WO2018185956A1 - Virtual-image display device - Google Patents
Virtual-image display device Download PDFInfo
- Publication number
- WO2018185956A1 WO2018185956A1 PCT/JP2017/036819 JP2017036819W WO2018185956A1 WO 2018185956 A1 WO2018185956 A1 WO 2018185956A1 JP 2017036819 W JP2017036819 W JP 2017036819W WO 2018185956 A1 WO2018185956 A1 WO 2018185956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virtual image
- screen
- distance
- display device
- unit
- Prior art date
Links
- 230000004907 flux Effects 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 23
- 230000008859 change Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013041 optical simulation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/21—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
- B60K35/23—Head-up displays [HUD]
- B60K35/233—Head-up displays [HUD] controlling the size or position in display areas of virtual images depending on the condition of the vehicle or the driver
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/10—Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
Definitions
- the present invention relates to a display device for displaying a virtual image such as a head-up display used in an automobile or a train.
- a head-up display for a vehicle displays information such as driving support information as a virtual image in front of the front window as viewed from the driver.
- the driving support information is, for example, speed display or navigation information.
- the driver can visually recognize the foreground of the vehicle and driving support information. The foreground of the vehicle and the driving support information are superimposed. For this reason, the driver can shorten the movement time of the line of sight or the adjustment time of the focus during driving. This can reduce driver fatigue or improve safety.
- “Foreground” is the scenery seen in front.
- Patent Document 1 an image formed on a screen by scanning light from a light source is visually recognized by a driver as a virtual image by a reflecting means, and the distance of the virtual image is controlled by moving the screen.
- Patent Document 2 an image displayed on two display panels is made visible to a driver as a virtual image through a reflecting mirror as a magnifying optical system and a windshield of a vehicle, and one of the two display panels is displayed. By rotating and tilting, the virtual image visually recognized by the driver is tilted.
- Japanese Patent Laying-Open No. 2015-176130 page 3-8, FIG. 1
- Japanese Unexamined Patent Publication No. 2016-053691 page 6-14, FIG. 1 and FIG. 2
- the driving support information as a virtual image may indicate various information such as a speedometer, a route guidance arrow, or a marker for alerting, and an appropriate virtual image distance (that is, a driver) It is required to display the driving support information as a virtual image so that the distance from the eye to the position of the virtual image) and the inclination of the virtual image (that is, the display angle of the virtual image).
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a virtual image display device capable of changing the position of a virtual image in accordance with information displayed as a virtual image. .
- the virtual image display device of the present invention is a virtual image display device used in the vehicle, displaying a virtual image visually recognized by a person riding in the vehicle superimposed on a landscape, and a video projection unit for emitting video light;
- a screen unit including a screen on which the image light is projected to form an image, a projection unit that generates the virtual image by projecting the image, and a control unit that changes the position of the screen,
- the screen includes a first screen and a second screen, a first image is formed on the first screen, the first image is projected as a first virtual image, and the second screen A second image is formed on the second image, and the second image is projected as a second virtual image.
- the control unit causes the second screen to pass through the image light emitted from the image projection unit.
- the second screen of It is moved in the projection direction of the image light passing through the end portion of the first screen side down and said.
- the position of the virtual image can be changed according to information displayed as a virtual image.
- FIG. 1 It is a figure which shows typically an example of a structure of the virtual image display apparatus which concerns on Embodiment 1 of this invention. It is a block diagram which shows roughly the structure of the control part of a virtual image display apparatus. It is a block diagram which shows roughly the structure of the screen drive part of a virtual image display apparatus. It is a block diagram which shows roughly the structure of the expansion mirror drive part of a virtual image display apparatus. (A) And (b) is a figure which shows the positional relationship of a light source part and a screen in the state in which the image light is radiate
- FIG. 1 It is a figure which shows the other example of the virtual image displayed by a virtual image display apparatus. It is a figure which shows the further another example of the virtual image displayed by the virtual image display apparatus.
- (A) And (b) is a figure which shows the further another example of the virtual image displayed by the virtual image display apparatus. It is a figure which shows the further another example of the virtual image displayed by the virtual image display apparatus.
- (A) And (b) is a figure which shows the other example of the virtual image displayed by a virtual image display apparatus. It is a figure which shows an example of the relationship between a virtual image distance and a projection distance. It is a figure which shows the relationship between the reciprocal number of a virtual image distance, and the reciprocal number of a projection distance.
- FIG. 16 is a hardware configuration diagram illustrating a control unit of a modification of the virtual image display device according to Embodiments 1 and 2.
- FIG. 16 is a hardware configuration diagram illustrating a control unit of a modification of the virtual image display device according to Embodiments 1 and 2.
- FIG. 1 is a diagram schematically illustrating an example of a configuration of a virtual image display device 100 according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram schematically showing the configuration of the control unit 130 of FIG.
- FIG. 3 is a block diagram schematically showing the configuration of the screen driving unit 142 in FIG. 2
- FIG. 4 is a block diagram schematically showing the configuration of the magnifying mirror driving unit 141 in FIG.
- FIG. 5A shows the light source unit 111, the screen 121, and the screen 122 (shown in FIG. 5A) in a state in which video light is emitted from the light source unit 111, which is a video projection unit, toward the screen unit 120.
- FIG. 5A shows the light source unit 111 and the screen unit 120 as viewed in the x-axis direction.
- FIG. 5B is a diagram illustrating a positional relationship among the light source unit 111, the screen 121, and the screen 122 in a state where image light is emitted from the light source unit 111 toward the screen unit 120.
- FIG. 5B is a diagram of the light source unit 111 and the screen unit 120 viewed in the y-axis direction.
- the x-axis shown in each figure is the left-right direction when the driver 500 as the user of the virtual image display device 100 sees the front through the windshield 300 from within the vehicle 600 (also referred to as “own vehicle”).
- the right side (that is, the right direction) indicates the positive direction.
- the y-axis shown in each figure indicates the vertical axis when the driver 500 looks forward from inside the vehicle 600 through the windshield 300, and the upper side (that is, the upper direction) indicates the positive direction.
- the z-axis shown in each figure indicates an axis in the depth direction (front-rear direction) when the driver 500 looks forward from inside the vehicle 600 through the windshield 300, and the back side (front side) is positive.
- the x-axis direction and the z-axis direction are horizontal directions, and the y-axis direction is a vertical direction.
- the x-axis direction and the z-axis direction do not necessarily coincide with the horizontal direction, and similarly, the y-axis direction does not necessarily coincide with the vertical direction.
- the user of the virtual image display device 100 is not limited to the driver 500.
- the user of the virtual image display device 100 includes a person who is on board, such as a passenger.
- the virtual image display device 100 superimposes and displays a virtual image (formed in the virtual image areas 401 and 402 in FIG. 1) visually recognized by the driver 500 of the vehicle 600 on the landscape.
- the virtual image display device 100 is mounted on the dashboard 610 of the vehicle 600, for example.
- the virtual image display device 100 is not limited to the head-up display, and the installation location is not limited to the dashboard.
- the virtual image display device 100 includes a video display unit 110, a control unit 130 (screen control unit) that controls the video display unit 110, and a magnifying mirror 140 as a reflection mirror.
- the video display unit 110 includes a light source unit 111 as a video projection unit, and a screen unit 120 including a screen 121 and a screen 122 whose position can be changed.
- the virtual image display device 100 includes a screen driving unit 142 (FIGS. 2 and 3) that changes the position of the screen.
- the virtual image display device 100 may include a magnifying mirror driving unit 141 (FIGS. 2 and 4) that changes the position of the magnifying mirror.
- the screen driving unit 142 may include a motor, a driving circuit thereof, a driving mechanism, and the like as means for changing the position and inclination of the screen 122 of the screen unit 120.
- the light source unit 111 is provided in the video display unit 110, but may be provided outside the video display unit 110.
- the screen unit 120 includes a screen 122R as a first screen (also referred to as a “right screen” or a “first movable screen”) and a second screen.
- Screen 122L also referred to as “left screen” or “second movable screen”
- a screen 121 also referred to as “upper screen” or “reference screen”
- a set of screens 122R and 122L is referred to as “screen 122” or “movable screen 122”.
- the image formed on the screen 121 is projected toward the windshield 300 by the magnifying mirror 140, and as a result, a virtual image is displayed at a certain position (virtual image area 401) close to the driver 500. .
- the image formed on the screen 122 is projected toward the windshield 300 by the magnifying mirror 140, and as a result, a virtual image is displayed at a position (virtual image area 402) far from the driver 500 and changeable.
- the magnifying mirror 140 projects the image formed on the screens 121 and 122 toward the windshield 300, and thus is also referred to as a “projection unit”.
- the light source unit 111 has a light exit port 111 a and emits image light from the light exit port 111 a toward the screen unit 120.
- the light source unit 111 emits image light like a projector, for example.
- Video light is light having video information, that is, light modulated based on video information.
- the image light emitted from the light source unit 111 has information on an image displayed as a virtual image. Note that the video light can include information on a still image, for example.
- the projection direction M (ie, the projection direction of the central ray of the image light) is the center between the upper projection direction U and the lower projection direction B in the y-axis direction.
- the image light is emitted from the light source unit 111 and projected onto the screen unit 120.
- the range between the right projection direction R and the left projection direction L with the projection direction C (that is, the projection direction of the central ray of the image light) as the center in the x-axis direction.
- image light is emitted from the light source unit 111 and projected onto the screen unit 120.
- the projection direction C of the image light is the direction of the central ray of the image light.
- Video light emitted from the light source unit 111 is projected onto a screen (for example, the screen 121 or 122 or all of them) in the screen unit 120.
- An image based on the image light is formed on a screen in the screen unit 120.
- Video light that has entered the screen unit 120 from the light source unit 111 side passes through the screen in the screen unit 120.
- image light is projected onto the screen unit 120.
- the screens 121 and 122 are transmissive screens. “Projection” means emitting image light or displaying an image with image light.
- the video includes a virtual image. Therefore, “projection” is used for emitted video light or video (including virtual images) displayed by video light.
- the screen 121 in the screen unit 120 is a virtual image screen for displaying a virtual image at a short distance (that is, at a position close to the driver 500).
- the screen 122 is a virtual image screen for displaying a virtual image at a long distance (that is, at a position far from the driver 500).
- the screen drive unit 142 is a screen drive unit that moves (slides) the screen 122 in the projection direction S of the image light within the screen unit 120.
- the screen driving unit 142 may include a motor, a driving circuit thereof, a driving mechanism, and the like. As shown in FIG. 3, the screen driving unit 142 includes a first screen moving unit 145R that moves the screen (first movable screen) 122R along the projection direction S, and a screen (second movable screen) 122L. Is moved along the projection direction S.
- the second screen moving unit 145L is a screen drive unit that moves (slides) the screen 122 in the projection direction S of the image light within the screen unit 120.
- the screen driving unit 142 may include a motor, a driving circuit thereof, a driving mechanism, and the like. As shown in FIG. 3, the screen driving unit 142 includes a first screen moving unit 145R that moves the screen (first movable screen) 122R along the projection direction S, and a screen (second mov
- Each of the first screen moving unit 145R and the second screen driving unit 145L includes, for example, a screen support unit that is a support mechanism that supports the screen 122R or 122L so as to be movable (slidable) in the projection direction S, and the screen 122R.
- a driving force generating means such as a motor for generating a driving force for moving 122L and a driving force transmission mechanism such as a gear for transmitting the driving force to the screen 122R or 122L are provided.
- the screen driving unit 142 includes a first screen rotating unit 146R that changes the inclination of the screen 122R by rotating the screen 122R around a central axis parallel to the x axis, A second screen rotation unit 146L that changes the inclination of the screen 122L by rotating the 122L around a central axis parallel to the x-axis may be included.
- Each of the first screen rotation unit 146R and the second screen rotation unit 145L is, for example, a support shaft that rotatably supports the screen 122R or 122L around a central axis parallel to the x axis (FIG. 5A). 1221), a driving force generating means such as a motor for generating a driving force for rotating the screen 122R or 122L, and a driving force transmission mechanism such as a gear for transmitting the driving force to the screen 122R or 122L.
- the magnifying mirror driving unit 141 can have a driving mechanism and a driving circuit. As shown in FIG. 4, the magnifying mirror driving unit 141 rotates the magnifying mirror 140 around the support shaft to change the inclination of the magnifying mirror 140 and the magnifying mirror 140 in the projection direction S. You may have the magnifying mirror moving part 143 moved along.
- the magnifying mirror rotating unit 144 generates a driving force such as a spindle that rotatably supports the magnifying mirror 140 about a central axis parallel to the x axis, and a motor that generates a driving force for rotating the magnifying mirror 140.
- a driving force transmission mechanism such as a gear for transmitting the driving force to the magnifying mirror 140.
- the magnifying mirror moving unit 143 is driven by, for example, a magnifying mirror support unit that is a support mechanism that supports the magnifying mirror 140 so as to be movable (slidable) in the projection direction, and a motor that generates a driving force for moving the magnifying mirror 140.
- Force generating means and a driving force transmission mechanism such as a gear for transmitting this driving force to the magnifying mirror 140 are provided.
- the screen 122 is movable in the projection direction S.
- the projection direction S is the projection direction of the image light at the end portion 1220 of the screen 122 on the screen 121 side.
- the screen 122 moves in parallel to the projection direction S.
- the projection direction S is inclined with respect to the projection direction M of the central ray of the image light beam.
- the central ray is a ray passing through the center of the light beam.
- the projection direction S is inclined in the + y-axis direction with respect to the projection direction M, for example.
- the magnifying mirror 140 includes a reflecting surface (specifically, a concave surface) having a negative power.
- the magnifying mirror 140 forms a first virtual image in the virtual image area 402 by reflecting the image light transmitted through the screen 122R (that is, by projecting an image formed on the screen 122R), and transmits the screen 122L.
- the second virtual image is formed in the virtual image area 402 by reflecting the captured image light (that is, by projecting the image formed on the screen 122L), and the image light transmitted through the screen 121 is reflected ( That is, a third virtual image is formed in the virtual image area 401 (by projecting the image formed on the screen 121).
- the magnifying mirror 140 enlarges the image light transmitted through the screen unit 120 and projects it toward the windshield 300.
- the windshield 300 is a windshield of the vehicle 600, for example.
- the windshield 300 reflects the image light from the magnifying mirror 140 and guides it to the driver 500 as the user of the virtual image display device 100.
- the magnifying mirror 140 projects the image light transmitted through the screen unit 120. That is, the magnifying mirror 140 projects the image formed on the screen unit 120 as a virtual image.
- the magnifying mirror 140 is a projection unit having a function of projecting the image formed on the screen unit 120.
- the projection unit can include a plurality of mirrors. That is, the magnifying mirror 140 can have a plurality of mirrors.
- the virtual image display device 100 is a windshield type head-up display
- the virtual image display device 100 can also be applied to a combiner type head-up display.
- the combiner replaces the magnifying mirror 140 and the windshield (for example, the windshield 300), enlarges the image formed on the screen of the screen unit 120, reflects it, and drives it. To the person 500.
- the image formed on the screens 122 and 122 of the screen unit 120 is displayed as a virtual image in the virtual image forming area 400 including the virtual image areas 401 and 402.
- the virtual image forming area 400 is located in front of the windshield 300 when viewed from the driver 500.
- the virtual image areas 401 and 402 are planar areas where virtual images are displayed.
- the image on the screen 121 is displayed as a virtual image in the virtual image area 401.
- the image on the screen is a virtual image in the virtual image area 402a in the virtual image area 402. Is displayed.
- the virtual image area 402 is a display position (for example, virtual image areas 402a, 402b, or 402c) of a virtual image based on video light transmitted through the screen 122 (for example, the screen 122R or 122L, or both).
- the image formed on the screen of the screen unit 120 is displayed as a virtual image in the virtual image forming region 400 by being inverted upside down. Therefore, the images formed on the screens 121 and 122 by the image light projected from the light source unit 111 to the screen unit 120 are vertically inverted images by the magnifying mirror 140, and a virtual image based on the vertically inverted image is a virtual image forming region. 400 is formed.
- the screen in the screen unit 120 moves from the first position 122a to the second position 122b (moves in the direction parallel to the projection direction S toward the light source unit 111), the virtual image area 402b farther than the virtual image area 402a.
- the virtual image moves. That is, the first position 122a corresponds to the virtual image area 402a, and the second position 122b corresponds to the virtual image area 402b.
- the screens 122R and 122L are rotatable.
- the virtual image area A tilted virtual image is displayed at the position 402c.
- the virtual image in the virtual image area 402c does not incline straight (that is, inclines while being flat), but is in a curved state in which the convex portion is directed in the distance direction toward the driver 500 as shown in FIG. That is, it is inclined in a curved surface state.
- the image formed on the screen 121 is displayed in the virtual image area 401 shown in FIG. That is, as shown in FIG. 1, the image formed on the screen 121 is displayed at a lower position in the virtual image forming area 400 and at a position closer to the driver 500 than the virtual image area 402. Since the screen 121 does not move, the position of the virtual image area 401 does not change. In the virtual image area 401, for example, information that the driver 500 confirms in a timely manner such as speed information is displayed. However, the present invention is also applicable to a virtual image display device configured so that the screen 121 can move or rotate.
- the screen unit 120 includes a screen 122R and a screen 122L which are divided into left and right.
- the position and inclination of the screen 122R and the screen 122L are changed independently of each other. Therefore, the virtual image area 402 is also divided into left and right when looking forward from the driver 500.
- a first virtual image having a virtual image distance and a virtual image inclination corresponding to the position and inclination of the screen 122R and a second virtual image having a virtual image distance and a virtual image inclination corresponding to the position and inclination of the screen 122L are displayed. Is done.
- the present invention can also be applied to a virtual image display device in which the screen 122 is not divided or a virtual image display device in which the screen 122 is divided into three or more.
- AR Augmented Reality
- the AR technology is a technology for displaying digital information superimposed on a real landscape.
- the AR display is a display method in which digital information is superimposed on an actual landscape using AR technology.
- a virtual image superimposed on the background (that is, the actual landscape) is displayed at the tip of the driver's 500 line of sight.
- the driver 500 can easily recognize the information indicated by the virtual image. For example, it is possible to separately adjust the virtual image distances of the left and right virtual images according to the distance of an object such as a pedestrian or an obstacle detected by a camera outside the vehicle or a sensor (for example, the camera 151 in FIG. 3). .
- the virtual image distance L1 that is, the distance from the eyes of the driver 500 to the position of the virtual image area 402a, 402b, or 402c in the virtual image forming region 400 is the focal length f of the magnifying mirror 140 and the screen mirror 120 from the magnifying mirror 140. It is determined by the projection distance D to the screen.
- the virtual image distance L1 is a distance in a direction parallel to the z axis.
- the driver 500 can view the scenery in front of the windshield 300 and the virtual image superimposed on the scenery at the same time.
- the reflecting surface of the magnifying mirror 140 may be a free-form surface. If the reflecting surface of the magnifying mirror 140 is formed with a curved surface having an appropriate shape according to the curvature of the windshield 300, the magnifying mirror 140 can correct image distortion due to the curvature of the windshield 300.
- the control unit 130 can change (for example, move and rotate) the tilt (that is, the reflection angle of the image light) and the position of the magnifying mirror 140 by controlling the magnifying mirror driving unit 141.
- the control unit 130 can change (for example, move and rotate) the position and inclination of the screen (specifically, the screens 122R and 122L) in the screen unit 120 by controlling the screen driving unit 142.
- the control unit 130 can control at least one of the position and the inclination of the screen 122R, and can control at least one of the position and the inclination of the screen 122L.
- the configuration of the control unit 130 will be described later.
- the configuration of the apparatus until the image light emitted from the light source unit 111 reaches the driver 500 is not limited to the configuration illustrated in FIG.
- the image light may be reflected by a reflecting surface other than the magnifying mirror 140 or the windshield 300.
- the screen in the screen unit 120 is not limited to the transmissive type, and may be a reflective type.
- the configuration of the apparatus can be changed in consideration of the empty space of the dashboard 610 and the size of optical components such as the magnifying mirror 140.
- the control unit 130 includes a video data conversion unit 131, a light source control unit 132, a virtual image control unit 133, and a projection position control unit 134.
- the control unit 130 may include a screen driving unit 142 (including a screen driving circuit) and a magnifying mirror driving unit 141 (including a magnifying mirror driving circuit).
- the video data converter 131 converts the video signal data that is the source of the video displayed as a virtual image into a format that can be handled by the light source controller 132 and the virtual image controller 133.
- the video signal data includes, for example, data such as a virtual image video, a video magnification ratio, and distance data indicating a virtual image display distance or a virtual image display distance in a perspective direction.
- the video data converter 131 can receive video signal data generated inside the virtual image display device 100.
- the video data conversion unit 131 can receive the video signal data generated by the control unit 130.
- the virtual image display device 100 or the control unit 130 receives, for example, information on the traveling speed of the vehicle 600 or information on the outside air temperature from an external device.
- the virtual image display device 100 or the control unit 130 generates video signal data including a virtual image video based on the information.
- the virtual image display device 100 or the control unit 130 passes the generated video signal data to the video data conversion unit 131.
- the video data conversion unit 131 can receive video signal data generated by a device external to the virtual image display device 100.
- a device external to the virtual image display device 100 is, for example, a part that controls the vehicle 600 or a navigation system.
- the video data conversion unit 131 can receive video signal data from the outside of the vehicle 600 (for example, video signal data can be received by a communication device).
- the video signal data received from the outside of the vehicle 600 is data generated based on information received via the Internet, for example.
- the video data converter 131 sends the video signal data S1 and S2 to the light source controller 132 and the virtual image controller 133.
- the light source control unit 132 controls the emission of image light from the light source unit 111.
- the light source control unit 132 receives the video signal data S ⁇ b> 1 from the video data conversion unit 131.
- the light source control unit 132 generates video data that is a basis of video light emitted from the light source unit 111 based on the video signal data S1.
- the size of the video or the display position of the video is determined in consideration of the direction and / or depth of the virtual image to be displayed. Thereby, video data is generated.
- the light source control unit 132 sends the generated video data to the light source unit 111 as a control signal S3.
- the light source unit 111 emits image light.
- the light source unit 111 emits video light based on the control signal S3.
- the light source unit 111 receives the control signal S3 from the light source control unit 132.
- the control signal S3 is a signal for controlling the light source unit 111 based on the video data.
- the virtual image control unit 133 generates a control signal S4 (instruction information indicating the position and / or the inclination) for controlling the position or the inclination (that is, the position and / or the inclination) of the screen 122.
- the virtual image control unit 133 receives the video signal data S ⁇ b> 2 from the video data conversion unit 131.
- the virtual image control unit 133 sends a control signal S4 to the screen drive unit 142 based on the video signal data S2.
- the virtual image in order to display a long-distance virtual image, the virtual image is distant by moving the screen in the screen unit 120 (for example, the screen 122R and / or 122L, or both) to the second position 122b. It is displayed at the position of the virtual image area 402b of the distance. As a result, it appears to the driver 500 that the virtual image is displayed far away.
- the screen in the screen unit 120 for example, the screen 122R and / or 122L, or both
- the virtual image distance L1 from the driver 500 to the virtual image is determined by the optical path length from the magnifying mirror 140 to the screen 122, the magnification rate of the magnifying mirror 140, and the like.
- the optical path length from the second position 122b for a long distance to the magnifying mirror 140 is longer than the optical path length from the first position 122a for a short distance to the magnifying mirror 140. For this reason, the far-distance virtual image area 402b is located farther from the driver 500 than the short-distance virtual image area 402a.
- the virtual image control unit 133 determines the distance from the driver 500 to the virtual image area 402a and the distance from the driver 500 to the virtual image area 402b based on the video signal data S2 from the video data conversion unit 131.
- the distance from the driver 500 to the virtual image areas 402a and 402b is determined based on information other than the video signal data S2 (for example, landscape information S7 such as image information captured by the camera 151 or detection information detected by the sensor). It may be broken. However, in this case, a process for associating the video displayed on the virtual image display device 100 with the distance information is necessary.
- the screen driving unit 142 adjusts the position of the screen (for example, the screen 122R or 122L, or both) in the screen unit 120.
- the screen driving unit 142 is provided in the control unit 130, but a part of the screen driving unit 142 (for example, a motor driving circuit) is the control unit 130 or the video display unit. It may be provided in other places such as the inside of 110.
- the screen driving unit 142 may be provided outside the control unit 130.
- the screen driving unit 142 adjusts the position and inclination of the screen 122 based on the control signal S4.
- the virtual image is a perspective direction based on the position of the driver's eyes according to the position and / or inclination of the screen (for example, the screen 122R and / or 122L, or both) in the screen unit 120.
- the “perspective direction” is the traveling direction (z-axis direction) of the vehicle 600 in the example shown in FIG.
- the screen driving unit 142 receives the control signal S4 from the virtual image control unit 133.
- the control signal S4 is position information for adjusting the position of the screen 122 or inclination information for adjusting the inclination of the screen 122.
- the projection position control unit 134 generates a control signal S5 (that is, instruction information indicating the position and / or the tilt) for changing the position or the tilt (that is, the reflection angle) of the magnifying mirror 140.
- the projection position control unit 134 receives a signal S ⁇ b> 6 for adjusting the magnifying mirror 140 from the input device 150.
- the input device 150 is a user operation device such as an input button, a switch, or a dial, for example.
- the input device 150 is provided in the vehicle 600 for controlling the projection position of the virtual image.
- the input device 150 is operated by the driver 500, for example.
- the projection position control unit 134 converts the signal S6 into a control signal S5.
- the control signal S5 is a signal for changing the position or tilt of the magnifying mirror 140.
- the projection position control unit 134 sends a control signal S5 to the magnifying mirror driving unit 141.
- the magnifying mirror driving unit 141 adjusts the position or inclination of the magnifying mirror 140.
- the magnifying mirror driving unit 141 is provided inside the control unit 130, but a part of the magnifying mirror driving unit 141 (for example, a motor driving circuit) is connected to the control unit 130 or an image. It may be provided in another place such as the inside of the display unit 110.
- the magnifying mirror driving unit 141 may be provided outside the control unit 130.
- the magnifying mirror driving unit 141 adjusts the position or tilt of the magnifying mirror 140 based on the control signal S5.
- the position or inclination for example, virtual image area 402a, 402b, or 402c
- the driver 500 can adjust the optimum virtual image position using the input device 150 while confirming the virtual image.
- the magnifying mirror driving unit 141 receives the control signal S5 from the projection position control unit 134.
- the control signal S5 is a signal for adjusting the position or tilt of the magnifying mirror 140.
- the present invention can also be applied to a virtual image display device that does not include the magnifying mirror driving unit 141 and in which the position of the magnifying mirror 140 is fixed.
- the screen 121 is adjacent to the screen 122 in the y-axis direction. Specifically, the screen 121 is provided on the upper side of the screen 122 in the y-axis direction. As shown in FIG. 5B, the screen 121 extends in the x-axis direction in the range from the projection direction R to the projection direction L. The screen 121 is fixed in the screen unit 120.
- the screen 122 is provided below the screen 121 in the y-axis direction.
- the screen 121 is disposed on the upper side and the screen 122 is disposed on the lower side with the projection direction S as a boundary.
- the projection direction S is a direction parallel to a straight line passing through the lower end of the screen 121 and the light emission port 111a.
- the projection direction S is also the direction of the light beam that passes through the end portion 1220 on the screen 121 side of the screen 122 in the image light emitted from the light source unit 111.
- the screen 122R is arranged on the right side, and the screen 122L is arranged on the left side.
- the projection direction C is the same as the z-axis direction.
- the screen 122 is located closer to the light source unit 111 than the screen 121.
- the lower end of the screen 121 in the y-axis direction is located on an extension line in the projection direction S.
- the upper end (end portion 1220) of the screen 122 in the y-axis direction substantially coincides with a straight line passing through the lower end of the screen 121 and the light exit port 111a or is located below the straight line.
- the upper end of the screen 122 is located on an extension line in the projection direction S.
- the screen 122 is movable between the first position 122a and the second position 122b.
- the screen 122R is movable between the first position 122Ra and the second position 122Rb.
- the first position 122Ra shown in FIG. 5B corresponds to the first position 122a shown in FIG. 5A
- the second position 122Rb shown in FIG. This corresponds to the second position 122b shown in a).
- the screen 122L is movable between the first position 122La and the second position 122Lb.
- the first position 122La shown in FIG. 5B corresponds to the first position 122a shown in FIG. 5A
- the second position 122Lb shown in FIG. This corresponds to the second position 122b shown in a).
- the screens 122R and 122L can move independently of each other.
- the moving direction of the screen 122 is parallel to the projection direction S as shown by the arrow in FIG.
- the screen 122R has a straight line passing through the lower end of the screen 121 and the light emission port 111a in the y-axis direction (in FIG. 5A, the light emission is performed between the upper end portion 1220 of the screen 122R in the y-axis direction and the light emission port. It moves parallel to the straight line passing through the mouth 111a.
- the screen 122L is a straight line passing through the lower end of the screen 121 and the light exit port 111a in the y-axis direction (in FIG. 5A, the upper end portion 1220 of the screen 122L in the y-axis direction and the light exit port 111a.
- the position of the image light projected on the upper end side of the screen 122 is projected on the upper end side of the screen 122 even when the position of the screen 122 is changed.
- the screen 122 moves below the straight line passing through the lower end of the screen 121 and the light exit port 111a, when the screen 122R or 122L is moving, the video light projected from the light source unit 111 to the screen 121 is It can be prevented from being blocked by the screen 122R or 122L.
- the moving direction of the screen 122R is parallel to the projection direction C as indicated by an arrow in FIG.
- the projection direction C is parallel to the z-axis direction.
- the moving direction of the screen 122R may not be strictly parallel to the projection direction C.
- the moving direction of the screen 122L is parallel to the projection direction C as indicated by an arrow in FIG.
- the moving direction of the screen 122L may not be strictly parallel to the projection direction C.
- the screen 122 rotates around a support shaft 1221 located near the upper end in the y-axis direction. That is, the screen 122R rotates around the support shaft near the upper end in the y-axis direction as the rotation center. Similarly, the screen 122L rotates about a support shaft near the upper end in the y-axis direction as a rotation center.
- the screens 122R and 122L can rotate independently of each other. Thereby, the screens 122R and 122L can change the inclination independently of each other.
- the screens 122R and 122L can be tilted so as to be positioned at, for example, the third position 122c by rotating about the upper end side as the rotation center. Thereby, the screens 122R and 122L are inclined so that the lower side in the y-axis direction approaches the light source unit 111. Since the upper end side of the screen 122 is the center of rotation, the image light projected on the upper end side of the screen 122 is projected on the upper end side of the screen 122 even when the inclination of the screen 122 is changed.
- the control unit 130 changes the distance from the screen 122R to the magnifying mirror 140 by controlling the screen driving unit 142 so as to move the position of the screen 122R, and the position of the first virtual image (virtual image in the virtual image area 402). To change. Similarly, the control unit 130 changes the distance from the screen 122L to the magnifying mirror 140 by controlling the screen driving unit 142 so as to move the position of the screen 122L, and the second virtual image (the virtual image in the virtual image area 402). ) Position.
- the controller 130 can control the positions of the screens 122R and 122L in the screen unit 120 separately.
- control unit 130 determines the virtual image distance (first virtual image distance) from the eye position of the driver 500 to the first virtual image position and the eye position of the driver 500 to the second virtual image position.
- the position of the screen 122R and the position of the screen 122L can be controlled so that the virtual image distance (second virtual image distance) is different from each other.
- the control unit 130 determines the first from the position of the eyes of the driver 500 to the position of the first virtual image in accordance with information to guide the driver 500 (for example, contents such as caution information provided to the driver 500). And the second virtual image distance from the eye position of the driver 500 to the second virtual image position can be controlled.
- the control unit 130 can separately control the inclination of the screens 122R and 122L in the screen unit 120. Thereby, the control unit 130 can control the inclination of the screen 122R and the inclination of the screen 122L so that the inclination of the first virtual image and the inclination of the second virtual image are different from each other.
- the control unit 130 can control the angle formed by the first virtual image and the second virtual image according to the information guided to the driver 500.
- the angle formed by the first virtual image and the second virtual image is, for example, in FIG. 1 when the first virtual image is displayed at the position of the virtual image area 402a and the second virtual image is displayed at the position of the virtual image area 402c. Is an angle formed by the surface of the virtual image area 402a and the surface of the virtual image area 402c.
- the driver 500 determines the inclination of the surface on which the first virtual image is displayed and the second virtual image. The difference from the inclination of the displayed surface can be visually recognized.
- FIG. 6 is a diagram illustrating an example of a virtual image displayed by the virtual image display device 100.
- the example shown in FIG. 6 is an example of displaying a warning for a pedestrian and a vehicle ahead.
- the virtual image generated by the virtual image display device 100 is superimposed on the landscape when the driver 500 looks in the forward direction.
- FIG. 6 shows a state where a pedestrian 701 as an object is about to cross the road from the right end 700R of the road at a position close to the vehicle 600 (own vehicle). At the same time, FIG. 6 shows a state where a vehicle 702 (another vehicle), which is another object, is about to enter the road from the left end 700L of the road at a position far from the vehicle 600 (the host vehicle).
- the virtual image display device 100 displays a virtual image for alerting as a target for alerting the pedestrian 701 and the vehicle 702 that may enter a traveling route. Specifically, for the pedestrian 701, a warning mark 410 that is a virtual image is displayed on the virtual image area 402Ra that is a short distance. For the vehicle 702, a warning mark 411 that is a virtual image is displayed in a virtual image area 402Lb that is a long distance away.
- control unit 130 controls the screen driving unit 142 to control the first virtual image from the position of the eyes of the driver 500 to the position of the first virtual image (in the example illustrated in FIG. 6, the virtual image area 402Ra).
- the position of the screen 122R (FIG. 5 (FIG. 5 (a)) is different from the distance and the second virtual image distance from the eye position of the driver 500 to the position of the second virtual image (the virtual image area 402Lb in the example shown in FIG. 6).
- the first position 122Ra) and the position of the screen 122L in the example shown in FIG. 5B, the second position 122Lb) are controlled.
- control unit 130 determines the driver 500 in accordance with information to guide the driver 500 (in the example shown in FIG. 6, alerting the pedestrian 701 and the vehicle 702 ahead).
- the first virtual image distance from the eye position to the first virtual image position ie, virtual image area 402Ra
- the first virtual image distance from the driver 500 eye position to the second virtual image position ie, virtual image area 402Lb.
- the difference between the virtual image distance of 2 is controlled.
- the virtual image distance at which the virtual image area 402Ra is displayed is, for example, up to a pedestrian 701 measured or estimated (calculated) from image data or detection data by a camera or sensor (for example, the camera 151 in FIG. 2) mounted on the vehicle 600. Determine based on the distance.
- the virtual image distance at which the virtual image area 402Lb is displayed is also determined based on the distance to the vehicle 702.
- the display size of the warning marks 410 and 411 is determined based on the distance and the distance and size of the object (in the example shown in FIG. 6, the pedestrian 701 and the vehicle 702).
- the position (the vertical and horizontal directions with respect to the object) is determined as a position close to the object in the line-of-sight direction when the driver 500 views the object.
- the traveling speed of the vehicle 600 or information on the traveling road (the road name in the example shown in FIG. 6) is displayed. Note that it is not necessary to completely match (match) the object that the driver 500 is looking at (the object that is on the line of sight) with the display position of the virtual image. By displaying the virtual image at the position, the driver 500 can easily see the object.
- the driver 500 can easily recognize the target object and the warning marks 410 and 411 at the same time.
- the recognition rate of the arousing marks 410 and 411 is improved.
- the virtual image display device 100 can display virtual images at different distances in the left and right virtual image areas, it is possible to perform alerting on objects located at different distances at appropriate display positions. .
- the virtual image can be displayed at a display position that matches the distance to the object.
- the similar relationship between the distance A1 from the virtual image area 402Ra to the pedestrian 701 and the distance A2 from the virtual image area 402Lb to the vehicle 702 is maintained.
- the virtual image distance of the virtual image area 402Ra and the virtual image distance of the virtual image area 402Lb are set, and the warning marks 410 and 411 are displayed. That is, in FIG. 6, the similar relationship between the distance A3 from the virtual image area 402Lb to the virtual image area 402Ra and the distance A4 from the vehicle 702 to the pedestrian 701 is maintained.
- the object corresponding to the virtual image is an object for displaying the virtual image.
- the pedestrian 701 and the vehicle 702 are objects corresponding to virtual images.
- the minimum virtual image distance that can be displayed by the virtual image display device 100 is larger than the distance from the eyes of the driver 500 of the vehicle to the target.
- the virtual image area 402Lb is moved within the range of the virtual image distance that can be displayed by the virtual image display device 100.
- the similar relationship between the distance A3 from the virtual image area 402Lb to the virtual image area 402Ra and the distance A4 from the vehicle 702 to the pedestrian 701 is maintained.
- the virtual image distance of the virtual image area 402Ra is determined so that the similarity between the virtual image distance A1 from the virtual image area 402Ra to the pedestrian 701 and the virtual image distance A2 from the virtual image area 402Lb to the vehicle 702 is maintained.
- the virtual image display device 100 when one of two virtual images having different virtual image distances is outside the displayable range of the virtual image display device 100, the virtual image display device 100 operates as follows.
- the virtual image display device 100 changes and displays the virtual image distance between the two virtual images in a displayable range of the virtual image display device 100 while ensuring a difference in the virtual image distance between the two virtual images (corresponding to the distance A3 in FIG. 6).
- the control unit 130 secures a distance (difference between two position coordinates) A3 from the virtual image area 402Lb to the virtual image area 402Ra in FIG. 6 and at a position where both the virtual image area 402Lb and the virtual image area 402Ra can be displayed.
- the screen driving unit 142 is controlled so as to move the virtual image area 402Lb and the virtual image area 402Ra. By doing so, the two virtual images can be displayed simultaneously while ensuring the difference in the virtual image distance between the two virtual images (A3 in FIG. 6).
- two priority objects for example, two objects with high risk or two objects close to the vehicle 600. It may be displayed.
- the driver 500 can easily recognize the sense of distance to the target object by the difference in the distance between the mark distance and the target object mark.
- FIG. 7 is a diagram illustrating another example of a virtual image displayed by the virtual image display device 100.
- the example shown in FIG. 7 is an example in which route guidance is displayed when making a right turn at an intersection that is an object.
- the virtual image generated by the virtual image display device 100 is superimposed on the landscape when the driver 500 of the vehicle 600 (own vehicle) looks in the forward direction.
- the virtual image display device 100 displays a virtual image as route guidance for making a right turn at a distant intersection.
- the slope of the road surface and the slope of the virtual image area 402Lc when the driver 500 looks in the forward direction are the same.
- a route guidance arrow 421 that is a virtual image for guiding a route along which the vehicle 600 should travel (in the example shown in FIG. 7, the left lane) is displayed in the virtual image area 402 ⁇ / b> Lc so as to be visually recognized at an angle.
- a guide arrow 422 that is a virtual image is displayed at the same distance as the distance from the vehicle 600 to the intersection.
- control unit 130 controls the screen driving unit 142 to control the inclination of the first virtual image (in the example shown in FIG. 7, the guide arrow 422) and the second virtual image (in the example shown in FIG. 7).
- the inclination of the screen 122R and the inclination of the screen 122L are controlled so that the inclination of the route guidance arrow 421) is different from each other.
- FIG. 8 is a diagram illustrating still another example of the virtual image displayed by the virtual image display device 100.
- FIG. 8 is an example in which route guidance is displayed at the time of a right turn at an intersection, which is an object, as in FIG.
- the virtual image generated by the virtual image display device 100 is superimposed on the landscape when the driver 500 of the vehicle 600 (own vehicle) looks in the forward direction.
- the content displayed in the left virtual image area 402Lc is different from the example shown in FIG.
- a display content 423 including map information 423a that is a simplified schematic map including a right turn intersection in the foreground, a route guidance arrow 423b, and a vehicle mark 423c that represents the current position of the vehicle 600 is a virtual image. Is displayed. By displaying the display content 423 at an angle, the driver 500 can easily compare with the front background.
- the guide arrow 422 in the right virtual image area 402Rb indicates the distance to the right turn intersection when the distance to the right turn intersection is within the virtual image distance range that can be displayed by the virtual image display device 100 (distance range in which a virtual image can be displayed).
- the virtual image distance is adjusted and displayed. Until the distance to the right turn intersection is within the virtual image distance range that can be displayed by the virtual image display device 100, the virtual image distance is the longest, the display size is reduced, and the display position is adjusted to the line of sight of the driver 500. Change it.
- FIGS. 9A and 9B are diagrams illustrating still another example of the virtual image displayed by the virtual image display device 100.
- FIG. FIGS. 9A and 9B show an example in which route guidance is displayed when a vehicle 600 (own vehicle) traveling in the left lane turns right at an intersection 427, as in FIG.
- the intersection 427 is an object.
- the vehicle mark 424 indicating the current position of the vehicle 600 is displayed as a virtual image in the right virtual image areas 402Rd and 402Re as shown in FIG. And different.
- the control unit 130 reduces the scale of the virtual image distance B1 (or B1 ′) that is the distance from the eyes of the driver 500 to the virtual image area 402Lc where the virtual image is displayed. Based on the indicated instruction information, a second virtual image distance B2 (or B2 ′) that is a distance from the eyes of the driver 500 to the virtual image areas 402Rd and 402Re where the virtual image is displayed is determined.
- FIGS. 9 (a) and 9 (b) are display examples when guiding a right turn at an intersection 427.
- FIG. In the virtual image area 402Lc on the left side of FIGS. 9A and 9B, the approximate map 425 of the intersection 427 to be guided is inclined (that is, the long distance point is inclined so that it can be seen at a higher position than the short distance point). ) It is displayed as a virtual image. The lower side of the schematic map 425 is displayed as a short distance position, and the upper side is displayed as a long distance position.
- a vehicle mark 424 indicating the position of the vehicle is displayed as a virtual image.
- FIG. 9 (a) shows a case where the vehicle is away from the intersection 427 to be guided.
- the vehicle mark 424 is displayed as a virtual image at a position closer to the intersection 427 to be guided.
- FIG. 9B shows a case where the vehicle approaches an intersection 427 guided by the own vehicle.
- the vehicle mark 424 is substantially equal to the position of the virtual image distance B1 ′ of the guide arrow 426 when the guide arrow 426 of the schematic map 425 on the left is displayed as a virtual image (that is, substantially equal to the virtual image distance B1 ′). Near the position of the virtual image distance B2 ').
- FIG. 9B shows that the intersection 427 is a right turn point with the tip of the vehicle mark 424 turned to the right.
- the shape of the vehicle mark 424 is not limited to the shape shown in the figure, and may be another shape such as an icon or an arrow similar to the shape of the car.
- change the shape of the vehicle mark 424 for example, change the right arrow indicating a right turn
- highlight the vehicle mark 424 for example, increase the brightness.
- the driver 500 may be surely notified that it is a point to turn right.
- the approximate map 425 is displayed with an inclination. Therefore, the approximate map 425 is a virtual image having a continuous shape from the short distance position 425a to the long distance position 425b. 9A and 9B, the approximate map 425 does not move. For this reason, the virtual image distance (that is, the distance from the driver's eye to the point on the virtual image) of an arbitrary point on the approximate map 425 changes between FIG. 9 (a) and FIG. 9 (b). Absent.
- the distance difference which is the difference between the virtual image distance at the lower (near distance) position 425a of the approximate map 425 and the virtual image distance at the upper (far distance) position 425b, may be different from the actual distance difference. . Therefore, the virtual image distance of the point on the approximate map 425 is different from the actual distance.
- the vehicle mark 424 is displayed at a position corresponding to the virtual image distance of the vehicle position 424a on the approximate map 425 in the virtual image area 402Re. That is, the virtual image distance B2 (or B2 ′) of the own vehicle mark 424 is the same as the virtual image distance B1 (or B1 ′) of the position 424a of the own vehicle on the approximate map 425.
- the virtual image distance B1 (or B1 ′) of the point of guidance display indicated by the route guidance arrow 426 and the virtual image distance B2 (or B2 ′) of the vehicle mark 424 that is a display indicating the own vehicle. are matched, that is, matched.
- the point of guidance display is a position where the vehicle turns.
- the route guidance arrow 426 is displayed as a virtual image in the virtual image area 402Lc on the left screen shown in an inclined manner.
- the virtual image on the left screen is displayed from the short distance position 425a to the long distance position 425b.
- the own vehicle mark 424 indicating the own vehicle is displayed in the virtual image area 402Re on the right screen. Accordingly, there is an effect that it is easy to grasp the sense of distance with respect to the guidance position with the virtual image in the virtual image area 402Lc, and the route guidance can be easily performed for the driver 500.
- a distance range (a range in the z-axis direction) in which a virtual image can be displayed is a limited narrow range.
- the distance range in which a virtual image can be displayed is determined by the specification or design of the apparatus. Therefore, for example, the distance between the two virtual images (for example, the approximate map 425 and the vehicle mark 424) is determined within the distance range in which the virtual image can be displayed according to the distance between the two objects that display the virtual image. May be. This process is performed as follows, for example.
- the virtual image distance of a virtual image (for example, the approximate map 425) with respect to one of the two objects (for example, the intersection 427) is determined within a distance range in which the virtual image can be displayed.
- the virtual image distance of the virtual image (for example, the own vehicle mark 424) with respect to the other object (for example, the own vehicle) of the two objects is set, for example, between the distance between the two objects and the two virtual images. The virtual image distance is determined so that the similarity relationship with the distance is maintained.
- the distance between the two virtual images may be determined as follows.
- the virtual image distance B1 (or B1 ′) of the virtual image of the route guidance on the left screen is determined in accordance with the inclination state and the display position.
- the virtual image distance B2 (or B2 ′) of the virtual image of the vehicle mark 424 on the right screen is controlled according to the virtual image distance B1 (or B1 ′). That is, the distance between the position of the vehicle mark 424 in FIG. 9A and the position of the vehicle mark 424 in FIG. 9B is set according to the distance from the vehicle to the intersection 427.
- control unit 130 determines the virtual image distance of the vehicle mark 424 in accordance with the scale of the virtual image distance of the approximate map 425 on the left screen, and displays the virtual image at a position having the determined virtual image distance.
- FIG. 10 is a diagram illustrating still another example of the virtual image displayed by the virtual image display device 100.
- the example shown in FIG. 10 is an example of displaying guidance for a sloping road such as an entrance to a highway.
- the virtual image generated by the virtual image display device 100 is superimposed on the landscape when the driver 500 of the vehicle 600 (own vehicle) looks in the forward direction.
- the road 700 which is the object shown in FIG. 10 is branched into a right-side uphill (ie, uphill) road and a left-side flat (ie, almost horizontal) road.
- the virtual image area 402Rc and the virtual image area 402Lc are inclined according to the background road 700 (that is, the road surface). Specifically, the virtual image area 402Lc is inclined more greatly than the virtual image area 402Rc.
- control unit 130 controls the screen driving unit 142 to tilt the first virtual image (in the example shown in FIG. 10, the virtual image of the route guidance arrow 432) and the second virtual image (shown in FIG. 10).
- the inclination of the screen 122R and the inclination of the screen 122L are controlled so that the inclination of the virtual image of the map information 431, which is an approximate map, is different from each other.
- the control unit 130 controls the screen driving unit 142 to respond to information that guides the driver 500 (in the example shown in FIG. 10, guidance for a sloping road).
- the angle formed by the first virtual image (that is, the virtual image of the route guide arrow 432) and the second virtual image (that is, the virtual image of the map information 431) is controlled.
- the control unit 130 controls the screen driving unit 142 to control the screen 122L so that it is more inclined with respect to the vertical direction than the screen 122R.
- the second virtual image is displayed on the horizontal road surface on the left side.
- the first virtual image is displayed on the right road surface having an angle (uphill gradient) with respect to the left horizontal road surface.
- the route guidance arrow 432 has tilt information for tilting and displaying so as to correspond to the road surface on the right side.
- the left road surface is horizontal, for example.
- the map information 431 does not have tilt information for tilting and displaying the virtual image so as to correspond to the road surface on the left side, or tilt information indicating that there is no tilt, or the tilt is greater than the tilt of the first virtual image. It has inclination information indicating that it is small.
- the inclination of the first virtual image on the right road surface is made larger than the inclination of the second virtual image on the left road surface.
- the screen 122L is tilted at a predetermined angle in order to display the map information 431 along the road surface.
- the control unit 130 of the virtual image display device 100 controls the screen driving unit 142 to tilt the screen 122R based on the tilt information of the route guide arrow 432.
- the inclination amount of the screen 122R is larger than the inclination amount of the screen 122L. That is, the control unit 130 of the virtual image display device 100 controls the difference in tilt between the screen 122R and the screen 122L based on the difference in tilt information.
- the object corresponding to the virtual image is the left and right road surfaces.
- the control unit 130 controls the position or inclination of the screen 122R and the screen 122L corresponding to the position and inclination of the object corresponding to the virtual image. That is, the control unit 130 associates the position and inclination of the virtual image with the position and inclination of the left and right road surfaces.
- simplified map information 431 relating to the left flat road is displayed.
- simplified map information and a route guidance arrow 432 regarding the right uphill road are displayed.
- the virtual image area 402Rc The display of the simplified map information and the simplified map information 431 of the virtual image area 402Lc may be omitted.
- FIGS. 11A and 11B are diagrams illustrating other examples of virtual images displayed by the virtual image display device 100.
- FIG. The example shown in FIGS. 11A and 11B is an example in which information such as SA (service area) or PA (parking area) is displayed while traveling on a highway.
- SA service area
- PA parking area
- FIGS. 11A and 11B the virtual image generated by the virtual image display device 100 is superimposed on the landscape when the driver 500 looks in the forward direction.
- 11 (a) and 11 (b) show the scenery when the vehicle is traveling in the center lane on a three-lane highway.
- a list display 441 which is a virtual image indicating SA and PA is displayed.
- SA and PA are displayed in the upper and lower three stages, and are displayed in an inclined manner. Therefore, the SA shown in the upper stage is displayed far away, and the PA shown in the lower stage is displayed nearby.
- the positional relationship of the list display 441 in the virtual image area 402Rc is matched with the actual positional relationship of SA and PA.
- the SA or PA that is close to the vehicle 600 is displayed at a short distance (that is, the near side position), and the SA or PA that is far from the vehicle 600 is displayed at a long distance (ie, the far side). Position).
- the driver 500 can easily grasp whether the actual SA and PA are far from or near the current position.
- the upper SA display is darker (ie, highlighted) than the middle SA and the lower PA.
- the upper virtual image display is displayed brighter than the middle and lower virtual image displays, or the upper virtual image display is displayed in a more conspicuous color (for example, a color closer to the primary color).
- SA that is, the target location
- SA that is selected in need of information.
- the virtual image area 402Lb is displayed at the same virtual image distance as the virtual image distance at which the SA shown in the upper part of the list display 441 is displayed. Therefore, the virtual image distance of the virtual image area 402Lb is set far.
- Detailed information 442 in the virtual image area 402Lb indicates SA information. Specifically, the detailed information 442 displays distance information to the SA from the current position of the vehicle 600 and facility information of the SA.
- FIG. 11B shows the background at a position where the vehicle 600 is closer to the target location SA than the position of FIG.
- a list display 441b in a state approaching SA is displayed in the virtual image area 402Rc.
- the SA as the target location is displayed in the lower level and is located farther than the SA as the target location.
- PA and SA to be displayed are newly displayed in the middle and upper stages.
- detailed information 442b is displayed at the virtual image distance corresponding to the lower virtual image distance on which the target location SA is displayed.
- the virtual image distance of the virtual image generated by the virtual image display device 100 is adjusted to be the same as the distance to the background object. In order to perform such display, it is necessary to set the position of the screen 122 appropriately. This method will be described below.
- the relationship between the virtual image distance L1 and the projection distance D (distance from the magnifying mirror 140 to the screen 122) is approximately shown by the above equation (1).
- the above equation (1) is an equation that approximately represents the shape of the magnifying mirror 140 as a sphere. Accordingly, in reality, the magnifying mirror 140 or a combiner that replaces the magnifying mirror 140 is not a spherical surface but a free-form surface, and thus the expression (1) cannot be used as it is.
- the relationship between the virtual image distance L1 and the projection distance D needs to be derived in advance by an optical simulation considering the shape of the magnifying mirror 140, or the relationship needs to be obtained by actual measurement.
- the relation between the derived virtual image distance L1 and the projection distance D is approximated to obtain a relational expression in advance.
- the virtual image display device 100 obtains the projection distance D from the required virtual image distance L1 using a relational expression obtained in advance, and controls the position and inclination of the screen 122 so as to be the projection distance D.
- FIG. 12 is a diagram illustrating an example of the relationship between the virtual image distance L1 and the projection distance D. As the projection distance D increases, the amount of change in the virtual image distance L1 increases. This characteristic is similar to the relationship of equation (1), but not the same as the relationship of equation (1). Therefore, when the relationship between the virtual image distance L1 and the projection distance D is approximated by a polynomial as it is, the approximation error becomes large especially in a range where the change amount of the virtual image distance L1 is large.
- FIG. 13 is a diagram illustrating the relationship between the reciprocal of the virtual image distance L1 (that is, 1 / virtual image distance L1) and the reciprocal of the projection distance D (that is, 1 / projection distance D).
- the relationship between the reciprocal of the virtual image distance L1 and the reciprocal of the projection distance D is close to proportional.
- the order of the polynomial may be selected in a timely manner based on the virtual image distance L1 and the projection distance D obtained in advance.
- whether or not to use an approximate expression other than a polynomial may be selected in a timely manner based on the virtual image distance L1 and the projection distance D obtained in advance.
- the relationship between the virtual image distance L1 and the projection distance D may be held in a table and used. In this case, in a range where the change in the virtual image distance L1 is large (that is, the sensitivity is high) with respect to the change in the projection distance D, it is desirable that the relationship between the two is finely tabulated.
- FIG. 14 is a flowchart showing an example of a method for controlling the screen 122 for displaying a virtual image at the position of the virtual image distance L1.
- the virtual image distance L1 of the virtual image generated by the virtual image display device 100 is determined by the control unit 130, for example.
- step S10 the video data converter 131 changes the virtual image display position to the virtual image distance L1.
- step S20 the virtual image control unit 133 sets the virtual image distance L1 based on the video signal data S2 from the video data conversion unit 131.
- step S30 the virtual image control unit 133 calculates the projection distance D using the virtual image distance L1 set in step S20 and the above-described equation (1).
- step S40 the virtual image control unit 133 calculates setting values for the position and tilt of the screen 122 based on the projection distance D calculated in step S30.
- step S50 the virtual image control unit 133 controls the position and inclination of the screen 122 through the screen driving unit 142 based on the setting value obtained in step S40. Thereby, the virtual image generated by the virtual image display device 100 is displayed at the virtual image distance L1.
- the setting value of the screen 122 includes design information such as the projection angle of the image light from the light source unit 111, the distance from the screen 122 to the light source unit 111, the tilt of the screen 122, the moving amount and direction of the position of the screen 122, and the like. It can be obtained using.
- the control unit 130 may hold the relationship between the projection distance D and the position and inclination of the screen 122 as a table.
- FIGS. 15A and 15B are diagrams showing another example of the screen unit 120.
- a configuration and operation different from the configuration and operation of the screen unit 120 in the virtual image display device 100 according to the first embodiment will be described below.
- the screen 122R and the screen 122L are arranged with respect to the projection direction C1 instead of the projection direction C as shown in FIGS.
- the projection direction C1 is inclined with respect to the projection direction C on the xz plane.
- the screen unit 120 a can be applied to the video display unit 110 shown in FIG. 1 instead of the screen unit 120.
- the screens 122R and 122L shown in FIG. 15B are different from the screens 122R and 122L shown in FIG. 5B in that the lengths in the x-axis direction are different from each other. Specifically, the screen 122R is longer than the screen 122L in the x-axis direction.
- the moving direction of the screen 122 is parallel to the projection direction C1, as indicated by an arrow in FIG. Specifically, the screen 122R moves in parallel with a straight line passing through the boundary between the screen 122R and the screen 122L and the light exit port 111a. Similarly, the screen 122L moves in parallel with a straight line passing through the boundary between the screen 122R and the screen 122L and the light exit port 111a. Therefore, the image light from the light source unit 111 is not affected by the movement and inclination of the divided screens (that is, the screens 122R and 122L).
- a virtual image is divided at the front as viewed from the driver 500 (for example, with the center as a boundary).
- the dividing position of the two screens that is, the boundary between the screen 122R and the screen 122L
- the dividing position of the two screens is either left or right (that is, the x-axis direction).
- a tilted guide arrow may be displayed on the front of the driver 500, and comparison information that shows supplementary information, a distance difference, or a tilt difference may be displayed on the screen 122L.
- the divided positions of the two screens are offset to the left side, but may be offset to the right side.
- the offset amount can be an arbitrary amount. Since a gap is generated at the screen division position such as between the screen 121 and the screen 122 and between the screen 122R and the screen 122L, an area corresponding to the screen division position is an image from the light source unit 111. It is desirable to limit the video information so that no light is output.
- the screen in the screen unit 120 is divided into three parts, and the position and inclination of two of the screens (that is, the screens 122R and 122L) can be changed according to information displayed as a virtual image. Therefore, a distance difference and a tilt difference can be provided between the first virtual image and the second virtual image generated by the virtual image display device 100. Thereby, guidance display etc. can be displayed clearly.
- the moving direction of the screen 122 is set to a direction that takes into consideration the projection direction of the image light from the light source unit 111, thereby preventing the image light from being blocked by another screen when the screen 122 is moved. Can do.
- the image light can be prevented from being blocked by another screen, the image light from one light source unit 111 can be projected onto a plurality of divided screens. Thereby, a virtual image can be displayed at a plurality of virtual image distances and inclinations with a small number of light source units.
- moving mechanism parts are often avoided in terms of reliability and the like, but in this embodiment, the position and inclination of a light part such as a screen is changed, so that the virtual image display device is moved. Reliability is easy to secure compared to other methods.
- a virtual image can be displayed with high accuracy at the desired virtual image distance L1.
- the distance difference and the inclination difference displayed by the virtual image display device can be expressed, even if the virtual image distance and the inclination of the virtual image do not completely coincide with the background, the distance difference and the inclination between the screen 122R and the screen 122L. Due to the difference, the driver can easily understand the relationship between the background and the virtual image. Therefore, the installation position adjustment of the virtual image display device 100 and the virtual image display position adjustment are simplified, and even if the driver displays the image at a favorite position, the display can be easily understood.
- FIGS. 16A and 16B are diagrams schematically showing the configuration of the video display unit of the virtual image display device according to Embodiment 2 of the present invention.
- FIG. 16A is a diagram illustrating a positional relationship among the light source unit 111, the screen 121, and the screen 122 in a state where image light is emitted from the light source unit 111 toward the screen unit 120b.
- FIG. 16A is a diagram illustrating a positional relationship among the light source unit 111, the screen 121, and the screen 122 in a state where image light is emitted from the light source unit 111 toward the screen unit 120b.
- FIG. 16B illustrates the light source unit 111 in a state where image light is emitted from the light source unit 111 toward the screen unit 120b, a screen 122R as a first screen (also referred to as a right screen), The positional relationship of a screen 122L (also referred to as a left screen) as a second screen, a screen 121 (also referred to as an upper screen) as a third screen, and a screen 123 (also referred to as an inclined screen) as a fourth screen is shown.
- the x-axis shown in each figure indicates the left-right axis when the driver 500 looks forward, and the right side (that is, the right direction) indicates the positive direction.
- the y-axis shown in each figure indicates the vertical axis when the driver 500 looks forward, and the upper side (that is, the upward direction) indicates the positive direction.
- the z-axis shown in each drawing indicates the axis in the depth direction (front-rear direction) when the driver 500 looks forward, and the back side (front side) indicates the positive direction.
- the x-axis direction and the z-axis direction are horizontal directions
- the y-axis direction is a vertical direction. However, depending on the state of the vehicle 600, the x-axis direction and the z-axis direction do not necessarily coincide with the horizontal direction, and similarly, the y-axis direction does not necessarily coincide with the vertical direction.
- the configuration other than the video display unit is the same as that of the first embodiment.
- the video display unit of the virtual image display device according to the second embodiment is applicable to the video display unit 110 shown in FIG.
- the video display unit of the virtual image display device according to Embodiment 2 includes a light source unit 111 and a screen unit 120b.
- the screen portion 120b shown in FIGS. This is different from the screen portion 120 shown in FIGS. 5A and 5B in that it has a screen 123 (also referred to as an inclined screen) as the screen.
- the screen unit 120 b can be applied to the video display unit 110 shown in FIG. 1 instead of the screen unit 120.
- a set of the screen 122R, the screen 122L, and the screen 123 is referred to as a “screen 122”.
- the image light is emitted from the light source unit 111 in the range between the upper projection direction U and the lower projection direction B with the projection direction M as the center in the y-axis direction. Projected onto the screen part 120b.
- image light is emitted from the light source unit 111 in a range between the right projection direction R and the left projection direction L around the projection direction C in the x-axis direction. It is projected on the screen part 120b.
- the screen 121 extends in the x-axis direction in the range from the projection direction R to the projection direction L.
- the screen 122 is adjacent to the screen 121 in the y-axis direction. Specifically, the screen 122 is provided below the screen 121 in the y-axis direction. As shown in FIG. 16A, in the screen portion 120b, the screen 121 is disposed on the upper side and the screen 122 is disposed on the lower side with the projection direction S as a boundary. Further, as shown in FIG. 16B, in the screen portion 120b, the screen 122R is disposed on the right side and the screen 122L is disposed on the left side with the projection direction C as a boundary. It is arranged between 122R and the screen 122L. Furthermore, the screen 122R, the screen 122L, and the screen 123 are arranged in the x-axis direction.
- the screen 123 When the screen portion 120b is viewed in the x-axis direction, the screen 123 is fixed in an inclined state with respect to the screens 122R and 122L. However, when the screen portion 120b is viewed in the x-axis direction, the screens 122R and 122L can be inclined so as to be parallel to the screen 123.
- the magnifying mirror 140 reflects the video light transmitted through the screen 122R as a first virtual image, reflects the video light transmitted through the screen 122L as a second virtual image, and sets the video light transmitted through the screen 121 as a third virtual image.
- the image light reflected and transmitted through the screen 123 is reflected as a fourth virtual image.
- the screen 123 has a trapezoidal shape. Thereby, it can match
- the upper side of the screen 123 corresponds to the lower virtual image display on the near side as viewed from the driver 500, and the lower side of the screen 123 corresponds to the upper virtual image display on the far side as viewed from the driver 500. is doing.
- the lower size of the screen 123 corresponding to the long-distance display area (specifically, the length in the x-axis direction). ) Is smaller than the size of the upper side of the screen 123 (specifically, the length in the x-axis direction).
- the screen 122R is movable between the first position 122Ra and the second position 122Rb.
- the control unit 130 controls the distance from the screen 122R to the magnifying mirror 140 by moving the position of the screen 122R, and changes the position of the second virtual image.
- the moving direction of the screen 122R is parallel to the projection direction S shown in FIG.
- the screen 122R moves in parallel with a straight line passing through the lower end of the screen 121 and the light exit port 111a in the y-axis direction.
- the moving direction of the screen 122R may not be strictly parallel to the projection direction S as long as it moves below the straight line passing through the lower end of the screen 121 and the light exit port 111a.
- the moving direction of the screen 122R is parallel to the projection direction C3 as shown by the arrow in FIG.
- the projection direction C3 is parallel to the side surface of the screen 123 (specifically, the side surface in the + x axis direction).
- the moving direction of the screen 122R may not be strictly parallel to the projection direction C3.
- the screen 122L is also movable between the first position 122La and the second position 122Lb.
- the control unit 130 controls the distance from the screen 122L to the magnifying mirror 140 by moving the position of the screen 122L, and changes the position of the third virtual image.
- the moving direction of the screen 122L is parallel to the projection direction S shown in FIG.
- the screen 122L moves in parallel with a straight line passing through the lower end of the screen 121 and the light emission port 111a in the y-axis direction.
- the moving direction of the screen 122L may not be strictly parallel to the projection direction S as long as it moves below the straight line passing through the lower end of the screen 121 and the light exit port 111a.
- the moving direction of the screen 122L is parallel to the projection direction C2 as indicated by an arrow in FIG.
- the projection direction C2 is parallel to the side surface of the screen 123 (specifically, the side surface in the ⁇ x axis direction).
- the moving direction of the screen 122L may not be strictly parallel to the projection direction C2.
- the screen 122R rotates with the upper end in the y-axis direction as the center of rotation.
- the screen 122R can be tilted so as to be positioned at the third position 122c shown in FIG. 16A by rotating about the upper end side as the rotation center. Thereby, even when the screen 122R rotates, the image light projected on the upper end side of the screen 122R is projected on the upper end side of the screen 122R even when the inclination of the screen 122R is changed.
- the screen 122L rotates with the upper end in the y-axis direction as the rotation center.
- the screen 122L can be tilted so as to be positioned at the third position 122c shown in FIG. 16A by rotating about the upper end side as the rotation center. That is, in the example shown in FIG. 16B, the screen 122L can be tilted so as to be positioned at the third position 122Lc by rotating about the upper end side as the rotation center.
- the third position 122Lc shown in FIG. 16B corresponds to the third position 122c shown in FIG.
- the screens 122R and 122L rotate independently of each other. Thereby, the screens 122R and 122L can change the inclination independently of each other.
- the lower side of the screen 122R moves away from the projection direction C3 due to the rotation of the screen 122R, and a large gap is generated between the screen 122R and the screen 123. Therefore, it is desirable to control the light source unit 111 so that the image light is not projected into the gap.
- the lower side of the screen 122L is separated from the projection direction C2 by the rotation of the screen 122L, and a large gap is generated between the screen 122L and the screen 123. Therefore, it is desirable to control the light source unit 111 so that no image light is emitted in the gap.
- 17 (a) and 17 (b) are diagrams showing another example of the screen portion 120b shown in FIGS. 16 (a) and 16 (b).
- a configuration and operation different from the configuration and operation of the screen unit 120b in the virtual image display device according to the second embodiment will be described below.
- the arrangement of the screens 122R and 122L is different from the screens 122R and 122L shown in FIGS. 16A and 16B.
- the screen unit 120 c can be applied to the video display unit 110 shown in FIG. 1 instead of the screen unit 120.
- the screen 122R is arranged perpendicular to the projection direction C3.
- the screen 123 has a side surface 123R (first side surface) facing the screen 122R, and the screen 122R is arranged perpendicular to the side surface 123R of the screen 123.
- the screen 122R may not be arranged strictly perpendicular to the projection direction C3 and the side surface 123R.
- the screen 122L is arranged perpendicular to the projection direction C2.
- the screen 123 has a side surface 123L (second side surface) facing the screen 122L, and the screen 122L is disposed perpendicular to the side surface 123L of the screen 123.
- the screen 122L may not be arranged strictly perpendicular to the projection direction C2 and the side surface 123L.
- the moving directions of the screens 122R and 122L are the same as those shown in FIGS. 16 (a) and 16 (b).
- the left and right regions of the virtual image viewed from the driver are viewed far away. Therefore, it is desirable to make the content of the virtual image easy to see for the driver.
- the screen in the screen unit 120 is divided into four parts, and the position and inclination of two of the screens (that is, the screens 122R and 122L) can be changed according to information displayed as a virtual image. Therefore, a distance difference and a tilt difference can be provided between the first virtual image and the second virtual image generated by the virtual image display device 100. Thereby, guidance display etc. can be displayed clearly.
- the screen 123 is provided between the screen 122R and the screen 122L, the image in the x-axis direction is not interrupted when viewed from the driver 500, and an inclined route guidance arrow is displayed in front of the driver 500. And visibility can be improved.
- the image light can be prevented from being blocked by another screen, the image light from one light source unit 111 can be projected onto a plurality of divided screens. Thereby, a virtual image can be displayed on several virtual image distance and inclination with few light source parts, and a virtual image display apparatus can be reduced in size.
- moving mechanism parts are often avoided in terms of reliability and the like, but in this embodiment, the position and inclination of a light part such as a screen is changed, so that the virtual image display device is moved. Reliability is easy to secure compared to other methods.
- a virtual image can be displayed with high accuracy at the desired virtual image distance L1.
- the distance difference and the inclination difference displayed by the virtual image display device can be expressed, even if the virtual image distance and the inclination of the virtual image do not completely coincide with the background, the distance difference and the inclination between the screen 122R and the screen 122L. Due to the difference, the driver can easily understand the relationship between the background and the virtual image. Therefore, the installation position adjustment of the virtual image display device 100 and the virtual image display position adjustment are simplified, and even if the driver displays the image at a favorite position, the display can be easily understood.
- the configuration example of the screen unit is shown, but the configuration of the screen unit is not limited to these.
- the two screens may be divided vertically instead of dividing horizontally.
- the screen configuration may be an asymmetrical screen configuration instead of a symmetrical screen configuration, and various screen combinations are possible.
- FIG. 18 is a hardware configuration diagram illustrating a control unit 130 of a modified example of the virtual image display device 100 according to the first and second embodiments.
- the control unit 130 shown in FIG. 2 uses a memory 91 as a storage device that stores a program as software, and a processor 92 as an information processing unit that executes the program stored in the memory 91 (for example, a computer Can be realized.
- the control unit 130 shown in FIG. 2 can be realized by the memory 91 shown in FIG. 18 and the processor 92 that executes the program.
- a part of the control unit 130 illustrated in FIG. 18 may be realized by the memory 91 illustrated in FIG. 18 and the processor 92 that executes a program.
- a screen portion having a first screen and a second screen;
- a video projection unit that emits video light toward the screen unit;
- a reflection mirror that reflects the image light transmitted through the first screen as a first virtual image and reflects the image light transmitted through the second screen as a second virtual image;
- a virtual image display device comprising: a screen control unit that controls at least one of the position and the tilt of the first screen and controls at least one of the position and the tilt of the second screen.
- the screen control unit controls the distance from the first screen to the reflection mirror by moving the position of the first screen, and changes the position of the first virtual image.
- the screen control unit controls the distance from the second screen to the reflection mirror by moving the position of the second screen, and changes the position of the second virtual image. 3.
- the virtual image display device according to 1 or 2.
- the screen portion has a third screen provided on the upper side of the first screen and the second screen in the vertical direction,
- the virtual image display device according to any one of appendices 1 to 3, wherein the reflection mirror reflects the image light transmitted through the third screen as a third virtual image.
- the video projection unit has a light exit port,
- the virtual image display device according to appendix 4 wherein the first screen moves in parallel with a straight line passing through a lower end of the third screen in the vertical direction and the light exit port.
- ⁇ Appendix 7> The virtual image display device according to any one of appendices 1 to 6, wherein the first screen rotates around an upper end in a vertical direction.
- Appendix 8 The virtual image display device according to any one of appendices 1 to 7, wherein the second screen rotates about an upper end in a vertical direction as a rotation center.
- the screen controller includes a first virtual image distance from a user's eye position to the first virtual image position and a second virtual image distance from the user's eye position to the second virtual image position.
- the virtual image display device according to any one of appendices 1 to 8, wherein the position of the first screen and the position of the second screen are controlled to be different from each other.
- the screen control unit determines the second virtual image from the first virtual image distance from the user's eye position to the first virtual image position and the user's eye position according to information to be guided to the user.
- the virtual image display device according to any one of appendices 1 to 9, wherein a difference from the second virtual image distance to the position is controlled.
- the screen control unit controls the tilt of the first screen and the tilt of the second screen so that the tilt of the first virtual image and the tilt of the second virtual image are different from each other.
- the virtual image display device according to any one of appendices 1 to 10.
- the said screen control part controls the angle which said 1st virtual image and said 2nd virtual image comprise according to the information guided to a user, It is any one of the additional notes 1-11 characterized by the above-mentioned.
- Virtual image display device It is any one of the additional notes 1-11 characterized by the above-mentioned.
- the screen portion has a fourth screen,
- the virtual image display device according to any one of appendices 1 to 12, wherein the reflection mirror reflects the image light transmitted through the fourth screen as a fourth virtual image.
- ⁇ Appendix 14> The first screen, the second screen, and the fourth screen are arranged in a horizontal direction, The virtual image display device according to appendix 13, wherein the fourth screen is disposed between the first screen and the second screen.
- the fourth screen has a first side facing the first screen;
- the fourth screen has a second side facing the second screen;
- the virtual image display device according to any one of appendices 13 to 15, wherein the second screen is arranged perpendicular to the second side surface.
- 100 virtual image display device 110 video display unit, 111 light source unit (video projection unit), 120, 120a, 120b, 120c screen unit, 121 screen (reference screen), 122 screen (movable screen), 122R screen (first movable) Screen, right screen), 122L screen (second movable screen, left screen), 123 screen, 122a first position, 122b second position, 122c third position, 130 controller, 131 video data converter, 132 light source control unit, 133 virtual image control unit, 134 projection position control unit, 140 magnifying mirror (projection unit), 141 magnifying mirror driving unit, 142 screen driving unit, 150 input device, 300 windshield, 400 virtual image display area, 401, 402a, 4 02b, 402c Virtual image area, 500 driver, 600 vehicle (own vehicle), 610 dashboard, 700 road, 701 pedestrian, 702 vehicle, S1, S2 video signal data, S3, S4, S5 control signal, S6 signal.
- video display unit 111 light source unit (video projection unit), 120, 120a, 120b, 120c
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Instrument Panels (AREA)
Abstract
A virtual-image display device (100) is provided with a picture projection part (111) for emitting picture light, a screen part (120, 120a) including a screen on which the picture light is projected and an image is formed, an image casting part (140) for generating a virtual image by casting the image, and a control part (130) for changing the position of the screen, the screen including a first screen (121, 122R) and a second screen (122L), a first image being formed on the first screen, the first image being cast as a first virtual image, a second image being formed on the second screen, the second image being cast as a second virtual image, and the control part (130) moving the second screen (122L) in a projection direction (S, C1) of the picture light that passes through an end part (1220) of the second screen (122L) on the first screen (122R) side thereof from among the picture light emitted from the picture projection part (111).
Description
本発明は、自動車又は列車などで用いられるヘッドアップディスプレイ等の虚像を表示するための表示装置に関するものである。
The present invention relates to a display device for displaying a virtual image such as a head-up display used in an automobile or a train.
一般に、車両用のヘッドアップディスプレイ(Head Up Display、以下、HUDと称する)は、運転者から見てフロントウィンドウの前方に、運転支援情報などの情報を虚像として表示する。運転支援情報は、例えば、速度表示又はナビゲーション情報などである。運転者は、車両の前景と運転支援情報とを視認することができる。車両の前景と運転支援情報とは、重ね合わされている。このため、運転者は、運転中の視線の移動又は焦点の調整時間を短縮することができる。これによって、運転者の疲労の軽減又は安全性の向上を図ることができる。「前景」とは、前方に見える景色のことである。
Generally, a head-up display for a vehicle (Head Up Display, hereinafter referred to as HUD) displays information such as driving support information as a virtual image in front of the front window as viewed from the driver. The driving support information is, for example, speed display or navigation information. The driver can visually recognize the foreground of the vehicle and driving support information. The foreground of the vehicle and the driving support information are superimposed. For this reason, the driver can shorten the movement time of the line of sight or the adjustment time of the focus during driving. This can reduce driver fatigue or improve safety. “Foreground” is the scenery seen in front.
運転者は周囲の状況を見ながら運転を行う。このため、運転者の視点は固定されずに、様々な箇所に移動する。また、運転者の目の位置から視点までの距離は、近距離から遠距離まで変動する。また、虚像として表示する運転支援情報が目標対象物を示す場合、その目標対象物までの距離に応じて、虚像が表示される距離を変更することで、運転者にとって見やすく表示することができる。そのため、運転者から虚像までの距離を変更可能な方法が提案されている(例えば、特許文献1)。
The driver will drive while watching the surrounding conditions. For this reason, a driver | operator's viewpoint is not fixed but moves to various places. Further, the distance from the position of the driver's eyes to the viewpoint varies from a short distance to a long distance. In addition, when the driving support information displayed as a virtual image indicates a target object, it can be displayed easily for the driver by changing the distance at which the virtual image is displayed according to the distance to the target object. Therefore, a method capable of changing the distance from the driver to the virtual image has been proposed (for example, Patent Document 1).
例えば、特許文献1では、光源からの光を走査してスクリーン上に形成した像を、反射手段により運転者に虚像として視認させ、スクリーンを移動させることで虚像の距離を制御している。
For example, in Patent Document 1, an image formed on a screen by scanning light from a light source is visually recognized by a driver as a virtual image by a reflecting means, and the distance of the virtual image is controlled by moving the screen.
また、運転者から前景を見た場合に、運転者から近い距離の対象物は下側に、運転者から遠い距離の対象物は上側に視認され、前方の道路は運転者から見て、傾いた状態で視認される。そのため、経路案内を虚像として矢印で表示する場合にも、虚像を傾けることでより自然な表示を行う方法が提案されている(例えば、特許文献2)。
In addition, when looking at the foreground from the driver, objects close to the driver are visible on the lower side, objects far away from the driver are visible on the upper side, and the road ahead is tilted when viewed from the driver. It is visually recognized in the state. Therefore, even when the route guidance is displayed as a virtual image with an arrow, a method of performing a more natural display by tilting the virtual image has been proposed (for example, Patent Document 2).
特許文献2では、2つの表示パネルに表示した映像を、拡大光学系としての反射鏡と車両のウインドシールドを通して虚像として運転者に視認させており、2つの表示パネルの内、一方の表示パネルを回転し傾斜させることで、運転者から視認される虚像を傾けている。
In Patent Document 2, an image displayed on two display panels is made visible to a driver as a virtual image through a reflecting mirror as a magnifying optical system and a windshield of a vehicle, and one of the two display panels is displayed. By rotating and tilting, the virtual image visually recognized by the driver is tilted.
しかしながら、虚像としての運転支援情報は、例えば速度メーター、経路案内矢印、又は注意喚起のためのマーカーなど、様々な情報を示す可能性があり、情報に応じて適切な虚像距離(すなわち、運転者の目から虚像の位置までの距離)及び虚像の傾き(すなわち、虚像の表示角度)となるように虚像としての運転支援情報を表示することが求められている。
However, the driving support information as a virtual image may indicate various information such as a speedometer, a route guidance arrow, or a marker for alerting, and an appropriate virtual image distance (that is, a driver) It is required to display the driving support information as a virtual image so that the distance from the eye to the position of the virtual image) and the inclination of the virtual image (that is, the display angle of the virtual image).
本発明は、上述のような課題を解決するためになされたものであり、虚像として表示する情報に応じて、虚像の位置を変更することが可能な虚像表示装置を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a virtual image display device capable of changing the position of a virtual image in accordance with information displayed as a virtual image. .
本発明の虚像表示装置は、車両に乗車している人によって視認される虚像を風景に重畳させて表示し、前記車両に用いられる虚像表示装置であって、映像光を出射する映像投射部と、前記映像光が投射されて像が形成されるスクリーンを含むスクリーン部と、前記像を投影することによって前記虚像を生成する投影部と、前記スクリーンの位置を変更する制御部とを備え、前記スクリーンは第1のスクリーンと第2のスクリーンとを含み、前記第1のスクリーン上には第1の像が形成され、当該第1の像は第1の虚像として投影され、前記第2のスクリーン上には第2の像が形成され、当該第2の像は第2の虚像として投影され、前記制御部は、前記第2のスクリーンを、前記映像投射部から出射された前記映像光の内の前記第2のスクリーンの前記第1のスクリーン側の端部を通過する前記映像光の投射方向に移動させることを特徴とする。
The virtual image display device of the present invention is a virtual image display device used in the vehicle, displaying a virtual image visually recognized by a person riding in the vehicle superimposed on a landscape, and a video projection unit for emitting video light; A screen unit including a screen on which the image light is projected to form an image, a projection unit that generates the virtual image by projecting the image, and a control unit that changes the position of the screen, The screen includes a first screen and a second screen, a first image is formed on the first screen, the first image is projected as a first virtual image, and the second screen A second image is formed on the second image, and the second image is projected as a second virtual image. The control unit causes the second screen to pass through the image light emitted from the image projection unit. The second screen of It is moved in the projection direction of the image light passing through the end portion of the first screen side down and said.
本発明によれば、虚像として表示する情報に応じて、虚像の位置を変更することができる。
According to the present invention, the position of the virtual image can be changed according to information displayed as a virtual image.
実施の形態1.
<虚像表示装置100の構成>
図1は、本発明の実施の形態1に係る虚像表示装置100の構成の一例を模式的に示す図である。
図2は、図1の制御部130の構成を概略的に示すブロック図である。
図3は、図2のスクリーン駆動部142の構成を概略的に示すブロック図であり、図4は、図2の拡大ミラー駆動部141の構成を概略的に示すブロック図である。
図5(a)は、映像投射部である光源部111から映像光がスクリーン部120に向けて出射されている状態における光源部111、スクリーン121、及びスクリーン122(図5(a)に示される例ではスクリーン122L)の位置関係を示す図である。図5(a)は、光源部111及びスクリーン部120をx軸方向に見た図である。
図5(b)は、光源部111から映像光がスクリーン部120に向けて出射されている状態における光源部111、スクリーン121、及びスクリーン122の位置関係を示す図である。図5(b)は、光源部111及びスクリーン部120をy軸方向に見た図である。Embodiment 1 FIG.
<Configuration of VirtualImage Display Device 100>
FIG. 1 is a diagram schematically illustrating an example of a configuration of a virtualimage display device 100 according to Embodiment 1 of the present invention.
FIG. 2 is a block diagram schematically showing the configuration of thecontrol unit 130 of FIG.
FIG. 3 is a block diagram schematically showing the configuration of thescreen driving unit 142 in FIG. 2, and FIG. 4 is a block diagram schematically showing the configuration of the magnifying mirror driving unit 141 in FIG.
FIG. 5A shows thelight source unit 111, the screen 121, and the screen 122 (shown in FIG. 5A) in a state in which video light is emitted from the light source unit 111, which is a video projection unit, toward the screen unit 120. It is a figure which shows the positional relationship of screen 122L) in an example. FIG. 5A shows the light source unit 111 and the screen unit 120 as viewed in the x-axis direction.
FIG. 5B is a diagram illustrating a positional relationship among thelight source unit 111, the screen 121, and the screen 122 in a state where image light is emitted from the light source unit 111 toward the screen unit 120. FIG. 5B is a diagram of the light source unit 111 and the screen unit 120 viewed in the y-axis direction.
<虚像表示装置100の構成>
図1は、本発明の実施の形態1に係る虚像表示装置100の構成の一例を模式的に示す図である。
図2は、図1の制御部130の構成を概略的に示すブロック図である。
図3は、図2のスクリーン駆動部142の構成を概略的に示すブロック図であり、図4は、図2の拡大ミラー駆動部141の構成を概略的に示すブロック図である。
図5(a)は、映像投射部である光源部111から映像光がスクリーン部120に向けて出射されている状態における光源部111、スクリーン121、及びスクリーン122(図5(a)に示される例ではスクリーン122L)の位置関係を示す図である。図5(a)は、光源部111及びスクリーン部120をx軸方向に見た図である。
図5(b)は、光源部111から映像光がスクリーン部120に向けて出射されている状態における光源部111、スクリーン121、及びスクリーン122の位置関係を示す図である。図5(b)は、光源部111及びスクリーン部120をy軸方向に見た図である。
<Configuration of Virtual
FIG. 1 is a diagram schematically illustrating an example of a configuration of a virtual
FIG. 2 is a block diagram schematically showing the configuration of the
FIG. 3 is a block diagram schematically showing the configuration of the
FIG. 5A shows the
FIG. 5B is a diagram illustrating a positional relationship among the
本実施の形態において各図に示されるx軸は、虚像表示装置100のユーザとしての運転者500が車両600(「自車」ともいう)内からウインドシールド300を通して前方を見た場合の左右方向の軸を示し、右側(すなわち、右方向)は正方向を示す。本実施の形態において各図に示されるy軸は、運転者500が車両600内からウインドシールド300を通して前方を見た場合の上下方向の軸を示し、上側(すなわち、上方向)は正方向を示す。本実施の形態において各図に示されるz軸は、運転者500が車両600内からウインドシールド300を通して前方を見た場合の奥行方向(前後方向)の軸を示し、奥側(前側)は正方向を示す。本実施の形態では、x軸方向及びz軸方向は水平方向であり、y軸方向は鉛直方向である。ただし、車両600の状態によっては、必ずしもx軸方向及びz軸方向は水平方向と一致していなくてもよく、同様に、y軸方向も鉛直方向と一致していなくてもよい。虚像表示装置100のユーザは運転者500に限らない。虚像表示装置100のユーザは、例えば同乗者などの乗車している人を含む。
In the present embodiment, the x-axis shown in each figure is the left-right direction when the driver 500 as the user of the virtual image display device 100 sees the front through the windshield 300 from within the vehicle 600 (also referred to as “own vehicle”). The right side (that is, the right direction) indicates the positive direction. In the present embodiment, the y-axis shown in each figure indicates the vertical axis when the driver 500 looks forward from inside the vehicle 600 through the windshield 300, and the upper side (that is, the upper direction) indicates the positive direction. Show. In the present embodiment, the z-axis shown in each figure indicates an axis in the depth direction (front-rear direction) when the driver 500 looks forward from inside the vehicle 600 through the windshield 300, and the back side (front side) is positive. Indicates direction. In the present embodiment, the x-axis direction and the z-axis direction are horizontal directions, and the y-axis direction is a vertical direction. However, depending on the state of the vehicle 600, the x-axis direction and the z-axis direction do not necessarily coincide with the horizontal direction, and similarly, the y-axis direction does not necessarily coincide with the vertical direction. The user of the virtual image display device 100 is not limited to the driver 500. The user of the virtual image display device 100 includes a person who is on board, such as a passenger.
虚像表示装置100は、車両600の運転者500によって視認される虚像(図1における虚像エリア401及び402に形成される)を風景に重畳させて表示する。虚像表示装置100は、例えば、車両600のダッシュボード610に搭載されている。ただし、虚像表示装置100は、ヘッドアップディスプレイに限るものではなく、設置場所もダッシュボードに限るものではない。
The virtual image display device 100 superimposes and displays a virtual image (formed in the virtual image areas 401 and 402 in FIG. 1) visually recognized by the driver 500 of the vehicle 600 on the landscape. The virtual image display device 100 is mounted on the dashboard 610 of the vehicle 600, for example. However, the virtual image display device 100 is not limited to the head-up display, and the installation location is not limited to the dashboard.
虚像表示装置100は、映像表示部110と、映像表示部110を制御する制御部130(スクリーン制御部)と、反射ミラーとしての拡大ミラー140とを備える。映像表示部110は、映像投射部としての光源部111と、スクリーン121及び位置を変更することができるスクリーン122を含むスクリーン部120とを有する。また、虚像表示装置100は、スクリーンの位置を変更するスクリーン駆動部142(図2、図3)を備える。また、虚像表示装置100は、拡大ミラーの位置を変更する拡大ミラー駆動部141(図2、図4)を備えてもよい。
The virtual image display device 100 includes a video display unit 110, a control unit 130 (screen control unit) that controls the video display unit 110, and a magnifying mirror 140 as a reflection mirror. The video display unit 110 includes a light source unit 111 as a video projection unit, and a screen unit 120 including a screen 121 and a screen 122 whose position can be changed. Further, the virtual image display device 100 includes a screen driving unit 142 (FIGS. 2 and 3) that changes the position of the screen. Further, the virtual image display device 100 may include a magnifying mirror driving unit 141 (FIGS. 2 and 4) that changes the position of the magnifying mirror.
スクリーン駆動部142は、スクリーン部120のスクリーン122の位置及び傾きを変更するための手段としてモーター、その駆動回路、及び駆動機構等を有してもよい。図1に示される例では、光源部111は、映像表示部110内に備えられているが、映像表示部110の外部に備えられていてもよい。
The screen driving unit 142 may include a motor, a driving circuit thereof, a driving mechanism, and the like as means for changing the position and inclination of the screen 122 of the screen unit 120. In the example shown in FIG. 1, the light source unit 111 is provided in the video display unit 110, but may be provided outside the video display unit 110.
図1に示されるように、本実施の形態では、スクリーン部120は、第1のスクリーンとしてのスクリーン122R(「右側スクリーン」又は「第1の可動スクリーン」ともいう)と、第2のスクリーンとしてのスクリーン122L(「左側スクリーン」又は「第2の可動スクリーン」ともいう)と、第3のスクリーンとしてのスクリーン121(「上側スクリーン」又は「基準スクリーン」ともいう)とを有する。本実施の形態では、スクリーン122R及び122Lの一組を「スクリーン122」又は「可動スクリーン122」と称する。本実施の形態では、スクリーン121に形成された像は、拡大ミラー140によってウインドシールド300に向けて投影され、その結果、運転者500に近い一定の位置(虚像エリア401)に虚像が表示される。また、スクリーン122に形成された像は、拡大ミラー140によってウインドシールド300に向けて投影され、その結果、運転者500から遠く且つ変更可能な位置(虚像エリア402)に虚像が表示される。このように、拡大ミラー140は、スクリーン121,122上に形成された像をウインドシールド300に向けて投影するので、「投影部」ともいう。
As shown in FIG. 1, in the present embodiment, the screen unit 120 includes a screen 122R as a first screen (also referred to as a “right screen” or a “first movable screen”) and a second screen. Screen 122L (also referred to as “left screen” or “second movable screen”) and a screen 121 (also referred to as “upper screen” or “reference screen”) as a third screen. In the present embodiment, a set of screens 122R and 122L is referred to as “screen 122” or “movable screen 122”. In the present embodiment, the image formed on the screen 121 is projected toward the windshield 300 by the magnifying mirror 140, and as a result, a virtual image is displayed at a certain position (virtual image area 401) close to the driver 500. . The image formed on the screen 122 is projected toward the windshield 300 by the magnifying mirror 140, and as a result, a virtual image is displayed at a position (virtual image area 402) far from the driver 500 and changeable. As described above, the magnifying mirror 140 projects the image formed on the screens 121 and 122 toward the windshield 300, and thus is also referred to as a “projection unit”.
光源部111は、光出射口111aを有し、スクリーン部120に向けて光出射口111aから映像光を出射する。光源部111は、例えば、プロジェクターのように、映像光を出射する。「映像光」とは、映像情報を有する光、すなわち、映像情報に基づいて変調された光のことである。光源部111が出射する映像光は、虚像として映し出される映像の情報を有している。なお、映像光は、例えば、静止している画像の情報を含むことができる。
The light source unit 111 has a light exit port 111 a and emits image light from the light exit port 111 a toward the screen unit 120. The light source unit 111 emits image light like a projector, for example. “Video light” is light having video information, that is, light modulated based on video information. The image light emitted from the light source unit 111 has information on an image displayed as a virtual image. Note that the video light can include information on a still image, for example.
図5(a)に示されるように、y軸方向において投射方向M(すなわち、映像光の中心光線の投射方向)を中心として、上側の投射方向Uと下側の投射方向Bとの間の範囲で、光源部111から映像光が出射され、スクリーン部120に投射される。
As shown in FIG. 5A, the projection direction M (ie, the projection direction of the central ray of the image light) is the center between the upper projection direction U and the lower projection direction B in the y-axis direction. In the range, the image light is emitted from the light source unit 111 and projected onto the screen unit 120.
図5(b)に示されるように、x軸方向において投射方向C(すなわち、映像光の中心光線の投射方向)を中心として、右側の投射方向Rと左側の投射方向Lとの間の範囲で、光源部111から映像光が出射され、スクリーン部120に投射される。ここで、映像光の投射方向Cは、映像光の中心光線の方向としている。
As shown in FIG. 5B, the range between the right projection direction R and the left projection direction L with the projection direction C (that is, the projection direction of the central ray of the image light) as the center in the x-axis direction. Thus, image light is emitted from the light source unit 111 and projected onto the screen unit 120. Here, the projection direction C of the image light is the direction of the central ray of the image light.
光源部111から出射された映像光は、スクリーン部120内のスクリーン(例えば、スクリーン121若しくは122、又はそれらの全て)に投射される。その映像光に基づく映像は、スクリーン部120内のスクリーン上に結像される。光源部111側からスクリーン部120に入射した映像光は、スクリーン部120内のスクリーンを透過する。
Video light emitted from the light source unit 111 is projected onto a screen (for example, the screen 121 or 122 or all of them) in the screen unit 120. An image based on the image light is formed on a screen in the screen unit 120. Video light that has entered the screen unit 120 from the light source unit 111 side passes through the screen in the screen unit 120.
上述のように、スクリーン部120には、映像光が投射される。スクリーン121及び122は、透過型のスクリーンである。「投射」とは、映像光を出射すること、又は映像光によって映像を表示することである。ここで、映像は虚像を含む。そのため「投射」は、出射された映像光、又は映像光によって表示される映像(虚像を含む)に対して用いられる。
As described above, image light is projected onto the screen unit 120. The screens 121 and 122 are transmissive screens. “Projection” means emitting image light or displaying an image with image light. Here, the video includes a virtual image. Therefore, “projection” is used for emitted video light or video (including virtual images) displayed by video light.
スクリーン部120内のスクリーン121は、近距離に(すなわち、運転者500に近い位置に)虚像を表示するための虚像用スクリーンである。スクリーン122は、遠距離に(すなわち、運転者500から遠い位置に)虚像を表示するための虚像用スクリーンである。
The screen 121 in the screen unit 120 is a virtual image screen for displaying a virtual image at a short distance (that is, at a position close to the driver 500). The screen 122 is a virtual image screen for displaying a virtual image at a long distance (that is, at a position far from the driver 500).
スクリーン駆動部142は、スクリーン部120内において、スクリーン122を映像光の投射方向Sに移動(スライド)させるスクリーン駆動手段である。スクリーン駆動部142は、モーター、その駆動回路、及び駆動機構などを有することができる。図3に示されるように、スクリーン駆動部142は、スクリーン(第1の可動スクリーン)122Rを投射方向Sに沿って移動させる第1のスクリーン移動部145Rと、スクリーン(第2の可動スクリーン)122Lを投射方向Sに沿って移動させる第2のスクリーン移動部145Lとを有する。第1のスクリーン移動部145R及び第2のスクリーン駆動部145Lの各々は、例えば、スクリーン122R又は122Lを投射方向Sに移動可能(スライド可能)に支持する支持機構であるスクリーン支持部と、スクリーン122R又は122Lを移動させる駆動力を発生するモーターなどの駆動力発生手段と、この駆動力をスクリーン122R又は122Lに伝達するギヤなどの駆動力伝達機構とを有する。
The screen drive unit 142 is a screen drive unit that moves (slides) the screen 122 in the projection direction S of the image light within the screen unit 120. The screen driving unit 142 may include a motor, a driving circuit thereof, a driving mechanism, and the like. As shown in FIG. 3, the screen driving unit 142 includes a first screen moving unit 145R that moves the screen (first movable screen) 122R along the projection direction S, and a screen (second movable screen) 122L. Is moved along the projection direction S. The second screen moving unit 145L. Each of the first screen moving unit 145R and the second screen driving unit 145L includes, for example, a screen support unit that is a support mechanism that supports the screen 122R or 122L so as to be movable (slidable) in the projection direction S, and the screen 122R. Alternatively, a driving force generating means such as a motor for generating a driving force for moving 122L and a driving force transmission mechanism such as a gear for transmitting the driving force to the screen 122R or 122L are provided.
また、図3に示されるように、スクリーン駆動部142は、スクリーン122Rをx軸に平行な中心軸を中心にして回転させることでスクリーン122Rの傾きを変える第1のスクリーン回転部146Rと、スクリーン122Lをx軸に平行な中心軸を中心にして回転させることでスクリーン122Lの傾きを変える第2のスクリーン回転部146Lとを有してもよい。第1のスクリーン回転部146R及び第2のスクリーン回転部145Lの各々は、例えば、スクリーン122R又は122Lをx軸に平行な中心軸を中心にして回転可能に支持する支軸(図5(a)における1221)と、スクリーン122R又は122Lを回転させる駆動力を発生するモーターなどの駆動力発生手段と、この駆動力をスクリーン122R又は122Lに伝達するギヤなどの駆動力伝達機構とを有する。
Further, as shown in FIG. 3, the screen driving unit 142 includes a first screen rotating unit 146R that changes the inclination of the screen 122R by rotating the screen 122R around a central axis parallel to the x axis, A second screen rotation unit 146L that changes the inclination of the screen 122L by rotating the 122L around a central axis parallel to the x-axis may be included. Each of the first screen rotation unit 146R and the second screen rotation unit 145L is, for example, a support shaft that rotatably supports the screen 122R or 122L around a central axis parallel to the x axis (FIG. 5A). 1221), a driving force generating means such as a motor for generating a driving force for rotating the screen 122R or 122L, and a driving force transmission mechanism such as a gear for transmitting the driving force to the screen 122R or 122L.
また、拡大ミラー駆動部141は、駆動機構と駆動回路などを有することができる。図4に示されるように、拡大ミラー駆動部141は、拡大ミラー140を支軸を中心に回転させることで拡大ミラー140の傾きを変える拡大ミラー回転部144と、拡大ミラー140を投射方向Sに沿って移動させる拡大ミラー移動部143とを有してもよい。拡大ミラー回転部144は、例えば、拡大ミラー140をx軸に平行な中心軸を中心にして回転可能に支持する支軸と、拡大ミラー140を回転させる駆動力を発生するモーターなどの駆動力発生手段と、この駆動力を拡大ミラー140に伝達するギヤなどの駆動力伝達機構とを有する。拡大ミラー移動部143は、例えば、拡大ミラー140を投射方向に移動可能(スライド可能)に支持する支持機構である拡大ミラー支持部と、拡大ミラー140を移動させる駆動力を発生するモーターなどの駆動力発生手段と、この駆動力を拡大ミラー140に伝達するギヤなどの駆動力伝達機構とを有する。
Further, the magnifying mirror driving unit 141 can have a driving mechanism and a driving circuit. As shown in FIG. 4, the magnifying mirror driving unit 141 rotates the magnifying mirror 140 around the support shaft to change the inclination of the magnifying mirror 140 and the magnifying mirror 140 in the projection direction S. You may have the magnifying mirror moving part 143 moved along. The magnifying mirror rotating unit 144 generates a driving force such as a spindle that rotatably supports the magnifying mirror 140 about a central axis parallel to the x axis, and a motor that generates a driving force for rotating the magnifying mirror 140. And a driving force transmission mechanism such as a gear for transmitting the driving force to the magnifying mirror 140. The magnifying mirror moving unit 143 is driven by, for example, a magnifying mirror support unit that is a support mechanism that supports the magnifying mirror 140 so as to be movable (slidable) in the projection direction, and a motor that generates a driving force for moving the magnifying mirror 140. Force generating means and a driving force transmission mechanism such as a gear for transmitting this driving force to the magnifying mirror 140 are provided.
図5(a)において、スクリーン122は投射方向Sに移動可能である。投射方向Sは、スクリーン122のスクリーン121側の端部1220における映像光の投射方向である。スクリーン122は、投射方向Sに平行に移動する。投射方向Sは、映像光の光束の中心光線の投射方向Mに対して傾斜している。ここで、中心光線とは、光束の中心を通る光線である。図5(a)では、投射方向Sは、例えば、投射方向Mに対して+y軸方向に傾斜している。
In FIG. 5A, the screen 122 is movable in the projection direction S. The projection direction S is the projection direction of the image light at the end portion 1220 of the screen 122 on the screen 121 side. The screen 122 moves in parallel to the projection direction S. The projection direction S is inclined with respect to the projection direction M of the central ray of the image light beam. Here, the central ray is a ray passing through the center of the light beam. In FIG. 5A, the projection direction S is inclined in the + y-axis direction with respect to the projection direction M, for example.
拡大ミラー140は、負のパワーを有する反射面(具体的には、凹面)を備える。拡大ミラー140は、スクリーン122Rを透過した映像光を反射することで(すなわち、スクリーン122R上に形成された像を投影することで)虚像エリア402に第1の虚像を形成し、スクリーン122Lを透過した映像光を反射することで(すなわち、スクリーン122L上に形成された像を投影することで)虚像エリア402に第2の虚像を形成し、スクリーン121を透過した映像光を反射することで(すなわち、スクリーン121上に形成された像を投影することで)虚像エリア401に第3の虚像を形成する。
The magnifying mirror 140 includes a reflecting surface (specifically, a concave surface) having a negative power. The magnifying mirror 140 forms a first virtual image in the virtual image area 402 by reflecting the image light transmitted through the screen 122R (that is, by projecting an image formed on the screen 122R), and transmits the screen 122L. The second virtual image is formed in the virtual image area 402 by reflecting the captured image light (that is, by projecting the image formed on the screen 122L), and the image light transmitted through the screen 121 is reflected ( That is, a third virtual image is formed in the virtual image area 401 (by projecting the image formed on the screen 121).
拡大ミラー140は、スクリーン部120を透過した映像光を拡大させ、ウインドシールド300に向けて投射する。ウインドシールド300は、例えば、車両600のフロントガラスである。ウインドシールド300は、拡大ミラー140からの映像光を反射して虚像表示装置100のユーザとしての運転者500へ導く。
The magnifying mirror 140 enlarges the image light transmitted through the screen unit 120 and projects it toward the windshield 300. The windshield 300 is a windshield of the vehicle 600, for example. The windshield 300 reflects the image light from the magnifying mirror 140 and guides it to the driver 500 as the user of the virtual image display device 100.
言い換えれば、拡大ミラー140は、スクリーン部120を透過した映像光を投射する。つまり、拡大ミラー140は、スクリーン部120に形成された像を虚像として投影する。このように、拡大ミラー140は、スクリーン部120に形成された像を投影する機能を有する投影部である。投影部は、複数のミラーを備えることができる。つまり、拡大ミラー140は、複数のミラーを有することができる。
In other words, the magnifying mirror 140 projects the image light transmitted through the screen unit 120. That is, the magnifying mirror 140 projects the image formed on the screen unit 120 as a virtual image. Thus, the magnifying mirror 140 is a projection unit having a function of projecting the image formed on the screen unit 120. The projection unit can include a plurality of mirrors. That is, the magnifying mirror 140 can have a plurality of mirrors.
なお、本実施の形態では、一例として、虚像表示装置100がフロントガラス型のヘッドアップディスプレイである場合を説明する。しかし、虚像表示装置100は、コンバイナー型のヘッドアップディスプレイへの適用も可能である。コンバイナー型のヘッドアップディスプレイの場合は、コンバイナーが、拡大ミラー140とフロントガラス(例えば、ウインドシールド300)の代わりとなり、スクリーン部120のスクリーンに結像された映像を拡大すると共に、反射し、運転者500へ導く。
In this embodiment, as an example, a case where the virtual image display device 100 is a windshield type head-up display will be described. However, the virtual image display device 100 can also be applied to a combiner type head-up display. In the case of a combiner type head-up display, the combiner replaces the magnifying mirror 140 and the windshield (for example, the windshield 300), enlarges the image formed on the screen of the screen unit 120, reflects it, and drives it. To the person 500.
スクリーン部120のスクリーン122及び122上に結像された映像は、虚像エリア401、402を含む虚像形成領域400内に虚像として表示される。虚像形成領域400は、運転者500から見てウインドシールド300の前方に位置している。なお、虚像エリア401,402とは、虚像が表示される面状のエリアである。
The image formed on the screens 122 and 122 of the screen unit 120 is displayed as a virtual image in the virtual image forming area 400 including the virtual image areas 401 and 402. The virtual image forming area 400 is located in front of the windshield 300 when viewed from the driver 500. The virtual image areas 401 and 402 are planar areas where virtual images are displayed.
スクリーン121上の映像は、虚像エリア401に虚像として表示される。また、スクリーン部120内のスクリーン(例えば、スクリーン122R若しくは122L、又はそれらの両方)が第1の位置122aに位置するとき、そのスクリーン上の映像は、虚像エリア402内の虚像エリア402aに虚像として表示される。虚像エリア402は、スクリーン122(例えば、スクリーン122R若しくは122L、又はそれらの両方)を透過した映像光に基づく虚像の表示位置(例えば、虚像エリア402a,402b,又は402c)である。
The image on the screen 121 is displayed as a virtual image in the virtual image area 401. When the screen (for example, the screen 122R or 122L or both of them) in the screen unit 120 is positioned at the first position 122a, the image on the screen is a virtual image in the virtual image area 402a in the virtual image area 402. Is displayed. The virtual image area 402 is a display position (for example, virtual image areas 402a, 402b, or 402c) of a virtual image based on video light transmitted through the screen 122 (for example, the screen 122R or 122L, or both).
図1の構成においては、スクリーン部120のスクリーン上に結像された映像は、上下が反転されて虚像形成領域400内に虚像として表示される。そのため、光源部111からスクリーン部120に投射された映像光によってスクリーン121及び122上に形成された映像は、拡大ミラー140によって上下反転した映像となり、この上下反転した映像に基づく虚像が虚像形成領域400内に形成される。
In the configuration of FIG. 1, the image formed on the screen of the screen unit 120 is displayed as a virtual image in the virtual image forming region 400 by being inverted upside down. Therefore, the images formed on the screens 121 and 122 by the image light projected from the light source unit 111 to the screen unit 120 are vertically inverted images by the magnifying mirror 140, and a virtual image based on the vertically inverted image is a virtual image forming region. 400 is formed.
スクリーン部120内のスクリーンが第1の位置122aから第2の位置122bに移動(光源部111に向けて投射方向Sに平行な方向に移動)した場合、虚像エリア402aよりも遠方の虚像エリア402bに虚像が移動する。すなわち、第1の位置122aは虚像エリア402aに対応し、第2の位置122bは虚像エリア402bに対応する。
When the screen in the screen unit 120 moves from the first position 122a to the second position 122b (moves in the direction parallel to the projection direction S toward the light source unit 111), the virtual image area 402b farther than the virtual image area 402a. The virtual image moves. That is, the first position 122a corresponds to the virtual image area 402a, and the second position 122b corresponds to the virtual image area 402b.
スクリーン122R及び122Lは回転可能であり、例えば、スクリーン部120内のスクリーン(スクリーン122R若しくは122L、又はそれらの両方)の下側が第2の位置122bに位置するようにスクリーンを傾けた場合、虚像エリア402cの位置に、傾いた虚像が表示される。ここで、虚像エリア402cの虚像は、まっすぐに傾く(すなわち、平面のまま傾く)のではなく、図1に示されるように、運転者500に向かう距離方向に凸状部を向けるカーブした状態(すなわち、曲面の状態)で傾く。
The screens 122R and 122L are rotatable. For example, when the screen is tilted such that the lower side of the screen (screen 122R and / or 122L) in the screen unit 120 is positioned at the second position 122b, the virtual image area A tilted virtual image is displayed at the position 402c. Here, the virtual image in the virtual image area 402c does not incline straight (that is, inclines while being flat), but is in a curved state in which the convex portion is directed in the distance direction toward the driver 500 as shown in FIG. That is, it is inclined in a curved surface state.
図5(a)及び(b)に示したスクリーン構成においては、スクリーン121に結像された映像は、図1に示される虚像エリア401に表示される。すなわち、図1に示されるように、スクリーン121に結像された映像は、虚像形成領域400内の下側の位置で、且つ虚像エリア402よりも運転者500に近い位置に表示される。スクリーン121は移動しないため、虚像エリア401の位置は変わらない。虚像エリア401には、例えば、速度情報など、運転者500が適時確認する情報が表示される。ただし、本発明は、スクリーン121が移動又は回転できるように構成された虚像表示装置にも適用可能である。
In the screen configuration shown in FIGS. 5A and 5B, the image formed on the screen 121 is displayed in the virtual image area 401 shown in FIG. That is, as shown in FIG. 1, the image formed on the screen 121 is displayed at a lower position in the virtual image forming area 400 and at a position closer to the driver 500 than the virtual image area 402. Since the screen 121 does not move, the position of the virtual image area 401 does not change. In the virtual image area 401, for example, information that the driver 500 confirms in a timely manner such as speed information is displayed. However, the present invention is also applicable to a virtual image display device configured so that the screen 121 can move or rotate.
図5(b)に示されるように、スクリーン部120は、左右に分割されたスクリーン122R及びスクリーン122Lを有する。スクリーン122R及びスクリーン122Lは、互いに独立して位置及び傾きが変更される。したがって、虚像エリア402も、運転者500から前方を見た場合に左右に分割されている。虚像エリア402では、スクリーン122Rの位置及び傾きに応じた虚像距離及び虚像の傾きを持つ第1の虚像及びスクリーン122Lの位置及び傾きに応じた虚像距離及び虚像の傾きを持つ第2の虚像が表示される。ただし、本発明は、スクリーン122が分割されていない虚像表示装置、又は、スクリーン122が3つ以上に分割されている虚像表示装置にも適用可能である。
As shown in FIG. 5B, the screen unit 120 includes a screen 122R and a screen 122L which are divided into left and right. The position and inclination of the screen 122R and the screen 122L are changed independently of each other. Therefore, the virtual image area 402 is also divided into left and right when looking forward from the driver 500. In the virtual image area 402, a first virtual image having a virtual image distance and a virtual image inclination corresponding to the position and inclination of the screen 122R and a second virtual image having a virtual image distance and a virtual image inclination corresponding to the position and inclination of the screen 122L are displayed. Is done. However, the present invention can also be applied to a virtual image display device in which the screen 122 is not divided or a virtual image display device in which the screen 122 is divided into three or more.
虚像エリア402に表示する虚像の表示方法として、例えば、AR(Augmented Reality;拡張現実)技術が用いられる。AR技術は、現実の風景にデジタル情報を重ね合わせて表示する技術である。AR表示は、AR技術を用いて、現実の風景にデジタル情報を重ね合わせた表示方法である。
As a method for displaying a virtual image displayed in the virtual image area 402, for example, AR (Augmented Reality) technology is used. The AR technology is a technology for displaying digital information superimposed on a real landscape. The AR display is a display method in which digital information is superimposed on an actual landscape using AR technology.
本実施の形態で用いられるAR表示では、運転者500の視線の先に、背景(すなわち、現実の風景)に重畳された虚像を表示する。具体的には、x軸方向及びy軸方向における虚像の位置のみではなく、虚像の距離(z軸方向)も背景と合わせる(すなわち、背景の位置又は形状に応じて、虚像の位置及び形状、並びに運転者から虚像までの距離を設定する)ことで、運転者500は虚像が示す情報を認識し易くなる。例えば、車外カメラ又はセンサー(例えば、図3におけるカメラ151)などで検知した歩行者又は障害物などの対象物の距離に応じて、左右の虚像の虚像距離を別々に調整することが可能である。
In the AR display used in the present embodiment, a virtual image superimposed on the background (that is, the actual landscape) is displayed at the tip of the driver's 500 line of sight. Specifically, not only the position of the virtual image in the x-axis direction and the y-axis direction, but also the distance (z-axis direction) of the virtual image is matched with the background (that is, the position and shape of the virtual image according to the position or shape of the background, And setting the distance from the driver to the virtual image), the driver 500 can easily recognize the information indicated by the virtual image. For example, it is possible to separately adjust the virtual image distances of the left and right virtual images according to the distance of an object such as a pedestrian or an obstacle detected by a camera outside the vehicle or a sensor (for example, the camera 151 in FIG. 3). .
虚像距離L1、すなわち、運転者500の目から虚像形成領域400内の虚像エリア402a、402b又は402cの位置までの距離は、拡大ミラー140の焦点距離f及び、拡大ミラー140からスクリーン部120内のスクリーンまでの投射距離Dにより決定される。虚像距離L1はz軸に平行な方向における距離である。
The virtual image distance L1, that is, the distance from the eyes of the driver 500 to the position of the virtual image area 402a, 402b, or 402c in the virtual image forming region 400 is the focal length f of the magnifying mirror 140 and the screen mirror 120 from the magnifying mirror 140. It is determined by the projection distance D to the screen. The virtual image distance L1 is a distance in a direction parallel to the z axis.
虚像距離L1、拡大ミラー140の焦点距離f、及び投射距離Dの関係は、式(1)で近似的に表すことができる。
1/f = 1/D + 1/L1 (1)
ここで、投射距離Dと虚像距離L1との関係は線形ではないため、スクリーン部120内のスクリーン(例えば、スクリーン122R若しくは122L、又はそれらの両方)を傾けた場合、図1に示される虚像エリア402cのようにカーブした虚像が表示される。 The relationship between the virtual image distance L1, the focal length f of the magnifyingmirror 140, and the projection distance D can be approximately expressed by Expression (1).
1 / f = 1 / D + 1 / L1 (1)
Here, since the relationship between the projection distance D and the virtual image distance L1 is not linear, the virtual image area shown in FIG. A curved virtual image is displayed as in 402c.
1/f = 1/D + 1/L1 (1)
ここで、投射距離Dと虚像距離L1との関係は線形ではないため、スクリーン部120内のスクリーン(例えば、スクリーン122R若しくは122L、又はそれらの両方)を傾けた場合、図1に示される虚像エリア402cのようにカーブした虚像が表示される。 The relationship between the virtual image distance L1, the focal length f of the magnifying
1 / f = 1 / D + 1 / L1 (1)
Here, since the relationship between the projection distance D and the virtual image distance L1 is not linear, the virtual image area shown in FIG. A curved virtual image is displayed as in 402c.
運転者500は、ウインドシールド300の前方の風景と、その風景に重畳された虚像とを同時に視認できる。
The driver 500 can view the scenery in front of the windshield 300 and the virtual image superimposed on the scenery at the same time.
拡大ミラー140の反射面は、自由曲面で形成されてもよい。拡大ミラー140の反射面をウインドシールド300の曲率に応じた適切な形状の曲面で形成すれば、拡大ミラー140によって、ウインドシールド300の曲率による映像の歪みを補正することができる。
The reflecting surface of the magnifying mirror 140 may be a free-form surface. If the reflecting surface of the magnifying mirror 140 is formed with a curved surface having an appropriate shape according to the curvature of the windshield 300, the magnifying mirror 140 can correct image distortion due to the curvature of the windshield 300.
制御部130は、拡大ミラー駆動部141を制御することで、拡大ミラー140の傾き(すなわち、映像光の反射角度)及び位置を変更(例えば、移動及び回転)することができる。制御部130は、スクリーン駆動部142を制御することで、スクリーン部120内のスクリーン(具体的には、スクリーン122R及び122L)の位置及び傾きを変更(例えば、移動及び回転)することができる。具体的には、制御部130は、スクリーン122Rの位置及び傾きの少なくとも一方を制御することができ、スクリーン122Lの位置及び傾きの少なくとも一方を制御することができる。制御部130の構成に関しては後述する。
The control unit 130 can change (for example, move and rotate) the tilt (that is, the reflection angle of the image light) and the position of the magnifying mirror 140 by controlling the magnifying mirror driving unit 141. The control unit 130 can change (for example, move and rotate) the position and inclination of the screen (specifically, the screens 122R and 122L) in the screen unit 120 by controlling the screen driving unit 142. Specifically, the control unit 130 can control at least one of the position and the inclination of the screen 122R, and can control at least one of the position and the inclination of the screen 122L. The configuration of the control unit 130 will be described later.
光源部111から出射された映像光が、運転者500に到達するまでの間の装置の構成は、図1に示す構成に限らない。例えば、映像光は、拡大ミラー140又はウインドシールド300以外の反射面で反射される構成でもよい。また、スクリーン部120内のスクリーンは、透過型に限られず、反射型であってもよい。ダッシュボード610の空きスペース及び拡大ミラー140などの光学部品の大きさを考慮して、装置の構成は変更することができる。
The configuration of the apparatus until the image light emitted from the light source unit 111 reaches the driver 500 is not limited to the configuration illustrated in FIG. For example, the image light may be reflected by a reflecting surface other than the magnifying mirror 140 or the windshield 300. The screen in the screen unit 120 is not limited to the transmissive type, and may be a reflective type. The configuration of the apparatus can be changed in consideration of the empty space of the dashboard 610 and the size of optical components such as the magnifying mirror 140.
<制御部130の構成>
図2に示されるように、制御部130は、映像データ変換部131、光源制御部132、虚像制御部133、及び投射位置制御部134を備える。制御部130は、スクリーン駆動部142(スクリーン駆動回路を含む)、及び拡大ミラー駆動部141(拡大ミラー駆動回路を含む)を備えても良い。 <Configuration ofControl Unit 130>
As shown in FIG. 2, thecontrol unit 130 includes a video data conversion unit 131, a light source control unit 132, a virtual image control unit 133, and a projection position control unit 134. The control unit 130 may include a screen driving unit 142 (including a screen driving circuit) and a magnifying mirror driving unit 141 (including a magnifying mirror driving circuit).
図2に示されるように、制御部130は、映像データ変換部131、光源制御部132、虚像制御部133、及び投射位置制御部134を備える。制御部130は、スクリーン駆動部142(スクリーン駆動回路を含む)、及び拡大ミラー駆動部141(拡大ミラー駆動回路を含む)を備えても良い。 <Configuration of
As shown in FIG. 2, the
映像データ変換部131は、虚像として表示される映像の元となる映像信号データを、光源制御部132及び虚像制御部133で扱える形式に変換する。映像信号データは、例えば、虚像用の映像、映像の拡大率、及び虚像の表示方向若しくは遠近方向の虚像の表示距離を示す距離データなどのデータを含む。
The video data converter 131 converts the video signal data that is the source of the video displayed as a virtual image into a format that can be handled by the light source controller 132 and the virtual image controller 133. The video signal data includes, for example, data such as a virtual image video, a video magnification ratio, and distance data indicating a virtual image display distance or a virtual image display distance in a perspective direction.
映像データ変換部131は、虚像表示装置100の内部で生成された映像信号データを受け取ることができる。また、例えば、映像データ変換部131は、制御部130で生成された映像信号データを受け取ることができる。
The video data converter 131 can receive video signal data generated inside the virtual image display device 100. For example, the video data conversion unit 131 can receive the video signal data generated by the control unit 130.
虚像表示装置100又は制御部130は、例えば、車両600の走行速度の情報又は外気温度の情報などを外部の機器から受け取る。虚像表示装置100又は制御部130は、それらの情報を基にして虚像用の映像などを含む映像信号データを生成する。虚像表示装置100又は制御部130は、生成した映像信号データを、映像データ変換部131に渡す。
The virtual image display device 100 or the control unit 130 receives, for example, information on the traveling speed of the vehicle 600 or information on the outside air temperature from an external device. The virtual image display device 100 or the control unit 130 generates video signal data including a virtual image video based on the information. The virtual image display device 100 or the control unit 130 passes the generated video signal data to the video data conversion unit 131.
また、例えば、映像データ変換部131は、虚像表示装置100の外部の機器で生成された映像信号データを受け取ることができる。虚像表示装置100の外部の機器は、例えば、車両600を制御する部分又はナビゲーションシステムなどである。
Also, for example, the video data conversion unit 131 can receive video signal data generated by a device external to the virtual image display device 100. A device external to the virtual image display device 100 is, for example, a part that controls the vehicle 600 or a navigation system.
また、映像データ変換部131は、車両600の外部から映像信号データを受け取ることができる(例えば、通信装置によって映像信号データなどを受信することができる)。車両600の外部から受け取る映像信号データは、例えば、インターネットを介して受信した情報などを基に生成されるデータである。
Also, the video data conversion unit 131 can receive video signal data from the outside of the vehicle 600 (for example, video signal data can be received by a communication device). The video signal data received from the outside of the vehicle 600 is data generated based on information received via the Internet, for example.
映像データ変換部131は、光源制御部132と虚像制御部133とに映像信号データS1及びS2を送る。
The video data converter 131 sends the video signal data S1 and S2 to the light source controller 132 and the virtual image controller 133.
光源制御部132は、光源部111からの映像光の出射を制御する。光源制御部132は、映像データ変換部131から映像信号データS1を受け取る。光源制御部132は、映像信号データS1に基づき、光源部111から出射される映像光の基となる映像データを生成する。光源制御部132が映像データを生成するとき、表示される虚像の方向又は奥行き又はこれらの両方を考慮して、映像のサイズ又は映像の表示される位置などが決定される。これにより、映像データが生成される。光源制御部132は、生成された映像データを制御信号S3として光源部111に送る。
The light source control unit 132 controls the emission of image light from the light source unit 111. The light source control unit 132 receives the video signal data S <b> 1 from the video data conversion unit 131. The light source control unit 132 generates video data that is a basis of video light emitted from the light source unit 111 based on the video signal data S1. When the light source control unit 132 generates video data, the size of the video or the display position of the video is determined in consideration of the direction and / or depth of the virtual image to be displayed. Thereby, video data is generated. The light source control unit 132 sends the generated video data to the light source unit 111 as a control signal S3.
光源部111は、映像光を出射する。光源部111は、制御信号S3に基づき、映像光を出射する。光源部111は、制御信号S3を光源制御部132から受け取る。制御信号S3は、映像データを基にして光源部111を制御する信号である。
The light source unit 111 emits image light. The light source unit 111 emits video light based on the control signal S3. The light source unit 111 receives the control signal S3 from the light source control unit 132. The control signal S3 is a signal for controlling the light source unit 111 based on the video data.
虚像制御部133は、スクリーン122の位置又は傾き(すなわち、位置又は傾き又はそれらの両方)を制御するための制御信号S4(位置又は傾き又はそれらの両方を示す指示情報)を生成する。虚像制御部133は、映像データ変換部131から映像信号データS2を受け取る。虚像制御部133は、映像信号データS2に基づき、制御信号S4をスクリーン駆動部142に送る。
The virtual image control unit 133 generates a control signal S4 (instruction information indicating the position and / or the inclination) for controlling the position or the inclination (that is, the position and / or the inclination) of the screen 122. The virtual image control unit 133 receives the video signal data S <b> 2 from the video data conversion unit 131. The virtual image control unit 133 sends a control signal S4 to the screen drive unit 142 based on the video signal data S2.
例えば、図1において、遠距離の虚像を表示するため、第2の位置122bに、スクリーン部120内のスクリーン(例えば、スクリーン122R若しくは122L、又はそれらの両方)を移動することで、虚像は遠距離の虚像エリア402bの位置に表示される。これによって運転者500には、虚像が遠方に表示されているように見える。
For example, in FIG. 1, in order to display a long-distance virtual image, the virtual image is distant by moving the screen in the screen unit 120 (for example, the screen 122R and / or 122L, or both) to the second position 122b. It is displayed at the position of the virtual image area 402b of the distance. As a result, it appears to the driver 500 that the virtual image is displayed far away.
運転者500から虚像までの虚像距離L1は、拡大ミラー140からスクリーン122までの光路長、及び拡大ミラー140の拡大率などによって決まる。遠距離用の第2の位置122bから拡大ミラー140までの光路長は、近距離用の第1の位置122aから拡大ミラー140までの光路長よりも長い。このため、遠距離の虚像エリア402bは、近距離の虚像エリア402aよりも、運転者500から遠い位置にある。
The virtual image distance L1 from the driver 500 to the virtual image is determined by the optical path length from the magnifying mirror 140 to the screen 122, the magnification rate of the magnifying mirror 140, and the like. The optical path length from the second position 122b for a long distance to the magnifying mirror 140 is longer than the optical path length from the first position 122a for a short distance to the magnifying mirror 140. For this reason, the far-distance virtual image area 402b is located farther from the driver 500 than the short-distance virtual image area 402a.
虚像制御部133は、映像データ変換部131からの映像信号データS2に基づき、運転者500から虚像エリア402aまでの距離及び運転者500から虚像エリア402bまでの距離を決定する。運転者500から虚像エリア402a及び402bまでの距離の決定は、映像信号データS2以外の情報(例えば、カメラ151が撮影した画像情報又はセンサーが検出した検出情報などの風景情報S7)に基づいて行われても良い。ただし、この場合には、虚像表示装置100で表示する映像と、距離の情報とを互いに関連付ける処理が必要である。
The virtual image control unit 133 determines the distance from the driver 500 to the virtual image area 402a and the distance from the driver 500 to the virtual image area 402b based on the video signal data S2 from the video data conversion unit 131. The distance from the driver 500 to the virtual image areas 402a and 402b is determined based on information other than the video signal data S2 (for example, landscape information S7 such as image information captured by the camera 151 or detection information detected by the sensor). It may be broken. However, in this case, a process for associating the video displayed on the virtual image display device 100 with the distance information is necessary.
スクリーン駆動部142は、スクリーン部120内のスクリーン(例えば、スクリーン122R若しくは122L、又はそれらの両方)の位置を調整する。図2に示される例では、スクリーン駆動部142は、制御部130の内部に備えられているが、スクリーン駆動部142の一部(例えば、モーターの駆動回路)は、制御部130又は映像表示部110の内部などの他の場所に備えられてもよい。スクリーン駆動部142は、制御部130の外部に備えられてもよい。
The screen driving unit 142 adjusts the position of the screen (for example, the screen 122R or 122L, or both) in the screen unit 120. In the example shown in FIG. 2, the screen driving unit 142 is provided in the control unit 130, but a part of the screen driving unit 142 (for example, a motor driving circuit) is the control unit 130 or the video display unit. It may be provided in other places such as the inside of 110. The screen driving unit 142 may be provided outside the control unit 130.
スクリーン駆動部142は、制御信号S4に基づき、スクリーン122の位置及び傾きを調整する。これにより、虚像は、スクリーン部120内のスクリーン(例えば、スクリーン122R若しくは122L、又はそれらの両方)の位置又は傾き又はそれらの両方に応じて、運転者の目の位置を基準とする遠近の方向(例えば、虚像エリア402aと虚像エリア402bとの間の任意の位置)又は傾き(例えば、虚像エリア402cの角度)が変化する。ここで「遠近の方向」とは、図1に示される例では、車両600の進行方向(z軸方向)である。スクリーン駆動部142は、制御信号S4を、虚像制御部133から受け取る。制御信号S4は、スクリーン122の位置を調整する位置情報又はスクリーン122の傾きを調整する傾き情報である。
The screen driving unit 142 adjusts the position and inclination of the screen 122 based on the control signal S4. Thereby, the virtual image is a perspective direction based on the position of the driver's eyes according to the position and / or inclination of the screen (for example, the screen 122R and / or 122L, or both) in the screen unit 120. (For example, an arbitrary position between the virtual image area 402a and the virtual image area 402b) or inclination (for example, the angle of the virtual image area 402c) changes. Here, the “perspective direction” is the traveling direction (z-axis direction) of the vehicle 600 in the example shown in FIG. The screen driving unit 142 receives the control signal S4 from the virtual image control unit 133. The control signal S4 is position information for adjusting the position of the screen 122 or inclination information for adjusting the inclination of the screen 122.
投射位置制御部134は、拡大ミラー140の位置又は傾き(すなわち、反射角度)を変更するための制御信号S5(すなわち、位置又は傾き又はそれらの両方を示す指示情報)を生成する。投射位置制御部134は、入力器150から、拡大ミラー140を調整するための信号S6を受け取る。
The projection position control unit 134 generates a control signal S5 (that is, instruction information indicating the position and / or the tilt) for changing the position or the tilt (that is, the reflection angle) of the magnifying mirror 140. The projection position control unit 134 receives a signal S <b> 6 for adjusting the magnifying mirror 140 from the input device 150.
入力器150は、例えば、入力ボタン、スイッチ、又はダイアル等のようなユーザー操作装置である。入力器150は、車両600に、虚像の投射位置の制御用として設けられている。入力器150は、例えば、運転者500によって操作される。
The input device 150 is a user operation device such as an input button, a switch, or a dial, for example. The input device 150 is provided in the vehicle 600 for controlling the projection position of the virtual image. The input device 150 is operated by the driver 500, for example.
投射位置制御部134は、信号S6を制御信号S5に変換する。制御信号S5は、拡大ミラー140の位置又は傾きを変更するための信号である。投射位置制御部134は、制御信号S5を拡大ミラー駆動部141に送る。
The projection position control unit 134 converts the signal S6 into a control signal S5. The control signal S5 is a signal for changing the position or tilt of the magnifying mirror 140. The projection position control unit 134 sends a control signal S5 to the magnifying mirror driving unit 141.
拡大ミラー駆動部141は、拡大ミラー140の位置又は傾きを調整する。図2に示される例では、拡大ミラー駆動部141は、制御部130の内部に備えられているが、拡大ミラー駆動部141の一部(例えば、モーターの駆動回路)は、制御部130又は映像表示部110の内部などの他の場所に備えられてもよい。拡大ミラー駆動部141は、制御部130の外部に備えられてもよい。
The magnifying mirror driving unit 141 adjusts the position or inclination of the magnifying mirror 140. In the example shown in FIG. 2, the magnifying mirror driving unit 141 is provided inside the control unit 130, but a part of the magnifying mirror driving unit 141 (for example, a motor driving circuit) is connected to the control unit 130 or an image. It may be provided in another place such as the inside of the display unit 110. The magnifying mirror driving unit 141 may be provided outside the control unit 130.
拡大ミラー駆動部141は、制御信号S5に基づき、拡大ミラー140の位置又は傾きを調整する。制御信号S5に応じて、虚像が表示される位置又は傾き(例えば、虚像エリア402a,402b,又は402c)が変化する。これにより、運転者500の体格の違い又は座席位置設定などによって運転者500の視点が変わった場合でも、虚像を視認できるように、虚像の位置及び傾きを調整することができる。運転者500は、虚像を確認しながら、最適な虚像位置を入力器150を用いて調整することができる。拡大ミラー駆動部141は、制御信号S5を、投射位置制御部134から受け取る。制御信号S5は、拡大ミラー140の位置又は傾きを調整するための信号である。ただし、本発明は、拡大ミラー駆動部141を備えておらず拡大ミラー140の位置が固定されている虚像表示装置にも適用可能である。
The magnifying mirror driving unit 141 adjusts the position or tilt of the magnifying mirror 140 based on the control signal S5. The position or inclination (for example, virtual image area 402a, 402b, or 402c) where the virtual image is displayed changes according to the control signal S5. Thereby, even when the viewpoint of the driver 500 changes due to the difference in the physique of the driver 500 or the seat position setting, the position and inclination of the virtual image can be adjusted so that the virtual image can be visually recognized. The driver 500 can adjust the optimum virtual image position using the input device 150 while confirming the virtual image. The magnifying mirror driving unit 141 receives the control signal S5 from the projection position control unit 134. The control signal S5 is a signal for adjusting the position or tilt of the magnifying mirror 140. However, the present invention can also be applied to a virtual image display device that does not include the magnifying mirror driving unit 141 and in which the position of the magnifying mirror 140 is fixed.
<スクリーンの構成>
図5(a)に示されるように、スクリーン121は、y軸方向においてスクリーン122と隣接している。具体的には、スクリーン121は、y軸方向におけるスクリーン122の上側に備えられている。図5(b)に示されるように、スクリーン121は、投射方向Rから投射方向Lまでの範囲でx軸方向に延在している。スクリーン121は、スクリーン部120内で固定されている。 <Screen configuration>
As shown in FIG. 5A, thescreen 121 is adjacent to the screen 122 in the y-axis direction. Specifically, the screen 121 is provided on the upper side of the screen 122 in the y-axis direction. As shown in FIG. 5B, the screen 121 extends in the x-axis direction in the range from the projection direction R to the projection direction L. The screen 121 is fixed in the screen unit 120.
図5(a)に示されるように、スクリーン121は、y軸方向においてスクリーン122と隣接している。具体的には、スクリーン121は、y軸方向におけるスクリーン122の上側に備えられている。図5(b)に示されるように、スクリーン121は、投射方向Rから投射方向Lまでの範囲でx軸方向に延在している。スクリーン121は、スクリーン部120内で固定されている。 <Screen configuration>
As shown in FIG. 5A, the
スクリーン122は、y軸方向におけるスクリーン121の下側に備えられている。具体的には、図5(a)に示されるように、スクリーン部120では、投射方向Sを境として、上側にスクリーン121が配置されており、下側にスクリーン122が配置されている。投射方向Sは、スクリーン121の下端と光出射口111aとを通る直線に平行な方向である。また、投射方向Sは、光源部111から出射された映像光の内のスクリーン122のスクリーン121側の端部1220を通過する光束の方向でもある。さらに、図5(b)に示されるように、スクリーン部120では、投射方向Cを境として、右側にスクリーン122Rが配置されており、左側にスクリーン122Lが配置されている。投射方向Cは、z軸方向と同じである。
The screen 122 is provided below the screen 121 in the y-axis direction. Specifically, as illustrated in FIG. 5A, in the screen unit 120, the screen 121 is disposed on the upper side and the screen 122 is disposed on the lower side with the projection direction S as a boundary. The projection direction S is a direction parallel to a straight line passing through the lower end of the screen 121 and the light emission port 111a. The projection direction S is also the direction of the light beam that passes through the end portion 1220 on the screen 121 side of the screen 122 in the image light emitted from the light source unit 111. Further, as shown in FIG. 5B, in the screen unit 120, with the projection direction C as a boundary, the screen 122R is arranged on the right side, and the screen 122L is arranged on the left side. The projection direction C is the same as the z-axis direction.
スクリーン122は、スクリーン121よりも光源部111の近くに位置する。y軸方向におけるスクリーン121の下端は、投射方向Sの延長線上に位置する。
The screen 122 is located closer to the light source unit 111 than the screen 121. The lower end of the screen 121 in the y-axis direction is located on an extension line in the projection direction S.
y軸方向におけるスクリーン122の上端(端部1220)は、スクリーン121の下端と光出射口111aとを通る直線に略一致又はこの直線よりも下側に位置することが望ましい。図5(a)では、スクリーン122の上端は、投射方向Sの延長線上に位置している。
It is desirable that the upper end (end portion 1220) of the screen 122 in the y-axis direction substantially coincides with a straight line passing through the lower end of the screen 121 and the light exit port 111a or is located below the straight line. In FIG. 5A, the upper end of the screen 122 is located on an extension line in the projection direction S.
スクリーン122は、第1の位置122aと第2の位置122bとの間で移動可能である。図5(b)に示される例では、スクリーン122Rは、第1の位置122Raと第2の位置122Rbとの間を移動可能である。図5(b)に示される第1の位置122Raは、図5(a)に示される第1の位置122aに対応し、図5(b)に示される第2の位置122Rbは、図5(a)に示される第2の位置122bに対応する。
The screen 122 is movable between the first position 122a and the second position 122b. In the example shown in FIG. 5B, the screen 122R is movable between the first position 122Ra and the second position 122Rb. The first position 122Ra shown in FIG. 5B corresponds to the first position 122a shown in FIG. 5A, and the second position 122Rb shown in FIG. This corresponds to the second position 122b shown in a).
同様に、図5(b)に示される例では、スクリーン122Lは、第1の位置122Laと第2の位置122Lbとの間を移動可能である。図5(b)に示される第1の位置122Laは、図5(a)に示される第1の位置122aに対応し、図5(b)に示される第2の位置122Lbは、図5(a)に示される第2の位置122bに対応する。
Similarly, in the example shown in FIG. 5B, the screen 122L is movable between the first position 122La and the second position 122Lb. The first position 122La shown in FIG. 5B corresponds to the first position 122a shown in FIG. 5A, and the second position 122Lb shown in FIG. This corresponds to the second position 122b shown in a).
スクリーン122R及び122Lは、互いに独立して移動可能である。
The screens 122R and 122L can move independently of each other.
スクリーン122の移動方向は、図5(a)において矢印で示されるように、投射方向Sと平行である。具体的には、スクリーン122Rは、y軸方向におけるスクリーン121の下端と光出射口111aとを通る直線(図5(a)においては、y軸方向におけるスクリーン122Rの上側の端部1220と光出射口111aとを通る直線)と平行に移動する。同様に、スクリーン122Lは、y軸方向におけるスクリーン121の下端と光出射口111aとを通る直線(図5(a)においては、y軸方向におけるスクリーン122Lの上側の端部1220と光出射口111aとを通る直線)と平行に移動する。したがって、スクリーン122の上端側に投影される映像光の位置は、スクリーン122の位置が変更された場合でも、スクリーン122の上端側に投影される。ただし、スクリーン122R及び122Lの移動方向は、スクリーン121の下端と光出射口111aとを通る直線よりも下側を移動することが望ましく、投射方向Sと厳密に平行でなくてもよい。スクリーン122がスクリーン121の下端と光出射口111aとを通る直線よりも下側を移動すれば、スクリーン122R又は122Lが移動しているとき、光源部111からスクリーン121に投射される映像光が、スクリーン122R又は122Lによって遮られることを防止することができる。
The moving direction of the screen 122 is parallel to the projection direction S as shown by the arrow in FIG. Specifically, the screen 122R has a straight line passing through the lower end of the screen 121 and the light emission port 111a in the y-axis direction (in FIG. 5A, the light emission is performed between the upper end portion 1220 of the screen 122R in the y-axis direction and the light emission port. It moves parallel to the straight line passing through the mouth 111a. Similarly, the screen 122L is a straight line passing through the lower end of the screen 121 and the light exit port 111a in the y-axis direction (in FIG. 5A, the upper end portion 1220 of the screen 122L in the y-axis direction and the light exit port 111a. And a straight line passing through Therefore, the position of the image light projected on the upper end side of the screen 122 is projected on the upper end side of the screen 122 even when the position of the screen 122 is changed. However, it is desirable that the moving directions of the screens 122R and 122L move below the straight line passing through the lower end of the screen 121 and the light emission port 111a, and the movement direction of the screens 122R and 122L may not be strictly parallel to the projection direction S. If the screen 122 moves below the straight line passing through the lower end of the screen 121 and the light exit port 111a, when the screen 122R or 122L is moving, the video light projected from the light source unit 111 to the screen 121 is It can be prevented from being blocked by the screen 122R or 122L.
さらに、スクリーン122Rの移動方向は、図5(b)において矢印で示されるように投射方向Cと平行である。投射方向Cは、z軸方向と平行である。ただし、スクリーン122Rの移動方向は、投射方向Cと厳密に平行でなくてもよい。同様に、スクリーン122Lの移動方向は、図5(b)において矢印で示されるように投射方向Cと平行である。ただし、スクリーン122Lの移動方向は、投射方向Cと厳密に平行でなくてもよい。
Furthermore, the moving direction of the screen 122R is parallel to the projection direction C as indicated by an arrow in FIG. The projection direction C is parallel to the z-axis direction. However, the moving direction of the screen 122R may not be strictly parallel to the projection direction C. Similarly, the moving direction of the screen 122L is parallel to the projection direction C as indicated by an arrow in FIG. However, the moving direction of the screen 122L may not be strictly parallel to the projection direction C.
スクリーン122は、y軸方向における上端近傍に位置する支軸1221を回転中心として回転する。すなわち、スクリーン122Rは、y軸方向における上端近傍の支軸を回転中心として回転する。同様に、スクリーン122Lは、y軸方向における上端近傍の支軸を回転中心として回転する。スクリーン122R及び122Lは、互いに独立して回転可能である。これにより、スクリーン122R及び122Lは、互いに独立して傾きを変更することができる。
The screen 122 rotates around a support shaft 1221 located near the upper end in the y-axis direction. That is, the screen 122R rotates around the support shaft near the upper end in the y-axis direction as the rotation center. Similarly, the screen 122L rotates about a support shaft near the upper end in the y-axis direction as a rotation center. The screens 122R and 122L can rotate independently of each other. Thereby, the screens 122R and 122L can change the inclination independently of each other.
スクリーン122R及び122Lは、上端側を回転中心として回転することで、例えば、第3の位置122cなどに位置するように傾くことができる。これにより、スクリーン122R及び122Lは、y軸方向における下側が光源部111に近づくように傾く。スクリーン122の上端側が回転中心であるので、スクリーン122の上端側に投影される映像光は、スクリーン122の傾きが変更された場合でも、スクリーン122の上端側に投影される。
The screens 122R and 122L can be tilted so as to be positioned at, for example, the third position 122c by rotating about the upper end side as the rotation center. Thereby, the screens 122R and 122L are inclined so that the lower side in the y-axis direction approaches the light source unit 111. Since the upper end side of the screen 122 is the center of rotation, the image light projected on the upper end side of the screen 122 is projected on the upper end side of the screen 122 even when the inclination of the screen 122 is changed.
制御部130は、スクリーン122Rの位置を移動させるようにスクリーン駆動部142を制御することによりスクリーン122Rから拡大ミラー140までの距離を変更し、第1の虚像(虚像エリア402内における虚像)の位置を変更する。同様に、制御部130は、スクリーン122Lの位置を移動させるようにスクリーン駆動部142を制御することによりスクリーン122Lから拡大ミラー140までの距離を変更し、第2の虚像(虚像エリア402内における虚像)の位置を変更する。制御部130は、スクリーン部120内のスクリーン122R及び122Lの位置を別々に制御することができる。これにより、制御部130は、運転者500の目の位置から第1の虚像の位置までの虚像距離(第1の虚像距離)と運転者500の目の位置から第2の虚像の位置までの虚像距離(第2の虚像距離)とが互いに異なるようにスクリーン122Rの位置及びスクリーン122Lの位置を制御することができる。
The control unit 130 changes the distance from the screen 122R to the magnifying mirror 140 by controlling the screen driving unit 142 so as to move the position of the screen 122R, and the position of the first virtual image (virtual image in the virtual image area 402). To change. Similarly, the control unit 130 changes the distance from the screen 122L to the magnifying mirror 140 by controlling the screen driving unit 142 so as to move the position of the screen 122L, and the second virtual image (the virtual image in the virtual image area 402). ) Position. The controller 130 can control the positions of the screens 122R and 122L in the screen unit 120 separately. Thus, the control unit 130 determines the virtual image distance (first virtual image distance) from the eye position of the driver 500 to the first virtual image position and the eye position of the driver 500 to the second virtual image position. The position of the screen 122R and the position of the screen 122L can be controlled so that the virtual image distance (second virtual image distance) is different from each other.
制御部130は、運転者500に案内する情報(例えば、運転者500に提供される注意情報などの内容)に応じて、運転者500の目の位置から第1の虚像の位置までの第1の虚像距離と運転者500の目の位置から第2の虚像の位置までの第2の虚像距離との差を制御することができる。
The control unit 130 determines the first from the position of the eyes of the driver 500 to the position of the first virtual image in accordance with information to guide the driver 500 (for example, contents such as caution information provided to the driver 500). And the second virtual image distance from the eye position of the driver 500 to the second virtual image position can be controlled.
制御部130は、スクリーン部120内のスクリーン122R及び122Lの傾きを別々に制御することができる。これにより、制御部130は、第1の虚像の傾きと第2の虚像の傾きとが互いに異なるようにスクリーン122Rの傾き及びスクリーン122Lの傾きを制御することができる。
The control unit 130 can separately control the inclination of the screens 122R and 122L in the screen unit 120. Thereby, the control unit 130 can control the inclination of the screen 122R and the inclination of the screen 122L so that the inclination of the first virtual image and the inclination of the second virtual image are different from each other.
制御部130は、運転者500に案内する情報に応じて、第1の虚像と第2の虚像とが成す角度を制御することができる。第1の虚像と第2の虚像とが成す角度は、例えば、図1において、虚像エリア402aの位置に第1の虚像が表示され、虚像エリア402cの位置に第2の虚像が表示される場合には、虚像エリア402aの面と虚像エリア402cの面とが成す角度である。運転者500からは、言い換えれば、第1の虚像と第2の虚像とが成す角度の調整によって、運転者500からは、第1の虚像が表示されている面の傾斜と第2の虚像が表示されている面の傾斜との違いを視覚的に認識することができる。
The control unit 130 can control the angle formed by the first virtual image and the second virtual image according to the information guided to the driver 500. The angle formed by the first virtual image and the second virtual image is, for example, in FIG. 1 when the first virtual image is displayed at the position of the virtual image area 402a and the second virtual image is displayed at the position of the virtual image area 402c. Is an angle formed by the surface of the virtual image area 402a and the surface of the virtual image area 402c. In other words, from the driver 500, by adjusting the angle formed by the first virtual image and the second virtual image, the driver 500 determines the inclination of the surface on which the first virtual image is displayed and the second virtual image. The difference from the inclination of the displayed surface can be visually recognized.
次に、虚像表示装置100の動作についていくつかの例を説明する。
<虚像表示例1;注意喚起>
図6は、虚像表示装置100によって表示される虚像の一例を示す図である。
図6に示される例は、前方の歩行者及び車両などに対する注意喚起の表示を行う例である。図6に示されるように、運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 Next, some examples of the operation of the virtualimage display device 100 will be described.
<Virtual image display example 1;
FIG. 6 is a diagram illustrating an example of a virtual image displayed by the virtualimage display device 100.
The example shown in FIG. 6 is an example of displaying a warning for a pedestrian and a vehicle ahead. As shown in FIG. 6, the virtual image generated by the virtualimage display device 100 is superimposed on the landscape when the driver 500 looks in the forward direction.
<虚像表示例1;注意喚起>
図6は、虚像表示装置100によって表示される虚像の一例を示す図である。
図6に示される例は、前方の歩行者及び車両などに対する注意喚起の表示を行う例である。図6に示されるように、運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 Next, some examples of the operation of the virtual
<Virtual image display example 1;
FIG. 6 is a diagram illustrating an example of a virtual image displayed by the virtual
The example shown in FIG. 6 is an example of displaying a warning for a pedestrian and a vehicle ahead. As shown in FIG. 6, the virtual image generated by the virtual
図6では、車両600(自車)から近い距離の位置において、道路の右端700Rから、対象物である歩行者701が道路を横断しようとしている状態を示している。同時に、図6では、車両600(自車)から遠い距離の位置において、道路の左端700Lから、他の対象物である車両702(他車)が道路に進入しようとしている状態を示している。
FIG. 6 shows a state where a pedestrian 701 as an object is about to cross the road from the right end 700R of the road at a position close to the vehicle 600 (own vehicle). At the same time, FIG. 6 shows a state where a vehicle 702 (another vehicle), which is another object, is about to enter the road from the left end 700L of the road at a position far from the vehicle 600 (the host vehicle).
図6では、歩行者701及び車両702に対して走行中の進路に進入する可能性がある注意喚起の対象として、虚像表示装置100は注意喚起のための虚像表示を行っている。具体的には、歩行者701に対しては、近い距離である虚像エリア402Ra上に、虚像である注意喚起マーク410を表示している。車両702に対しては、遠い距離である虚像エリア402Lbに、虚像である注意喚起マーク411を表示している。
In FIG. 6, the virtual image display device 100 displays a virtual image for alerting as a target for alerting the pedestrian 701 and the vehicle 702 that may enter a traveling route. Specifically, for the pedestrian 701, a warning mark 410 that is a virtual image is displayed on the virtual image area 402Ra that is a short distance. For the vehicle 702, a warning mark 411 that is a virtual image is displayed in a virtual image area 402Lb that is a long distance away.
すなわち、制御部130は、スクリーン駆動部142を制御することによって、運転者500の目の位置から第1の虚像の位置(図6に示される例では、虚像エリア402Ra)までの第1の虚像距離と運転者500の目の位置から第2の虚像の位置(図6に示される例では、虚像エリア402Lb)までの第2の虚像距離とが互いに異なるようにスクリーン122Rの位置(図5(b)に示される例では、第1の位置122Ra)及びスクリーン122Lの位置(図5(b)に示される例では、第2の位置122Lb)を制御する。
In other words, the control unit 130 controls the screen driving unit 142 to control the first virtual image from the position of the eyes of the driver 500 to the position of the first virtual image (in the example illustrated in FIG. 6, the virtual image area 402Ra). The position of the screen 122R (FIG. 5 (FIG. 5 (a)) is different from the distance and the second virtual image distance from the eye position of the driver 500 to the position of the second virtual image (the virtual image area 402Lb in the example shown in FIG. 6). In the example shown in b), the first position 122Ra) and the position of the screen 122L (in the example shown in FIG. 5B, the second position 122Lb) are controlled.
さらに図6に示される例では、制御部130は、運転者500に案内する情報(図6に示される例では、前方の歩行者701及び車両702などに対する注意喚起)に応じて、運転者500の目の位置から第1の虚像の位置(すなわち、虚像エリア402Ra)までの第1の虚像距離と運転者500の目の位置から第2の虚像の位置(すなわち、虚像エリア402Lb)までの第2の虚像距離との差を制御する。
Further, in the example shown in FIG. 6, the control unit 130 determines the driver 500 in accordance with information to guide the driver 500 (in the example shown in FIG. 6, alerting the pedestrian 701 and the vehicle 702 ahead). The first virtual image distance from the eye position to the first virtual image position (ie, virtual image area 402Ra) and the first virtual image distance from the driver 500 eye position to the second virtual image position (ie, virtual image area 402Lb). The difference between the virtual image distance of 2 is controlled.
虚像エリア402Raが表示される虚像距離は、例えば、車両600に搭載されたカメラ又はセンサー(例えば、図2のカメラ151)などによる画像データ又は検出データから測定又は推定(算出)した歩行者701までの距離に基づいて決定する。同様に、虚像エリア402Lbが表示される虚像距離も、車両702までの距離に基づいて決定する。
The virtual image distance at which the virtual image area 402Ra is displayed is, for example, up to a pedestrian 701 measured or estimated (calculated) from image data or detection data by a camera or sensor (for example, the camera 151 in FIG. 2) mounted on the vehicle 600. Determine based on the distance. Similarly, the virtual image distance at which the virtual image area 402Lb is displayed is also determined based on the distance to the vehicle 702.
注意喚起マーク410及び411の表示サイズは、距離及び対象物(図6に示される例では、歩行者701及び車両702)の距離及び大きさに基づいて決定し、注意喚起マーク410及び411の表示位置(対象物を基準にして上下左右の方向)については、運転者500が対象物を見た場合の視線方向において対象物に近い位置に決定する。
The display size of the warning marks 410 and 411 is determined based on the distance and the distance and size of the object (in the example shown in FIG. 6, the pedestrian 701 and the vehicle 702). The position (the vertical and horizontal directions with respect to the object) is determined as a position close to the object in the line-of-sight direction when the driver 500 views the object.
運転者500から近い距離である虚像エリア401には、車両600の走行速度又は走行道路の情報(図6に示される例では道路名)などが表示される。なお、運転者500が見ている対象物(視線上にある対象物)と虚像の表示位置とを完全に合わせる(一致させる)必要はなく、むしろ対象物の下側など、対象物から少しずらした位置に虚像を表示することで、運転者500にとって対象物の視認を容易にすることができる。
In the virtual image area 401 that is a short distance from the driver 500, the traveling speed of the vehicle 600 or information on the traveling road (the road name in the example shown in FIG. 6) is displayed. Note that it is not necessary to completely match (match) the object that the driver 500 is looking at (the object that is on the line of sight) with the display position of the virtual image. By displaying the virtual image at the position, the driver 500 can easily see the object.
上述のように、対象物に近い位置に虚像である注意喚起マーク410及び411を表示することで、運転者500は対象物及び注意喚起マーク410及び411を同時に視認しやすくなり、対象物及び注意喚起マーク410及び411の認識率が向上する。また、虚像表示装置100は、左右の虚像エリアで互いに異なる距離に虚像を表示することが可能なため、互いに異なる距離に位置する対象物に関する注意喚起を適切な表示位置で行うことが可能となる。
As described above, by displaying the warning marks 410 and 411 that are virtual images near the target object, the driver 500 can easily recognize the target object and the warning marks 410 and 411 at the same time. The recognition rate of the arousing marks 410 and 411 is improved. In addition, since the virtual image display device 100 can display virtual images at different distances in the left and right virtual image areas, it is possible to perform alerting on objects located at different distances at appropriate display positions. .
なお、虚像表示装置100で表示できる最大の虚像距離が対象物までの距離(すなわち、z軸方向における距離)よりも短い場合、対象物までの距離に合わせた表示位置に虚像を表示することが困難である。この場合、例えば、虚像表示装置100が表示可能な虚像距離の範囲において、虚像エリア402Raから歩行者701までの距離A1と、虚像エリア402Lbから車両702までの距離A2との間の相似関係が維持されるように、虚像エリア402Raの虚像距離と虚像エリア402Lbの虚像距離とを設定し、注意喚起マーク410及び411を表示する。つまり、図6において、虚像エリア402Lbから虚像エリア402Raまでの距離A3と、車両702から歩行者701までの距離A4との間の相似関係が維持されるようにする。
When the maximum virtual image distance that can be displayed by the virtual image display device 100 is shorter than the distance to the object (that is, the distance in the z-axis direction), the virtual image can be displayed at a display position that matches the distance to the object. Have difficulty. In this case, for example, in the range of the virtual image distance that can be displayed by the virtual image display device 100, the similar relationship between the distance A1 from the virtual image area 402Ra to the pedestrian 701 and the distance A2 from the virtual image area 402Lb to the vehicle 702 is maintained. As described above, the virtual image distance of the virtual image area 402Ra and the virtual image distance of the virtual image area 402Lb are set, and the warning marks 410 and 411 are displayed. That is, in FIG. 6, the similar relationship between the distance A3 from the virtual image area 402Lb to the virtual image area 402Ra and the distance A4 from the vehicle 702 to the pedestrian 701 is maintained.
虚像に対応した対象物とは、虚像を表示する対象となるものである。この例では、歩行者701及び車両702が、虚像に対応した対象物となる。
The object corresponding to the virtual image is an object for displaying the virtual image. In this example, the pedestrian 701 and the vehicle 702 are objects corresponding to virtual images.
また、虚像表示装置100で表示できる最小の虚像距離が、自車の運転者500の目から対象物までの距離より大きい場合についても、同様に対応する。この場合には、例えば、虚像エリア402Lbを、虚像表示装置100で表示可能な虚像距離の範囲内に移動する。例えば、図6において、虚像エリア402Lbから虚像エリア402Raまでの距離A3と、車両702から歩行者701までの距離A4との間の相似関係が維持されるようにする。つまり、虚像エリア402Raから歩行者701までの虚像距離A1と、虚像エリア402Lbから車両702までの虚像距離A2との間の相似関係が維持されるように、虚像エリア402Raの虚像距離を決定する。
The same applies to the case where the minimum virtual image distance that can be displayed by the virtual image display device 100 is larger than the distance from the eyes of the driver 500 of the vehicle to the target. In this case, for example, the virtual image area 402Lb is moved within the range of the virtual image distance that can be displayed by the virtual image display device 100. For example, in FIG. 6, the similar relationship between the distance A3 from the virtual image area 402Lb to the virtual image area 402Ra and the distance A4 from the vehicle 702 to the pedestrian 701 is maintained. That is, the virtual image distance of the virtual image area 402Ra is determined so that the similarity between the virtual image distance A1 from the virtual image area 402Ra to the pedestrian 701 and the virtual image distance A2 from the virtual image area 402Lb to the vehicle 702 is maintained.
つまり、虚像距離の異なる2つの虚像のどちらかが虚像表示装置100の表示可能な範囲外にある場合、虚像表示装置100は次のように動作する。虚像表示装置100は、2つの虚像の虚像距離の差(図6における距離A3に対応)を確保しながら、虚像表示装置100の表示可能な範囲に2つの虚像の虚像距離を変更して表示する。言い換えれば、制御部130は、図6における虚像エリア402Lbから虚像エリア402Raまでの距離(2つの位置座標の差)A3を確保しながら、虚像エリア402Lbと虚像エリア402Raの両方を表示可能な位置に、虚像エリア402Lbと虚像エリア402Raを移動させるように、スクリーン駆動部142を制御する。こうすることで、2つの虚像の虚像距離の差(図6におけるA3)を確保しながら2つの虚像を同時に表示することができる。
That is, when one of two virtual images having different virtual image distances is outside the displayable range of the virtual image display device 100, the virtual image display device 100 operates as follows. The virtual image display device 100 changes and displays the virtual image distance between the two virtual images in a displayable range of the virtual image display device 100 while ensuring a difference in the virtual image distance between the two virtual images (corresponding to the distance A3 in FIG. 6). . In other words, the control unit 130 secures a distance (difference between two position coordinates) A3 from the virtual image area 402Lb to the virtual image area 402Ra in FIG. 6 and at a position where both the virtual image area 402Lb and the virtual image area 402Ra can be displayed. The screen driving unit 142 is controlled so as to move the virtual image area 402Lb and the virtual image area 402Ra. By doing so, the two virtual images can be displayed simultaneously while ensuring the difference in the virtual image distance between the two virtual images (A3 in FIG. 6).
なお、2つより多い対象物がある場合には、例えば、優先される2つの対象物(例えば、危険度の高い2つの対象物、或いは車両600に近い2つの対象物など)を選択して表示するようにしても良い。
If there are more than two objects, for example, two priority objects (for example, two objects with high risk or two objects close to the vehicle 600) are selected. It may be displayed.
また、注意喚起すべき対象物が1つだけである場合、対象物に近い位置に注意喚起マークを表示可能であれば、注意喚起マークを表示するのみで良い。対象物に近い位置に注意喚起マークを表示することができない場合は、注意喚起マーク以外に、目印となる対象物マーク(例えば、交差点位置又は特定の距離を示すマークなど)を表示し、注意喚起マークの距離と目印となる対象物マークとの距離差により、対象物までの距離感を運転者500に認識しやすくすることができる。
Also, if there is only one object to be alerted, it is only necessary to display the alert mark if it can be displayed at a position close to the object. If the warning mark cannot be displayed near the target object, the target mark (for example, an intersection position or a mark indicating a specific distance) is displayed in addition to the warning mark. The driver 500 can easily recognize the sense of distance to the target object by the difference in the distance between the mark distance and the target object mark.
<虚像表示例2;交差点での経路案内>
図7は、虚像表示装置100によって表示される虚像の他の例を示す図である。
図7に示される例は、対象物である交差点での右折時に経路案内を表示する例である。図7に示されるように、車両600(自車)の運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 <Virtual image display example 2: Route guidance at intersections>
FIG. 7 is a diagram illustrating another example of a virtual image displayed by the virtualimage display device 100.
The example shown in FIG. 7 is an example in which route guidance is displayed when making a right turn at an intersection that is an object. As shown in FIG. 7, the virtual image generated by the virtualimage display device 100 is superimposed on the landscape when the driver 500 of the vehicle 600 (own vehicle) looks in the forward direction.
図7は、虚像表示装置100によって表示される虚像の他の例を示す図である。
図7に示される例は、対象物である交差点での右折時に経路案内を表示する例である。図7に示されるように、車両600(自車)の運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 <Virtual image display example 2: Route guidance at intersections>
FIG. 7 is a diagram illustrating another example of a virtual image displayed by the virtual
The example shown in FIG. 7 is an example in which route guidance is displayed when making a right turn at an intersection that is an object. As shown in FIG. 7, the virtual image generated by the virtual
道路700では、車両600に近い位置で右折可能であり、車両600から遠い位置に交差点がある。この場合において、虚像表示装置100は、遠い位置の交差点で右折を行うための経路案内として虚像の表示を行う。図7に示される例では、運転者500が前方方向を見た場合の路面の傾斜と虚像エリア402Lcの傾斜とは互いに同じである。
On the road 700, a right turn is possible at a position close to the vehicle 600, and there is an intersection at a position far from the vehicle 600. In this case, the virtual image display device 100 displays a virtual image as route guidance for making a right turn at a distant intersection. In the example shown in FIG. 7, the slope of the road surface and the slope of the virtual image area 402Lc when the driver 500 looks in the forward direction are the same.
図7に示される例では、車両600が進むべき経路(図7に示される例では、左車線)を案内する虚像である経路案内矢印421が、傾いて視認されるように虚像エリア402Lcに表示されている。虚像エリア402Rbには、車両600から交差点までの距離と同じ距離の位置に虚像である案内矢印422が表示されている。
In the example shown in FIG. 7, a route guidance arrow 421 that is a virtual image for guiding a route along which the vehicle 600 should travel (in the example shown in FIG. 7, the left lane) is displayed in the virtual image area 402 </ b> Lc so as to be visually recognized at an angle. Has been. In the virtual image area 402Rb, a guide arrow 422 that is a virtual image is displayed at the same distance as the distance from the vehicle 600 to the intersection.
すなわち、制御部130は、スクリーン駆動部142を制御することによって、第1の虚像(図7に示される例では、案内矢印422)の傾きと第2の虚像(図7に示される例では、経路案内矢印421)の傾きとが互いに異なるようにスクリーン122Rの傾き及びスクリーン122Lの傾きを制御する。
That is, the control unit 130 controls the screen driving unit 142 to control the inclination of the first virtual image (in the example shown in FIG. 7, the guide arrow 422) and the second virtual image (in the example shown in FIG. 7). The inclination of the screen 122R and the inclination of the screen 122L are controlled so that the inclination of the route guidance arrow 421) is different from each other.
<虚像表示例3;交差点での経路案内>
図8は、虚像表示装置100によって表示される虚像のさらに他の例を示す図である。
図8は、図7と同様に対象物である交差点での右折時に経路案内を表示する例である。図8に示されるように、車両600(自車)の運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。図8に示される例では、左側の虚像エリア402Lcに表示する内容が図7に示される例と異なる。 <Virtual image display example 3; Route guidance at intersections>
FIG. 8 is a diagram illustrating still another example of the virtual image displayed by the virtualimage display device 100.
FIG. 8 is an example in which route guidance is displayed at the time of a right turn at an intersection, which is an object, as in FIG. As shown in FIG. 8, the virtual image generated by the virtualimage display device 100 is superimposed on the landscape when the driver 500 of the vehicle 600 (own vehicle) looks in the forward direction. In the example shown in FIG. 8, the content displayed in the left virtual image area 402Lc is different from the example shown in FIG.
図8は、虚像表示装置100によって表示される虚像のさらに他の例を示す図である。
図8は、図7と同様に対象物である交差点での右折時に経路案内を表示する例である。図8に示されるように、車両600(自車)の運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。図8に示される例では、左側の虚像エリア402Lcに表示する内容が図7に示される例と異なる。 <Virtual image display example 3; Route guidance at intersections>
FIG. 8 is a diagram illustrating still another example of the virtual image displayed by the virtual
FIG. 8 is an example in which route guidance is displayed at the time of a right turn at an intersection, which is an object, as in FIG. As shown in FIG. 8, the virtual image generated by the virtual
虚像エリア402Lcには、前景の右折交差点を含めた簡略化した略地図である地図情報423aと、経路案内矢印423bと、車両600の現在位置を表す自車マーク423cとを含む表示内容423が虚像で表示されている。表示内容423を傾斜させて表示することで、運転者500は、前方背景と対比しやすくなる。
In the virtual image area 402Lc, a display content 423 including map information 423a that is a simplified schematic map including a right turn intersection in the foreground, a route guidance arrow 423b, and a vehicle mark 423c that represents the current position of the vehicle 600 is a virtual image. Is displayed. By displaying the display content 423 at an angle, the driver 500 can easily compare with the front background.
右側の虚像エリア402Rb内の案内矢印422は、右折交差点までの距離が虚像表示装置100で表示可能な虚像距離範囲(虚像を表示できる距離範囲)内となった場合に、右折交差点までの距離に合わせて虚像距離が調整され、表示される。なお、右折交差点までの距離が虚像表示装置100で表示可能な虚像距離範囲内となるまでは、虚像距離は最長の状態で、表示サイズを小さくし、表示位置を運転者500の視線に合わせて変更するようにすれば良い。また、虚像距離範囲外か虚像距離範囲内かによって、画像の鮮明さ及び表示色などを変えることで、運転者500に、対象物(交差点)と案内矢印422との距離が合っているか否かを認識させるようにしても良い。
The guide arrow 422 in the right virtual image area 402Rb indicates the distance to the right turn intersection when the distance to the right turn intersection is within the virtual image distance range that can be displayed by the virtual image display device 100 (distance range in which a virtual image can be displayed). In addition, the virtual image distance is adjusted and displayed. Until the distance to the right turn intersection is within the virtual image distance range that can be displayed by the virtual image display device 100, the virtual image distance is the longest, the display size is reduced, and the display position is adjusted to the line of sight of the driver 500. Change it. In addition, by changing the sharpness and display color of the image depending on whether it is outside the virtual image distance range or within the virtual image distance range, it is determined whether or not the distance between the object (intersection) and the guide arrow 422 matches the driver 500. You may make it recognize.
<虚像表示例4>
図9(a)及び(b)は、虚像表示装置100によって表示される虚像のさらに他の例を示す図である。図9(a)及び(b)は、図8と同様に、左車線を走行する車両600(自車)が交差点427で右折する際に経路案内を表示する例を示している。ここで、交差点427は対象物である。図9(a)及び(b)に示される例では、車両600の現在位置を表す自車マーク424が右側の虚像エリア402Rd、402Reに虚像として表示されている点が、図8に示される例と異なる。 <Example 4 of virtual image display>
FIGS. 9A and 9B are diagrams illustrating still another example of the virtual image displayed by the virtualimage display device 100. FIG. FIGS. 9A and 9B show an example in which route guidance is displayed when a vehicle 600 (own vehicle) traveling in the left lane turns right at an intersection 427, as in FIG. Here, the intersection 427 is an object. In the example shown in FIGS. 9A and 9B, the vehicle mark 424 indicating the current position of the vehicle 600 is displayed as a virtual image in the right virtual image areas 402Rd and 402Re as shown in FIG. And different.
図9(a)及び(b)は、虚像表示装置100によって表示される虚像のさらに他の例を示す図である。図9(a)及び(b)は、図8と同様に、左車線を走行する車両600(自車)が交差点427で右折する際に経路案内を表示する例を示している。ここで、交差点427は対象物である。図9(a)及び(b)に示される例では、車両600の現在位置を表す自車マーク424が右側の虚像エリア402Rd、402Reに虚像として表示されている点が、図8に示される例と異なる。 <Example 4 of virtual image display>
FIGS. 9A and 9B are diagrams illustrating still another example of the virtual image displayed by the virtual
図9(a)及び(b)に示される例では、制御部130は、運転者500の目から虚像が表示される虚像エリア402Lcまでの距離である虚像距離B1(又はB1′)の縮尺を示す指示情報に基づいて、運転者500の目から虚像が表示される虚像エリア402Rd、402Reまでの距離である第2の虚像距離B2(又はB2′)を決定する。
In the example shown in FIGS. 9A and 9B, the control unit 130 reduces the scale of the virtual image distance B1 (or B1 ′) that is the distance from the eyes of the driver 500 to the virtual image area 402Lc where the virtual image is displayed. Based on the indicated instruction information, a second virtual image distance B2 (or B2 ′) that is a distance from the eyes of the driver 500 to the virtual image areas 402Rd and 402Re where the virtual image is displayed is determined.
図9(a)及び(b)は、交差点427の右折を案内する場合の表示例である。図9(a)及び(b)の左側の虚像エリア402Lcには、案内する交差点427の略地図425が傾斜した(すなわち、遠距離の点が近距離の点より高い位置に見えるように傾斜した)虚像として表示されている。略地図425の下側が近距離の位置として表示され、上側が遠距離の位置として表示されている。図9(a)及び(b)の右側の虚像エリア402Rd、402Reには、自車の位置を表す自車マーク424が虚像として表示されている。
9 (a) and 9 (b) are display examples when guiding a right turn at an intersection 427. FIG. In the virtual image area 402Lc on the left side of FIGS. 9A and 9B, the approximate map 425 of the intersection 427 to be guided is inclined (that is, the long distance point is inclined so that it can be seen at a higher position than the short distance point). ) It is displayed as a virtual image. The lower side of the schematic map 425 is displayed as a short distance position, and the upper side is displayed as a long distance position. In the virtual image areas 402Rd and 402Re on the right side of FIGS. 9A and 9B, a vehicle mark 424 indicating the position of the vehicle is displayed as a virtual image.
図9(a)は、自車が、案内する交差点427から離れている場合を示す。この場合には、自車マーク424は、案内する交差点427よりも近距離の位置に虚像として表示される。図9(b)は、自車が案内する交差点427に近づいた場合を示す。この場合には、自車マーク424は、左側の略地図425の案内矢印426が虚像として表示されたときの案内矢印426の虚像距離B1′の位置の付近(すなわち、虚像距離B1′にほぼ等しい虚像距離B2′の位置の付近)に表示される。
FIG. 9 (a) shows a case where the vehicle is away from the intersection 427 to be guided. In this case, the vehicle mark 424 is displayed as a virtual image at a position closer to the intersection 427 to be guided. FIG. 9B shows a case where the vehicle approaches an intersection 427 guided by the own vehicle. In this case, the vehicle mark 424 is substantially equal to the position of the virtual image distance B1 ′ of the guide arrow 426 when the guide arrow 426 of the schematic map 425 on the left is displayed as a virtual image (that is, substantially equal to the virtual image distance B1 ′). Near the position of the virtual image distance B2 ').
さらに、図9(b)では、自車マーク424の先端を右側に向けて、交差点427が右折するポイントであることを示している。
Further, FIG. 9B shows that the intersection 427 is a right turn point with the tip of the vehicle mark 424 turned to the right.
なお、自車マーク424の形状は、図示の形状に限定されず、車の形状に似たアイコン又は矢印などの他の形状であっても良い。また、案内交差点に近づいた場合には、自車マーク424の形状を変更して(例えば、右折を示す右方向の矢印変更して)又は自車マーク424を強調表示して(例えば、輝度を上げる、色を変えて)、運転者500に右折するポイントであることを確実に通知するようにしても良い。
The shape of the vehicle mark 424 is not limited to the shape shown in the figure, and may be another shape such as an icon or an arrow similar to the shape of the car. When approaching a guidance intersection, change the shape of the vehicle mark 424 (for example, change the right arrow indicating a right turn) or highlight the vehicle mark 424 (for example, increase the brightness). The driver 500 may be surely notified that it is a point to turn right.
図9(a)及び(b)では、略地図425は、傾斜して表示されている。そのため、略地図425は、近距離の位置425aから遠距離の位置425bまで連続した形状の虚像である。また、図9(a)及び(b)では、略地図425は移動しない。このため、略地図425上の任意の点の虚像距離(すなわち、運転者の目から虚像上の点までの距離)は、図9(a)と図9(b)との間で変化していない。
9 (a) and 9 (b), the approximate map 425 is displayed with an inclination. Therefore, the approximate map 425 is a virtual image having a continuous shape from the short distance position 425a to the long distance position 425b. 9A and 9B, the approximate map 425 does not move. For this reason, the virtual image distance (that is, the distance from the driver's eye to the point on the virtual image) of an arbitrary point on the approximate map 425 changes between FIG. 9 (a) and FIG. 9 (b). Absent.
なお、略地図425の下側(近距離)の位置425aの虚像距離と上側(遠距離)の位置425bの虚像距離との間の差である距離差は、実際の距離差と異なってもよい。そのため、略地図425上の点の虚像距離は、実際の距離とは異なる。図9(a)及び(b)では、自車マーク424は、虚像エリア402Reにおいて、略地図425上の自車の位置424aの虚像距離に合わせた位置に表示される。つまり、自車マーク424の虚像距離B2(又はB2′)は、略地図425上で自車の位置424aの虚像距離B1(又はB1′)と同じである。
Note that the distance difference, which is the difference between the virtual image distance at the lower (near distance) position 425a of the approximate map 425 and the virtual image distance at the upper (far distance) position 425b, may be different from the actual distance difference. . Therefore, the virtual image distance of the point on the approximate map 425 is different from the actual distance. In FIGS. 9A and 9B, the vehicle mark 424 is displayed at a position corresponding to the virtual image distance of the vehicle position 424a on the approximate map 425 in the virtual image area 402Re. That is, the virtual image distance B2 (or B2 ′) of the own vehicle mark 424 is the same as the virtual image distance B1 (or B1 ′) of the position 424a of the own vehicle on the approximate map 425.
つまり、この虚像表示例では、経路案内矢印426で示される案内表示のポイントの虚像距離B1(又はB1′)と、自車を示す表示である自車マーク424の虚像距離B2(又はB2′)とを合わせる、すなわち、一致させる。ここで、案内表示のポイントは、自車が曲がる位置である。そして、経路案内矢印426は、傾斜させて示した左画面の虚像エリア402Lc内に虚像で表示されている。左画面の虚像は、近距離の位置425aから遠距離の位置425bにわたって表示されている。そして、自車を示す自車マーク424は、右画面の虚像エリア402Re内に表示されている。これによって、案内位置に対する距離感を虚像エリア402Lc内の虚像で把握しやすくなる効果があり、運転者500に分かりやすく経路案内を行うことができる。
That is, in this virtual image display example, the virtual image distance B1 (or B1 ′) of the point of guidance display indicated by the route guidance arrow 426 and the virtual image distance B2 (or B2 ′) of the vehicle mark 424 that is a display indicating the own vehicle. Are matched, that is, matched. Here, the point of guidance display is a position where the vehicle turns. The route guidance arrow 426 is displayed as a virtual image in the virtual image area 402Lc on the left screen shown in an inclined manner. The virtual image on the left screen is displayed from the short distance position 425a to the long distance position 425b. The own vehicle mark 424 indicating the own vehicle is displayed in the virtual image area 402Re on the right screen. Accordingly, there is an effect that it is easy to grasp the sense of distance with respect to the guidance position with the virtual image in the virtual image area 402Lc, and the route guidance can be easily performed for the driver 500.
また、虚像表示装置100において、虚像を表示できる距離範囲(z軸方向の範囲)は限られた狭い範囲である。例えば、装置の仕様又は設計によって、虚像を表示できる距離範囲は決まる。そのため、例えば、虚像を表示する2つの対象物の間の距離に応じて、虚像を表示できる距離範囲内で、2つの虚像(例えば、略地図425と自車マーク424)の間の距離を決定してもよい。この処理は、例えば、以下のように行われる。
Further, in the virtual image display device 100, a distance range (a range in the z-axis direction) in which a virtual image can be displayed is a limited narrow range. For example, the distance range in which a virtual image can be displayed is determined by the specification or design of the apparatus. Therefore, for example, the distance between the two virtual images (for example, the approximate map 425 and the vehicle mark 424) is determined within the distance range in which the virtual image can be displayed according to the distance between the two objects that display the virtual image. May be. This process is performed as follows, for example.
最初に、2つの対象物の内の一方の対象物(例えば、交差点427)に対する虚像(例えば、略地図425)の虚像距離を、虚像を表示できる距離範囲内で決定する。次に、2つの対象物の内の他方の対象物(例えば、自車)に対する虚像(例えば、自車マーク424)の虚像距離を、例えば、2つの対象物の距離と2つの虚像の間の距離との相似関係が維持されるように、虚像距離を決定する。
First, the virtual image distance of a virtual image (for example, the approximate map 425) with respect to one of the two objects (for example, the intersection 427) is determined within a distance range in which the virtual image can be displayed. Next, the virtual image distance of the virtual image (for example, the own vehicle mark 424) with respect to the other object (for example, the own vehicle) of the two objects is set, for example, between the distance between the two objects and the two virtual images. The virtual image distance is determined so that the similarity relationship with the distance is maintained.
或いは、以下のように2つの虚像の距離を決定してもよい。図9(a)及び(b)の例では、左画面の経路案内の虚像の虚像距離B1(又はB1′)が、傾斜状況と表示位置に応じて決定される。右画面の自車マーク424の虚像の虚像距離B2(又はB2′)は、虚像距離B1(又はB1′)に応じて制御される。つまり、自車から交差点427までの距離に応じて、図9(a)における自車マーク424の位置と図9(b)における自車マーク424の位置との間の距離が設定される。
Alternatively, the distance between the two virtual images may be determined as follows. In the example of FIGS. 9A and 9B, the virtual image distance B1 (or B1 ′) of the virtual image of the route guidance on the left screen is determined in accordance with the inclination state and the display position. The virtual image distance B2 (or B2 ′) of the virtual image of the vehicle mark 424 on the right screen is controlled according to the virtual image distance B1 (or B1 ′). That is, the distance between the position of the vehicle mark 424 in FIG. 9A and the position of the vehicle mark 424 in FIG. 9B is set according to the distance from the vehicle to the intersection 427.
このように、制御部130は、左画面における略地図425の虚像距離の縮尺に応じて、自車マーク424の虚像距離を決定し、決定された虚像距離を持つ位置に虚像を表示する。
As described above, the control unit 130 determines the virtual image distance of the vehicle mark 424 in accordance with the scale of the virtual image distance of the approximate map 425 on the left screen, and displays the virtual image at a position having the determined virtual image distance.
<虚像表示例5;傾斜差による経路案内>
図10は、虚像表示装置100によって表示される虚像のさらに他の例を示す図である。
図10に示される例は、高速道路の入口などのように、傾いている道路に対する案内を表示する例である。図10に示されるように、車両600(自車)の運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 <Virtual image display example 5: Route guidance by tilt difference>
FIG. 10 is a diagram illustrating still another example of the virtual image displayed by the virtualimage display device 100.
The example shown in FIG. 10 is an example of displaying guidance for a sloping road such as an entrance to a highway. As shown in FIG. 10, the virtual image generated by the virtualimage display device 100 is superimposed on the landscape when the driver 500 of the vehicle 600 (own vehicle) looks in the forward direction.
図10は、虚像表示装置100によって表示される虚像のさらに他の例を示す図である。
図10に示される例は、高速道路の入口などのように、傾いている道路に対する案内を表示する例である。図10に示されるように、車両600(自車)の運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 <Virtual image display example 5: Route guidance by tilt difference>
FIG. 10 is a diagram illustrating still another example of the virtual image displayed by the virtual
The example shown in FIG. 10 is an example of displaying guidance for a sloping road such as an entrance to a highway. As shown in FIG. 10, the virtual image generated by the virtual
図10に示される対象物である道路700は、右側の登りの(すなわち、上り勾配の)道路と左側の平坦な(すなわち、ほぼ水平な)道路とに分岐している。虚像エリア402Rc及び虚像エリア402Lcは、背景の道路700(すなわち、路面)に合わせて傾いている。具体的には、虚像エリア402Rcよりも、虚像エリア402Lcの方が大きく傾いている。
The road 700 which is the object shown in FIG. 10 is branched into a right-side uphill (ie, uphill) road and a left-side flat (ie, almost horizontal) road. The virtual image area 402Rc and the virtual image area 402Lc are inclined according to the background road 700 (that is, the road surface). Specifically, the virtual image area 402Lc is inclined more greatly than the virtual image area 402Rc.
すなわち、制御部130は、スクリーン駆動部142を制御することで、第1の虚像(図10に示される例では、経路案内矢印432の虚像)の傾きと第2の虚像(図10に示される例では、略地図である地図情報431の虚像)の傾きとが互いに異なるように、スクリーン122Rの傾き及びスクリーン122Lの傾きを制御する。
That is, the control unit 130 controls the screen driving unit 142 to tilt the first virtual image (in the example shown in FIG. 10, the virtual image of the route guidance arrow 432) and the second virtual image (shown in FIG. 10). In the example, the inclination of the screen 122R and the inclination of the screen 122L are controlled so that the inclination of the virtual image of the map information 431, which is an approximate map, is different from each other.
さらに、図10に示される例では、制御部130は、スクリーン駆動部142を制御することで、運転者500に案内する情報(図10に示される例では、傾いている道路に対する案内)に応じて、第1の虚像(すなわち、経路案内矢印432の虚像)と第2の虚像(すなわち、地図情報431の虚像)とが成す角度を制御する。具体的には、制御部130は、スクリーン駆動部142を制御することで、スクリーン122Lを、スクリーン122Rよりも、鉛直方向に対して大きく傾くように制御している。
Further, in the example shown in FIG. 10, the control unit 130 controls the screen driving unit 142 to respond to information that guides the driver 500 (in the example shown in FIG. 10, guidance for a sloping road). Thus, the angle formed by the first virtual image (that is, the virtual image of the route guide arrow 432) and the second virtual image (that is, the virtual image of the map information 431) is controlled. Specifically, the control unit 130 controls the screen driving unit 142 to control the screen 122L so that it is more inclined with respect to the vertical direction than the screen 122R.
第2の虚像は、左側の水平な路面上に表示される。第1の虚像は、左側の水平な路面に対して角度(上り勾配)を有する右側の路面上に表示される。経路案内矢印432は、右側の路面に対応させるように傾斜して表示するための傾き情報を有する。左側の路面は、例えば、水平である。地図情報431は、左側の路面に対応させるように虚像を傾斜して表示するための傾き情報を有さない、もしくは傾きがないことを示す傾き情報、若しくは傾きが第1の虚像の傾きよりも小さいことを示す傾き情報を有する。
The second virtual image is displayed on the horizontal road surface on the left side. The first virtual image is displayed on the right road surface having an angle (uphill gradient) with respect to the left horizontal road surface. The route guidance arrow 432 has tilt information for tilting and displaying so as to correspond to the road surface on the right side. The left road surface is horizontal, for example. The map information 431 does not have tilt information for tilting and displaying the virtual image so as to correspond to the road surface on the left side, or tilt information indicating that there is no tilt, or the tilt is greater than the tilt of the first virtual image. It has inclination information indicating that it is small.
虚像表示装置100では、傾き情報に基づき、左側の路面上の第2の虚像の傾きよりも右側の路面上の第1の虚像の傾きを大きくする。虚像表示装置100では、地図情報431を路面に沿って表示するために、スクリーン122Lを所定の角度に傾斜させる。虚像表示装置100の制御部130は、スクリーン駆動部142を制御することで、経路案内矢印432の傾き情報に基づき、スクリーン122Rを傾ける。スクリーン122Rの傾き量は、スクリーン122Lの傾き量よりも大きい。つまり、虚像表示装置100の制御部130は、は、傾き情報の差に基づき、スクリーン122Rとスクリーン122Lとの傾きの差を制御する。
In the virtual image display device 100, based on the inclination information, the inclination of the first virtual image on the right road surface is made larger than the inclination of the second virtual image on the left road surface. In the virtual image display device 100, the screen 122L is tilted at a predetermined angle in order to display the map information 431 along the road surface. The control unit 130 of the virtual image display device 100 controls the screen driving unit 142 to tilt the screen 122R based on the tilt information of the route guide arrow 432. The inclination amount of the screen 122R is larger than the inclination amount of the screen 122L. That is, the control unit 130 of the virtual image display device 100 controls the difference in tilt between the screen 122R and the screen 122L based on the difference in tilt information.
この例では、虚像に対応した対象物は、左右の路面である。制御部130は、虚像に対応した対象物の位置及び傾きに対応して、スクリーン122R及びスクリーン122Lの位置又は傾きを制御する。つまり、制御部130は、左右の路面の位置及び傾きに、虚像の位置及び傾きを対応させている。
In this example, the object corresponding to the virtual image is the left and right road surfaces. The control unit 130 controls the position or inclination of the screen 122R and the screen 122L corresponding to the position and inclination of the object corresponding to the virtual image. That is, the control unit 130 associates the position and inclination of the virtual image with the position and inclination of the left and right road surfaces.
虚像エリア402Lcには、左側の平坦な道路に関する簡略化した地図情報431が表示されている。虚像エリア402Rcには、右側の登りの道路に関する簡略化した地図情報と経路案内矢印432とが表示されている。
In the virtual image area 402Lc, simplified map information 431 relating to the left flat road is displayed. In the virtual image area 402Rc, simplified map information and a route guidance arrow 432 regarding the right uphill road are displayed.
経路案内矢印432の虚像距離及び傾きが、道路700の右側の登り部分の距離及び傾きと等しく、且つ運転者500の視線と合致する場所に経路案内矢印432を表示できる場合、虚像エリア402Rc内の簡略化した地図情報及び虚像エリア402Lcの簡略化した地図情報431の表示を省略しても良い。
When the route guidance arrow 432 can be displayed at a place where the virtual image distance and the inclination of the route guidance arrow 432 are equal to the distance and the inclination of the climbing portion on the right side of the road 700 and coincide with the line of sight of the driver 500, the virtual image area 402Rc The display of the simplified map information and the simplified map information 431 of the virtual image area 402Lc may be omitted.
虚像表示装置100の制約で、道路700とずれた距離又は位置で虚像を表示せざるを得ない場合、上述の簡略化した地図情報も矢印と共に表示するのが望ましい。特に、虚像エリア402Lcの地図情報431を経路案内矢印432と同時に表示することで、虚像エリア402Lc内の虚像と虚像エリア402Rc内の虚像との傾斜差から、一方の経路案内(図10に示される例では、道路700の右側)が登りを示すことを認識しやすくなる。そのため、右側と左側とで異なる傾きの虚像を表示する場合、必ずしも背景の傾斜の角度と合わせる必要はなく、運転者500にとって右側と左側とでどちらかの傾斜の方が急であるかが認識可能であれば良い。
When the virtual image is inevitably displayed at a distance or position deviated from the road 700 due to the restriction of the virtual image display device 100, it is desirable to display the above simplified map information together with the arrow. In particular, by displaying the map information 431 of the virtual image area 402Lc simultaneously with the route guidance arrow 432, one route guidance (shown in FIG. 10) is obtained from the inclination difference between the virtual image in the virtual image area 402Lc and the virtual image in the virtual image area 402Rc. In the example, it becomes easier to recognize that the right side of the road 700 indicates climbing. Therefore, when displaying virtual images with different inclinations on the right and left sides, it is not always necessary to match the inclination angle of the background, and the driver 500 recognizes which one of the inclinations on the right and left sides is steeper. If possible.
<虚像表示例6;高速道路情報>
図11(a)及び(b)は、虚像表示装置100によって表示される虚像の他の例を示す図である。
図11(a)及び(b)に示される例は、高速道路を走行中にSA(サービスエリア)又はPA(パーキングエリア)などの情報を表示する例である。図11(a)及び(b)に示されるように、運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 <Virtual image display example 6; Expressway information>
FIGS. 11A and 11B are diagrams illustrating other examples of virtual images displayed by the virtualimage display device 100. FIG.
The example shown in FIGS. 11A and 11B is an example in which information such as SA (service area) or PA (parking area) is displayed while traveling on a highway. As shown in FIGS. 11A and 11B, the virtual image generated by the virtualimage display device 100 is superimposed on the landscape when the driver 500 looks in the forward direction.
図11(a)及び(b)は、虚像表示装置100によって表示される虚像の他の例を示す図である。
図11(a)及び(b)に示される例は、高速道路を走行中にSA(サービスエリア)又はPA(パーキングエリア)などの情報を表示する例である。図11(a)及び(b)に示されるように、運転者500が前方方向を見た場合の風景に、虚像表示装置100によって生成された虚像が重畳されている。 <Virtual image display example 6; Expressway information>
FIGS. 11A and 11B are diagrams illustrating other examples of virtual images displayed by the virtual
The example shown in FIGS. 11A and 11B is an example in which information such as SA (service area) or PA (parking area) is displayed while traveling on a highway. As shown in FIGS. 11A and 11B, the virtual image generated by the virtual
図11(a)及び(b)に示される例は、3車線の高速道路において、中央の車線を走行している場合の風景を示す。傾いている虚像エリア402Rcには、SA及びPAを示す虚像であるリスト表示441が表示されている。リスト表示441では、上下3段にSAとPAを表示しており、傾斜させて表示しているため、上段に示したSAが遠くに表示され、下段に示したPAが近くに表示される。虚像エリア402Rc内のリスト表示441の位置関係と、実際のSA及びPAの位置関係とを合わせている。すなわち、車両600から近い位置にあるSA又はPAを近距離の位置(すなわち、手前側の位置)に表示し、車両600から遠い位置にあるSA又はPAを遠距離の位置(すなわち、奥側の位置)に表示する。これにより、運転者500は、実際のSA及びPAが、現在の位置から遠いか近いかを把握しやすくなる。
11 (a) and 11 (b) show the scenery when the vehicle is traveling in the center lane on a three-lane highway. In the tilted virtual image area 402Rc, a list display 441 which is a virtual image indicating SA and PA is displayed. In the list display 441, SA and PA are displayed in the upper and lower three stages, and are displayed in an inclined manner. Therefore, the SA shown in the upper stage is displayed far away, and the PA shown in the lower stage is displayed nearby. The positional relationship of the list display 441 in the virtual image area 402Rc is matched with the actual positional relationship of SA and PA. That is, the SA or PA that is close to the vehicle 600 is displayed at a short distance (that is, the near side position), and the SA or PA that is far from the vehicle 600 is displayed at a long distance (ie, the far side). Position). As a result, the driver 500 can easily grasp whether the actual SA and PA are far from or near the current position.
図11(a)では、上段のSAの表示を、中段のSA及び下段のPAに比べて濃く表示(すなわち、強調表示)している。具体的には、上段の虚像表示を中段及び下段の虚像表示よりも明るく表示したり、上段の虚像表示を中段及び下段よりも目立つ色(例えば、より原色に近い色など)で表示したりする。これにより、立ち寄り予定であるSA(すなわち、目標地)であることを示すことができ、情報を必要として選択されたSAであることを示すことができる。
In FIG. 11A, the upper SA display is darker (ie, highlighted) than the middle SA and the lower PA. Specifically, the upper virtual image display is displayed brighter than the middle and lower virtual image displays, or the upper virtual image display is displayed in a more conspicuous color (for example, a color closer to the primary color). . Thereby, it can be shown that it is SA (that is, the target location) that is scheduled to stop by, and it can be shown that it is SA that is selected in need of information.
虚像エリア402Lbは、リスト表示441の上段に示したSAが表示される虚像距離と同じ虚像距離に表示される。従って、虚像エリア402Lbの虚像距離は遠くに設定されている。虚像エリア402Lb内の詳細情報442は、SAの情報を示している。具体的には、詳細情報442は、現在の車両600の位置からのSAまでの距離情報と、SAの施設情報とを表示している。
The virtual image area 402Lb is displayed at the same virtual image distance as the virtual image distance at which the SA shown in the upper part of the list display 441 is displayed. Therefore, the virtual image distance of the virtual image area 402Lb is set far. Detailed information 442 in the virtual image area 402Lb indicates SA information. Specifically, the detailed information 442 displays distance information to the SA from the current position of the vehicle 600 and facility information of the SA.
図11(b)では、車両600が走行により、図11(a)の位置よりも目標地であるSAに近づいた位置における背景が示されている。この場合、SAに近づいた状態のリスト表示441bが虚像エリア402Rcに表示される。図11(b)の位置では、図11(a)の中段及び下段で示していたPAを通り過ぎているため、目標地であるSAが下段に表示され、目標地であるSAよりも遠方に位置するPA及びSAが新たに中段及び上段に表示されている。虚像エリア402Laでは、目標地であるSAが表示された下段の虚像距離に対応する虚像距離に詳細情報442bが表示される。
FIG. 11B shows the background at a position where the vehicle 600 is closer to the target location SA than the position of FIG. In this case, a list display 441b in a state approaching SA is displayed in the virtual image area 402Rc. In the position of FIG. 11 (b), since it has passed the PA shown in the middle and lower stages of FIG. 11 (a), the SA as the target location is displayed in the lower level and is located farther than the SA as the target location. PA and SA to be displayed are newly displayed in the middle and upper stages. In the virtual image area 402La, detailed information 442b is displayed at the virtual image distance corresponding to the lower virtual image distance on which the target location SA is displayed.
<虚像距離からスクリーン設定を決定する方法>
上述のいくつかの表示例においては、虚像表示装置100によって生成される虚像の虚像距離を、背景の対象物までの距離と同じになるように調整している。この様な表示を行うためには、スクリーン122の位置を適切に設定する必要がある。以下に、この方法について説明する。 <Method of determining screen settings from virtual image distance>
In some of the display examples described above, the virtual image distance of the virtual image generated by the virtualimage display device 100 is adjusted to be the same as the distance to the background object. In order to perform such display, it is necessary to set the position of the screen 122 appropriately. This method will be described below.
上述のいくつかの表示例においては、虚像表示装置100によって生成される虚像の虚像距離を、背景の対象物までの距離と同じになるように調整している。この様な表示を行うためには、スクリーン122の位置を適切に設定する必要がある。以下に、この方法について説明する。 <Method of determining screen settings from virtual image distance>
In some of the display examples described above, the virtual image distance of the virtual image generated by the virtual
虚像距離L1と投射距離D(拡大ミラー140からスクリーン122までの距離)との関係は、上記式(1)で近似的に示される。ただし、上記式(1)は、拡大ミラー140の形状を球形として近似的に表した式である。したがって、実際には拡大ミラー140又はこれに代わるコンバイナーなどは、球面ではなく自由曲面の形状であるため、式(1)をそのまま利用することはできない。
The relationship between the virtual image distance L1 and the projection distance D (distance from the magnifying mirror 140 to the screen 122) is approximately shown by the above equation (1). However, the above equation (1) is an equation that approximately represents the shape of the magnifying mirror 140 as a sphere. Accordingly, in reality, the magnifying mirror 140 or a combiner that replaces the magnifying mirror 140 is not a spherical surface but a free-form surface, and thus the expression (1) cannot be used as it is.
したがって、虚像距離L1と投射距離Dとの関係は、拡大ミラー140の形状を考慮した光学シミュレーションにより予め関係を導出しておくか、又は実測により関係を求めておく必要がある。導出した虚像距離L1と投射距離Dとの関係を近似し、予め関係式を求める。虚像表示装置100は、必要とする虚像距離L1から、予め求められた関係式を使って、投射距離Dを求め、その投射距離Dになるようにスクリーン122の位置及び傾きを制御する。
Therefore, the relationship between the virtual image distance L1 and the projection distance D needs to be derived in advance by an optical simulation considering the shape of the magnifying mirror 140, or the relationship needs to be obtained by actual measurement. The relation between the derived virtual image distance L1 and the projection distance D is approximated to obtain a relational expression in advance. The virtual image display device 100 obtains the projection distance D from the required virtual image distance L1 using a relational expression obtained in advance, and controls the position and inclination of the screen 122 so as to be the projection distance D.
図12は、虚像距離L1と投射距離Dとの関係の一例を示す図である。
投射距離Dが長くなるにつれ、虚像距離L1の変化量が大きくなる。この特性は、式(1)の関係と似ているが、式(1)の関係と同一にはならない。そのため、虚像距離L1と投射距離Dとの関係をそのまま多項式などで近似した場合、特に虚像距離L1の変化量が大きい範囲では、近似誤差が大きくなってしまう。 FIG. 12 is a diagram illustrating an example of the relationship between the virtual image distance L1 and the projection distance D.
As the projection distance D increases, the amount of change in the virtual image distance L1 increases. This characteristic is similar to the relationship of equation (1), but not the same as the relationship of equation (1). Therefore, when the relationship between the virtual image distance L1 and the projection distance D is approximated by a polynomial as it is, the approximation error becomes large especially in a range where the change amount of the virtual image distance L1 is large.
投射距離Dが長くなるにつれ、虚像距離L1の変化量が大きくなる。この特性は、式(1)の関係と似ているが、式(1)の関係と同一にはならない。そのため、虚像距離L1と投射距離Dとの関係をそのまま多項式などで近似した場合、特に虚像距離L1の変化量が大きい範囲では、近似誤差が大きくなってしまう。 FIG. 12 is a diagram illustrating an example of the relationship between the virtual image distance L1 and the projection distance D.
As the projection distance D increases, the amount of change in the virtual image distance L1 increases. This characteristic is similar to the relationship of equation (1), but not the same as the relationship of equation (1). Therefore, when the relationship between the virtual image distance L1 and the projection distance D is approximated by a polynomial as it is, the approximation error becomes large especially in a range where the change amount of the virtual image distance L1 is large.
そのため、近似誤差をできるだけ小さくする為に、例えば以下のように近似を行う。
図13は、虚像距離L1の逆数(すなわち、1/虚像距離L1)と、投射距離Dの逆数(すなわち、1/投射距離D)との関係を示す図である。
図13に示されるように、虚像距離L1の逆数と、投射距離Dの逆数との関係は比例に近い関係である。この関係を、例えば、3次又は4次の多項式で近似することで、両者の関係を精度良く近似することが可能となる。多項式の次数は、予め求めた虚像距離L1と投射距離Dとによって適時選定すれば良い。同様に、多項式以外の近似式を使うかどうかは、予め求めた虚像距離L1と投射距離Dとによって適時選定すれば良い。 Therefore, in order to make the approximation error as small as possible, approximation is performed as follows, for example.
FIG. 13 is a diagram illustrating the relationship between the reciprocal of the virtual image distance L1 (that is, 1 / virtual image distance L1) and the reciprocal of the projection distance D (that is, 1 / projection distance D).
As shown in FIG. 13, the relationship between the reciprocal of the virtual image distance L1 and the reciprocal of the projection distance D is close to proportional. By approximating this relationship with, for example, a cubic or quartic polynomial, the relationship between the two can be accurately approximated. The order of the polynomial may be selected in a timely manner based on the virtual image distance L1 and the projection distance D obtained in advance. Similarly, whether or not to use an approximate expression other than a polynomial may be selected in a timely manner based on the virtual image distance L1 and the projection distance D obtained in advance.
図13は、虚像距離L1の逆数(すなわち、1/虚像距離L1)と、投射距離Dの逆数(すなわち、1/投射距離D)との関係を示す図である。
図13に示されるように、虚像距離L1の逆数と、投射距離Dの逆数との関係は比例に近い関係である。この関係を、例えば、3次又は4次の多項式で近似することで、両者の関係を精度良く近似することが可能となる。多項式の次数は、予め求めた虚像距離L1と投射距離Dとによって適時選定すれば良い。同様に、多項式以外の近似式を使うかどうかは、予め求めた虚像距離L1と投射距離Dとによって適時選定すれば良い。 Therefore, in order to make the approximation error as small as possible, approximation is performed as follows, for example.
FIG. 13 is a diagram illustrating the relationship between the reciprocal of the virtual image distance L1 (that is, 1 / virtual image distance L1) and the reciprocal of the projection distance D (that is, 1 / projection distance D).
As shown in FIG. 13, the relationship between the reciprocal of the virtual image distance L1 and the reciprocal of the projection distance D is close to proportional. By approximating this relationship with, for example, a cubic or quartic polynomial, the relationship between the two can be accurately approximated. The order of the polynomial may be selected in a timely manner based on the virtual image distance L1 and the projection distance D obtained in advance. Similarly, whether or not to use an approximate expression other than a polynomial may be selected in a timely manner based on the virtual image distance L1 and the projection distance D obtained in advance.
なお、虚像距離L1と投射距離Dとの関係をテーブルで保持して使用するようにしても良い。この場合、投射距離Dの変化に対して、虚像距離L1の変化が大きくなる(すなわち、感度が高くなる)範囲においては、両者の関係を細かくテーブル化するのが望ましい。
It should be noted that the relationship between the virtual image distance L1 and the projection distance D may be held in a table and used. In this case, in a range where the change in the virtual image distance L1 is large (that is, the sensitivity is high) with respect to the change in the projection distance D, it is desirable that the relationship between the two is finely tabulated.
<スクリーン設定のフロー>
図14は、虚像距離L1の位置に虚像を表示するためのスクリーン122の制御方法の一例を示すフローチャートである。
虚像表示装置100によって生成される虚像の虚像距離L1は、例えば、制御部130で決定される。 <Screen setting flow>
FIG. 14 is a flowchart showing an example of a method for controlling thescreen 122 for displaying a virtual image at the position of the virtual image distance L1.
The virtual image distance L1 of the virtual image generated by the virtualimage display device 100 is determined by the control unit 130, for example.
図14は、虚像距離L1の位置に虚像を表示するためのスクリーン122の制御方法の一例を示すフローチャートである。
虚像表示装置100によって生成される虚像の虚像距離L1は、例えば、制御部130で決定される。 <Screen setting flow>
FIG. 14 is a flowchart showing an example of a method for controlling the
The virtual image distance L1 of the virtual image generated by the virtual
ステップS10では、映像データ変換部131は、虚像の表示位置を虚像距離L1に変更する。
In step S10, the video data converter 131 changes the virtual image display position to the virtual image distance L1.
ステップS20では、虚像制御部133は、映像データ変換部131からの映像信号データS2に基づき、虚像距離L1を設定する。
In step S20, the virtual image control unit 133 sets the virtual image distance L1 based on the video signal data S2 from the video data conversion unit 131.
ステップS30では、虚像制御部133は、ステップS20で設定された虚像距離L1と上述の式(1)などを用いて、投射距離Dを算出する。
In step S30, the virtual image control unit 133 calculates the projection distance D using the virtual image distance L1 set in step S20 and the above-described equation (1).
ステップS40では、虚像制御部133は、ステップS30で算出された投射距離Dに基づき、スクリーン122の位置及び傾きの設定値を算出する。
In step S40, the virtual image control unit 133 calculates setting values for the position and tilt of the screen 122 based on the projection distance D calculated in step S30.
ステップS50では、虚像制御部133は、ステップS40で得られた設定値に基づいて、スクリーン駆動部142を通してスクリーン122の位置及び傾きを制御する。これにより、虚像表示装置100によって生成される虚像は、虚像距離L1に表示される。
In step S50, the virtual image control unit 133 controls the position and inclination of the screen 122 through the screen driving unit 142 based on the setting value obtained in step S40. Thereby, the virtual image generated by the virtual image display device 100 is displayed at the virtual image distance L1.
なお、ステップS40におけるスクリーン122の設定値の算出では、スクリーン122の傾斜及び光源部111からの映像光の投射角度などを考慮する必要がある。例えば、スクリーン122の設定値は、例えば光源部111からの映像光の投射角度、スクリーン122から光源部111までの距離、スクリーン122の傾き、スクリーン122の位置の移動量及び方向などの設計情報を用いて求めることができる。なお、制御部130は、投射距離Dとスクリーン122の位置及び傾きとの関係を、テーブルとして保持しても良い。
In calculating the set value of the screen 122 in step S40, it is necessary to consider the inclination of the screen 122, the projection angle of the image light from the light source unit 111, and the like. For example, the setting value of the screen 122 includes design information such as the projection angle of the image light from the light source unit 111, the distance from the screen 122 to the light source unit 111, the tilt of the screen 122, the moving amount and direction of the position of the screen 122, and the like. It can be obtained using. Note that the control unit 130 may hold the relationship between the projection distance D and the position and inclination of the screen 122 as a table.
<実施の形態1の変形例>
図15(a)及び(b)は、スクリーン部120の他の例を示す図である。
実施の形態1の変形例では、上述の実施の形態1に係る虚像表示装置100におけるスクリーン部120の構成及び動作と異なる構成及び動作について以下に説明する。 <Modification ofEmbodiment 1>
FIGS. 15A and 15B are diagrams showing another example of thescreen unit 120.
In the modification of the first embodiment, a configuration and operation different from the configuration and operation of thescreen unit 120 in the virtual image display device 100 according to the first embodiment will be described below.
図15(a)及び(b)は、スクリーン部120の他の例を示す図である。
実施の形態1の変形例では、上述の実施の形態1に係る虚像表示装置100におけるスクリーン部120の構成及び動作と異なる構成及び動作について以下に説明する。 <Modification of
FIGS. 15A and 15B are diagrams showing another example of the
In the modification of the first embodiment, a configuration and operation different from the configuration and operation of the
図15(a)及び(b)に示されるスクリーン部120aでは、投射方向Cではなく投射方向C1を境として、スクリーン122R及びスクリーン122Lが配置されている点で、図5(a)及び(b)に示されるスクリーン部120と異なる。投射方向C1は、xz平面上において投射方向Cに対して傾斜している。スクリーン部120aは、スクリーン部120の代わりに図1に示される映像表示部110に適用可能である。
In the screen portion 120a shown in FIGS. 15A and 15B, the screen 122R and the screen 122L are arranged with respect to the projection direction C1 instead of the projection direction C as shown in FIGS. The screen portion 120 shown in FIG. The projection direction C1 is inclined with respect to the projection direction C on the xz plane. The screen unit 120 a can be applied to the video display unit 110 shown in FIG. 1 instead of the screen unit 120.
さらに、図15(b)に示されるスクリーン122R及び122Lは、x軸方向における長さが互いに異なる点で、図5(b)に示されるスクリーン122R及び122Lと異なる。具体的には、x軸方向においてスクリーン122Rは、スクリーン122Lよりも長い。
Further, the screens 122R and 122L shown in FIG. 15B are different from the screens 122R and 122L shown in FIG. 5B in that the lengths in the x-axis direction are different from each other. Specifically, the screen 122R is longer than the screen 122L in the x-axis direction.
スクリーン122の移動方向は、図15(b)において矢印で示されるように、投射方向C1と平行である。具体的には、スクリーン122Rは、スクリーン122Rとスクリーン122Lとの境界と光出射口111aとを通る直線と平行に移動する。同様に、スクリーン122Lは、スクリーン122Rとスクリーン122Lとの境界と光出射口111aとを通る直線と平行に移動する。したがって、光源部111からの映像光は、分割されたスクリーン(すなわち、スクリーン122R及び122L)の移動及び傾きに影響されない。
The moving direction of the screen 122 is parallel to the projection direction C1, as indicated by an arrow in FIG. Specifically, the screen 122R moves in parallel with a straight line passing through the boundary between the screen 122R and the screen 122L and the light exit port 111a. Similarly, the screen 122L moves in parallel with a straight line passing through the boundary between the screen 122R and the screen 122L and the light exit port 111a. Therefore, the image light from the light source unit 111 is not affected by the movement and inclination of the divided screens (that is, the screens 122R and 122L).
図5(b)に示される例では、運転者500から見た正面(例えば、中央を境界にして)で虚像の映像が分割される。これに対して、図15(a)及び(b)に示される例では、2つのスクリーンの分割位置(すなわち、スクリーン122Rとスクリーン122Lとの境界)を左右(すなわち、x軸方向)のどちらかにオフセットさせることで、運転者500から見て虚像が分割されないようにすることができる。そのため、例えば、運転者500の正面には、傾斜させた案内矢印を表示し、スクリーン122Lにより補足情報、距離差、又は傾斜差が分かるような比較情報を表示するようにすれば良い。
In the example shown in FIG. 5B, a virtual image is divided at the front as viewed from the driver 500 (for example, with the center as a boundary). On the other hand, in the example shown in FIGS. 15A and 15B, the dividing position of the two screens (that is, the boundary between the screen 122R and the screen 122L) is either left or right (that is, the x-axis direction). By offsetting, the virtual image can be prevented from being divided when viewed from the driver 500. Therefore, for example, a tilted guide arrow may be displayed on the front of the driver 500, and comparison information that shows supplementary information, a distance difference, or a tilt difference may be displayed on the screen 122L.
なお、図15(a)及び(b)の例では、2つのスクリーンの分割位置を左側にオフセットさせた位置としているが、右側にオフセットさせた位置としても良い。オフセット量は任意の量とすることができる。スクリーン121とスクリーン122との間、及びスクリーン122Rとスクリーン122Lとの間などのスクリーンの分割位置では、隙間が少なからず発生するため、スクリーンの分割位置に相当する領域は、光源部111からの映像光が出力されないように、映像情報で制限するのが望ましい。
In the example of FIGS. 15A and 15B, the divided positions of the two screens are offset to the left side, but may be offset to the right side. The offset amount can be an arbitrary amount. Since a gap is generated at the screen division position such as between the screen 121 and the screen 122 and between the screen 122R and the screen 122L, an area corresponding to the screen division position is an image from the light source unit 111. It is desirable to limit the video information so that no light is output.
<実施の形態1及びその変形例の効果>
以上に説明したように、スクリーン部120内のスクリーンを3分割に配置し、虚像として表示する情報に応じて、その内の2つのスクリーン(すなわち、スクリーン122R及び122L)の位置及び傾きを変更できるようにしたため、虚像表示装置100によって生成される第1の虚像と第2の虚像との間に距離差及び傾斜差を設けることができる。これにより、案内表示などをわかり易く表示することができる。 <Effects ofEmbodiment 1 and its Modification>
As described above, the screen in thescreen unit 120 is divided into three parts, and the position and inclination of two of the screens (that is, the screens 122R and 122L) can be changed according to information displayed as a virtual image. Therefore, a distance difference and a tilt difference can be provided between the first virtual image and the second virtual image generated by the virtual image display device 100. Thereby, guidance display etc. can be displayed clearly.
以上に説明したように、スクリーン部120内のスクリーンを3分割に配置し、虚像として表示する情報に応じて、その内の2つのスクリーン(すなわち、スクリーン122R及び122L)の位置及び傾きを変更できるようにしたため、虚像表示装置100によって生成される第1の虚像と第2の虚像との間に距離差及び傾斜差を設けることができる。これにより、案内表示などをわかり易く表示することができる。 <Effects of
As described above, the screen in the
また、スクリーン122の移動方向を、光源部111からの映像光の投射方向を考慮した方向とすることで、スクリーン122を移動させた場合に、映像光が別のスクリーンによって遮られることを防ぐことができる。
In addition, the moving direction of the screen 122 is set to a direction that takes into consideration the projection direction of the image light from the light source unit 111, thereby preventing the image light from being blocked by another screen when the screen 122 is moved. Can do.
また、映像光が別のスクリーンによって遮られることを防ぐことができるため、1個の光源部111からの映像光を複数に分割したスクリーンに投影できる。これにより、少ない光源部で複数の虚像距離及び傾きに虚像を表示することができる。
In addition, since the image light can be prevented from being blocked by another screen, the image light from one light source unit 111 can be projected onto a plurality of divided screens. Thereby, a virtual image can be displayed at a plurality of virtual image distances and inclinations with a small number of light source units.
車載用途においては、信頼性などの点で、可動機構部品は避けられがちであるが、本実施の形態では、スクリーンのような軽い部品の位置及び傾きを変更するので、虚像表示装置を動かすような方式に比べ、信頼性を確保しやすい。
In in-vehicle applications, moving mechanism parts are often avoided in terms of reliability and the like, but in this embodiment, the position and inclination of a light part such as a screen is changed, so that the virtual image display device is moved. Reliability is easy to secure compared to other methods.
また、虚像距離L1と投射距離Dとの関係を予め近似しておくことで、所望の虚像距離L1に精度良く虚像を表示できる。
Further, by approximating the relationship between the virtual image distance L1 and the projection distance D in advance, a virtual image can be displayed with high accuracy at the desired virtual image distance L1.
虚像表示装置で表示する距離差及び傾斜差が表現できるようになるため、虚像距離及び虚像の傾きが背景と完全に一致していなくても、スクリーン122Rとスクリーン122Lとの間における距離差及び傾斜差により、背景と虚像との関連性を運転者にわかり易く伝えることができる。そのため、虚像表示装置100の設置位置調整及び虚像の表示位置調整が簡易になり、運転者により好みの位置に表示するようにしても、わかり易く表示することができる。
Since the distance difference and the inclination difference displayed by the virtual image display device can be expressed, even if the virtual image distance and the inclination of the virtual image do not completely coincide with the background, the distance difference and the inclination between the screen 122R and the screen 122L. Due to the difference, the driver can easily understand the relationship between the background and the virtual image. Therefore, the installation position adjustment of the virtual image display device 100 and the virtual image display position adjustment are simplified, and even if the driver displays the image at a favorite position, the display can be easily understood.
実施の形態2.
図16(a)及び(b)は、本発明の実施の形態2に係る虚像表示装置の映像表示部の構成を概略的に示す図である。
具体的には、図16(a)は、光源部111から映像光がスクリーン部120bに向けて出射されている状態における光源部111、スクリーン121、及びスクリーン122の位置関係を示す図である。
具体的には、図16(b)は、光源部111から映像光がスクリーン部120bに向けて出射されている状態における光源部111、第1のスクリーンとしてのスクリーン122R(右側スクリーンともいう)、第2のスクリーンとしてのスクリーン122L(左側スクリーンともいう)、第3のスクリーンとしてのスクリーン121(上側スクリーンともいう)、及び第4のスクリーンとしてのスクリーン123(傾斜スクリーンともいう)の位置関係を示す図である。Embodiment 2. FIG.
FIGS. 16A and 16B are diagrams schematically showing the configuration of the video display unit of the virtual image display device according toEmbodiment 2 of the present invention.
Specifically, FIG. 16A is a diagram illustrating a positional relationship among thelight source unit 111, the screen 121, and the screen 122 in a state where image light is emitted from the light source unit 111 toward the screen unit 120b.
Specifically, FIG. 16B illustrates thelight source unit 111 in a state where image light is emitted from the light source unit 111 toward the screen unit 120b, a screen 122R as a first screen (also referred to as a right screen), The positional relationship of a screen 122L (also referred to as a left screen) as a second screen, a screen 121 (also referred to as an upper screen) as a third screen, and a screen 123 (also referred to as an inclined screen) as a fourth screen is shown. FIG.
図16(a)及び(b)は、本発明の実施の形態2に係る虚像表示装置の映像表示部の構成を概略的に示す図である。
具体的には、図16(a)は、光源部111から映像光がスクリーン部120bに向けて出射されている状態における光源部111、スクリーン121、及びスクリーン122の位置関係を示す図である。
具体的には、図16(b)は、光源部111から映像光がスクリーン部120bに向けて出射されている状態における光源部111、第1のスクリーンとしてのスクリーン122R(右側スクリーンともいう)、第2のスクリーンとしてのスクリーン122L(左側スクリーンともいう)、第3のスクリーンとしてのスクリーン121(上側スクリーンともいう)、及び第4のスクリーンとしてのスクリーン123(傾斜スクリーンともいう)の位置関係を示す図である。
FIGS. 16A and 16B are diagrams schematically showing the configuration of the video display unit of the virtual image display device according to
Specifically, FIG. 16A is a diagram illustrating a positional relationship among the
Specifically, FIG. 16B illustrates the
本実施の形態において各図に示されるx軸は、運転者500が前方を見た場合の左右方向の軸を示し、右側(すなわち、右方向)は正方向を示す。本実施の形態において各図に示されるy軸は、運転者500が前方を見た場合の上下方向の軸を示し、上側(すなわち、上方向)は正方向を示す。本実施の形態において各図に示されるz軸は、運転者500が前方を見た場合の奥行方向(前後方向)の軸を示し、奥側(前側)は正方向を示す。本実施の形態では、x軸方向及びz軸方向は水平方向であり、y軸方向は鉛直方向である。ただし、車両600の状態によっては、必ずしもx軸方向及びz軸方向は水平方向と一致していなくてもよく、同様に、y軸方向も鉛直方向と一致していなくてもよい。
In the present embodiment, the x-axis shown in each figure indicates the left-right axis when the driver 500 looks forward, and the right side (that is, the right direction) indicates the positive direction. In the present embodiment, the y-axis shown in each figure indicates the vertical axis when the driver 500 looks forward, and the upper side (that is, the upward direction) indicates the positive direction. In the present embodiment, the z-axis shown in each drawing indicates the axis in the depth direction (front-rear direction) when the driver 500 looks forward, and the back side (front side) indicates the positive direction. In the present embodiment, the x-axis direction and the z-axis direction are horizontal directions, and the y-axis direction is a vertical direction. However, depending on the state of the vehicle 600, the x-axis direction and the z-axis direction do not necessarily coincide with the horizontal direction, and similarly, the y-axis direction does not necessarily coincide with the vertical direction.
実施の形態2では、実施の形態1に係る虚像表示装置100の構成及び動作と異なる構成及び動作について以下に説明する。実施の形態2に係る虚像表示装置において、映像表示部以外の構成は、実施の形態1と同じである。実施の形態2に係る虚像表示装置の映像表示部は、図1に示される映像表示部110に適用可能である。
In the second embodiment, a configuration and operation different from the configuration and operation of the virtual image display device 100 according to the first embodiment will be described below. In the virtual image display device according to the second embodiment, the configuration other than the video display unit is the same as that of the first embodiment. The video display unit of the virtual image display device according to the second embodiment is applicable to the video display unit 110 shown in FIG.
図16(a)及び(b)に示されるように、実施の形態2に係る虚像表示装置の映像表示部は、光源部111と、スクリーン部120bとを有する。
16A and 16B, the video display unit of the virtual image display device according to Embodiment 2 includes a light source unit 111 and a screen unit 120b.
図16(a)及び(b)に示されるスクリーン部120bは、第1のスクリーンとしてのスクリーン122R、第2のスクリーンとしてのスクリーン122L、及び第3のスクリーンとしてのスクリーン121に加えて、第4のスクリーンとしてのスクリーン123(傾斜スクリーンともいう)を有する点で、図5(a)及び(b)に示されるスクリーン部120と異なる。スクリーン部120bは、スクリーン部120の代わりに図1に示される映像表示部110に適用可能である。
In addition to the screen 122R as the first screen, the screen 122L as the second screen, and the screen 121 as the third screen, the screen portion 120b shown in FIGS. This is different from the screen portion 120 shown in FIGS. 5A and 5B in that it has a screen 123 (also referred to as an inclined screen) as the screen. The screen unit 120 b can be applied to the video display unit 110 shown in FIG. 1 instead of the screen unit 120.
本実施の形態では、スクリーン122R、スクリーン122L、及びスクリーン123の一組を「スクリーン122」と称する。
In this embodiment, a set of the screen 122R, the screen 122L, and the screen 123 is referred to as a “screen 122”.
図16(a)に示されるように、y軸方向において投射方向Mを中心として、上側の投射方向Uと下側の投射方向Bとの間の範囲で、光源部111から映像光が出射され、スクリーン部120bに投射される。
As shown in FIG. 16A, the image light is emitted from the light source unit 111 in the range between the upper projection direction U and the lower projection direction B with the projection direction M as the center in the y-axis direction. Projected onto the screen part 120b.
図16(b)に示されるように、x軸方向において投射方向Cを中心として、右側の投射方向Rと左側の投射方向Lとの間の範囲で、光源部111から映像光が出射され、スクリーン部120bに投射される。スクリーン121は、投射方向Rから投射方向Lまでの範囲でx軸方向に延在している。
As shown in FIG. 16B, image light is emitted from the light source unit 111 in a range between the right projection direction R and the left projection direction L around the projection direction C in the x-axis direction. It is projected on the screen part 120b. The screen 121 extends in the x-axis direction in the range from the projection direction R to the projection direction L.
スクリーン122は、y軸方向においてスクリーン121と隣接している。具体的には、スクリーン122は、y軸方向におけるスクリーン121の下側に備えられている。図16(a)に示されるように、スクリーン部120bでは、投射方向Sを境として、上側にスクリーン121が配置されており、下側にスクリーン122が配置されている。さらに、図16(b)に示されるように、スクリーン部120bでは、投射方向Cを境として、右側にスクリーン122Rが配置されており、左側にスクリーン122Lが配置されており、スクリーン123は、スクリーン122Rとスクリーン122Lとの間に配置されている。さらに、スクリーン122R、スクリーン122L、及びスクリーン123は、x軸方向に配列されている。
The screen 122 is adjacent to the screen 121 in the y-axis direction. Specifically, the screen 122 is provided below the screen 121 in the y-axis direction. As shown in FIG. 16A, in the screen portion 120b, the screen 121 is disposed on the upper side and the screen 122 is disposed on the lower side with the projection direction S as a boundary. Further, as shown in FIG. 16B, in the screen portion 120b, the screen 122R is disposed on the right side and the screen 122L is disposed on the left side with the projection direction C as a boundary. It is arranged between 122R and the screen 122L. Furthermore, the screen 122R, the screen 122L, and the screen 123 are arranged in the x-axis direction.
スクリーン部120bをx軸方向に見たとき、スクリーン123は、スクリーン122R及び122Lに対して傾斜した状態で固定されている。ただし、スクリーン部120bをx軸方向に見たとき、スクリーン122R及び122Lは、スクリーン123と平行になるように傾くことができる。
When the screen portion 120b is viewed in the x-axis direction, the screen 123 is fixed in an inclined state with respect to the screens 122R and 122L. However, when the screen portion 120b is viewed in the x-axis direction, the screens 122R and 122L can be inclined so as to be parallel to the screen 123.
拡大ミラー140は、スクリーン122Rを透過した映像光を第1の虚像として反射し、スクリーン122Lを透過した映像光を第2の虚像として反射し、スクリーン121を透過した映像光を第3の虚像として反射し、スクリーン123を透過した映像光を第4の虚像として反射する。
The magnifying mirror 140 reflects the video light transmitted through the screen 122R as a first virtual image, reflects the video light transmitted through the screen 122L as a second virtual image, and sets the video light transmitted through the screen 121 as a third virtual image. The image light reflected and transmitted through the screen 123 is reflected as a fourth virtual image.
スクリーン123は、台形形状である。これにより、光源部111から出射される映像光のxy平面上の形状に合わせることができる。
The screen 123 has a trapezoidal shape. Thereby, it can match | combine with the shape on xy plane of the image light radiate | emitted from the light source part 111. FIG.
スクリーン123の上側は、運転者500から見て近距離側である下側の虚像表示に対応し、スクリーン123の下側は、運転者500から見て遠距離側である上側の虚像表示に対応している。遠近表示を行う場合、一般的に遠距離を小さく表示することが自然であるため、遠距離側の表示エリアに相当するスクリーン123の下側のサイズ(具体的には、x軸方向における長さ)は、スクリーン123の上側のサイズ(具体的には、x軸方向における長さ)に比べて小さい。光源部111からの投射方向に応じてスクリーン123の形状を決定することで、スクリーン123の両側に設置されたスクリーン122R及び122Lの移動方向を、投射方向に合わせることができる。これにより、スクリーン123に投射される映像光がスクリーン122R又は122Lによって遮られることを防ぐことができる。
The upper side of the screen 123 corresponds to the lower virtual image display on the near side as viewed from the driver 500, and the lower side of the screen 123 corresponds to the upper virtual image display on the far side as viewed from the driver 500. is doing. When performing perspective display, since it is generally natural to display a long distance in a small size, the lower size of the screen 123 corresponding to the long-distance display area (specifically, the length in the x-axis direction). ) Is smaller than the size of the upper side of the screen 123 (specifically, the length in the x-axis direction). By determining the shape of the screen 123 according to the projection direction from the light source unit 111, the moving directions of the screens 122R and 122L installed on both sides of the screen 123 can be matched with the projection direction. Thereby, it is possible to prevent the image light projected on the screen 123 from being blocked by the screen 122R or 122L.
スクリーン122Rは、第1の位置122Raと第2の位置122Rbとの間を移動可能である。具体的には、制御部130が、スクリーン122Rの位置を移動させることによりスクリーン122Rから拡大ミラー140までの距離を制御し、第2の虚像の位置を変更する。この場合、スクリーン122Rの移動方向は、図16(a)に示される投射方向Sと平行である。具体的には、スクリーン122Rは、y軸方向におけるスクリーン121の下端と光出射口111aとを通る直線と平行に移動する。ただし、スクリーン122Rの移動方向は、スクリーン121の下端と光出射口111aとを通る直線よりも下側を移動すれば、投射方向Sと厳密に平行でなくてもよい。
The screen 122R is movable between the first position 122Ra and the second position 122Rb. Specifically, the control unit 130 controls the distance from the screen 122R to the magnifying mirror 140 by moving the position of the screen 122R, and changes the position of the second virtual image. In this case, the moving direction of the screen 122R is parallel to the projection direction S shown in FIG. Specifically, the screen 122R moves in parallel with a straight line passing through the lower end of the screen 121 and the light exit port 111a in the y-axis direction. However, the moving direction of the screen 122R may not be strictly parallel to the projection direction S as long as it moves below the straight line passing through the lower end of the screen 121 and the light exit port 111a.
さらに、スクリーン122Rの移動方向は、図16(b)において矢印で示されるように投射方向C3と平行である。投射方向C3は、スクリーン123の側面(具体的には、+x軸方向の側面)と平行である。ただし、スクリーン122Rの移動方向は、投射方向C3と厳密に平行でなくてもよい。
Furthermore, the moving direction of the screen 122R is parallel to the projection direction C3 as shown by the arrow in FIG. The projection direction C3 is parallel to the side surface of the screen 123 (specifically, the side surface in the + x axis direction). However, the moving direction of the screen 122R may not be strictly parallel to the projection direction C3.
スクリーン122Lも、第1の位置122Laと第2の位置122Lbとの間を移動可能である。具体的には、制御部130が、スクリーン122Lの位置を移動させることによりスクリーン122Lから拡大ミラー140までの距離を制御し、第3の虚像の位置を変更する。この場合、スクリーン122Lの移動方向は、図16(a)に示される投射方向Sと平行である。具体的には、スクリーン122Lは、y軸方向におけるスクリーン121の下端と光出射口111aとを通る直線と平行に移動する。ただし、スクリーン122Lの移動方向は、スクリーン121の下端と光出射口111aとを通る直線よりも下側を移動すれば、投射方向Sと厳密に平行でなくてもよい。
The screen 122L is also movable between the first position 122La and the second position 122Lb. Specifically, the control unit 130 controls the distance from the screen 122L to the magnifying mirror 140 by moving the position of the screen 122L, and changes the position of the third virtual image. In this case, the moving direction of the screen 122L is parallel to the projection direction S shown in FIG. Specifically, the screen 122L moves in parallel with a straight line passing through the lower end of the screen 121 and the light emission port 111a in the y-axis direction. However, the moving direction of the screen 122L may not be strictly parallel to the projection direction S as long as it moves below the straight line passing through the lower end of the screen 121 and the light exit port 111a.
さらに、スクリーン122Lの移動方向は、図16(b)において矢印で示されるように投射方向C2と平行である。投射方向C2は、スクリーン123の側面(具体的には、-x軸方向の側面)と平行である。ただし、スクリーン122Lの移動方向は、投射方向C2と厳密に平行でなくてもよい。
Furthermore, the moving direction of the screen 122L is parallel to the projection direction C2 as indicated by an arrow in FIG. The projection direction C2 is parallel to the side surface of the screen 123 (specifically, the side surface in the −x axis direction). However, the moving direction of the screen 122L may not be strictly parallel to the projection direction C2.
スクリーン122Rは、y軸方向における上端を回転中心として回転する。スクリーン122Rは上端側を回転中心として回転することで、図16(a)に示される第3の位置122cに位置するように傾斜することができる。これにより、スクリーン122Rが回転した場合においても、スクリーン122Rの上端側に投影される映像光は、スクリーン122Rの傾きが変更された場合でも、スクリーン122Rの上端側に投影される。
The screen 122R rotates with the upper end in the y-axis direction as the center of rotation. The screen 122R can be tilted so as to be positioned at the third position 122c shown in FIG. 16A by rotating about the upper end side as the rotation center. Thereby, even when the screen 122R rotates, the image light projected on the upper end side of the screen 122R is projected on the upper end side of the screen 122R even when the inclination of the screen 122R is changed.
スクリーン122Rと同様に、スクリーン122Lは、y軸方向における上端を回転中心として回転する。スクリーン122Lは上端側を回転中心として回転することで、図16(a)に示される第3の位置122cに位置するように傾斜することができる。すなわち、図16(b)に示される例では、スクリーン122Lは上端側を回転中心として回転することで、第3の位置122Lcに位置するように傾くことができる。図16(b)に示される第3の位置122Lcは、図16(a)に示される第3の位置122cに対応する。これにより、スクリーン122Lが回転した場合においても、スクリーン122Lの上端側に投影される映像光は、スクリーン122Lの傾きが変更された場合でも、スクリーン122Lの上端側に投影される。
Similarly to the screen 122R, the screen 122L rotates with the upper end in the y-axis direction as the rotation center. The screen 122L can be tilted so as to be positioned at the third position 122c shown in FIG. 16A by rotating about the upper end side as the rotation center. That is, in the example shown in FIG. 16B, the screen 122L can be tilted so as to be positioned at the third position 122Lc by rotating about the upper end side as the rotation center. The third position 122Lc shown in FIG. 16B corresponds to the third position 122c shown in FIG. Thereby, even when the screen 122L rotates, the image light projected on the upper end side of the screen 122L is projected on the upper end side of the screen 122L even when the inclination of the screen 122L is changed.
スクリーン122R及び122Lは、互いに独立して回転する。これにより、スクリーン122R及び122Lは、互いに独立して傾きを変更することができる。
The screens 122R and 122L rotate independently of each other. Thereby, the screens 122R and 122L can change the inclination independently of each other.
スクリーン122Rを傾ける場合、スクリーン122Rの回転によってスクリーン122Rの下側は投射方向C3から離れ、スクリーン122Rとスクリーン123との間に大きな隙間が生じる。したがって、その隙間には、映像光を投影しないように、光源部111を制御することが望ましい。同様に、スクリーン122Lを傾ける場合、スクリーン122Lの回転によってスクリーン122Lの下側は投射方向C2から離れ、スクリーン122Lとスクリーン123との間に大きな隙間が生じる。したがって、その隙間には、映像光を出射しないように、光源部111を制御することが望ましい。
When tilting the screen 122R, the lower side of the screen 122R moves away from the projection direction C3 due to the rotation of the screen 122R, and a large gap is generated between the screen 122R and the screen 123. Therefore, it is desirable to control the light source unit 111 so that the image light is not projected into the gap. Similarly, when the screen 122L is tilted, the lower side of the screen 122L is separated from the projection direction C2 by the rotation of the screen 122L, and a large gap is generated between the screen 122L and the screen 123. Therefore, it is desirable to control the light source unit 111 so that no image light is emitted in the gap.
<実施の形態2の変形例>
図17(a)及び(b)は、図16(a)及び(b)に示されるスクリーン部120bの他の例を示す図である。
実施の形態2の変形例では、上述の実施の形態2に係る虚像表示装置におけるスクリーン部120bの構成及び動作と異なる構成及び動作について以下に説明する。 <Modification ofEmbodiment 2>
17 (a) and 17 (b) are diagrams showing another example of thescreen portion 120b shown in FIGS. 16 (a) and 16 (b).
In the modification of the second embodiment, a configuration and operation different from the configuration and operation of thescreen unit 120b in the virtual image display device according to the second embodiment will be described below.
図17(a)及び(b)は、図16(a)及び(b)に示されるスクリーン部120bの他の例を示す図である。
実施の形態2の変形例では、上述の実施の形態2に係る虚像表示装置におけるスクリーン部120bの構成及び動作と異なる構成及び動作について以下に説明する。 <Modification of
17 (a) and 17 (b) are diagrams showing another example of the
In the modification of the second embodiment, a configuration and operation different from the configuration and operation of the
図17(a)及び(b)に示されるスクリーン部120cでは、スクリーン122R及び122Lの配置が図16(a)及び(b)に示されるスクリーン122R及び122Lと異なる。スクリーン部120cは、スクリーン部120の代わりに図1に示される映像表示部110に適用可能である。
17A and 17B, the arrangement of the screens 122R and 122L is different from the screens 122R and 122L shown in FIGS. 16A and 16B. The screen unit 120 c can be applied to the video display unit 110 shown in FIG. 1 instead of the screen unit 120.
図17(b)に示されるように、スクリーン122Rは、投射方向C3と垂直に配置されている。言い換えると、スクリーン123は、スクリーン122Rに面する側面123R(第1の側面)を有し、スクリーン122Rは、スクリーン123の側面123Rと垂直に配置されている。これにより、スクリーン122Rが傾いたときに、スクリーン122Rとスクリーン123との間の隙間が大きくならないので、その隙間に映像光が入りにくくなる。したがって、スクリーン122Rの傾きに応じて光源部111からの映像光がその隙間に入らないように制御する必要がない。ただし、スクリーン122Rは、投射方向C3及び側面123Rと厳密に垂直に配置されていなくてもよい。
As shown in FIG. 17B, the screen 122R is arranged perpendicular to the projection direction C3. In other words, the screen 123 has a side surface 123R (first side surface) facing the screen 122R, and the screen 122R is arranged perpendicular to the side surface 123R of the screen 123. As a result, when the screen 122R is tilted, the gap between the screen 122R and the screen 123 does not increase, so that it is difficult for image light to enter the gap. Therefore, it is not necessary to perform control so that the image light from the light source unit 111 does not enter the gap according to the inclination of the screen 122R. However, the screen 122R may not be arranged strictly perpendicular to the projection direction C3 and the side surface 123R.
図17(b)に示されるように、スクリーン122Lは、投射方向C2と垂直に配置されている。言い換えると、スクリーン123は、スクリーン122Lに面する側面123L(第2の側面)を有し、スクリーン122Lは、スクリーン123の側面123Lと垂直に配置されている。これにより、スクリーン122Lが傾いたときに、スクリーン122Lとスクリーン123との間の隙間が大きくならないので、その隙間に映像光が入りにくくなる。したがって、スクリーン122Lの傾きに応じて光源部111からの映像光がその隙間に入らないように制御する必要がない。ただし、スクリーン122Lは、投射方向C2及び側面123Lと厳密に垂直に配置されていなくてもよい。スクリーン122R及び122Lの移動方向は、図16(a)及び(b)に示される例と同じである。
As shown in FIG. 17B, the screen 122L is arranged perpendicular to the projection direction C2. In other words, the screen 123 has a side surface 123L (second side surface) facing the screen 122L, and the screen 122L is disposed perpendicular to the side surface 123L of the screen 123. As a result, when the screen 122L is tilted, the gap between the screen 122L and the screen 123 does not increase, so that it is difficult for image light to enter the gap. Therefore, it is not necessary to control the image light from the light source unit 111 so as not to enter the gap according to the inclination of the screen 122L. However, the screen 122L may not be arranged strictly perpendicular to the projection direction C2 and the side surface 123L. The moving directions of the screens 122R and 122L are the same as those shown in FIGS. 16 (a) and 16 (b).
スクリーン122R及び122Lが傾いているとき、運転者から視認される虚像の左右(すなわち、x軸方向における外側)の領域が遠くに視認される。したがって、虚像の内容を運転者にとって見やすい内容にすることが望ましい。
When the screens 122R and 122L are tilted, the left and right (that is, the outside in the x-axis direction) regions of the virtual image viewed from the driver are viewed far away. Therefore, it is desirable to make the content of the virtual image easy to see for the driver.
<実施の形態2及びその変形例の効果>
以上に説明したように、スクリーン部120内のスクリーンを4分割に配置し、虚像として表示する情報に応じて、その内の2つのスクリーン(すなわち、スクリーン122R及び122L)の位置及び傾きを変更できるようにしたため、虚像表示装置100によって生成される第1の虚像と第2の虚像との間に距離差及び傾斜差を設けることができる。これにより、案内表示などをわかり易く表示することができる。 <Effects ofEmbodiment 2 and Modifications>
As described above, the screen in thescreen unit 120 is divided into four parts, and the position and inclination of two of the screens (that is, the screens 122R and 122L) can be changed according to information displayed as a virtual image. Therefore, a distance difference and a tilt difference can be provided between the first virtual image and the second virtual image generated by the virtual image display device 100. Thereby, guidance display etc. can be displayed clearly.
以上に説明したように、スクリーン部120内のスクリーンを4分割に配置し、虚像として表示する情報に応じて、その内の2つのスクリーン(すなわち、スクリーン122R及び122L)の位置及び傾きを変更できるようにしたため、虚像表示装置100によって生成される第1の虚像と第2の虚像との間に距離差及び傾斜差を設けることができる。これにより、案内表示などをわかり易く表示することができる。 <Effects of
As described above, the screen in the
また、スクリーン122Rとスクリーン122Lとの間にスクリーン123を設けているため、運転者500から見てx軸方向における画像が途切れることがなく、傾斜した経路案内矢印を運転者500の正面に表示することができ、視認性を向上できる。
Further, since the screen 123 is provided between the screen 122R and the screen 122L, the image in the x-axis direction is not interrupted when viewed from the driver 500, and an inclined route guidance arrow is displayed in front of the driver 500. And visibility can be improved.
また、スクリーン123を投射方向に合わせた台形形状とし、スクリーン122の移動方向を、光源部111からの映像光の投射方向を考慮した方向に設定することで、スクリーン122を移動させた場合に、スクリーン123に投射される映像光がスクリーン122R又は122Lによって遮られることを防ぐことができる。
In addition, when the screen 122 is moved by setting the screen 123 to a trapezoidal shape that matches the projection direction and setting the moving direction of the screen 122 to a direction that considers the projection direction of the image light from the light source unit 111, It is possible to prevent the image light projected on the screen 123 from being blocked by the screen 122R or 122L.
また、映像光が別のスクリーンによって遮られることを防ぐことができるため、1個の光源部111からの映像光を複数に分割したスクリーンに投影できる。これにより、少ない光源部で複数の虚像距離及び傾きに虚像を表示することができ、虚像表示装置を小型化することができる。
In addition, since the image light can be prevented from being blocked by another screen, the image light from one light source unit 111 can be projected onto a plurality of divided screens. Thereby, a virtual image can be displayed on several virtual image distance and inclination with few light source parts, and a virtual image display apparatus can be reduced in size.
車載用途においては、信頼性などの点で、可動機構部品は避けられがちであるが、本実施の形態では、スクリーンのような軽い部品の位置及び傾きを変更するので、虚像表示装置を動かすような方式に比べ、信頼性を確保しやすい。
In in-vehicle applications, moving mechanism parts are often avoided in terms of reliability and the like, but in this embodiment, the position and inclination of a light part such as a screen is changed, so that the virtual image display device is moved. Reliability is easy to secure compared to other methods.
また、虚像距離L1と投射距離Dとの関係を予め近似しておくことで、所望の虚像距離L1に精度良く虚像を表示できる。
Further, by approximating the relationship between the virtual image distance L1 and the projection distance D in advance, a virtual image can be displayed with high accuracy at the desired virtual image distance L1.
虚像表示装置で表示する距離差及び傾斜差が表現できるようになるため、虚像距離及び虚像の傾きが背景と完全に一致していなくても、スクリーン122Rとスクリーン122Lとの間における距離差及び傾斜差により、背景と虚像との関連性を運転者にわかり易く伝えることができる。そのため、虚像表示装置100の設置位置調整及び虚像の表示位置調整が簡易になり、運転者により好みの位置に表示するようにしても、わかり易く表示することができる。
Since the distance difference and the inclination difference displayed by the virtual image display device can be expressed, even if the virtual image distance and the inclination of the virtual image do not completely coincide with the background, the distance difference and the inclination between the screen 122R and the screen 122L. Due to the difference, the driver can easily understand the relationship between the background and the virtual image. Therefore, the installation position adjustment of the virtual image display device 100 and the virtual image display position adjustment are simplified, and even if the driver displays the image at a favorite position, the display can be easily understood.
上述の各実施の形態及び各変形例では、スクリーン部の構成例を示したが、スクリーン部の構成は、これらの限りではない。例えば、2つのスクリーンを左右に分割するのではなく、上下に分割するようにしても良い。また、左右対称なスクリーン構成とするのではなく、非対称なスクリーン構成としても良く、様々なスクリーンの組み合わせが可能である。
In each of the above-described embodiments and modifications, the configuration example of the screen unit is shown, but the configuration of the screen unit is not limited to these. For example, the two screens may be divided vertically instead of dividing horizontally. In addition, the screen configuration may be an asymmetrical screen configuration instead of a symmetrical screen configuration, and various screen combinations are possible.
なお、上述の各実施の形態及び各変形例においては、「平行」又は「垂直」などの部品間の位置関係又は部品の形状を示す用語を用いており、「平行」及び「垂直」の表現は、製造上の公差又は組み立て上のばらつきなどを考慮した範囲を含む。
In each of the above-described embodiments and modifications, terms such as “parallel” or “vertical” indicating the positional relationship between parts or the shape of the part are used, and the expressions “parallel” and “vertical” are used. Includes a range that takes into account manufacturing tolerances or assembly variations.
また、以上に本発明の実施の形態について説明したが、本発明はこれらの実施の形態に限るものではない。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments.
以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
The features in the embodiments described above and the features in the modifications can be appropriately combined with each other.
<実施の形態1及び2の変形例>
図18は、実施の形態1及び2に係る虚像表示装置100の変形例の制御部130を示すハードウェア構成図である。図2に示される制御部130は、ソフトウェアとしてのプログラムを格納する記憶装置としてのメモリ91と、メモリ91に格納されたプログラムを実行する情報処理部としてのプロセッサ92とを用いて(例えば、コンピュータにより)実現することができる。この場合には、図2に示される制御部130は、図18に示されるメモリ91と、プログラムを実行するプロセッサ92とによって実現されることができる。また、図18に示される制御部130の一部を、図18に示されるメモリ91と、プログラムを実行するプロセッサ92とによって実現してもよい。 <Modification of Embodiments 1 and 2>
FIG. 18 is a hardware configuration diagram illustrating acontrol unit 130 of a modified example of the virtual image display device 100 according to the first and second embodiments. The control unit 130 shown in FIG. 2 uses a memory 91 as a storage device that stores a program as software, and a processor 92 as an information processing unit that executes the program stored in the memory 91 (for example, a computer Can be realized. In this case, the control unit 130 shown in FIG. 2 can be realized by the memory 91 shown in FIG. 18 and the processor 92 that executes the program. Further, a part of the control unit 130 illustrated in FIG. 18 may be realized by the memory 91 illustrated in FIG. 18 and the processor 92 that executes a program.
図18は、実施の形態1及び2に係る虚像表示装置100の変形例の制御部130を示すハードウェア構成図である。図2に示される制御部130は、ソフトウェアとしてのプログラムを格納する記憶装置としてのメモリ91と、メモリ91に格納されたプログラムを実行する情報処理部としてのプロセッサ92とを用いて(例えば、コンピュータにより)実現することができる。この場合には、図2に示される制御部130は、図18に示されるメモリ91と、プログラムを実行するプロセッサ92とによって実現されることができる。また、図18に示される制御部130の一部を、図18に示されるメモリ91と、プログラムを実行するプロセッサ92とによって実現してもよい。 <Modification of
FIG. 18 is a hardware configuration diagram illustrating a
以上の各実施の形態を基にして、以下に発明の内容を付記として記載する。
Based on each of the embodiments described above, the contents of the invention will be described as an appendix below.
<付記1>
第1のスクリーン及び第2のスクリーンを有するスクリーン部と、
前記スクリーン部に向けて映像光を出射する映像投射部と、
前記第1のスクリーンを透過した前記映像光を第1の虚像として反射し、前記第2のスクリーンを透過した前記映像光を第2の虚像として反射する反射ミラーと、
前記第1のスクリーンの位置及び傾きの少なくとも一方を制御し、前記第2のスクリーンの位置及び傾きの少なくとも一方を制御するスクリーン制御部と
を備える虚像表示装置。 <Appendix 1>
A screen portion having a first screen and a second screen;
A video projection unit that emits video light toward the screen unit;
A reflection mirror that reflects the image light transmitted through the first screen as a first virtual image and reflects the image light transmitted through the second screen as a second virtual image;
A virtual image display device comprising: a screen control unit that controls at least one of the position and the tilt of the first screen and controls at least one of the position and the tilt of the second screen.
第1のスクリーン及び第2のスクリーンを有するスクリーン部と、
前記スクリーン部に向けて映像光を出射する映像投射部と、
前記第1のスクリーンを透過した前記映像光を第1の虚像として反射し、前記第2のスクリーンを透過した前記映像光を第2の虚像として反射する反射ミラーと、
前記第1のスクリーンの位置及び傾きの少なくとも一方を制御し、前記第2のスクリーンの位置及び傾きの少なくとも一方を制御するスクリーン制御部と
を備える虚像表示装置。 <
A screen portion having a first screen and a second screen;
A video projection unit that emits video light toward the screen unit;
A reflection mirror that reflects the image light transmitted through the first screen as a first virtual image and reflects the image light transmitted through the second screen as a second virtual image;
A virtual image display device comprising: a screen control unit that controls at least one of the position and the tilt of the first screen and controls at least one of the position and the tilt of the second screen.
<付記2>
前記スクリーン制御部は、前記第1のスクリーンの位置を移動させることにより前記第1のスクリーンから前記反射ミラーまでの距離を制御し、前記第1の虚像の位置を変更することを特徴とする付記1に記載の虚像表示装置。 <Appendix 2>
The screen control unit controls the distance from the first screen to the reflection mirror by moving the position of the first screen, and changes the position of the first virtual image. 2. The virtual image display device according to 1.
前記スクリーン制御部は、前記第1のスクリーンの位置を移動させることにより前記第1のスクリーンから前記反射ミラーまでの距離を制御し、前記第1の虚像の位置を変更することを特徴とする付記1に記載の虚像表示装置。 <
The screen control unit controls the distance from the first screen to the reflection mirror by moving the position of the first screen, and changes the position of the first virtual image. 2. The virtual image display device according to 1.
<付記3>
前記スクリーン制御部は、前記第2のスクリーンの位置を移動させることにより前記第2のスクリーンから前記反射ミラーまでの距離を制御し、前記第2の虚像の位置を変更することを特徴とする付記1又は2に記載の虚像表示装置。 <Appendix 3>
The screen control unit controls the distance from the second screen to the reflection mirror by moving the position of the second screen, and changes the position of the second virtual image. 3. The virtual image display device according to 1 or 2.
前記スクリーン制御部は、前記第2のスクリーンの位置を移動させることにより前記第2のスクリーンから前記反射ミラーまでの距離を制御し、前記第2の虚像の位置を変更することを特徴とする付記1又は2に記載の虚像表示装置。 <Appendix 3>
The screen control unit controls the distance from the second screen to the reflection mirror by moving the position of the second screen, and changes the position of the second virtual image. 3. The virtual image display device according to 1 or 2.
<付記4>
前記スクリーン部は、鉛直方向における前記第1のスクリーン及び前記第2のスクリーンの上側に備えられた第3のスクリーンを有し、
前記反射ミラーは、前記第3のスクリーンを透過した前記映像光を第3の虚像として反射する
ことを特徴とする付記1から3のいずれか1つに記載の虚像表示装置。 <Appendix 4>
The screen portion has a third screen provided on the upper side of the first screen and the second screen in the vertical direction,
The virtual image display device according to any one ofappendices 1 to 3, wherein the reflection mirror reflects the image light transmitted through the third screen as a third virtual image.
前記スクリーン部は、鉛直方向における前記第1のスクリーン及び前記第2のスクリーンの上側に備えられた第3のスクリーンを有し、
前記反射ミラーは、前記第3のスクリーンを透過した前記映像光を第3の虚像として反射する
ことを特徴とする付記1から3のいずれか1つに記載の虚像表示装置。 <
The screen portion has a third screen provided on the upper side of the first screen and the second screen in the vertical direction,
The virtual image display device according to any one of
<付記5>
前記映像投射部は光出射口を有し、
前記第1のスクリーンは、鉛直方向における前記第3のスクリーンの下端と前記光出射口とを通る直線と平行に移動することを特徴とする付記4に記載の虚像表示装置。 <Appendix 5>
The video projection unit has a light exit port,
The virtual image display device according toappendix 4, wherein the first screen moves in parallel with a straight line passing through a lower end of the third screen in the vertical direction and the light exit port.
前記映像投射部は光出射口を有し、
前記第1のスクリーンは、鉛直方向における前記第3のスクリーンの下端と前記光出射口とを通る直線と平行に移動することを特徴とする付記4に記載の虚像表示装置。 <Appendix 5>
The video projection unit has a light exit port,
The virtual image display device according to
<付記6>
前記第2のスクリーンは、鉛直方向における前記第3のスクリーンの下端と前記光出射口とを通る直線と平行に移動することを特徴とする付記5に記載の虚像表示装置。 <Appendix 6>
6. The virtual image display device according to appendix 5, wherein the second screen moves in parallel with a straight line passing through a lower end of the third screen in the vertical direction and the light exit port.
前記第2のスクリーンは、鉛直方向における前記第3のスクリーンの下端と前記光出射口とを通る直線と平行に移動することを特徴とする付記5に記載の虚像表示装置。 <
6. The virtual image display device according to appendix 5, wherein the second screen moves in parallel with a straight line passing through a lower end of the third screen in the vertical direction and the light exit port.
<付記7>
前記第1のスクリーンは、鉛直方向における上端を回転中心として回転することを特徴とする付記1から6のいずれか1つに記載の虚像表示装置。 <Appendix 7>
The virtual image display device according to any one ofappendices 1 to 6, wherein the first screen rotates around an upper end in a vertical direction.
前記第1のスクリーンは、鉛直方向における上端を回転中心として回転することを特徴とする付記1から6のいずれか1つに記載の虚像表示装置。 <Appendix 7>
The virtual image display device according to any one of
<付記8>
前記第2のスクリーンは、鉛直方向における上端を回転中心として回転することを特徴とする付記1から7のいずれか1つに記載の虚像表示装置。 <Appendix 8>
The virtual image display device according to any one ofappendices 1 to 7, wherein the second screen rotates about an upper end in a vertical direction as a rotation center.
前記第2のスクリーンは、鉛直方向における上端を回転中心として回転することを特徴とする付記1から7のいずれか1つに記載の虚像表示装置。 <
The virtual image display device according to any one of
<付記9>
前記スクリーン制御部は、ユーザの目の位置から前記第1の虚像の位置までの第1の虚像距離と前記ユーザの目の位置から前記第2の虚像の位置までの第2の虚像距離とが互いに異なるように前記第1のスクリーンの位置及び前記第2のスクリーンの位置を制御することを特徴とする付記1から8のいずれか1つに記載の虚像表示装置。 <Appendix 9>
The screen controller includes a first virtual image distance from a user's eye position to the first virtual image position and a second virtual image distance from the user's eye position to the second virtual image position. The virtual image display device according to any one ofappendices 1 to 8, wherein the position of the first screen and the position of the second screen are controlled to be different from each other.
前記スクリーン制御部は、ユーザの目の位置から前記第1の虚像の位置までの第1の虚像距離と前記ユーザの目の位置から前記第2の虚像の位置までの第2の虚像距離とが互いに異なるように前記第1のスクリーンの位置及び前記第2のスクリーンの位置を制御することを特徴とする付記1から8のいずれか1つに記載の虚像表示装置。 <Appendix 9>
The screen controller includes a first virtual image distance from a user's eye position to the first virtual image position and a second virtual image distance from the user's eye position to the second virtual image position. The virtual image display device according to any one of
<付記10>
前記スクリーン制御部は、ユーザに案内する情報に応じて、前記ユーザの目の位置から前記第1の虚像の位置までの第1の虚像距離と前記ユーザの目の位置から前記第2の虚像の位置までの第2の虚像距離との差を制御することを特徴とする付記1から9のいずれか1つに記載の虚像表示装置。 <Appendix 10>
The screen control unit determines the second virtual image from the first virtual image distance from the user's eye position to the first virtual image position and the user's eye position according to information to be guided to the user. The virtual image display device according to any one ofappendices 1 to 9, wherein a difference from the second virtual image distance to the position is controlled.
前記スクリーン制御部は、ユーザに案内する情報に応じて、前記ユーザの目の位置から前記第1の虚像の位置までの第1の虚像距離と前記ユーザの目の位置から前記第2の虚像の位置までの第2の虚像距離との差を制御することを特徴とする付記1から9のいずれか1つに記載の虚像表示装置。 <
The screen control unit determines the second virtual image from the first virtual image distance from the user's eye position to the first virtual image position and the user's eye position according to information to be guided to the user. The virtual image display device according to any one of
<付記11>
前記スクリーン制御部は、前記第1の虚像の傾きと前記第2の虚像の傾きとが互いに異なるように前記第1のスクリーンの傾き及び前記第2のスクリーンの傾きを制御することを特徴とする付記1から10のいずれか1つに記載の虚像表示装置。 <Appendix 11>
The screen control unit controls the tilt of the first screen and the tilt of the second screen so that the tilt of the first virtual image and the tilt of the second virtual image are different from each other. The virtual image display device according to any one ofappendices 1 to 10.
前記スクリーン制御部は、前記第1の虚像の傾きと前記第2の虚像の傾きとが互いに異なるように前記第1のスクリーンの傾き及び前記第2のスクリーンの傾きを制御することを特徴とする付記1から10のいずれか1つに記載の虚像表示装置。 <Appendix 11>
The screen control unit controls the tilt of the first screen and the tilt of the second screen so that the tilt of the first virtual image and the tilt of the second virtual image are different from each other. The virtual image display device according to any one of
<付記12>
前記スクリーン制御部は、ユーザに案内する情報に応じて、前記第1の虚像と前記第2の虚像とが成す角度を制御することを特徴とする付記1から11のいずれか1つに記載の虚像表示装置。 <Appendix 12>
The said screen control part controls the angle which said 1st virtual image and said 2nd virtual image comprise according to the information guided to a user, It is any one of the additional notes 1-11 characterized by the above-mentioned. Virtual image display device.
前記スクリーン制御部は、ユーザに案内する情報に応じて、前記第1の虚像と前記第2の虚像とが成す角度を制御することを特徴とする付記1から11のいずれか1つに記載の虚像表示装置。 <
The said screen control part controls the angle which said 1st virtual image and said 2nd virtual image comprise according to the information guided to a user, It is any one of the additional notes 1-11 characterized by the above-mentioned. Virtual image display device.
<付記13>
前記スクリーン部は、第4のスクリーンを有し、
前記反射ミラーは、前記第4のスクリーンを透過した前記映像光を第4の虚像として反射する
ことを特徴とする付記1から12のいずれか1つに記載の虚像表示装置。 <Appendix 13>
The screen portion has a fourth screen,
The virtual image display device according to any one ofappendices 1 to 12, wherein the reflection mirror reflects the image light transmitted through the fourth screen as a fourth virtual image.
前記スクリーン部は、第4のスクリーンを有し、
前記反射ミラーは、前記第4のスクリーンを透過した前記映像光を第4の虚像として反射する
ことを特徴とする付記1から12のいずれか1つに記載の虚像表示装置。 <Appendix 13>
The screen portion has a fourth screen,
The virtual image display device according to any one of
<付記14>
前記第1のスクリーン、前記第2のスクリーン、及び前記第4のスクリーンは、水平方向に配列されており、
前記第4のスクリーンは、前記第1のスクリーンと前記第2のスクリーンとの間に配置されている
ことを特徴とする付記13に記載の虚像表示装置。 <Appendix 14>
The first screen, the second screen, and the fourth screen are arranged in a horizontal direction,
The virtual image display device according to appendix 13, wherein the fourth screen is disposed between the first screen and the second screen.
前記第1のスクリーン、前記第2のスクリーン、及び前記第4のスクリーンは、水平方向に配列されており、
前記第4のスクリーンは、前記第1のスクリーンと前記第2のスクリーンとの間に配置されている
ことを特徴とする付記13に記載の虚像表示装置。 <
The first screen, the second screen, and the fourth screen are arranged in a horizontal direction,
The virtual image display device according to appendix 13, wherein the fourth screen is disposed between the first screen and the second screen.
<付記15>
前記第4のスクリーンは、前記第1のスクリーンに面する第1の側面を有し、
前記第1のスクリーンは、前記第1の側面と垂直に配置されている
ことを特徴とする付記13又は14に記載の虚像表示装置。 <Appendix 15>
The fourth screen has a first side facing the first screen;
The virtual image display device according toappendix 13 or 14, wherein the first screen is disposed perpendicular to the first side surface.
前記第4のスクリーンは、前記第1のスクリーンに面する第1の側面を有し、
前記第1のスクリーンは、前記第1の側面と垂直に配置されている
ことを特徴とする付記13又は14に記載の虚像表示装置。 <Appendix 15>
The fourth screen has a first side facing the first screen;
The virtual image display device according to
<付記16>
前記第4のスクリーンは、前記第2のスクリーンに面する第2の側面を有し、
前記第2のスクリーンは、前記第2の側面と垂直に配置されている
ことを特徴とする付記13から15のいずれか1つに記載の虚像表示装置。 <Appendix 16>
The fourth screen has a second side facing the second screen;
The virtual image display device according to any one of appendices 13 to 15, wherein the second screen is arranged perpendicular to the second side surface.
前記第4のスクリーンは、前記第2のスクリーンに面する第2の側面を有し、
前記第2のスクリーンは、前記第2の側面と垂直に配置されている
ことを特徴とする付記13から15のいずれか1つに記載の虚像表示装置。 <
The fourth screen has a second side facing the second screen;
The virtual image display device according to any one of appendices 13 to 15, wherein the second screen is arranged perpendicular to the second side surface.
<付記17>
前記第4のスクリーンは、前記第1のスクリーン及び前記第2のスクリーンに対して傾斜していることを特徴とする付記13から16のいずれか1つに記載の虚像表示装置。 <Appendix 17>
The virtual image display device according to any one of appendices 13 to 16, wherein the fourth screen is inclined with respect to the first screen and the second screen.
前記第4のスクリーンは、前記第1のスクリーン及び前記第2のスクリーンに対して傾斜していることを特徴とする付記13から16のいずれか1つに記載の虚像表示装置。 <Appendix 17>
The virtual image display device according to any one of appendices 13 to 16, wherein the fourth screen is inclined with respect to the first screen and the second screen.
100 虚像表示装置、 110 映像表示部、 111 光源部(映像投射部)、 120,120a,120b,120c スクリーン部、 121 スクリーン(基準スクリーン)、 122 スクリーン(可動スクリーン)、 122R スクリーン(第1の可動スクリーン、右側スクリーン)、 122L スクリーン(第2の可動スクリーン、左側スクリーン)、 123 スクリーン、 122a 第1の位置、 122b 第2の位置、 122c 第3の位置、 130 制御部、 131 映像データ変換部、 132 光源制御部、 133 虚像制御部、 134 投射位置制御部、 140 拡大ミラー(投影部)、 141 拡大ミラー駆動部、 142 スクリーン駆動部、 150 入力器、 300 ウインドシールド、 400 虚像表示領域、 401,402a,402b,402c 虚像エリア、 500 運転者、 600 車両(自車)、 610 ダッシュボード、 700 道路、 701 歩行者、 702 車両、 S1,S2 映像信号データ、 S3,S4,S5 制御信号、 S6 信号。
100 virtual image display device, 110 video display unit, 111 light source unit (video projection unit), 120, 120a, 120b, 120c screen unit, 121 screen (reference screen), 122 screen (movable screen), 122R screen (first movable) Screen, right screen), 122L screen (second movable screen, left screen), 123 screen, 122a first position, 122b second position, 122c third position, 130 controller, 131 video data converter, 132 light source control unit, 133 virtual image control unit, 134 projection position control unit, 140 magnifying mirror (projection unit), 141 magnifying mirror driving unit, 142 screen driving unit, 150 input device, 300 windshield, 400 virtual image display area, 401, 402a, 4 02b, 402c Virtual image area, 500 driver, 600 vehicle (own vehicle), 610 dashboard, 700 road, 701 pedestrian, 702 vehicle, S1, S2 video signal data, S3, S4, S5 control signal, S6 signal.
100 virtual image display device, 110 video display unit, 111 light source unit (video projection unit), 120, 120a, 120b, 120c screen unit, 121 screen (reference screen), 122 screen (movable screen), 122R screen (first movable) Screen, right screen), 122L screen (second movable screen, left screen), 123 screen, 122a first position, 122b second position, 122c third position, 130 controller, 131 video data converter, 132 light source control unit, 133 virtual image control unit, 134 projection position control unit, 140 magnifying mirror (projection unit), 141 magnifying mirror driving unit, 142 screen driving unit, 150 input device, 300 windshield, 400 virtual image display area, 401, 402a, 4 02b, 402c Virtual image area, 500 driver, 600 vehicle (own vehicle), 610 dashboard, 700 road, 701 pedestrian, 702 vehicle, S1, S2 video signal data, S3, S4, S5 control signal, S6 signal.
Claims (15)
- 車両に乗車している人によって視認される虚像を風景に重畳させて表示し、前記車両に用いられる虚像表示装置において、
映像光を出射する映像投射部と、
前記映像光が投射されて像が形成されるスクリーンを含むスクリーン部と、
前記像を投影することによって前記虚像を生成する投影部と、
前記スクリーンの位置を変更する制御部と
を備え、
前記スクリーンは第1のスクリーンと第2のスクリーンとを含み、
前記第1のスクリーン上には第1の像が形成され、当該第1の像は第1の虚像として投影され、前記第2のスクリーン上には第2の像が形成され、当該第2の像は第2の虚像として投影され、
前記制御部は、前記第2のスクリーンを、前記映像投射部から出射された前記映像光の内の前記第2のスクリーンの前記第1のスクリーン側の端部を通過する前記映像光の投射方向に移動させる
ことを特徴とする虚像表示装置。 In a virtual image display device used for the vehicle, a virtual image visually recognized by a person riding in the vehicle is displayed superimposed on the landscape.
An image projection unit for emitting image light;
A screen unit including a screen on which the image light is projected to form an image;
A projection unit that generates the virtual image by projecting the image;
A control unit for changing the position of the screen,
The screen includes a first screen and a second screen;
A first image is formed on the first screen, the first image is projected as a first virtual image, a second image is formed on the second screen, and the second image The image is projected as a second virtual image,
The control unit is configured to project the video light passing through the second screen through an end of the second screen on the first screen side of the video light emitted from the video projection unit. A virtual image display device characterized by being moved to. - 前記投射方向は、前記映像投射部から出射された前記映像光の光束の中心光線に対して傾斜していることを特徴とする請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein the projection direction is inclined with respect to a central ray of the luminous flux of the video light emitted from the video projection unit.
- 前記制御部は、前記虚像が重畳される前記風景内の対象物の位置に基づいて、前記第2のスクリーンを移動させることを特徴とする請求項1又は2に記載の虚像表示装置。 3. The virtual image display device according to claim 1, wherein the control unit moves the second screen based on a position of an object in the landscape on which the virtual image is superimposed.
- 前記制御部は、前記乗車している人の目から前記虚像までの距離である虚像距離に基づいて、前記第2のスクリーンを移動させることを特徴とする請求項1又は2に記載の虚像表示装置。 3. The virtual image display according to claim 1, wherein the control unit moves the second screen based on a virtual image distance that is a distance from the eyes of the person on the board to the virtual image. 4. apparatus.
- 前記虚像距離は、前記第2の像に対応する第2の虚像までの距離であることを特徴とする請求項4に記載の虚像表示装置。 The virtual image display device according to claim 4, wherein the virtual image distance is a distance to a second virtual image corresponding to the second image.
- 前記制御部は、前記乗車している人の目から前記第1の虚像までの距離である第1の虚像距離と前記乗車している人の目から前記第2の虚像までの距離である第2の虚像距離との差に基づいて、前記第1のスクリーンに対して前記第2のスクリーンを移動させる
ことを特徴とする請求項1又は2に記載の虚像表示装置。 The control unit includes a first virtual image distance that is a distance from the eyes of the person on the board to the first virtual image and a distance from the eyes of the person on the board to the second virtual image. 3. The virtual image display device according to claim 1, wherein the second screen is moved with respect to the first screen based on a difference between the virtual image distance and the virtual image distance. - 前記風景内の対象物までの距離に対する前記対象物に対応する前記虚像までの距離の比を虚像距離の縮尺とし、
前記制御部は、前記乗車している人の目から前記第1の虚像までの距離である第1の虚像距離の縮尺に基づいて、前記第2のスクリーンを移動させる
ことを特徴とする請求項1又は2に記載の虚像表示装置。 The ratio of the distance to the virtual image corresponding to the object with respect to the distance to the object in the landscape is a scale of the virtual image distance,
The said control part moves the said 2nd screen based on the reduced scale of the 1st virtual image distance which is the distance from the eyes of the said passenger to the said 1st virtual image. 3. The virtual image display device according to 1 or 2. - 前記制御部は、前記第2のスクリーンを、前記端部を中心として回転させることを特徴とする請求項1から7のいずれか1項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 7, wherein the control unit rotates the second screen around the end portion.
- 前記制御部は、前記第2のスクリーンを、前記第2のスクリーンの前記車両に対する上側の端部又は下側の端部を中心として回転させることを特徴とする請求項1から7のいずれか1項に記載の虚像表示装置。 The said control part rotates the said 2nd screen centering | focusing on the upper edge part or lower edge part with respect to the said vehicle of the said 2nd screen, The any one of Claim 1 to 7 characterized by the above-mentioned. The virtual image display device according to item.
- 前記制御部は、前記虚像が重畳される前記風景内の対象物の傾きに基づいて、前記第2のスクリーンを回転させることを特徴とする請求項1から9のいずれか1項に記載の虚像表示装置。 10. The virtual image according to claim 1, wherein the control unit rotates the second screen based on an inclination of an object in the landscape on which the virtual image is superimposed. Display device.
- 前記制御部は、前記虚像の傾きに基づいて、前記第2のスクリーンを回転させることを特徴とする請求項1から9のいずれか1項に記載の虚像表示装置。 The virtual image display device according to any one of claims 1 to 9, wherein the control unit rotates the second screen based on an inclination of the virtual image.
- 前記虚像の傾きは、前記第2の虚像の傾きであることを特徴とする請求項11に記載の虚像表示装置。 The virtual image display device according to claim 11, wherein the inclination of the virtual image is an inclination of the second virtual image.
- 前記制御部は、前記第1の虚像の傾きと前記第2の虚像の傾きとの差に基づいて、前記第1のスクリーンに対して前記第2のスクリーンを回転させる
ことを特徴とする請求項1から9のいずれか1項に記載の虚像表示装置。 The said control part rotates the said 2nd screen with respect to the said 1st screen based on the difference of the inclination of a said 1st virtual image, and the inclination of a said 2nd virtual image. 10. The virtual image display device according to any one of 1 to 9. - 前記第1の虚像は水平な路面に重ねて表示され、前記第2の虚像は傾きのある路面に重ねて表示されることを特徴とする請求項13に記載の虚像表示装置。 14. The virtual image display device according to claim 13, wherein the first virtual image is displayed while being superimposed on a horizontal road surface, and the second virtual image is displayed while being superimposed on a sloped road surface.
- 第1のスクリーンは固定して配置される請求項1から14のいずれか1項に記載の虚像表示装置。 15. The virtual image display device according to any one of claims 1 to 14, wherein the first screen is fixedly arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019511054A JP6896064B2 (en) | 2017-04-03 | 2017-10-11 | Virtual image display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073671 | 2017-04-03 | ||
JP2017-073671 | 2017-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018185956A1 true WO2018185956A1 (en) | 2018-10-11 |
Family
ID=63712456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/036819 WO2018185956A1 (en) | 2017-04-03 | 2017-10-11 | Virtual-image display device |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6896064B2 (en) |
WO (1) | WO2018185956A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020098236A (en) * | 2018-12-17 | 2020-06-25 | 株式会社デンソー | Head-up display device |
WO2024166884A1 (en) * | 2023-02-06 | 2024-08-15 | 日本板硝子株式会社 | Windshield |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009150947A (en) * | 2007-12-19 | 2009-07-09 | Hitachi Ltd | Head-up display device for vehicle |
JP2009288388A (en) * | 2008-05-28 | 2009-12-10 | Nippon Seiki Co Ltd | Display device |
JP2014026244A (en) * | 2012-07-30 | 2014-02-06 | Jvc Kenwood Corp | Display device |
US20140036374A1 (en) * | 2012-08-01 | 2014-02-06 | Microvision Inc. | Bifocal Head-up Display System |
JP2015011217A (en) * | 2013-06-28 | 2015-01-19 | アイシン・エィ・ダブリュ株式会社 | Head-up display device |
JP2015197496A (en) * | 2014-03-31 | 2015-11-09 | アイシン・エィ・ダブリュ株式会社 | virtual image display device |
JP2016053691A (en) * | 2014-09-04 | 2016-04-14 | 矢崎総業株式会社 | In-vehicle projection display device |
JP2016068577A (en) * | 2014-09-26 | 2016-05-09 | 矢崎総業株式会社 | Head-up display device |
US20160266390A1 (en) * | 2015-03-11 | 2016-09-15 | Hyundai Mobis Co., Ltd. | Head-up display and control method thereof |
JP2016173583A (en) * | 2016-04-28 | 2016-09-29 | 日本精機株式会社 | Projection device and head-up display device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016165973A (en) * | 2015-03-10 | 2016-09-15 | 日本精機株式会社 | Image generation device and head-up display |
JP6650584B2 (en) * | 2015-06-26 | 2020-02-19 | パナソニックIpマネジメント株式会社 | Head-up display and moving object equipped with head-up display |
-
2017
- 2017-10-11 JP JP2019511054A patent/JP6896064B2/en not_active Expired - Fee Related
- 2017-10-11 WO PCT/JP2017/036819 patent/WO2018185956A1/en active Application Filing
-
2020
- 2020-08-20 JP JP2020139100A patent/JP7062038B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009150947A (en) * | 2007-12-19 | 2009-07-09 | Hitachi Ltd | Head-up display device for vehicle |
JP2009288388A (en) * | 2008-05-28 | 2009-12-10 | Nippon Seiki Co Ltd | Display device |
JP2014026244A (en) * | 2012-07-30 | 2014-02-06 | Jvc Kenwood Corp | Display device |
US20140036374A1 (en) * | 2012-08-01 | 2014-02-06 | Microvision Inc. | Bifocal Head-up Display System |
JP2015011217A (en) * | 2013-06-28 | 2015-01-19 | アイシン・エィ・ダブリュ株式会社 | Head-up display device |
JP2015197496A (en) * | 2014-03-31 | 2015-11-09 | アイシン・エィ・ダブリュ株式会社 | virtual image display device |
JP2016053691A (en) * | 2014-09-04 | 2016-04-14 | 矢崎総業株式会社 | In-vehicle projection display device |
JP2016068577A (en) * | 2014-09-26 | 2016-05-09 | 矢崎総業株式会社 | Head-up display device |
US20160266390A1 (en) * | 2015-03-11 | 2016-09-15 | Hyundai Mobis Co., Ltd. | Head-up display and control method thereof |
JP2016173583A (en) * | 2016-04-28 | 2016-09-29 | 日本精機株式会社 | Projection device and head-up display device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020098236A (en) * | 2018-12-17 | 2020-06-25 | 株式会社デンソー | Head-up display device |
JP7110968B2 (en) | 2018-12-17 | 2022-08-02 | 株式会社デンソー | head-up display device |
WO2024166884A1 (en) * | 2023-02-06 | 2024-08-15 | 日本板硝子株式会社 | Windshield |
Also Published As
Publication number | Publication date |
---|---|
JP6896064B2 (en) | 2021-06-30 |
JPWO2018185956A1 (en) | 2019-12-26 |
JP7062038B2 (en) | 2022-05-02 |
JP2020204773A (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8693103B2 (en) | Display device and display method | |
JP7065383B2 (en) | Display systems, information presentation systems, display system control methods, programs, and moving objects | |
JP6443236B2 (en) | Virtual image presentation system, image projection apparatus, and virtual image presentation method | |
JP6201690B2 (en) | Vehicle information projection system | |
WO2015060193A1 (en) | Vehicle information projection system, and projection device | |
JP6615368B2 (en) | Display device and adjustment method | |
US9857668B2 (en) | Head-up display device for vehicle displaying a virtual image ahead of a virtual line of an observer | |
CN105283795B (en) | Head-up display | |
US20180143431A1 (en) | Head-up display | |
JP2015080988A (en) | Vehicle information projection system and projection device | |
US20100157430A1 (en) | Automotive display system and display method | |
JP6225379B2 (en) | Vehicle information projection system | |
US10971116B2 (en) | Display device, control method for placement of a virtual image on a projection surface of a vehicle, and storage medium | |
WO2019224922A1 (en) | Head-up display control device, head-up display system, and head-up display control method | |
JP2017206251A (en) | Vehicle information projection system | |
JP2019116229A (en) | Display system | |
JP2016078726A (en) | Virtual image display | |
JP2018077400A (en) | Head-up display | |
US20200047686A1 (en) | Display device, display control method, and storage medium | |
JP2016055756A (en) | Head-up display device for vehicle | |
JP6784054B2 (en) | Virtual image display device and virtual image display method | |
JP7062038B2 (en) | Virtual image display device | |
US12055713B2 (en) | Head-up display system | |
JP2018020779A (en) | Vehicle information projection system | |
CN110816268A (en) | Display device, display control method, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904428 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511054 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904428 Country of ref document: EP Kind code of ref document: A1 |