+

WO2018186482A1 - 無線通信システム及びユーザ装置 - Google Patents

無線通信システム及びユーザ装置 Download PDF

Info

Publication number
WO2018186482A1
WO2018186482A1 PCT/JP2018/014686 JP2018014686W WO2018186482A1 WO 2018186482 A1 WO2018186482 A1 WO 2018186482A1 JP 2018014686 W JP2018014686 W JP 2018014686W WO 2018186482 A1 WO2018186482 A1 WO 2018186482A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
control unit
rrc
radio resource
master node
Prior art date
Application number
PCT/JP2018/014686
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
ウリ アンダルマワンティ ハプサリ
安部田 貞行
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to BR112019020945A priority Critical patent/BR112019020945A2/pt
Priority to IL269831A priority patent/IL269831B2/en
Priority to CA3059155A priority patent/CA3059155A1/en
Priority to CN201880023614.8A priority patent/CN110495206B/zh
Priority to US16/603,148 priority patent/US20220061115A1/en
Priority to JP2019511314A priority patent/JP7132209B2/ja
Priority to EP18780702.9A priority patent/EP3609222A4/en
Publication of WO2018186482A1 publication Critical patent/WO2018186482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a radio communication system and a user apparatus that execute dual connectivity to a master node and a secondary node.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio 5G New Radio
  • Non-Patent Document 1 in dual connectivity (DC) using an LTE radio base station (eNB) and an NR radio base station (gNB), eNB and gNB are respectively radio resources. It describes that it has a control layer (RRC layer) entity (RRC entity).
  • RRC layer control layer
  • the RRC entity of the master node controlled the RRC entity of the user equipment (UE) including the secondary node (SeNB) as a whole, but LTE (eNB) and In DC (LTE-NR DC) with NR (gNB), the secondary node can also directly transmit the RRC message to the UE.
  • UE can also transmit the measurement report (Measurement
  • SCG secondary cell group
  • each eNB and gNB can independently control the RRC entity of its own device, so the RRCs of different RATs
  • the problem is how to make the UE perform measurement reporting between entities.
  • the eNB sets an event for a carrier of a different RAT (that is, NR) (for example, Event B1 equivalent to 3GPP TS36.331), Since the gNB sets an event (corresponding to the same Event A4) for the carrier of its own RAT (that is, NR), there is a possibility that the setting contents compete.
  • a carrier of a different RAT that is, NR
  • the present invention has been made in view of such a situation, and a wireless communication system capable of executing an appropriate measurement report even in the case of dual connectivity (DC) between LTE (eNB) and NR (gNB), and An object is to provide a user device.
  • DC dual connectivity
  • eNB LTE
  • gNB NR
  • One aspect of the present invention is a master node (eNB100A) that performs radio communication with a user apparatus (UE200) via a radio resource control layer, and a secondary node that performs radio communication with the user apparatus via a radio resource control layer.
  • eNB100A a master node
  • UE200 user apparatus
  • a secondary node that performs radio communication with the user apparatus via a radio resource control layer.
  • GNB100B wireless communication system
  • the master node has a radio resource control A first RRC control unit (RRC control unit 120A) that performs control in a layer; and a first measurement control unit (measurement control unit 130A) that controls measurement of reception quality of a measurement target cell by the user apparatus, and the secondary
  • the node includes a second RRC control unit (RRC control unit 120B) that performs control in the radio resource control layer, A second measurement control unit (measurement control unit 130B) that controls measurement of reception quality of the measurement target cell by the user apparatus, wherein the first measurement control unit obtain
  • One aspect of the present invention performs radio communication with a master node via a radio resource control layer, and performs radio communication with a secondary node via a radio resource control layer, to both the master node and the secondary node.
  • a measurement unit (measurement unit 240) is provided, and the measurement unit invalidates measurement on carriers exceeding the upper limit number when the number of carriers to be measured exceeds the upper limit number in the user apparatus.
  • One aspect of the present invention performs radio communication with a master node via a radio resource control layer, and performs radio communication with a secondary node via a radio resource control layer, to both the master node and the secondary node.
  • a user equipment that supports dual connectivity connected simultaneously, and performs measurement of reception quality of a measurement target cell based on a measurement setting received from each of the master node and the secondary node via a radio resource control layer
  • the event of transmitting the measurement result to each of the master node and the secondary node occurs at the same timing, either the master node or the secondary node
  • the measurement result for the timing Send fraud and mitigating risk results of the measurement are transmitted at a timing later than the timing relative to the other.
  • One aspect of the present invention includes a master node that performs radio communication with a user apparatus via a radio resource control layer, and a secondary node that performs radio communication with the user apparatus via a radio resource control layer, A wireless communication system supporting dual connectivity in which both a node and the secondary node are simultaneously connected to the user equipment, wherein the master node includes a first RRC control unit that performs control in a radio resource control layer, and the user equipment A first measurement control unit that controls measurement of reception quality of the measurement target cell by the second node, wherein the secondary node performs control in a radio resource control layer, and reception of the measurement target cell by the user apparatus A second measurement control unit for controlling the measurement of quality, Measurement settings shown a constant content is common to the first measurement control unit and the second measurement control unit.
  • One aspect of the present invention includes a master node that performs radio communication with a user apparatus via a radio resource control layer, and a secondary node that performs radio communication with the user apparatus via a radio resource control layer, A wireless communication system supporting dual connectivity in which both a node and the secondary node are simultaneously connected to the user equipment, wherein the master node includes a first RRC control unit that performs control in a radio resource control layer, and the user equipment A first measurement control unit that controls measurement of reception quality of the measurement target cell by the second node, wherein the secondary node performs control in a radio resource control layer, and reception of the measurement target cell by the user apparatus A second measurement control unit for controlling quality measurement, and the first RRC. Control unit for both the master node and the secondary node, determines a measurement configuration indicating the setting contents of the measurement, the first measurement control unit notifies the measurement set to the second measurement control unit.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the eNB 100A.
  • FIG. 3 is a functional block configuration diagram of the gNB 100B.
  • FIG. 4 is a functional block configuration diagram of UE 200.
  • FIG. 5 is an explanatory diagram of a measurement report operation (operation example 1) in LTE-NR
  • FIG. 6 is an explanatory diagram of a measurement object priority process performed by the eNB 100A (master node) and the gNB 100B (secondary node) (modified example 1 of the operation example 1).
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the eNB 100A.
  • FIG. 3 is a functional block configuration diagram of the gNB 100B.
  • FIG. 4 is a functional block configuration diagram of UE 200.
  • FIG. 5 is an explanatory diagram of a measurement report operation (operation example 1) in
  • FIG. 7 is an explanatory diagram of a priority process of measurement object by the eNB 100A (master node) and the gNB 100B (secondary node) (modified example 2 of the operation example 1).
  • FIG. 8 is an explanatory diagram of a measurement object priority process performed by the eNB 100A (master node) and the gNB 100B (secondary node) (modified example 3 of the operation example 1).
  • FIG. 9 is an explanatory diagram of a measurement report operation (operation example 2) in LTE-NR
  • FIG. 10 is an explanatory diagram of a measurement report (Measurement Report) operation (modified example 1 of the operation example 2) in LTE-NR DC.
  • FIG. 11 is an explanatory diagram of a measurement report (Measurement Report) operation (modification example 2 of operation example 2) in LTE-NR DC.
  • FIG. 12 is an explanatory diagram of the measurement report (Measurement Report) operation (operation example 3) in LTE-NR DC.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the eNB 100A, the gNB 100B, and the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to Long Term Evolution (LTE) and 5G New Radio (NR).
  • the radio communication system 10 includes a radio base station 100A (hereinafter, eNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • the radio communication system 10 includes a user apparatus 200 (hereinafter referred to as UE 200).
  • UE 200 user apparatus 200
  • the eNB 100A is an LTE (E-UTRA) radio base station (eNB) and can constitute a master node.
  • the gNB 100B is an NR radio base station (gNB) and can constitute a secondary node.
  • the radio communication system 10 supports dual connectivity (hereinafter, LTE-NR DC) using the LTE eNB100A and the NR gNB100B.
  • LTE-NR DC dual connectivity
  • both the master node and the secondary node are connected to UE 200 at the same time. That is, UE200 can set the connection of eNB100A and gNB100B and a radio
  • RRC layer wireless resource control layer
  • eNB100A includes an S1-C or NG-C interface for a core network (not shown). Moreover, eNB100A and gNB100B are connected by the Xx-C interface. UE 200 transmits / receives user data to / from eNB 100A and gNB 100B via the Uu interface.
  • FIG. 2 is a functional block configuration diagram of the eNB 100A
  • FIG. 3 is a functional block configuration diagram of the gNB 100B.
  • eNB100A and gNB100B are provided with the same functional block.
  • the eNB 100A includes a wireless communication unit 110A, an RRC control unit 120A, and a measurement control unit 130A.
  • the gNB 100B includes a wireless communication unit 110B, an RRC control unit 120B, and a measurement control unit 130B.
  • each functional block of the eNB 100A will be mainly described.
  • the wireless communication unit 110A performs wireless communication according to the LTE method. Specifically, radio communication section 110A transmits and receives radio signals according to LTE scheme with UE 200. RRC layer messages and user data are multiplexed on the radio signal.
  • the RRC control unit 120A executes control in the RRC layer.
  • the RRC control unit 120A constitutes a first RRC control unit.
  • the RRC control unit 120A configures an RRC entity according to LTE and executes transmission / reception of an RRC message. Accordingly, the RRC control unit 120A controls establishment and release of the RRC connection with the UE 200.
  • the RRC control unit 120A can determine a measurement configuration (measurement setting) indicating the setting content of measurement in the measurement target cell by the UE 200 for both the eNB 100A and the gNB 100B.
  • the measurement control unit 130A controls the measurement of the reception quality of the measurement target cell by the UE 200.
  • the measurement control unit 130A constitutes a first measurement control unit. Specifically, the measurement control unit 130A controls measurement of reception quality of the serving cell and neighboring cells of the UE 200 as a measurement target cell by the UE 200.
  • Measurement Configuration includes measurement object (measurement object), measurement ID (measurement identifier), and report configuration (report setting).
  • measurement object includes information on the carrier frequency to be measured.
  • Measurement Configuration indicates the setting contents of measurement in the measurement target cell by UE 200.
  • the measurement configuration can be shared by the measurement control unit 130A and the measurement control unit 130B of the gNB 100B.
  • only measurement object and measurement ID in the measurement configuration may be shared by the measurement control unit 130A and the measurement control unit 130B. Further, only the measurement object in the measurement configuration may be shared by the measurement control unit 130A and the measurement control unit 130B.
  • the measurement control unit 130A when the RRC control unit 120A determines the measurement configuration for both the eNB 100A and the gNB 100B, the measurement control unit 130A notifies the measurement control unit 130B of the determined measurement configuration.
  • the measurement control unit 130A can share information on the number of carriers to be measured by the UE 200 with the measurement control unit 130B according to the Measurement Configuration.
  • the measurement control unit 130A provides information on the number of carriers to be measured to the measurement control unit 130B in accordance with the measurement object included in the measurement configuration determined by the measurement control unit 130A.
  • the measurement control unit 130A acquires information on the number of carriers to be measured determined by the measurement control unit 130B from the measurement control unit 130B.
  • the radio communication unit 110B, the RRC control unit 120B, and the measurement control unit 130B of the gNB 100B illustrated in FIG. 3 are the above-described radio communication unit 110A, the RRC control unit 120A, and the measurement of the eNB 100A, except that the corresponding RAT is NR. It has substantially the same function as the control unit 130A.
  • the RRC control unit 120B constitutes a second RRC control unit that executes control in the RRC layer, and the measurement control unit 130B controls the measurement of the reception quality of the measurement target cell by the UE 200. Configure.
  • FIG. 4 is a functional block configuration diagram of UE 200. As illustrated in FIG. 4, the UE 200 includes a radio communication unit 210, an LTE-RRC control unit 220, an NR-RRC control unit 230, and a measurement unit 240.
  • the UE 200 includes a radio communication unit 210, an LTE-RRC control unit 220, an NR-RRC control unit 230, and a measurement unit 240.
  • the wireless communication unit 210 performs wireless communication according to the LTE method and the NR method. Specifically, the radio communication unit 210 transmits and receives radio signals according to the LTE scheme with the eNB 100A. Further, the radio communication unit 210 transmits and receives radio signals in accordance with the NR method with the gNB 100B. RRC layer messages and user data are multiplexed on the radio signal.
  • the LTE-RRC control unit 220 executes control in the RRC layer for LTE (eNB100A). Specifically, the LTE-RRC control unit 220 configures an RRC entity according to LTE and executes transmission / reception of an RRC message. Thereby, the LTE-RRC control unit 220 executes establishment and release of the RRC connection with the eNB 100A.
  • the NR-RRC control unit 230 executes control in the RRC layer for NR (gNB100B). Specifically, the NR-RRC control unit 230 configures an RRC entity according to NR, and transmits and receives an RRC message. Thereby, the NR-RRC control unit 230 performs establishment and release of the RRC connection with the gNB 100B.
  • the measurement unit 240 measures the reception quality of the measurement target cell based on the Measurement Configuration received from the eNB 100A and the gNB 100B. Specifically, the measurement unit 240 receives Measurement Configuration from each of the eNB 100A and the gNB 100B via the RRC layer. Measurement Configuration is included in RRC Connection Reconfiguration, which is a type of RRC message.
  • measurement unit 240 can invalidate the measurement on carriers exceeding the upper limit number.
  • the upper limit number is determined by the number of measurements (number of carriers to be measured) that UE 200 can execute simultaneously.
  • the measurement unit 240 can determine a carrier that invalidates the measurement based on the priority associated with the measurement target cell or carrier.
  • the measurement unit 240 is instructed by the Measurement Configuration from each of the eNB 100A and the gNB 100B, and when the event of transmitting the measurement result at the same timing occurs for each of the eNB 100A and the gNB 100B, the eNB 100A and The measurement result can be transmitted to any one of gNB100B at the timing. In this case, the measurement unit 240 transmits the measurement result to the other of the eNB 100A and the gNB 100B at a timing after the timing.
  • the measurement unit 240 determines the measurement result to be transmitted at the previous timing based on the measurement target cell or the priority associated with the measurement. Also good.
  • FIG. 5 is an explanatory diagram of a measurement report operation (operation example 1) in LTE-NR DC.
  • the network side specifically, eNB100A (master node) and gNB100B (secondary node), and UE 200 completely separate LTE RRC and NR RRC from Measurement Configuration (measurement object / measurement ID). / report configuration).
  • the UE 200 performs measurement of the measurement target cell based on the Measurement Configuration received from each of the eNB 100A and the gNB 100B. Moreover, UE200 transmits Measurement Report including the measurement result of the measurement target cell to eNB100A and gNB100B, respectively.
  • both LTE RRC and NR RRC can simultaneously set measurement object and measurement ID for the same carrier frequency.
  • information on the number of carriers to be measured is shared between the eNB 100A and the gNB 100B.
  • the eNB 100A (measurement control unit 130A) and the gNB 100B (measurement control unit 130B) exchange the information on the number of carriers so that the UE 200 can simultaneously perform the number of measurements (upper limit number). Adjust so that it does not exceed. That is, the upper limit number is a total value of the number of carriers set as a measurement target by LTE-RRC and NR-RRC, respectively.
  • eNB 100A determines the number of carriers based on the upper limit number in LTE
  • gNB 100B determines the number of carriers based on the upper limit number in NR.
  • the eNB 100A and the gNB 100B exchange information on the determined number of carriers, respectively, and adjust the total value of the determined number of carriers so as not to exceed the number of measurements that can be performed simultaneously by the UE 200.
  • the eNB 100A or gNB 100B sets the measurement priority for the master cell group (MCG) or the secondary cell group (SCG) to be low, and the UE 200 invalidates the measurement object for the low priority cell group. You may make it become below an upper limit.
  • the eNB 100A or the gNB 100B may give priority to each measurement ID, and the UE 200 may invalidate the measurement object corresponding to the measurement ⁇ ID having a low priority so as to be equal to or lower than the upper limit value. .
  • FIG. 6 is an explanatory diagram of a measurement object priority process performed by the eNB 100A (master node) and the gNB 100B (secondary node) (modified example 1 of the operation example 1).
  • x, y (LTE / E-UTRA) and a, b, c (NR) are assigned as carrier frequencies (specifically, CC frequencies).
  • A3, A4, A6, and B1 mean events defined in 3GPP TS36.331. Specifically, it is defined as follows.
  • ⁇ A3 Neighbor becomes offset better than PCell / PSCell ⁇ A4: Neighbor becomes better than absolute threshold ⁇ A6: Neighbor becomes offset better than SCell ⁇ B1: Inter RAT neighbor becomes better than threshold
  • priorities 1 to 4 (priority 1 is high priority) for cells in the MCG (measurement target cell) set by the eNB 100A, specifically, neighbor cells (NeighbourbCell) The measurement is set. Similarly, measurements with priority levels 1 to 4 are set for cells (measurement target cells) in the SCG set by the gNB 100B.
  • the upper limit number that is the number of measurements (specifically, the number of carriers to be measured) that UE 200 (not shown in FIG. 6) can simultaneously execute is 7, UE 200 performs all measurements (total 8). Cannot be performed and one of them needs to invalidate the measurement.
  • UE 200 invalidates the measurement of priority 4 (NR4Carrier frequency b using Event A6) set by gNB100B.
  • UE 200 invalidates the measurement of priority 4 (NR Carrier frequency c using Event B1) set by eNB100A.
  • FIG. 7 is an explanatory diagram of a measurement object priority process by the eNB 100A (master node) and the gNB 100B (secondary node) (modified example 2 of the operation example 1).
  • the parts different from the first modification will be mainly described.
  • priority is set for the carrier, not the cell.
  • the configuration of the cells in the MCG and the SCG and the setting state of the event are the same as in the first modification.
  • the upper limit number that is the number of measurements that UE 200 (not shown in FIG. 7) can simultaneously execute is 4, UE 200 performs all measurements (total 5). Cannot be performed and one of them needs to invalidate the measurement.
  • UE 200 invalidates the measurement of priority 3 (NR3Carrier frequency c using Event A4) set by gNB100B.
  • UE 200 invalidates the measurement of priority 2 set by eNB100A (E-UTRA Carrier Carrier frequency using Event A3, A6) And
  • FIG. 8 is an explanatory diagram of measurement object priority processing by the eNB 100A (master node) and the gNB 100B (secondary node) (Modification 3 of the operation example 1).
  • the parts different from the first modification will be mainly described.
  • the UE 200 (not shown in FIG. 8) simultaneously performs the Measurement-Report corresponding to each RRC entity, Events that transmit at the same timing may occur.
  • the UE 200 transmits a Measurement Report (measurement result) to either one of the eNB100A (LTE-RRC) and gNB100B (NR-RRC) at the timing, and sends a Measurement Report to the other from the timing. May be transmitted at a later timing.
  • a Measurement Report (measurement result) to either one of the eNB100A (LTE-RRC) and gNB100B (NR-RRC) at the timing, and sends a Measurement Report to the other from the timing. May be transmitted at a later timing.
  • the UE 200 may postpone transmission of either one of the measurement reports until the next transmission timing.
  • the UE 200 may transmit both Measurement Reports at the same timing.
  • the eNB 100A or the gNB 100B may instruct the UE 200 regarding which of LTE RRC (that is, MCG) and NR RRC (that is, SCG) is prioritized.
  • the eNB 100A or the gNB 100B may set the priority (1 to 8) for each measurement using the Event and instruct the UE 200.
  • the UE 200 transmits a Measurement Report including a result of measurement having a high priority based on the designated priority at the previous timing.
  • the UE 200 may simply prioritize the measurement report including a large number of measurement results, or the average of the priorities given to the measurements in the MCG.
  • the value and the average value of the priority given to the measurement in the SCG may be compared, and a measurement report having a low average value (that is, a relatively high priority) may be transmitted at the previous timing. .
  • FIG. 9 is an explanatory diagram of a measurement report operation (operation example 2) in LTE-NR DC.
  • Measurement Configuration includes measurement object, measurement ID, and report configuration.
  • Measurement Configuration can be set from either eNB100A or gNB100B.
  • eNB100A transmits the content of Measurement Configuration by transmitting RRC PDU (LTE RRC ⁇ PDU in the figure) encoded with ASN.1 of LTE RRC to UE200. Is notified to UE200. That is, the content of MeasurementMeasureConfiguration is included in LTE RRC PDU.
  • RRC PDU LTE RRC ⁇ PDU in the figure
  • gNB100B when setting Measurement Configuration from gNB100B (secondary node), gNB100B transmits the RRC PDU (NR RRC PDU in the figure) encoded with ASN.1 of NR RRC to UE 200, thereby the content of Measurement Configuration. Is notified to UE200. That is, the contents of MeasurementMeasureConfiguration are included in NR RRC PDU.
  • RRC PDU NR RRC PDU in the figure
  • the destination of measurement report (eNB100A or gNB100B) may be specified in report configuration.
  • eNB100A and gNB100B cooperate and set.
  • FIG. 10 is an explanatory diagram of a measurement report operation (modified example 1 of operation example 2) in LTE-NR DC.
  • the measurement object, the measurement ID, and the report configuration are common, but in this modified example, only the measurement object and the measurement ID (underlined portion in the figure) are common. This is because the report configuration may differ between LTE RRC and NR RRC.
  • Measurement ⁇ ⁇ Configuration The contents of Measurement ⁇ ⁇ Configuration are set independently by eNB100A and gNB100B.
  • the transmission destination (eNB100A or gNB100B) of Measurement Report depends on (links) the RAT (LTE or NR) specified by report configuration.
  • the Measurement Report is transmitted to the eNB 100A.
  • the report configuration is an information element (IE) encoded in ASN.1 of NR RRC, the Measurement Report is transmitted to the gNB 100B.
  • MeasurementAobject and measurement ID are set in cooperation with eNB100A and gNB100B.
  • FIG. 11 is an explanatory diagram of a measurement report operation (modified example 2 of the operation example 2) in LTE-NR DC.
  • the measurement object, the measurement ID, and the report configuration are common, but in this modified example, only the measurement object (underlined portion in the figure) is common.
  • the contents of MeasurementMeasureConfiguration are set independently by eNB100A and gNB100B.
  • the transmission destination (eNB100A or gNB100B) of Measurement Report depends on (links) the RAT (LTE or NR) specified by report configuration.
  • the measurement object is set in cooperation with eNB100A and gNB100B. Furthermore, the number of carriers to be measured is set in cooperation with the eNB 100A and the gNB 100B.
  • FIG. 12 is an explanatory diagram of a measurement report operation (operation example 3) in LTE-NR DC.
  • the RRC entity of the eNB 100A (master node), and in this embodiment, the LTE RRC also sets the measurement configuration (measurement object / measurement ID / report configuration) related to NR.
  • ENB100A sets the overall contents of MeasurementMeasureConfiguration in cooperation with gNB100B. Also, the Measurement-Configuration notified by the eNB 100A to the UE 200 is notified from the eNB 100A to the gNB 100B via the Xx-C interface. For example, the SCG-ConfigInfo message defined by TS36.331 can be used.
  • the transmission destination (eNB100A or gNB100B) of Measurement Report depends on (links) the RAT (LTE or NR) specified by report configuration.
  • the UE 200 when the number of carriers to be measured exceeds the upper limit number in the UE 200, the UE 200 can invalidate the measurement in the carrier exceeding the upper limit number. For this reason, even when the information on the number of carriers to be measured is not shared between the eNB 100A and the gNB 100B, the measurement can be performed within a range not exceeding the upper limit number.
  • the measurement report for either the eNB 100A or the gNB 100B can be transmitted at the timing, and the Measurement Report can be transmitted to the other at a timing later than the timing. For this reason, even when the reporting timing of Measurement Report to eNB100A and gNB100B competes, Measurement Report can be reliably transmitted.
  • Measurement Report specifically, Measurement Report associated with the measurement target cell or measurement
  • Measurement Configuration is common to eNB100A (measurement control unit 130A) and gNB100B (measurement control unit 130B). For this reason, it is possible to apply Measurement Configuration unified in LTE and NR. Thereby, an appropriate Measurement Report can be executed even in LTE-NR DC.
  • eNB100A (RRC control unit 120A) determines MeasurementMeasureConfiguration for both eNB100A and gNB100B, and eNB100A (measurement control unit 130A) uses the determined Measurement Configuration as gNB100B (measurement control unit 130B). Notify Therefore, an appropriate Measurement Report can be executed even in LTE-NR DC, while permitting the setting of the Measurement Configuration driven by the eNB 100A (master node).
  • the eNB 100A and the gNB 100B cooperate with each other in setting the Measurement Configuration, so that the UE 200 can execute an appropriate Measurement Report.
  • LTE-NR-DC even when LTE-NR-DC is applied, it is possible to maintain and improve the communication quality of the radio communication system 10 as a whole and to efficiently use radio resources.
  • the eNB 100A is an LTE radio base station (eNB) and constitutes a master node
  • the gNB 100B is an NR radio base station (gNB) and constitutes a secondary node.
  • eNB LTE radio base station
  • gNB NR radio base station
  • eNB LTE radio base station
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by the plurality of devices.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the apparatus.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • Each functional block (see FIGS. 2 to 4) of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the memory 1002 is a computer-readable recording medium and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code) that can execute the method according to the above-described embodiment, a software module, and the like.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (eg a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database including a memory 1002 and / or a storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, or the like) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the notification of information is not limited to the above-described embodiment, and may be performed by other methods.
  • the information notification may be physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC signaling, MAC (Medium Access Control) signaling, broadcast information (MIB ( Master Information Block), SIB (System Information Block)), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, eg, RRC Connection Setup message, RRC It may be a Connection Reconfiguration message.
  • RRC messages eg, RRC Connection Setup message, RRC It may be a Connection Reconfiguration message.
  • input / output information may be stored in a specific location (for example, a memory) or may be managed by a management table.
  • the input / output information can be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be transmitted to other devices.
  • the specific operation performed by the eNB 100A may be performed by another network node (device). Further, the function of the eNB 100A may be provided by a combination of a plurality of other network nodes.
  • a channel and / or symbol may be a signal (signal) if there is a corresponding description.
  • the signal may be a message.
  • system and “network” may be used interchangeably.
  • the parameter or the like may be represented by an absolute value, may be represented by a relative value from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • ENB100A base station
  • base station can accommodate one or a plurality of (for example, three) cells (also referred to as sectors).
  • a base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • RRH Remote Radio Head
  • cell refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
  • base station eNodeB
  • gNB gNodeB
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), gNodeB (gNB), access point, femtocell, small cell, and the like.
  • UE 200 is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art. , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
  • an appropriate measurement report can be executed even in the case of dual connectivity (DC) between LTE (eNB) and NR (gNB).
  • DC dual connectivity
  • eNB LTE
  • gNB NR

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

LTE(eNB)とNR(gNB)とのデュアルコネクティビティ(DC)の場合でも、適切な測定報告を実行できる無線通信システム及びユーザ装置を提供する。eNB(100A)は、RRCレイヤにおける制御を実行する第1RRC制御部と、ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備える。gNB(100B)は、RRCレイヤにおける制御を実行する第2RRC制御部と、ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備える。第1測定制御部は、測定の対象とするキャリア数の情報を第2測定制御部と共有する。

Description

無線通信システム及びユーザ装置
 本発明は、マスタノード及びセカンダリノードへのデュアルコネクティビティを実行する無線通信システム及びユーザ装置に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G New Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。
 具体的には、非特許文献1では、LTE方式の無線基地局(eNB)と、NR方式の無線基地局(gNB)とを用いたデュアルコネクティビティ(DC)において、eNB及びgNBが、それぞれ無線リソース制御レイヤ(RRCレイヤ)のエンティティ(RRCエンティティ)を有することが記載されている。
 LTE(eNB)のみのDCでは、マスタノード(MeNB)のRRCエンティティが、セカンダリノード(SeNB)向けを含むユーザ装置(UE)のRRCエンティティを全体的に制御していたが、LTE(eNB)とNR(gNB)とのDC(LTE-NR DC)では、セカンダリノードも、UEに対してRRCメッセージを直接送信することができる。また、UEも、セカンダリセルグループ(SCG)に関する近隣セルの受信品質の測定報告(Measurement Report)をセカンダリノードに直接送信することができる。
3GPP TR 38.804 V14.0.0 Section 5.2.2.2 Control plane architecture for Dual Connectivity between LTE and NR, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio Access Technology; Radio Interface Protocol Aspects (Release 14)、3GPP、2017年3月
 上述したように、無線アクセス技術(RAT)が異なるLTE(eNB)とNR(gNB)とのDCでは、eNB及びgNBそれぞれが、独自に自装置のRRCエンティティを制御し得るため、異なるRATのRRCエンティティ間において、どのようにUEに測定報告を実行させるかが問題になる。
 例えば、マスタノードがeNBであり、セカンダリノードがgNBである場合、eNBが、異RAT(つまり、NR)のキャリアに対するイベント(例えば、3GPP TS36.331で規定されるEvent B1相当)を設定し、gNBが自RAT(つまり、NR)のキャリアに対するイベント(同Event A4相当)を設定するため、設定内容が競合する可能性がある。
 そこで、本発明は、このような状況に鑑みてなされたものであり、LTE(eNB)とNR(gNB)とのデュアルコネクティビティ(DC)の場合でも、適切な測定報告を実行できる無線通信システム及びユーザ装置の提供を目的とする。
 本発明の一態様は、無線リソース制御レイヤを介してユーザ装置(UE200)と無線通信を実行するマスタノード(eNB100A)と、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノード(gNB100B)とを含み、前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システム(無線通信システム10)であって、前記マスタノードは、無線リソース制御レイヤにおける制御を実行する第1RRC制御部(RRC制御部120A)と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部(測定制御部130A)とを備え、前記セカンダリノードは、無線リソース制御レイヤにおける制御を実行する第2RRC制御部(RRC制御部120B)と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部(測定制御部130B)とを備え、前記第1測定制御部は、前記測定の対象とするキャリア数の情報を前記第2測定制御部と共有する。
 本発明の一態様は、無線リソース制御レイヤを介してマスタノードと無線通信を実行するとともに、無線リソース制御レイヤを介してセカンダリノードと無線通信を実行し、前記マスタノード及び前記セカンダリノードの両方に同時に接続するデュアルコネクティビティをサポートするユーザ装置(UE200)であって、前記マスタノード及び前記セカンダリノードそれぞれから無線リソース制御レイヤを介して受信した測定設定に基づいて、測定対象セルの受信品質の測定を実行する測定部(測定部240)を備え、前記測定部は、前記測定の対象とするキャリア数が前記ユーザ装置での上限数を超える場合、前記上限数を超えるキャリアにおける測定を無効とする。
 本発明の一態様は、無線リソース制御レイヤを介してマスタノードと無線通信を実行するとともに、無線リソース制御レイヤを介してセカンダリノードと無線通信を実行し、前記マスタノード及び前記セカンダリノードの両方に同時に接続するデュアルコネクティビティをサポートするユーザ装置であって、前記マスタノード及び前記セカンダリノードそれぞれから無線リソース制御レイヤを介して受信した測定設定に基づいて、測定対象セルの受信品質の測定を実行する測定部を備え、前記測定部は、前記マスタノード及び前記セカンダリノードのそれぞれに対して、前記測定の結果を同一のタイミングで送信する事象が発生した場合、前記マスタノード及び前記セカンダリノードの何れか一方に対して前記測定の結果を前記タイミングにおいて送信し、他方に対して前記測定の結果を前記タイミングよりも後のタイミングにおいて送信する。
 本発明の一態様は、無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、前記マスタノードは、無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、前記セカンダリノードは、無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、前記測定の設定内容を示す測定設定は、前記第1測定制御部及び前記第2測定制御部で共通である。
 本発明の一態様は、無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、前記マスタノードは、無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、前記セカンダリノードは、無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、前記第1RRC制御部は、前記マスタノード及び前記セカンダリノードの両方について、前記測定の設定内容を示す測定設定を決定し、前記第1測定制御部は、前記測定設定を前記第2測定制御部に通知する。
図1は、無線通信システム10の全体概略構成図である。 図2は、eNB100Aの機能ブロック構成図である。 図3は、gNB100Bの機能ブロック構成図である。 図4は、UE200の機能ブロック構成図である。 図5は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例1)の説明図である。 図6は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例1)である。 図7は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例2)である。 図8は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例3)である。 図9は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2)の説明図である。 図10は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2の変更例1)の説明図である。 図11は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2の変更例2)の説明図である。 図12は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例3)の説明図である。 図13は、eNB100A, gNB100B、及びUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)及び5G New Radio(NR)に従った無線通信システムである。無線通信システム10は、無線基地局100A(以下、eNB100A)及び無線基地局100B(以下、gNB100B)を含む。さらに、無線通信システム10は、ユーザ装置200(以下、UE200)を含む。eNB100A及びgNB100Bは、RRCレイヤを介してUE200と無線通信を実行する。
 本実施形態では、eNB100Aは、LTE方式(E-UTRA方式)の無線基地局(eNB)であり、マスタノードを構成することができる。gNB100Bは、NR方式の無線基地局(gNB)であり、セカンダリノードを構成することができる。
 無線通信システム10は、LTE方式のeNB100Aと、NR方式のgNB100Bとを用いたデュアルコネクティビティ(以下、LTE-NR DC)をサポートする。DCでは、マスタノード及びセカンダリノードの両方が同時にUE200と接続する。つまり、UE200は、同時にeNB100A及びgNB100Bと無線リソース制御レイヤ(RRCレイヤ)のコネクションを設定し、ユーザデータの送受信を実行できる。
 また、図1に示すように、LTE-NR DCを実現するための制御プレーンのアーキテクチャとしては、eNB100Aは、コアネットワーク(不図示)向けにS1-CまたはNG-Cインタフェースを備える。また、eNB100AとgNB100Bとは、Xx-Cインタフェースによって接続される。UE200は、eNB100A及びgNB100Bと、Uuインタフェースを介してユーザデータを送受信する。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A、gNB100B及びUE200の機能ブロック構成について説明する。
 (2.1)eNB100A及びgNB100B
 図2は、eNB100Aの機能ブロック構成図であり、図3は、gNB100Bの機能ブロック構成図である。図2及び図3に示すように、eNB100A及びgNB100Bは、同様の機能ブロックを備える。
 具体的には、eNB100Aは、無線通信部110A、RRC制御部120A及び測定制御部130Aを備える。また、gNB100Bは、無線通信部110B、RRC制御部120B及び測定制御部130Bを備える。以下、eNB100Aの各機能ブロックについて主に説明する。
 無線通信部110Aは、LTE方式に従った無線通信を実行する。具体的には、無線通信部110Aは、UE200とLTE方式に従った無線信号を送受信する。当該無線信号には、RRCレイヤのメッセージ及びユーザデータなどが多重される。
 RRC制御部120Aは、RRCレイヤにおける制御を実行する。本実施形態において、RRC制御部120Aは、第1RRC制御部を構成する。具体的には、RRC制御部120Aは、LTEに従ったRRCエンティティを構成し、RRCメッセージの送受信を実行する。これにより、RRC制御部120Aは、UE200とのRRCコネクションの確立及び解放などを制御する。
 また、本実施形態では、RRC制御部120Aは、eNB100A及びgNB100Bの両方について、UE200による測定対象セルにおける測定の設定内容を示すMeasurement Configuration(測定設定)を決定できる。
 測定制御部130Aは、UE200による測定対象セルの受信品質の測定を制御する。本実施形態において、測定制御部130Aは、第1測定制御部を構成する。具体的には、測定制御部130Aは、UE200による測定対象セルとして、UE200のサービングセル及び近隣セルの受信品質の測定を制御する。
 より具体的には、測定制御部130Aは、Measurement Configuration(測定設定)の内容を決定する。Measurement Configurationは、measurement object(測定オブジェクト)、measurement ID(測定識別子)及びreport configuration(報告設定)を含む。measurement object、measurement ID及びreport configurationの具体的な内容は、3GPP TS36.331 5.5章に記載されたとおりである。例えば、measurement objectとしては、測定対象とするキャリア周波数の情報が含まれている。
 このように、Measurement Configurationは、UE200による測定対象セルにおける測定の設定内容を示す。本実施形態では、Measurement Configurationは、測定制御部130A及びgNB100Bの測定制御部130Bで共通とすることができる。
 或いは、Measurement Configurationのうち、measurement object及びmeasurement IDのみが、測定制御部130A及び測定制御部130Bで共通としてもよい。さらに、Measurement Configurationのうち、measurement objectのみが、測定制御部130A及び測定制御部130Bで共通としてもよい。
 また、測定制御部130Aは、RRC制御部120Aが、eNB100A及びgNB100Bの両方について、Measurement Configurationを決定した場合、決定したMeasurement Configurationを測定制御部130Bに通知する。
 さらに、測定制御部130Aは、Measurement Configurationに従ってUE200による測定の対象とするキャリア数の情報を測定制御部130Bと共有することができる。
 具体的には、測定制御部130Aは、測定制御部130Aが決定したMeasurement Configurationに含まれるmeasurement objectに従って、測定の対象となるキャリア数の情報を測定制御部130Bに提供する。また、測定制御部130Aは、測定制御部130Bが決定した測定の対象となるキャリア数の情報を測定制御部130Bから取得する。
 図3に示すgNB100Bの無線通信部110B、RRC制御部120B及び測定制御部130Bは、対応しているRATがNRであることを除き、上述したeNB100Aの無線通信部110A、RRC制御部120A及び測定制御部130Aと概ね同様の機能を有する。
 本実施形態において、RRC制御部120Bは、RRCレイヤにおける制御を実行する第2RRC制御部を構成し、測定制御部130Bは、UE200による測定対象セルの受信品質の測定を制御する第2測定制御部を構成する。
 (2.2)UE200
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線通信部210、LTE-RRC制御部220、NR-RRC制御部230及び測定部240を備える。
 無線通信部210は、LTE方式及びNR方式に従った無線通信を実行する。具体的には、無線通信部210は、eNB100AとLTE方式に従った無線信号を送受信する。また、無線通信部210は、gNB100BとNR方式に従った無線信号を送受信する。当該無線信号には、RRCレイヤのメッセージ及びユーザデータなどが多重される。
 LTE-RRC制御部220は、LTE向け(eNB100A)向けのRRCレイヤにおける制御を実行する。具体的には、LTE-RRC制御部220は、LTEに従ったRRCエンティティを構成し、RRCメッセージの送受信を実行する。これにより、LTE-RRC制御部220は、eNB100AとのRRCコネクションの確立及び解放などを実行する。
 NR-RRC制御部230は、NR向け(gNB100B)向けのRRCレイヤにおける制御を実行する。具体的には、NR-RRC制御部230は、NRに従ったRRCエンティティを構成し、RRCメッセージの送受信を実行する。これにより、NR-RRC制御部230は、gNB100BとのRRCコネクションの確立及び解放などを実行する。
 測定部240は、eNB100A及びgNB100Bから受信したMeasurement Configurationに基づいて、測定対象セルの受信品質の測定を実行する。具体的には、測定部240は、eNB100A及びgNB100BそれぞれからRRCレイヤを介してMeasurement Configurationを受信する。Measurement Configurationは、RRCメッセージの一種であるRRC Connection Reconfigurationなどに含まれる。
 特に、測定部240は、測定の対象とするキャリア数がUE200での上限数を超える場合、上限数を超えるキャリアにおける測定を無効にできる。なお、上限数は、UE200が同時に実行可能な測定数(測定対象のキャリア数)によって定まる。
 この場合、測定部240は、測定対象セルまたはキャリアと関連付けられた優先度に基づいて当該測定を無効とするキャリアを決定できる。
 さらに、測定部240は、eNB100A及びgNB100BのそれぞれからMeasurement Configurationによる測定が指示されており、eNB100A及びgNB100Bのそれぞれに対して、測定の結果を同一のタイミングで送信する事象が発生した場合、eNB100A及びgNB100Bの何れか一方に対して測定の結果を当該タイミングにおいて送信できる。この場合、測定部240は、eNB100A及びgNB100Bの他方に対して測定の結果を当該タイミングよりも後のタイミングにおいて送信する。
 さらに、このように、測定の結果の報告タイミングが競合する場合、測定部240は、測定対象セルまたは測定と関連付けられた優先度に基づいて、先のタイミングにおいて送信する測定の結果を決定してもよい。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、LTE方式(E-UTRA方式)のeNB100Aと、NR方式のgNB100Bとを用いたデュアルコネクティビティ(LTE-NR DC)におけるMeasurement Configuration(測定設定)に関する動作について説明する。
 具体的には、LTE-NR DCにおけるMeasurement Configurationに基づく測定報告(Measurement Report)の動作例1~動作例3について説明する。
 (3.1)動作例1
 本動作例では、LTEのRRCエンティティ(LTE RRC)と、NRのRRCエンティティ(NR RRC)とが、独立して動作する。
 (3.1.1)基本動作例
 図5は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例1)の説明図である。
 図5に示すように、ネットワーク側、具体的には、eNB100A(マスタノード)及びgNB100B(セカンダリノード)、さらにUE200は、LTE RRC及びNR RRCを完全に独立してMeasurement Configuration(measurement object/measurement ID/report configuration)を設定する。
 UE200は、eNB100A及びgNB100Bのそれぞれから受信したMeasurement Configurationに基づいて、測定対象セルの測定をそれぞれ実行する。また、UE200は、測定対象セルの測定結果を含むMeasurement ReportをeNB100A及びgNB100Bにそれぞれ送信する。
 つまり、本動作例では、同一のキャリア周波数に対して、LTE RRC及びNR RRCの両方が同時にmeasurement object及びmeasurement IDを設定し得る。但し、測定の対象とするキャリア数の情報は、eNB100AとgNB100Bとの間で共有される。
 具体的には、上述したように、eNB100A(測定制御部130A)及びgNB100B(測定制御部130B)は、当該キャリア数の情報を交換することによって、UE200が同時に実行可能な測定数(上限数)を超えないように調整する。つまり、当該上限数は、LTE RRC及びNR RRCによってそれぞれ測定対象として設定されるキャリア数の合計値となるためである。
 より具体的には、eNB100Aは、LTE内での上限数に基づいてキャリア数を決定し、gNB100Bは、NR内での上限数に基づいてキャリア数を決定する。さらに、eNB100A及びgNB100Bは、それぞれ決定したキャリア数の情報を交換し、決定したキャリア数の合計値が、UE200が同時に実行可能な測定数を超えないように調整する。
 (3.1.2)変更例1
 動作例1では、測定の対象とするキャリア数の情報が、eNB100AとgNB100Bとの間で共有されるが、このような情報の共有がなされない場合には、上述した上限数を超える恐れがある。そこで、UE200は、LTE RRC及びNR RRCによってそれぞれ測定対象として設定されたキャリア数の合計が上限値を超える場合、セカンダリノード(本実施形態では、gNB100B)によって設定されたmeasurement object(キャリア周波数)を任意に幾つか無効にすることによって、上限値以下となるようにしてもよい。
 或いは、eNB100AまたはgNB100Bが、マスタセルグループ(MCG)またはセカンダリセルグループ(SCG)に関する測定の優先度を低く設定し、UE200は、優先度の低いセルグループに関するmeasurement objectを無効とすることによって、当該上限値以下となるようにしてもよい。
 さらに、eNB100AまたはgNB100Bが、それぞれのmeasurement IDに優先度を付与し、UE200は、優先度の低いmeasurement IDと対応するmeasurement objectを無効とすることによって、当該上限値以下となるようにしてもよい。
 以下、図6を参照して、さらに具体的に説明する。図6は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例1)である。
 図6では、キャリア周波数(具体的には、CCの周波数)として、x, y(LTE/E-UTRA)及びa, b, c(NR)が割り当てられている。また、図中のA3, A4, A6, B1は、3GPP TS36.331で規定されるイベントを意味する。具体的には、以下のとおり規定されている。
  ・A3: Neighbour becomes offset better than PCell/ PSCell
  ・A4: Neighbour becomes better than absolute threshold
  ・A6: Neighbour becomes offset better than SCell
  ・B1: Inter RAT neighbour becomes better than threshold
 図6に示すように、eNB100Aが設定するMCG内のセル(測定対象セル)、具体的には、近隣セル(Neighbour Cell)に対して、優先度1~4(優先度1が高優先度)の測定が設定されている。同様に、gNB100Bが設定するSCG内のセル(測定対象セル)に対しても、優先度1~4の測定が設定されている。
 ここで、UE200(図6では不図示)が同時に実行可能な測定数(具体的には、測定対象のキャリア数)である上限数が7である場合、UE200は、全ての測定(合計8)を実行できず、何れか一つは測定を無効とする必要がある。
 例えば、SCGの優先度がMCGの優先度よりも低く設定されている場合、UE200は、gNB100Bが設定した優先度4の測定(Event A6を用いたNR Carrier frequency b)を無効とする。
 逆に、MCGの優先度がSCGの優先度よりも低く設定されている場合、UE200は、eNB100Aが設定した優先度4の測定(Event B1を用いたNR Carrier frequency c)を無効とする。
 (3.1.3)変更例2
 図7は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例2)である。以下、変更例1と異なる部分について主に説明する。
 本変更例では、セルではなく、キャリアに対して優先度が設定される。なお、MCG及びSCG内のセルの構成及びEventの設定状態は、変更例1と同様である。
 ここで、UE200(図7では不図示)が同時に実行可能な測定数(具体的には、測定対象のキャリア数)である上限数が4である場合、UE200は、全ての測定(合計5)を実行できず、何れか一つは測定を無効とする必要がある。
 例えば、SCGの優先度がMCGの優先度よりも低く設定されている場合、UE200は、gNB100Bが設定した優先度3の測定(Event A4を用いたNR Carrier frequency c)を無効とする。
 逆に、MCGの優先度がSCGの優先度よりも低く設定されている場合、UE200は、eNB100Aが設定した優先度2の測定(Event A3, A6を用いたE-UTRA Carrier frequency y)を無効とする。
 (3.1.4)変更例3
 図8は、eNB100A(マスタノード)及びgNB100B(セカンダリノード)によるmeasurement objectの優先処理の説明図(動作例1の変更例3)である。以下、変更例1と異なる部分について主に説明する。
 本動作例のように、eNB100AのLTE RRCと、gNB100BのNR RRCとが独立して動作する場合、UE200(図8において不図示)は、それぞれのRRCエンティティに対応したMeasurement Reportを同時に、つまり、同一タイミングで送信する事象が発生し得る。
 この場合、UE200は、eNB100A(LTE RRC)及びgNB100B(NR RRC)のうち、何れか一方に対してMeasurement Report(測定の結果)を当該タイミングにおいて送信し、他方に対してMeasurement Reportを当該タイミングよりも後のタイミングにおいて送信してもよい。
 つまり、UE200は、何れか一方のMeasurement Reportの送信を次の送信タイミングまで延期してもよい。勿論、可能な場合には、UE200は、両方のMeasurement Reportを同一タイミングで送信してもよい。さらに、LTE RRC(つまり、MCG)及びNR RRC(つまり、SCG)の何れを優先するかについて、eNB100AまたはgNB100BがUE200に指示するようにしてもよい。
 或いは、図8に示すように、eNB100AまたはgNB100Bが、Eventを用いた各測定に対する優先度(1~8)を設定し、UE200に指示するようにしてもよい。
 UE200は、指定された優先度に基づいて、優先度が高い測定の結果を含むMeasurement Reportを先のタイミングにおいて送信する。また、UE200は、Measurement Reportに複数の測定の結果が含まれる場合、単純に測定の結果の数を多く含むMeasurement Reportを優先してもよいし、MCG内の測定に付与された優先度の平均値と、SCG内の測定に付与された優先度の平均値とを比較し、当該平均値が低い(つまり、相対的に高優先度である)Measurement Reportを先のタイミングにおいて送信してもよい。
 (3.2)動作例2
 本動作例では、LTEのRRCエンティティ(LTE RRC)と、NRのRRCエンティティ(NR RRC)とにおいて、共通のMeasurement Configurationが用いられる。
 (3.2.1)基本動作例
 図9は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2)の説明図である。
 図9に示すように、eNB100A(マスタノード)及びgNB100B(セカンダリノード)は、共通のMeasurement Configurationを用いる。上述したように、Measurement Configurationは、measurement object、measurement ID及びreport configurationを含む。
 Measurement Configurationの内容は、eNB100A及びgNB100Bの何れからも設定できる。例えば、eNB100A(マスタノード)からMeasurement Configurationを設定する場合、eNB100Aは、LTE RRCのASN.1でエンコードされたRRC PDU(図中のLTE RRC PDU)をUE200に送信することによって、Measurement Configurationの内容をUE200に通知する。つまり、LTE RRC PDUには、Measurement Configurationの内容が含まれる。
 一方、gNB100B(セカンダリノード)からMeasurement Configurationを設定する場合、gNB100Bは、NR RRCのASN.1でエンコードされたRRC PDU(図中のNR RRC PDU)をUE200に送信することによって、Measurement Configurationの内容をUE200に通知する。つまり、NR RRC PDUには、Measurement Configurationの内容が含まれる。
 また、Measurement Reportの送信先(eNB100AまたはgNB100B)については、report configurationにおいて指定するようにすればよい。なお、Measurement Configurationの全体的な内容については、eNB100A及びgNB100Bとが連携して設定する。
 (3.2.2)変更例1
 図10は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2の変更例1)の説明図である。上述した動作例2では、measurement object、measurement ID及びreport configurationが共通であったが、本変更例では、measurement object及びmeasurement IDのみ(図中の下線部)が共通である。report configurationについては、LTE RRCとNR RRCとで異なる場合があり得るためである。
 Measurement Configurationの内容は、eNB100A及びgNB100Bがそれぞれ独立して設定する。また、Measurement Reportの送信先(eNB100AまたはgNB100B)は、report configurationによって指定されるRAT(LTEまたはNR)に依存する(紐付けられる)。
 例えば、report configurationがLTE RRCのASN.1でエンコードされた情報要素(IE)である場合、Measurement Reportは、eNB100Aに送信される。一方、report configurationがNR RRCのASN.1でエンコードされた情報要素(IE)である場合、Measurement Reportは、gNB100Bに送信される。
 measurement object及びmeasurement IDについては、eNB100A及びgNB100Bとが連携して設定する。
 (3.2.3)変更例2
 図11は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例2の変更例2)の説明図である。上述した動作例2では、measurement object、measurement ID及びreport configurationが共通であったが、本変更例では、measurement objectのみ(図中の下線部)が共通である。
 変更例1と同様に、Measurement Configurationの内容は、eNB100A及びgNB100Bがそれぞれ独立して設定する。また、Measurement Reportの送信先(eNB100AまたはgNB100B)は、report configurationによって指定されるRAT(LTEまたはNR)に依存する(紐付けられる)。
 また、measurement objectについては、eNB100A及びgNB100Bとが連携して設定する。さらに、測定の対象となるキャリア数についてもeNB100A及びgNB100Bとが連携して設定する。
 (3.3)動作例3
 図12は、LTE-NR DCにおける測定報告(Measurement Report)動作(動作例3)の説明図である。
 本動作例では、eNB100A(マスタノード)のRRCエンティティ、本実施形態では、LTE RRCが、NRに関するMeasurement Configuration(measurement object/measurement ID/report configuration)も設定する。
 Measurement Configurationの全体的な内容については、eNB100Aが、gNB100Bと連携して設定する。また、eNB100AがUE200に通知したMeasurement Configurationは、Xx-Cインタフェースを介してeNB100AからgNB100Bに通知される。例えば、TS36.331によって規定されるSCG-ConfigInfoメッセージを利用できる。
 Measurement Reportの送信先(eNB100AまたはgNB100B)は、report configurationによって指定されるRAT(LTEまたはNR)に依存する(紐付けられる)。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、上述した動作例1によれば、測定の対象とするキャリア数の情報は、eNB100AとgNB100Bとの間で共有される。このため、LTEのRRCエンティティ(LTE RRC)と、NRのRRCエンティティ(NR RRC)との独立したMeasurement Configurationの設定を許容しつつ、UE200が同時に実行可能な測定数(測定対象のキャリア数)、つまり、上限数を超えないようにすることができる。
 これにより、LTE-NR DCの場合でも、適切なMeasurement Reportを実行できる。
 動作例1の変更例1によれば、UE200は、測定の対象とするキャリア数がUE200での上限数を超える場合、当該上限数を超えるキャリアにおける測定を無効とできる。このため、測定の対象とするキャリア数の情報が、eNB100AとgNB100Bとの間で共有されない場合でも、上限数を超えない範囲で、測定を実行することができる。
 さらに、無効とする測定(具体的には、測定対象セルまたはキャリアと関連付けられた測定)には、優先度を付与することが可能なため、重要な測定を高確率で実行し得る。
 動作例1の変更例2によれば、UE200は、eNB100A及びgNB100Bのそれぞれに対して、Measurement Reportを同一のタイミングで送信する事象が発生した場合、eNB100A及びgNB100Bの何れか一方に対してMeasurement Reportを当該タイミングにおいて送信し、他方に対してMeasurement Reportを当該タイミングよりも後のタイミングにおいて送信できる。このため、eNB100A及びgNB100BへのMeasurement Reportの報告タイミングが競合する場合でも、確実にMeasurement Reportを送信できる。
 さらに、何れのMeasurement Report(具体的には、測定対象セルまたは測定と関連付けられたMeasurement Report)先に送信するかには、優先度を付与することが可能なため、重要なMeasurement Reportを高確率で送信し得る。
 動作例2によれば、Measurement Configurationは、eNB100A(測定制御部130A)及びgNB100B(測定制御部130B)で共通である。このため、LTEとNRとにおいて統一されたMeasurement Configurationを適用することができる。これにより、LTE-NR DCの場合でも、適切なMeasurement Reportを実行できる。
 また、動作例2の変更例1及び変更例2によれば、Measurement Configurationに含まれる一部(measurement object, measurement ID)のみを共通とすることができる。このため、LTE RRCとNR RRCとの実装などを考慮しつつ、適切なMeasurement Configurationの共通化を図り得る。
 動作例3によれば、eNB100A(RRC制御部120A)は、eNB100A及びgNB100Bの両方について、Measurement Configurationを決定し、eNB100A(測定制御部130A)は、決定したMeasurement ConfigurationをgNB100B(測定制御部130B)に通知する。このため、eNB100A(マスタノード)の主導によるMeasurement Configurationの設定を許容しつつ、LTE-NR DCの場合でも、適切なMeasurement Reportを実行できる。
 このように、本実施形態によれば、LTE-NR DCの場合でも、eNB100A及びgNB100BがMeasurement Configurationの設定に関して連携することによって、UE200に適切なMeasurement Reportを実行させることができる。これにより、LTE-NR DCが適用される場合でも、無線通信システム10全体としての通信品質の維持向上と、無線リソースの効率的な利用を図り得る。
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、eNB100AがLTE方式の無線基地局(eNB)であり、マスタノードを構成し、gNB100BがNR方式の無線基地局(gNB)であり、セカンダリノードを構成していたが、このような構成は逆でもよい。つまり、NR方式の無線基地局(gNB)がマスタノードを構成し、LTE方式の無線基地局(eNB)がセカンダリノードを構成してもよい。
 また、上述した実施形態の説明に用いたブロック構成図(図2~4)は、機能ブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/またはソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/または論理的に結合した1つの装置により実現されてもよいし、物理的及び/または論理的に分離した2つ以上の装置を直接的及び/または間接的に(例えば、有線及び/または無線)で接続し、これら複数の装置により実現されてもよい。
 さらに、上述したeNB100A, gNB100B及びUE200(当該装置)は、本発明の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 当該装置の各機能ブロック(図2~4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)で構成されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、上述した実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及び/またはストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/または無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、情報の通知は、上述した実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ば
れてもよく、例えば、RRC Connection Setupメッセージ、RRC Connection Reconfigurationメッセージなどであってもよい。
 さらに、入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 上述した実施形態におけるシーケンス及びフローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。
 また、上述した実施形態において、eNB100A(gNB100B、以下同)によって行われるとした特定動作は、他のネットワークノード(装置)によって行われることもある。また、複数の他のネットワークノードの組み合わせによってeNB100Aの機能が提供されても構わない。
 なお、本明細書で説明した用語及び/または本明細書の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、該当する記載がある場合、チャネル及び/またはシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、「システム」及び「ネットワーク」という用語は、互換的に使用されてもよい。
 さらに、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 eNB100A(基地局)は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び/または基地局サブシステムのカバレッジエリアの一部または全体を指す。
さらに、「基地局」「eNB」、「セル」、及び「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、gNodeB(gNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 UE200は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 また、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形の用語は、「備える」と同様に、包括的であることが意図される。さらに、本明細書或いは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本明細書で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
本発明によれば、LTE(eNB)とNR(gNB)とのデュアルコネクティビティ(DC)の場合でも、適切な測定報告を実行できる。
 10 無線通信システム
 100A eNB
 100B gNB
 110A, 110B 無線通信部
 120A, 120B RRC制御部
 130A, 130B測定制御部
 200 UE
 210 無線通信部
 220 LTE-RRC制御部
 230 NR-RRC制御部
 240 測定部

Claims (9)

  1.  無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、
     前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、
     前記マスタノードは、
     無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、
     前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、
     前記セカンダリノードは、
     無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、
     前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、
     前記第1測定制御部は、前記測定の対象とするキャリア数の情報を前記第2測定制御部
    と共有する無線通信システム。
  2.  無線リソース制御レイヤを介してマスタノードと無線通信を実行するとともに、無線リソース制御レイヤを介してセカンダリノードと無線通信を実行し、前記マスタノード及び前記セカンダリノードの両方に同時に接続するデュアルコネクティビティをサポートするユーザ装置であって、
     前記マスタノード及び前記セカンダリノードそれぞれから無線リソース制御レイヤを介して受信した測定設定に基づいて、測定対象セルの受信品質の測定を実行する測定部を備え、
     前記測定部は、前記測定の対象とするキャリア数が前記ユーザ装置での上限数を超える場合、前記上限数を超えるキャリアにおける測定を無効とするユーザ装置。
  3.  前記測定部は、前記測定対象セルまたは前記キャリアと関連付けられた優先度に基づいて前記測定を無効とするキャリアを決定する請求項2に記載のユーザ装置。
  4.  無線リソース制御レイヤを介してマスタノードと無線通信を実行するとともに、無線リソース制御レイヤを介してセカンダリノードと無線通信を実行し、前記マスタノード及び前記セカンダリノードの両方に同時に接続するデュアルコネクティビティをサポートするユーザ装置であって、
     前記マスタノード及び前記セカンダリノードそれぞれから無線リソース制御レイヤを介
    して受信した測定設定に基づいて、測定対象セルの受信品質の測定を実行する測定部を備え、
     前記測定部は、前記マスタノード及び前記セカンダリノードのそれぞれに対して、前記測定の結果を同一のタイミングで送信する事象が発生した場合、前記マスタノード及び前記セカンダリノードの何れか一方に対して前記測定の結果を前記タイミングにおいて送信し、他方に対して前記測定の結果を前記タイミングよりも後のタイミングにおいて送信するユーザ装置。
  5.  前記測定部は、前記測定対象セルまたは前記測定と関連付けられた優先度に基づいて、先のタイミングにおいて送信する前記測定の結果を決定する請求項4に記載のユーザ装置。
  6.  無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、
     前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続するデュアルコネクティビティをサポートする無線通信システムであって、
     前記マスタノードは、
     無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、
     前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部とを備え、
     前記セカンダリノードは、
     無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、
     前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、
     前記測定の設定内容を示す測定設定は、前記第1測定制御部及び前記第2測定制御部で共通である無線通信システム。
  7.  前記測定設定は、測定オブジェクト、測定識別子及び報告設定を含み、
     前記測定オブジェクト及び前記測定識別子のみが、前記第1測定制御部及び前記第2測定制御部で共通である請求項6に記載の無線通信システム。
  8.  前記測定設定は、測定オブジェクト、測定識別子及び報告設定を含み、
     前記測定オブジェクトのみが、前記第1測定制御部及び前記第2測定制御部で共通である請求項6に記載の無線通信システム。
  9.  無線リソース制御レイヤを介してユーザ装置と無線通信を実行するマスタノードと、
    無線リソース制御レイヤを介して前記ユーザ装置と無線通信を実行するセカンダリノードとを含み、
     前記マスタノード及び前記セカンダリノードの両方が同時に前記ユーザ装置と接続する
    デュアルコネクティビティをサポートする無線通信システムであって、
     前記マスタノードは、
     無線リソース制御レイヤにおける制御を実行する第1RRC制御部と、
     前記ユーザ装置による測定対象セルの受信品質の測定を制御する第1測定制御部と
    を備え、
     前記セカンダリノードは、
     無線リソース制御レイヤにおける制御を実行する第2RRC制御部と、
     前記ユーザ装置による測定対象セルの受信品質の測定を制御する第2測定制御部とを備え、
     前記第1RRC制御部は、前記マスタノード及び前記セカンダリノードの両方について、前記測定の設定内容を示す測定設定を決定し、
     前記第1測定制御部は、前記測定設定を前記第2測定制御部に通知する無線通信システム。
PCT/JP2018/014686 2017-04-07 2018-04-06 無線通信システム及びユーザ装置 WO2018186482A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019020945A BR112019020945A2 (pt) 2017-04-07 2018-04-06 dispositivo de usuário e método de radiocomunicação
IL269831A IL269831B2 (en) 2017-04-07 2018-04-06 Radio communication system and user device
CA3059155A CA3059155A1 (en) 2017-04-07 2018-04-06 Radio communication system and user device
CN201880023614.8A CN110495206B (zh) 2017-04-07 2018-04-06 无线通信系统和用户装置
US16/603,148 US20220061115A1 (en) 2017-04-07 2018-04-06 Radio communication system and user device
JP2019511314A JP7132209B2 (ja) 2017-04-07 2018-04-06 無線通信システム及びユーザ装置
EP18780702.9A EP3609222A4 (en) 2017-04-07 2018-04-06 WIRELESS COMMUNICATION SYSTEM AND USER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076632 2017-04-07
JP2017-076632 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186482A1 true WO2018186482A1 (ja) 2018-10-11

Family

ID=63712701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014686 WO2018186482A1 (ja) 2017-04-07 2018-04-06 無線通信システム及びユーザ装置

Country Status (8)

Country Link
US (1) US20220061115A1 (ja)
EP (1) EP3609222A4 (ja)
JP (2) JP7132209B2 (ja)
CN (1) CN110495206B (ja)
BR (1) BR112019020945A2 (ja)
CA (1) CA3059155A1 (ja)
IL (1) IL269831B2 (ja)
WO (1) WO2018186482A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098587A1 (en) * 2018-11-13 2020-05-22 Qualcomm Incorporated Optimized secondary node reporting for multi-radio access technology dual connectivity
WO2020162527A1 (ja) * 2019-02-07 2020-08-13 シャープ株式会社 端末装置、基地局装置、方法、および、集積回路
WO2021009410A1 (en) * 2019-07-12 2021-01-21 Nokia Technologies Oy Methods and systems for multiple cell target conditional handover

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096080B2 (en) * 2017-04-27 2021-08-17 Lg Electronics Inc. Method and device for configuring and reporting measurement for LTE/NR interworking in wireless communication system
EP3691329B1 (en) * 2017-09-27 2023-10-25 NTT DoCoMo, Inc. Base station and measurement capability determination method
JP7386601B2 (ja) * 2018-10-18 2023-11-27 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514727A (ja) * 2008-02-04 2011-05-06 クゥアルコム・インコーポレイテッド アクノレッジメント、チャネル品質インジケータ、およびスケジューリング要求の同時送信
JP2013516113A (ja) * 2009-12-23 2013-05-09 インターデイジタル パテント ホールディングス インコーポレイテッド 複数の搬送波を使用するワイヤレス通信における測定の実施
JP2016213805A (ja) * 2015-05-08 2016-12-15 株式会社Nttドコモ ユーザ装置、基地局、品質測定方法及び品質測定キャリア指定方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356667B (zh) 2009-03-16 2015-06-10 松下电器(美国)知识产权公司 无线通信系统、终端装置、基站装置及无线通信方法
JP5474003B2 (ja) * 2011-07-28 2014-04-16 株式会社Nttドコモ 移動通信方法、移動局及び無線基地局
JP5416822B1 (ja) * 2012-11-21 2014-02-12 株式会社Nttドコモ 無線通信システム、無線基地局および無線通信方法
US9756531B2 (en) * 2013-09-30 2017-09-05 Lg Electronics Inc. Method for determining radio resource control configuration in a wireless communication system supporting dual connectivity and apparatus thereof
JP6062571B2 (ja) * 2013-10-28 2017-01-18 エルジー エレクトロニクス インコーポレイティド 異種ネットワークにおける二重連結動作を遂行するための方法及び装置
JP6081350B2 (ja) * 2013-12-26 2017-02-15 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3092864B1 (en) * 2014-01-08 2019-08-21 LG Electronics Inc. C-rnti collision in dual connectivity
US11350348B2 (en) * 2014-03-13 2022-05-31 Intel Corporation Method for the transfer of radio capability information
US20170034709A1 (en) * 2014-04-09 2017-02-02 Ntt Docomo, Inc. Measurement control method and base station
CN105472667B (zh) * 2014-06-23 2020-04-28 索尼公司 无线通信系统中的电子设备及其方法
US10182430B2 (en) * 2014-09-12 2019-01-15 Nec Corporation Radio station, radio terminal, and method for terminal measurement
US9949183B2 (en) * 2014-09-18 2018-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for performing radio measurements in autonomous gaps in multi-connectivity scenarios
CN105517043A (zh) * 2014-09-26 2016-04-20 中兴通讯股份有限公司 终端能力的上报、获取方法及装置
JP2018502479A (ja) * 2014-11-10 2018-01-25 テレフオンアクチーボラゲット エルエム エリクソン(パブル) デュアルコネクティビティにおける測定ギャップ長構成のためのサブフレームペアリングの方法
EP4054269B1 (en) * 2015-03-06 2024-05-01 Samsung Electronics Co., Ltd. Method and apparatus for performing and reporting measurements by user equipment configured with multiple carriers in mobile communication systems
JP2017063326A (ja) * 2015-09-24 2017-03-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
ES2992662T3 (en) * 2016-01-27 2024-12-16 Nokia Solutions & Networks Oy Method and apparatus for implementing a split measurement configuration for different connections
KR102183826B1 (ko) * 2016-05-12 2020-11-30 주식회사 케이티 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
WO2018083629A1 (en) * 2016-11-03 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and radio nodes for performing measurement with multiple numerologies
CN110199537B (zh) * 2016-11-04 2022-10-04 瑞典爱立信有限公司 用于紧密互通的ue能力信令
EP3536032B1 (en) * 2016-11-04 2023-12-20 Nokia Technologies Oy Inter-rat configuration coordination
US10979949B2 (en) * 2017-03-22 2021-04-13 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
WO2018175470A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Systems, methods and devices for measurement configuration by a secondary node in en-dc
WO2018174624A1 (ko) * 2017-03-23 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 lte/nr 인터워킹을 위한 단말 능력을 조정하는 방법 및 장치
WO2018186788A1 (en) * 2017-04-04 2018-10-11 Telefonaktiebolaget L M Ericsson (Publ) Handling measurement configurations in a multi-connectivity environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514727A (ja) * 2008-02-04 2011-05-06 クゥアルコム・インコーポレイテッド アクノレッジメント、チャネル品質インジケータ、およびスケジューリング要求の同時送信
JP2013516113A (ja) * 2009-12-23 2013-05-09 インターデイジタル パテント ホールディングス インコーポレイテッド 複数の搬送波を使用するワイヤレス通信における測定の実施
JP2016213805A (ja) * 2015-05-08 2016-12-15 株式会社Nttドコモ ユーザ装置、基地局、品質測定方法及び品質測定キャリア指定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Master node initiated secondary node change", 3GPP TSG-RAN WG2 #97BIS R2-1703707, 25 March 2017 (2017-03-25), XP051254612, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97bis/Docs/> *
See also references of EP3609222A4 *
ZTE ET AL.: "Consideration on the measurement coordination in LTE/NR tight interworking", 3GPP TSG-RAN WG2 #97 R2-1701116, 4 February 2017 (2017-02-04), pages 1 - 5, XP051223369, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97/Docs/> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098587A1 (en) * 2018-11-13 2020-05-22 Qualcomm Incorporated Optimized secondary node reporting for multi-radio access technology dual connectivity
US11950308B2 (en) 2018-11-13 2024-04-02 Qualcomm Incorporated Optimized secondary node reporting for multi-radio access technology dual connectivity
WO2020162527A1 (ja) * 2019-02-07 2020-08-13 シャープ株式会社 端末装置、基地局装置、方法、および、集積回路
WO2021009410A1 (en) * 2019-07-12 2021-01-21 Nokia Technologies Oy Methods and systems for multiple cell target conditional handover
US12262257B2 (en) 2019-07-12 2025-03-25 Nokia Technologies Oy Methods and systems for multiple cell target conditional handover

Also Published As

Publication number Publication date
JP7197652B2 (ja) 2022-12-27
CN110495206B (zh) 2023-04-21
EP3609222A1 (en) 2020-02-12
EP3609222A4 (en) 2021-04-07
IL269831A (en) 2020-02-27
CA3059155A1 (en) 2018-10-11
JP2021185711A (ja) 2021-12-09
BR112019020945A2 (pt) 2020-05-05
IL269831B1 (en) 2024-03-01
JPWO2018186482A1 (ja) 2020-02-20
US20220061115A1 (en) 2022-02-24
JP7132209B2 (ja) 2022-09-06
IL269831B2 (en) 2024-07-01
CN110495206A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
JP7048712B2 (ja) 無線通信システム及びユーザ装置
JP7197652B2 (ja) 無線通信システム及びユーザ装置
RU2744617C1 (ru) Сообщение глобального идентификатора соты в системе беспроводной связи
US20150016387A1 (en) Methods and Apparatus for Inter-Cell Interference Coordination with Protected Subframes
CN112567806A (zh) 第一网络节点、第二网络节点、无线设备及其执行的用于处理链路切换的方法
WO2018207775A1 (ja) ネットワーク装置及び無線通信方法
JP6159530B2 (ja) 端末装置、基地局装置、通信システム及び通信方法
WO2018143240A1 (ja) ユーザ装置及び測定報告送信方法
JPWO2019031505A1 (ja) 無線基地局及びユーザ装置
WO2017195854A1 (ja) 無線通信システム及びユーザ装置
WO2016180157A1 (zh) 一种实现用户设备ue的基站间切换的方法及装置
JP7086989B2 (ja) 無線通信システム及び無線基地局
EP3160180B1 (en) Device and method
JP2019062474A (ja) ユーザ装置
WO2019159328A1 (ja) ユーザ装置及び無線通信方法
WO2018203573A1 (ja) 無線通信システム及び無線通信方法
WO2018143353A1 (ja) ユーザ装置及び無線通信方法
JP6564061B2 (ja) 通信方法及びデバイス
JP6978510B2 (ja) 無線通信システム及び無線基地局
JP2019530301A (ja) 信号処理方法、デバイス及びシステム
WO2019215860A1 (ja) ユーザ装置及び無線基地局
WO2019159306A1 (ja) ユーザ装置及び無線通信方法
JP2019140631A (ja) ユーザ装置及び品質測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511314

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3059155

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020945

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018780702

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018780702

Country of ref document: EP

Effective date: 20191107

ENP Entry into the national phase

Ref document number: 112019020945

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191004

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载