |
Hwang et al. | Towards face representation learning conditioned on the soft biometrics | |
Wattamwar et al. | Optimal Face Recognition System using Haar Classifier | |
Choras | Facial feature detection for face authentication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905319 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 21.02.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905319 Country of ref document: EP Kind code of ref document: A1 |