WO2018186082A1 - レーザ駆動電源 - Google Patents
レーザ駆動電源 Download PDFInfo
- Publication number
- WO2018186082A1 WO2018186082A1 PCT/JP2018/008227 JP2018008227W WO2018186082A1 WO 2018186082 A1 WO2018186082 A1 WO 2018186082A1 JP 2018008227 W JP2018008227 W JP 2018008227W WO 2018186082 A1 WO2018186082 A1 WO 2018186082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output current
- signal
- voltage
- current
- current command
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/39—Circuits containing inverter bridges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/102—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0022—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/157—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33573—Full-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/382—Switched mode power supply [SMPS] with galvanic isolation between input and output
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/073—Stabilising the arc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0428—Electrical excitation ; Circuits therefor for applying pulses to the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06209—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
- H01S5/06216—Pulse modulation or generation
Definitions
- the present disclosure relates to a laser driving power source that supplies current to a laser oscillator of a laser processing machine such as a laser welding / cutting machine.
- Semiconductor laser oscillators output laser light by supplying current, and are therefore affected by the output current characteristics of the drive power supply. As the introduction of semiconductor laser processing machines progresses, this drive power supply is also required to have high performance and high quality.
- the output current response of the drive power supply is affected by fluctuations in the input voltage.
- the response is slow when the input voltage is low, and the response is fast when the input voltage is high.
- This variation in responsiveness is particularly affected when a sharp change such as a pulse current output is required.
- fluctuations in the output current cause fluctuations in the amount of heat given to the work material, which affects the heat input to the work material. Therefore, there has been a problem of laser cutting and welding processing accuracy reduction.
- One aspect of the present disclosure provides a laser driving power source that eliminates fluctuations in output current due to fluctuations in input voltage without requiring an additional power converter.
- a laser drive power supply is a laser drive power supply for driving a laser oscillator by supplying a current for outputting laser light to the laser oscillator, and rectifies an input voltage of AC power.
- Primary rectifier circuit that converts to DC voltage
- inverter unit that converts DC voltage to AC voltage
- power conversion transformer that converts AC voltage to power to generate secondary current
- a secondary rectifier circuit for converting the output current to the output current, a drive circuit for outputting a drive signal for driving the semiconductor switch constituting the inverter unit, and an output current detection means for detecting the output current and outputting a current detection value.
- the current fluctuation reduction control means for generating the regulator signal by adjusting the output to be reduced and outputting the regulator signal, and the current fluctuation reduction control means among the current detection value, the output current command signal and the control gain.
- a control device having output current control means for outputting an output current control signal to be input to the drive circuit in order to control the output current using the unadjusted signal and the regulator signal. .
- the laser drive power supply according to an aspect of the present disclosure can eliminate fluctuations in output current due to fluctuations in input voltage without requiring an additional power converter.
- FIG. 1 illustrates a configuration of a laser driving power source of a laser oscillator according to an aspect of the present disclosure.
- This drive power supply is a laser drive power supply that includes a power converter PCC and a control device CM and performs power conversion to obtain a current and voltage suitable for the laser oscillator LD.
- the power converter PCC includes a primary rectifier circuit DR1, an inverter unit IU, a power conversion transformer MTr, and a secondary rectifier circuit DR2.
- the primary rectifier circuit DR1 rectifies the input voltage Vin of AC power and converts it into a DC voltage.
- the inverter unit IU converts a DC voltage into an AC voltage.
- the power conversion transformer MTr converts the AC voltage into power to generate a secondary current.
- the secondary rectifier circuit DR2 rectifies the secondary current and converts it into an output current supplied to the laser oscillator LD.
- the power converter PCC further includes a drive circuit DrC and an output current detection circuit CT.
- the drive circuit DrC outputs a drive signal DS that drives a semiconductor switch constituting the inverter unit IU.
- the output current detection circuit CT detects the output current io and outputs an output current detection value ict.
- the control device CM includes a current fluctuation reduction control unit CFC, an output current control unit OCC, and a control gain Cg.
- the current fluctuation reduction control means CFC outputs an adjuster signal IK for reducing fluctuations in responsiveness of the output current io due to fluctuations in the input voltage.
- the output current control means OCC controls the inverter unit IU so that the output current io becomes equal to the output current command signal IS which is a control target.
- the control gain Cg is used to calculate an operation amount that is controlled with respect to a deviation between the output current detection value ict indicating the output current io and the output current command signal IS indicating the control target.
- FIG. 2 shows a configuration of a laser driving power source of the laser oscillator according to the first embodiment of the present disclosure.
- the primary rectifier circuit DR1 rectifies the input voltage Vin, which is a three-phase AC, and converts it into a rectified voltage VDR, which is a DC voltage.
- the inverter unit IU includes a first circuit unit having a first switching element Q1 and a second switching element Q2, and a second circuit unit having a third switching element Q3 and a fourth switching element Q4. Is provided.
- the first circuit unit is connected in parallel to the second circuit unit.
- the first switching element Q1 is connected in series to the second switching element Q2.
- the third switching element Q3 is connected in series to the fourth switching element Q4.
- the inverter unit IU converts the rectified voltage VDR into an AC voltage by controlling each switching element.
- the switching element may be a semiconductor switch such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
- IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- the power conversion transformer MTr includes a primary side coil and a secondary side coil.
- the primary coil is connected between the emitter of the first switching element Q1 and the collector of the fourth switching element Q4.
- the power conversion transformer MTr converts the AC voltage input to the primary side coil, and outputs a voltage and current suitable for the laser oscillator LD from the secondary side coil.
- the secondary coil of the power conversion transformer MTr has an intermediate tap.
- the secondary rectifier circuit DR2 has a configuration in which the cathode of the first diode D1 and the cathode of the second diode D2 are connected.
- the secondary side alternating current of the power conversion transformer MTr is converted into an output current io which is a direct current.
- the anode of the first diode D1 is connected to one end of the secondary side coil of the power conversion transformer MTr, and the anode of the second diode D2 is connected to the other end of the secondary side coil.
- the cathodes of the first diode D1 and the second diode D2 are connected to the + terminal of the laser oscillator LD.
- the intermediate tap of the power conversion transformer MTr and one end of the DC reactor DCL are connected, and the other end of the DC reactor DCL and the minus terminal of the laser oscillator LD are connected.
- the direct current reactor DCL smoothes the output current io.
- the power converter PCC supplies an output current io suitable for the laser oscillator LD to the laser oscillator LD.
- the output current detection circuit CT is installed on the wiring connected to the laser oscillator LD, and outputs the output current detection value ict.
- the control device CM includes an output current control means OCC, a control gain Cg, and a current command regulator Ks that is a current fluctuation reduction control means CFC that reduces fluctuations in the response of the output current io.
- the output current command signal IS is a set value signal related to the output current io that is externally input or internally generated and adjusted by the operator, and is a signal that indicates a control target of the output current io.
- the output current command signal IS is input to the current command adjuster Ks.
- the current command adjuster Ks includes a first-order lag element (for example, a first-order low-pass filter) that generates a first-order lag.
- a filter design method for the current command regulator Ks will be described with reference to FIGS. 2, 3, and 4.
- FIG. 3 shows fluctuations in the response of the output current io when the output current command signal IS is input.
- the response of the output current io is fast when the input voltage Vin is high as indicated by a one-dot chain line, and the input voltage Vin is low as indicated by a two-dot chain line. Then, the response of the output current becomes slow. Therefore, the waveform of the output current io changes due to the fluctuation of the input voltage Vin.
- FIG. 4 shows the generation of the current command regulator signal IKs when the output current command signal IS is input.
- the current command regulator Ks generates the current command regulator signal IKs represented by the solid line with a delay as described above with respect to the output current command signal IS represented by the broken line.
- the response of the output current io is the slowest when the minimum voltage Vm is within the range of the input voltage Vin guaranteed by the laser drive power supply. Therefore, the responsiveness of the output current io is measured when the minimum voltage Vm is input as the input voltage Vin and the pulse signal is input as the output current command signal IS to operate the laser driving power source.
- the filter characteristic of the first-order lag filter in the current command regulator Ks is designed so that the change of the pulse signal is equal to or less than the measured response.
- the output current control means OCC generates the output current control signal OCS using the output current detection value ict, the current command adjuster signal IKs, and the control gain Cg.
- the control gain Cg is used to calculate an operation amount that is controlled with respect to the deviation between the output current detection value ict and the current command regulator signal IKs.
- the output current control signal OCS is a signal for controlling the inverter unit IU so that the output current io becomes equal to the current command regulator signal IKs.
- the drive circuit DrC generates a first drive signal DS1, a second drive signal DS2, a third drive signal DS3, and a fourth drive signal DS4 based on the output current control signal OCS.
- the first drive signal DS1 drives the first switching element Q1.
- the second drive signal DS2 drives the second switching element Q2.
- the third drive signal DS3 drives the third switching element Q3.
- the fourth drive signal DS4 drives the fourth switching element Q4. Thereby, the output current io is controlled.
- FIG. 5 shows a configuration of a laser driving power source of the laser oscillator according to the second embodiment of the present disclosure.
- the current command regulator Ks is employed as current fluctuation reduction control means CFC that reduces the responsiveness fluctuation of the output current io of the control device CM.
- the gain adjuster Kg is employed as the current fluctuation reduction control means CFC.
- the power converter PCC includes a voltage detection circuit VS that detects a rectified voltage VDR that is a voltage after the input voltage Vin is rectified by the primary rectifier circuit DR1. Since the main circuit operation is the same as in the first embodiment, only the control method of the control device CM different from the first embodiment will be described.
- the voltage detection circuit VS is connected in parallel to the primary rectifier circuit DR1 in order to detect the rectified voltage VDR between the output terminals of the primary rectifier circuit DR1.
- the voltage detection value Vsen and the control gain Cg obtained from the voltage detection circuit VS are input to the gain adjuster Kg.
- the gain adjuster Kg multiplies the control gain Cg by a coefficient that is inversely proportional to the detected voltage value Vsen.
- the coefficient of the gain adjuster Kg is a value obtained by dividing the reference input voltage Vref by the voltage detection value Vsen.
- the gain adjuster Kg multiplies the control gain Cg by the coefficient of the gain adjuster Kg to generate a gain adjuster signal IKg.
- FIG. 6 shows the relationship between the voltage detection value Vsen and the gain adjuster signal IKg.
- the reference input voltage Vref is a value equivalent to the detected voltage value Vsen in the case of the median value of the fluctuation of the input voltage Vin. For example, when the guaranteed range of the input voltage Vin is 160V to 240V, the reference input voltage Vref matches the voltage detection value Vsen when the median is 200V.
- the output current control means OCC generates the output current control signal OCS using the gain adjuster signal IKg, the output current detection value ict, and the output current command signal IS.
- the output current control signal OCS is a signal for controlling the inverter unit IU so that the output current io becomes equal to the output current command signal IS.
- the output current control signal OCS is a signal for controlling the continuity Duty, which is the ratio at which the inverter unit IU supplies voltage or current to the power conversion transformer MTr.
- the drive circuit DrC generates a first drive signal DS1, a second drive signal DS2, a third drive signal DS3, and a fourth drive signal DS4 based on the output current control signal OCS.
- the first drive signal DS1 drives the first switching element Q1.
- the second drive signal DS2 drives the second switching element Q2.
- the third drive signal DS3 drives the third switching element Q3.
- the fourth drive signal DS4 drives the fourth switching element Q4. Thereby, the output current io is controlled.
- the coefficient of the gain adjuster Kg becomes smaller than 1. Then, the gain adjuster signal IKg becomes smaller than the control gain Cg, and the continuity Duty of the inverter unit IU is adjusted to be low. This slows down the response of the output current io.
- the coefficient of the gain adjuster Kg becomes larger than 1.
- the gain adjuster signal IKg becomes larger than the control gain Cg, and the continuity Duty of the inverter unit IU is adjusted to be high. This speeds up the response of the output current io.
- the responsiveness of the output current io can be controlled according to the fluctuation of the input voltage Vin. Therefore, it is possible to supply the output current io with reduced responsiveness variation due to variation in the input voltage Vin.
- the laser driving power source is a laser driving power source for supplying a current for outputting laser light to the laser oscillator LD to drive the laser oscillator LD.
- the laser driving power source is composed of a power converter PCC and a control device CM.
- the power converter PCC includes a primary rectifier circuit DR1, an inverter unit IU, a power conversion transformer MTr, and a secondary rectifier circuit DR2.
- the primary rectifier circuit DR1 rectifies the input voltage Vin of AC power and converts it into a DC voltage.
- the inverter unit IU converts a DC voltage into an AC voltage.
- the power conversion transformer MTr converts the AC voltage into power to generate a secondary current.
- the secondary rectifier circuit DR2 rectifies the secondary current and converts it into an output current supplied to the laser oscillator LD.
- the power converter PCC further includes a drive circuit DrC and an output current detection circuit CT.
- the drive circuit DrC outputs a drive signal that drives a semiconductor switch that constitutes the inverter unit IU.
- the output current detection circuit CT detects the output current io and outputs an output current detection value ict.
- the controller CM detects the output current detection value ict, the output current command signal IS, or A current for generating a regulator signal IK by adjusting at least one of the control gains Cg so as to reduce fluctuations in the response of the output current io due to fluctuations in the input voltage Vin, and outputting a regulator signal It has fluctuation reduction control means CFC.
- control device CM outputs all the signals that have not been adjusted by the current fluctuation reduction control means CFC among the output current detection value ict, the output current command signal IS, and the control gain Cg, and the regulator signal IK.
- output current control means OCC for outputting the output current control signal OCS.
- the current fluctuation reduction control means CFC may adjust the output current command signal IS.
- the current fluctuation reduction control means CFC may include a current command adjuster Ks that generates the current command adjuster signal IKs by adjusting the output current command signal IS.
- the current command regulator Ks generates a primary delay so that the change in the output current command signal IS is delayed in response to the response of the slowest output current io in the voltage range guaranteed with respect to the input voltage Vin. Has a delay element.
- An output current command signal IS is input to the current command adjuster Ks.
- the laser driving power source controls the output current io with a slight delay or little delay with respect to the current command regulator signal IKs regardless of the fluctuation of the input voltage Vin by delaying the change of the output current command signal IS. .
- control of the output current io with a slight delay with respect to the output current command signal IS is a slight delay that allows for variations in the processing accuracy of the laser processing machine.
- the current fluctuation reduction control means CFC may adjust the control gain Cg.
- the power converter PCC includes a voltage detection circuit VS that detects the input voltage Vin or the rectified voltage VDR.
- the current fluctuation reduction control means CFC includes a gain adjuster Kg that adjusts the control gain Cg according to the voltage detection value Vsen by multiplying the control gain Cg by a coefficient inversely proportional to the voltage detection value Vsen.
- the laser drive power supply controls the continuity Duty of the inverter unit IU according to the voltage detection value Vsen and controls the response of the output current io, thereby changing the response of the output current io. It is to reduce.
- the laser driving power source has a function of the control device CM including the current fluctuation reduction control unit CFC, and the output current io due to the fluctuation of the input voltage Vin. Reduce fluctuations in responsiveness.
- the control device CM has a parameter for adjusting the output current command signal IS or the control gain Cg related to control.
- the current fluctuation reduction control means CFC functions as an adjuster for adjusting any of the output current command signal IS, the output current detection value ict, or the control gain Cg.
- Such a laser drive power supply can eliminate fluctuations in output current due to fluctuations in input voltage, and can reduce fluctuations in the output of laser light. Thereby, the improvement of processing accuracy can be provided. Furthermore, the above laser drive power supply does not require an additional power converter or an additional element. Therefore, cost reduction and high efficiency can be achieved.
- control device CM of the second embodiment approaches the responsiveness of the output current io at the reference input voltage Vref. Therefore, compared with the first embodiment, it is possible to increase the response of the output current io and reduce the response variation. However, when the adjusted conductivity Duty exceeds the upper limit of the conductivity Duty, the effect of reducing responsiveness variation is reduced. In the first embodiment, the influence of other parameters is small, and a certain reduction effect can be obtained.
- the output current command signal IS is adjusted in order to reduce fluctuations in output current response due to fluctuations in input voltage.
- the control gain Cg is adjusted instead.
- the present disclosure is not limited to this, and the output current detection value ict may be adjusted. Adjustment of the output current detection value ict can also reduce fluctuations in output current response due to fluctuations in the input voltage.
- the output current command signal IS and in the second embodiment, the control gain Cg.
- the present disclosure is not limited to this, and two or three signals may be adjusted.
- the two signals of the output current command signal IS and the control gain Cg may be adjusted.
- three signals of the output current detection value ict, the output current command signal IS, and the control gain Cg may be adjusted.
- the present disclosure is industrially useful as a control method capable of reducing variations in machining accuracy of a laser processing machine equipped with a laser oscillator by reducing fluctuations in the output current of the laser driving power source of the laser oscillator due to fluctuations in the input voltage. .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
- Semiconductor Lasers (AREA)
- Inverter Devices (AREA)
Abstract
入力電圧が変動した際に、出力電流指令信号、電流検出値、または制御ゲインのいずれかを調整する調整器である電流変動低減制御手段(CFC)を有する制御装置(CM)により、入力電圧の変動による出力電流の応答性変動を低減する。
Description
本開示は、レーザ溶接・切断機といったレーザ加工機のレーザ発振器に電流を供給するレーザ駆動電源に関する。
近年、金属加工分野での高速・高品質化の要求が高まっている。この要求を満たすため、ファイバーレーザやダイレクトダイオードレーザといった半導体レーザ発振器を搭載した加工機の導入が進んでいる。
半導体レーザ発振器は電流を供給することでレーザ光を出力するため、駆動電源の出力電流特性の影響を受ける。半導体レーザ加工機の導入が進む上で、この駆動電源にも高性能・高品質なものが求められている。
駆動電源の出力電流応答性は入力電圧の変動の影響を受けており、入力電圧が低くなると応答性が遅く、入力電圧が高くなると応答性は速くなる。この応答性の変動は、特に、パルス電流出力といった急峻な変化を要する際に影響が大きくなる。レーザ加工機において、出力電流の変動が加工材料に与える熱量の変動となり、加工材料への入熱に影響を与える。そのため、レーザ切断及び溶接の加工精度低下といった課題を有していた。
従来技術では、駆動電源のインバータ部の前段にインバータ部への入力電圧を一定電圧に制御する電力変換器を備えた構成が開示されている。このような電力変換器を追加することで、入力電圧が変動してもインバータ部への入力電圧を一定に保つことができる(例えば特許文献1)。
しかし、従来技術のように、一定電圧制御用の電力変換器を設けて、入力電圧の変動による影響を後段に与えないようにする構成では、コスト増加、損失増大、機器の大型化という課題を有していた。
本開示の一態様は、追加の電力変換器を要さずに、入力電圧の変動による出力電流の変動を解消するレーザ駆動電源を提供する。
本開示の一態様のレーザ駆動電源は、レーザ光を出力するための電流をレーザ発振器に対して供給し、レーザ発振器を駆動するためのレーザ駆動電源であって、交流電力の入力電圧を整流し直流電圧に変換する一次整流回路と、直流電圧を交流電圧に変換するインバータユニットと、交流電圧を電力変換して二次電流を生成する電力変換トランスと、二次電流を整流しレーザ発振器に供給される出力電流に変換する二次整流回路と、インバータユニットを構成する半導体スイッチを駆動するドライブ信号を出力するドライブ回路と、出力電流を検出し電流検出値を出力する出力電流検出手段と、を有する電力変換器と、出力電流の応答性に対して、出力電流の制御目標である出力電流指令信号の変化が速い場合、電流検出値、出力電流指令信号、および、電流検出値と出力電流指令信号の偏差に対して制御する操作量の演算に用いる制御ゲインの、少なくともいずれか一つの信号を、入力電圧の変動による出力電流の応答性の変動を低減するように調整して調整器信号を生成し、調整器信号を出力する電流変動低減制御手段と、電流検出値、出力電流指令信号、および、制御ゲインの内で、電流変動低減制御手段で調整されなかった信号と調整器信号とを用いて、出力電流を制御するためにドライブ回路に入力する出力電流制御信号を出力する出力電流制御手段と、を有する制御装置と、を有するものである。
本開示の一態様に係るレーザ駆動電源は、追加の電力変換器を要さずに、入力電圧の変動による出力電流の変動を解消できる。
(実施の形態1)
本実施の形態について、図1から図4を用いて説明をする。図1は本開示の一態様によるレーザ発振器のレーザ用の駆動電源の構成を示している。この駆動電源は、電力変換器PCCと制御装置CMとを備え、レーザ発振器LDに適した電流と電圧を得るための電力変換を行うレーザ駆動電源である。電力変換器PCCは、一次整流回路DR1と、インバータユニットIUと、電力変換トランスMTrと、二次整流回路DR2と、を備える。一次整流回路DR1は、交流電力の入力電圧Vinを整流し、直流電圧に変換する。インバータユニットIUは、直流電圧を交流電圧に変換する。電力変換トランスMTrは、交流電圧を電力変換して二次電流を生成する。二次整流回路DR2は、二次電流を整流しレーザ発振器LDに供給される出力電流に変換する。
本実施の形態について、図1から図4を用いて説明をする。図1は本開示の一態様によるレーザ発振器のレーザ用の駆動電源の構成を示している。この駆動電源は、電力変換器PCCと制御装置CMとを備え、レーザ発振器LDに適した電流と電圧を得るための電力変換を行うレーザ駆動電源である。電力変換器PCCは、一次整流回路DR1と、インバータユニットIUと、電力変換トランスMTrと、二次整流回路DR2と、を備える。一次整流回路DR1は、交流電力の入力電圧Vinを整流し、直流電圧に変換する。インバータユニットIUは、直流電圧を交流電圧に変換する。電力変換トランスMTrは、交流電圧を電力変換して二次電流を生成する。二次整流回路DR2は、二次電流を整流しレーザ発振器LDに供給される出力電流に変換する。
電力変換器PCCは、さらに、ドライブ回路DrCと、出力電流検出回路CTと、を備える。ドライブ回路DrCは、インバータユニットIUを構成する半導体スイッチを駆動するドライブ信号DSを出力する。出力電流検出回路CTは、出力電流ioを検出し、出力電流検出値ictを出力する。また、制御装置CMは、電流変動低減制御手段CFCと、出力電流制御手段OCCと、制御ゲインCgと、を備える。電流変動低減制御手段CFCは、入力電圧の変動による出力電流ioの応答性の変動を低減するための調整器信号IKを出力する。出力電流制御手段OCCは、出力電流ioが制御目標である出力電流指令信号ISと等しくなるようにインバータユニットIUを制御する。制御ゲインCgは、出力電流ioを示す出力電流検出値ictと制御目標を示す出力電流指令信号ISとの偏差に対して制御する操作量の演算に用いられる。
図2は本開示の実施の形態1によるレーザ発振器のレーザ駆動電源の構成を示している。
一次整流回路DR1は三相交流である入力電圧Vinを整流して直流電圧である整流電圧VDRに変換する。また、インバータユニットIUは、第1のスイッチング素子Q1と第2のスイッチング素子Q2とを有する第1回路部と、第3のスイッチング素子Q3と第4のスイッチング素子Q4とを有する第2回路部とを備える。第1回路部は、第2回路部に並列接続されている。第1のスイッチング素子Q1は第2のスイッチング素子Q2に直列接続されている。第3のスイッチング素子Q3は第4のスイッチング素子Q4に直列接続されている。インバータユニットIUは整流電圧VDRを各スイッチング素子の制御により、交流電圧に変換する。
なお、スイッチング素子はIGBT(Insulated Gate BipolarTransistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の半導体スイッチであってもよい。
電力変換トランスMTrは一次側コイルと二次側コイルとを含む。一次側コイルは、第1のスイッチング素子Q1のエミッタと第4のスイッチング素子Q4のコレクタとの間に接続される。電力変換トランスMTrは一次側コイルに入力された交流電圧を変換して、レーザ発振器LDに適した電圧および電流を二次側コイルから出力する。また、電力変換トランスMTrの二次側コイルは中間タップを有する。
二次整流回路DR2は第1のダイオードD1のカソードと第2のダイオードD2のカソードを接続した構成である。電力変換トランスMTrの二次側の交流電流を直流電流である出力電流ioに変換する。電力変換トランスMTrの二次側コイルの一端に第1のダイオードD1のアノードが接続され、二次側コイルの他端に第2のダイオードD2のアノードが接続される。第1のダイオードD1と第2のダイオードD2の各カソードがレーザ発振器LDの+端子に接続される。
電力変換トランスMTrの中間タップと直流リアクトルDCLの一端が接続され、直流リアクトルDCLのもう一端とレーザ発振器LDの-端子が接続される。直流リアクトルDCLは出力電流ioを平滑する。これにより、電力変換器PCCは、レーザ発振器LDに適した出力電流ioをレーザ発振器LDに供給する。出力電流検出回路CTは、レーザ発振器LDに接続される配線上に設置され、出力電流検出値ictを出力する。
次に電力変換器PCCの制御を行う制御装置CMについて説明する。制御装置CMは出力電流制御手段OCC、制御ゲインCg、出力電流ioの応答性の変動を低減する電流変動低減制御手段CFCである電流指令調整器Ksで構成される。
出力電流指令信号ISは、外部入力、または内部生成され、作業者によって調整される出力電流ioに係る設定値信号であり、出力電流ioの制御目標を示す信号である。
出力電流指令信号ISは、電流指令調整器Ksに入力される。電流指令調整器Ksは一次遅れを発生させる一次遅れ要素(例えば、一次ローパスフィルタなど)で構成される。電流指令調整器Ksのフィルタ設計方法を図2、図3、および図4を用いて説明する。
図3に出力電流指令信号ISを入力した際の出力電流ioの応答性の変動を示す。このように、出力電流指令信号ISにパルス信号を入力した場合、一点鎖線で表す様に入力電圧Vinが高くなると出力電流ioの応答性は速く、二点鎖線で表す様に入力電圧Vinが低くなると出力電流の応答性は遅くなる。そのため、入力電圧Vinの変動により出力電流ioの波形が変化する。
レーザ駆動電源の最も遅い応答性に対して、出力電流指令信号ISの変化が同等またはそれ以下であれば、出力電流ioの波形は、入力電圧Vinの変動の影響を受けない。この場合、出力電流ioの波形を出力電流指令信号ISの波形と同等にすることが可能である。図4に出力電流指令信号ISを入力した際の電流指令調整器信号IKsの生成をしめす。このように、電流指令調整器Ksは、破線で表す出力電流指令信号ISに対して、上述の様に、遅れを付与した、実線で表す電流指令調整器信号IKsを生成する。
例えば、出力電流ioの応答性が最も遅くなるのは、レーザ駆動電源が保障する入力電圧Vinの範囲で最低電圧Vmの時である。そのため、入力電圧Vinとして最低電圧Vmを入力し、出力電流指令信号ISとしてパルス信号を入力してレーザ駆動電源を動作させた際の、出力電流ioの応答性を測定する。パルス信号の変化が測定した応答性と同等またはそれ以下となるように電流指令調整器Ks内の一次遅れフィルタのフィルタ特性を設計する。
出力電流制御手段OCCは、出力電流検出値ictと、電流指令調整器信号IKsと、制御ゲインCgを用いて出力電流制御信号OCSを生成する。制御ゲインCgは、出力電流検出値ictと電流指令調整器信号IKsの偏差に対して制御する操作量の演算に用いられる。出力電流制御信号OCSは、出力電流ioが電流指令調整器信号IKsと等しくなるようにインバータユニットIUを制御するための信号である。
ドライブ回路DrCは、出力電流制御信号OCSに基づいて、第1のドライブ信号DS1、第2のドライブ信号DS2、第3のドライブ信号DS3、第4のドライブ信号DS4を生成する。第1のドライブ信号DS1は第1のスイッチング素子Q1を駆動する。第2のドライブ信号DS2は第2のスイッチング素子Q2を駆動する。第3のドライブ信号DS3は第3のスイッチング素子Q3を駆動する。第4のドライブ信号DS4は第4のスイッチング素子Q4を駆動する。これにより、出力電流ioが制御される。
上記の構成によって、出力電流指令信号ISを調整することで、入力電圧Vinの変動による応答性の変動を低減した出力電流ioを供給することが可能である。
(実施の形態2)
次に実施の形態2について図5から図6を用いて説明する。図5は本開示の実施の形態2によるレーザ発振器のレーザ駆動電源の構成を示している。実施の形態1では、電流指令調整器Ksが、制御装置CMが有する出力電流ioの応答性変動を低減する電流変動低減制御手段CFCとして採用されている。これに対して、実施の形態2では、ゲイン調整器Kgが、電流変動低減制御手段CFCとして採用されている。さらに、実施の形態2では、電力変換器PCCは、一次整流回路DR1により入力電圧Vinが整流された後の電圧である整流電圧VDRを検出する電圧検出回路VSを備える。主な回路動作は実施の形態1と同様なため、実施の形態1と異なる制御装置CMの、制御方法についてのみ説明する。
次に実施の形態2について図5から図6を用いて説明する。図5は本開示の実施の形態2によるレーザ発振器のレーザ駆動電源の構成を示している。実施の形態1では、電流指令調整器Ksが、制御装置CMが有する出力電流ioの応答性変動を低減する電流変動低減制御手段CFCとして採用されている。これに対して、実施の形態2では、ゲイン調整器Kgが、電流変動低減制御手段CFCとして採用されている。さらに、実施の形態2では、電力変換器PCCは、一次整流回路DR1により入力電圧Vinが整流された後の電圧である整流電圧VDRを検出する電圧検出回路VSを備える。主な回路動作は実施の形態1と同様なため、実施の形態1と異なる制御装置CMの、制御方法についてのみ説明する。
電圧検出回路VSは、一次整流回路DR1の出力端子間の整流電圧VDRを検出するために、一次整流回路DR1に並列接続される。電圧検出回路VSより得られた電圧検出値Vsenと制御ゲインCgとがゲイン調整器Kgに入力される。ゲイン調整器Kgは制御ゲインCgに電圧検出値Vsenに反比例する係数を乗算する。ゲイン調整器Kgの係数は基準入力電圧Vrefを電圧検出値Vsenで除算した値である。ゲイン調整器Kgはゲイン調整器Kgの係数を制御ゲインCgに乗算してゲイン調整器信号IKgを生成する。図6は電圧検出値Vsenとゲイン調整器信号IKgの関係を示す。
このように、電圧検出値Vsenとゲイン調整器信号IKgは反比例の関係である。また、基準入力電圧Vrefは入力電圧Vinの変動の中央値の場合における、電圧検出値Vsenと同等の値である。例えば、基準入力電圧Vrefは、入力電圧Vinの保障範囲が160Vから240Vの場合、中央値200V時の電圧検出値Vsenに一致する。
出力電流制御手段OCCは、ゲイン調整器信号IKgと出力電流検出値ictと出力電流指令信号ISを用いて出力電流制御信号OCSを生成する。出力電流制御信号OCSは、出力電流ioが出力電流指令信号ISと等しくなるようにインバータユニットIUを制御するための信号である。具体的には、出力電流制御信号OCSは、インバータユニットIUが電力変換トランスMTrに電圧または電流を供給する割合である導通率Dutyを制御するための信号である。
ドライブ回路DrCは、出力電流制御信号OCSに基づいて、第1のドライブ信号DS1、第2のドライブ信号DS2、第3のドライブ信号DS3、第4のドライブ信号DS4を生成する。第1のドライブ信号DS1は第1のスイッチング素子Q1を駆動する。第2のドライブ信号DS2は第2のスイッチング素子Q2を駆動する。第3のドライブ信号DS3は第3のスイッチング素子Q3を駆動する。第4のドライブ信号DS4は第4のスイッチング素子Q4を駆動する。これにより、出力電流ioが制御される。
例えば、入力電圧Vinが上昇し、電圧検出値Vsenが基準入力電圧Vrefより高くなり、出力電流ioの応答性が速い場合は、ゲイン調整器Kgの係数が1よりも小さくなる。そして、ゲイン調整器信号IKgが制御ゲインCgよりも小さくなり、インバータユニットIUの導通率Dutyが低く調整される。このことで出力電流ioの応答性が遅くなる。
逆に、入力電圧Vinが下降し、電圧検出値Vsenが基準入力電圧Vrefより低くなり、出力電流ioの応答性が遅い場合は、ゲイン調整器Kgの係数が1よりも大きくなる。そして、ゲイン調整器信号IKgが制御ゲインCgよりも大きくなり、インバータユニットIUの導通率Dutyが高く調整される。このことで出力電流ioの応答性が速くなる。
上記の構成によって、制御ゲインCgを調整することで、入力電圧Vinの変動に応じて出力電流ioの応答性を制御することができる。従って、入力電圧Vinの変動による応答性の変動を低減した出力電流ioを供給することが可能である。
以上のように本開示の一態様に係るレーザ駆動電源は、レーザ光を出力するための電流をレーザ発振器LDに対して供給し、レーザ発振器LDを駆動するためのレーザ駆動電源である。レーザ駆動電源は、電力変換器PCCと制御装置CMで構成される。電力変換器PCCは、一次整流回路DR1と、インバータユニットIUと、電力変換トランスMTrと、二次整流回路DR2と、を備える。一次整流回路DR1は、交流電力の入力電圧Vinを整流し直流電圧に変換する。インバータユニットIUは、直流電圧を交流電圧に変換する。電力変換トランスMTrは、交流電圧を電力変換して二次電流を生成する。二次整流回路DR2は、二次電流を整流してレーザ発振器LDに供給される出力電流に変換する。
電力変換器PCCは、さらに、ドライブ回路DrCと、出力電流検出回路CTと、を備える。ドライブ回路DrCは、インバータユニットIUを構成する半導体スイッチを駆動するドライブ信号を出力する。出力電流検出回路CTは、出力電流ioを検出し、出力電流検出値ictを出力する。
また、制御装置CMは、出力電流ioの応答性に対して、出力電流ioの制御目標である出力電流指令信号ISの変化が速い場合、出力電流検出値ict、出力電流指令信号IS、または、制御ゲインCgの、少なくともいずれか一つの信号を、入力電圧Vinの変動による出力電流ioの応答性の変動を低減するように調整して調整器信号IKを生成し、調整器信号を出力する電流変動低減制御手段CFCを有する。
それに加え、制御装置CMは、出力電流検出値ict、出力電流指令信号IS、および、制御ゲインCgの内で、電流変動低減制御手段CFCで調整されなかった全ての信号と調整器信号IKとを用いて、出力電流制御信号OCSを出力する出力電流制御手段OCCを有する。
また、上記に加えて、手法の一つとして、実施の形態1で詳述したように、電流変動低減制御手段CFCが、出力電流指令信号ISを調整するようにしてもよい。具体的には、電流変動低減制御手段CFCは、出力電流指令信号ISを調整することにより電流指令調整器信号IKsを生成する電流指令調整器Ksを有してもよい。電流指令調整器Ksは、入力電圧Vinに対して保障する電圧範囲において、最も遅い出力電流ioの応答性に対応して、出力電流指令信号ISの変化が遅くなるように一次遅れを発生させる一次遅れ要素を有する。電流指令調整器Ksには出力電流指令信号ISが入力される。レーザ駆動電源は、出力電流指令信号ISの変化を遅らせることで、入力電圧Vinの変動に関係なく、電流指令調整器信号IKsに対して遅れなく、または、わずかな遅れで出力電流ioを制御する。
なお、出力電流指令信号ISに対してわずかな遅れでの出力電流ioの制御とは、レーザ加工機の加工精度のバラツキが許容できる程度のわずかな遅れとするものである。
また、上記に加えて、手法の一つとして、実施の形態2で詳述したように、電流変動低減制御手段CFCが、制御ゲインCgを調整するようにしてもよい。具体的には、電力変換器PCCは、入力電圧Vin、または整流電圧VDRを検出する電圧検出回路VSを備える。また、電流変動低減制御手段CFCは、電圧検出値Vsenに反比例した係数を制御ゲインCgに乗算することで、制御ゲインCgを電圧検出値Vsenに応じて調整するゲイン調整器Kgを有する。
このように、本開示のレーザ駆動電源は、電圧検出値Vsenに応じてインバータユニットIUの導通率Dutyを制御し、出力電流ioの応答性を制御することで、出力電流ioの応答性変動を低減するものである。
実施の形態1と実施の形態2で詳述したように、本開示に係るレーザ駆動電源は、電流変動低減制御手段CFCを有する制御装置CMの働きにより、入力電圧Vinの変動による出力電流ioの応答性の変動を低減する。具体的には、制御装置CMは、制御に関わる出力電流指令信号ISまたは制御ゲインCgを調整するパラメータを有する。電流変動低減制御手段CFCは、出力電流指令信号IS、出力電流検出値ict、または制御ゲインCgのいずれかを調整する調整器として働く。
このようなレーザ駆動電源により、入力電圧の変動による出力電流の変動を解消し、レーザ光の出力変動を低減することができる。これにより加工精度の向上を提供できる。さらに、上記のレーザ駆動電源は、追加の電力変換器や追加の素子を要しない。そのため、低コスト化、高効率化が可能である。
また、実施の形態2の制御装置CMは、基準入力電圧Vref時の出力電流ioの応答性へと近づける。そのため、実施の形態1と比べて、出力電流ioの応答性を速くして、応答性変動を低減することが可能である。しかし、調整後の導通率Dutyが導通率Dutyの上限を超えるような場合には、応答性変動の低減効果は小さくなる。実施の形態1は他のパラメータの影響が小さく、一定の低減効果を得ることが可能である。
なお、実施の形態1では、入力電圧の変動による出力電流の応答性の変動を低減するために、出力電流指令信号ISが調整されている。実施の形態2では、それに代えて、制御ゲインCgが調整されている。本開示は、これに限らず、出力電流検出値ictが調整されることとしてもよい。出力電流検出値ictの調整によっても、入力電圧の変動による出力電流の応答性の変動を低減することができる。
また、実施の形態1および実施の形態2では、いずれも、調整される信号は一つである。実施の形態1では、出力電流指令信号ISであり、実施の形態2では、制御ゲインCgである。本開示は、これに限らず、調整される信号は二つまたは三つでもよい。例えば、出力電流指令信号ISおよび制御ゲインCgの二つの信号が調整されてもよい。また、例えば、出力電流検出値ict、出力電流指令信号ISおよび制御ゲインCgの三つの信号が調整されてもよい。
本開示は、入力電圧の変動によるレーザ発振器のレーザ駆動電源の出力電流変動を低減することで、レーザ発振器を搭載したレーザ加工機の加工精度のバラツキを低減可能な制御法として産業上有用である。
Vin 入力電圧
PCC 電力変換器
DR1 一次整流回路
IU インバータユニット
VDR 整流電圧
Q1 第1のスイッチング素子
Q2 第2のスイッチング素子
Q3 第3のスイッチング素子
Q4 第4のスイッチング素子
MTr 電力変換トランス
DR2 二次整流回路
D1 第1のダイオード
D2 第2のダイオード
DCL 直流リアクトル
io 出力電流
LD レーザ発振器
CT 出力電流検出回路
ict 出力電流検出値
CM 制御装置
CFC 電流変動低減制御手段
IK 調整器信号
OCC 出力電流制御手段
Cg 制御ゲイン
Ks 電流指令調整器
IS 出力電流指令信号
IKs 電流指令調整器信号
Vm 最低電圧
OCS 出力電流制御信号
DrC ドライブ回路
DS1 第1のドライブ信号
DS2 第2のドライブ信号
DS3 第3のドライブ信号
DS4 第4のドライブ信号
VS 電圧検出回路
Vsen 電圧検出値
Kg ゲイン調整器
Vref 基準入力電圧
IKg ゲイン調整器信号
Duty 導通率
PCC 電力変換器
DR1 一次整流回路
IU インバータユニット
VDR 整流電圧
Q1 第1のスイッチング素子
Q2 第2のスイッチング素子
Q3 第3のスイッチング素子
Q4 第4のスイッチング素子
MTr 電力変換トランス
DR2 二次整流回路
D1 第1のダイオード
D2 第2のダイオード
DCL 直流リアクトル
io 出力電流
LD レーザ発振器
CT 出力電流検出回路
ict 出力電流検出値
CM 制御装置
CFC 電流変動低減制御手段
IK 調整器信号
OCC 出力電流制御手段
Cg 制御ゲイン
Ks 電流指令調整器
IS 出力電流指令信号
IKs 電流指令調整器信号
Vm 最低電圧
OCS 出力電流制御信号
DrC ドライブ回路
DS1 第1のドライブ信号
DS2 第2のドライブ信号
DS3 第3のドライブ信号
DS4 第4のドライブ信号
VS 電圧検出回路
Vsen 電圧検出値
Kg ゲイン調整器
Vref 基準入力電圧
IKg ゲイン調整器信号
Duty 導通率
Claims (3)
- レーザ光を出力するための電流をレーザ発振器に対して供給し、前記レーザ発振器を駆動するためのレーザ駆動電源であって、
交流電力の入力電圧を整流し直流電圧に変換する一次整流回路と、
前記直流電圧を交流電圧に変換するインバータユニットと、
前記交流電圧を電力変換して二次電流を生成する電力変換トランスと、
前記二次電流を整流し前記レーザ発振器に供給される出力電流に変換する二次整流回路と、
前記インバータユニットを構成する半導体スイッチを駆動するドライブ信号を出力するドライブ回路と、
前記出力電流を検出し電流検出値を出力する出力電流検出手段と、
を有する電力変換器と、
前記出力電流の応答性に対して、前記出力電流の制御目標である出力電流指令信号の変化が速い場合、前記電流検出値、前記出力電流指令信号、および、前記電流検出値と前記出力電流指令信号の偏差に対して制御する操作量の演算に用いる制御ゲインの、少なくともいずれか一つの信号を、前記入力電圧の変動による前記出力電流の応答性の変動を低減するように調整して調整器信号を生成し、前記調整器信号を出力する電流変動低減制御手段と、
前記電流検出値、前記出力電流指令信号、および、前記制御ゲインの内で、前記電流変動低減制御手段で調整されなかった信号と前記調整器信号とを用いて、前記出力電流を制御するために前記ドライブ回路に入力する出力電流制御信号を出力する出力電流制御手段と、
を有する制御装置と、
を有するレーザ駆動電源。 - 前記少なくともいずれか一つの信号は、前記出力電流指令信号であり、
前記電力変換器は、前記入力電圧に対して保障する電圧範囲を有し、
前記制御装置における前記電流変動低減制御手段は、前記保障された電圧範囲において、最も遅い前記出力電流の応答性に対応して、前記出力電流指令信号の変化が遅くなるように前記出力電流指令信号を調整する電流指令調整器を有し、
前記電流指令調整器は前記出力電流指令信号に一次遅れを発生させて前記調整器信号を生成する一次遅れ要素を有し、
前記出力電流指令信号の変化を遅らせることで、前記入力電圧の変動に関係なく、前記調整器信号に対して遅れなく、または、わずかな遅れで前記出力電流を制御可能とする、
請求項1記載のレーザ駆動電源。 - 前記少なくともいずれか一つの信号は、前記制御ゲインであり、
前記電力変換器は、前記入力電圧、または前記直流電圧を検出し電圧検出値を出力する入力電圧検出手段を有し、
前記制御装置の前記電流変動低減制御手段は、前記電圧検出値に反比例した係数を前記制御ゲインに乗算することで、前記制御ゲインを前記電圧検出値に応じて調整するゲイン調整器を有し、
前記電圧検出値に応じて前記インバータユニットの導通率を制御し、前記出力電流の応答性を制御することで、前記出力電流の応答性変動を低減する請求項1記載のレーザ駆動電源。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18781415.7A EP3609064A4 (en) | 2017-04-05 | 2018-03-05 | LASER EXCITATION ENERGY SOURCE |
JP2019511103A JP7108825B2 (ja) | 2017-04-05 | 2018-03-05 | レーザ駆動電源 |
CN201880022307.8A CN110463005B (zh) | 2017-04-05 | 2018-03-05 | 激光驱动电源 |
US16/497,454 US10938306B2 (en) | 2017-04-05 | 2018-03-05 | Laser driving power source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-074961 | 2017-04-05 | ||
JP2017074961 | 2017-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186082A1 true WO2018186082A1 (ja) | 2018-10-11 |
Family
ID=63712760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008227 WO2018186082A1 (ja) | 2017-04-05 | 2018-03-05 | レーザ駆動電源 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10938306B2 (ja) |
EP (1) | EP3609064A4 (ja) |
JP (1) | JP7108825B2 (ja) |
CN (1) | CN110463005B (ja) |
WO (1) | WO2018186082A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022176948A1 (ja) * | 2021-02-19 | 2022-08-25 | パナソニックIpマネジメント株式会社 | レーザ発振器及びそれを備えたダイレクトダイオードレーザ加工装置 |
EP4107825A4 (en) * | 2020-03-31 | 2024-03-27 | IPG Photonics Corporation | HIGH POWER LASER ELECTRONICS |
CN118889173A (zh) * | 2024-09-27 | 2024-11-01 | 深圳市联明电源股份有限公司 | 一种基于自动调节的激光电源控制方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108418569B (zh) * | 2018-05-25 | 2018-11-09 | 敏业信息科技(上海)有限公司 | 差模电磁噪声注入网络及有源电磁干扰滤波器 |
CN111431027B (zh) * | 2020-03-30 | 2021-07-16 | 武汉光谷信息光电子创新中心有限公司 | 一种关电控制方法、电路、装置和存储介质 |
US20230311230A1 (en) * | 2022-04-04 | 2023-10-05 | Esab Ab | Cancellation of the effects of primary voltage variations |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0241778A (ja) | 1988-08-01 | 1990-02-09 | Hitachi Seiko Ltd | インバータ溶接機 |
JPH02140984A (ja) * | 1988-11-22 | 1990-05-30 | Nec Corp | エンハンスドパルス電流発生用レーザ電源 |
JP2009012028A (ja) * | 2007-07-03 | 2009-01-22 | Daihen Corp | アーク溶接用電源装置 |
WO2016175137A1 (ja) * | 2015-04-28 | 2016-11-03 | 三菱電機株式会社 | レーザ発振器 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070699A (en) * | 1975-11-10 | 1978-01-24 | Datascope Corporation | Charging circuits using controlled magnetic fields |
US4355351A (en) * | 1979-05-30 | 1982-10-19 | Schwarz Francisc C | High repetition rate power pulse generator |
JP3235331B2 (ja) | 1994-03-11 | 2001-12-04 | 富士電機株式会社 | 電流制御回路 |
US6384579B2 (en) * | 2000-06-27 | 2002-05-07 | Origin Electric Company, Limited | Capacitor charging method and charging apparatus |
JP4772957B2 (ja) | 2000-12-26 | 2011-09-14 | 株式会社ダイヘン | レーザ照射交流アーク溶接方法 |
JP4135417B2 (ja) | 2002-07-09 | 2008-08-20 | 三菱電機株式会社 | レーザ電源装置及びレーザ装置 |
US7911816B2 (en) | 2006-09-13 | 2011-03-22 | Hypertherm, Inc. | Linear, inductance based control of regulated electrical properties in a switch mode power supply of a thermal processing system |
JP5550648B2 (ja) * | 2009-07-27 | 2014-07-16 | 三菱電機株式会社 | 高周波電源装置 |
WO2011048796A1 (ja) * | 2009-10-19 | 2011-04-28 | パナソニック株式会社 | Dc-dcコンバータ |
JP5924281B2 (ja) * | 2013-02-01 | 2016-05-25 | 三菱電機株式会社 | 電力変換装置及び系統連系システム |
KR101582471B1 (ko) * | 2014-06-11 | 2016-01-07 | 한국에너지기술연구원 | 효율맵을 이용하는 컨버터시스템 및 그 제어방법 |
JP6379730B2 (ja) | 2014-06-25 | 2018-08-29 | 株式会社Soken | 電力変換装置 |
WO2016002001A1 (ja) | 2014-07-01 | 2016-01-07 | ギガフォトン株式会社 | レーザ装置、euv光生成システム及びレーザ装置の制御方法 |
US10361536B2 (en) | 2015-04-15 | 2019-07-23 | Mitsubishi Electric Corporation | Power supply apparatus for driving laser diode provided with power supply for supplying power to laser oscillator |
JP6671879B2 (ja) * | 2015-07-21 | 2020-03-25 | キヤノン株式会社 | 高圧電源装置及び画像形成装置 |
JP2017046403A (ja) | 2015-08-25 | 2017-03-02 | 株式会社ダイヘン | インバータ制御回路、インバータ制御方法、および、電源装置 |
CN105119494B (zh) * | 2015-09-09 | 2018-04-03 | 广东康氏实业有限公司 | 一种激光电脑绣花机的激光发生器高压直流稳压电源电路 |
JP6316792B2 (ja) * | 2015-12-04 | 2018-04-25 | ファナック株式会社 | 複数の発光素子を制御するレーザ電源装置 |
JP6754669B2 (ja) * | 2016-10-31 | 2020-09-16 | 株式会社ダイヘン | 給電側装置および給電システム |
-
2018
- 2018-03-05 EP EP18781415.7A patent/EP3609064A4/en active Pending
- 2018-03-05 CN CN201880022307.8A patent/CN110463005B/zh active Active
- 2018-03-05 US US16/497,454 patent/US10938306B2/en active Active
- 2018-03-05 JP JP2019511103A patent/JP7108825B2/ja active Active
- 2018-03-05 WO PCT/JP2018/008227 patent/WO2018186082A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0241778A (ja) | 1988-08-01 | 1990-02-09 | Hitachi Seiko Ltd | インバータ溶接機 |
JPH02140984A (ja) * | 1988-11-22 | 1990-05-30 | Nec Corp | エンハンスドパルス電流発生用レーザ電源 |
JP2009012028A (ja) * | 2007-07-03 | 2009-01-22 | Daihen Corp | アーク溶接用電源装置 |
WO2016175137A1 (ja) * | 2015-04-28 | 2016-11-03 | 三菱電機株式会社 | レーザ発振器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3609064A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4107825A4 (en) * | 2020-03-31 | 2024-03-27 | IPG Photonics Corporation | HIGH POWER LASER ELECTRONICS |
US12051888B2 (en) | 2020-03-31 | 2024-07-30 | Ipg Photonics Corporation | High powered laser electronics |
WO2022176948A1 (ja) * | 2021-02-19 | 2022-08-25 | パナソニックIpマネジメント株式会社 | レーザ発振器及びそれを備えたダイレクトダイオードレーザ加工装置 |
CN118889173A (zh) * | 2024-09-27 | 2024-11-01 | 深圳市联明电源股份有限公司 | 一种基于自动调节的激光电源控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
US10938306B2 (en) | 2021-03-02 |
EP3609064A1 (en) | 2020-02-12 |
US20200287460A1 (en) | 2020-09-10 |
JP7108825B2 (ja) | 2022-07-29 |
JPWO2018186082A1 (ja) | 2020-02-13 |
CN110463005A (zh) | 2019-11-15 |
CN110463005B (zh) | 2021-06-08 |
EP3609064A4 (en) | 2020-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018186082A1 (ja) | レーザ駆動電源 | |
CN113639564B (zh) | 用于一电弧炉的供电装置及方法 | |
WO2011013305A1 (ja) | アーク溶接方法およびアーク溶接装置 | |
JP2012501156A (ja) | 自己最適化効率を有するスイッチング電源 | |
JP2012501156A5 (ja) | ||
TWI446138B (zh) | 風力發電之激磁式同步發電機系統的控制方法 | |
JP6145698B2 (ja) | アーク溶接制御方法およびアーク溶接装置 | |
JP2010214397A (ja) | タンデムパルスアーク溶接制御装置、及び、そのシステム | |
WO2012169013A1 (ja) | 太陽光発電システムの運転制御装置 | |
KR102132036B1 (ko) | 전원 장치 및 아크 가공용 전원 장치 | |
CN112840549A (zh) | 逆变器装置的测试装置 | |
JP4872090B2 (ja) | 電圧調整装置 | |
US10239144B2 (en) | Welding device | |
JP2015186407A (ja) | 電力変換装置 | |
JP2022036422A (ja) | 電力変換装置 | |
JP2012200781A (ja) | 静電蓄勢式溶接電源の充電制御方法および静電蓄勢式溶接電源 | |
US10086466B2 (en) | Multivoltage welding apparatus | |
US10989474B2 (en) | Integrated flicker control for arc furnace | |
JP2024019836A (ja) | レーザ駆動電源 | |
JP6510972B2 (ja) | インバータ制御回路、および、電源装置 | |
US20230311230A1 (en) | Cancellation of the effects of primary voltage variations | |
WO2018225453A1 (ja) | 太陽光発電用電力変換装置および太陽光発電用電力変換装置の制御方法 | |
JP2020202064A (ja) | 電源システム、電源システムの制御装置、および電源システムの制御方法 | |
JP2005285379A (ja) | 昇圧チョッパの制御システム | |
WO2023162222A1 (ja) | 太陽光発電システム及び制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781415 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511103 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018781415 Country of ref document: EP Effective date: 20191105 |