WO2018185837A1 - Plasma-generating device - Google Patents
Plasma-generating device Download PDFInfo
- Publication number
- WO2018185837A1 WO2018185837A1 PCT/JP2017/014092 JP2017014092W WO2018185837A1 WO 2018185837 A1 WO2018185837 A1 WO 2018185837A1 JP 2017014092 W JP2017014092 W JP 2017014092W WO 2018185837 A1 WO2018185837 A1 WO 2018185837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pair
- electrodes
- discharge
- plasma generator
- block
- Prior art date
Links
- 230000001154 acute effect Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 27
- 238000012545 processing Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
Definitions
- the present invention relates to a plasma generator that generates plasma by discharge between the ends of a pair of electrodes disposed with their side surfaces facing each other.
- a processing gas is supplied to a reaction chamber, and power is supplied to a plurality of electrodes arranged in the reaction chamber. Thereby, discharge occurs in the reaction chamber, and the processing gas is turned into plasma.
- the present specification provides a plasma generator that generates plasma by discharge between the ends of a pair of electrodes disposed in a state in which the side surfaces face each other.
- a plasma generator in which end surfaces on the discharge side of the pair of electrodes are cut away so as to face each other.
- FIG. 1 to FIG. 3 show an atmospheric pressure plasma generator 10 according to an embodiment of the present invention.
- the atmospheric pressure plasma generator 10 is an apparatus for generating plasma under atmospheric pressure.
- the atmospheric pressure plasma generator 10 includes an inner block 12, a lower block 14, an irradiation nozzle 18, a holding member 20, a pair of electrodes 24 and 26, a connecting member 28, and an upper block 30.
- . 1 is a perspective view of the atmospheric pressure plasma generator 10
- FIG. 2 is an exploded perspective view of the atmospheric pressure plasma generator 10 excluding the upper block 30, and
- FIG. 3 is an atmospheric pressure plasma generator. 10 is a cross-sectional view of FIG.
- the inner block 12 is formed of ceramic, and as shown in FIGS. 4 and 5, is constituted by a generally rectangular parallelepiped body portion 32 and a flange portion 34 formed at the upper edge of the body portion 32.
- . 4 is a perspective view of the internal block 12
- FIG. 5 is a front view of the internal block 12A, a top view of the internal block 12B, and a side view of the internal block 12C.
- a pair of cylindrical concave portions 36 and 38 are formed on the upper surface of the flange portion 34 of the inner block 12. Further, a pair of cylindrical recesses 36 and 38 are connected, and a connection recess 40 is formed from the bottom surface of the pair of cylindrical recesses 36 and 38 toward the inside of the main body 32. Since the width of the connecting recess 40 is smaller than the diameter of the cylindrical recesses 36, 38, the bottom surfaces of the cylindrical recesses 36, 38 are generally U-shaped step surfaces 46, 48. Moreover, the connection recessed part 40 is made into the stepped shape where a width
- the six first flow paths 50 are open on the lower surface of the internal block 12.
- the width direction of the component means a short direction when the component is generally rectangular, that is, a direction orthogonal to the longitudinal direction.
- a longitudinal direction is described as a length direction.
- the lower block 14 has a generally rectangular parallelepiped shape and is formed of ceramic.
- a storage portion 60 for storing the internal block 12 is formed on the upper surface of the lower block 14, a storage portion 60 for storing the internal block 12 is formed.
- the storage unit 60 is a bottomed hole that opens to the upper surface of the lower block 14, and, as shown in FIG. 3, includes a first storage unit 62 positioned on the bottom surface side and a second storage unit 64 positioned on the opening side. It is configured.
- the depth dimension of the first storage part 62 is substantially the same as the height dimension of the main body part 32 of the inner block 12, and the width dimension and the length dimension of the first storage part 62 are the same as those of the main body part 32 of the inner block 12. Slightly longer than the width and length dimensions.
- the depth dimension of the second storage part 64 is longer than the height dimension of the flange part 34 of the internal block 12, and the width dimension and length dimension of the second storage part 64 are the width of the flange part 34 of the internal block 12. Slightly longer than dimension and length.
- the internal block 12 is inserted from the opening of the storage portion 60, the main body portion 32 of the internal block 12 is stored in the first storage portion 62, and the flange portion 34 of the internal block 12 is stored in the second storage portion 64.
- the top surface of the flange portion 34 that is, the top surface of the internal block 12 is the top surface of the lower block 14 inside the storage portion 60. Located below. That is, the entire inner block 12 enters in a state where it is buried inside the storage portion 60 of the lower block 14.
- second flow paths 66 are formed on the bottom surface of the storage unit 60, that is, the bottom surface of the first storage unit 62 so as to extend in the vertical direction.
- the lower block 14 has an opening on the lower surface. Then, by storing the internal block 12 in the storage unit 60, the second flow path 66 and the first flow path 50 of the internal block 12 communicate with each other.
- the irradiation nozzle 18 is fixed to the lower surface of the lower block 14.
- Six third flow paths 70 are formed in the irradiation nozzle 18 so as to extend in the vertical direction, and the six third flow paths 70 are opened on the upper surface and the lower surface of the irradiation nozzle 18.
- Each third flow path 70 communicates with each second flow path 66 of the internal block 12.
- the holding member 20 is formed of ceramic, and includes a pair of holders 72 and 74 and a connecting portion 76 as shown in FIGS.
- the pair of holders 72 and 74 are spaced apart with their side surfaces facing each other, and are connected by a connecting portion 76.
- Each of the pair of holders 72 and 74 includes a main body portion 78 and a protruding portion 80.
- the main body 78 has a generally cylindrical shape with a bottom.
- the protruding portion 80 has a short cylindrical shape with a smaller diameter than the main body portion 78 and slightly protrudes downward from the bottom surface of the main body portion 78.
- the upper end of the projecting portion 80 is open to the bottom surface of the main body portion 78.
- the outer diameter of the main body portion 78 is substantially the same as the width dimension of the flange portion 34 of the inner block 12, and the outer diameter of the protruding portion 80 is slightly smaller than the inner diameter of the cylindrical recesses 36 and 38 of the inner block 12. The dimensions are small.
- the shaft centers of the protrusions 80 of the pair of holders 72 and 74 are shifted from each other in a direction approaching the shaft center of the main body 78, and the distance between the pair of protrusions 80 is that of the inner block 12.
- the distance between the pair of cylindrical recesses 36 and 38 is the same.
- each main body 78 of the pair of holders 72 and 74 is a step surface, and is constituted by a first bottom surface 82 and a second bottom surface 84.
- the second bottom surface 84 projects downward from the first bottom surface 82.
- the second bottom surface 84 is formed so as to expand in a generally fan shape in a direction away from the side surface 86 and the side surface 88 opposite to each other of the protrusions 80 of the pair of holders 72 and 74. That is, the first bottom surface 82 is formed on the side surface 86 side of the protruding portion 80, and the second bottom surface 84 is formed on the side surface 88 side of the protruding portion 80.
- the second bottom surface 84 projects downward from the first bottom surface 82, but is located above the lower end of the projecting portion 80.
- the connecting portion 76 connects the pair of holders 72 and 74 on the side surfaces of the pair of holders 72 and 74 facing each other.
- the width dimension of the connecting portion 76 is substantially the same as the outer diameter of the main body portion 78 of the holders 72 and 74, and the outer wall surface of the connecting portion 76 and the outer peripheral surface of the main body portion 78 are smoothly continuous.
- the outer diameter of the main body 78 of the holders 72 and 74 is substantially the same as the width of the flange portion 34 of the inner block 12 as described above.
- the length dimension of the connecting portion 76 is designed so that the length dimension of the holding member 20 matches the length dimension of the flange portion 34 of the internal block 12. Thereby, the width dimension and the length dimension of the holding member 20 are substantially the same as the width dimension and the length dimension of the flange portion 34 of the internal block 12.
- the bottom surface 90 of the connecting portion 76 is flush with the first bottom surface 82 of the main body portion 78 of the holders 72 and 74, and the bottom surface 90 of the connecting portion 76 and the first bottom surface 82 of the main body portion 78 are smooth and flat. It is considered as a surface.
- the connecting portion 76 is formed with a through hole 96 extending in the vertical direction between the pair of holders 72 and 74. The through hole 96 opens at the upper surface of the connecting portion 76 at the upper end and at the lower end. An opening is formed on the lower surface of the connecting portion 76.
- the holding member 20 having such a structure is combined with the internal block 12 as shown in FIG. Specifically, the protrusions 80 of the pair of holders 72 and 74 of the holding member 20 are inserted into the pair of cylindrical recesses 36 and 38 of the inner block 12. Thereby, the lower end of the protrusion 80 faces the step surfaces 46 and 48 of the cylindrical recesses 36 and 38. However, the depth dimension of the cylindrical recesses 36 and 38 is larger than the protrusion amount of the protrusion 80 from the second bottom surface 84. For this reason, the 2nd bottom face 84 of the holding member 20 contacts the upper surface of the internal block 12, and the lower end of the protrusion part 80 and the level
- the width dimension and the length dimension of the holding member 20 are substantially the same as the width dimension and the length dimension of the flange portion 34 of the internal block 12. For this reason, the lower end portion of the holding member 20 combined with the inner block 12 is housed in the second housing portion 64 of the lower block 14 together with the flange portion 34 of the inner block 12.
- Each of the pair of electrodes 24 and 26 has a generally cylindrical shape, and the outer diameter of the electrodes 24 and 26 is smaller than the inner diameter of the holders 72 and 74 of the holding member 20.
- the electrodes 24 and 26 are held by the socket 102 in a posture extending vertically in the holders 72 and 74.
- the lower end portions of the electrodes 24 and 26 protrude from the lower end portion of the holder 72, that is, the lower end of the protruding portion 80, and are inserted into the reaction chamber 100.
- the lower ends of the electrodes 24 and 26 inserted into the reaction chamber 100 are formed in a wedge shape in which the end faces face each other. Specifically, the lower end portions of the pair of electrodes 24 and 26 are notched downward from the side surface 106 of the pair of electrodes 24 and 26 facing each other toward the side surface 108 opposite to the side surface 106. That is, the lower end surfaces 110 of the pair of electrodes 24 and 26 are cut out so as to face each other.
- the angle formed between the side surface 106 and the lower end surface 110 is an obtuse angle
- the angle formed between the side surface 108 and the lower end surface 110 is an acute angle.
- the lower end surfaces 110 of the electrodes 24 and 26 are tapered surfaces that incline downward from the side surface 106 toward the side surface 108.
- the connecting member 28 has a plate shape, and the connecting member 28 is formed with an insertion hole 120 extending in the vertical direction.
- the insertion hole 120 opens to the upper surface of the connecting member 28 at the upper end, and opens to the lower surface of the connecting member 28 at the lower end.
- the inner dimension of the insertion hole 120 is slightly larger than the dimension of the holding member 20 in the width direction and the length direction.
- the connecting member 28 is fixed to the upper surface of the lower block 14 with the holding member 20 inserted through the insertion hole 120.
- the upper surface of the connecting member 28 and the upper surface of the connecting portion 76 of the holding member 20 are substantially the same height, and the upper end portions of the holders 72 and 74 of the holding member 20, that is, the main body portion 78 is connected to the connecting member 28. It extends upward from the upper surface of.
- the upper block 30 has a generally rectangular parallelepiped shape, and a pair of recesses 126 opening on the lower surface of the upper block 30 is formed.
- the inner dimension of the recess 126 is slightly larger than the outer dimension of the main body 78 of the holders 72 and 74.
- the lower surface of the upper block 30 is being fixed to the upper surface of the connection member 28 in the state in which the main-body part 78 of the holders 72 and 74 was inserted in the recessed part 126.
- the depth dimension of the recessed part 126 is larger than the extension amount from the upper surface of the connection member 28 of the main-body part 78. FIG. For this reason, there is a clearance between the bottom surface of the recess 126 and the main body portion 78.
- An annular elastic body 128 is inserted into the clearance in a compressed state. Thereby, the holding member 20 is urged downward by the elastic force of the elastic body 128, and the inner block 12 and the holding member 20 are in close contact with each other inside the storage portion 60 of the lower block 14.
- a pair of first communication passages 130 communicating with the pair of recesses 126 are formed.
- the first communication path 130 is connected to a supply device (not shown) that supplies a processing gas composed only of an inert gas such as nitrogen.
- a second communication path 132 that communicates with the through hole 96 of the holding member 20 is also formed in the upper block 30.
- the second communication path 132 is connected to a supply device (not shown) that supplies a processing gas in which an active gas such as oxygen in the air and an inert gas such as nitrogen are mixed at an arbitrary ratio.
- a processing gas composed only of an inert gas is supplied from the first communication path 130 to the reaction chamber 100 through the insides of the holders 72 and 74 of the holding member 20. Further, a processing gas composed of an inert gas and an active gas is supplied from the second communication path 132 to the reaction chamber 100 through the through hole 96 of the holding member 20. At that time, in the reaction chamber 100, a voltage is applied to the pair of electrodes 24 and 26, and a current flows between the pair of electrodes 24 and 26. Thereby, a discharge is generated between the pair of electrodes 24 and 26, and the processing gas is turned into plasma by the discharge.
- the reaction chamber 100 since the electrodes 24 and 26 are disposed at positions close to the wall surface of the connection recess 40 of the internal block 12, current is applied along the wall surface of the connection recess 40 by application to the electrodes 24 and 26. Flowing. As a result, discharge occurs not only between the pair of electrodes 24 and 26 but also along the wall surface of the connecting recess 40, and the process gas is turned into plasma by the discharge.
- the plasma generated in the reaction chamber 100 flows into the second flow channel 66 of the lower block 14 via the first flow channel 50 of the internal block 12. Further, the plasma flows into the third flow path 70 of the irradiation nozzle 18, and the object to be processed is irradiated from the lower end of the third flow path 70.
- the gas ionized inside the reaction chamber 100 is sequentially ejected from the reaction chamber 100 to the first flow path 50.
- the ionized gas stays in the narrow region.
- the ionized gas enters the contact surface between the members even at the contact surface.
- the ionized gas stays inside the contact surface, and the discharge concentrates on the ionized gas, thereby causing the contact surface to burn. There is a fear.
- a discharge is generated between the pair of electrodes 24 and 26. Therefore, if a contact surface exists between the pair of electrodes 24 and 26, the contact surface is likely to be burned, and the reaction occurs.
- the members that define the chamber 100, that is, the internal block 12, the holding member 20, and the like are easily deteriorated. Further, the discharge may not be stable due to the concentration of the discharge on the contact surface.
- the atmospheric pressure plasma generator 10 is configured such that the contact surface exists only on the opposite side of the reaction chamber 100 from between the pair of electrodes 24 and 26.
- the reaction chamber 100 is defined by the holding member 20 and the internal block 12, and the protrusions 80 of the pair of holders 72 and 74 of the holding member 20 are paired with the pair of internal blocks 12.
- the cylindrical recesses 36 and 38 are inserted. Thereby, the lower end of the protrusion 80 faces the step surfaces 46 and 48 of the cylindrical recesses 36 and 38.
- the depth dimension of the cylindrical recesses 36 and 38 is larger than the protrusion amount of the protrusion 80 from the second bottom surface 84.
- the 2nd bottom face 84 of the holding member 20 contacts the upper surface of the internal block 12, and the lower end of the protrusion part 80 and the level
- the contact surface 140 is located on the opposite side between the pair of electrodes 24 and 26 inserted into the connecting recess 40 of the inner block 12. That is, in the atmospheric pressure plasma generator 10, in the reaction chamber 100, the contact surface between the inner block 12 and the holding member 20, that is, the second bottom surface 84 and the contact only on the opposite side of the pair of electrodes 24 and 26.
- the surface 140 is configured to exist.
- between the pair of electrodes 24, 26 means a width corresponding to the diameter of the electrodes 24, 26, and does not indicate only a region connecting the pair of electrodes 24, 26, but a pair of electrodes 24, 26.
- An area between two straight lines passing through a pair of electrodes 24 and 26 is shown. Specifically, a region connecting the pair of electrodes 24 and 26 with a width corresponding to the diameter of the electrodes 24 and 26 is a region surrounded by a one-dot chain line 146 in FIG.
- two straight lines passing through the pair of electrodes 24 and 26 and passing through the pair of electrodes 24 and 26 are two-dot chain lines 148 in FIG. Therefore, between the pair of electrodes 24 and 26 means between the two two-dot chain lines 148. That is, in the atmospheric pressure plasma generator 10, the contact surface between the internal block 12 and the holding member 20 exists only on the opposite side of the reaction chamber 100 between the pair of two-dot chain lines 148.
- the conventional atmospheric pressure plasma generator 150 includes a pair of holders 152, an internal block 154, a connecting member 156, a lower block 158, an irradiation nozzle (not shown), and an upper part. And a block (not shown).
- the lower surface of the pair of holders 152 is assembled on the upper surface of the internal block 154, so that the inside of the internal block 154 functions as a reaction chamber. For this reason, only the holder 152 and the internal block 154 will be described.
- the pair of holders 152 has a cylindrical shape, and its lower end surface is a flat surface.
- the inner block 154 includes a generally rectangular parallelepiped main body 166 and a flange 168 formed at the upper end of the main body 166.
- a recess 170 is formed in the internal block 154, and the recess 170 opens to the upper surface of the flange portion 168 and reaches the inside of the main body portion 166.
- the upper surface of the flange portion 168 is a flat surface except for the concave portion 170, and the width dimension of the flange portion 168 is approximately the same as the diameter of the holder 152.
- the holder 152 and the internal block 154 are combined so that the lower surface of the holder 152 is in contact with the upper surface of the internal block 154, that is, the upper surface of the flange portion 168.
- the recess 170 of the internal block 154 is partitioned as a reaction chamber by the holder 152.
- a pair of electrodes see FIG. 10) 176 and 178 are inserted into the pair of holders 152 so that the lower ends of the pair of electrodes 176 and 178 enter the recess 170.
- the holder 152 and the internal block 154 are combined so that the lower end surface of the flat holder 152 is in contact with the upper end surface of the flat internal block 154. For this reason, on the upper surface of the internal block 154, as shown in FIG. 10, a portion (shaded line in the drawing) corresponding to the shape of the lower end surface of the holder 152 becomes a contact surface 180 to the holder 152.
- the contact surface 180 extends between the pair of electrodes 176 and 178. That is, the contact surface 180 extends straight to a straight line connecting the pair of electrodes 176 and 178 and to a region between the two straight lines 182 passing through the pair of electrodes 176 and 178.
- the gas ionized by the discharge generated between the electrodes 176 and 178 is It is easy to enter the contact surface 180.
- the ionized gas easily enters the contact surface 180.
- the contact surface 180 is burnt and deteriorates.
- the holder 152 and the internal block 154 that partition the reaction chamber are easily deteriorated, and the durability is low.
- the contact surface 140 between the internal block 12 and the holding member 20 is provided only on the opposite side between the pair of electrodes 24 and 26. Exists. That is, the contact surface 140 between the inner block 12 and the holding member 20 does not exist between the pair of electrodes 24 and 26. For this reason, even if a discharge occurs between the pair of electrodes 24 and 26, the ionized gas does not easily enter the contact surface 140 between the inner block 12 and the holding member 20. Further, even when a discharge is generated from the pair of electrodes 24 and 26 along the wall surface defining the reaction chamber 100, it is difficult to enter the contact surface 140.
- the atmospheric pressure plasma generation apparatus 10 by devising the shape of the internal block 12 or the like without changing the material of the internal block 12 or the like, the high cost due to the material change is prevented, and the internal block 12 or the like is prevented. Durability is improved. Moreover, stable discharge is ensured by suppressing the concentration of discharge on the contact surface.
- a protruding portion 80 that protrudes downward from the second bottom surface 84 is formed between the second bottom surface 84 of the holding member 20 and the electrodes 24 and 26, and the internal block 12. Between the contact surface 140 and the electrodes 24 and 26, step surfaces 46 and 48 that are recessed downward are formed. And the protrusion part 80 and the level
- the holding member 20 is supported by the upper surface of the internal block 12 only on the second bottom surface 84 of the pair of holders 72 and 74. That is, the holders 72 and 74 are supported by the upper surface of the inner block 12 only at one end portion of both ends in the diameter direction of the generally annular bottom surface, and the stability is low. For this reason, the pair of holders 72 and 74 are connected by the connecting portion 76, and the stability of the holding member 20 is ensured.
- the electrode has a cylindrical shape, and the angle formed between the side surface of the electrode and the lower end surface of the electrode is a right angle. That is, in the lower end portions of the pair of electrodes, the corner portions where the side surface and the lower end surface form 90 degrees face each other, and the lower end surfaces face directly below and do not face each other at all. Then, electric power is supplied to the pair of electrodes, and discharge occurs between the lower ends of the pair of electrodes. At this time, since the lower end surfaces of the pair of electrodes do not face each other at all, it is difficult for discharge to occur between one lower end surface of the pair of electrodes and the other lower end surface. It is thought that discharge occurs between the corner and the other 90-degree corner.
- the discharge concentrates on the corner of the electrode in this way, a slight disturbance may occur in the power supplied to the electrode. Specifically, when a current is stably supplied to the electrode, the current changes periodically. On the other hand, in the conventional atmospheric pressure plasma generator, the amplitude may decrease in several cycles of hundreds to thousands of cycles. In such a case, although it is an instant, there is a possibility that the discharge stops, which is not desirable.
- the lower ends of the electrodes 24 and 26 are wedge-shaped, and the lower end surfaces 110 of the pair of electrodes 24 and 26 face each other. That is, at the lower end portions of the pair of electrodes 24 and 26, the corner portions where the side surface 106 and the lower end surface 110 form an obtuse angle face each other, and the lower end surfaces 110 also face each other. Then, electric power is supplied to the pair of electrodes 24 and 26, thereby generating a discharge between one obtuse corner of the pair of electrodes 24 and 26 and the other obtuse corner. It is considered that a discharge is also generated between one lower end surface 110 of the pair of electrodes 24 and 26 and the other lower end surface 110.
- the atmospheric pressure plasma generator 10 is an example of a plasma generator.
- the electrodes 24 and 26 are examples of electrodes.
- the side surface 106 is an example of a first side surface.
- the side surface 108 is an example of a second side surface.
- the lower end surface 110 is an example of an end surface.
- this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art.
- a protrusion 80 that protrudes downward from the second bottom surface 84 is formed on the bottom surface of the holders 72 and 74, and on the top surface of the lower block 14, Step surfaces 46 and 48 that are recessed downward from the contact surface 140 are formed. And the 2nd bottom face 84 and the contact surface 140 contact, and the protrusion part 80 and the level
- a stepped surface 200 that is recessed above the second bottom surface 84 is formed on the bottom surfaces of the holders 72 and 74, and a protruding portion 210 that protrudes above the contact surface 140 on the top surface of the lower block 14. May be formed. And the 2nd bottom face 84 and the contact surface 140 may contact, and the level
- the present invention is applied to the atmospheric pressure plasma generator 10, but the present invention can be applied to a plasma generator that generates plasma under reduced pressure.
- the lower end surface 110 of the electrodes 24 and 26 is a flat surface, but it can be formed in various shapes such as a curved surface and a step surface.
- dry air may be used as the processing gas in the above embodiment.
- Atmospheric pressure plasma generator (plasma generator) 24: Electrode 26: Electrode 106: Side surface (first side surface) 108: Side surface (second side surface) 110: Lower end surface (end surface)
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
Abstract
This plasma-generating device generates plasma by discharge between the edges of a pair of electrodes positioned in such a manner that the side surfaces thereof face one another. The edge surfaces of the pair of electrodes that discharge electricity are cut out in such a manner so as to face one another.
Description
本発明は、互いの側面を対向させた状態で配設された1対の電極の端部の間での放電によりプラズマを発生させるプラズマ発生装置に関する。
The present invention relates to a plasma generator that generates plasma by discharge between the ends of a pair of electrodes disposed with their side surfaces facing each other.
プラズマ発生装置では、下記特許文献に記載されているように、反応室に処理ガスが供給され、反応室に配設された複数の電極に電力が供給される。これにより、反応室において、放電が生じ、処理ガスがプラズマ化される。
In the plasma generator, as described in the following patent document, a processing gas is supplied to a reaction chamber, and power is supplied to a plurality of electrodes arranged in the reaction chamber. Thereby, discharge occurs in the reaction chamber, and the processing gas is turned into plasma.
プラズマ発生装置では、電極間での放電によりプラズマが発生する。このため、電極間で安定的に放電可能なプラズマ発生装置の提供を課題とする。
In the plasma generator, plasma is generated by discharge between the electrodes. For this reason, it is an object to provide a plasma generator that can stably discharge between electrodes.
上記課題を解決するために、本明細書は、互いの側面を対向させた状態で配設された1対の電極の端部の間での放電によりプラズマを発生させるプラズマ発生装置であって、前記1対の電極の放電する側の端面が、互いに向かい合うように切り欠かれたプラズマ発生装置を開示する。
In order to solve the above-described problem, the present specification provides a plasma generator that generates plasma by discharge between the ends of a pair of electrodes disposed in a state in which the side surfaces face each other. Disclosed is a plasma generator in which end surfaces on the discharge side of the pair of electrodes are cut away so as to face each other.
本開示によれば、1対の電極の互いに向かい合う端面の間で放電が生じるため、安定的に放電させることが可能となる。
According to the present disclosure, since discharge occurs between the end faces of the pair of electrodes facing each other, stable discharge can be achieved.
以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as modes for carrying out the present invention.
(A)大気圧プラズマ発生装置の構成
図1乃至図3に、本発明の実施例の大気圧プラズマ発生装置10を示す。大気圧プラズマ発生装置10は、大気圧下でプラズマを発生させるための装置である。大気圧プラズマ発生装置10は、内部ブロック12と、下部ブロック14と、照射ノズル18と、保持部材20と、1対の電極24,26と、連結部材28と、上部ブロック30とを備えている。なお、図1は、大気圧プラズマ発生装置10の斜視図であり、図2は、上部ブロック30を除いた大気圧プラズマ発生装置10の分解斜視図であり、図3は、大気圧プラズマ発生装置10の断面図である。 (A) Configuration of Atmospheric Pressure Plasma Generator FIG. 1 to FIG. 3 show an atmosphericpressure plasma generator 10 according to an embodiment of the present invention. The atmospheric pressure plasma generator 10 is an apparatus for generating plasma under atmospheric pressure. The atmospheric pressure plasma generator 10 includes an inner block 12, a lower block 14, an irradiation nozzle 18, a holding member 20, a pair of electrodes 24 and 26, a connecting member 28, and an upper block 30. . 1 is a perspective view of the atmospheric pressure plasma generator 10, FIG. 2 is an exploded perspective view of the atmospheric pressure plasma generator 10 excluding the upper block 30, and FIG. 3 is an atmospheric pressure plasma generator. 10 is a cross-sectional view of FIG.
図1乃至図3に、本発明の実施例の大気圧プラズマ発生装置10を示す。大気圧プラズマ発生装置10は、大気圧下でプラズマを発生させるための装置である。大気圧プラズマ発生装置10は、内部ブロック12と、下部ブロック14と、照射ノズル18と、保持部材20と、1対の電極24,26と、連結部材28と、上部ブロック30とを備えている。なお、図1は、大気圧プラズマ発生装置10の斜視図であり、図2は、上部ブロック30を除いた大気圧プラズマ発生装置10の分解斜視図であり、図3は、大気圧プラズマ発生装置10の断面図である。 (A) Configuration of Atmospheric Pressure Plasma Generator FIG. 1 to FIG. 3 show an atmospheric
内部ブロック12は、セラミックにより成形されており、図4及び図5に示すように、概して直方体形状の本体部32と、本体部32の上縁に形成されたフランジ部34とにより構成されている。なお、図4は、内部ブロック12の斜視図であり、図5は、内部ブロック12Aの正面図と内部ブロック12Bの上面図と内部ブロック12Cの側面図である。
The inner block 12 is formed of ceramic, and as shown in FIGS. 4 and 5, is constituted by a generally rectangular parallelepiped body portion 32 and a flange portion 34 formed at the upper edge of the body portion 32. . 4 is a perspective view of the internal block 12, and FIG. 5 is a front view of the internal block 12A, a top view of the internal block 12B, and a side view of the internal block 12C.
内部ブロック12のフランジ部34の上面には、1対の円柱形状の円柱凹部36,38が形成されている。さらに、1対の円柱凹部36,38を連結し、1対の円柱凹部36,38の底面から本体部32の内部に向かう連結凹部40が形成されている。なお連結凹部40の幅は、円柱凹部36,38の直径より小さいため、円柱凹部36,38の底面は、概してU字型の段差面46,48とされている。また、連結凹部40は、底面に向かうほど幅が狭くなる段付き形状とされており、連結凹部40の底面には、上下方向に延びるように6本の第1流路50が形成されている。そして、それら6本の第1流路50は、内部ブロック12の下面に開口している。なお、本明細書での構成要素の幅方向は、構成要素が概して矩形の場合に短手方向、つまり、長手方向に直行する方向を意味する。また、長手方向を長さ方向と記載する。
A pair of cylindrical concave portions 36 and 38 are formed on the upper surface of the flange portion 34 of the inner block 12. Further, a pair of cylindrical recesses 36 and 38 are connected, and a connection recess 40 is formed from the bottom surface of the pair of cylindrical recesses 36 and 38 toward the inside of the main body 32. Since the width of the connecting recess 40 is smaller than the diameter of the cylindrical recesses 36, 38, the bottom surfaces of the cylindrical recesses 36, 38 are generally U-shaped step surfaces 46, 48. Moreover, the connection recessed part 40 is made into the stepped shape where a width | variety becomes narrow toward the bottom face, and the six 1st flow paths 50 are formed in the bottom face of the connection recessed part 40 so that it may extend in an up-down direction. . The six first flow paths 50 are open on the lower surface of the internal block 12. In the present specification, the width direction of the component means a short direction when the component is generally rectangular, that is, a direction orthogonal to the longitudinal direction. Moreover, a longitudinal direction is described as a length direction.
下部ブロック14は、図2に示すように、概して直方体形状をなし、セラミックにより成形されている。下部ブロック14の上面には、内部ブロック12を収納するための収納部60が形成されている。収納部60は、下部ブロック14の上面に開口する有底穴であり、図3に示すように、底面側に位置する第1収納部62と、開口側に位置する第2収納部64とによって構成されている。
As shown in FIG. 2, the lower block 14 has a generally rectangular parallelepiped shape and is formed of ceramic. On the upper surface of the lower block 14, a storage portion 60 for storing the internal block 12 is formed. The storage unit 60 is a bottomed hole that opens to the upper surface of the lower block 14, and, as shown in FIG. 3, includes a first storage unit 62 positioned on the bottom surface side and a second storage unit 64 positioned on the opening side. It is configured.
第1収納部62の深さ寸法は、内部ブロック12の本体部32の高さ寸法と略同じであり、第1収納部62の幅寸法および長さ寸法は、内部ブロック12の本体部32の幅寸法および長さ寸法より僅かに長い。また、第2収納部64の深さ寸法は、内部ブロック12のフランジ部34の高さ寸法より長く、第2収納部64の幅寸法および長さ寸法は、内部ブロック12のフランジ部34の幅寸法および長さ寸法より僅かに長い。このため、内部ブロック12は、収納部60の開口から挿入され、内部ブロック12の本体部32が第1収納部62に収納され、内部ブロック12のフランジ部34が第2収納部64に収納される。なお、第2収納部64の深さ寸法はフランジ部34の高さ寸法より長いため、フランジ部34の上面、つまり、内部ブロック12の上面は、収納部60の内部において、下部ブロック14の上面より下方に位置する。つまり、内部ブロック12の全体が、下部ブロック14の収納部60の内部に埋もれた状態で入り込んでいる。
The depth dimension of the first storage part 62 is substantially the same as the height dimension of the main body part 32 of the inner block 12, and the width dimension and the length dimension of the first storage part 62 are the same as those of the main body part 32 of the inner block 12. Slightly longer than the width and length dimensions. The depth dimension of the second storage part 64 is longer than the height dimension of the flange part 34 of the internal block 12, and the width dimension and length dimension of the second storage part 64 are the width of the flange part 34 of the internal block 12. Slightly longer than dimension and length. For this reason, the internal block 12 is inserted from the opening of the storage portion 60, the main body portion 32 of the internal block 12 is stored in the first storage portion 62, and the flange portion 34 of the internal block 12 is stored in the second storage portion 64. The Since the depth dimension of the second storage portion 64 is longer than the height dimension of the flange portion 34, the top surface of the flange portion 34, that is, the top surface of the internal block 12 is the top surface of the lower block 14 inside the storage portion 60. Located below. That is, the entire inner block 12 enters in a state where it is buried inside the storage portion 60 of the lower block 14.
また、収納部60の底面、つまり、第1収納部62の底面には、上下方向に延びるように6本の第2流路66が形成されており、それら6本の第2流路66は、下部ブロック14の下面に開口している。そして、収納部60に内部ブロック12が収納されることで、第2流路66と内部ブロック12の第1流路50とが連通する。
In addition, six second flow paths 66 are formed on the bottom surface of the storage unit 60, that is, the bottom surface of the first storage unit 62 so as to extend in the vertical direction. The lower block 14 has an opening on the lower surface. Then, by storing the internal block 12 in the storage unit 60, the second flow path 66 and the first flow path 50 of the internal block 12 communicate with each other.
照射ノズル18は、下部ブロック14の下面に固定されている。照射ノズル18には、上下方向に延びるように6本の第3流路70が形成されており、それら6本の第3流路70は、照射ノズル18の上面及び下面に開口している。そして、各第3流路70は、内部ブロック12の各第2流路66と連通している。
The irradiation nozzle 18 is fixed to the lower surface of the lower block 14. Six third flow paths 70 are formed in the irradiation nozzle 18 so as to extend in the vertical direction, and the six third flow paths 70 are opened on the upper surface and the lower surface of the irradiation nozzle 18. Each third flow path 70 communicates with each second flow path 66 of the internal block 12.
保持部材20は、セラミックにより成形されており、図6及び図7に示すように、1対のホルダ72,74と連結部76とにより構成されている。1対のホルダ72,74は、互いの側面を対向させた状態で離間して配設されており、連結部76によって連結されている。それら1対のホルダ72,74の各々は、本体部78と突出部80とから構成されている。本体部78は、概して有底円筒形状とされている。また、突出部80は、本体部78より小径の短円筒形状とされており、本体部78の底面から下方に僅かに突出している。その突出部80の上端は、本体部78の底面に開口している。
The holding member 20 is formed of ceramic, and includes a pair of holders 72 and 74 and a connecting portion 76 as shown in FIGS. The pair of holders 72 and 74 are spaced apart with their side surfaces facing each other, and are connected by a connecting portion 76. Each of the pair of holders 72 and 74 includes a main body portion 78 and a protruding portion 80. The main body 78 has a generally cylindrical shape with a bottom. Further, the protruding portion 80 has a short cylindrical shape with a smaller diameter than the main body portion 78 and slightly protrudes downward from the bottom surface of the main body portion 78. The upper end of the projecting portion 80 is open to the bottom surface of the main body portion 78.
なお、本体部78の外径は、内部ブロック12のフランジ部34の幅寸法と略同じとされており、突出部80の外径は、内部ブロック12の円柱凹部36,38の内径より僅かに小さな寸法とされている。また、1対のホルダ72,74の突出部80の軸心は、本体部78の軸心より、互いに接近する方向にズレており、1対の突出部80の離間距離は、内部ブロック12の1対の円柱凹部36,38の離間距離と同じとされている。
The outer diameter of the main body portion 78 is substantially the same as the width dimension of the flange portion 34 of the inner block 12, and the outer diameter of the protruding portion 80 is slightly smaller than the inner diameter of the cylindrical recesses 36 and 38 of the inner block 12. The dimensions are small. In addition, the shaft centers of the protrusions 80 of the pair of holders 72 and 74 are shifted from each other in a direction approaching the shaft center of the main body 78, and the distance between the pair of protrusions 80 is that of the inner block 12. The distance between the pair of cylindrical recesses 36 and 38 is the same.
また、1対のホルダ72,74の各々の本体部78の底面は、段差面とされており、第1底面82と第2底面84とにより構成されている。第2底面84は、第1底面82より下方に突出している。第2底面84は、1対のホルダ72,74の突出部80の互いに向かい合う側面86と反対側の側面88から離れる方向に向かって、概して扇型に広がるように形成されている。つまり、第1底面82は、突出部80の側面86側に形成され、第2底面84は、突出部80の側面88側に形成されている。なお、第2底面84は、第1底面82より下方に突出しているが、突出部80の下端より上方に位置している。
Also, the bottom surface of each main body 78 of the pair of holders 72 and 74 is a step surface, and is constituted by a first bottom surface 82 and a second bottom surface 84. The second bottom surface 84 projects downward from the first bottom surface 82. The second bottom surface 84 is formed so as to expand in a generally fan shape in a direction away from the side surface 86 and the side surface 88 opposite to each other of the protrusions 80 of the pair of holders 72 and 74. That is, the first bottom surface 82 is formed on the side surface 86 side of the protruding portion 80, and the second bottom surface 84 is formed on the side surface 88 side of the protruding portion 80. The second bottom surface 84 projects downward from the first bottom surface 82, but is located above the lower end of the projecting portion 80.
また、連結部76は、1対のホルダ72,74の互いに対向する側面において、それら1対のホルダ72,74を連結している。連結部76の幅寸法は、ホルダ72,74の本体部78の外径と略同じとされており、連結部76の外壁面と本体部78の外周面とが円滑に連続している。なお、ホルダ72,74の本体部78の外径は、上述したように、内部ブロック12のフランジ部34の幅寸法と略同じとされている。また、連結部76の長さ寸法は、保持部材20の長さ寸法が内部ブロック12のフランジ部34の長さ寸法と一致するように設計されている。これにより、保持部材20の幅寸法および長さ寸法は、内部ブロック12のフランジ部34の幅寸法および長さ寸法と略同じとされている。
Further, the connecting portion 76 connects the pair of holders 72 and 74 on the side surfaces of the pair of holders 72 and 74 facing each other. The width dimension of the connecting portion 76 is substantially the same as the outer diameter of the main body portion 78 of the holders 72 and 74, and the outer wall surface of the connecting portion 76 and the outer peripheral surface of the main body portion 78 are smoothly continuous. The outer diameter of the main body 78 of the holders 72 and 74 is substantially the same as the width of the flange portion 34 of the inner block 12 as described above. Further, the length dimension of the connecting portion 76 is designed so that the length dimension of the holding member 20 matches the length dimension of the flange portion 34 of the internal block 12. Thereby, the width dimension and the length dimension of the holding member 20 are substantially the same as the width dimension and the length dimension of the flange portion 34 of the internal block 12.
また、連結部76の底面90は、ホルダ72,74の本体部78の第1底面82と面一であり、連結部76の底面90と本体部78の第1底面82とは、円滑な平坦面とされている。なお、連結部76には、1対のホルダ72,74の間において、上下方向に延びる貫通孔96が形成されており、貫通孔96は、上端において連結部76の上面に開口し、下端において連結部76の下面に開口している。
The bottom surface 90 of the connecting portion 76 is flush with the first bottom surface 82 of the main body portion 78 of the holders 72 and 74, and the bottom surface 90 of the connecting portion 76 and the first bottom surface 82 of the main body portion 78 are smooth and flat. It is considered as a surface. The connecting portion 76 is formed with a through hole 96 extending in the vertical direction between the pair of holders 72 and 74. The through hole 96 opens at the upper surface of the connecting portion 76 at the upper end and at the lower end. An opening is formed on the lower surface of the connecting portion 76.
このような構造の保持部材20は、図3に示すように、内部ブロック12に組み合わされている。詳しくは、保持部材20の1対のホルダ72,74の突出部80が、内部ブロック12の1対の円柱凹部36,38に挿入されている。これにより、突出部80の下端が、円柱凹部36,38の段差面46,48と対向する。ただし、円柱凹部36,38の深さ寸法は、突出部80の第2底面84からの突出量より大きい。このため、内部ブロック12の上面に、保持部材20の第2底面84が接触し、突出部80の下端と、円柱凹部36,38の段差面46,48とは、クリアランスの有る状態で対向する。このように、保持部材20が内部ブロック12に組み合わされることで、内部ブロック12の連結凹部40が保持部材20によって塞がれ、連結凹部40と保持部材20とによって、反応室100が区画される。
The holding member 20 having such a structure is combined with the internal block 12 as shown in FIG. Specifically, the protrusions 80 of the pair of holders 72 and 74 of the holding member 20 are inserted into the pair of cylindrical recesses 36 and 38 of the inner block 12. Thereby, the lower end of the protrusion 80 faces the step surfaces 46 and 48 of the cylindrical recesses 36 and 38. However, the depth dimension of the cylindrical recesses 36 and 38 is larger than the protrusion amount of the protrusion 80 from the second bottom surface 84. For this reason, the 2nd bottom face 84 of the holding member 20 contacts the upper surface of the internal block 12, and the lower end of the protrusion part 80 and the level | step difference surfaces 46 and 48 of the cylindrical recessed parts 36 and 38 oppose in a state with clearance. . As described above, the holding member 20 is combined with the inner block 12, so that the connecting recess 40 of the inner block 12 is closed by the holding member 20, and the reaction chamber 100 is partitioned by the connecting recess 40 and the holding member 20. .
また、上述したように、保持部材20の幅寸法および長さ寸法は、内部ブロック12のフランジ部34の幅寸法および長さ寸法と略同じとされている。このため、内部ブロック12に組み合わされた保持部材20の下端部は、内部ブロック12のフランジ部34とともに、下部ブロック14の第2収納部64に収納されている。
Further, as described above, the width dimension and the length dimension of the holding member 20 are substantially the same as the width dimension and the length dimension of the flange portion 34 of the internal block 12. For this reason, the lower end portion of the holding member 20 combined with the inner block 12 is housed in the second housing portion 64 of the lower block 14 together with the flange portion 34 of the inner block 12.
1対の電極24,26の各々は、概して円柱形状をなし、電極24,26の外径は、保持部材20のホルダ72,74の内径より小さい。そして、電極24,26は、ホルダ72,74の内部において、上下方向に延びる姿勢でソケット102によって保持されている。電極24,26の下端部は、ホルダ72の下端部、つまり、突出部80の下端から突出しており、反応室100の内部に、挿入されている。
Each of the pair of electrodes 24 and 26 has a generally cylindrical shape, and the outer diameter of the electrodes 24 and 26 is smaller than the inner diameter of the holders 72 and 74 of the holding member 20. The electrodes 24 and 26 are held by the socket 102 in a posture extending vertically in the holders 72 and 74. The lower end portions of the electrodes 24 and 26 protrude from the lower end portion of the holder 72, that is, the lower end of the protruding portion 80, and are inserted into the reaction chamber 100.
また、反応室100の内部に挿入された電極24,26の下端部は、互いの端面が向かい合う楔状とされている。詳しくは、1対の電極24,26の下端部は、1対の電極24,26の互いに向かい合う側面106から、その側面106と反対側の側面108に向かって下方に切り欠かれている。つまり、1対の電極24,26の下端面110は、互いに向かい合うように切り欠かれている。また、別の表現を用いれば、側面106と下端面110とのなす角度が鈍角とされ、側面108と下端面110とのなす角度が鋭角とされている。さらに別の表現を用いれば、電極24,26の下端面110は、側面106から側面108に向かうほど下方に向かって傾斜するテーパ面とされている。
Also, the lower ends of the electrodes 24 and 26 inserted into the reaction chamber 100 are formed in a wedge shape in which the end faces face each other. Specifically, the lower end portions of the pair of electrodes 24 and 26 are notched downward from the side surface 106 of the pair of electrodes 24 and 26 facing each other toward the side surface 108 opposite to the side surface 106. That is, the lower end surfaces 110 of the pair of electrodes 24 and 26 are cut out so as to face each other. In other words, the angle formed between the side surface 106 and the lower end surface 110 is an obtuse angle, and the angle formed between the side surface 108 and the lower end surface 110 is an acute angle. In other words, the lower end surfaces 110 of the electrodes 24 and 26 are tapered surfaces that incline downward from the side surface 106 toward the side surface 108.
また、連結部材28は、板状をなし、連結部材28には、上下方向に延びる挿通穴120が形成されている。挿通穴120は、上端において連結部材28の上面に開口し、下端において連結部材28の下面に開口している。挿通穴120の内寸は、保持部材20の幅方向及び長さ方向の寸法より僅かに大きい。そして、連結部材28は、挿通穴120に保持部材20を挿通させた状態で、下部ブロック14の上面に固定されている。なお、連結部材28の上面と保持部材20の連結部76の上面とは、略同じ高さとされており、保持部材20のホルダ72,74の上端部、つまり、本体部78が、連結部材28の上面から上方に向かって延び出している。
Further, the connecting member 28 has a plate shape, and the connecting member 28 is formed with an insertion hole 120 extending in the vertical direction. The insertion hole 120 opens to the upper surface of the connecting member 28 at the upper end, and opens to the lower surface of the connecting member 28 at the lower end. The inner dimension of the insertion hole 120 is slightly larger than the dimension of the holding member 20 in the width direction and the length direction. The connecting member 28 is fixed to the upper surface of the lower block 14 with the holding member 20 inserted through the insertion hole 120. The upper surface of the connecting member 28 and the upper surface of the connecting portion 76 of the holding member 20 are substantially the same height, and the upper end portions of the holders 72 and 74 of the holding member 20, that is, the main body portion 78 is connected to the connecting member 28. It extends upward from the upper surface of.
また、上部ブロック30は、概して直方体形状をなしており、上部ブロック30の下面に開口する1対の凹部126が形成されている。凹部126の内寸はホルダ72,74の本体部78の外寸より僅かに大きい。そして、ホルダ72,74の本体部78が凹部126に嵌入された状態で、上部ブロック30の下面が、連結部材28の上面に固定されている。なお、凹部126の深さ寸法は、本体部78の連結部材28の上面からの延び出し量より大きい。このため、凹部126の底面と本体部78との間にクリアランスが有る。そのクリアランスに、環状の弾性体128が圧縮された状態で介挿されている。これにより、弾性体128の弾性力によって、保持部材20が下方に向かって付勢され、下部ブロック14の収納部60の内部において、内部ブロック12と保持部材20とが密着している。
Further, the upper block 30 has a generally rectangular parallelepiped shape, and a pair of recesses 126 opening on the lower surface of the upper block 30 is formed. The inner dimension of the recess 126 is slightly larger than the outer dimension of the main body 78 of the holders 72 and 74. And the lower surface of the upper block 30 is being fixed to the upper surface of the connection member 28 in the state in which the main-body part 78 of the holders 72 and 74 was inserted in the recessed part 126. FIG. In addition, the depth dimension of the recessed part 126 is larger than the extension amount from the upper surface of the connection member 28 of the main-body part 78. FIG. For this reason, there is a clearance between the bottom surface of the recess 126 and the main body portion 78. An annular elastic body 128 is inserted into the clearance in a compressed state. Thereby, the holding member 20 is urged downward by the elastic force of the elastic body 128, and the inner block 12 and the holding member 20 are in close contact with each other inside the storage portion 60 of the lower block 14.
また、上部ブロック30には、1対の凹部126に連通する1対の第1連通路130が形成されている。その第1連通路130は、窒素等の不活性ガスのみによって構成された処理ガスを供給する供給装置(図示省略)に連結されている。さらに、上部ブロック30には、保持部材20の貫通孔96に連通する第2連通路132も形成されている。その第2連通路132は、空気中の酸素等の活性ガスと窒素等の不活性ガスとを任意の割合で混合させた処理ガスを供給する供給装置(図示省略)に連結されている。
In the upper block 30, a pair of first communication passages 130 communicating with the pair of recesses 126 are formed. The first communication path 130 is connected to a supply device (not shown) that supplies a processing gas composed only of an inert gas such as nitrogen. Furthermore, a second communication path 132 that communicates with the through hole 96 of the holding member 20 is also formed in the upper block 30. The second communication path 132 is connected to a supply device (not shown) that supplies a processing gas in which an active gas such as oxygen in the air and an inert gas such as nitrogen are mixed at an arbitrary ratio.
(B)大気圧プラズマ発生装置によるプラズマの発生
大気圧プラズマ発生装置10では、上述した構成により、反応室100の内部において、処理ガスがプラズマ化され、照射ノズル18の第3流路70からプラズマが照射される。以下に、大気圧プラズマ発生装置10によるプラズマの発生について、詳しく説明する。 (B) Generation of Plasma by Atmospheric Pressure Plasma Generator In the atmosphericpressure plasma generator 10, the processing gas is converted into plasma inside the reaction chamber 100 by the above-described configuration, and plasma is generated from the third flow path 70 of the irradiation nozzle 18. Is irradiated. Hereinafter, generation of plasma by the atmospheric pressure plasma generator 10 will be described in detail.
大気圧プラズマ発生装置10では、上述した構成により、反応室100の内部において、処理ガスがプラズマ化され、照射ノズル18の第3流路70からプラズマが照射される。以下に、大気圧プラズマ発生装置10によるプラズマの発生について、詳しく説明する。 (B) Generation of Plasma by Atmospheric Pressure Plasma Generator In the atmospheric
大気圧プラズマ発生装置10では、不活性ガスのみによって構成された処理ガスが、第1連通路130から、保持部材20のホルダ72,74の内部を介して、反応室100に供給される。また、不活性ガスと活性ガスとによって構成された処理ガスが、第2連通路132から、保持部材20の貫通孔96を介して、反応室100に供給される。その際、反応室100では、1対の電極24,26に電圧が印加されており、1対の電極24,26の間に電流が流れる。これにより、1対の電極24,26の間に放電が生じ、その放電により、処理ガスがプラズマ化される。また、反応室100では、電極24,26が内部ブロック12の連結凹部40の壁面に近い位置に配設されているため、電極24,26への印加により、電流が連結凹部40の壁面に沿って流れる。これにより、1対の電極24,26間だけでなく、連結凹部40の壁面に沿って放電が生じ、その放電によって、処理ガスがプラズマ化される。そして、反応室100で発生したプラズマは、内部ブロック12の第1流路50を介して、下部ブロック14の第2流路66に流れる。さらに、プラズマは、照射ノズル18の第3流路70に流れ、その第3流路70の下端から被処理体にプラズマが照射される。
In the atmospheric pressure plasma generation apparatus 10, a processing gas composed only of an inert gas is supplied from the first communication path 130 to the reaction chamber 100 through the insides of the holders 72 and 74 of the holding member 20. Further, a processing gas composed of an inert gas and an active gas is supplied from the second communication path 132 to the reaction chamber 100 through the through hole 96 of the holding member 20. At that time, in the reaction chamber 100, a voltage is applied to the pair of electrodes 24 and 26, and a current flows between the pair of electrodes 24 and 26. Thereby, a discharge is generated between the pair of electrodes 24 and 26, and the processing gas is turned into plasma by the discharge. Further, in the reaction chamber 100, since the electrodes 24 and 26 are disposed at positions close to the wall surface of the connection recess 40 of the internal block 12, current is applied along the wall surface of the connection recess 40 by application to the electrodes 24 and 26. Flowing. As a result, discharge occurs not only between the pair of electrodes 24 and 26 but also along the wall surface of the connecting recess 40, and the process gas is turned into plasma by the discharge. The plasma generated in the reaction chamber 100 flows into the second flow channel 66 of the lower block 14 via the first flow channel 50 of the internal block 12. Further, the plasma flows into the third flow path 70 of the irradiation nozzle 18, and the object to be processed is irradiated from the lower end of the third flow path 70.
(C)大気圧プラズマ発生装置の耐久性向上
このようにして、大気圧プラズマ発生装置10では、反応室100の内部において放電が生じることで、処理ガスがプラズマ化され、照射ノズル18の第3流路70からプラズマが照射される。なお、プラズマとは、気体を構成する分子が電離し陽イオンと電子に別れた状態であり、電離した気体に相当する。このようなプラズマが、反応室100において発生し、反応室100から第1流路50に噴出される。 (C) Durability Improvement of Atmospheric Pressure Plasma Generator In this way, in the atmosphericpressure plasma generator 10, the process gas is turned into plasma by the discharge occurring inside the reaction chamber 100, and the third of the irradiation nozzle 18. Plasma is irradiated from the channel 70. Note that plasma is a state in which molecules constituting a gas are ionized and separated into cations and electrons, and corresponds to an ionized gas. Such plasma is generated in the reaction chamber 100 and is ejected from the reaction chamber 100 to the first flow path 50.
このようにして、大気圧プラズマ発生装置10では、反応室100の内部において放電が生じることで、処理ガスがプラズマ化され、照射ノズル18の第3流路70からプラズマが照射される。なお、プラズマとは、気体を構成する分子が電離し陽イオンと電子に別れた状態であり、電離した気体に相当する。このようなプラズマが、反応室100において発生し、反応室100から第1流路50に噴出される。 (C) Durability Improvement of Atmospheric Pressure Plasma Generator In this way, in the atmospheric
ただし、反応室100の内部で電離した気体は、順次、反応室100から第1流路50に噴出されるが、非常に狭い領域に進入すると、その電離した気体が、その狭い領域で留まる場合がある。例えば、反応室100を区画する部材同士の接触面では、面同士が接触するため、隙間は無いと考えられる。しかしながら、気体を構成する分子の大きさを基準で考えると、接触面であっても、電離した気体が部材同士の接触面に進入する。このような、非常に狭い領域の接触面に、電離した気体が進入すると、その接触面の内部に電離した気体が留まり、その電離した気体に放電が集中することで、接触面に焦げが生じる虞がある。特に、反応室100では、1対の電極24,26の間で放電が生じるため、1対の電極24,26の間に接触面が存在すると、その接触面に焦げが発生し易くなり、反応室100を区画する部材、つまり、内部ブロック12,保持部材20等が劣化し易くなる。また、接触面への放電の集中によって、放電が安定しない虞がある。
However, the gas ionized inside the reaction chamber 100 is sequentially ejected from the reaction chamber 100 to the first flow path 50. However, when entering the very narrow region, the ionized gas stays in the narrow region. There is. For example, it is considered that there is no gap between the contact surfaces of the members that define the reaction chamber 100 because the surfaces contact each other. However, when the size of the molecules constituting the gas is considered as a reference, the ionized gas enters the contact surface between the members even at the contact surface. When the ionized gas enters the contact surface in such a very narrow region, the ionized gas stays inside the contact surface, and the discharge concentrates on the ionized gas, thereby causing the contact surface to burn. There is a fear. In particular, in the reaction chamber 100, a discharge is generated between the pair of electrodes 24 and 26. Therefore, if a contact surface exists between the pair of electrodes 24 and 26, the contact surface is likely to be burned, and the reaction occurs. The members that define the chamber 100, that is, the internal block 12, the holding member 20, and the like are easily deteriorated. Further, the discharge may not be stable due to the concentration of the discharge on the contact surface.
このようなことに鑑みて、大気圧プラズマ発生装置10では、反応室100において、1対の電極24,26の間と反対側にのみ、接触面が存在するように構成されている。詳しくは、上述したように、保持部材20と内部ブロック12とによって反応室100が区画されており、保持部材20の1対のホルダ72,74の突出部80が、内部ブロック12の1対の円柱凹部36,38に挿入されている。これにより、突出部80の下端が、円柱凹部36,38の段差面46,48と対向する。ただし、円柱凹部36,38の深さ寸法は、突出部80の第2底面84からの突出量より大きい。このため、内部ブロック12の上面に、保持部材20の第2底面84が接触し、突出部80の下端と、円柱凹部36,38の段差面46,48とは、クリアランスの有る状態で対向する。つまり、保持部材20は、第2底面84のみが、内部ブロック12に接触している。言い方を変えれば、図8に示すように、内部ブロック12のフランジ部34の上面において、保持部材20の第2底面84の形状に応じた個所(図中斜線)のみが、保持部材20への接触面140となる。
In view of the above, the atmospheric pressure plasma generator 10 is configured such that the contact surface exists only on the opposite side of the reaction chamber 100 from between the pair of electrodes 24 and 26. Specifically, as described above, the reaction chamber 100 is defined by the holding member 20 and the internal block 12, and the protrusions 80 of the pair of holders 72 and 74 of the holding member 20 are paired with the pair of internal blocks 12. The cylindrical recesses 36 and 38 are inserted. Thereby, the lower end of the protrusion 80 faces the step surfaces 46 and 48 of the cylindrical recesses 36 and 38. However, the depth dimension of the cylindrical recesses 36 and 38 is larger than the protrusion amount of the protrusion 80 from the second bottom surface 84. For this reason, the 2nd bottom face 84 of the holding member 20 contacts the upper surface of the internal block 12, and the lower end of the protrusion part 80 and the level | step difference surfaces 46 and 48 of the cylindrical recessed parts 36 and 38 oppose in a state with clearance. . That is, only the second bottom surface 84 of the holding member 20 is in contact with the internal block 12. In other words, as shown in FIG. 8, on the upper surface of the flange portion 34 of the inner block 12, only a portion (shaded line in the drawing) corresponding to the shape of the second bottom surface 84 of the holding member 20 is attached to the holding member 20. It becomes the contact surface 140.
この接触面140は、内部ブロック12の連結凹部40に挿入された1対の電極24,26の間の反対側に位置している。つまり、大気圧プラズマ発生装置10では、反応室100において、1対の電極24,26の間と反対側にのみ、内部ブロック12と保持部材20との接触面、つまり、第2底面84及び接触面140が存在するように構成されている。
The contact surface 140 is located on the opposite side between the pair of electrodes 24 and 26 inserted into the connecting recess 40 of the inner block 12. That is, in the atmospheric pressure plasma generator 10, in the reaction chamber 100, the contact surface between the inner block 12 and the holding member 20, that is, the second bottom surface 84 and the contact only on the opposite side of the pair of electrodes 24 and 26. The surface 140 is configured to exist.
なお、1対の電極24,26の間とは、電極24,26の直径に相当する幅で、1対の電極24,26を結ぶ領域のみを示すものでなく、1対の電極24,26を結ぶ直線に直行し、1対の電極24,26を通る2本の直線の間の領域を示す。詳しくは、電極24,26の直径に相当する幅で、1対の電極24,26を結ぶ領域とは、図8で1点鎖線146によって囲まれる領域である。一方、1対の電極24,26を結ぶ直線に直行し、1対の電極24,26を通る2本の直線は、図8での2点鎖線148である。このため、1対の電極24,26の間とは、2本の2点鎖線148の間を意味する。つまり、大気圧プラズマ発生装置10では、反応室100において、1対の2点鎖線148の間と反対側にのみ、内部ブロック12と保持部材20との接触面が存在している。
The term “between the pair of electrodes 24, 26” means a width corresponding to the diameter of the electrodes 24, 26, and does not indicate only a region connecting the pair of electrodes 24, 26, but a pair of electrodes 24, 26. An area between two straight lines passing through a pair of electrodes 24 and 26 is shown. Specifically, a region connecting the pair of electrodes 24 and 26 with a width corresponding to the diameter of the electrodes 24 and 26 is a region surrounded by a one-dot chain line 146 in FIG. On the other hand, two straight lines passing through the pair of electrodes 24 and 26 and passing through the pair of electrodes 24 and 26 are two-dot chain lines 148 in FIG. Therefore, between the pair of electrodes 24 and 26 means between the two two-dot chain lines 148. That is, in the atmospheric pressure plasma generator 10, the contact surface between the internal block 12 and the holding member 20 exists only on the opposite side of the reaction chamber 100 between the pair of two-dot chain lines 148.
一方、従来の大気圧プラズマ発生装置150は、図9に示すように、1対のホルダ152と、内部ブロック154と、連結部材156と、下部ブロック158と、照射ノズル(図示省略)と、上部ブロック(図示省略)とにより構成されている。ここで、大気圧プラズマ発生装置150では、内部ブロック154の上面に1対のホルダ152の下面が組み付けられることで、内部ブロック154の内部が反応室として機能する。このため、ホルダ152及び内部ブロック154についてのみ説明する。
On the other hand, as shown in FIG. 9, the conventional atmospheric pressure plasma generator 150 includes a pair of holders 152, an internal block 154, a connecting member 156, a lower block 158, an irradiation nozzle (not shown), and an upper part. And a block (not shown). Here, in the atmospheric pressure plasma generator 150, the lower surface of the pair of holders 152 is assembled on the upper surface of the internal block 154, so that the inside of the internal block 154 functions as a reaction chamber. For this reason, only the holder 152 and the internal block 154 will be described.
1対のホルダ152は、円筒形状をなし、その下端面は平坦面とされている。また、内部ブロック154は、概して直方体形状の本体部166と、本体部166の上端に形成されたフランジ部168とにより構成されている。内部ブロック154には、凹部170が形成されており、凹部170は、フランジ部168の上面に開口し、本体部166の内部にまで至っている。フランジ部168の上面は、凹部170を除いて、平坦面とされており、フランジ部168の幅寸法は、ホルダ152の直径と略同寸法とされている。そして、ホルダ152の下面が、内部ブロック154の上面、つまり、フランジ部168の上面に接触するように、ホルダ152と内部ブロック154とが組み合わされる。これにより、内部ブロック154の凹部170が、ホルダ152によって反応室として区画される。そして、1対のホルダ152の内部に1対の電極(図10参照)176,178が挿入されることで、1対の電極176,178の下端部が、凹部170の内部に進入する。
The pair of holders 152 has a cylindrical shape, and its lower end surface is a flat surface. The inner block 154 includes a generally rectangular parallelepiped main body 166 and a flange 168 formed at the upper end of the main body 166. A recess 170 is formed in the internal block 154, and the recess 170 opens to the upper surface of the flange portion 168 and reaches the inside of the main body portion 166. The upper surface of the flange portion 168 is a flat surface except for the concave portion 170, and the width dimension of the flange portion 168 is approximately the same as the diameter of the holder 152. Then, the holder 152 and the internal block 154 are combined so that the lower surface of the holder 152 is in contact with the upper surface of the internal block 154, that is, the upper surface of the flange portion 168. As a result, the recess 170 of the internal block 154 is partitioned as a reaction chamber by the holder 152. Then, a pair of electrodes (see FIG. 10) 176 and 178 are inserted into the pair of holders 152 so that the lower ends of the pair of electrodes 176 and 178 enter the recess 170.
大気圧プラズマ発生装置150では、上述したように、平坦なホルダ152の下端面が、平坦な内部ブロック154の上端面に接触するように、ホルダ152と内部ブロック154とが組み合わされる。このため、内部ブロック154の上面において、図10に示すように、ホルダ152の下端面の形状に応じた個所(図中斜線)が、ホルダ152への接触面180となる。この接触面180は、1対の電極176,178の間にまで延び出している。つまり、1対の電極176,178を結ぶ直線に直行し、1対の電極176,178を通る2本の直線182の間の領域にまで、接触面180は延び出している。
In the atmospheric pressure plasma generator 150, as described above, the holder 152 and the internal block 154 are combined so that the lower end surface of the flat holder 152 is in contact with the upper end surface of the flat internal block 154. For this reason, on the upper surface of the internal block 154, as shown in FIG. 10, a portion (shaded line in the drawing) corresponding to the shape of the lower end surface of the holder 152 becomes a contact surface 180 to the holder 152. The contact surface 180 extends between the pair of electrodes 176 and 178. That is, the contact surface 180 extends straight to a straight line connecting the pair of electrodes 176 and 178 and to a region between the two straight lines 182 passing through the pair of electrodes 176 and 178.
このように、反応室を区画するホルダ152と内部ブロック154との接触面が、1対の電極176,178の間に存在すると、電極176,178の間で生じた放電により電離した気体が、接触面180に進入し易い。特に、反応室を区画する壁面に沿って放電が生じる場合には、接触面180に電離した気体が進入し易い。そして、接触面180に電離した気体が進入し、留まると、放電が接触面180に集中する。これにより、接触面180が焦げて、劣化する。このように、従来の大気圧プラズマ発生装置150では、反応室を区画するホルダ152および内部ブロック154が劣化し易く、耐久性が低い。また、耐久性を高めるべく、ホルダ152等の素材として、耐熱性の高い素材を用いることが考えられるが、コストが高くなる。
Thus, when the contact surface between the holder 152 and the internal block 154 that partitions the reaction chamber exists between the pair of electrodes 176 and 178, the gas ionized by the discharge generated between the electrodes 176 and 178 is It is easy to enter the contact surface 180. In particular, when discharge occurs along the wall surface that defines the reaction chamber, the ionized gas easily enters the contact surface 180. When the ionized gas enters the contact surface 180 and stays there, discharge concentrates on the contact surface 180. Thereby, the contact surface 180 is burnt and deteriorates. Thus, in the conventional atmospheric pressure plasma generator 150, the holder 152 and the internal block 154 that partition the reaction chamber are easily deteriorated, and the durability is low. In order to increase the durability, it is conceivable to use a material having high heat resistance as the material for the holder 152 and the like, but the cost is increased.
一方、大気圧プラズマ発生装置10では、図8に示すように、反応室100において、1対の電極24,26の間と反対側にのみ、内部ブロック12と保持部材20との接触面140が存在する。つまり、1対の電極24,26の間に、内部ブロック12と保持部材20との接触面140は存在しない。このため、1対の電極24,26の間で放電が生じても、内部ブロック12と保持部材20との接触面140に、電離した気体は進入し難い。また、1対の電極24,26から反応室100を区画する壁面に沿って放電が生じた場合であっても、接触面140に進入し難い。これにより、内部ブロック12と保持部材20との接触面140の焦げによる劣化を防止することが可能となり、内部ブロック12および保持部材20の耐久性が向上する。このように、大気圧プラズマ発生装置10では、内部ブロック12等の素材を変更することなく、内部ブロック12等の形状を工夫することで、素材変更によるコスト高を防止し、内部ブロック12等の耐久性の向上が図られている。また、接触面への放電の集中を抑制することで、安定的な放電が担保される。
On the other hand, in the atmospheric pressure plasma generator 10, as shown in FIG. 8, in the reaction chamber 100, the contact surface 140 between the internal block 12 and the holding member 20 is provided only on the opposite side between the pair of electrodes 24 and 26. Exists. That is, the contact surface 140 between the inner block 12 and the holding member 20 does not exist between the pair of electrodes 24 and 26. For this reason, even if a discharge occurs between the pair of electrodes 24 and 26, the ionized gas does not easily enter the contact surface 140 between the inner block 12 and the holding member 20. Further, even when a discharge is generated from the pair of electrodes 24 and 26 along the wall surface defining the reaction chamber 100, it is difficult to enter the contact surface 140. As a result, it is possible to prevent deterioration of the contact surface 140 between the internal block 12 and the holding member 20 due to scoring, and the durability of the internal block 12 and the holding member 20 is improved. As described above, in the atmospheric pressure plasma generation apparatus 10, by devising the shape of the internal block 12 or the like without changing the material of the internal block 12 or the like, the high cost due to the material change is prevented, and the internal block 12 or the like is prevented. Durability is improved. Moreover, stable discharge is ensured by suppressing the concentration of discharge on the contact surface.
さらに言えば、図3に示すように、保持部材20の第2底面84と電極24,26との間に、第2底面84より下方に突出する突出部80が形成されており、内部ブロック12の接触面140と電極24,26との間に、下方に凹む段差面46,48が形成されている。そして、突出部80と段差面46,48とがクリアランスの有る状態で対向している。このような構造により、内部ブロック12と保持部材20との接触面が、電極24,26の下端より上方に位置する。また、内部ブロック12と保持部材20との接触面を塞ぐように、突出部80が延び出している。これにより、電極24,26での放電により電離した気体が、内部ブロック12と保持部材20との接触面に、更に進入し難くなり、内部ブロック12等の耐久性が更に向上する。
Further, as shown in FIG. 3, a protruding portion 80 that protrudes downward from the second bottom surface 84 is formed between the second bottom surface 84 of the holding member 20 and the electrodes 24 and 26, and the internal block 12. Between the contact surface 140 and the electrodes 24 and 26, step surfaces 46 and 48 that are recessed downward are formed. And the protrusion part 80 and the level | step difference surfaces 46 and 48 have faced in the state with clearance. With such a structure, the contact surface between the inner block 12 and the holding member 20 is positioned above the lower ends of the electrodes 24 and 26. Further, the projecting portion 80 extends so as to close the contact surface between the inner block 12 and the holding member 20. Thereby, the gas ionized by the discharge at the electrodes 24 and 26 becomes more difficult to enter the contact surface between the inner block 12 and the holding member 20, and the durability of the inner block 12 and the like is further improved.
なお、保持部材20は、1対のホルダ72,74の第2底面84においてのみ、内部ブロック12の上面によって支持されている。つまり、ホルダ72,74は、概して円環状の底面の直径方向の両端部の一方の端部でのみ、内部ブロック12の上面によって支持されており、安定性が低い。このため、1対のホルダ72,74は、連結部76によって連結されており、保持部材20の安定性が担保されている。
The holding member 20 is supported by the upper surface of the internal block 12 only on the second bottom surface 84 of the pair of holders 72 and 74. That is, the holders 72 and 74 are supported by the upper surface of the inner block 12 only at one end portion of both ends in the diameter direction of the generally annular bottom surface, and the stability is low. For this reason, the pair of holders 72 and 74 are connected by the connecting portion 76, and the stability of the holding member 20 is ensured.
(D)電極の放電による安定的なプラズマの発生
また、大気圧プラズマ発生装置10では、上述したように、電極24,26の間で放電が生じることで、プラズマが発生する。このため、大気圧プラズマ発生装置10では、電極間で安定的に放電させるべく、電極24,26の下端部が楔状とされている。 (D) Stable Plasma Generation by Electrode Discharge Further, in the atmosphericpressure plasma generator 10, as described above, discharge is generated between the electrodes 24 and 26, thereby generating plasma. For this reason, in the atmospheric pressure plasma generator 10, the lower ends of the electrodes 24 and 26 are wedge-shaped in order to stably discharge between the electrodes.
また、大気圧プラズマ発生装置10では、上述したように、電極24,26の間で放電が生じることで、プラズマが発生する。このため、大気圧プラズマ発生装置10では、電極間で安定的に放電させるべく、電極24,26の下端部が楔状とされている。 (D) Stable Plasma Generation by Electrode Discharge Further, in the atmospheric
詳しくは、従来の大気圧プラズマ発生装置において、電極は円柱形状とされており、電極の側面と電極の下端面とのなす角度は直角とされていた。つまり、1対の電極の下端部において、側面と下端面とが90度をなす角部が、互いに向かい合っており、下端面は真下を向き、全く向かい合っていない。そして、それら1対の電極に電力が供給されることで、1対の電極の下端部の間で放電が生じる。この際、1対の電極の下端面は全く向かい合っていないため、1対の電極の一方の下端面と他方の下端面との間で放電は生じ難く、1対の電極の一方の90度の角部と、他方の90度の角部との間で放電が生じると考えられる。
Specifically, in the conventional atmospheric pressure plasma generator, the electrode has a cylindrical shape, and the angle formed between the side surface of the electrode and the lower end surface of the electrode is a right angle. That is, in the lower end portions of the pair of electrodes, the corner portions where the side surface and the lower end surface form 90 degrees face each other, and the lower end surfaces face directly below and do not face each other at all. Then, electric power is supplied to the pair of electrodes, and discharge occurs between the lower ends of the pair of electrodes. At this time, since the lower end surfaces of the pair of electrodes do not face each other at all, it is difficult for discharge to occur between one lower end surface of the pair of electrodes and the other lower end surface. It is thought that discharge occurs between the corner and the other 90-degree corner.
このように電極の角部に放電が集中すると、電極への供給電力に僅かな乱れが生じる場合がある。詳しくは、安定的に電極に電流が供給されている際に、電流は周期的に変化する。一方、従来の大気圧プラズマ発生装置では、数百~数千周期のうちの数周期において、振幅が低下する場合がある。このような場合には、一瞬であるが、放電が停止する虞があり、望ましくない。
If the discharge concentrates on the corner of the electrode in this way, a slight disturbance may occur in the power supplied to the electrode. Specifically, when a current is stably supplied to the electrode, the current changes periodically. On the other hand, in the conventional atmospheric pressure plasma generator, the amplitude may decrease in several cycles of hundreds to thousands of cycles. In such a case, although it is an instant, there is a possibility that the discharge stops, which is not desirable.
このようなことに鑑みて、大気圧プラズマ発生装置10では、電極24,26の下端部が楔状とされており、1対の電極24,26の下端面110が互いに向かい合っている。つまり、1対の電極24,26の下端部において、側面106と下端面110とが鈍角をなす角部が、互いに向かい合っており、下端面110も互いに向かい合っている。そして、それら1対の電極24,26に電力が供給されることで、1対の電極24,26の一方の鈍角の角部と、他方の鈍角の角部との間で放電が生じ、1対の電極24,26の一方の下端面110と、他方の下端面110との間にも放電が生じると考えられる。この際、1対の電極の一方の90度の角部と、他方の90度の角部との間に放電が集中する場合と比較して、安定的に電極に電力が供給される。つまり、数百~数千周期のうちの数周期においても、振幅は低下しない。これにより、電極間で安定的に放電させることが可能となり、安定的なプラズマの発生を担保することが可能となる。
In view of the above, in the atmospheric pressure plasma generator 10, the lower ends of the electrodes 24 and 26 are wedge-shaped, and the lower end surfaces 110 of the pair of electrodes 24 and 26 face each other. That is, at the lower end portions of the pair of electrodes 24 and 26, the corner portions where the side surface 106 and the lower end surface 110 form an obtuse angle face each other, and the lower end surfaces 110 also face each other. Then, electric power is supplied to the pair of electrodes 24 and 26, thereby generating a discharge between one obtuse corner of the pair of electrodes 24 and 26 and the other obtuse corner. It is considered that a discharge is also generated between one lower end surface 110 of the pair of electrodes 24 and 26 and the other lower end surface 110. At this time, electric power is stably supplied to the electrodes as compared with the case where discharge is concentrated between one 90-degree corner of the pair of electrodes and the other 90-degree corner. That is, the amplitude does not decrease even in several cycles of hundreds to thousands of cycles. Thereby, it becomes possible to discharge stably between electrodes, and it becomes possible to ensure the generation of stable plasma.
ちなみに、上記実施例において、大気圧プラズマ発生装置10は、プラズマ発生装置の一例である。電極24,26は、電極の一例である。側面106は、第1側面の一例である。側面108は、第2側面の一例である。下端面110は、端面の一例である。
Incidentally, in the above embodiment, the atmospheric pressure plasma generator 10 is an example of a plasma generator. The electrodes 24 and 26 are examples of electrodes. The side surface 106 is an example of a first side surface. The side surface 108 is an example of a second side surface. The lower end surface 110 is an example of an end surface.
なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、図3に示すように、ホルダ72,74の底面に、第2底面84より下方に突出する突出部80が形成され、下部ブロック14の上面に、接触面140より下方に凹む段差面46,48が形成されている。そして、第2底面84と接触面140とが接触し、突出部80と段差面46,48とがクリアランスの有る状態で対向している。一方、図11に示すように、ホルダ72,74の底面に、第2底面84より上方に凹む段差面200が形成され、下部ブロック14の上面に、接触面140より上方に突出する突出部210が形成されてもよい。そして、第2底面84と接触面140とが接触し、段差面200と突出部210とがクリアランスの有る状態で対向してもよい。
In addition, this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, in the above-described embodiment, as shown in FIG. 3, a protrusion 80 that protrudes downward from the second bottom surface 84 is formed on the bottom surface of the holders 72 and 74, and on the top surface of the lower block 14, Step surfaces 46 and 48 that are recessed downward from the contact surface 140 are formed. And the 2nd bottom face 84 and the contact surface 140 contact, and the protrusion part 80 and the level | step difference surfaces 46 and 48 are facing in the state with clearance. On the other hand, as shown in FIG. 11, a stepped surface 200 that is recessed above the second bottom surface 84 is formed on the bottom surfaces of the holders 72 and 74, and a protruding portion 210 that protrudes above the contact surface 140 on the top surface of the lower block 14. May be formed. And the 2nd bottom face 84 and the contact surface 140 may contact, and the level | step difference surface 200 and the protrusion part 210 may oppose in the state with clearance.
また、上記実施例では、本発明が大気圧プラズマ発生装置10に適用されているが、減圧下でプラズマを発生させるプラズマ発生装置に、本発明を適用することが可能である。
Further, in the above embodiment, the present invention is applied to the atmospheric pressure plasma generator 10, but the present invention can be applied to a plasma generator that generates plasma under reduced pressure.
また、上記実施例では、電極24,26の下端面110は平坦面とされているが、椀曲面,段差面など、種々の形状とすることが可能である。
In the above embodiment, the lower end surface 110 of the electrodes 24 and 26 is a flat surface, but it can be formed in various shapes such as a curved surface and a step surface.
また、上記実施例に処理ガスとしてドライエアーを用いてもよい。
Also, dry air may be used as the processing gas in the above embodiment.
10:大気圧プラズマ発生装置(プラズマ発生装置) 24:電極 26:電極 106:側面(第1側面) 108:側面(第2側面) 110:下端面(端面)
10: Atmospheric pressure plasma generator (plasma generator) 24: Electrode 26: Electrode 106: Side surface (first side surface) 108: Side surface (second side surface) 110: Lower end surface (end surface)
Claims (5)
- 互いの側面を対向させた状態で配設された1対の電極の端部の間での放電によりプラズマを発生させるプラズマ発生装置であって、
前記1対の電極の放電する側の端面が、互いに向かい合うように切り欠かれたプラズマ発生装置。 A plasma generator for generating plasma by discharge between the ends of a pair of electrodes arranged with their side surfaces facing each other,
A plasma generator in which end surfaces on the discharge side of the pair of electrodes are cut away so as to face each other. - 互いの側面を対向させた状態で配設された1対の電極の端部の間での放電によりプラズマを発生させるプラズマ発生装置であって、
前記1対の電極の放電する側の端部が、互いの端面が向かい合う楔状とされたプラズマ発生装置。 A plasma generator for generating plasma by discharge between the ends of a pair of electrodes arranged with their side surfaces facing each other,
The plasma generating apparatus in which the end portions on the discharge side of the pair of electrodes have a wedge shape whose end faces face each other. - 互いの側面を対向させた状態で配設された1対の電極の端部の間での放電によりプラズマを発生させるプラズマ発生装置であって、
前記1対の電極の互いに対向する第1側面と、その第1側面から連続する前記1対の各々の放電する側の端面とのなす角度が、鈍角とされたプラズマ発生装置。 A plasma generator for generating plasma by discharge between the ends of a pair of electrodes arranged with their side surfaces facing each other,
The plasma generator according to claim 1, wherein an angle formed between a first side surface of the pair of electrodes facing each other and an end surface of each of the pair of discharge sides continuous from the first side surface is an obtuse angle. - 前記電極の軸心を中心として前記第1側面と反対側の第2側面と、その第2側面から連続する前記1対の各々の放電する側の端面とのなす角度が、鋭角とされた請求項3に記載のプラズマ発生装置。 The angle formed by the second side surface opposite to the first side surface with the electrode shaft as the center and the end surfaces of the pair of discharge sides that are continuous from the second side surface are acute angles. Item 4. The plasma generator according to Item 3.
- 前記1対の電極の各々が、放電する側の端部を除いて、円柱状とされた請求項1ないし請求項4のいずれか1項に記載のプラズマ発生装置。 The plasma generator according to any one of claims 1 to 4, wherein each of the pair of electrodes has a cylindrical shape except for an end portion on a discharge side.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780089248.1A CN110506453B (en) | 2017-04-04 | 2017-04-04 | Plasma generator |
PCT/JP2017/014092 WO2018185837A1 (en) | 2017-04-04 | 2017-04-04 | Plasma-generating device |
JP2019510534A JP6811844B2 (en) | 2017-04-04 | 2017-04-04 | Plasma generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/014092 WO2018185837A1 (en) | 2017-04-04 | 2017-04-04 | Plasma-generating device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018185837A1 true WO2018185837A1 (en) | 2018-10-11 |
Family
ID=63713381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014092 WO2018185837A1 (en) | 2017-04-04 | 2017-04-04 | Plasma-generating device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6811844B2 (en) |
CN (1) | CN110506453B (en) |
WO (1) | WO2018185837A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63180379A (en) * | 1987-01-21 | 1988-07-25 | Matsushita Electric Ind Co Ltd | Torch for generating plasma jet |
JP2012130965A (en) * | 2010-11-29 | 2012-07-12 | Nippon Steel & Sumikin Welding Co Ltd | Insert chip and plasma torch |
JP2013211153A (en) * | 2012-03-30 | 2013-10-10 | Nagoya Univ | Plasma generation apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006024319A1 (en) * | 2006-05-24 | 2007-11-29 | Braun Gmbh | Hair care device with ionization device |
US7671294B2 (en) * | 2006-11-28 | 2010-03-02 | Vladimir Belashchenko | Plasma apparatus and system |
EP1993329A1 (en) * | 2007-05-15 | 2008-11-19 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Plasma source |
TWI409119B (en) * | 2009-07-30 | 2013-09-21 | Nippon Steel & Sumikin Welding | Insert-chip, plasma torch and plasma processing device |
JP2017037802A (en) * | 2015-08-11 | 2017-02-16 | 株式会社Ihi | Plasma light source |
CN205520038U (en) * | 2016-03-02 | 2016-08-31 | 江苏安利新材料有限公司 | Novel plasma cutting electrode |
-
2017
- 2017-04-04 WO PCT/JP2017/014092 patent/WO2018185837A1/en active Application Filing
- 2017-04-04 JP JP2019510534A patent/JP6811844B2/en active Active
- 2017-04-04 CN CN201780089248.1A patent/CN110506453B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63180379A (en) * | 1987-01-21 | 1988-07-25 | Matsushita Electric Ind Co Ltd | Torch for generating plasma jet |
JP2012130965A (en) * | 2010-11-29 | 2012-07-12 | Nippon Steel & Sumikin Welding Co Ltd | Insert chip and plasma torch |
JP2013211153A (en) * | 2012-03-30 | 2013-10-10 | Nagoya Univ | Plasma generation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018185837A1 (en) | 2019-11-14 |
CN110506453A (en) | 2019-11-26 |
JP6811844B2 (en) | 2021-01-13 |
CN110506453B (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018185838A1 (en) | Plasma-generating device | |
KR102612762B1 (en) | electrochemical system | |
JP6678232B2 (en) | Plasma generator | |
WO2012073595A1 (en) | Battery pack | |
JPWO2008123142A1 (en) | Plasma processing equipment | |
EP4340548A1 (en) | Active-gas-generating apparatus | |
CN111661821A (en) | Portable ozone generator | |
JP6591735B2 (en) | Plasma generator | |
WO2018185837A1 (en) | Plasma-generating device | |
WO2005050794A3 (en) | Halogen gas discharge laser electrodes | |
US10015873B2 (en) | Plasma torch | |
WO2006075570A1 (en) | Plasma generating apparatus | |
JP2020068161A (en) | Ion source | |
JP2008269907A (en) | Plasma processing apparatus | |
JP2011204694A (en) | Direct-current bar-type discharge electrode structure | |
JP6881053B2 (en) | Ion generator | |
JP3646121B1 (en) | Plasma processing equipment | |
JP2015138673A (en) | Battery module | |
JP4914275B2 (en) | Plasma processing equipment | |
KR20240048546A (en) | active gas generation device | |
JP4361495B2 (en) | Electrode structure of plasma surface treatment equipment | |
JP2019220329A (en) | Plasma supply device and plasma generation method | |
TW202005145A (en) | Battery device and battery fixing frame | |
JP2024021573A (en) | Burner | |
JP2005238219A (en) | Plasma treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904450 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019510534 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904450 Country of ref document: EP Kind code of ref document: A1 |