WO2018186293A1 - ガス拡散電極基材の製造方法、および燃料電池 - Google Patents
ガス拡散電極基材の製造方法、および燃料電池 Download PDFInfo
- Publication number
- WO2018186293A1 WO2018186293A1 PCT/JP2018/013610 JP2018013610W WO2018186293A1 WO 2018186293 A1 WO2018186293 A1 WO 2018186293A1 JP 2018013610 W JP2018013610 W JP 2018013610W WO 2018186293 A1 WO2018186293 A1 WO 2018186293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- treatment step
- gas diffusion
- diffusion electrode
- heating
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 109
- 238000009792 diffusion process Methods 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000000446 fuel Substances 0.000 title claims description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 175
- 238000000576 coating method Methods 0.000 claims abstract description 94
- 239000011248 coating agent Substances 0.000 claims abstract description 87
- 239000000463 material Substances 0.000 claims abstract description 85
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000005871 repellent Substances 0.000 claims abstract description 68
- 230000002940 repellent Effects 0.000 claims abstract description 62
- 239000002245 particle Substances 0.000 claims abstract description 31
- 239000004094 surface-active agent Substances 0.000 claims abstract description 28
- 238000002844 melting Methods 0.000 claims abstract description 24
- 230000008018 melting Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000002612 dispersion medium Substances 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims description 58
- -1 polytetrafluoroethylene Polymers 0.000 claims description 13
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 13
- 239000007789 gas Substances 0.000 description 70
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 30
- 239000003054 catalyst Substances 0.000 description 20
- 239000012528 membrane Substances 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 238000004804 winding Methods 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- 239000006230 acetylene black Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000005518 polymer electrolyte Substances 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000008213 purified water Substances 0.000 description 6
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 6
- 229920006361 Polyflon Polymers 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- CHBCHAGCVIMDKI-UHFFFAOYSA-N [F].C=C Chemical compound [F].C=C CHBCHAGCVIMDKI-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- HXNZTJULPKRNPR-UHFFFAOYSA-N borinine Chemical compound B1=CC=CC=C1 HXNZTJULPKRNPR-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010022 rotary screen printing Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8636—Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0243—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a method for producing a gas diffusion electrode base material suitably used for a fuel cell, particularly a polymer electrolyte fuel cell, and a fuel cell including the gas diffusion electrode base material.
- the polymer electrolyte fuel cell (1) generally comprises a separator (2), a gas diffusion electrode substrate (3), a catalyst layer (4), an electrolyte membrane (5), a catalyst layer (4), and a gas diffusion electrode.
- a base material (3) and a separator (2) are laminated in order.
- the above gas diffusion electrode base material has high gas diffusibility for diffusing the gas supplied from the separator to the catalyst layer, and high drainage for discharging water generated by the electrochemical reaction to the separator. , And high conductivity is necessary to extract the generated current. Therefore, a gas diffusion electrode base material in which a microporous layer is formed on the surface of a conductive porous base material made of carbon fiber or the like is widely used.
- the microporous layer may be pressed and bonded. In that case, it is desirable that the ratio of the water-repellent material that inhibits adhesion is small on the surface of the microporous layer.
- a water repellent material is required in the microporous layer to some extent for drainage, which is one purpose of providing the microporous layer.
- Patent Document 1 proposes a technique for improving the adhesion between the catalyst layer and the microporous layer in order to shorten the heating time.
- the manufacturing method of the gas diffusion electrode substrate of the present invention for solving the above-mentioned problems is as follows.
- a method for producing a gas diffusion electrode substrate having a microporous layer on at least one surface of a conductive porous substrate An application step of applying a coating liquid containing conductive particles, a water repellent material, a dispersion medium and a surfactant on the conductive porous substrate, A drying step of heating the coated conductive porous substrate at a temperature lower than the heating temperature of the first heat treatment step; A first heat treatment step of heating at a temperature below the melting point of the water repellent material; And a second heat treatment step of heating at a temperature equal to or higher than the melting point of the water repellent material,
- the coating liquid contains 0.09 parts by mass or more and 0.27 parts by mass or less of the water repellent material with respect to 1 part by mass of the conductive particles.
- the heating time of the first heat treatment step is not less than 0.2 minutes and not more than 3.0 minutes
- the water repellent material is included in an amount of 0.09 parts by mass to 0.27 parts by mass, and the heating time of the first heat treatment step is 0.2 minutes to 3.0 minutes, A method for producing a gas diffusion electrode substrate, wherein the heating time of the heat treatment step is 2.9 minutes or less , It is.
- the manufacturing method of the gas diffusion electrode base material of this invention is demonstrated in detail.
- the conductive porous base material used in the production method of the present invention is a conductive base material made of a porous body.
- a porous porous substrate is used.
- Such a conductive porous substrate is preferably a porous body having an average pore diameter of 10 ⁇ m to 100 ⁇ m.
- Specific examples of the conductive porous base material include porous base materials containing carbon fibers such as carbon fiber papermaking bodies, carbon felt, carbon paper, and carbon cloth, foam sintered metal, metal mesh, and expanded metal. It is preferable to use a metal porous substrate such as.
- a porous substrate such as carbon felt containing carbon fiber, carbon paper, carbon cloth, and moreover, a property of absorbing a dimensional change in the thickness direction of the electrolyte membrane, That is, since it is excellent in “spring property”, it is preferable to use a base material obtained by binding a carbon fiber papermaking body with a carbide, that is, carbon paper.
- the application amount of the water repellent material during the water repellent processing is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass with respect to 100 parts by mass of the conductive porous substrate.
- the coating amount of the water repellent material is 1 part by mass or more with respect to 100 parts by mass of the conductive porous substrate, the conductive porous substrate is excellent in drainage.
- the application amount of the water repellent material is 50 parts by mass or less with respect to 100 parts by mass of the conductive porous substrate, the conductive porous substrate has excellent conductivity.
- the conductive particles contained in the coating liquid and the microporous layer are carbon powder.
- Carbon powders include carbon black such as furnace black, acetylene black, lamp black and thermal black, graphite such as flaky graphite, flaky graphite, earthy graphite, artificial graphite, expanded graphite, and flake graphite, carbon nanotube, wire Carbon, milled fiber of carbon fiber, and the like.
- carbon black is preferably used, and acetylene black is more preferable because of few impurities.
- the water repellent material contained in the coating liquid and the microporous layer is a fluoropolymer.
- This water repellent material is contained in order to enhance water drainage with respect to the microporous layer.
- the water-repellent material is not particularly limited as long as it is a fluorine-based polymer, but polytetrafluoroethylene (PTFE), tetrafluoroethylene hexafluoropropylene copolymer (FEP), perfluoroalkoxy fluororesin (FEP), ethylene Fluorine-based polymers such as tetrafluoroethylene copolymer (ETFA), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF) and the like are mentioned, but PTFE or FEP is preferable in terms of particularly high water repellency, PTFE is more preferable because it has a high melting point and raises the temperature of the first heat treatment step described later, and facilitates the decomposition of the surfactant.
- the dispersion medium contained in the coating liquid is a liquid that disperses the conductive particles and the water repellent material.
- the dispersion medium is not particularly limited as long as it is a liquid that can disperse the conductive particles and the water repellent material.
- water or alcohol is preferable.
- the surfactant contained in the coating liquid is a chemical species having an affinity site for the conductive particles and an affinity site for the dispersion medium.
- the surfactant in the coating liquid is used to disperse the conductive particles and the water repellent material in the dispersion medium.
- the site having affinity with the conductive particles means a hydrophobic chemical structure capable of interacting with the conductive particles, and specifically includes a phenyl group, an alkyl group, and the like.
- the affinity part with the dispersion medium is a hydrophilic chemical structure capable of interacting with the dispersion medium such as water or alcohol, and specifically includes ester bond, ether bond, amino group, hydroxyl group, carboxyl group, etc. Can do.
- the surfactant is not particularly limited as long as it is a chemical species having an affinity site with the conductive particles and an affinity site with the dispersion medium.
- a nonionic system having a low metal ion content Nonionic surfactants are preferred.
- methyl cellulose ether, polyethylene glycol ether, especially alkylphenol and polyethylene glycol ether (for example, polyoxyethylene alkylphenyl ether), higher aliphatic alcohol and polyethylene glycol ether, polyvinyl alcohol ether and the like are preferable. Used for.
- a thickener to a coating liquid in order to keep the viscosity of a coating liquid high.
- the thickener used here those generally well known as thickeners may be used, and for example, methylcellulose, polyethylene glycol, polyvinyl alcohol, and the like are preferably used.
- the surfactant which has a thickening function as the above-mentioned surfactant.
- the coating liquid used in the coating process of the production method of the present invention contains 0.09 parts by mass or more and 0.27 parts by mass or less of the water repellent material with respect to 1 part by mass of the conductive particles in the coating liquid.
- the amount of the water repellent material in the coating liquid is 0.09 parts by mass or more with respect to 1 part by mass of the conductive particles, so that the peeling stress due to the expansion and contraction of the electrolyte membrane after bonding the microporous layer to the catalyst layer On the other hand, peeling in the microporous layer can be suppressed.
- the amount of the water repellent material in the coating liquid is 0.27 parts by mass or less with respect to 1 part by mass of the conductive particles, so that the catalyst layer can be used even after the water repellent material is melted by the second heating step described later. It is possible to maintain a surface that adheres to the microporous layer and to obtain excellent adhesion to the catalyst layer with respect to the microporous layer.
- the amount of the water repellent material in the coating liquid is preferably 0.11 part by mass or more and more preferably 0.13 part by mass or more with respect to 1 part by mass of the conductive particles.
- the amount of the water repellent material in the coating liquid is preferably 0.25 parts by mass or less, and more preferably 0.21 parts by mass or less.
- the amount of the conductive particles in the coating liquid used in the coating step of the production method of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more in 100% by mass of the entire coating liquid from the viewpoint of productivity. It is. If the viscosity of the coating liquid, the dispersion stability of the conductive particles, and the coating property of the coating liquid are appropriate, there is no upper limit to the concentration of the conductive particles in the coating liquid. A rapid increase in viscosity due to re-aggregation of each other can be suppressed, and the coating property of the coating liquid is improved, which is preferable.
- the surfactant in the coating solution used in the coating process of the production method of the present invention is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the conductive particles in order to disperse the conductive particles.
- it is effective to increase the amount of the surfactant in order to stabilize this dispersion for a long time to prevent the increase in the viscosity of the coating liquid and prevent the coating liquid from separating.
- the amount of the surfactant in the coating liquid is more preferably 50 parts by mass or more, further preferably 100 parts by mass or more, and particularly preferably 200 parts by mass with respect to 100 parts by mass of the conductive particles. More than a part.
- the method of coating the coating liquid on the conductive porous substrate can be performed using various commercially available coating machines.
- the coating method screen printing, rotary screen printing, spray spraying, intaglio printing, gravure printing, die coater coating, bar coating, blade coating, etc. can be used, but the surface roughness of the conductive porous substrate
- die coating is preferred.
- the coating methods exemplified above are merely examples, and the coating method is not necessarily limited thereto.
- the thickness of the microporous layer of the present invention is preferably 10 ⁇ m or more in terms of the dry film thickness considering the roughness of the current conductive porous substrate, and if it is too thick, the electric resistance of the gas diffusion electrode itself increases. 60 ⁇ m or less is preferable.
- the thickness of the microporous layer of the present invention is 10 ⁇ m or more, it is preferable to keep the viscosity of the coating liquid at the time of coating at least 1000 mPa ⁇ s. If the viscosity is lower than this, the coating liquid may flow on the surface of the conductive porous substrate, and the coating liquid may flow into the pores and cause back-through. On the other hand, if the viscosity is too high, the applicability deteriorates, so the upper limit of the viscosity of the coating liquid is preferably about 25 Pa ⁇ s.
- a more preferable viscosity range is 3000 mPa ⁇ s or more and 20 Pa ⁇ s or less, and further preferably 5000 mPa ⁇ s or more and 15 Pa ⁇ s or less.
- the gas diffusion electrode substrate obtained by the production method of the present invention has a microporous layer on at least one surface of the conductive porous substrate. That is, you may have a microporous layer only in the single side
- the coating liquid After passing through the coating process, the coating liquid is dried at a temperature at which the surfactant is not removed in order to remove the dispersion medium (water in the case of water) of the coating liquid applied to the conductive porous substrate.
- sintering is generally performed for the purpose of removing the surfactant used for dispersing the conductive particles and for the purpose of binding the conductive particles by once melting the water repellent material.
- heating is performed at a temperature lower than the melting point of the water repellent material.
- the first heat treatment step and the second heat treatment step of heating at a temperature equal to or higher than the melting point of the water repellent material in order to perform fusion bonding of the water repellent material, so-called sintering, are separately performed at each optimum temperature.
- the drying step in the production method of the present invention is a step of heating the conductive porous substrate and the coating liquid applied thereon at a temperature lower than the heating temperature of the first heat treatment step.
- the heating temperature in the drying step is preferably 80 ° C. or higher and 155 ° C. or lower.
- the heating temperature in the drying step is preferably 80 ° C. or higher and 155 ° C. or lower.
- the dispersion medium can be efficiently removed.
- the heating temperature to 155 ° C. or lower the surface of the microporous layer is roughened due to bumping of the dispersion medium. It is preferable because it can be suppressed and deterioration of quality can be suppressed.
- the heating time in the drying step is preferably as short as possible from the viewpoint of productivity, and is preferably 10.0 minutes or less. On the other hand, if the time is too short, the dispersion medium is not sufficiently removed and the conductive porous substrate is heated in the first heat treatment step or the second heat treatment step, and the dispersion medium bumps. The above is preferable.
- the first heat treatment step of the present invention is a step performed after the drying step, and is a step of heating the conductive porous substrate and the coating liquid applied thereon at a temperature lower than the melting point of the water repellent material. .
- the heating temperature in the first heat treatment step is lower than the melting point of the water repellent material and the temperature is optimized while suppressing the melting of the water repellent material, the surfactant is decomposed into a microporous layer by thermal decomposition. Can be removed.
- the heating temperature in the first heat treatment step is preferably 160 ° C. or higher, more preferably 250 ° C. or higher because the surfactant used in the coating liquid can be removed.
- the heating time in the first heat treatment step is preferably as short as possible from the viewpoint of productivity, and is 3.0 minutes or less. On the other hand, when the time is too short, the surfactant cannot be sufficiently removed, and thus the heating time in the first heat treatment step is 0.2 minutes or more.
- the second heat treatment step of the present invention is a step performed after the first heat treatment step, and heats the conductive porous substrate and the coating liquid applied thereon at a temperature equal to or higher than the melting point of the water repellent material. It is a process.
- the heating temperature in the second heat treatment step is equal to or higher than the melting point of the water repellent material
- the water repellent material is combined with the conductive particles contained in the microporous layer by melting the water repellent material, By causing the materials to bond to each other, it is possible to effectively suppress peeling in the microporous layer against peeling stress due to expansion and contraction of the electrolyte membrane after bonding.
- the heating temperature in the second heat treatment step is preferably 300 ° C. or higher, more preferably 330 ° C. or higher, although it depends on the characteristics of the water repellent material used in the coating liquid. However, since it is not preferable that the water repellent material is decomposed by heat, it is preferable to perform the heat treatment at a temperature lower than the decomposition temperature of the water repellent material. Therefore, the heating temperature in the second heat treatment step is preferably 400 degrees or less.
- the heating time of the second heat treatment step is 2.9 minutes or less because the water repellent material melts and the surface that adheres to the catalyst layer is gradually covered with the water repellent material.
- a shorter heating time in the second heat treatment step is preferable because productivity is improved, but in order to shorten the heating time in this way, a higher adhesive force is obtained by combining with an appropriate heating temperature. be able to.
- the heating temperature is 330 ° C. or more and 364 ° C. or less and the heating time is 0.2 minutes or more and 2.7 minutes or less because a gas diffusion electrode substrate can be produced in a short time.
- the second heat treatment step is preferable because the gas diffusion electrode substrate can be efficiently produced even when the heating temperature is 365 ° C. or more and the heating time is 0.2 minutes or more and 1.5 minutes or less.
- the heating time of the first heat treatment step is 0.2 minutes to 1.5 minutes. It is preferable that When the heating temperature of the second heat treatment step is 365 ° C. or more and the heating time is 0.2 minutes or more and 1.5 minutes or less, the surfactant is sufficiently removed even if the first heat treatment step is 1.5 minutes or less. Therefore, the gas diffusion electrode substrate can be manufactured particularly efficiently.
- the heating time is 0.2 for both the first heat treatment step and the second heat treatment step. It is preferable that it is more than minutes.
- the conductive porous substrate in order to efficiently produce the gas diffusion electrode substrate, is wound in a continuous state until it is unwound and wound up. It is preferable to process. That is, before the coating step, including a winding step of unwinding the conductive porous substrate from a wound body in which a long conductive porous substrate is wound in a roll shape, the coating step, the drying step, the first step After the heat treatment step and the second heat treatment step, a winding step of winding up the gas diffusion electrode substrate obtained through the second heat treatment step is included.
- the unwinding step a wound body in which a long conductive porous substrate is wound in a roll shape is unwound from an unwinding machine.
- a water-repellent treatment step for the conductive porous substrate is added between the unwinding step and the coating step, if necessary.
- the gas diffusion electrode substrate obtained through the second heat treatment step may be cooled as necessary.
- the first heat treatment step and the second heat treatment step may use the same heat treatment apparatus having two zones that can be controlled at different temperatures. Further, the order of the first heat treatment step and the second heat treatment step may be reversed.
- the gas diffusion electrode is continuously wound by a winder. When winding up, in order to protect the coated surface, an interleaf may be wound together. Further, the winding may be performed after trimming the edge portion or slitting to the product width immediately before winding.
- the processing device can be made compact by winding and processing each conductive process such as water repellent treatment of the conductive porous substrate, coating, drying and winding, heat treatment and winding. There is an advantage that can be.
- a membrane electrode assembly can be formed by bonding the gas diffusion electrode base material described above to at least one surface of a solid polymer electrolyte membrane having catalyst layers on both surfaces. At that time, by arranging the microporous layer of the gas diffusion electrode substrate on the catalyst layer side, the back diffusion of the generated water is more likely to occur, and the contact area between the catalyst layer and the gas diffusion electrode substrate is increased. The contact electrical resistance can be reduced.
- the fuel cell of the present invention includes a gas diffusion electrode substrate produced by the production method of the present invention. That is, it has a separator on both sides of the above-mentioned membrane electrode assembly. That is, a fuel cell is configured by arranging separators on both sides of the membrane electrode assembly.
- a polymer electrolyte fuel cell is constructed by laminating a plurality of such membrane electrode assemblies on both sides sandwiched by separators via gaskets.
- the catalyst layer is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon. As the catalyst, platinum is usually used.
- a fuel cell in which a reformed gas containing carbon monoxide is supplied to the anode side it is preferable to use platinum and ruthenium as the catalyst on the anode side.
- the solid polymer electrolyte it is preferable to use a perfluorosulfonic acid polymer material having high proton conductivity, oxidation resistance, and heat resistance.
- the basis weight of the conductive porous substrate and the gas diffusion electrode substrate was determined by dividing the mass of the sample cut in 10 cm square by the area of the sample (0.01 m 2 ).
- the basis weight of the microporous layer was measured by subtracting the basis weight of the conductive porous substrate from the basis weight of the gas diffusion electrode substrate.
- ⁇ Measurement of thickness ( ⁇ m)> When there is a measurement object (conductive porous substrate or gas diffusion electrode substrate) in a state where the conductive porous substrate and the gas diffusion electrode substrate are put on a smooth surface plate and a pressure of 0.15 MPa is applied. The height difference when not present was measured. Ten locations were sampled at different locations, and the average of the measured height differences was taken as the thickness. The thickness of the microporous layer was measured by subtracting the thickness of the conductive porous substrate from the thickness of the gas diffusion electrode substrate.
- ⁇ Viscosity measurement> In the viscosity measurement mode of the Spectris Borin rotary rheometer, the stress is measured using a circular cone plate having a diameter of 40 mm and an inclination of 2 ° while increasing the number of rotations of the plate (increase the share rate). At this time, the value of the viscosity at a rate of 0.17 / sec was taken as the viscosity of the coating liquid.
- An integrated electrolyte membrane / catalyst layer obtained by cutting a gas diffusion electrode substrate cut out in a size of 2 cm ⁇ 2 cm into a size of 1.5 cm ⁇ 1.5 cm (an electrolyte membrane “GOA SELECT (registered trademark)” manufactured by Japan Gore)
- the catalyst layer of the catalyst layer “PRIMEA (registered trademark)” manufactured by Nippon Gore was overlapped so that the microporous layer was in contact with each other, and hot pressing was performed by applying a pressure of 1 MPa at 100 ° C.
- the sample After affixing a double-sided tape cut out in a size of 1.5 cm ⁇ 1.5 cm to the part of the sample integrated with the electrolyte membrane / catalyst layer, the sample is placed on the sample mounting jig attached to the lower side of the testing machine.
- the tester is set to the compression mode, and is pressed for 30 seconds with a surface pressure of 1 MPa with the other upper sample mounting jig. Thereafter, the tester is set to the tensile test mode, and the upper sample mounting jig is raised at a speed of 0.5 mm / second.
- the maximum stress applied at that time was measured 5 times, and a value obtained by dividing the average value by the area was defined as an adhesive force (N / cm 2 ).
- Example 1 A raw paper in which carbon paper (TGP-R-060 manufactured by Toray Industries, Inc.), which is a conductive porous substrate having a width of about 400 mm, was rolled into a 400 m roll was set in an unwinding machine. The raw material was conveyed by drive rolls installed at the unwinding unit, the winding unit, and the coater unit.
- carbon paper TGP-R-060 manufactured by Toray Industries, Inc.
- a water-repellent material dispersion (Daikin Industries PTFE dispersion D-210C diluted with purified water 5 times) Filled and conveyed so that the raw material is immersed, squeezed excess liquid with a squeeze roll, passed through a dryer set at 60 ° C. and dried for 2 minutes, and then used a die coating device
- the first heat treatment is performed for 2.4 minutes in a heat treatment furnace where the moisture is dried at 100 ° C. and the temperature is set at 320 ° C.
- a second heat treatment step for 2.4 minutes was performed in a heat treatment furnace set at 340 ° C. and wound up.
- the microporous layer coating solution was prepared as follows.
- Acetylene black (“Denka Black” (registered trademark), manufactured by Denki Kagaku Kogyo Co., Ltd.), 7.7 parts by mass, PTFE dispersion (Daikin Industries, Ltd., Polyflon D-210C, PTFE content: 60% by mass, melting point: 330 ° C) 3.2 parts by mass, surfactant polyoxyethylene alkylphenyl ether (manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition temperature 200 ° C. to 270 ° C.) 14 parts by mass, purification 75.1 parts by mass of water was kneaded with a planetary mixer to prepare a coating solution. The coating liquid viscosity at this time was 9.5 Pa ⁇ s.
- Example 2 a gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the microporous layer coating solution was changed and prepared as follows.
- Acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass
- PTFE dispersion (Daikin Kogyo Co., Ltd., Polyflon D-210C) 1.2 parts by mass
- surfactant polyoxy 14 parts by mass of ethylene alkylphenyl ether manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100: decomposition temperature 200 ° C. to 270 ° C.) and 77.1 parts by mass of purified water were kneaded with a planetary mixer.
- a coating solution was prepared. The coating liquid viscosity at this time was 9.4 Pa ⁇ s.
- Example 3 In Example 1, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 1, and a gas diffusion electrode substrate was obtained.
- Example 4 In Example 1, the heating time of the first heat treatment step, the heating temperature of the second heat treatment step, and the heating time were changed as shown in the table to obtain a gas diffusion electrode substrate.
- Example 5 a gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the microporous layer coating liquid was changed as follows. Acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass, PTFE dispersion (Daikin Industries, Ltd., Polyflon D-210C) 2.1 parts by mass, surfactant polyoxy 14 parts by mass of ethylene alkyl phenyl ether (manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition temperature 200 ° C. to 270 ° C.) and 76.2 parts by mass of purified water were kneaded with a planetary mixer. A coating solution was prepared. The coating liquid viscosity at this time was 9.0 Pa ⁇ s.
- Example 6 In Example 5, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 1, and a gas diffusion electrode substrate was obtained.
- Example 7 In Example 6, the heating time of the first heat treatment step was changed as shown in Table 2, and a gas diffusion electrode substrate was obtained.
- Example 8 In Example 7, the heating time of the second heat treatment step was changed as shown in Table 2 to obtain a gas diffusion electrode substrate.
- Example 9 In Example 7, the heating time of the first heat treatment step and the heating time of the second heat treatment step were changed as shown in Table 2 to obtain a gas diffusion electrode substrate.
- Example 10 (Example 10) In Example 7, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 2, and a gas diffusion electrode substrate was obtained.
- Example 1 a gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the microporous layer coating solution was changed and prepared as follows.
- Acetylene black (“DENKA BLACK” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass
- PTFE dispersion (Daikin Industries, Ltd., Polyflon D-210C) 0.4 parts by mass
- surfactant polyoxy 14 parts by mass of ethylene alkylphenyl ether manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100: decomposition temperature 200 ° C. to 270 ° C.) and 77.9 parts by mass of purified water were kneaded with a planetary mixer.
- a coating solution was prepared. The coating liquid viscosity at this time was 9.6 Pa ⁇ s.
- Example 5 (Comparative Example 2) In Example 5, the heating time of the second heat treatment step was changed as shown in Table 2, and a gas diffusion electrode substrate was obtained.
- Example 3 (Comparative Example 3) In Example 5, the heating temperature and heating time of the second heat treatment step were changed as shown in Table 3, and a gas diffusion electrode substrate was obtained. In order to obtain adhesive strength, it is necessary to lengthen the second heat treatment time, and it is impossible to efficiently produce a gas diffusion electrode substrate having excellent adhesiveness.
- Example 5 (Comparative Example 4) In Example 5, the heating time of the first heat treatment step, the heating temperature of the second heat treatment step, and the heating time were changed as shown in Table 3 to obtain a gas diffusion electrode substrate.
- Example 5 (Comparative Example 5) In Example 5, the heating time of the second heat treatment step was changed as shown in Table 3 to obtain a gas diffusion electrode substrate.
- Example 6 a gas diffusion electrode substrate was obtained in the same manner as in Example 5 except that the microporous layer coating liquid was changed and prepared as follows. Acetylene black (“Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass, FEP dispersion (“Neoflon” (registered trademark) FEP dispersion ND-110 (manufactured by Daikin Industries, Ltd.)) , FEP content 54 mass%, melting point 240 ° C.) 2.3 mass parts, surfactant polyoxyethylene alkylphenyl ether (manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition 14 parts by mass of a temperature of 200 ° C. to 270 ° C. and 76.0 parts by mass of purified water were kneaded with a planetary mixer to prepare a coating solution. The coating liquid viscosity at this
- Example 6 the microporous layer coating liquid was changed as follows, and the heating time of the second heat treatment step was changed as shown in Table 3, to obtain a gas diffusion electrode substrate.
- Acetylene black (“Denka Black” (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) 7.7 parts by mass
- PTFE dispersion (Daikin Kogyo Co., Ltd., Polyflon D-210C) 1.0 part by mass
- surfactant polyoxy 14 parts by mass of ethylene alkyl phenyl ether manufactured by Nacalai Tesque, “TRITON” (registered trademark) X-100): decomposition temperature 200 ° C. to 270 ° C.) and 77.3 parts by mass of purified water were kneaded with a planetary mixer.
- a coating solution was prepared.
- the coating liquid viscosity at this time was 9.0 Pa ⁇ s.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
また特許文献2では、加熱時間を短縮するために、分散剤の分解を促進するための添加剤を微多孔質層に添加したガス拡散電極基材が提案されている。
また特許文献3では、ガス拡散電極基材を安全で効率的に製造する方法として、分散剤が熱分解する第1の加熱する工程と、撥水材の融点以上の温度で加熱する工程とを含むガス拡散電極基材の製造方法が提案されている。
さらに本発明の他の目的は、上記方法で製造されたガス拡散電極基材を含む燃料電池を提供することにある。
導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極基材の製造方法であって、
前記導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程、
第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する、乾燥工程、
前記撥水材の融点未満の温度で加熱する第1の熱処理工程、
および、前記撥水材の融点以上の温度で加熱する第2の熱処理工程を有し、
前記塗液は、前記導電性粒子1質量部に対して、前記撥水材を0.09質量部以上0.27質量部以下含み、
前記第1の熱処理工程の加熱時間が0.2分以上3.0分以下であって、
前記第2の熱処理工程の加熱時間が2.9分以下であることを特徴とする。
本発明の燃料電池は、上記の方法により製造されたガス拡散電極基材を用いる。
以下、本発明のガス拡散電極基材の製造方法について、詳細に説明する。
ガス拡散電極基材は、高い導電性を有し、多孔質であることが重要であるため、本発明の製造方法に用いる導電性多孔質基材としては、多孔体からなる基材である導電性多孔質基材を用いる。このような導電性多孔質基材は、平均細孔径が10μm以上100μm以下の多孔体であることが好ましい。導電性多孔質基材としては、具体的には、例えば、炭素繊維抄紙体、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわちカーボンペーパーを用いることが好適である。
本発明で製造するガス拡散電極基材は、導電性多孔質基材の少なくとも片面に微多孔層を有する。
本発明の製造方法は、導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程を有する。なお、本発明でいう微多孔質層は、塗布工程、乾燥工程、第1の熱処理工程、及び第2の熱処理工程を経ることで形成される層であり、導電性粒子及び撥水材を含む層である。
なお、塗液の粘度を高粘度に保つためには、増粘剤を用いる方法に限定されるものではなく、前述の界面活性剤として、増粘機能を有する界面活性剤を用いることも好ましい。
塗布工程を経た後、導電性多孔質基材に塗布された塗液の分散媒(水系の場合は水)を除去するために、界面活性剤が除去されない温度で塗液を乾燥する塗液乾燥工程に供する後、導電性粒子の分散に用いた界面活性剤を除去する目的および撥水材を一度溶融して導電性粒子を結着させる目的で、焼結を行なうことが一般的である。しかし本発明においては、第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する乾燥工程を経た後、撥水材の融点未満の温度で加熱する第1の熱処理工程と、撥水材の溶融結着、いわゆる焼結を行うために撥水材の融点以上の温度で加熱する第2の熱処理工程を、それぞれの最適温度で別個に行なう。
乾燥工程の加熱温度は、80℃以上155℃以下であることが好ましい。乾燥工程の加熱温度を80℃以上とすることで、分散媒を効率的に除去することが可能とあり、155℃以下とすることで、分散媒の突沸によって微多孔質層の表面が荒れたものとなり品位が悪化することを抑制できるために好ましい。乾燥工程における加熱時間は、生産性の点から、できるかぎり短時間であることが好ましく、10.0分以下が好ましい。一方で、あまりに短時間になると分散媒が十分除去されずに第1の熱処理工程または第2の熱処理工程で導電性多孔質基材が加熱され、分散媒の突沸が生じるため、0.05分以上であることが好ましい。
本発明の第1の熱処理工程は、乾燥工程の後に行われる工程であり、撥水材の融点未満の温度で導電性多孔質基材及びその上に塗布された塗液を加熱する工程である。第1の熱処理工程の加熱温度が撥水材の融点未満の温度であることで、撥水材の溶融を抑制しつつ、温度を最適化した場合には界面活性剤を熱分解により微多孔層から除去することができる。
第1の熱処理工程の加熱温度は、塗液に用いる界面活性剤を除去できることから、160℃以上であることが好ましく、より好ましくは250℃以上である。
本発明の第2の熱処理工程は、第1の熱処理工程の後に行われる工程であり、撥水材の融点以上の温度で導電性多孔質基材及びその上に塗布された塗液を加熱する工程である。第2の熱処理工程の加熱温度が撥水材の融点以上の温度であることで、撥水材の溶融により撥水材が微多孔質層中に含まれる導電性粒子と結合したり、撥水材同士が結合を生じることで、接着後の電解質膜の膨張収縮による剥離応力に対して、微多孔質層内での剥離を有効に抑制することができる。
本発明において、前記したガス拡散電極基材を、両面に触媒層を有する固体高分子電解質膜の少なくとも片面に接合することにより、膜電極接合体を形成することができる。その際、触媒層側にガス拡散電極基材の微多孔層を配置することにより、より生成水の逆拡散が起こりやすくなることに加え、触媒層とガス拡散電極基材の接触面積が増大し、接触電気抵抗を低減させることができる。
本発明の燃料電池は、本発明の製造方法で製造されたガス拡散電極基材を含むものである。つまり、上述の膜電極接合体の両側にセパレータを有するものである。すなわち、上述の膜電極接合体の両側にセパレータを配することにより燃料電池を構成する。通常、このような膜電極接合体の両側にガスケットを介してセパレータで挟んだものを複数個積層することによって固体高分子型燃料電池を構成する。触媒層は、固体高分子電解質と触媒担持炭素を含む層からなる。触媒としては、通常、白金が用いられる。アノード側に一酸化炭素を含む改質ガスが供給される燃料電池にあっては、アノード側の触媒としては白金およびルテニウムを用いることが好ましい。固体高分子電解質は、プロトン伝導性、耐酸化性および耐熱性の高い、パーフルオロスルホン酸系の高分子材料を用いることが好ましい。このような燃料電池ユニットや燃料電池の構成自体は、よく知られているところであり、本発明の製造方法で製造されたガス拡散電極基材をアノードまたはカソード側いずれかにのみ用いても、両側に用いてもよい。
<目付(g/m2)の測定>
導電性多孔質基材、ガス拡散電極基材の目付は、10cm四方に切り取ったサンプルの質量を、サンプルの面積(0.01m2)で除して求めた。微多孔層の目付については、ガス拡散電極基材の目付から導電性多孔質基材の目付を差し引いて測定した。
導電性多孔質基材およびガス拡散電極基材を平滑な定盤にのせ、圧力0.15MPaをかけた状態での測定物(導電性多孔質基材又はガス拡散電極基材)がある場合からない場合の高さの差を測定した。異なる部位にて10箇所サンプリングを行い、高さの差の測定値を平均したものを厚さとした。微多孔層の厚さについては、ガス拡散電極基材の厚さから導電性多孔質基材の厚さを差し引いて測定した。
スペクトリス社製ボーリン回転型レオメーターの粘度測定モードにおいて、直径40mm、傾き2°の円形コーンプレートを用いプレートの回転数を増加させながら(シェアレートを上昇)応力を測定していく。このとき、シェレート0.17/秒における粘度の値を塗液の粘度とした。
(株)島津製作所製“オートグラフ”(登録商標)AGS-Xの引張試験モードを用い、ガス拡散電極基材と触媒層との接着力を測定した。引張試験機に取り付けられた、上下2つの試料取り付け冶具の内、下側の治具の試料接地面(2.0cm×2.0cm)に両面テープ(ニチバン製ナイスタック(登録商標)一般タイプNW-20)を貼付する。2cm×2cmのサイズで切り抜いたガス拡散電極基材を、1.5cm×1.5cmのサイズで切り抜いた電解質膜・触媒層一体化品(日本ゴア製の電解質膜“ゴアセレクト(登録商標)”に、日本ゴア製触媒層“PRIMEA(登録商標)”を両面に形成したもの)の触媒層と微多孔層が接するように重ね、100℃で1MPaの圧力をかけてホットプレスを行った。試料の電解質膜・触媒層一体化品の部分に1.5cm×1.5cmのサイズで切り抜いた両面テープを貼り付けた後、試験機下側に取り付けた試料取り付け冶具の上に試料を載せる。試験機を圧縮モードにして、上方のもう一方の試料取り付け冶具で、面圧1MPaで30秒間押し付ける。その後、試験機を引張試験モードにして、0.5mm/秒の速度で上側の試料取り付け冶具を上昇させる。その時にかかる最大応力を5回測定し、その平均値を面積で割った値を接着力(N/cm2)とした。
幅約400mmの導電性多孔質基材であるカーボンペーパー(東レ(株)製 TGP-R-060)を400mロール状に巻いた原反を巻き出し機にセットした。
巻き出し部、巻き取り部、コーター部に設置された駆動ロールにより原反を搬送した。コーター部にディッピング用のステンレス製の槽を装着した撥水処理装置を用い、該槽に撥水材ディスパージョン(ダイキン工業製PTFEディスパージョンD-210Cを精製水で5倍に薄めたもの)で満たし、その中を原反が浸漬されるように搬送し、絞りロールで余分な液を搾り取り、さらに60℃に温度設定した乾燥機を通過させ2分間乾燥させた後、ダイコーティング装置を用い、上記撥水処理した導電性多孔質基材に微多孔層塗液を塗布したのち、100℃で水分を乾燥、さらに温度を320℃に設定した熱処理炉において2.4分間の第1の熱処理工程を行なった後、340℃に設定した熱処理炉において2.4分間の第2の熱処理工程を行い、巻き取った。
なお、微多孔層塗液は以下のように調製した。
実施例1において、微多孔層塗液を以下のように変更し調製した以外は、実施例1と同様にして、ガス拡散電極基材を得た。
アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)1.2質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 77.1質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.4Pa・sであった。
実施例1において、第2の熱処理工程の加熱温度、加熱時間を表1の通り変更し、ガス拡散電極基材を得た。
実施例1において、第1の熱処理工程の加熱時間、第2の熱処理工程の加熱温度、加熱時間を表の通り変更し、ガス拡散電極基材を得た。
実施例1において、微多孔層塗液を以下のように変更した以外は、実施例1と同様にして、ガス拡散電極基材を得た。
アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)2.1質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 76.2質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.0Pa・sであった。
実施例5において、第2の熱処理工程の加熱温度、加熱時間を表1の通り変更し、ガス拡散電極基材を得た。
実施例6において、第1の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
実施例7において、第2の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
実施例7において、第1の熱処理工程の加熱時間、第2の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
実施例7において、第2の熱処理工程の加熱温度、加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
実施例1において、微多孔層塗液を以下のように変更し調製した以外は、実施例1と同様にして、ガス拡散電極基材を得た。
アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)0.4質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 77.9質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.6Pa・sであった。
実施例5において、第2の熱処理工程の加熱時間を表2の通り変更し、ガス拡散電極基材を得た。
実施例5において、第2の熱処理工程の加熱温度、加熱時間を表3の通り変更し、ガス拡散電極基材を得た。接着力を得るためには、第2の熱処理時間を長くする必要があり、接着性に優れたガス拡散電極基材を効率的に製造することはできないものであった。
実施例5において、第1の熱処理工程の加熱時間、第2の熱処理工程の加熱温度、加熱時間を表3の通り変更し、ガス拡散電極基材を得た。
実施例5において、第2の熱処理工程の加熱時間を表3の通り変更し、ガス拡散電極基材を得た。
実施例5において、微多孔層塗液を以下のように変更し調製した以外は、実施例5と同様にして、ガス拡散電極基材を得た。
アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、FEPディスパージョン(“ネオフロン”(登録商標)FEPディスパージョンND-110(ダイキン工業(株)製)、FEPの含有量が54質量%、融点240℃)2.3質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 76.0質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.8Pa・sであった。
実施例6において、微多孔層塗液を以下のように変更し、第2の熱処理工程の加熱時間を表3の通り変更し、ガス拡散電極基材を得た。
アセチレンブラック(電気化学工業(株)製“デンカブラック”(登録商標))7.7質量部、PTFEディスパージョン(ダイキン工業株式会社製 ポリフロンD-210C)1.0質量部、界面活性剤ポリオキシエチレンアルキルフェニルエーテル(ナカライテスク(株)製、“TRITON”(登録商標) X-100):分解温度 200℃から270℃)14質量部、精製水 77.3質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、9.0Pa・sであった。
2 セパレータ
3 ガス拡散電極基材
4 触媒層
5 電解質膜
Claims (5)
- 導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極基材の製造方法であって、
前記導電性多孔質基材上に、導電性粒子、撥水材、分散媒及び界面活性剤を含む塗液を塗布する塗布工程、
第1の熱処理工程の加熱温度よりも低い温度で、塗布処理された導電性多孔質基材を加熱する、乾燥工程、
前記撥水材の融点未満の温度で加熱する第1の熱処理工程、
および、前記撥水材の融点以上の温度で加熱する第2の熱処理工程を有し、
前記塗液は、前記導電性粒子1質量部に対して、前記撥水材を0.09質量部以上0.27質量部以下含み、
前記第1の熱処理工程の加熱時間が0.2分以上3.0分以下であって、
前記第2の熱処理工程の加熱時間が2.9分以下であることを特徴とする、ガス拡散電極基材の製造方法。 - 前記第2の熱処理工程は、加熱温度が330℃以上364℃以下であって、加熱時間が0.2分以上2.7分以下であることを特徴とする、請求項1に記載のガス拡散電極基材の製造方法。
- 前記第1の熱処理工程は、加熱時間が0.2分以上1.5分以下であって、
前記第2の熱処理工程は、加熱温度が365℃以上であり、加熱時間が0.2分以上1.5分以下であることを特徴とする、請求項1に記載のガス拡散電極基材の製造方法。 - 前記撥水材がポリテトラフルオロエチレン(PTFE)であることを特徴とする、請求項1~3のいずれかに記載のガス拡散電極基材の製造方法。
- 請求項1~3のいずれかに記載の方法により製造されたガス拡散電極基材を用いた、燃料電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018521332A JP6911847B2 (ja) | 2017-04-03 | 2018-03-30 | ガス拡散電極基材の製造方法 |
US16/494,846 US20200287220A1 (en) | 2017-04-03 | 2018-03-30 | Method for producing gas diffusion electrode substrate and fuel cell |
KR1020197024010A KR20190130126A (ko) | 2017-04-03 | 2018-03-30 | 가스 확산 전극 기재의 제조 방법, 및 연료 전지 |
EP18781433.0A EP3609005A4 (en) | 2017-04-03 | 2018-03-30 | METHOD OF MANUFACTURING A GAS DIFFUSION ELECTRODE SUBSTRATE AND FUEL CELL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-073450 | 2017-04-03 | ||
JP2017073450 | 2017-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186293A1 true WO2018186293A1 (ja) | 2018-10-11 |
Family
ID=63712952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013610 WO2018186293A1 (ja) | 2017-04-03 | 2018-03-30 | ガス拡散電極基材の製造方法、および燃料電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200287220A1 (ja) |
EP (1) | EP3609005A4 (ja) |
JP (1) | JP6911847B2 (ja) |
KR (1) | KR20190130126A (ja) |
TW (1) | TW201842703A (ja) |
WO (1) | WO2018186293A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111162285A (zh) * | 2018-11-08 | 2020-05-15 | 中国科学院大连化学物理研究所 | 一种燃料电池导电气体扩散层及其制备方法 |
JP2022145150A (ja) * | 2021-03-19 | 2022-10-03 | 株式会社Screenホールディングス | ガス拡散層付膜電極接合体およびその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7181404B2 (ja) * | 2018-12-26 | 2022-11-30 | コーロン インダストリーズ インク | 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池 |
US12237515B2 (en) | 2021-10-22 | 2025-02-25 | Textron Innovations Inc. | Fuel cell metallic gas diffusion layer |
CN114081499B (zh) * | 2021-11-23 | 2024-01-12 | 吉林大学 | 一种具有二梯度孔的柔性透气表面肌电电极及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017071A (ja) * | 2001-07-02 | 2003-01-17 | Honda Motor Co Ltd | 燃料電池用電極およびその製造方法とそれを備える燃料電池 |
JP2005100679A (ja) * | 2003-09-22 | 2005-04-14 | Tomoegawa Paper Co Ltd | ガス拡散電極、その作製方法及びこれを用いた固体高分子型燃料電池 |
JP2011258395A (ja) * | 2010-06-09 | 2011-12-22 | Toyota Motor Corp | 燃料電池に用いられるガス拡散層の製造方法、および、製造装置 |
JP2012226844A (ja) * | 2011-04-15 | 2012-11-15 | Toyota Motor Corp | 燃料電池用ガス拡散層の製造方法 |
JP2014011108A (ja) | 2012-07-02 | 2014-01-20 | Toyota Motor Corp | 燃料電池用ガス拡散層及びその形成方法 |
JP2015185217A (ja) | 2014-03-20 | 2015-10-22 | 東レ株式会社 | ガス拡散電極の製造方法および製造装置 |
JP2016225271A (ja) | 2015-05-29 | 2016-12-28 | トヨタ自動車株式会社 | 拡散層形成ペースト、ガス拡散層の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4824298B2 (ja) * | 2003-12-04 | 2011-11-30 | パナソニック株式会社 | 燃料電池用ガス拡散層、電極及び膜電極接合体及びその製造方法 |
JP5259022B1 (ja) * | 2011-07-19 | 2013-08-07 | パナソニック株式会社 | 膜電極接合体およびガス拡散層の製造方法 |
-
2018
- 2018-03-30 WO PCT/JP2018/013610 patent/WO2018186293A1/ja unknown
- 2018-03-30 KR KR1020197024010A patent/KR20190130126A/ko not_active Ceased
- 2018-03-30 US US16/494,846 patent/US20200287220A1/en not_active Abandoned
- 2018-03-30 JP JP2018521332A patent/JP6911847B2/ja not_active Expired - Fee Related
- 2018-03-30 EP EP18781433.0A patent/EP3609005A4/en not_active Withdrawn
- 2018-04-02 TW TW107111588A patent/TW201842703A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017071A (ja) * | 2001-07-02 | 2003-01-17 | Honda Motor Co Ltd | 燃料電池用電極およびその製造方法とそれを備える燃料電池 |
JP2005100679A (ja) * | 2003-09-22 | 2005-04-14 | Tomoegawa Paper Co Ltd | ガス拡散電極、その作製方法及びこれを用いた固体高分子型燃料電池 |
JP2011258395A (ja) * | 2010-06-09 | 2011-12-22 | Toyota Motor Corp | 燃料電池に用いられるガス拡散層の製造方法、および、製造装置 |
JP2012226844A (ja) * | 2011-04-15 | 2012-11-15 | Toyota Motor Corp | 燃料電池用ガス拡散層の製造方法 |
JP2014011108A (ja) | 2012-07-02 | 2014-01-20 | Toyota Motor Corp | 燃料電池用ガス拡散層及びその形成方法 |
JP2015185217A (ja) | 2014-03-20 | 2015-10-22 | 東レ株式会社 | ガス拡散電極の製造方法および製造装置 |
JP2016225271A (ja) | 2015-05-29 | 2016-12-28 | トヨタ自動車株式会社 | 拡散層形成ペースト、ガス拡散層の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3609005A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111162285A (zh) * | 2018-11-08 | 2020-05-15 | 中国科学院大连化学物理研究所 | 一种燃料电池导电气体扩散层及其制备方法 |
JP2022145150A (ja) * | 2021-03-19 | 2022-10-03 | 株式会社Screenホールディングス | ガス拡散層付膜電極接合体およびその製造方法 |
JP7307109B2 (ja) | 2021-03-19 | 2023-07-11 | 株式会社Screenホールディングス | ガス拡散層付膜電極接合体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20190130126A (ko) | 2019-11-21 |
TW201842703A (zh) | 2018-12-01 |
US20200287220A1 (en) | 2020-09-10 |
EP3609005A1 (en) | 2020-02-12 |
JPWO2018186293A1 (ja) | 2020-02-13 |
JP6911847B2 (ja) | 2021-07-28 |
EP3609005A4 (en) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018186293A1 (ja) | ガス拡散電極基材の製造方法、および燃料電池 | |
CN108541350B (zh) | 气体扩散电极及其制造方法 | |
TWI648162B (zh) | 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池 | |
TWI644478B (zh) | Gas diffusion electrode substrate, manufacturing method and application thereof | |
TWI644477B (zh) | 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池 | |
TWI574453B (zh) | 燃料電池用氣體擴散電極基材 | |
TWI671941B (zh) | 碳薄片、氣體擴散電極基材及燃料電池 | |
JP2010146965A (ja) | 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法 | |
TW201806739A (zh) | 氣體擴散電極基材、積層體及燃料電池 | |
JP5328407B2 (ja) | 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池 | |
JP5311538B2 (ja) | 多孔質炭素電極基材の製造方法 | |
JP7355143B2 (ja) | 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法 | |
KR102591887B1 (ko) | 탄소 시트, 가스 확산 전극 기재, 권회체 및 연료 전지 | |
JP4985737B2 (ja) | 燃料電池用のマイクロポーラス層付きガス拡散電極、マイクロポーラス層付き触媒層、触媒層付きガス拡散電極、膜−電極接合体及び固体高分子形燃料電池 | |
JP2022042074A (ja) | ガス拡散電極 | |
JP2012074319A (ja) | 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池 | |
JP5426830B2 (ja) | 固体高分子型燃料電池用ガス拡散電極、それを用いた膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池 | |
JP2005166473A (ja) | 燃料電池用電極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018521332 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781433 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197024010 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018781433 Country of ref document: EP Effective date: 20191104 |