+

WO2018186240A1 - Acoustic wave device - Google Patents

Acoustic wave device Download PDF

Info

Publication number
WO2018186240A1
WO2018186240A1 PCT/JP2018/012543 JP2018012543W WO2018186240A1 WO 2018186240 A1 WO2018186240 A1 WO 2018186240A1 JP 2018012543 W JP2018012543 W JP 2018012543W WO 2018186240 A1 WO2018186240 A1 WO 2018186240A1
Authority
WO
WIPO (PCT)
Prior art keywords
via electrode
layer
electrode
wave device
face
Prior art date
Application number
PCT/JP2018/012543
Other languages
French (fr)
Japanese (ja)
Inventor
康彦 平野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018186240A1 publication Critical patent/WO2018186240A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device.
  • Patent Document 1 discloses an example of an elastic wave device having a WLP (Wafer Level Package) structure.
  • This elastic wave device has a space surrounded by a piezoelectric substrate, an insulator, and a lid.
  • An IDT electrode is provided on the piezoelectric substrate so as to be located in the space.
  • the acoustic wave device has a via electrode that is a connection electrode penetrating the insulator and the lid.
  • the side surface of the via electrode is inclined with respect to the direction in which the via electrode passes through the insulator and the lid.
  • An external terminal is connected to the end of the via electrode opposite to the piezoelectric substrate side. Bumps are bonded to the external terminals.
  • An object of the present invention is to provide an elastic wave device that is less likely to be damaged around a via electrode.
  • An elastic wave device is provided on a piezoelectric substrate, a functional electrode provided on the piezoelectric substrate, a first layer provided on the piezoelectric substrate, and the first layer.
  • a via electrode having a side surface connecting the first end surface and the second end surface, wherein the area of the second end surface is the first end surface.
  • a direction in which the via electrode passes through the first layer and the second layer is defined as a first direction, and an arbitrary direction orthogonal to the first direction is defined as a second direction.
  • the shape of the side surface of the via electrode is Including a curved shape inwardly of A electrodes.
  • the side surface of the via electrode when the via electrode is projected in the second direction, the side surface of the via electrode is connected to the first end surface and the second end surface. And having one side surface portion and the other side surface portion facing each other, the one side surface portion being connected to the first end surface connected to the first end surface and the second end surface A second connecting point, and the one side surface portion has a first connecting point and an imaginary line connecting the first connecting point and the second connecting point by a straight line.
  • the portion other than the second connection point is located inside the via electrode. In this case, damage is less likely to occur around the via electrode.
  • the shape of the side surface of the via electrode when the via electrode is projected in the second direction, includes a linear shape.
  • the second end surface side of the via electrode when the via electrode is projected in the second direction, is located on the inner side of the via electrode. It is a curved shape, and the first end surface side is a linear shape.
  • the side surface of the via electrode has a projecting portion that projects outward from the via electrode, and the side surface includes the projecting portion and the side surface. No step portion is provided between the projecting portion and the portion on the first end face side. In this case, it is difficult for damage to occur around the via electrode, and the via electrode is difficult to come off.
  • the second layer includes an inner layer provided on the first layer and an outer layer provided on the inner layer.
  • the first layer has an opening that surrounds the functional electrode in plan view
  • the second layer has the opening.
  • a hollow space is provided on the first layer so as to be covered, and is surrounded by the piezoelectric substrate, the first layer, and the second layer, and the functional electrode is provided in the hollow space. Is placed inside.
  • the first layer is provided on the piezoelectric substrate so as to cover the functional electrode.
  • the functional electrode is an IDT electrode and uses a surface acoustic wave.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a projection view in which the via electrode in the first embodiment of the present invention is projected in the second direction.
  • FIG. 3 is an enlarged front sectional view of the vicinity of the via electrode of the elastic wave device of the first comparative example.
  • FIG. 4 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device of the second comparative example.
  • FIG. 5 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a projection view in which the via electrode in the first embodiment of the present invention is projected in the second direction.
  • FIG. 3 is an enlarged front sectional view of the vicinity of the via electrode of the elastic wave device
  • FIG. 6 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the modification of the first embodiment of the present invention.
  • FIG. 7 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the second embodiment of the present invention.
  • FIG. 8 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first modification of the second embodiment of the present invention.
  • FIG. 9 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the second modification of the second embodiment of the present invention.
  • FIG. 10 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • the acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 may be made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 , or may be made of an appropriate piezoelectric ceramic.
  • the surface acoustic wave device 1 of the present embodiment is a surface acoustic wave device that uses surface acoustic waves.
  • the IDT electrode 3 may be made of a laminated metal film in which metal films are laminated, or may be made of a single-layer metal film.
  • the electrode land 4 may also be made of the same material as the IDT electrode 3.
  • the functional electrode is not limited to the IDT electrode.
  • the elastic wave device 1 may be an elastic wave device that uses elastic waves other than surface acoustic waves.
  • a support layer 5 as a first layer is provided on the piezoelectric substrate 2.
  • the support layer 5 has an opening 5a surrounding the IDT electrode 3 in plan view.
  • the support layer 5 is made of an appropriate resin or the like.
  • a cover layer 6 as a second layer is provided on the support layer 5 so as to cover the opening 5a.
  • a hollow space surrounded by the piezoelectric substrate 2, the support layer 5 and the cover layer 6 is provided.
  • the IDT electrode 3 is disposed in the hollow space.
  • the first layer is the support layer 5 having the opening 5a, but the first layer may not have the opening 5a.
  • the first layer may be provided on the piezoelectric substrate 2 so as to cover the IDT electrode 3.
  • the cover layer 6 has an inner layer 6a provided on the support layer 5 and an outer layer 6b provided on the inner layer 6a.
  • the inner layer 6a is made of, for example, an epoxy resin.
  • the outer layer 6b is made of, for example, polyimide resin.
  • the inner layer 6a is an adhesive layer, and the outer layer 6b is a protective layer.
  • a via electrode 7 is provided so as to penetrate the support layer 5 and the cover layer 6.
  • the via electrode 7 has a first end face 7a located on the piezoelectric substrate 2 side and a second end face 7b located on the opposite side to the first end face 7a.
  • the area of the second end face 7b is larger than the area of the first end face 7a.
  • the via electrode 7 has a side surface 7c that connects the first end surface 7a and the second end surface 7b.
  • the first end face 7 a of the via electrode 7 is connected to the electrode land 4.
  • bumps 8 are provided so as to be connected to the second end face 7 b of the via electrode 7.
  • the contact area between the via electrode 7 and the bump 8 can be increased, and the bonding force can be increased.
  • the contact area between the via electrode 7 and the bump 8 is large, heat dissipation can be improved.
  • a direction in which the via electrode 7 passes through the support layer 5 and the cover layer 6 is defined as a first direction Z
  • an arbitrary direction orthogonal to the first direction Z is defined as a second direction.
  • the planar shape of the via electrode 7 of the present embodiment is circular, and the shape of the via electrode 7 is the same regardless of the second direction.
  • the shape of the via electrode 7 may be different when projected in a certain second direction and when projected in another second direction.
  • FIG. 2 is a projection view in which the via electrode in the first embodiment is projected in the second direction.
  • the side surface 7c of the via electrode 7 is connected to the first end surface 7a and the second end surface 7b and faces the first side surface portion 7d facing each other.
  • a second side surface portion 7e is the one side surface portion and the other side surface portion of the present invention.
  • the first side surface portion 7d has a first connection point 17A connected to the first end surface 7a and a second connection point 17B connected to the second end surface 7b.
  • a virtual line connecting the first connection point 17A and the second connection point 17B with a straight line is defined as a virtual line A.
  • a feature of the present embodiment is that the first side surface portion 7d is located inside the via electrode 7 with respect to the imaginary line A except for the first connection point 17A and the second connection point 17B. Thereby, the support layer 5 and the cover layer 6 and the like are hardly damaged around the via electrode 7. This will be described below by comparing the present embodiment with the first comparative example and the second comparative example.
  • the second direction is an arbitrary direction orthogonal to the first direction.
  • the first side surface portion 7d is located on the inner side of the via electrode 7 with respect to the imaginary line A, except for the first connection point 17A and the second connection point 17B. Is located. Therefore, the 2nd side part 7e also has the said characteristic similar to the 1st side part 7d. More specifically, the second side surface portion 7e includes a third connection point 17C connected to the first end surface 7a and a fourth connection point 17D connected to the second end surface 7b. Have.
  • the second side surface portion 7e When a virtual line connecting the third connection point 17C and the fourth connection point 17D with a straight line is defined as a virtual line B, the second side surface portion 7e has the third connection point 17C and the fourth connection point. Other than 17D, it is located inside the via electrode 7 with respect to the virtual line B.
  • FIG. 3 is an enlarged front cross-sectional view of the vicinity of the via electrode of the elastic wave device of the first comparative example.
  • the second direction is the front direction.
  • FIG. 3 is a cross-sectional view at a position where the via electrode has a shape similar to the shape projected in the second direction. The same applies to the front sectional views shown below.
  • the first comparative example is different from the first embodiment in that when the via electrode 207 is projected in the second direction, the side surface 207c does not have a curved portion.
  • the first side surface portion 207d is linear and has a shape corresponding to the virtual line A in the first embodiment shown in FIG.
  • the distance between the side surface 207c of the via electrode 207 and the hollow space is short. Therefore, the strength of the support layer 5 and the cover layer 6 is low. Therefore, cracks are likely to occur in the support layer 5 and the cover layer 6 between the side surface 207c of the via electrode 207 and the hollow space due to an impact such as when the bumps 8 are joined.
  • the side surface 207c is inclined with respect to the first direction, a large force is easily applied to the support layer 5 and the cover layer 6 from the side surface 207c when the bumps 8 are joined. Therefore, cracks are more likely to occur.
  • FIG. 4 is an enlarged front sectional view of the vicinity of the via electrode of the elastic wave device of the second comparative example.
  • the second comparative example is different from the first embodiment in that when the via electrode 217 is projected in the second direction, the side surface 217c does not have a curved portion and has a stepped portion 217f. More specifically, the step portion 217f is provided on the second end surface 7b side rather than the first end surface 7a side. The step portion 217f has a corner portion 217g located outside the via electrode 217. When the dimension along the transverse direction of the via electrode 217 is defined as the width, the width of the portion closer to the second end face 7b than the stepped portion 217f is wider than the width of the portion closer to the first end face 7a than the stepped portion 217f.
  • the first side surface portion 217d extends in parallel with the first direction from the first end surface 7a to the stepped portion 217f. Therefore, in the second comparative example, the distance between the side surface 217c of the via electrode 217 and the hollow space is longer than in the first comparative example.
  • stress is concentrated on the stepped portion 217f when the bump 8 is bonded.
  • the stress is particularly concentrated at the corner portion 217g of the step portion 217f.
  • cracks are likely to occur in the surrounding support layer 5 and cover layer 6 due to deformation and distortion due to the stress concentration.
  • FIG. 5 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first embodiment.
  • the first side surface portion 7d is located inside the via electrode 7 with respect to the imaginary line A except for the first connection point 17A and the second connection point 17B. Thereby, the distance between the side surface 7c and the hollow space is long. Thereby, the strength of the support layer 5 and the cover layer 6 can be increased.
  • the contact area between the side surface 7c, the support layer 5 and the cover layer 6 is large.
  • the via electrode 7 does not have a stepped portion or a corner portion where stress is concentrated. Therefore, stress can be effectively dispersed when the bumps 8 are joined. Therefore, the support layer 5 and the cover layer 6 around the via electrode 7 are hardly damaged.
  • the distance between the outer surface of the elastic wave device 1 of the support layer 5 and the cover layer 6 and the side surface 7c of the via electrode 7 can also be increased. Therefore, damage is less likely to occur around the via electrode 7.
  • all of the side surface 7c of the via electrode 7 is curved when projected in the second direction. Note that the entire side surface 7c does not have to be curved.
  • the shape of the side surface 7c may include a linear shape.
  • FIG. 6 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the modified example of the first embodiment.
  • the side surface 107c of the via electrode 107 has a shape curved inward in the via electrode 107 at a portion in contact with the outer layer 6b of the cover layer 6.
  • the side surface 107 c has a linear shape in a portion in contact with the inner layer 6 a and the support layer 5.
  • the linearly shaped portion is located closer to the first end surface 7a than the curved portion.
  • the positional relationship between the curved portion and the linear portion is not limited to the above.
  • the curved portion may be positioned closer to the first end surface 7a than the portion having a linear shape.
  • FIG. 7 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the second embodiment.
  • This embodiment is different from the first embodiment in that the via electrode 27 has an overhang portion 29. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the overhang portion 29 has one step portion.
  • the protruding portion 29 is provided so that the stepped portion is located at the boundary between the inner layer 6 a and the outer layer 6 b of the cover layer 6.
  • the position of the overhanging portion 29 is not limited to the above.
  • the via electrode 27 has a portion closer to the second end surface 7b than the stepped portion and a portion closer to the first end surface 7a than the stepped portion.
  • the width of the end surface where the portion on the second end surface 7b side of the via electrode 27 is in contact with the stepped portion is narrower than the width of the end surface where the portion on the first end surface 7a side of the via electrode 27 is in contact with the stepped portion.
  • the side surface 27 c does not have a step portion between the protruding portion 29 and the portion of the side surface 27 c closer to the first end surface 7 a than the protruding portion 29. For this reason, when the bumps 8 are joined, stress is unlikely to concentrate on the overhanging portion 29. Therefore, also in the present embodiment, damage is unlikely to occur around the via electrode 27 as in the first embodiment.
  • the via electrode 27 since the via electrode 27 has the protruding portion 29, the via electrode 27 is difficult to come off.
  • FIG. 8 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first modification of the second embodiment.
  • the via electrode 117 includes an overhang portion 119 provided so that the stepped portion is located at the boundary between the cover layer 6 and the support layer 5. Have. Even in this case, the via electrode 117 is hard to come off and is not easily damaged around the via electrode 117.
  • FIG. 9 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the second modification of the second embodiment.
  • This modification is different from the second embodiment in that the protruding portion 129 of the via electrode 127 reaches the outside of the imaginary line A in the via electrode 127. Even in this case, when the via electrode 127 is projected in the second direction, the side surface 127c has a curved portion. Therefore, the stress can be effectively dispersed as in the second embodiment, and the damage around the via electrode 127 hardly occurs. In addition, the via electrode 127 is difficult to come off.
  • the configuration of the present invention is not limited to the configuration in which all of the first side surface portion of the via electrode is located inside the imaginary line in the via electrode.
  • all of the first side surface portions 27 d are located on the inner side of the imaginary line A. Therefore, the distance between all the portions of the side surface 27c of the via electrode 27 and the hollow space can be increased. Therefore, damage is less likely to occur around the via electrode 27.
  • FIG. 10 is a front sectional view of the acoustic wave device according to the third embodiment.
  • This embodiment is different from the first embodiment in that the first layer 35 covers the IDT electrode 3.
  • the 2nd layer 36 is provided on the 1st layer 35 similarly to the cover layer of 1st Embodiment.
  • the elastic wave device 31 has the same configuration as the elastic wave device 1 of the first embodiment.
  • the via electrode 7 has the same configuration as that of the first embodiment. Therefore, the distance between the surface of the first layer 35 and the second layer 36 on the outside of the acoustic wave device 31 and the side surface 7c of the via electrode 7 is long. Therefore, damage is unlikely to occur around the via electrode 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an acoustic wave device in which breakdown around a via electrode is unlikely to occur. An acoustic wave device 1 includes: a piezoelectric substrate 2; an IDT electrode 3 (functional electrode) provided on the piezoelectric substrate 2; a support layer 5 (first layer) provided on the piezoelectric substrate 2; a cover layer 6 (second layer) provided on the support layer 5; and a via electrode 7 which penetrates the support layer 5 and the cover layer 6 and has a first end face 7a located on the piezoelectric substrate 2 side, a second end face 7b located on the side opposite to the first end face 7a, and a side face 7c connecting the first end face 7a and the second end face 7b. In the via electrode 7, the area of the second end face 7b is larger than the area of the first end face 7a. When a direction in which the via electrode 7 penetrates the support layer 5 and the cover layer 6 is taken as a first direction Z, an arbitrary direction orthogonal to the first direction Z is taken as a second direction and the via electrode is projected in the second direction, the shape of the side face 7c of the via electrode 7 includes a shape curved inward in the via electrode 7.

Description

弾性波装置Elastic wave device
 本発明は、弾性波装置に関する。 The present invention relates to an elastic wave device.
 従来、弾性波装置が、携帯電話機のフィルタなどに広く利用されている。 Conventionally, elastic wave devices have been widely used for filters of mobile phones.
 例えば、下記の特許文献1には、WLP(Wafer Level Package)構造の弾性波装置の一例が開示されている。この弾性波装置は、圧電基板、絶縁体及び蓋体により囲まれた空間を有する。圧電基板上には、上記空間内に位置するように、IDT電極が設けられている。弾性波装置は、絶縁体及び蓋体を貫通している接続電極である、ビア電極を有する。ビア電極の側面は、ビア電極が絶縁体及び蓋体を貫通している方向に対して傾斜している。ビア電極の圧電基板側とは反対側の端部には、外部端子が接続されている。外部端子には、バンプが接合される。 For example, Patent Document 1 below discloses an example of an elastic wave device having a WLP (Wafer Level Package) structure. This elastic wave device has a space surrounded by a piezoelectric substrate, an insulator, and a lid. An IDT electrode is provided on the piezoelectric substrate so as to be located in the space. The acoustic wave device has a via electrode that is a connection electrode penetrating the insulator and the lid. The side surface of the via electrode is inclined with respect to the direction in which the via electrode passes through the insulator and the lid. An external terminal is connected to the end of the via electrode opposite to the piezoelectric substrate side. Bumps are bonded to the external terminals.
国際公開第2006/106831号International Publication No. 2006/106831
 ビア電極の外部端子側の端面の面積を大きくすることにより、放熱性を高めることができる。しかしながら、上記のように端面の面積を大きくすると、ビア電極の側面と、上記空間との間に位置する絶縁体または蓋体の幅が短くなる。そのため、バンプを接合する際の衝撃により、ビア電極の側面と上記空間との間の絶縁体や蓋体にクラックが生じることがあった。 ¡By increasing the area of the end face of the via electrode on the external terminal side, heat dissipation can be improved. However, when the area of the end surface is increased as described above, the width of the insulator or the lid positioned between the side surface of the via electrode and the space is shortened. For this reason, a crack may occur in the insulator or the cover between the side surface of the via electrode and the space due to an impact when bonding the bumps.
 さらに、ビア電極の側面が傾斜している場合には、バンプを接合する際に、上記側面から絶縁体や蓋体に大きく力が加わり易い。そのため、クラックが生じ易かった。 Furthermore, when the side surface of the via electrode is inclined, a large force is easily applied to the insulator and the lid body from the side surface when the bump is bonded. Therefore, cracks were likely to occur.
 本発明の目的は、ビア電極の周囲において破損が生じ難い、弾性波装置を提供することにある。 An object of the present invention is to provide an elastic wave device that is less likely to be damaged around a via electrode.
 本発明に係る弾性波装置は、圧電基板と、前記圧電基板上に設けられている機能電極と、前記圧電基板上に設けられている第1の層と、前記第1の層上に設けられている第2の層と、前記第1の層及び前記第2の層を貫通しており、かつ前記圧電基板側に位置する第1の端面と、前記第1の端面とは反対側に位置する第2の端面と、前記第1の端面と前記第2の端面とを接続している側面とを有するビア電極とを備え、前記ビア電極において、前記第2の端面の面積が前記第1の端面の面積より大きく、前記ビア電極が前記第1の層及び前記第2の層を貫通している方向を第1の方向とし、前記第1の方向と直交する任意の方向を第2の方向とし、前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面の形状が、前記ビア電極における内側に湾曲した形状を含む。 An elastic wave device according to the present invention is provided on a piezoelectric substrate, a functional electrode provided on the piezoelectric substrate, a first layer provided on the piezoelectric substrate, and the first layer. A second end layer, a first end surface penetrating through the first layer and the second layer, and positioned on the piezoelectric substrate side, and positioned opposite to the first end surface And a via electrode having a side surface connecting the first end surface and the second end surface, wherein the area of the second end surface is the first end surface. A direction in which the via electrode passes through the first layer and the second layer is defined as a first direction, and an arbitrary direction orthogonal to the first direction is defined as a second direction. When the via electrode is projected in the second direction, the shape of the side surface of the via electrode is Including a curved shape inwardly of A electrodes.
 本発明に係る弾性波装置のある特定の局面では、前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面が、前記第1の端面及び前記第2の端面に接続されており、かつ互いに対向し合う一方側面部及び他方側面部を有し、前記一方側面部が、前記第1の端面に接続されている第1の接続点と、前記第2の端面に接続されている第2の接続点とを有し、前記第1の接続点と前記第2の接続点とを直線により結んだ仮想線よりも、前記一方側面部が、前記第1の接続点及び前記第2の接続点以外の部分において、前記ビア電極における内側に位置している。この場合には、ビア電極の周囲において、より一層破損が生じ難い。 In a specific aspect of the acoustic wave device according to the present invention, when the via electrode is projected in the second direction, the side surface of the via electrode is connected to the first end surface and the second end surface. And having one side surface portion and the other side surface portion facing each other, the one side surface portion being connected to the first end surface connected to the first end surface and the second end surface A second connecting point, and the one side surface portion has a first connecting point and an imaginary line connecting the first connecting point and the second connecting point by a straight line. The portion other than the second connection point is located inside the via electrode. In this case, damage is less likely to occur around the via electrode.
 本発明に係る弾性波装置の他の特定の局面では、前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面の全てが、前記ビア電極における内側に湾曲した形状である。この場合には、ビア電極の周囲において、より一層破損が生じ難い。 In another specific aspect of the acoustic wave device according to the present invention, when the via electrode is projected in the second direction, all of the side surfaces of the via electrode are curved inwardly in the via electrode. is there. In this case, damage is less likely to occur around the via electrode.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面の形状が、直線状の形状を含む。 In still another specific aspect of the acoustic wave device according to the present invention, when the via electrode is projected in the second direction, the shape of the side surface of the via electrode includes a linear shape.
 本発明に係る弾性波装置の別の特定の局面では、前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面において、前記第2の端面側が前記ビア電極における内側に湾曲した形状であり、前記第1の端面側が直線状の形状である。 In another specific aspect of the acoustic wave device according to the present invention, when the via electrode is projected in the second direction, the second end surface side of the via electrode is located on the inner side of the via electrode. It is a curved shape, and the first end surface side is a linear shape.
 本発明に係る弾性波装置のさらに別の特定の局面では、前記ビア電極の前記側面が、前記ビア電極における外側に張り出している張り出し部を有し、前記側面が、前記張り出し部と、前記側面における前記張り出し部よりも前記第1の端面側の部分との間に段差部を有しない。この場合には、ビア電極の周囲において破損が生じ難く、かつビア電極が抜け難い。 In still another specific aspect of the acoustic wave device according to the present invention, the side surface of the via electrode has a projecting portion that projects outward from the via electrode, and the side surface includes the projecting portion and the side surface. No step portion is provided between the projecting portion and the portion on the first end face side. In this case, it is difficult for damage to occur around the via electrode, and the via electrode is difficult to come off.
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第2の層が、前記第1の層上に設けられている内層と、前記内層上に設けられている外層とを有する。 In still another specific aspect of the acoustic wave device according to the present invention, the second layer includes an inner layer provided on the first layer and an outer layer provided on the inner layer.
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第1の層が、平面視において前記機能電極を囲んでいる開口部を有し、前記第2の層が、前記開口部を覆うように、前記第1の層上に設けられており、前記圧電基板、前記第1の層及び前記第2の層により囲まれた中空空間が設けられており、前記機能電極が前記中空空間内に配置されている。 In still another specific aspect of the acoustic wave device according to the present invention, the first layer has an opening that surrounds the functional electrode in plan view, and the second layer has the opening. A hollow space is provided on the first layer so as to be covered, and is surrounded by the piezoelectric substrate, the first layer, and the second layer, and the functional electrode is provided in the hollow space. Is placed inside.
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第1の層が、前記機能電極を覆うように、前記圧電基板上に設けられている。 In still another specific aspect of the acoustic wave device according to the present invention, the first layer is provided on the piezoelectric substrate so as to cover the functional electrode.
 本発明に係る弾性波装置のさらに別の特定の局面では、前記機能電極がIDT電極であり、弾性表面波を利用している。 In yet another specific aspect of the elastic wave device according to the present invention, the functional electrode is an IDT electrode and uses a surface acoustic wave.
 本発明によれば、ビア電極の周囲において破損が生じ難い、弾性波装置を提供することができる。 According to the present invention, it is possible to provide an acoustic wave device that is unlikely to break around the via electrode.
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態におけるビア電極を第2の方向に投影した投影図である。FIG. 2 is a projection view in which the via electrode in the first embodiment of the present invention is projected in the second direction. 図3は、第1の比較例の弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 3 is an enlarged front sectional view of the vicinity of the via electrode of the elastic wave device of the first comparative example. 図4は、第2の比較例の弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 4 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device of the second comparative example. 図5は、本発明の第1の実施形態に係る弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 5 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態の変形例に係る弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 6 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the modification of the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係る弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 7 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the second embodiment of the present invention. 図8は、本発明の第2の実施形態の第1の変形例に係る弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 8 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first modification of the second embodiment of the present invention. 図9は、本発明の第2の実施形態の第2の変形例に係る弾性波装置の、ビア電極付近の拡大正面断面図である。FIG. 9 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the second modification of the second embodiment of the present invention. 図10は、本発明の第3の実施形態に係る弾性波装置の正面断面図である。FIG. 10 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
 弾性波装置1は、圧電基板2を有する。圧電基板2は、LiNbOやLiTaOなどの圧電単結晶からなっていてもよく、あるいは、適宜の圧電セラミックスからなっていてもよい。 The acoustic wave device 1 has a piezoelectric substrate 2. The piezoelectric substrate 2 may be made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 , or may be made of an appropriate piezoelectric ceramic.
 圧電基板2上には、機能電極としてのIDT電極3が設けられている。圧電基板2上には、IDT電極3に電気的に接続されている電極ランド4も設けられている。IDT電極3に交流電圧を印加すると、弾性波が励振される。本実施形態の弾性波装置1は、弾性表面波を利用している弾性表面波装置である。IDT電極3は、金属膜が積層された積層金属膜からなっていてもよく、単層の金属膜からなっていてもよい。電極ランド4も、IDT電極3と同様の材料からなっていてもよい。なお、機能電極はIDT電極には限定されない。弾性波装置1は、弾性表面波以外の弾性波を利用する弾性波装置であってもよい。 An IDT electrode 3 as a functional electrode is provided on the piezoelectric substrate 2. On the piezoelectric substrate 2, an electrode land 4 electrically connected to the IDT electrode 3 is also provided. When an AC voltage is applied to the IDT electrode 3, an elastic wave is excited. The surface acoustic wave device 1 of the present embodiment is a surface acoustic wave device that uses surface acoustic waves. The IDT electrode 3 may be made of a laminated metal film in which metal films are laminated, or may be made of a single-layer metal film. The electrode land 4 may also be made of the same material as the IDT electrode 3. The functional electrode is not limited to the IDT electrode. The elastic wave device 1 may be an elastic wave device that uses elastic waves other than surface acoustic waves.
 圧電基板2上には、第1の層としての支持層5が設けられている。支持層5は、平面視においてIDT電極3を囲んでいる開口部5aを有する。支持層5は、適宜の樹脂などからなる。 A support layer 5 as a first layer is provided on the piezoelectric substrate 2. The support layer 5 has an opening 5a surrounding the IDT electrode 3 in plan view. The support layer 5 is made of an appropriate resin or the like.
 開口部5aを覆うように、支持層5上に第2の層としてのカバー層6が設けられている。圧電基板2、支持層5及びカバー層6により囲まれた中空空間が設けられている。IDT電極3は、中空空間内に配置されている。 A cover layer 6 as a second layer is provided on the support layer 5 so as to cover the opening 5a. A hollow space surrounded by the piezoelectric substrate 2, the support layer 5 and the cover layer 6 is provided. The IDT electrode 3 is disposed in the hollow space.
 なお、中空空間は必ずしも設けられていなくともよい。本実施形態においては、第1の層は開口部5aを有する支持層5だが、第1の層は開口部5aを有しなくともよい。第1の層は、IDT電極3を覆うように、圧電基板2上に設けられていてもよい。 Note that the hollow space is not necessarily provided. In the present embodiment, the first layer is the support layer 5 having the opening 5a, but the first layer may not have the opening 5a. The first layer may be provided on the piezoelectric substrate 2 so as to cover the IDT electrode 3.
 本実施形態では、カバー層6は、支持層5上に設けられている内層6aと、内層6a上に設けられている外層6bとを有する。内層6aは、例えば、エポキシ樹脂からなる。外層6bは、例えば、ポリイミド樹脂などからなる。本実施形態では、内層6aは粘着層であり、外層6bは保護層である。内層6aを有することにより、カバー層6と支持層5との接合力を高めることができる。外層6bを有することにより、弾性波装置1の強度を高めることができる。なお、カバー層6は単層であってもよい。 In the present embodiment, the cover layer 6 has an inner layer 6a provided on the support layer 5 and an outer layer 6b provided on the inner layer 6a. The inner layer 6a is made of, for example, an epoxy resin. The outer layer 6b is made of, for example, polyimide resin. In the present embodiment, the inner layer 6a is an adhesive layer, and the outer layer 6b is a protective layer. By having the inner layer 6a, the bonding force between the cover layer 6 and the support layer 5 can be increased. By having the outer layer 6b, the strength of the acoustic wave device 1 can be increased. The cover layer 6 may be a single layer.
 図1に示すように、支持層5及びカバー層6を貫通するように、ビア電極7が設けられている。ビア電極7は、圧電基板2側に位置する第1の端面7aと、第1の端面7aとは反対側に位置する第2の端面7bとを有する。第2の端面7bの面積は、第1の端面7aの面積より大きい。ビア電極7は、第1の端面7aと第2の端面7bとを接続している側面7cを有する。ビア電極7の第1の端面7aは、電極ランド4に接続されている。他方、ビア電極7の第2の端面7bに接続されるように、バンプ8が設けられている。 As shown in FIG. 1, a via electrode 7 is provided so as to penetrate the support layer 5 and the cover layer 6. The via electrode 7 has a first end face 7a located on the piezoelectric substrate 2 side and a second end face 7b located on the opposite side to the first end face 7a. The area of the second end face 7b is larger than the area of the first end face 7a. The via electrode 7 has a side surface 7c that connects the first end surface 7a and the second end surface 7b. The first end face 7 a of the via electrode 7 is connected to the electrode land 4. On the other hand, bumps 8 are provided so as to be connected to the second end face 7 b of the via electrode 7.
 第2の端面7bの面積は第1の端面7aの面積より大きいため、ビア電極7とバンプ8との接触面積を大きくすることができ、接合力を高めることができる。加えて、ビア電極7とバンプ8との接触面積が大きいため、放熱性を高めることができる。 Since the area of the second end face 7b is larger than the area of the first end face 7a, the contact area between the via electrode 7 and the bump 8 can be increased, and the bonding force can be increased. In addition, since the contact area between the via electrode 7 and the bump 8 is large, heat dissipation can be improved.
 ここで、ビア電極7が支持層5及びカバー層6を貫通している方向を第1の方向Zとし、第1の方向Zに直交する任意の方向を第2の方向とする。本実施形態のビア電極7の平面形状は円形であり、どの第2の方向から見ても、ビア電極7の形状は同じである。なお、ビア電極7の形状は、ある第2の方向に投影したときと、他の第2の方向に投影したときとにおいて、異なる形状であってもよい。 Here, a direction in which the via electrode 7 passes through the support layer 5 and the cover layer 6 is defined as a first direction Z, and an arbitrary direction orthogonal to the first direction Z is defined as a second direction. The planar shape of the via electrode 7 of the present embodiment is circular, and the shape of the via electrode 7 is the same regardless of the second direction. The shape of the via electrode 7 may be different when projected in a certain second direction and when projected in another second direction.
 図2は、第1の実施形態におけるビア電極を第2の方向に投影した投影図である。 FIG. 2 is a projection view in which the via electrode in the first embodiment is projected in the second direction.
 ビア電極7を第2の方向に投影したときに、ビア電極7の側面7cは、第1の端面7a及び第2の端面7bに接続されており、かつ互いに対向し合う第1の側面部7d及び第2の側面部7eを有する。第1の側面部7d及び第2の側面部7eは、本発明の一方側面部及び他方側面部である。第1の側面部7dは、第1の端面7aに接続されている第1の接続点17Aと、第2の端面7bに接続されている第2の接続点17Bとを有する。 When the via electrode 7 is projected in the second direction, the side surface 7c of the via electrode 7 is connected to the first end surface 7a and the second end surface 7b and faces the first side surface portion 7d facing each other. And a second side surface portion 7e. The first side surface portion 7d and the second side surface portion 7e are the one side surface portion and the other side surface portion of the present invention. The first side surface portion 7d has a first connection point 17A connected to the first end surface 7a and a second connection point 17B connected to the second end surface 7b.
 本実施形態では、ビア電極7を第2の方向に投影したときに、ビア電極7の側面7cの全てが、ビア電極7における内側に湾曲している。 In the present embodiment, when the via electrode 7 is projected in the second direction, all the side surfaces 7c of the via electrode 7 are curved inwardly in the via electrode 7.
 ここで、第1の接続点17Aと、第2の接続点17Bとを直線により結んだ仮想線を仮想線Aとする。本実施形態の特徴は、第1の側面部7dが第1の接続点17A及び第2の接続点17B以外において、仮想線Aよりもビア電極7における内側に位置していることにある。それによって、支持層5やカバー層6など、ビア電極7の周囲において破損が生じ難い。これを、以下において、本実施形態と第1の比較例及び第2の比較例とを比較することにより説明する。 Here, a virtual line connecting the first connection point 17A and the second connection point 17B with a straight line is defined as a virtual line A. A feature of the present embodiment is that the first side surface portion 7d is located inside the via electrode 7 with respect to the imaginary line A except for the first connection point 17A and the second connection point 17B. Thereby, the support layer 5 and the cover layer 6 and the like are hardly damaged around the via electrode 7. This will be described below by comparing the present embodiment with the first comparative example and the second comparative example.
 なお、上述したように、第2の方向は、第1の方向に直交する任意の方向である。ビア電極7をどの第2の方向に投影した際においても、第1の側面部7dは、第1の接続点17A及び第2の接続点17B以外において、仮想線Aよりもビア電極7における内側に位置している。よって、第2の側面部7eも、第1の側面部7dと同様の上記特徴を有する。より具体的には、第2の側面部7eは、第1の端面7aに接続されている第3の接続点17Cと、第2の端面7bに接続されている第4の接続点17Dとを有する。第3の接続点17Cと、第4の接続点17Dとを直線により結んだ仮想線を仮想線Bとしたときに、第2の側面部7eが第3の接続点17C及び第4の接続点17D以外において、仮想線Bよりもビア電極7における内側に位置している。 Note that, as described above, the second direction is an arbitrary direction orthogonal to the first direction. When the via electrode 7 is projected in any second direction, the first side surface portion 7d is located on the inner side of the via electrode 7 with respect to the imaginary line A, except for the first connection point 17A and the second connection point 17B. Is located. Therefore, the 2nd side part 7e also has the said characteristic similar to the 1st side part 7d. More specifically, the second side surface portion 7e includes a third connection point 17C connected to the first end surface 7a and a fourth connection point 17D connected to the second end surface 7b. Have. When a virtual line connecting the third connection point 17C and the fourth connection point 17D with a straight line is defined as a virtual line B, the second side surface portion 7e has the third connection point 17C and the fourth connection point. Other than 17D, it is located inside the via electrode 7 with respect to the virtual line B.
 図3は、第1の比較例の弾性波装置の、ビア電極付近の拡大正面断面図である。なお、ここでは、第2の方向を正面方向としている。図3は、ビア電極が、第2の方向に投影した形状と同様の形状となる位置における断面図である。以下に示す各正面断面図も同様である。 FIG. 3 is an enlarged front cross-sectional view of the vicinity of the via electrode of the elastic wave device of the first comparative example. Here, the second direction is the front direction. FIG. 3 is a cross-sectional view at a position where the via electrode has a shape similar to the shape projected in the second direction. The same applies to the front sectional views shown below.
 第1の比較例は、ビア電極207を第2の方向に投影した際に、側面207cが湾曲した部分を有しない点において、第1の実施形態と異なる。第1の側面部207dは直線状であり、図2に示した第1の実施形態における仮想線Aに相当する形状である。 The first comparative example is different from the first embodiment in that when the via electrode 207 is projected in the second direction, the side surface 207c does not have a curved portion. The first side surface portion 207d is linear and has a shape corresponding to the virtual line A in the first embodiment shown in FIG.
 第1の比較例においては、ビア電極207の側面207cと中空空間との距離が短い。そのため、支持層5やカバー層6の強度が低い。よって、バンプ8を接合する際などの衝撃により、ビア電極207の側面207cと中空空間との間の支持層5やカバー層6にクラックが生じ易い。加えて、側面207cが第1の方向に対して傾斜しているため、バンプ8を接合する際などにおいて、側面207cから支持層5やカバー層6に大きく力が加わり易い。そのため、クラックがさらに生じ易い。 In the first comparative example, the distance between the side surface 207c of the via electrode 207 and the hollow space is short. Therefore, the strength of the support layer 5 and the cover layer 6 is low. Therefore, cracks are likely to occur in the support layer 5 and the cover layer 6 between the side surface 207c of the via electrode 207 and the hollow space due to an impact such as when the bumps 8 are joined. In addition, since the side surface 207c is inclined with respect to the first direction, a large force is easily applied to the support layer 5 and the cover layer 6 from the side surface 207c when the bumps 8 are joined. Therefore, cracks are more likely to occur.
 図4は、第2の比較例の弾性波装置の、ビア電極付近の拡大正面断面図である。 FIG. 4 is an enlarged front sectional view of the vicinity of the via electrode of the elastic wave device of the second comparative example.
 第2の比較例は、ビア電極217を第2の方向に投影した際に、側面217cが湾曲した部分を有しない点及び段差部217fを有する点において、第1の実施形態と異なる。より具体的には、段差部217fは、第1の端面7a側よりも第2の端面7b側に設けられている。段差部217fは、ビア電極217における外側に位置する角部217gを有する。ビア電極217の横断方向に沿う寸法を幅としたときに、段差部217fより第2の端面7b側の部分の幅は、段差部217fより第1の端面7a側の部分の幅よりも広い。 The second comparative example is different from the first embodiment in that when the via electrode 217 is projected in the second direction, the side surface 217c does not have a curved portion and has a stepped portion 217f. More specifically, the step portion 217f is provided on the second end surface 7b side rather than the first end surface 7a side. The step portion 217f has a corner portion 217g located outside the via electrode 217. When the dimension along the transverse direction of the via electrode 217 is defined as the width, the width of the portion closer to the second end face 7b than the stepped portion 217f is wider than the width of the portion closer to the first end face 7a than the stepped portion 217f.
 第1の側面部217dは、第1の端面7aから段差部217fまでにおいて、第1の方向に平行に延びている。そのため、第2の比較例においては、第1の比較例よりもビア電極217の側面217cと中空空間との距離は長い。しかしながら、バンプ8を接合する際などにおいて、段差部217fに応力が集中する。段差部217fの角部217gにおいては、応力が特に集中する。段差部217fまたは角部217gに局所的に応力が集中すると、応力集中による変形、歪みにより周辺の支持層5やカバー層6にクラックが生じ易い。 The first side surface portion 217d extends in parallel with the first direction from the first end surface 7a to the stepped portion 217f. Therefore, in the second comparative example, the distance between the side surface 217c of the via electrode 217 and the hollow space is longer than in the first comparative example. However, stress is concentrated on the stepped portion 217f when the bump 8 is bonded. The stress is particularly concentrated at the corner portion 217g of the step portion 217f. When stress is locally concentrated on the stepped portion 217f or the corner portion 217g, cracks are likely to occur in the surrounding support layer 5 and cover layer 6 due to deformation and distortion due to the stress concentration.
 図5は、第1の実施形態に係る弾性波装置の、ビア電極付近の拡大正面断面図である。 FIG. 5 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first embodiment.
 本実施形態におけるビア電極7では、第1の側面部7dは、第1の接続点17A及び第2の接続点17B以外において、仮想線Aよりもビア電極7における内側に位置している。それによって、側面7cと中空空間との距離が長い。これにより、支持層5及びカバー層6の強度を高めることができる。 In the via electrode 7 in the present embodiment, the first side surface portion 7d is located inside the via electrode 7 with respect to the imaginary line A except for the first connection point 17A and the second connection point 17B. Thereby, the distance between the side surface 7c and the hollow space is long. Thereby, the strength of the support layer 5 and the cover layer 6 can be increased.
 加えて、第1の側面部7dは湾曲した形状を有するため、側面7cと支持層5及びカバー層6との接触面積は大きい。さらに、ビア電極7は、応力が集中するような段差部や角部を有しない。それによって、バンプ8を接合する際などにおいて、応力を効果的に分散させることができる。従って、ビア電極7の周囲の、支持層5やカバー層6において、破損が生じ難い。 In addition, since the first side surface portion 7d has a curved shape, the contact area between the side surface 7c, the support layer 5 and the cover layer 6 is large. Further, the via electrode 7 does not have a stepped portion or a corner portion where stress is concentrated. Thereby, stress can be effectively dispersed when the bumps 8 are joined. Therefore, the support layer 5 and the cover layer 6 around the via electrode 7 are hardly damaged.
 なお、支持層5及びカバー層6の弾性波装置1における外側の面と、ビア電極7の側面7cとの距離も長くすることもできる。よって、ビア電極7の周囲において、より一層破損が生じ難い。 The distance between the outer surface of the elastic wave device 1 of the support layer 5 and the cover layer 6 and the side surface 7c of the via electrode 7 can also be increased. Therefore, damage is less likely to occur around the via electrode 7.
 上述したように、本実施形態では、第2の方向に投影したときに、ビア電極7の側面7cの全てが湾曲している。なお、側面7cの全てが湾曲していなくともよい。第2の方向に投影したときに、側面7cの形状が直線状の形状を含んでいてもよい。 As described above, in the present embodiment, all of the side surface 7c of the via electrode 7 is curved when projected in the second direction. Note that the entire side surface 7c does not have to be curved. When projected in the second direction, the shape of the side surface 7c may include a linear shape.
 図6は、第1の実施形態の変形例に係る弾性波装置の、ビア電極付近の拡大正面断面図である。 FIG. 6 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the modified example of the first embodiment.
 本変形例では、ビア電極107の側面107cは、カバー層6の外層6bに接触している部分において、ビア電極107における内側に湾曲した形状を有する。他方、側面107cは、内層6a及び支持層5に接触している部分においては直線状の形状を有する。 In this modification, the side surface 107c of the via electrode 107 has a shape curved inward in the via electrode 107 at a portion in contact with the outer layer 6b of the cover layer 6. On the other hand, the side surface 107 c has a linear shape in a portion in contact with the inner layer 6 a and the support layer 5.
 このように、側面107cにおいては、直線状の形状の部分が湾曲した部分よりも第1の端面7a側に位置している。なお、側面107cにおいて、湾曲した部分と直線状の形状の部分との位置関係は上記に限定されない。例えば、湾曲した部分が、直線状の形状を有する部分よりも第1の端面7a側に位置していてもよい。 Thus, in the side surface 107c, the linearly shaped portion is located closer to the first end surface 7a than the curved portion. Note that in the side surface 107c, the positional relationship between the curved portion and the linear portion is not limited to the above. For example, the curved portion may be positioned closer to the first end surface 7a than the portion having a linear shape.
 図7は、第2の実施形態に係る弾性波装置の、ビア電極付近の拡大正面断面図である。 FIG. 7 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the second embodiment.
 本実施形態は、ビア電極27が張り出し部29を有する点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。 This embodiment is different from the first embodiment in that the via electrode 27 has an overhang portion 29. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
 張り出し部29は、1つの段差部を有する。本実施形態においては、段差部がカバー層6の内層6aと外層6bとの境界に位置するように、張り出し部29が設けられている。なお、張り出し部29の位置は上記に限定されない。 The overhang portion 29 has one step portion. In the present embodiment, the protruding portion 29 is provided so that the stepped portion is located at the boundary between the inner layer 6 a and the outer layer 6 b of the cover layer 6. The position of the overhanging portion 29 is not limited to the above.
 ビア電極27は、段差部よりも第2の端面7b側の部分と、段差部よりも第1の端面7a側の部分とを有する。ビア電極27の第2の端面7b側の部分が段差部と接している端面の幅は、ビア電極27の第1の端面7a側の部分が段差部と接している端面の幅よりも狭くなっている。さらに、側面27cは、側面27cにおける張り出し部29よりも第1の端面7a側の部分と、張り出し部29との間において、段差部を有しない。そのため、バンプ8を接合する際などにおいて、張り出し部29に応力は集中し難い。よって、本実施形態においても、第1の実施形態と同様に、ビア電極27の周囲において破損が生じ難い。加えて、ビア電極27は張り出し部29を有するため、ビア電極27が抜け難い。 The via electrode 27 has a portion closer to the second end surface 7b than the stepped portion and a portion closer to the first end surface 7a than the stepped portion. The width of the end surface where the portion on the second end surface 7b side of the via electrode 27 is in contact with the stepped portion is narrower than the width of the end surface where the portion on the first end surface 7a side of the via electrode 27 is in contact with the stepped portion. ing. Further, the side surface 27 c does not have a step portion between the protruding portion 29 and the portion of the side surface 27 c closer to the first end surface 7 a than the protruding portion 29. For this reason, when the bumps 8 are joined, stress is unlikely to concentrate on the overhanging portion 29. Therefore, also in the present embodiment, damage is unlikely to occur around the via electrode 27 as in the first embodiment. In addition, since the via electrode 27 has the protruding portion 29, the via electrode 27 is difficult to come off.
 図8は、第2の実施形態の第1の変形例に係る弾性波装置の、ビア電極付近の拡大正面断面図である。 FIG. 8 is an enlarged front sectional view of the vicinity of the via electrode of the acoustic wave device according to the first modification of the second embodiment.
 本変形例は、張り出し部を複数有する点において、第2の実施形態と異なる。ビア電極117は、第2の実施形態と同様に配置された張り出し部29に加えて、段差部がカバー層6と支持層5との境界に位置するように設けられている、張り出し部119を有する。この場合においても、ビア電極117が抜け難く、かつビア電極117の周囲において破損が生じ難い。 This modification is different from the second embodiment in that it has a plurality of overhang portions. In addition to the overhang portion 29 arranged in the same manner as the second embodiment, the via electrode 117 includes an overhang portion 119 provided so that the stepped portion is located at the boundary between the cover layer 6 and the support layer 5. Have. Even in this case, the via electrode 117 is hard to come off and is not easily damaged around the via electrode 117.
 図9は、第2の実施形態の第2の変形例に係る弾性波装置の、ビア電極付近の拡大正面断面図である。 FIG. 9 is an enlarged front cross-sectional view of the vicinity of the via electrode of the acoustic wave device according to the second modification of the second embodiment.
 本変形例は、ビア電極127の張り出し部129が、仮想線Aの、ビア電極127における外側に至っている点において、第2の実施形態と異なる。この場合においても、第2の方向にビア電極127を投影したときに、側面127cは湾曲した部分を有する。よって、第2の実施形態と同様に応力を効果的に分散することができ、ビア電極127の周囲において破損が生じ難い。加えて、ビア電極127が抜け難い。 This modification is different from the second embodiment in that the protruding portion 129 of the via electrode 127 reaches the outside of the imaginary line A in the via electrode 127. Even in this case, when the via electrode 127 is projected in the second direction, the side surface 127c has a curved portion. Therefore, the stress can be effectively dispersed as in the second embodiment, and the damage around the via electrode 127 hardly occurs. In addition, the via electrode 127 is difficult to come off.
 このように、本発明の構成は、ビア電極の第1の側面部の全てが、上記仮想線の、ビア電極における内側に位置している構成には限られない。もっとも、図7に示す第2の実施形態のように、第1の側面部27dの全てが、仮想線Aの上記内側に位置していることが好ましい。それによって、ビア電極27の側面27cの全ての部分と、中空空間との距離を長くすることができる。従って、ビア電極27の周囲において、より一層破損が生じ難い。 Thus, the configuration of the present invention is not limited to the configuration in which all of the first side surface portion of the via electrode is located inside the imaginary line in the via electrode. However, as in the second embodiment shown in FIG. 7, it is preferable that all of the first side surface portions 27 d are located on the inner side of the imaginary line A. Thereby, the distance between all the portions of the side surface 27c of the via electrode 27 and the hollow space can be increased. Therefore, damage is less likely to occur around the via electrode 27.
 図10は、第3の実施形態に係る弾性波装置の正面断面図である。 FIG. 10 is a front sectional view of the acoustic wave device according to the third embodiment.
 本実施形態は、第1の層35がIDT電極3を覆っている点において、第1の実施形態と異なる。なお、第1の層35上に、第1の実施形態のカバー層と同様に、第2の層36が設けられている。上記の点以外においては、弾性波装置31は第1の実施形態の弾性波装置1と同様の構成を有する。 This embodiment is different from the first embodiment in that the first layer 35 covers the IDT electrode 3. In addition, the 2nd layer 36 is provided on the 1st layer 35 similarly to the cover layer of 1st Embodiment. Except for the above points, the elastic wave device 31 has the same configuration as the elastic wave device 1 of the first embodiment.
 本実施形態においても、ビア電極7は第1の実施形態と同様の構成を有する。よって、第1の層35及び第2の層36の弾性波装置31の外側における面と、ビア電極7の側面7cとの距離が長い。従って、ビア電極7の周囲において破損が生じ難い。 Also in this embodiment, the via electrode 7 has the same configuration as that of the first embodiment. Therefore, the distance between the surface of the first layer 35 and the second layer 36 on the outside of the acoustic wave device 31 and the side surface 7c of the via electrode 7 is long. Therefore, damage is unlikely to occur around the via electrode 7.
1…弾性波装置
2…圧電基板
3…IDT電極
4…電極ランド
5…支持層
5a…開口部
6…カバー層
6a…内層
6b…外層
7…ビア電極
7a,7b…第1,第2の端面
7c…側面
7d,7e…第1,第2の側面部
8…バンプ
17A~17D…第1~第4の接続点
27…ビア電極
27c…側面
27d…第1の側面部
29…張り出し部
31…弾性波装置
35,36…第1,第2の層
107…ビア電極
107c…側面
117…ビア電極
119…張り出し部
127…ビア電極
127c…側面
129…張り出し部
207…ビア電極
207c…側面
207d…第1の側面部
217…ビア電極
217c…側面
217d…第1の側面部
217f…段差部
217g…角部
DESCRIPTION OF SYMBOLS 1 ... Elastic wave apparatus 2 ... Piezoelectric substrate 3 ... IDT electrode 4 ... Electrode land 5 ... Support layer 5a ... Opening part 6 ... Cover layer 6a ... Inner layer 6b ... Outer layer 7 ... Via electrode 7a, 7b ... 1st, 2nd end surface 7c ... side surfaces 7d, 7e ... first and second side surface portions 8 ... bumps 17A to 17D ... first to fourth connection points 27 ... via electrodes 27c ... side surface 27d ... first side surface portion 29 ... projecting portion 31 ... Elastic wave device 35, 36 ... 1st, 2nd layer 107 ... Via electrode 107c ... Side surface 117 ... Via electrode 119 ... Overhang part 127 ... Via electrode 127c ... Side surface 129 ... Overhang part 207 ... Via electrode 207c ... Side surface 207d ... First 1 side surface portion 217... Via electrode 217 c... Side surface 217 d... First side surface portion 217 f.

Claims (10)

  1.  圧電基板と、
     前記圧電基板上に設けられている機能電極と、
     前記圧電基板上に設けられている第1の層と、
     前記第1の層上に設けられている第2の層と、
     前記第1の層及び前記第2の層を貫通しており、かつ前記圧電基板側に位置する第1の端面と、前記第1の端面とは反対側に位置する第2の端面と、前記第1の端面と前記第2の端面とを接続している側面と、を有するビア電極と、
    を備え、
     前記ビア電極において、前記第2の端面の面積が前記第1の端面の面積より大きく、
     前記ビア電極が前記第1の層及び前記第2の層を貫通している方向を第1の方向とし、前記第1の方向と直交する任意の方向を第2の方向とし、前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面の形状が、前記ビア電極における内側に湾曲した形状を含む、弾性波装置。
    A piezoelectric substrate;
    A functional electrode provided on the piezoelectric substrate;
    A first layer provided on the piezoelectric substrate;
    A second layer provided on the first layer;
    A first end face penetrating through the first layer and the second layer and located on the piezoelectric substrate side; a second end face located on the opposite side of the first end face; A via electrode having a side surface connecting the first end surface and the second end surface;
    With
    In the via electrode, the area of the second end face is larger than the area of the first end face,
    A direction in which the via electrode passes through the first layer and the second layer is a first direction, an arbitrary direction orthogonal to the first direction is a second direction, and the via electrode is The elastic wave device, wherein the shape of the side surface of the via electrode includes a shape curved inward in the via electrode when projected in the second direction.
  2.  前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面が、前記第1の端面及び前記第2の端面に接続されており、かつ互いに対向し合う一方側面部及び他方側面部を有し、
     前記一方側面部が、前記第1の端面に接続されている第1の接続点と、前記第2の端面に接続されている第2の接続点と、を有し、
     前記第1の接続点と前記第2の接続点とを直線により結んだ仮想線よりも、前記一方側面部が、前記第1の接続点及び前記第2の接続点以外の部分において、前記ビア電極における内側に位置している、請求項1に記載の弾性波装置。
    When the via electrode is projected in the second direction, the side surface of the via electrode is connected to the first end surface and the second end surface, and one side surface portion and the other surface that face each other Having side portions,
    The one side surface portion has a first connection point connected to the first end surface, and a second connection point connected to the second end surface,
    The one side surface portion is located at a portion other than the first connection point and the second connection point rather than the imaginary line connecting the first connection point and the second connection point by a straight line. The elastic wave device according to claim 1, which is located inside the electrode.
  3.  前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面の全てが、前記ビア電極における内側に湾曲した形状である、請求項1または2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein when the via electrode is projected in the second direction, all of the side surfaces of the via electrode are curved inwardly in the via electrode.
  4.  前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面の形状が、直線状の形状を含む、請求項1または2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein the shape of the side surface of the via electrode includes a linear shape when the via electrode is projected in the second direction.
  5.  前記ビア電極を前記第2の方向に投影したときに、前記ビア電極の前記側面において、前記第2の端面側が前記ビア電極における内側に湾曲した形状であり、前記第1の端面側が直線状の形状である、請求項4に記載の弾性波装置。 When the via electrode is projected in the second direction, the side surface of the via electrode has a shape in which the second end surface is curved inward in the via electrode, and the first end surface is linear. The elastic wave device according to claim 4, which has a shape.
  6.  前記ビア電極の前記側面が、前記ビア電極における外側に張り出している張り出し部を有し、
     前記側面が、前記張り出し部と、前記側面における前記張り出し部よりも前記第1の端面側の部分との間に段差部を有しない、請求項1~5のいずれか1項に記載の弾性波装置。
    The side surface of the via electrode has an overhanging portion projecting to the outside of the via electrode;
    The elastic wave according to any one of claims 1 to 5, wherein the side surface does not have a stepped portion between the protruding portion and a portion of the side surface closer to the first end surface than the protruding portion. apparatus.
  7.  前記第2の層が、前記第1の層上に設けられている内層と、前記内層上に設けられている外層と、を有する、請求項1~6のいずれか1項に記載の弾性波装置。 The elastic wave according to any one of claims 1 to 6, wherein the second layer includes an inner layer provided on the first layer and an outer layer provided on the inner layer. apparatus.
  8.  前記第1の層が、平面視において前記機能電極を囲んでいる開口部を有し、
     前記第2の層が、前記開口部を覆うように、前記第1の層上に設けられており、
     前記圧電基板、前記第1の層及び前記第2の層により囲まれた中空空間が設けられており、
     前記機能電極が前記中空空間内に配置されている、請求項1~7のいずれか1項に記載の弾性波装置。
    The first layer has an opening surrounding the functional electrode in plan view;
    The second layer is provided on the first layer so as to cover the opening;
    A hollow space surrounded by the piezoelectric substrate, the first layer and the second layer is provided;
    The elastic wave device according to any one of claims 1 to 7, wherein the functional electrode is disposed in the hollow space.
  9.  前記第1の層が、前記機能電極を覆うように、前記圧電基板上に設けられている、請求項1~7のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 7, wherein the first layer is provided on the piezoelectric substrate so as to cover the functional electrode.
  10.  前記機能電極がIDT電極であり、弾性表面波を利用している、請求項1~9のいずれか1項に記載の弾性波装置。 10. The acoustic wave device according to claim 1, wherein the functional electrode is an IDT electrode and uses a surface acoustic wave.
PCT/JP2018/012543 2017-04-07 2018-03-27 Acoustic wave device WO2018186240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076749 2017-04-07
JP2017076749 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186240A1 true WO2018186240A1 (en) 2018-10-11

Family

ID=63713502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012543 WO2018186240A1 (en) 2017-04-07 2018-03-27 Acoustic wave device

Country Status (1)

Country Link
WO (1) WO2018186240A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065047A1 (en) * 2020-09-24 2022-03-31 株式会社村田製作所 Filter device
WO2023054356A1 (en) * 2021-09-29 2023-04-06 株式会社村田製作所 Elastic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301486A1 (en) * 2009-05-29 2010-12-02 Kai Frohberg High-aspect ratio contact element with superior shape in a semiconductor device for improving liner deposition
JP2013239758A (en) * 2008-09-03 2013-11-28 Samsung Electro-Mechanics Co Ltd Wafer level package and method of manufacturing the same
WO2015159465A1 (en) * 2014-04-14 2015-10-22 株式会社村田製作所 Electronic component and method for manufacturing same
WO2015199132A1 (en) * 2014-06-27 2015-12-30 株式会社村田製作所 Elastic wave device and method of manufacturing same
JP2016005162A (en) * 2014-06-18 2016-01-12 株式会社村田製作所 Electronic component device
JP2017017730A (en) * 2016-08-25 2017-01-19 京セラ株式会社 Elastic wave device and circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239758A (en) * 2008-09-03 2013-11-28 Samsung Electro-Mechanics Co Ltd Wafer level package and method of manufacturing the same
US20100301486A1 (en) * 2009-05-29 2010-12-02 Kai Frohberg High-aspect ratio contact element with superior shape in a semiconductor device for improving liner deposition
WO2015159465A1 (en) * 2014-04-14 2015-10-22 株式会社村田製作所 Electronic component and method for manufacturing same
JP2016005162A (en) * 2014-06-18 2016-01-12 株式会社村田製作所 Electronic component device
WO2015199132A1 (en) * 2014-06-27 2015-12-30 株式会社村田製作所 Elastic wave device and method of manufacturing same
JP2017017730A (en) * 2016-08-25 2017-01-19 京セラ株式会社 Elastic wave device and circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065047A1 (en) * 2020-09-24 2022-03-31 株式会社村田製作所 Filter device
WO2023054356A1 (en) * 2021-09-29 2023-04-06 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
CN210807199U (en) Elastic wave device
JP5884946B2 (en) Crystal vibrator
JP2000114918A (en) Surface acoustic wave device and its manufacture
JP6934340B2 (en) Electronic components
US11764753B2 (en) Elastic wave device and electronic component
WO2018186240A1 (en) Acoustic wave device
US20180102759A1 (en) Elastic wave device
JP2019062350A (en) Composite element
KR102077583B1 (en) A seismic device
JP4984809B2 (en) Electronic component package
JP4569830B2 (en) Bonding structure of piezoelectric vibrating piece and piezoelectric device
WO2014017514A1 (en) Composite electronic component and electronic apparatus provided with same
US11509289B2 (en) Composite component and mounting structure therefor
JP5100408B2 (en) Tuning fork type piezoelectric vibrator
KR101987712B1 (en) Elastic wave device manufacturing method and elastic wave device
JP2018042231A (en) Oscillation device
US12183645B2 (en) Electronic component including protective layer
JP5092526B2 (en) Surface acoustic wave device
WO2018079485A1 (en) Elastic wave device
JP2016186526A5 (en)
JP2011054597A (en) Electronic device
US20170345993A1 (en) Piezoelectric device
JP7461810B2 (en) Piezoelectric Devices
JP6376794B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP2007019941A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载