+

WO2018185587A1 - Imaging device and electronic apparatus - Google Patents

Imaging device and electronic apparatus Download PDF

Info

Publication number
WO2018185587A1
WO2018185587A1 PCT/IB2018/051912 IB2018051912W WO2018185587A1 WO 2018185587 A1 WO2018185587 A1 WO 2018185587A1 IB 2018051912 W IB2018051912 W IB 2018051912W WO 2018185587 A1 WO2018185587 A1 WO 2018185587A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
layer
imaging device
semiconductor layer
photoelectric conversion
Prior art date
Application number
PCT/IB2018/051912
Other languages
French (fr)
Japanese (ja)
Inventor
池田隆之
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019510492A priority Critical patent/JPWO2018185587A1/en
Publication of WO2018185587A1 publication Critical patent/WO2018185587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors

Definitions

  • One embodiment of the present invention relates to an imaging device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a lighting device, a power storage device, a memory device, an imaging device, A driving method or a manufacturing method thereof can be given as an example.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are one embodiment of a semiconductor device.
  • a memory device, a display device, an imaging device, and an electronic device may include a semiconductor device.
  • Patent Document 1 discloses an imaging device having a structure in which a transistor including an oxide semiconductor and having extremely low off-state current is used for a pixel circuit.
  • the imaging device is incorporated in various electronic devices, and is required to be able to capture images with higher resolution.
  • photoelectric conversion elements using silicon as a photoelectric conversion layer have been used for image pickup apparatuses, but image pickup apparatuses using crystalline selenium, which is a material having a higher light absorption coefficient, for photoelectric conversion elements have been proposed ( Patent Document 2).
  • CMOS image sensors are being mounted on various devices, and improvement in imaging performance is expected.
  • the dynamic range of the current CMOS image sensor is about 3 digits to 4 digits (60 dB to 80 dB), and it is desired to improve it to 5 digits to 6 digits (100 dB to 120 dB) equivalent to a silver salt film or the naked eye. .
  • an object of one embodiment of the present invention is to provide an imaging device that can widen the dynamic range with a simple structure. Another object is to provide an imaging device with low power consumption. Another object is to provide an imaging device that can capture an image with less noise. Another object is to provide an imaging device with high resolution. Another object is to provide a photoelectric conversion element with high photosensitivity. Another object is to provide a highly reliable imaging device. Another object is to provide a novel imaging device or the like. Another object is to provide a method for driving the imaging device. Another object is to provide a novel semiconductor device or the like.
  • One embodiment of the present invention relates to an imaging device that can automatically change the sensitivity of individual pixels to perform imaging.
  • One embodiment of the present invention is an imaging device including a capacitor in a pixel.
  • the capacitor has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer are stacked, and the semiconductor layer includes a metal oxide.
  • Another embodiment of the present invention includes a photoelectric conversion element, first to fourth transistors, and a capacitor, and one electrode of the photoelectric conversion element is a source or a drain of the first transistor.
  • One of the source and drain of the first transistor is electrically connected to one of the source and drain of the second transistor, and the other of the source and drain of the first transistor is The other of the source and the drain of the first transistor is electrically connected to the gate of the third transistor, and the one of the source and the drain of the third transistor is electrically connected to the first electrode of the capacitor.
  • 4 is electrically connected to one of a source and a drain of the transistor 4 and the capacitor has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer are stacked.
  • the semiconductor layer is an image pickup apparatus having a metal oxide.
  • the photoelectric conversion element preferably has selenium or a compound containing selenium in the photoelectric conversion layer.
  • the metal layer can act as one electrode and the semiconductor layer can act as the other electrode.
  • the capacitor can have a transistor structure in which a gate electrode includes a metal layer and a semiconductor layer includes a source region and a drain region.
  • the semiconductor layer includes a first metal oxide layer and a second metal oxide layer, and the first metal oxide layer, the second metal oxide layer, and the insulating layer overlap with each other.
  • the first metal oxide layer has a region in contact with the insulating layer, and the band gap of the first metal oxide layer can be larger than that of the second metal oxide layer.
  • the metal oxide preferably includes In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf).
  • an imaging device that can widen the dynamic range with a simple structure can be provided.
  • an imaging device with low power consumption can be provided.
  • an imaging device that can capture an image with less noise can be provided.
  • an imaging device with high resolution can be provided.
  • a photoelectric conversion element with high photosensitivity can be provided.
  • a highly reliable imaging device can be provided.
  • a novel imaging device or the like can be provided.
  • a method for driving the imaging device can be provided.
  • a novel semiconductor device or the like can be provided.
  • FIG. 6 illustrates a pixel circuit.
  • the figure explaining the image of a wide dynamic range. 6 is a timing chart illustrating the operation of a pixel circuit.
  • 3A and 3B illustrate a structure of a capacitor and a graph showing a CV characteristic.
  • 3A and 3B illustrate a structure of a capacitor and a graph showing a CV characteristic.
  • FIG. 6 illustrates a pixel circuit.
  • FIG. 6 illustrates a pixel circuit.
  • FIG. 6 illustrates a pixel circuit.
  • FIG. 9 illustrates a configuration example of an electronic device.
  • One embodiment of the present invention is an imaging device including a capacitor in a pixel, and the capacitor has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer including a metal oxide are stacked.
  • the capacitance value can be changed to a binary value or higher depending on the applied voltage.
  • a pixel that detects light with low illuminance has high sensitivity
  • a pixel that detects light with high illuminance has low sensitivity. Therefore, imaging with a wide dynamic range can be performed without special control from the outside.
  • FIGS. 2A to 2C are examples of images obtained by taking images of indoor interiors and people, and outdoor scenery through windows during the day.
  • the illuminance difference between the indoor and the outdoor is sufficiently large, such as the illuminance when the indoor light is turned on indoors and the illuminance under sunny weather.
  • FIG. 2A is an example in which imaging is performed in accordance with indoor illuminance.
  • the exposure time is set in accordance with indoors where the illuminance is low, indoors can be imaged clearly.
  • outdoors where the illuminance is high is overexposed, resulting in a white and low contrast image.
  • FIG. 2B is an example in which imaging is performed in accordance with outdoor illuminance. Contrary to FIG. 2A, when the exposure time is set according to the outdoors where the illuminance is high, the outdoors can be imaged clearly. On the other hand, indoors with low illuminance are underexposed, resulting in black images with low contrast.
  • FIG. 2C is an example of an ideal image, which is a clear image both indoors and outdoors. Obtaining information in a wide range from a dark part to a bright part as in the image corresponds to imaging in a wide dynamic range. In one embodiment of the present invention, this is realized by using a MIS capacitor in a pixel.
  • FIG. 1 illustrates a pixel circuit of an imaging device of one embodiment of the present invention.
  • the pixel circuit includes a photoelectric conversion element 10, a transistor 51, a transistor 52, a transistor 53, a transistor 54, and a capacitor 57.
  • One electrode (anode) of the photoelectric conversion element 10 is electrically connected to one of a source and a drain of the transistor 51.
  • One electrode of the photoelectric conversion element 10 is electrically connected to one of a source and a drain of the transistor 52.
  • the other of the source and the drain of the transistor 51 is electrically connected to the gate of the transistor 53.
  • the gate of the transistor 53 is electrically connected to one electrode of the capacitor 57.
  • One of the source and the drain of the transistor 53 is electrically connected to one of the source and the drain of the transistor 54.
  • the other electrode (cathode) of the photoelectric conversion element 10 is electrically connected to the wiring 72.
  • a gate of the transistor 51 is electrically connected to the wiring 75.
  • the other of the source and the drain of the transistor 53 is electrically connected to the wiring 79.
  • a gate of the transistor 52 is electrically connected to the wiring 76.
  • the other of the source and the drain of the transistor 52 is electrically connected to the wiring 73.
  • the other of the source and the drain of the transistor 54 is electrically connected to the wiring 71.
  • a gate of the transistor 54 is electrically connected to the wiring 78.
  • the wiring 71 can function as an output line for outputting a signal from the pixel.
  • the wiring 73, the wiring 77, and the wiring 79 can function as power supply lines.
  • the wiring 73 and the wiring 77 can function as a low potential power supply line
  • the wiring 79 can function as a high potential power supply line.
  • the wiring 75, the wiring 76, and the wiring 78 can function as signal lines for controlling on / off of each transistor.
  • the photoelectric conversion element 10 is preferably a photoelectric conversion element that produces an avalanche multiplication effect in order to increase the light detection sensitivity at low illuminance.
  • a relatively high potential HVDD for example, 10 V or more
  • the wiring 72 is preferably electrically connected to a power source that can supply the potential HVDD. Note that the photoelectric conversion element 10 can be used by applying a potential that does not cause an avalanche multiplication effect.
  • the transistor 51 can have a function of transferring the potential of the charge accumulation unit (NR) that changes in accordance with the output of the photoelectric conversion element 10 to the charge detection unit (ND).
  • the transistor 52 can have a function of initializing the potentials of the charge storage portion (NR) and the charge detection portion (ND).
  • the transistor 53 can have a function of outputting a signal corresponding to the potential of the charge detection portion (ND).
  • the transistor 54 can have a function of selecting a pixel from which a signal is read.
  • a high breakdown voltage transistor that can withstand the high voltage as a transistor connected to the photoelectric conversion element 10.
  • a transistor using a metal oxide in a channel formation region hereinafter referred to as an OS transistor
  • OS transistors are preferably used as the transistor 51 and the transistor 52.
  • the transistor 51 and the transistor 52 are desired to have excellent switching characteristics, but the transistor 53 and the transistor 54 are preferably transistors having high on-state current because it is desired to have excellent amplification characteristics. Therefore, it is preferable to apply a transistor using silicon as an active layer or an active region (hereinafter, Si transistor) as the transistor 53 and the transistor 54.
  • Si transistor silicon as an active layer or an active region
  • an imaging device with high light detection sensitivity at low illuminance and capable of outputting a signal with little noise can be manufactured.
  • the light detection sensitivity is high, the light capture time can be shortened and imaging can be performed at high speed.
  • the transistor is not limited to the above structure, and an OS transistor may be applied to the transistor 53 and the transistor 54.
  • Si transistors may be applied to the transistors 51 and 52. In any case, the imaging operation of the pixel circuit is possible.
  • the wiring 76 connected to the gate of the transistor 52 includes VDD as “H”, GND as “L”, wiring 75 connected to the gate of the transistor 51, and wiring connected to the gate of the transistor 54.
  • VDD is supplied as “H”, GND as “L”
  • the potential of VDD is supplied to the wiring 79 connected to the source of the transistor 53. Note that a potential other than the above may be supplied to each wiring.
  • the wiring 76 is set to “H”
  • the wiring 75 is set to “H”
  • the potentials of the charge storage portion (NR) and the charge detection portion (ND) are set to the reset potential (GND) (reset operation).
  • the potential HVDD may be supplied to the wiring 76 as “H” during the reset operation.
  • the potential of the charge storage portion (NR) changes (accumulation operation).
  • the potential of the charge storage portion (NR) changes from GND to VDD at the maximum according to the intensity of light incident on the photoelectric conversion element 10.
  • the wiring 75 is set to “H”, and the charge in the charge storage portion (NR) is transferred to the charge detection portion (ND) (transfer operation).
  • the wiring 76 is set to “L” and the wiring 75 is set to “L”, and the transfer operation is finished. At this point, the potential of the charge detection unit (ND) is determined.
  • the wiring 76 is set to “L”
  • the wiring 75 is set to “L”
  • the wiring 78 is set to “H”
  • a signal corresponding to the potential of the charge detection portion (ND) is output to the wiring 71. That is, an output signal corresponding to the intensity of light incident on the photoelectric conversion element 10 in the accumulation operation can be obtained.
  • the capacitor 57 is an element of the charge detection unit (ND) and has a function of holding the potential of the charge detection unit (ND).
  • the potential of the charge detection unit (ND) is set when the capacitance value of the capacitive element 57 is small. It tends to rise, and when the capacitance value of the capacitive element 57 is large, it is difficult to rise.
  • underexposure is compensated for by reducing the capacitance value of the capacitive element 57 in imaging at low illuminance, and overexposure is prevented by increasing the capacitance value of the capacitive element 57 in imaging at high illuminance. To do.
  • the capacitor 57 has a MIS structure, and can have a transistor structure as shown in FIG. 4A, for example.
  • the capacitor 57 having a transistor structure includes an electrode 41, an electrode 42, a semiconductor layer 43, an insulating layer 44, and a conductive layer 45.
  • the electrode 41 is electrically connected to the source region and the drain region in the semiconductor layer 43.
  • the electrode 41 functions as one electrode of the capacitive element 57.
  • the electrode 42 functions as the other electrode of the capacitive element 57.
  • the semiconductor layer 43 functions as one electrode or a dielectric of the capacitor 57.
  • the insulating layer 44 is a gate insulating film of the transistor and functions as a dielectric of the capacitor 57.
  • the conductive layer 45 is a back gate of the transistor, and the threshold voltage can be controlled by applying a constant potential. Note that the conductive layer 45 may not be provided.
  • the capacitor 57 may have a stacked structure in which a semiconductor layer 43 and an insulating layer 44 are provided between the electrode 41 and the electrode 42 as illustrated in FIG.
  • a metal oxide is used for the semiconductor layer 43.
  • FIG. 4C is an example of a CV characteristic (low frequency) indicating a change in the capacitance value (C) when a voltage (Vg) is applied between the electrodes of the capacitor 57.
  • a solid line indicates characteristics when a metal oxide (OS) is used for the semiconductor layer 43, and a broken line indicates characteristics when silicon (Si) is used for the semiconductor layer 43. Note that, above the threshold voltage (V th ), the characteristics of both are shown to overlap, but they may be different.
  • the capacitor 57 using a metal oxide for the semiconductor layer 43 operates as a storage device using electrons as carriers, carriers (holes) are hardly accumulated in the semiconductor layer 43 even when a negative voltage is applied. Therefore, below the threshold voltage (V th ), the semiconductor layer 43 acts as a dielectric, and the capacitance value maintains the minimum value (C min ). Further, when the threshold voltage (V th ) is exceeded, carriers (electrons) are accumulated in the semiconductor layer 43, so that the capacitance value increases to a value (C ox ) when only the insulating layer 44 acts as a dielectric. .
  • the capacitance value of the capacitive element 57 can be changed to a binary value.
  • V th the threshold voltage
  • the threshold voltage (V th ) of the capacitor 57 using a metal oxide for the semiconductor layer 43 is about 1 to 2V. Therefore, in the pixel circuit shown in FIG. 1, when the potential that the charge detection unit (ND) can take depending on the detected illuminance is in the range of about 0 to 3 V, the capacitance value of the capacitor 57 is changed by the illuminance. be able to.
  • FIG. 6A shows the relationship between the charge detection portion (ND) and illuminance.
  • the solid line is an example in which the MIS type capacitive element A using a metal oxide for the semiconductor layer 43 is applied to the pixel circuit, and the two broken lines are general MIM (Metal Insulator Metal) type capacitive elements B. Or it is an example at the time of applying the capacitive element C to a pixel circuit.
  • MIM Metal Insulator Metal
  • the capacitance value of the capacitive element A varies depending on the potential of the charge detection unit (ND). Therefore, as the illuminance increases, the gradient of the potential of the charge detection unit (ND) changes so as to decrease at a certain illuminance. Therefore, pixels that detect relatively low illuminance operate with high sensitivity, and pixels that detect relatively high illuminance operate with low sensitivity, enabling imaging in a wide dynamic range from low to high illuminance. Become.
  • the potential of the charge detection unit (ND) changes linearly.
  • the capacitive element B having a relatively small capacitance value is used and priority is given to sensitivity at low illuminance
  • the potential of the charge detection unit (ND) becomes constant above a certain illuminance.
  • the capacitive element C having a relatively large capacitance value is used and priority is given to sensitivity at high illuminance
  • sensitivity at low illuminance is greatly reduced. Therefore, when the capacitive elements B and C are used, it is difficult to widen the dynamic range.
  • the semiconductor layer of the capacitor 57 may be a stacked layer of a semiconductor layer 43a and a semiconductor layer 43b.
  • the semiconductor layer 43a and the semiconductor layer 43b are preferably metal oxides, and the band gap of the semiconductor layer 43a is preferably smaller than the band gap of the semiconductor layer 43b.
  • FIG. 6B shows the relationship between the charge detection portion (ND) and the illuminance at this time.
  • the gradient of the potential of the charge detection portion (ND) changes so as to decrease in two steps. Therefore, the sensitivity at a low illuminance can be further increased and the sensitivity at a high illuminance can be lowered as compared with the case where the capacitance value changes to a binary value, so that imaging with a wider dynamic range is possible.
  • the sensitivity does not change abruptly at the illuminance near the middle between the low illuminance and the high illuminance, and imaging with appropriate sensitivity is possible in a wide illuminance range.
  • the pixel circuit is not limited to the configuration shown in FIG.
  • one of the source and the train of the transistor 52 may be electrically connected to the other of the source and the drain of the transistor 51.
  • one electrode of the capacitor 57 may be electrically connected to one of a source and a drain of the transistor 51.
  • a transistor 58 having a function of resetting the node ND may be provided.
  • One of a source and a drain of the transistor 58 is electrically connected to the wiring 73, the other of the source and the drain is electrically connected to the other of the source and the drain of the transistor 51, and a gate has a function of supplying a signal line 74 is electrically connected.
  • the other of the source and the drain of the transistor 54 may be electrically connected to the other of the source and the drain of the transistor 53.
  • the other electrode (cathode) of the photoelectric conversion element 10 and one of the source and the drain of the transistor 51 are electrically connected, and the other of the source and the drain of the transistor 51 and the capacitor
  • the other electrode of 57 may be configured to be electrically connected.
  • the charge storage unit (NR) and the charge detection unit (ND) are reset to a low potential.
  • the structure shown in FIG. 8B is reset to a high potential. Therefore, a wiring 73 that supplies a low potential is electrically connected to one electrode (anode) of the photoelectric conversion element 10, and a wiring 72 that supplies a high potential is electrically connected to the other of the source and the drain of the transistor 52.
  • a wiring 84 for supplying a high potential is electrically connected to one electrode of the capacitor 57.
  • a back gate may be provided for each transistor (including the capacitor 57). By applying a constant voltage to the back gate, the threshold voltage of each transistor can be controlled. Note that FIG. 8C illustrates a structure in which all transistors have a back gate; however, a structure having a transistor without a back gate may be used.
  • FIG. 9A a structure in which a plurality of capacitor elements each provided with a back gate are provided may be employed.
  • FIG. 9A shows a structure in which the capacitive elements 57 and 59 are provided, the number may be larger.
  • the threshold voltage can be controlled by applying a constant voltage to the back gate. Therefore, by applying different constant voltages to the back gates of the capacitive elements 57 and 59, characteristics similar to the CV characteristics shown in FIG. 5C can be obtained. That is, the capacitance value can be changed to ternary values, and imaging with a wide dynamic range can be performed.
  • FIG. 9B illustrates an example in which the transistors 53, 54, and 56 are shared by a plurality of pixels.
  • the transistor 56 has a function of resetting the charge detection portion (ND2) to the potential of the wiring 82 (for example, GND) by a signal supplied from the wiring 81. Note that the configuration and operation will be briefly described below, but description of portions common to the pixel circuit shown in FIG. 1 is omitted.
  • the pixel 85a and the pixel 85b each have a charge accumulation portion (NR1) and a charge accumulation portion (NR2).
  • the capacitive element 57 functions as an element of the charge storage unit (NR2).
  • the pixel 85a and the pixel 85b are simultaneously exposed to each other, and the signal potential of the charge storage portion (NR1) is determined. Then, the transistor 51 is turned on by a signal supplied from the wiring 75 (GTX), and each signal potential is transferred to the charge accumulation portion (NR2).
  • the transistor 55 is turned on by a signal supplied from the wiring 80 (TX1), the signal potential of the charge accumulation unit (NR2) is transferred to the charge detection unit (ND2), and is read as image data. .
  • the transistor 55 is turned on by a signal supplied from the wiring 80 (TX2), the signal potential of the charge accumulation unit (NR2) is transferred to the charge detection unit (ND2), and is read as image data.
  • the image data may be read out by the same operation as described above.
  • an OS transistor is preferably used as a transistor provided in the pixel circuit.
  • the OS transistor exhibits extremely low off-state current characteristics, and the leakage current of the OS transistor normalized by the channel width is 10 ⁇ 10 ⁇ 21 A / ⁇ m (10 ⁇ 10 V) at a source-drain voltage of 10 V and room temperature (about 25 ° C.). Zept A / ⁇ m) or less.
  • a metal oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used.
  • a typical example is an oxide semiconductor containing indium.
  • a CAC-OS described later can be used.
  • the semiconductor layer is represented by an In-M-Zn-based oxide containing indium, zinc, and M (metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It can be a membrane.
  • the atomic ratio of the metal elements of the sputtering target used for forming the In-M-Zn oxide is In ⁇ M, Zn It is preferable to satisfy ⁇ M.
  • the atomic ratio of the semiconductor layer to be formed includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
  • the semiconductor layer an oxide semiconductor with low carrier density is used.
  • the semiconductor layer has a carrier density of 1 ⁇ 10 17 / cm 3 or less, preferably 1 ⁇ 10 15 / cm 3 or less, more preferably 1 ⁇ 10 13 / cm 3 or less, more preferably 1 ⁇ 10 11 / cm 3. 3 or less, more preferably less than 1 ⁇ 10 10 / cm 3 , and an oxide semiconductor having a carrier density of 1 ⁇ 10 ⁇ 9 / cm 3 or more can be used.
  • Such an oxide semiconductor is referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor. Accordingly, it can be said that the oxide semiconductor has stable characteristics because the impurity concentration is low and the defect state density is low.
  • the composition is not limited thereto, and a transistor having an appropriate composition may be used depending on required semiconductor characteristics and electrical characteristics (such as field-effect mobility and threshold voltage) of the transistor.
  • the semiconductor layer in order to obtain the required semiconductor characteristics of the transistor, it is preferable that the semiconductor layer have appropriate carrier density, impurity concentration, defect density, atomic ratio of metal element to oxygen, interatomic distance, density, and the like. .
  • the concentration of silicon or carbon in the semiconductor layer is 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal (concentration obtained by secondary ion mass spectrometry) in the semiconductor layer is 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration (concentration obtained by secondary ion mass spectrometry) in the semiconductor layer is preferably 5 ⁇ 10 18 atoms / cm 3 or less.
  • the semiconductor layer may have a non-single crystal structure, for example.
  • the non-single crystal structure includes, for example, a CAAC-OS (C-Axis Aligned Crystalline Oxide Semiconductor, or C-Axis Aligned and A-B-plane Annealed Crystalline Structure, a C-axis aligned crystal, and a C-axis aligned crystal structure. Includes a microcrystalline structure or an amorphous structure. In the non-single-crystal structure, the amorphous structure has the highest density of defect states, and the CAAC-OS has the lowest density of defect states.
  • An oxide semiconductor film having an amorphous structure has, for example, disordered atomic arrangement and no crystal component.
  • an oxide semiconductor film with an amorphous structure has, for example, a completely amorphous structure and has no crystal part.
  • the semiconductor layer may be a mixed film including two or more of an amorphous structure region, a microcrystalline structure region, a polycrystalline structure region, a CAAC-OS region, and a single crystal structure region.
  • the mixed film may have a single-layer structure or a stacked structure including any two or more of the above-described regions.
  • CAC Cloud-Aligned Composite
  • the CAC-OS is one structure of a material in which an element included in an oxide semiconductor is unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. Note that in the following, in an oxide semiconductor, one or more metal elements are unevenly distributed, and a region including the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
  • the state mixed with is also referred to as a mosaic or patch.
  • the oxide semiconductor preferably contains at least indium.
  • One kind selected from the above or a plurality of kinds may be included.
  • a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
  • X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter Also referred to as a cloud-like.) A.
  • CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z3, or InO X1 is the main component region is a composite oxide semiconductor having a structure that is mixed.
  • the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
  • IGZO is a common name and may refer to one compound of In, Ga, Zn, and O.
  • ZnO ZnO
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
  • CAC-OS relates to a material structure of an oxide semiconductor.
  • CAC-OS refers to a region observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn and O, and nanoparticles mainly composed of In.
  • the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
  • the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
  • a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
  • a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
  • the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In.
  • the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
  • the CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example.
  • a CAC-OS is formed by a sputtering method
  • any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
  • the CAC-OS has a feature that a clear peak is not observed when measurement is performed using a ⁇ / 2 ⁇ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
  • XRD X-ray diffraction
  • the CAC-OS in an electron beam diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam), a ring-shaped high luminance region and a plurality of regions in the ring region are provided. A saddle point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • nc nano-crystal
  • GaO X3 is a main component by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that the region and the region mainly composed of In X2 Zn Y2 O Z2 or InO X1 are unevenly distributed and mixed.
  • EDX energy dispersive X-ray spectroscopy
  • the CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
  • the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Therefore, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility ( ⁇ ) can be realized.
  • areas such as GaO X3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
  • CAC-OS when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act complementarily, thereby increasing the An on-current (I on ) and high field effect mobility ( ⁇ ) can be realized.
  • CAC-OS is suitable as a constituent material for various semiconductor devices.
  • an imaging device capable of imaging with a wide dynamic range can be formed.
  • FIG. 10A illustrates an example of a pixel structure of the imaging device including the pixel circuit described in Embodiment 1.
  • the imaging device can include a layer 61, a layer 62, and a layer 63, each having a region that overlaps with each other.
  • the layer 61 has the configuration of the photoelectric conversion element 10.
  • the photoelectric conversion element 10 includes an electrode 65 corresponding to a pixel electrode, a photoelectric conversion unit 66, and an electrode 67 corresponding to a common electrode.
  • the electrode 65 is preferably a low-resistance metal layer.
  • a low-resistance metal layer aluminum, titanium, tungsten, tantalum, silver, or a stacked layer thereof can be used.
  • a conductive layer having a high light-transmitting property with respect to visible light is preferably used.
  • indium oxide, tin oxide, zinc oxide, indium-tin oxide, gallium-zinc oxide, indium-gallium-zinc oxide, graphene, or the like can be used. Note that the electrode 67 may be omitted.
  • a pn junction photodiode using a selenium-based material as a photoelectric conversion layer can be used. It is preferable to use a selenium-based material that is a p-type semiconductor for the layer 66a and a gallium oxide that is an n-type semiconductor for the layer 66b.
  • a photoelectric conversion element using a selenium-based material has a high external quantum efficiency with respect to visible light.
  • the photoelectric conversion element by using the avalanche multiplication effect, a highly sensitive sensor with a large amplification of electrons with respect to the amount of incident light can be obtained.
  • the selenium-based material has a high light absorption coefficient, it has production advantages such that the photoelectric conversion layer can be formed as a thin film.
  • a thin film of a selenium-based material can be formed using a vacuum evaporation method, a sputtering method, or the like.
  • selenium-based material examples include crystalline selenium such as single crystal selenium and polycrystalline selenium, amorphous selenium, copper, indium, selenium compound (CIS), or copper, indium, gallium, selenium compound (CIGS), etc. Can be used.
  • the n-type semiconductor is preferably formed using a material having a wide band gap and a light-transmitting property with respect to visible light.
  • a material having a wide band gap and a light-transmitting property with respect to visible light For example, zinc oxide, gallium oxide, indium oxide, tin oxide, or an oxide in which they are mixed can be used. These materials also have a function as a hole injection blocking layer, and can reduce the dark current.
  • the layer 61 is not limited to the above structure, and a pn junction photodiode using one of a p-type silicon semiconductor and an n-type silicon semiconductor as the layer 66a and the other of the p-type silicon semiconductor and the n-type silicon semiconductor as the layer 66b. It may be. Alternatively, a pin junction photodiode in which an i-type silicon semiconductor layer is provided between the layer 66a and the layer 66b may be used.
  • the pn junction photodiode or the pin junction photodiode can be formed using single crystal silicon. At this time, it is preferable that the layer 61 and the layer 62 are electrically joined using a bonding process.
  • the pin junction photodiode can be formed using a thin film such as amorphous silicon, microcrystalline silicon, or polycrystalline silicon.
  • the layer 62 can be, for example, a layer including an OS transistor (the transistor 51 and the transistor 52).
  • the potential of the charge detection unit (ND) decreases when the intensity of light incident on the photoelectric conversion element 10 is small. Since the OS transistor has an extremely low off-state current, a current corresponding to the gate potential can be accurately output even when the gate potential is extremely small. Therefore, the range of illuminance that can be detected, that is, the dynamic range can be expanded.
  • the period in which charges can be held in the charge detection portion (ND) and the charge accumulation portion (NR) can be extremely long. Therefore, it is possible to apply a global shutter system in which charge accumulation operation is simultaneously performed in all pixels without complicating a circuit configuration and an operation method.
  • the layer 63 can be a supporting substrate or a layer having a Si transistor (transistor 53, transistor 54).
  • the Si transistor can have a structure having an active region on a single crystal silicon substrate and a crystalline silicon active layer on an insulating surface. Note that in the case where a single crystal silicon substrate is used for the layer 63, a pn junction photodiode or a pin junction photodiode may be formed over the single crystal silicon substrate. In this case, the layer 61 can be omitted.
  • FIG. 10B is a block diagram illustrating a circuit configuration of the imaging device of one embodiment of the present invention.
  • the imaging apparatus includes a pixel array 21 having pixels 20 arranged in a matrix, a circuit 22 (row driver) having a function of selecting a row of the pixel array 21, and a correlation double with respect to an output signal of the pixel 20.
  • a circuit 23 (CDS circuit) for performing sampling processing, a circuit 24 (A / D conversion circuit or the like) having a function of converting analog data output from the circuit 23 into digital data, and data converted by the circuit 24
  • a circuit 25 (column driver) having a function of selecting and reading out. Note that the circuit 23 may be omitted.
  • the elements of the pixel array 21 excluding the photoelectric conversion element can be provided in the layer 62 illustrated in FIG.
  • Elements of the circuits 22 to 25 can be provided in the layer 63.
  • These circuits can be composed of CMOS circuits using Si transistors.
  • a transistor suitable for each circuit can be used, and the area of the imaging device can be reduced.
  • FIG. 11A, 11 ⁇ / b> B, and 11 ⁇ / b> C are diagrams illustrating a specific configuration of the imaging device illustrated in FIG.
  • FIG. 11A is a cross-sectional view illustrating the channel length direction of the transistors 51, 52, 53, and 54.
  • FIG. 11B is a cross-sectional view taken along dashed-dotted line A1-A2 and illustrates a cross section of the transistor 52 in the channel width direction.
  • FIG. 11C is a cross-sectional view taken along dashed-dotted line B1-B2, and shows a cross section of the transistor 53 in the channel width direction.
  • the imaging device can be a stack of layers 61 to 63.
  • the layer 61 can include a partition 92 in addition to the photoelectric conversion element 10 having a selenium layer.
  • the partition wall 92 is provided so as to cover the step of the electrode 65.
  • the selenium layer used for the photoelectric conversion element 10 has a high resistance and can be configured not to be separated between pixels.
  • the layer 62 is provided with transistors 51 and 52 which are OS transistors and a capacitor 57.
  • transistors 51 and 52 and the capacitor 57 has a structure including the back gate 91, any of them may have a back gate.
  • the back gate 91 may be electrically connected to a front gate of a transistor provided to face the back gate 91.
  • the back gate 91 may be configured to be able to supply a fixed potential different from that of the front gate.
  • FIG. 11A illustrates a self-aligned top gate transistor as the OS transistor.
  • a non-self-aligned top gate transistor may be used.
  • FIG. 13 is a cross-sectional STEM photograph of a part of a pixel using a non-self-aligned top gate transistor. 13 is a cross section at an arbitrary position and does not correspond to FIGS. 11A and 12A. In addition, FIG. 13 also shows wiring, contact portions, and the like not shown in FIGS. 11A and 12A.
  • a transistor 53 and a transistor 54 which are Si transistors are provided.
  • 11A illustrates a structure in which the Si transistor includes a fin-type semiconductor layer provided on the silicon substrate 200.
  • the silicon substrate 201 includes an active region. It may be a planar type.
  • a transistor including a silicon thin film semiconductor layer 210 may be used.
  • the semiconductor layer 210 can be, for example, single crystal silicon (SOI (Silicon on Insulator)) formed on the insulating layer 220 on the silicon substrate 202. Alternatively, it may be polycrystalline silicon formed on an insulating surface such as a glass substrate.
  • the layer 63 can be provided with a circuit for driving the pixel.
  • An insulating layer 93 having a function of preventing hydrogen diffusion is provided between the region where the OS transistor is formed and the region where the Si transistor is formed. Hydrogen in the insulating layer provided in the vicinity of the active regions of the transistors 53 and 54 terminates dangling bonds of silicon. On the other hand, hydrogen in the insulating layer provided in the vicinity of the oxide semiconductor layer which is an active layer of the transistors 51 and 52 is one of the factors that generate carriers in the oxide semiconductor layer.
  • the reliability of the transistors 53 and 54 can be improved by confining hydrogen in one layer by the insulating layer 93. In addition, since the diffusion of hydrogen from one layer to the other layer is suppressed, the reliability of the transistors 51 and 52 can be improved.
  • the insulating layer 93 for example, aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, yttria-stabilized zirconia (YSZ), or the like can be used.
  • aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, yttria-stabilized zirconia (YSZ), or the like can be used.
  • FIG. 14A is a cross-sectional view illustrating an example in which a color filter or the like is added to the imaging device of one embodiment of the present invention.
  • a part of a region having a pixel circuit for three pixels is shown.
  • An insulating layer 300 is formed on the layer 61 where the photoelectric conversion element 10 is formed.
  • the insulating layer 300 can be formed using a silicon oxide film having high light-transmitting property with respect to visible light.
  • a silicon nitride film may be stacked as a passivation film.
  • a dielectric film such as hafnium oxide may be laminated as the antireflection film.
  • a light shielding layer 310 may be formed on the insulating layer 300.
  • the light shielding layer 310 has a function of preventing color mixing of light passing through the upper color filter.
  • a metal layer such as aluminum or tungsten can be used. Further, the metal layer and a dielectric film having a function as an antireflection film may be stacked.
  • An organic resin layer 320 can be provided as a planarization film over the insulating layer 300 and the light shielding layer 310.
  • a color filter 330 (color filter 330a, color filter 330b, color filter 330c) is formed for each pixel. For example, colors such as R (red), G (green), B (blue), Y (yellow), C (cyan), and M (magenta) are assigned to the color filters 330a, 330b, and 330c. Thus, a color image can be obtained.
  • An insulating layer 360 having a light-transmitting property with respect to visible light or the like can be provided over the color filter 330.
  • an optical conversion layer 350 may be used instead of the color filter 330.
  • an imaging device capable of obtaining images in various wavelength regions can be obtained.
  • an infrared imaging device can be obtained. If a filter that blocks light having a wavelength of near infrared or shorter is used for the optical conversion layer 350, a far infrared imaging device can be obtained. If a filter that blocks light having a wavelength longer than or equal to that of visible light is used for the optical conversion layer 350, an ultraviolet imaging device can be obtained.
  • an imaging device that can be used for an X-ray imaging device or the like and obtain an image that visualizes the intensity of radiation can be obtained.
  • radiation such as X-rays transmitted through the subject
  • the scintillator it is converted into light (fluorescence) such as visible light or ultraviolet light by a photoluminescence phenomenon.
  • the photoelectric conversion element 10 detects the light to acquire image data.
  • the imaging device having the configuration may be used for a radiation detector or the like.
  • a scintillator contains a substance that emits visible light or ultraviolet light by absorbing energy when irradiated with radiation such as X-rays or gamma rays.
  • Gd 2 O 2 S Tb
  • Gd 2 O 2 S Pr
  • Gd 2 O 2 S Eu
  • BaFCl Eu
  • distributed to resin or ceramics can be used.
  • the photoelectric conversion element 10 using a selenium-based material can directly convert radiation such as X-rays into electric charges, and thus can be configured to eliminate a scintillator.
  • a microlens array 340 may be provided over the color filter 330a, the color filter 330b, and the color filter 330c. Light passing through the individual lenses of the microlens array 340 passes through the color filter directly below and is irradiated onto the photoelectric conversion element 10. Alternatively, the microlens array 340 may be provided over the optical conversion layer 350 illustrated in FIG.
  • the configuration of the imaging device can be used for the image sensor chip.
  • FIG. 15A1 is an external perspective view of the upper surface side of the package containing the image sensor chip.
  • the package includes a package substrate 410 for fixing the image sensor chip 450, a cover glass 420, and an adhesive 430 for bonding the two.
  • FIG. 15A2 is an external perspective view of the lower surface side of the package.
  • the bottom surface of the package has a BGA (Ball grid array) configuration with solder balls as bumps 440.
  • BGA Bit grid array
  • LGA Land grid array
  • PGA Peripheral Component Interconnect
  • FIG. 15A3 is a perspective view of the package shown with the cover glass 420 and part of the adhesive 430 omitted.
  • An electrode pad 460 is formed on the package substrate 410, and the electrode pad 460 and the bump 440 are electrically connected through a through hole.
  • the electrode pad 460 is electrically connected to the image sensor chip 450 by a wire 470.
  • FIG. 15B1 is an external perspective view of the upper surface side of the camera module in which the image sensor chip is housed in a lens-integrated package.
  • the camera module includes a package substrate 411 that fixes the image sensor chip 451, a lens cover 421, a lens 435, and the like.
  • an IC chip 490 having functions such as a drive circuit and a signal conversion circuit of the imaging device is also provided between the package substrate 411 and the image sensor chip 451, and has a configuration as a SiP (System in package). Yes.
  • FIG. 15B2 is an external perspective view of the lower surface side of the camera module.
  • the package substrate 411 has a QFN (Quad Flat No-Lead Package) configuration in which mounting lands 441 are provided on a lower surface and side surfaces.
  • the configuration is an example, and may be a QFP (Quad Flat Package), the BGA described above, or the like.
  • FIG. 15B3 is a perspective view of the module shown with a part of the lens cover 421 and the lens 435 omitted.
  • the land 441 is electrically connected to the electrode pad 461, and the electrode pad 461 is electrically connected to the image sensor chip 451 or the IC chip 490 by wires 471.
  • the image sensor chip By mounting the image sensor chip in a package having the above-described form, mounting on a printed board or the like is facilitated, and the image sensor chip can be incorporated into various semiconductor devices and electronic devices.
  • Electronic devices that can use the imaging device according to one embodiment of the present invention include a display device, a personal computer, an image storage device or an image playback device including a recording medium, a mobile phone, a portable game machine, and a portable data terminal , Digital book terminals, video cameras, digital still cameras and other cameras, goggles-type displays (head-mounted displays), navigation systems, sound playback devices (car audio, digital audio players, etc.), copiers, facsimiles, printers, printer multifunction devices Automatic teller machines (ATMs), vending machines, and the like. Specific examples of these electronic devices are shown in FIGS.
  • FIG. 16A illustrates a monitoring camera, which includes a housing 951, a lens 952, a support portion 953, and the like.
  • the imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the monitoring camera.
  • the surveillance camera is an idiomatic name and does not limit the application.
  • a device having a function as a surveillance camera is also called a camera or a video camera.
  • FIG. 16B illustrates a video camera, which includes a first housing 971, a second housing 972, a display portion 973, operation keys 974, a lens 975, a connection portion 976, and the like.
  • the operation key 974 and the lens 975 are provided in the first housing 971, and the display portion 973 is provided in the second housing 972.
  • the imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the video camera.
  • FIG. 16C illustrates a digital camera, which includes a housing 961, a shutter button 962, a microphone 963, a light-emitting portion 967, a lens 965, and the like.
  • the imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the digital camera.
  • FIG. 16D illustrates a wristwatch-type information terminal including a housing 931, a display portion 932, a wristband 933, operation buttons 935, a crown 936, a camera 939, and the like.
  • the display unit 932 may be a touch panel.
  • the imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the information terminal.
  • FIG. 16E illustrates an example of a mobile phone, which includes a housing 981, a display portion 982, operation buttons 983, an external connection port 984, a speaker 985, a microphone 986, a camera 987, and the like.
  • the mobile phone includes a touch sensor in the display portion 982. All operations such as making a call or inputting characters can be performed by touching the display portion 982 with a finger, a stylus, or the like.
  • the imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the mobile phone.
  • FIG. 16F illustrates a portable data terminal, which includes a housing 911, a display portion 912, a camera 919, and the like. Information can be input and output by a touch panel function of the display portion 912.
  • the imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the portable data terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Thin Film Transistor (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Provided is an imaging device that is capable of wide dynamic range imaging. An imaging device that has pixels that have a capacitive element that has an MIS structure, wherein the semiconductor layer of the capacitive elements is a metal oxide. The capacity values of the capacitive elements can be made to vary between two or more values depending on the voltage that is applied to the capacitive elements. As a result, pixels that detect low-intensity light become high sensitivity, and pixels that detect high-intensity light become low sensitivity, which makes it possible to perform wide dynamic range imaging without any special external control.

Description

撮像装置および電子機器Imaging apparatus and electronic apparatus

本発明の一態様は、撮像装置に関する。 One embodiment of the present invention relates to an imaging device.

なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. The technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a lighting device, a power storage device, a memory device, an imaging device, A driving method or a manufacturing method thereof can be given as an example.

なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。 Note that in this specification and the like, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics. A transistor and a semiconductor circuit are one embodiment of a semiconductor device. In addition, a memory device, a display device, an imaging device, and an electronic device may include a semiconductor device.

基板上に形成された酸化物半導体薄膜を用いてトランジスタを構成する技術が注目されている。例えば、酸化物半導体を有するオフ電流が極めて低いトランジスタを画素回路に用いる構成の撮像装置が特許文献1に開示されている。 A technique for forming a transistor using an oxide semiconductor thin film formed over a substrate has attracted attention. For example, Patent Document 1 discloses an imaging device having a structure in which a transistor including an oxide semiconductor and having extremely low off-state current is used for a pixel circuit.

また、撮像装置は様々な電子機器に組み込まれており、より高い解像度で撮像できることが求められている。これまで撮像装置には、シリコンを光電変換層とする光電変換素子が用いられてきたが、より光吸収係数の高い材料である結晶セレンを光電変換素子に用いた撮像装置が提案されている(特許文献2参照)。 In addition, the imaging device is incorporated in various electronic devices, and is required to be able to capture images with higher resolution. Conventionally, photoelectric conversion elements using silicon as a photoelectric conversion layer have been used for image pickup apparatuses, but image pickup apparatuses using crystalline selenium, which is a material having a higher light absorption coefficient, for photoelectric conversion elements have been proposed ( Patent Document 2).

特開2011−119711号公報JP 2011-119711 A 特開2014−17440号公報JP, 2014-17440, A

CMOSイメージセンサは様々な機器への搭載が進められており、撮像性能の向上が期待されている。現状のCMOSイメージセンサのダイナミックレンジは、3桁乃至4桁(60dB乃至80dB)程度であり、銀塩フィルムや肉眼相当の5桁乃至6桁(100dB乃至120dB)に向上させることが望まれている。 CMOS image sensors are being mounted on various devices, and improvement in imaging performance is expected. The dynamic range of the current CMOS image sensor is about 3 digits to 4 digits (60 dB to 80 dB), and it is desired to improve it to 5 digits to 6 digits (100 dB to 120 dB) equivalent to a silver salt film or the naked eye. .

ダイナミックレンジを向上させるには、画素内部の電荷蓄積部を切り替えて撮像する方法やアナログデータ処理を行う方法などが提案されている。しかしながら、これらは複雑なソフトウェア制御により、処理に遅延が起こる場合がある。また、画素内のトランジスタ数の増加に伴うノイズなどにより、画像品質が低下する場合がある。 In order to improve the dynamic range, there have been proposed a method of imaging by switching the charge storage portion in the pixel, a method of performing analog data processing, and the like. However, the processing may be delayed due to complicated software control. In addition, image quality may deteriorate due to noise or the like accompanying an increase in the number of transistors in a pixel.

また、イメージセンサを高解像度化するには、一画素あたりの面積を縮小する必要がある。画素面積の縮小は光電変換素子の受光部面積の縮小を伴うため、光感度が低下してしまう。当該課題に対しては、アバランシェ増倍効果を利用した光感度の高い光電変換素子を用いることが解決策の一つとなる。 Further, in order to increase the resolution of the image sensor, it is necessary to reduce the area per pixel. Since the reduction of the pixel area is accompanied by the reduction of the light receiving area of the photoelectric conversion element, the photosensitivity is lowered. One solution is to use a photoelectric conversion element with high photosensitivity using the avalanche multiplication effect.

したがって、本発明の一態様では、簡易な構成でダイナミックレンジを広げることができる撮像装置を提供することを目的の一つとする。または、低消費電力の撮像装置を提供することを目的の一つとする。または、ノイズの少ない画像を撮像することができる撮像装置を提供することを目的の一つとする。または、解像度の高い撮像装置を提供することを目的の一つとする。または、光感度の高い光電変換素子を提供することを目的の一つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを提供することを目的の一つとする。または、上記撮像装置の駆動方法を提供することを目的の一つとする。または、新規な半導体装置などを提供することを目的の一つとする。 Therefore, an object of one embodiment of the present invention is to provide an imaging device that can widen the dynamic range with a simple structure. Another object is to provide an imaging device with low power consumption. Another object is to provide an imaging device that can capture an image with less noise. Another object is to provide an imaging device with high resolution. Another object is to provide a photoelectric conversion element with high photosensitivity. Another object is to provide a highly reliable imaging device. Another object is to provide a novel imaging device or the like. Another object is to provide a method for driving the imaging device. Another object is to provide a novel semiconductor device or the like.

なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.

本発明の一態様は、個々の画素の感度を自動的に変更して撮像することができる撮像装置に関する。 One embodiment of the present invention relates to an imaging device that can automatically change the sensitivity of individual pixels to perform imaging.

本発明の一態様は、画素に容量素子を有する撮像装置であって、容量素子は、金属層、絶縁層、半導体層が積層されたMIS構造を有し、半導体層は金属酸化物を有する。 One embodiment of the present invention is an imaging device including a capacitor in a pixel. The capacitor has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer are stacked, and the semiconductor layer includes a metal oxide.

また、本発明の他の一態様は、光電変換素子と、第1乃至第4のトランジスタと、容量素子と、を有し、光電変換素子の一方の電極は、第1のトランジスタのソースまたはドレインの一方と電気的に接続され、第1のトランジスタのソースまたはドレインの一方は、第2のトランジスタのソースまたはドレインの一方と電気的に接続され、第1のトランジスタのソースまたはドレインの他方は、容量素子の一方の電極と電気的に接続され、第1のトランジスタのソースまたはドレインの他方は、第3のトランジスタのゲートと電気的に接続され、第3のトランジスタのソースまたはドレインの一方は第4のトランジスタのソースまたはドレインの一方と電気的に接続され、容量素子は、金属層、絶縁層、半導体層が積層されたMIS構造を有し、半導体層は金属酸化物を有する撮像装置である。 Another embodiment of the present invention includes a photoelectric conversion element, first to fourth transistors, and a capacitor, and one electrode of the photoelectric conversion element is a source or a drain of the first transistor. One of the source and drain of the first transistor is electrically connected to one of the source and drain of the second transistor, and the other of the source and drain of the first transistor is The other of the source and the drain of the first transistor is electrically connected to the gate of the third transistor, and the one of the source and the drain of the third transistor is electrically connected to the first electrode of the capacitor. 4 is electrically connected to one of a source and a drain of the transistor 4 and the capacitor has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer are stacked. The semiconductor layer is an image pickup apparatus having a metal oxide.

光電変換素子は、光電変換層にセレンまたはセレンを含む化合物を有することが好ましい。 The photoelectric conversion element preferably has selenium or a compound containing selenium in the photoelectric conversion layer.

金属層は、一方の電極として作用し、半導体層は他方の電極として作用することができる。また、容量素子はゲート電極に金属層を有し、半導体層にソース領域およびドレイン領域を有するトランジスタ構造とすることができる。 The metal layer can act as one electrode and the semiconductor layer can act as the other electrode. Further, the capacitor can have a transistor structure in which a gate electrode includes a metal layer and a semiconductor layer includes a source region and a drain region.

半導体層は、第1の金属酸化物層と、第2の金属酸化物層と、を有し、第1の金属酸化物層と、第2の金属酸化物層と、絶縁層は重なる領域を有し、第1の金属酸化物層は絶縁層と接する領域を有し、第1の金属酸化物層のバンドギャップは、第2の金属酸化物層よりも大きい構成とすることができる。 The semiconductor layer includes a first metal oxide layer and a second metal oxide layer, and the first metal oxide layer, the second metal oxide layer, and the insulating layer overlap with each other. The first metal oxide layer has a region in contact with the insulating layer, and the band gap of the first metal oxide layer can be larger than that of the second metal oxide layer.

容量素子は複数であってもよい。 There may be a plurality of capacitive elements.

金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Sn、Y、Zr、La、Ce、NdまたはHf)と、を有することが好ましい。 The metal oxide preferably includes In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf).

本発明の一態様を用いることで、簡易な構成でダイナミックレンジを広げることができる撮像装置を提供することができる。または、低消費電力の撮像装置を提供することができる。または、ノイズの少ない画像を撮像することができる撮像装置を提供することができる。または、解像度の高い撮像装置を提供することができる。または、光感度の高い光電変換素子を提供することができる。または、信頼性の高い撮像装置を提供することができる。または、新規な撮像装置などを提供することができる。または、上記撮像装置の駆動方法を提供することができる。または、新規な半導体装置などを提供することができる。 By using one embodiment of the present invention, an imaging device that can widen the dynamic range with a simple structure can be provided. Alternatively, an imaging device with low power consumption can be provided. Alternatively, an imaging device that can capture an image with less noise can be provided. Alternatively, an imaging device with high resolution can be provided. Alternatively, a photoelectric conversion element with high photosensitivity can be provided. Alternatively, a highly reliable imaging device can be provided. Alternatively, a novel imaging device or the like can be provided. Alternatively, a method for driving the imaging device can be provided. Alternatively, a novel semiconductor device or the like can be provided.

画素回路を説明する図。FIG. 6 illustrates a pixel circuit. 広ダイナミックレンジの画像を説明する図。The figure explaining the image of a wide dynamic range. 画素回路の動作を説明するタイミングチャート。6 is a timing chart illustrating the operation of a pixel circuit. 容量素子の構成を説明する図、およびC−V特性を示す図。3A and 3B illustrate a structure of a capacitor and a graph showing a CV characteristic. 容量素子の構成を説明する図、およびC−V特性を示す図。3A and 3B illustrate a structure of a capacitor and a graph showing a CV characteristic. 照度と電荷蓄積部の電位の関係を説明する図。The figure explaining the relationship between illumination intensity and the electric potential of a charge storage part. 画素回路を説明する図。FIG. 6 illustrates a pixel circuit. 画素回路を説明する図。FIG. 6 illustrates a pixel circuit. 画素回路を説明する図。FIG. 6 illustrates a pixel circuit. 撮像装置の画素の構成を示す図、および撮像装置のブロック図。The figure which shows the structure of the pixel of an imaging device, and the block diagram of an imaging device. 撮像装置の構成を示す断面図。Sectional drawing which shows the structure of an imaging device. 撮像装置の構成を示す断面図。Sectional drawing which shows the structure of an imaging device. 撮像装置の断面STEM写真。A cross-sectional STEM photograph of an imaging device. 撮像装置の構成を示す断面図。Sectional drawing which shows the structure of an imaging device. 撮像装置を収めたパッケージの斜視図。The perspective view of the package which accommodated the imaging device. 電子機器の構成例を示す図。FIG. 9 illustrates a configuration example of an electronic device.

実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Note that in the structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. Note that hatching of the same elements constituting the drawings may be appropriately omitted or changed between different drawings.

(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置について、図面を参照して説明する。
(Embodiment 1)
In this embodiment, an imaging device that is one embodiment of the present invention will be described with reference to drawings.

本発明の一態様は、画素に容量素子を有する撮像装置であって、当該容量素子は、金属層と、絶縁層と、金属酸化物を有する半導体層が積層されたMIS構造を有する。当該容量素子では、印加される電圧によって容量値を2値またはそれ以上に変化させることができる。 One embodiment of the present invention is an imaging device including a capacitor in a pixel, and the capacitor has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer including a metal oxide are stacked. In the capacitor, the capacitance value can be changed to a binary value or higher depending on the applied voltage.

そのため、低照度の光を検出した画素は高感度となり、高照度の光を検出した画素は低感度となる。したがって、外部から特別な制御をすることなく、広ダイナミックレンジの撮像が行えるようになる。 Therefore, a pixel that detects light with low illuminance has high sensitivity, and a pixel that detects light with high illuminance has low sensitivity. Therefore, imaging with a wide dynamic range can be performed without special control from the outside.

広ダイナミックレンジの撮像の一例を図2(A)乃至(C)を用いて説明する。図2(A)乃至(C)は、屋内の内装および人物、ならびに窓を通じた屋外の景色を日中に撮像した画像の例である。この例では、屋内は室内灯を点灯したときの照度であり、屋外は晴天下の照度であるなど、屋内と屋外の照度差は十分に大きいこととする。 An example of wide dynamic range imaging will be described with reference to FIGS. FIGS. 2A to 2C are examples of images obtained by taking images of indoor interiors and people, and outdoor scenery through windows during the day. In this example, it is assumed that the illuminance difference between the indoor and the outdoor is sufficiently large, such as the illuminance when the indoor light is turned on indoors and the illuminance under sunny weather.

図2(A)は、屋内の照度に合わせて撮像を行った例である。例えば、照度が低い屋内に合わせて露光時間を設定した場合、屋内は鮮明に撮像することができる。一方で、照度が高い屋外は露光オーバーとなり、白くコントラストの低い画像となる。 FIG. 2A is an example in which imaging is performed in accordance with indoor illuminance. For example, when the exposure time is set in accordance with indoors where the illuminance is low, indoors can be imaged clearly. On the other hand, outdoors where the illuminance is high is overexposed, resulting in a white and low contrast image.

図2(B)は、屋外の照度に合わせて撮像を行った例である。図2(A)とは逆に照度が高い屋外に合わせて露光時間を設定した場合、屋外は鮮明に撮像することができる。一方で、照度が低い屋内は露光アンダーとなり、黒くコントラストの低い画像となる。 FIG. 2B is an example in which imaging is performed in accordance with outdoor illuminance. Contrary to FIG. 2A, when the exposure time is set according to the outdoors where the illuminance is high, the outdoors can be imaged clearly. On the other hand, indoors with low illuminance are underexposed, resulting in black images with low contrast.

図2(C)は、理想的な画像の例であり、屋内、屋外ともに鮮明な画像となっている。当該画像のように、暗部から明部までの広い範囲の情報を得ることが広ダイナミックレンジでの撮像に相当し、本発明の一態様では、画素にMIS型容量素子を用いることで実現する。 FIG. 2C is an example of an ideal image, which is a clear image both indoors and outdoors. Obtaining information in a wide range from a dark part to a bright part as in the image corresponds to imaging in a wide dynamic range. In one embodiment of the present invention, this is realized by using a MIS capacitor in a pixel.

図1は、本発明の一態様の撮像装置の画素回路を説明する図である。当該画素回路は、光電変換素子10と、トランジスタ51と、トランジスタ52と、トランジスタ53と、トランジスタ54と、容量素子57と、を有する。 FIG. 1 illustrates a pixel circuit of an imaging device of one embodiment of the present invention. The pixel circuit includes a photoelectric conversion element 10, a transistor 51, a transistor 52, a transistor 53, a transistor 54, and a capacitor 57.

光電変換素子10の一方の電極(アノード)は、トランジスタ51のソースまたはドレインの一方と電気的に接続される。光電変換素子10の一方の電極は、トランジスタ52のソースまたはドレインの一方と電気的に接続される。トランジスタ51のソースまたはドレインの他方は、トランジスタ53のゲートと電気的に接続される。トランジスタ53のゲートは、容量素子57の一方の電極を電気的に接続される。トランジスタ53のソースまたはドレインの一方は、トランジスタ54のソースまたはドレインの一方と電気的に接続される。 One electrode (anode) of the photoelectric conversion element 10 is electrically connected to one of a source and a drain of the transistor 51. One electrode of the photoelectric conversion element 10 is electrically connected to one of a source and a drain of the transistor 52. The other of the source and the drain of the transistor 51 is electrically connected to the gate of the transistor 53. The gate of the transistor 53 is electrically connected to one electrode of the capacitor 57. One of the source and the drain of the transistor 53 is electrically connected to one of the source and the drain of the transistor 54.

光電変換素子10の他方の電極(カソード)は、配線72と電気的に接続される。トランジスタ51のゲートは、配線75と電気的に接続される。トランジスタ53のソースまたはドレインの他方は、配線79と電気的に接続される。トランジスタ52のゲートは、配線76と電気的に接続される。トランジスタ52のソースまたはドレインの他方は、配線73と電気的に接続される。トランジスタ54のソースまたはドレインの他方は、配線71と電気的に接続される。トランジスタ54のゲートは、配線78と電気的に接続される。 The other electrode (cathode) of the photoelectric conversion element 10 is electrically connected to the wiring 72. A gate of the transistor 51 is electrically connected to the wiring 75. The other of the source and the drain of the transistor 53 is electrically connected to the wiring 79. A gate of the transistor 52 is electrically connected to the wiring 76. The other of the source and the drain of the transistor 52 is electrically connected to the wiring 73. The other of the source and the drain of the transistor 54 is electrically connected to the wiring 71. A gate of the transistor 54 is electrically connected to the wiring 78.

ここで、配線71は、画素から信号を出力する出力線としての機能を有することができる。配線73、配線77、配線79は、電源線としての機能を有することができる。例えば、配線73および配線77は低電位電源線、配線79は高電位電源線として機能させることができる。配線75、配線76、配線78は、各トランジスタのオンオフを制御する信号線として機能させることができる。 Here, the wiring 71 can function as an output line for outputting a signal from the pixel. The wiring 73, the wiring 77, and the wiring 79 can function as power supply lines. For example, the wiring 73 and the wiring 77 can function as a low potential power supply line, and the wiring 79 can function as a high potential power supply line. The wiring 75, the wiring 76, and the wiring 78 can function as signal lines for controlling on / off of each transistor.

光電変換素子10には、低照度時の光検出感度を高めるためアバランシェ増倍効果を生じる光電変換素子を用いることが好ましい。アバランシェ増倍効果を生じさせるためには、比較的高い電位HVDD(例えば10V以上)が必要となる。したがって、配線72は、電位HVDDを供給することのできる電源と電気的に接続されることが好ましい。なお、光電変換素子10は、アバランシェ増倍効果が生じない電位を印加して使用することもできる。 The photoelectric conversion element 10 is preferably a photoelectric conversion element that produces an avalanche multiplication effect in order to increase the light detection sensitivity at low illuminance. In order to produce the avalanche multiplication effect, a relatively high potential HVDD (for example, 10 V or more) is required. Therefore, the wiring 72 is preferably electrically connected to a power source that can supply the potential HVDD. Note that the photoelectric conversion element 10 can be used by applying a potential that does not cause an avalanche multiplication effect.

トランジスタ51は、光電変換素子10の出力に応じて変化する電荷蓄積部(NR)の電位を電荷検出部(ND)に転送する機能を有することができる。トランジスタ52は、電荷蓄積部(NR)および電荷検出部(ND)の電位を初期化する機能を有することができる。トランジスタ53は、電荷検出部(ND)の電位に応じた信号を出力する機能を有することができる。トランジスタ54は、信号を読み出す画素を選択する機能を有することができる。 The transistor 51 can have a function of transferring the potential of the charge accumulation unit (NR) that changes in accordance with the output of the photoelectric conversion element 10 to the charge detection unit (ND). The transistor 52 can have a function of initializing the potentials of the charge storage portion (NR) and the charge detection portion (ND). The transistor 53 can have a function of outputting a signal corresponding to the potential of the charge detection portion (ND). The transistor 54 can have a function of selecting a pixel from which a signal is read.

光電変換素子10に高電圧を印加する場合、光電変換素子10と接続されるトランジスタには高電圧に耐えられる高耐圧のトランジスタを用いる必要がある。当該高耐圧のトランジスタには、例えば、チャネル形成領域に金属酸化物を用いたトランジスタ(以下、OSトランジスタ)などを用いることができる。具体的には、トランジスタ51およびトランジスタ52にOSトランジスタを適用することが好ましい。 When a high voltage is applied to the photoelectric conversion element 10, it is necessary to use a high breakdown voltage transistor that can withstand the high voltage as a transistor connected to the photoelectric conversion element 10. As the high breakdown voltage transistor, for example, a transistor using a metal oxide in a channel formation region (hereinafter referred to as an OS transistor) or the like can be used. Specifically, OS transistors are preferably used as the transistor 51 and the transistor 52.

トランジスタ51およびトランジスタ52はスイッチング特性が優れていることが望まれるが、トランジスタ53およびトランジスタ54は増幅特性が優れていることが望まれるため、オン電流が高いトランジスタであることが好ましい。したがって、トランジスタ53およびトランジスタ54には、シリコンを活性層または活性領域に用いたトランジスタ(以下、Siトランジスタ)を適用することが好ましい。 The transistor 51 and the transistor 52 are desired to have excellent switching characteristics, but the transistor 53 and the transistor 54 are preferably transistors having high on-state current because it is desired to have excellent amplification characteristics. Therefore, it is preferable to apply a transistor using silicon as an active layer or an active region (hereinafter, Si transistor) as the transistor 53 and the transistor 54.

トランジスタ51乃至トランジスタ54を上述した構成とすることで、低照度における光の検出感度が高く、ノイズの少ない信号を出力することのできる撮像装置を作製することができる。また、光の検出感度が高いため、光の取り込み時間を短くすることができ、撮像を高速に行うことができる。 With the above-described structures of the transistors 51 to 54, an imaging device with high light detection sensitivity at low illuminance and capable of outputting a signal with little noise can be manufactured. In addition, since the light detection sensitivity is high, the light capture time can be shortened and imaging can be performed at high speed.

なお、上記構成に限らず、トランジスタ53およびトランジスタ54にOSトランジスタを適用してもよい。または、トランジスタ51およびトランジスタ52にSiトランジスタを適用してもよい。いずれの場合においても当該画素回路の撮像動作は可能である。 Note that the transistor is not limited to the above structure, and an OS transistor may be applied to the transistor 53 and the transistor 54. Alternatively, Si transistors may be applied to the transistors 51 and 52. In any case, the imaging operation of the pixel circuit is possible.

ここで、図3のタイミングチャートを用いて、画素の動作を説明する。なお、以下では、トランジスタ52のゲートに接続された配線76には、”H”としてVDD、”L”としてGND、トランジスタ51のゲートに接続された配線75およびトランジスタ54のゲートに接続された配線78には、”H”としてVDD、”L”としてGND、トランジスタ53のソースに接続された配線79には、VDDの電位が供給される例を説明する。なお、各配線に上記以外の電位を供給する形態とすることもできる。 Here, the operation of the pixel will be described with reference to the timing chart of FIG. In the following description, the wiring 76 connected to the gate of the transistor 52 includes VDD as “H”, GND as “L”, wiring 75 connected to the gate of the transistor 51, and wiring connected to the gate of the transistor 54. In 78, an example in which VDD is supplied as “H”, GND as “L”, and the potential of VDD is supplied to the wiring 79 connected to the source of the transistor 53 will be described. Note that a potential other than the above may be supplied to each wiring.

時刻T1に配線76を”H”、配線75を”H”とし、電荷蓄積部(NR)および電荷検出部(ND)の電位をリセット電位(GND)に設定する(リセット動作)。なお、リセット動作時に配線76に”H”として電位HVDDを供給してもよい。 At time T1, the wiring 76 is set to “H”, the wiring 75 is set to “H”, and the potentials of the charge storage portion (NR) and the charge detection portion (ND) are set to the reset potential (GND) (reset operation). Note that the potential HVDD may be supplied to the wiring 76 as “H” during the reset operation.

時刻T2に配線76を”L”、配線75を”L”とすることで、電荷蓄積部(NR)の電位が変化する(蓄積動作)。電荷蓄積部(NR)の電位は、光電変換素子10に入射した光の強度に応じてGNDから最大でVDDまで変化する。 By setting the wiring 76 to “L” and the wiring 75 to “L” at time T2, the potential of the charge storage portion (NR) changes (accumulation operation). The potential of the charge storage portion (NR) changes from GND to VDD at the maximum according to the intensity of light incident on the photoelectric conversion element 10.

時刻T3に配線75を”H”とし、電荷蓄積部(NR)の電荷を電荷検出部(ND)に転送する(転送動作)。 At time T3, the wiring 75 is set to “H”, and the charge in the charge storage portion (NR) is transferred to the charge detection portion (ND) (transfer operation).

時刻T4に配線76を”L”、配線75を”L”とし、転送動作を終了させる。この時点で電荷検出部(ND)の電位が確定される。 At time T4, the wiring 76 is set to “L” and the wiring 75 is set to “L”, and the transfer operation is finished. At this point, the potential of the charge detection unit (ND) is determined.

時刻T5乃至T6期間に配線76を”L”、配線75を”L”、配線78を”H”とし、電荷検出部(ND)の電位に応じた信号を配線71に出力する。すなわち、蓄積動作において光電変換素子10に入射した光の強度に応じた出力信号を得ることができる。 In a period from time T5 to T6, the wiring 76 is set to “L”, the wiring 75 is set to “L”, and the wiring 78 is set to “H”, and a signal corresponding to the potential of the charge detection portion (ND) is output to the wiring 71. That is, an output signal corresponding to the intensity of light incident on the photoelectric conversion element 10 in the accumulation operation can be obtained.

容量素子57は、電荷検出部(ND)の要素であり、電荷検出部(ND)の電位を保持する機能を有する。ここで、低電位に初期化された電荷検出部(ND)に一定量の正電荷が転送された場合を想定すると、電荷検出部(ND)の電位は容量素子57の容量値が小さいときは上昇しやすくなり、容量素子57の容量値が大きいときは上昇しにくくなる。 The capacitor 57 is an element of the charge detection unit (ND) and has a function of holding the potential of the charge detection unit (ND). Here, assuming that a certain amount of positive charge is transferred to the charge detection unit (ND) initialized to a low potential, the potential of the charge detection unit (ND) is set when the capacitance value of the capacitive element 57 is small. It tends to rise, and when the capacitance value of the capacitive element 57 is large, it is difficult to rise.

つまり、本発明の一態様では、低照度における撮像では容量素子57の容量値を小さくすることで露光アンダーを補い、高照度における撮像では容量素子57の容量値を大きくすることで露光オーバーを防止する。 That is, in one embodiment of the present invention, underexposure is compensated for by reducing the capacitance value of the capacitive element 57 in imaging at low illuminance, and overexposure is prevented by increasing the capacitance value of the capacitive element 57 in imaging at high illuminance. To do.

容量素子57はMIS構造を有し、例えば、図4(A)に示すようなトランジスタ構造とすることができる。トランジスタ構造の容量素子57は、電極41と、電極42と、半導体層43と、絶縁層44と、導電層45を有する。電極41は、半導体層43におけるソース領域およびドレイン領域と電気的に接続される。 The capacitor 57 has a MIS structure, and can have a transistor structure as shown in FIG. 4A, for example. The capacitor 57 having a transistor structure includes an electrode 41, an electrode 42, a semiconductor layer 43, an insulating layer 44, and a conductive layer 45. The electrode 41 is electrically connected to the source region and the drain region in the semiconductor layer 43.

電極41は、容量素子57の一方の電極として作用する。電極42は、容量素子57の他方の電極として作用する。半導体層43は、容量素子57の一方の電極または誘電体として作用する。絶縁層44はトランジスタのゲート絶縁膜であり、容量素子57の誘電体として作用する。導電層45はトランジスタのバックゲートであり、定電位を印加することで、しきい値電圧を制御することができる。なお、導電層45を設けない構成としてもよい。 The electrode 41 functions as one electrode of the capacitive element 57. The electrode 42 functions as the other electrode of the capacitive element 57. The semiconductor layer 43 functions as one electrode or a dielectric of the capacitor 57. The insulating layer 44 is a gate insulating film of the transistor and functions as a dielectric of the capacitor 57. The conductive layer 45 is a back gate of the transistor, and the threshold voltage can be controlled by applying a constant potential. Note that the conductive layer 45 may not be provided.

また、容量素子57は、図4(B)に示すように、電極41と電極42との間に半導体層43および絶縁層44を有する積層構造であってもよい。ここで、本発明の一態様では半導体層43に金属酸化物を用いることを特徴とする。 Further, the capacitor 57 may have a stacked structure in which a semiconductor layer 43 and an insulating layer 44 are provided between the electrode 41 and the electrode 42 as illustrated in FIG. Here, one embodiment of the present invention is characterized in that a metal oxide is used for the semiconductor layer 43.

図4(C)は、容量素子57の電極間に電圧(Vg)を印加したときの容量値(C)の変化を示すC−V特性(低周波)の一例である。実線は半導体層43に金属酸化物(OS)を用いた場合の特性であり、破線は半導体層43にシリコン(Si)を用いた場合の特性である。なお、しきい値電圧(Vth)以上では、両者の特性が重なるように示してあるが異なる場合もある。 FIG. 4C is an example of a CV characteristic (low frequency) indicating a change in the capacitance value (C) when a voltage (Vg) is applied between the electrodes of the capacitor 57. A solid line indicates characteristics when a metal oxide (OS) is used for the semiconductor layer 43, and a broken line indicates characteristics when silicon (Si) is used for the semiconductor layer 43. Note that, above the threshold voltage (V th ), the characteristics of both are shown to overlap, but they may be different.

半導体層43に金属酸化物を用いた容量素子57は、電子をキャリアとする蓄積型デバイスとして動作するため、負電圧を印加しても半導体層43にキャリア(ホール)はほとんど蓄積されない。そのため、しきい値電圧(Vth)以下において、半導体層43は誘電体として作用し、容量値は最小値(Cmin)を維持する。また、しきい値電圧(Vth)を超えると半導体層43にキャリア(電子)が蓄積されるため、容量値は絶縁層44のみが誘電体として作用するときの値(Cox)に上昇する。 Since the capacitor 57 using a metal oxide for the semiconductor layer 43 operates as a storage device using electrons as carriers, carriers (holes) are hardly accumulated in the semiconductor layer 43 even when a negative voltage is applied. Therefore, below the threshold voltage (V th ), the semiconductor layer 43 acts as a dielectric, and the capacitance value maintains the minimum value (C min ). Further, when the threshold voltage (V th ) is exceeded, carriers (electrons) are accumulated in the semiconductor layer 43, so that the capacitance value increases to a value (C ox ) when only the insulating layer 44 acts as a dielectric. .

したがって、しきい値電圧(Vth)前後において、容量素子57の容量値を2値に変化させることができる。なお、過渡状態において2値の間の値も取りうるが、これにより出力が滑らかに変化する利点もある。 Therefore, before and after the threshold voltage (V th ), the capacitance value of the capacitive element 57 can be changed to a binary value. In addition, although a value between two values can be taken in the transient state, there is also an advantage that the output changes smoothly.

一方で、半導体層43にシリコンを用いた場合では、印加される電圧によって蓄積状態、空乏状態、または反転状態に変化するため、しきい値電圧(Vth)前後において安定した容量値の変化は望めない。 On the other hand, when silicon is used for the semiconductor layer 43, it changes to an accumulation state, a depletion state, or an inversion state depending on the applied voltage, so that a stable change in capacitance value before and after the threshold voltage (V th ) is I can't hope.

例えば、半導体層43に金属酸化物を用いた容量素子57のしきい値電圧(Vth)は1乃至2V程度である。したがって、図1に示す画素回路において、検出する照度に依存して電荷検出部(ND)が取りうる電位が0乃至3V程度の範囲であった場合、照度によって容量素子57の容量値を変化させることができる。 For example, the threshold voltage (V th ) of the capacitor 57 using a metal oxide for the semiconductor layer 43 is about 1 to 2V. Therefore, in the pixel circuit shown in FIG. 1, when the potential that the charge detection unit (ND) can take depending on the detected illuminance is in the range of about 0 to 3 V, the capacitance value of the capacitor 57 is changed by the illuminance. be able to.

電荷検出部(ND)と照度との関係を図6(A)に示す。実線は、半導体層43に金属酸化物を用いたMIS型の容量素子Aを画素回路に適用した場合の例であり、二つの破線は、一般的なMIM(Metal Insulator Metal)型の容量素子Bまたは容量素子Cを画素回路に適用した場合の例である。 FIG. 6A shows the relationship between the charge detection portion (ND) and illuminance. The solid line is an example in which the MIS type capacitive element A using a metal oxide for the semiconductor layer 43 is applied to the pixel circuit, and the two broken lines are general MIM (Metal Insulator Metal) type capacitive elements B. Or it is an example at the time of applying the capacitive element C to a pixel circuit.

容量素子Aを用いた場合は、電荷検出部(ND)の電位によって容量素子Aの容量値が変化する。そのため、照度の上昇に伴い、ある照度で電荷検出部(ND)の電位の傾きが小さくなるように変化する。したがって、比較的低い照度を検出する画素は高感度で動作し、比較的高い照度を検出する画素は低感度で動作するようになり、低照度から高照度まで広ダイナミックレンジでの撮像が可能となる。 When the capacitive element A is used, the capacitance value of the capacitive element A varies depending on the potential of the charge detection unit (ND). Therefore, as the illuminance increases, the gradient of the potential of the charge detection unit (ND) changes so as to decrease at a certain illuminance. Therefore, pixels that detect relatively low illuminance operate with high sensitivity, and pixels that detect relatively high illuminance operate with low sensitivity, enabling imaging in a wide dynamic range from low to high illuminance. Become.

一方で、MIM型の容量素子B、Cを画素回路に用いた場合は、電荷検出部(ND)の電位がリニアに変化する。例えば、容量値の比較的小さい容量素子Bを用い、低照度での感度を優先した場合は、ある照度以上では電荷検出部(ND)の電位は一定となってしまう。また、容量値の比較的大きい容量素子Cを用い、高照度での感度を優先した場合は、低照度での感度が大きく低下してしまう。したがって、容量素子B、Cを用いた場合では、ダイナミックレンジを広げることが困難となる。 On the other hand, when the MIM type capacitive elements B and C are used in the pixel circuit, the potential of the charge detection unit (ND) changes linearly. For example, when the capacitive element B having a relatively small capacitance value is used and priority is given to sensitivity at low illuminance, the potential of the charge detection unit (ND) becomes constant above a certain illuminance. In addition, when the capacitive element C having a relatively large capacitance value is used and priority is given to sensitivity at high illuminance, sensitivity at low illuminance is greatly reduced. Therefore, when the capacitive elements B and C are used, it is difficult to widen the dynamic range.

また、図5(A)、(B)に示すように、容量素子57の半導体層を半導体層43aおよび半導体層43bの積層としてもよい。このとき、半導体層43aおよび半導体層43bは金属酸化物とし、半導体層43aのバンドギャップを半導体層43bのバンドギャップよりも小さくすることが好ましい。 5A and 5B, the semiconductor layer of the capacitor 57 may be a stacked layer of a semiconductor layer 43a and a semiconductor layer 43b. At this time, the semiconductor layer 43a and the semiconductor layer 43b are preferably metal oxides, and the band gap of the semiconductor layer 43a is preferably smaller than the band gap of the semiconductor layer 43b.

この場合、図5(C)に示すように、第1のしきい値電圧(Vth1)を超えると、まず半導体層43aにキャリアが蓄積され始めるため、容量値は半導体層43a、半導体層43bおよび絶縁層44を誘電体としたときの値(CS1OX)から半導体層43bおよび絶縁層44を誘電体としたときの値(CS2OX)に上昇する。続いて、第2のしきい値電圧(Vth2)を超えると、半導体層43bにもキャリアが蓄積され始めるため、容量値は絶縁層44のみを誘電体としたときの値(COX)に上昇する。 In this case, as shown in FIG. 5C, when the first threshold voltage (V th1 ) is exceeded, carriers are first accumulated in the semiconductor layer 43a, so that the capacitance values are the semiconductor layer 43a and the semiconductor layer 43b. and increasing the insulating layer 44 from the value when the dielectric (C S1OX) to the semiconductor layer 43b and the value when the insulating layer 44 and a dielectric (C S2OX). Subsequently, when the second threshold voltage (V th2 ) is exceeded, carriers start to be accumulated in the semiconductor layer 43b, so that the capacitance value becomes a value (C OX ) when only the insulating layer 44 is a dielectric. To rise.

したがって、容量素子57の容量値を3値に変化させることができる。このときの電荷検出部(ND)と照度との関係を図6(B)に示す。この場合は、照度の上昇にともなって2段階に電荷検出部(ND)の電位の傾きが小さくなるように変化する。したがって、容量値が2値に変化する場合よりも、さらに低照度での感度を高く、高照度での感度を低くすることができるため、より広ダイナミックレンジでの撮像が可能となる。また、低照度と高照度との中間近傍の照度では感度が急激に変化せず、広い照度の範囲で適切な感度での撮像が可能となる。 Therefore, the capacitance value of the capacitive element 57 can be changed to three values. FIG. 6B shows the relationship between the charge detection portion (ND) and the illuminance at this time. In this case, as the illuminance increases, the gradient of the potential of the charge detection portion (ND) changes so as to decrease in two steps. Therefore, the sensitivity at a low illuminance can be further increased and the sensitivity at a high illuminance can be lowered as compared with the case where the capacitance value changes to a binary value, so that imaging with a wider dynamic range is possible. In addition, the sensitivity does not change abruptly at the illuminance near the middle between the low illuminance and the high illuminance, and imaging with appropriate sensitivity is possible in a wide illuminance range.

ただし、容量素子57には高い電圧を印加する必要があるため、アバランシェ増倍効果を用いた光電変換素子との組み合わせとすることが好ましい。 However, since it is necessary to apply a high voltage to the capacitor 57, it is preferable to use a combination with a photoelectric conversion element using an avalanche multiplication effect.

なお、画素回路は図1の構成に限られない。例えば、図7(A)に示すように、トランジスタ52のソースまたはトレインの一方をトランジスタ51のソースまたはドレインの他方と電気的に接続してもよい。 The pixel circuit is not limited to the configuration shown in FIG. For example, as illustrated in FIG. 7A, one of the source and the train of the transistor 52 may be electrically connected to the other of the source and the drain of the transistor 51.

または、図7(B)に示すように、容量素子57の一方の電極をトランジスタ51のソースまたはドレインの一方と電気的に接続してもよい。 Alternatively, as illustrated in FIG. 7B, one electrode of the capacitor 57 may be electrically connected to one of a source and a drain of the transistor 51.

または、図7(C)に示すように、ノードNDをリセットする機能を有するトランジスタ58を設ける構成としてもよい。トランジスタ58のソースまたはドレインの一方は配線73と電気的に接続され、ソースまたはドレインの他方はトランジスタ51のソースまたはドレインの他方と電気的に接続され、ゲートは信号線を供給する機能を有する配線74と電気的に接続される。 Alternatively, as illustrated in FIG. 7C, a transistor 58 having a function of resetting the node ND may be provided. One of a source and a drain of the transistor 58 is electrically connected to the wiring 73, the other of the source and the drain is electrically connected to the other of the source and the drain of the transistor 51, and a gate has a function of supplying a signal line 74 is electrically connected.

または、図8(A)に示すように、トランジスタ54のソースまたはドレインの他方をトランジスタ53のソースまたはドレインの他方と電気的に接続してもよい。 Alternatively, as illustrated in FIG. 8A, the other of the source and the drain of the transistor 54 may be electrically connected to the other of the source and the drain of the transistor 53.

または、図8(B)に示すように、光電変換素子10の他方の電極(カソード)とトランジスタ51のソースまたはドレインの一方が電気的に接続され、トランジスタ51のソースまたはドレインの他方と容量素子57の他方の電極が電気的に接続される構成であってもよい。 Alternatively, as illustrated in FIG. 8B, the other electrode (cathode) of the photoelectric conversion element 10 and one of the source and the drain of the transistor 51 are electrically connected, and the other of the source and the drain of the transistor 51 and the capacitor The other electrode of 57 may be configured to be electrically connected.

光電変換素子10の一方の電極(アノード)とトランジスタ51のソースまたはドレインの一方が電気的に接続される構成では、電荷蓄積部(NR)および電荷検出部(ND)は低電位にリセットされるが、図8(B)に示す構成では高電位にリセットされる。したがって、光電変換素子10の一方の電極(アノード)には低電位を供給する配線73が電気的に接続され、トランジスタ52のソースまたはドレインの他方には高電位を供給する配線72が電気的に接続され、容量素子57の一方の電極には高電位を供給する配線84が電気的に接続される。 In a configuration in which one electrode (anode) of the photoelectric conversion element 10 and one of the source or drain of the transistor 51 are electrically connected, the charge storage unit (NR) and the charge detection unit (ND) are reset to a low potential. However, the structure shown in FIG. 8B is reset to a high potential. Therefore, a wiring 73 that supplies a low potential is electrically connected to one electrode (anode) of the photoelectric conversion element 10, and a wiring 72 that supplies a high potential is electrically connected to the other of the source and the drain of the transistor 52. A wiring 84 for supplying a high potential is electrically connected to one electrode of the capacitor 57.

または、図8(C)に示すように、各トランジスタ(容量素子57を含む)にバックゲートを設けてもよい。バックゲートに定電圧を印加することで、各トランジスタのしきい値電圧を制御することができる。なお、図8(C)では、全てのトランジスタにバックゲートを設ける構成を示しているが、バックゲートを設けないトランジスタを有する構成であってもよい。 Alternatively, as illustrated in FIG. 8C, a back gate may be provided for each transistor (including the capacitor 57). By applying a constant voltage to the back gate, the threshold voltage of each transistor can be controlled. Note that FIG. 8C illustrates a structure in which all transistors have a back gate; however, a structure having a transistor without a back gate may be used.

または、図9(A)に示すように、バックゲートを設けた容量素子を複数設けた構成であってもよい。図9(A)では、容量素子57、59を設けた構成を示しているが、さらに多くてもよい。前述したようにバックゲートに定電圧を印加することでしきい値電圧を制御することができる。したがって、容量素子57、59のバックゲートのそれぞれに異なる定電圧を印加することで、図5(C)に示したC−V特性と同様の特性を得ることができる。すなわち、容量値を3値に変化させることができ、広ダイナミックレンジの撮像を行うことができる。 Alternatively, as illustrated in FIG. 9A, a structure in which a plurality of capacitor elements each provided with a back gate are provided may be employed. Although FIG. 9A shows a structure in which the capacitive elements 57 and 59 are provided, the number may be larger. As described above, the threshold voltage can be controlled by applying a constant voltage to the back gate. Therefore, by applying different constant voltages to the back gates of the capacitive elements 57 and 59, characteristics similar to the CV characteristics shown in FIG. 5C can be obtained. That is, the capacitance value can be changed to ternary values, and imaging with a wide dynamic range can be performed.

また、本発明の一態様は、複数の画素で一部のトランジスタを共有する形態に用いてもよい。図9(B)は、トランジスタ53、54、56を複数の画素で共有する例を示している。トランジスタ56は、配線81から供給される信号によって、電荷検出部(ND2)を配線82の電位(例えば、GND)にリセットする機能を有する。なお、以下に構成および動作を簡単に説明するが、図1に示す画素回路と共通する部分の説明は省略する。 One embodiment of the present invention may be used for a mode in which some transistors are shared by a plurality of pixels. FIG. 9B illustrates an example in which the transistors 53, 54, and 56 are shared by a plurality of pixels. The transistor 56 has a function of resetting the charge detection portion (ND2) to the potential of the wiring 82 (for example, GND) by a signal supplied from the wiring 81. Note that the configuration and operation will be briefly described below, but description of portions common to the pixel circuit shown in FIG. 1 is omitted.

画素85aおよび画素85bは、それぞれ電荷蓄積部(NR1)および電荷蓄積部(NR2)を有する。容量素子57は、電荷蓄積部(NR2)の要素として機能する。 The pixel 85a and the pixel 85b each have a charge accumulation portion (NR1) and a charge accumulation portion (NR2). The capacitive element 57 functions as an element of the charge storage unit (NR2).

画素85aおよび画素85bは、同時に露光動作が行われ、それぞれ電荷蓄積部(NR1)の信号電位が確定する。そして、配線75(GTX)から供給される信号によってトランジスタ51を導通させ、それぞれの信号電位を電荷蓄積部(NR2)に転送する。 The pixel 85a and the pixel 85b are simultaneously exposed to each other, and the signal potential of the charge storage portion (NR1) is determined. Then, the transistor 51 is turned on by a signal supplied from the wiring 75 (GTX), and each signal potential is transferred to the charge accumulation portion (NR2).

次に、画素85aにおいて、配線80(TX1)から供給される信号によってトランジスタ55を導通させ、電荷蓄積部(NR2)の信号電位を電荷検出部(ND2)に転送し、画像データとして読み出しを行う。 Next, in the pixel 85a, the transistor 55 is turned on by a signal supplied from the wiring 80 (TX1), the signal potential of the charge accumulation unit (NR2) is transferred to the charge detection unit (ND2), and is read as image data. .

次に、画素85bにおいて、配線80(TX2)から供給される信号によってトランジスタ55を導通させ、電荷蓄積部(NR2)の信号電位を電荷検出部(ND2)に転送し、画像データとして読み出しを行う。さらにトランジスタ53、54、56を共有する画素がある場合は、上記同様の動作で画像データの読み出しを行えばよい。 Next, in the pixel 85b, the transistor 55 is turned on by a signal supplied from the wiring 80 (TX2), the signal potential of the charge accumulation unit (NR2) is transferred to the charge detection unit (ND2), and is read as image data. . Further, when there are pixels sharing the transistors 53, 54, and 56, the image data may be read out by the same operation as described above.

前述したように、画素回路に設けるトランジスタにはOSトランジスタを用いることが好ましい。OSトランジスタは極めて低いオフ電流特性を示し、チャネル幅で規格化したOSトランジスタのリーク電流は、ソースドレイン間電圧が10V、室温(25℃程度)の状態で10×10−21A/μm(10ゼプトA/μm)以下とすることが可能である。 As described above, an OS transistor is preferably used as a transistor provided in the pixel circuit. The OS transistor exhibits extremely low off-state current characteristics, and the leakage current of the OS transistor normalized by the channel width is 10 × 10 −21 A / μm (10 × 10 V) at a source-drain voltage of 10 V and room temperature (about 25 ° C.). Zept A / μm) or less.

したがって、トランジスタ51およびトランジスタ52にOSトランジスタを用いれば、その低いオフ電流特性によって、電荷検出部(ND)および電荷蓄積部(NR)で電荷を保持できる期間を極めて長くすることができる。そのため、回路構成や動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。 Therefore, when an OS transistor is used for the transistor 51 and the transistor 52, a period during which charge can be held in the charge detection portion (ND) and the charge accumulation portion (NR) can be extremely long due to the low off-state current characteristics. Therefore, it is possible to apply a global shutter system in which charge accumulation operation is simultaneously performed in all pixels without complicating a circuit configuration and an operation method.

OSトランジスタ(容量素子57、59を含む)に用いる半導体材料としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である金属酸化物を用いることができる。代表的には、インジウムを含む酸化物半導体などであり、例えば、後述するCAC−OSなどを用いることができる。 As a semiconductor material used for the OS transistor (including the capacitor elements 57 and 59), a metal oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used. A typical example is an oxide semiconductor containing indium. For example, a CAC-OS described later can be used.

半導体層は、例えばインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn−M−Zn系酸化物で表記される膜とすることができる。 The semiconductor layer is represented by an In-M-Zn-based oxide containing indium, zinc, and M (metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It can be a membrane.

半導体層を構成する酸化物半導体がIn−M−Zn系酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。 In the case where the oxide semiconductor included in the semiconductor layer is an In-M-Zn-based oxide, the atomic ratio of the metal elements of the sputtering target used for forming the In-M-Zn oxide is In ≧ M, Zn It is preferable to satisfy ≧ M. As the atomic ratio of the metal elements of such a sputtering target, In: M: Zn = 1: 1: 1, In: M: Zn = 1: 1: 1.2, In: M: Zn = 3: 1: 2, In: M: Zn = 4: 2: 3, In: M: Zn = 4: 2: 4.1, In: M: Zn = 5: 1: 6, In: M: Zn = 5: 1: 7, In: M: Zn = 5: 1: 8 etc. are preferable. Note that the atomic ratio of the semiconductor layer to be formed includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.

半導体層としては、キャリア密度の低い酸化物半導体を用いる。例えば、半導体層は、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm以下、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア密度の酸化物半導体を用いることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。これにより不純物濃度が低く、欠陥準位密度が低いため、安定な特性を有する酸化物半導体であるといえる。 As the semiconductor layer, an oxide semiconductor with low carrier density is used. For example, the semiconductor layer has a carrier density of 1 × 10 17 / cm 3 or less, preferably 1 × 10 15 / cm 3 or less, more preferably 1 × 10 13 / cm 3 or less, more preferably 1 × 10 11 / cm 3. 3 or less, more preferably less than 1 × 10 10 / cm 3 , and an oxide semiconductor having a carrier density of 1 × 10 −9 / cm 3 or more can be used. Such an oxide semiconductor is referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor. Accordingly, it can be said that the oxide semiconductor has stable characteristics because the impurity concentration is low and the defect state density is low.

なお、これらに限られず、必要とするトランジスタの半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体層のキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。 Note that the composition is not limited thereto, and a transistor having an appropriate composition may be used depending on required semiconductor characteristics and electrical characteristics (such as field-effect mobility and threshold voltage) of the transistor. In addition, in order to obtain the required semiconductor characteristics of the transistor, it is preferable that the semiconductor layer have appropriate carrier density, impurity concentration, defect density, atomic ratio of metal element to oxygen, interatomic distance, density, and the like. .

半導体層を構成する酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸素欠損が増加し、n型化してしまう。このため、半導体層におけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。 In the oxide semiconductor constituting the semiconductor layer, when silicon or carbon, which is one of Group 14 elements, is included, oxygen deficiency increases and the n-type semiconductor is formed. Therefore, the concentration of silicon or carbon in the semiconductor layer (concentration obtained by secondary ion mass spectrometry) is 2 × 10 18 atoms / cm 3 or less, preferably 2 × 10 17 atoms / cm 3 or less.

また、アルカリ金属およびアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、半導体層におけるアルカリ金属またはアルカリ土類金属の濃度(二次イオン質量分析法により得られる濃度)を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。 Further, when alkali metal and alkaline earth metal are combined with an oxide semiconductor, carriers may be generated, which may increase off-state current of the transistor. For this reason, the concentration of alkali metal or alkaline earth metal (concentration obtained by secondary ion mass spectrometry) in the semiconductor layer is 1 × 10 18 atoms / cm 3 or less, preferably 2 × 10 16 atoms / cm 3 or less. To.

また、半導体層を構成する酸化物半導体に窒素が含まれていると、キャリアである電子が生じてキャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため半導体層における窒素濃度(二次イオン質量分析法により得られる濃度)は、5×1018atoms/cm以下にすることが好ましい。 In addition, when nitrogen is contained in the oxide semiconductor included in the semiconductor layer, electrons as carriers are generated, the carrier density is increased, and the oxide semiconductor is easily n-type. As a result, a transistor including an oxide semiconductor containing nitrogen is likely to be normally on. Therefore, the nitrogen concentration (concentration obtained by secondary ion mass spectrometry) in the semiconductor layer is preferably 5 × 10 18 atoms / cm 3 or less.

また、半導体層は、例えば非単結晶構造でもよい。非単結晶構造は、例えば、c軸に配向した結晶を有するCAAC−OS(C−Axis Aligned Crystalline Oxide Semiconductor、または、C−Axis Aligned and A−B−plane Anchored Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。 The semiconductor layer may have a non-single crystal structure, for example. The non-single crystal structure includes, for example, a CAAC-OS (C-Axis Aligned Crystalline Oxide Semiconductor, or C-Axis Aligned and A-B-plane Annealed Crystalline Structure, a C-axis aligned crystal, and a C-axis aligned crystal structure. Includes a microcrystalline structure or an amorphous structure. In the non-single-crystal structure, the amorphous structure has the highest density of defect states, and the CAAC-OS has the lowest density of defect states.

非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質構造の酸化物半導体膜は、例えば、完全な非晶質構造であり、結晶部を有さない。 An oxide semiconductor film having an amorphous structure has, for example, disordered atomic arrangement and no crystal component. Alternatively, an oxide semiconductor film with an amorphous structure has, for example, a completely amorphous structure and has no crystal part.

なお、半導体層が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のうち、二種以上を有する混合膜であってもよい。混合膜は、例えば上述した領域のうち、いずれか二種以上の領域を含む単層構造、または積層構造を有する場合がある。 Note that the semiconductor layer may be a mixed film including two or more of an amorphous structure region, a microcrystalline structure region, a polycrystalline structure region, a CAAC-OS region, and a single crystal structure region. Good. For example, the mixed film may have a single-layer structure or a stacked structure including any two or more of the above-described regions.

以下では、非単結晶の半導体層の一態様であるCAC(Cloud−Aligned Composite)−OSの構成について説明する。 Hereinafter, a structure of a CAC (Cloud-Aligned Composite) -OS which is one embodiment of a non-single-crystal semiconductor layer is described.

CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。 The CAC-OS is one structure of a material in which an element included in an oxide semiconductor is unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. Note that in the following, in an oxide semiconductor, one or more metal elements are unevenly distributed, and a region including the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. The state mixed with is also referred to as a mosaic or patch.

なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 Note that the oxide semiconductor preferably contains at least indium. In particular, it is preferable to contain indium and zinc. In addition, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. One kind selected from the above or a plurality of kinds may be included.

例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。 For example, a CAC-OS in In-Ga-Zn oxide (In-Ga-Zn oxide among CAC-OSs may be referred to as CAC-IGZO in particular) is an indium oxide (hereinafter referred to as InO). X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter Also referred to as a cloud-like.) A.

つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z3、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。 That, CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z3, or InO X1 is the main component region is a composite oxide semiconductor having a structure that is mixed. Note that in this specification, for example, the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.

なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。 Note that IGZO is a common name and may refer to one compound of In, Ga, Zn, and O. As a typical example, InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (−1 ≦ x0 ≦ 1, m0 is an arbitrary number) A crystalline compound may be mentioned.

上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。 The crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure. The CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.

一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。したがって、CAC−OSにおいて、結晶構造は副次的な要素である。 On the other hand, CAC-OS relates to a material structure of an oxide semiconductor. CAC-OS refers to a region observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn and O, and nanoparticles mainly composed of In. The region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.

なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。 Note that the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions. For example, a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.

なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。 Incidentally, a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.

なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。 Instead of gallium, selected from aluminum, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. In the case where one or a plurality of types are included, the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In. The region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.

CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。 The CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example. In the case where a CAC-OS is formed by a sputtering method, any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good. Further, the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .

CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。 The CAC-OS has a feature that a clear peak is not observed when measurement is performed using a θ / 2θ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.

また、CAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の琿点が観測される。したがって、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。 In addition, in the CAC-OS, in an electron beam diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam), a ring-shaped high luminance region and a plurality of regions in the ring region are provided. A saddle point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.

また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。 In addition, for example, in a CAC-OS in an In—Ga—Zn oxide, GaO X3 is a main component by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that the region and the region mainly composed of In X2 Zn Y2 O Z2 or InO X1 are unevenly distributed and mixed.

CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。 The CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.

ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。したがって、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。 Here, the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Therefore, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility (μ) can be realized.

一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。 On the other hand, areas such as GaO X3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.

したがって、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。 Therefore, when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act complementarily, thereby increasing the An on-current (I on ) and high field effect mobility (μ) can be realized.

また、CAC−OSを用いた半導体素子は、信頼性が高い。したがって、CAC−OSは、様々な半導体装置の構成材料として適している。 In addition, a semiconductor element using a CAC-OS has high reliability. Therefore, the CAC-OS is suitable as a constituent material for various semiconductor devices.

以上のように、画素回路に半導体層に金属酸化物を用いたMIS型の容量素子を設けることによって、広ダイナミックレンジの撮像が行える撮像装置を形成することができる。 As described above, by providing the pixel circuit with the MIS capacitor using a metal oxide in the semiconductor layer, an imaging device capable of imaging with a wide dynamic range can be formed.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

(実施の形態2)
本実施の形態では、本発明の一態様を適用することのできる撮像装置の一例について、図面を参照して説明する。
(Embodiment 2)
In this embodiment, an example of an imaging device to which one embodiment of the present invention can be applied is described with reference to drawings.

図10(A)に、実施の形態1で説明した画素回路を有する撮像装置の画素の構成の一例を示す。当該撮像装置は、層61、層62および層63を有し、それぞれが互いに重なる領域を有する構成とすることができる。 FIG. 10A illustrates an example of a pixel structure of the imaging device including the pixel circuit described in Embodiment 1. The imaging device can include a layer 61, a layer 62, and a layer 63, each having a region that overlaps with each other.

層61は、光電変換素子10の構成を有する。光電変換素子10は、画素電極に相当する電極65と、光電変換部66と、共通電極に相当する電極67を有する。 The layer 61 has the configuration of the photoelectric conversion element 10. The photoelectric conversion element 10 includes an electrode 65 corresponding to a pixel electrode, a photoelectric conversion unit 66, and an electrode 67 corresponding to a common electrode.

電極65には、低抵抗の金属層などを用いることが好ましい。例えば、アルミニウム、チタン、タングステン、タンタル、銀またはそれらの積層を用いることができる。 The electrode 65 is preferably a low-resistance metal layer. For example, aluminum, titanium, tungsten, tantalum, silver, or a stacked layer thereof can be used.

電極67には、可視光に対して高い透光性を有する導電層を用いることが好ましい。例えば、インジウム酸化物、錫酸化物、亜鉛酸化物、インジウム−錫酸化物、ガリウム−亜鉛酸化物、インジウム−ガリウム−亜鉛酸化物、またはグラフェンなどを用いることができる。なお、電極67を省く構成とすることもできる。 For the electrode 67, a conductive layer having a high light-transmitting property with respect to visible light is preferably used. For example, indium oxide, tin oxide, zinc oxide, indium-tin oxide, gallium-zinc oxide, indium-gallium-zinc oxide, graphene, or the like can be used. Note that the electrode 67 may be omitted.

光電変換部66には、例えばセレン系材料を光電変換層としたpn接合型フォトダイオードなどを用いることができる。層66aとしてはp型半導体であるセレン系材料を用い、層66bとしてはn型半導体であるガリウム酸化物などを用いることが好ましい。 For the photoelectric conversion unit 66, for example, a pn junction photodiode using a selenium-based material as a photoelectric conversion layer can be used. It is preferable to use a selenium-based material that is a p-type semiconductor for the layer 66a and a gallium oxide that is an n-type semiconductor for the layer 66b.

セレン系材料を用いた光電変換素子は、可視光に対する外部量子効率が高い特性を有する。当該光電変換素子では、アバランシェ増倍効果を利用することにより、入射される光量に対する電子の増幅が大きい高感度のセンサとすることができる。また、セレン系材料は光吸収係数が高いため、光電変換層を薄膜で作製できるなどの生産上の利点を有する。セレン系材料の薄膜は、真空蒸着法またはスパッタリング法などを用いて形成することができる。 A photoelectric conversion element using a selenium-based material has a high external quantum efficiency with respect to visible light. In the photoelectric conversion element, by using the avalanche multiplication effect, a highly sensitive sensor with a large amplification of electrons with respect to the amount of incident light can be obtained. In addition, since the selenium-based material has a high light absorption coefficient, it has production advantages such that the photoelectric conversion layer can be formed as a thin film. A thin film of a selenium-based material can be formed using a vacuum evaporation method, a sputtering method, or the like.

セレン系材料としては、単結晶セレンや多結晶セレンなどの結晶性セレン、非晶質セレン、銅、インジウム、セレンの化合物(CIS)、または、銅、インジウム、ガリウム、セレンの化合物(CIGS)などを用いることができる。 Examples of the selenium-based material include crystalline selenium such as single crystal selenium and polycrystalline selenium, amorphous selenium, copper, indium, selenium compound (CIS), or copper, indium, gallium, selenium compound (CIGS), etc. Can be used.

n型半導体は、バンドギャップが広く、可視光に対して透光性を有する材料で形成することが好ましい。例えば、亜鉛酸化物、ガリウム酸化物、インジウム酸化物、錫酸化物、またはそれらが混在した酸化物などを用いることができる。また、これらの材料は正孔注入阻止層としての機能も有し、暗電流を小さくすることもできる。 The n-type semiconductor is preferably formed using a material having a wide band gap and a light-transmitting property with respect to visible light. For example, zinc oxide, gallium oxide, indium oxide, tin oxide, or an oxide in which they are mixed can be used. These materials also have a function as a hole injection blocking layer, and can reduce the dark current.

なお、層61は上記構成に限らず、層66aにp型シリコン半導体またはn型シリコン半導体の一方を用い、層66bにp型シリコン半導体またはn型シリコン半導体の他方を用いたpn接合型フォトダイオードであってもよい。または、層66aと層66bとの間にi型シリコン半導体層を設けたpin接合型フォトダイオードであってもよい。 Note that the layer 61 is not limited to the above structure, and a pn junction photodiode using one of a p-type silicon semiconductor and an n-type silicon semiconductor as the layer 66a and the other of the p-type silicon semiconductor and the n-type silicon semiconductor as the layer 66b. It may be. Alternatively, a pin junction photodiode in which an i-type silicon semiconductor layer is provided between the layer 66a and the layer 66b may be used.

上記pn接合型フォトダイオードまたはpin接合型フォトダイオードは、単結晶シリコンを用いて形成することができる。このとき、層61と層62とは、貼り合わせ工程を用いて電気的な接合を得ることが好ましい。また、pin接合型フォトダイオードは、非晶質シリコン、微結晶シリコン、多結晶シリコンなどの薄膜を用いて形成することもできる。 The pn junction photodiode or the pin junction photodiode can be formed using single crystal silicon. At this time, it is preferable that the layer 61 and the layer 62 are electrically joined using a bonding process. In addition, the pin junction photodiode can be formed using a thin film such as amorphous silicon, microcrystalline silicon, or polycrystalline silicon.

層62は、例えば、OSトランジスタ(トランジスタ51、トランジスタ52)を有する層とすることができる。図1に示す画素回路では、光電変換素子10に入射される光の強度が小さいときに電荷検出部(ND)の電位が小さくなる。OSトランジスタは極めてオフ電流が低いため、ゲート電位が極めて小さい場合においても当該ゲート電位に応じた電流を正確に出力することができる。したがって、検出することのできる照度のレンジ、すなわちダイナミックレンジを広げることができる。 The layer 62 can be, for example, a layer including an OS transistor (the transistor 51 and the transistor 52). In the pixel circuit illustrated in FIG. 1, the potential of the charge detection unit (ND) decreases when the intensity of light incident on the photoelectric conversion element 10 is small. Since the OS transistor has an extremely low off-state current, a current corresponding to the gate potential can be accurately output even when the gate potential is extremely small. Therefore, the range of illuminance that can be detected, that is, the dynamic range can be expanded.

また、トランジスタ51およびトランジスタ52の低いオフ電流特性によって、電荷検出部(ND)および電荷蓄積部(NR)で電荷を保持できる期間を極めて長くすることができる。そのため、回路構成や動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。 Further, due to the low off-state current characteristics of the transistor 51 and the transistor 52, the period in which charges can be held in the charge detection portion (ND) and the charge accumulation portion (NR) can be extremely long. Therefore, it is possible to apply a global shutter system in which charge accumulation operation is simultaneously performed in all pixels without complicating a circuit configuration and an operation method.

層63は、支持基板またはSiトランジスタ(トランジスタ53、トランジスタ54)を有する層とすることができる。当該Siトランジスタは、単結晶シリコン基板に活性領域を有する構成のほか、絶縁表面上に結晶系のシリコン活性層を有する構成とすることができる。なお、層63に単結晶シリコン基板を用いる場合は、当該単結晶シリコン基板にpn接合型フォトダイオードまたはpin接合型フォトダイオードを形成してもよい。この場合、層61を省くことができる。 The layer 63 can be a supporting substrate or a layer having a Si transistor (transistor 53, transistor 54). The Si transistor can have a structure having an active region on a single crystal silicon substrate and a crystalline silicon active layer on an insulating surface. Note that in the case where a single crystal silicon substrate is used for the layer 63, a pn junction photodiode or a pin junction photodiode may be formed over the single crystal silicon substrate. In this case, the layer 61 can be omitted.

図10(B)は、本発明の一態様の撮像装置の回路構成を説明するブロック図である。当該撮像装置は、マトリクス状に配列された画素20を有する画素アレイ21と、画素アレイ21の行を選択する機能を有する回路22(ロードライバ)と、画素20の出力信号に対して相関二重サンプリング処理を行うための回路23(CDS回路)と、回路23から出力されたアナログデータをデジタルデータに変換する機能を有する回路24(A/D変換回路等)と、回路24で変換されたデータを選択して読み出す機能を有する回路25(カラムドライバ)と、を有する。なお、回路23を設けない構成とすることもできる。 FIG. 10B is a block diagram illustrating a circuit configuration of the imaging device of one embodiment of the present invention. The imaging apparatus includes a pixel array 21 having pixels 20 arranged in a matrix, a circuit 22 (row driver) having a function of selecting a row of the pixel array 21, and a correlation double with respect to an output signal of the pixel 20. A circuit 23 (CDS circuit) for performing sampling processing, a circuit 24 (A / D conversion circuit or the like) having a function of converting analog data output from the circuit 23 into digital data, and data converted by the circuit 24 And a circuit 25 (column driver) having a function of selecting and reading out. Note that the circuit 23 may be omitted.

例えば、光電変換素子を除く画素アレイ21の要素は、図10(A)に示す層62に設けることができる。回路22乃至回路25の要素は、層63に設けることができる。これらの回路はSiトランジスタを用いたCMOS回路で構成することができる。 For example, the elements of the pixel array 21 excluding the photoelectric conversion element can be provided in the layer 62 illustrated in FIG. Elements of the circuits 22 to 25 can be provided in the layer 63. These circuits can be composed of CMOS circuits using Si transistors.

当該構成とすることで、それぞれの回路に適したトランジスタを用いることができ、かつ撮像装置の面積を小さくすることができる。 With such a structure, a transistor suitable for each circuit can be used, and the area of the imaging device can be reduced.

図11(A)、(B)、(C)は、図10(A)に示す撮像装置の具体的な構成を説明する図である。図11(A)は、トランジスタ51、52、53、54のチャネル長方向を示す断面図である。図11(B)は一点鎖線A1−A2の断面図であり、トランジスタ52のチャネル幅方向の断面を示している。図11(C)は一点鎖線B1−B2の断面図であり、トランジスタ53のチャネル幅方向の断面を示している。 11A, 11 </ b> B, and 11 </ b> C are diagrams illustrating a specific configuration of the imaging device illustrated in FIG. FIG. 11A is a cross-sectional view illustrating the channel length direction of the transistors 51, 52, 53, and 54. FIG. 11B is a cross-sectional view taken along dashed-dotted line A1-A2 and illustrates a cross section of the transistor 52 in the channel width direction. FIG. 11C is a cross-sectional view taken along dashed-dotted line B1-B2, and shows a cross section of the transistor 53 in the channel width direction.

撮像装置は、層61乃至63の積層とすることができる。層61は、セレン層を有する光電変換素子10の他、隔壁92を有する構成とすることができる。隔壁92は、電極65の段差を覆うように設けられる。光電変換素子10に用いるセレン層は高抵抗であり、画素間で分離しない構成とすることができる。 The imaging device can be a stack of layers 61 to 63. The layer 61 can include a partition 92 in addition to the photoelectric conversion element 10 having a selenium layer. The partition wall 92 is provided so as to cover the step of the electrode 65. The selenium layer used for the photoelectric conversion element 10 has a high resistance and can be configured not to be separated between pixels.

層62にはOSトランジスタであるトランジスタ51、52および容量素子57が設けられる。トランジスタ51、52および容量素子57はともにバックゲート91を有する構成を示しているが、いずれかがバックゲートを有する形態であってもよい。バックゲート91は、図11(B)に示すように対向して設けられるトランジスタのフロントゲートと電気的に接続する場合がある。または、バックゲート91にフロントゲートとは異なる固定電位を供給することができる構成であってもよい。 The layer 62 is provided with transistors 51 and 52 which are OS transistors and a capacitor 57. Although each of the transistors 51 and 52 and the capacitor 57 has a structure including the back gate 91, any of them may have a back gate. As shown in FIG. 11B, the back gate 91 may be electrically connected to a front gate of a transistor provided to face the back gate 91. Alternatively, the back gate 91 may be configured to be able to supply a fixed potential different from that of the front gate.

また、図11(A)では、OSトランジスタとしてセルフアライン型のトップゲート型トランジスタを例示しているが、図12(A)に示すように、ノンセルフアライン型のトップゲート型トランジスタであってもよい。図13は、ノンセルフアライン型のトップゲート型トランジスタを用いた画素の一部の断面STEM写真である。なお、図13は任意の位置における断面であり、図11(A)および図12(A)には対応しない。また、図13には、図11(A)および図12(A)に図示しない配線およびコンタクト部なども示されている。 FIG. 11A illustrates a self-aligned top gate transistor as the OS transistor. However, as illustrated in FIG. 12A, a non-self-aligned top gate transistor may be used. Good. FIG. 13 is a cross-sectional STEM photograph of a part of a pixel using a non-self-aligned top gate transistor. 13 is a cross section at an arbitrary position and does not correspond to FIGS. 11A and 12A. In addition, FIG. 13 also shows wiring, contact portions, and the like not shown in FIGS. 11A and 12A.

層63には、Siトランジスタであるトランジスタ53およびトランジスタ54が設けられる。図11(A)において、Siトランジスタはシリコン基板200に設けられたフィン型の半導体層を有する構成を例示しているが、図12(B)に示すように、シリコン基板201に活性領域を有するプレーナー型であってもよい。または、図12(C)に示すように、シリコン薄膜の半導体層210を有するトランジスタであってもよい。半導体層210は、例えば、シリコン基板202上の絶縁層220上に形成された単結晶シリコン(SOI(Silicon on Insulator))とすることができる。または、ガラス基板などの絶縁表面上に形成された多結晶シリコンであってもよい。この他、層63には、画素を駆動するための回路を設けることができる。 In the layer 63, a transistor 53 and a transistor 54 which are Si transistors are provided. 11A illustrates a structure in which the Si transistor includes a fin-type semiconductor layer provided on the silicon substrate 200. However, as illustrated in FIG. 12B, the silicon substrate 201 includes an active region. It may be a planar type. Alternatively, as illustrated in FIG. 12C, a transistor including a silicon thin film semiconductor layer 210 may be used. The semiconductor layer 210 can be, for example, single crystal silicon (SOI (Silicon on Insulator)) formed on the insulating layer 220 on the silicon substrate 202. Alternatively, it may be polycrystalline silicon formed on an insulating surface such as a glass substrate. In addition, the layer 63 can be provided with a circuit for driving the pixel.

OSトランジスタが形成される領域とSiトランジスタが形成される領域との間には、水素の拡散を防止する機能を有する絶縁層93が設けられる。トランジスタ53、54の活性領域近傍に設けられる絶縁層中の水素はシリコンのダングリングボンドを終端する。一方、トランジスタ51、52の活性層である酸化物半導体層の近傍に設けられる絶縁層中の水素は、酸化物半導体層中にキャリアを生成する要因の一つとなる。 An insulating layer 93 having a function of preventing hydrogen diffusion is provided between the region where the OS transistor is formed and the region where the Si transistor is formed. Hydrogen in the insulating layer provided in the vicinity of the active regions of the transistors 53 and 54 terminates dangling bonds of silicon. On the other hand, hydrogen in the insulating layer provided in the vicinity of the oxide semiconductor layer which is an active layer of the transistors 51 and 52 is one of the factors that generate carriers in the oxide semiconductor layer.

絶縁層93により、一方の層に水素を閉じ込めることでトランジスタ53、54の信頼性を向上させることができる。また、一方の層から他方の層への水素の拡散が抑制されることでトランジスタ51、52の信頼性も向上させることができる。 The reliability of the transistors 53 and 54 can be improved by confining hydrogen in one layer by the insulating layer 93. In addition, since the diffusion of hydrogen from one layer to the other layer is suppressed, the reliability of the transistors 51 and 52 can be improved.

絶縁層93としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。 As the insulating layer 93, for example, aluminum oxide, aluminum oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, hafnium oxide, hafnium oxynitride, yttria-stabilized zirconia (YSZ), or the like can be used.

図14(A)は、本発明の一態様の撮像装置にカラーフィルタ等を付加した例を示す断面図である。当該断面図では、3画素分の画素回路を有する領域の一部を示している。光電変換素子10が形成される層61上には、絶縁層300が形成される。絶縁層300は可視光に対して透光性の高い酸化シリコン膜などを用いることができる。また、パッシベーション膜として窒化シリコン膜を積層してもよい。また、反射防止膜として、酸化ハフニウムなどの誘電体膜を積層してもよい。 FIG. 14A is a cross-sectional view illustrating an example in which a color filter or the like is added to the imaging device of one embodiment of the present invention. In the cross-sectional view, a part of a region having a pixel circuit for three pixels is shown. An insulating layer 300 is formed on the layer 61 where the photoelectric conversion element 10 is formed. The insulating layer 300 can be formed using a silicon oxide film having high light-transmitting property with respect to visible light. A silicon nitride film may be stacked as a passivation film. Further, a dielectric film such as hafnium oxide may be laminated as the antireflection film.

絶縁層300上には、遮光層310が形成されてもよい。遮光層310は、上部のカラーフィルタを通る光の混色を防止する機能を有する。遮光層310には、アルミニウム、タングステンなどの金属層を用いることができる。また、当該金属層と反射防止膜としての機能を有する誘電体膜を積層してもよい。 A light shielding layer 310 may be formed on the insulating layer 300. The light shielding layer 310 has a function of preventing color mixing of light passing through the upper color filter. For the light-blocking layer 310, a metal layer such as aluminum or tungsten can be used. Further, the metal layer and a dielectric film having a function as an antireflection film may be stacked.

絶縁層300および遮光層310上には、平坦化膜として有機樹脂層320を設けることができる。また、画素別にカラーフィルタ330(カラーフィルタ330a、カラーフィルタ330b、カラーフィルタ330c)が形成される。例えば、カラーフィルタ330a、カラーフィルタ330bおよびカラーフィルタ330cに、R(赤)、G(緑)、B(青)、Y(黄)、C(シアン)、M(マゼンタ)などの色を割り当てることにより、カラー画像を得ることができる。 An organic resin layer 320 can be provided as a planarization film over the insulating layer 300 and the light shielding layer 310. A color filter 330 (color filter 330a, color filter 330b, color filter 330c) is formed for each pixel. For example, colors such as R (red), G (green), B (blue), Y (yellow), C (cyan), and M (magenta) are assigned to the color filters 330a, 330b, and 330c. Thus, a color image can be obtained.

カラーフィルタ330上には、可視光に対して透光性を有する絶縁層360などを設けることができる。 An insulating layer 360 having a light-transmitting property with respect to visible light or the like can be provided over the color filter 330.

また、図14(B)に示すように、カラーフィルタ330の代わりに光学変換層350を用いてもよい。このような構成とすることで、様々な波長領域における画像が得られる撮像装置とすることができる。 In addition, as illustrated in FIG. 14B, an optical conversion layer 350 may be used instead of the color filter 330. With such a configuration, an imaging device capable of obtaining images in various wavelength regions can be obtained.

例えば、光学変換層350に可視光線の波長以下の光を遮るフィルタを用いれば赤外線撮像装置とすることができる。また、光学変換層350に近赤外線の波長以下の光を遮るフィルタを用いれば遠赤外線撮像装置とすることができる。また、光学変換層350に可視光線の波長以上の光を遮るフィルタを用いれば紫外線撮像装置とすることができる。 For example, if a filter that blocks light having a wavelength shorter than or equal to that of visible light is used for the optical conversion layer 350, an infrared imaging device can be obtained. If a filter that blocks light having a wavelength of near infrared or shorter is used for the optical conversion layer 350, a far infrared imaging device can be obtained. If a filter that blocks light having a wavelength longer than or equal to that of visible light is used for the optical conversion layer 350, an ultraviolet imaging device can be obtained.

また、光学変換層350にシンチレータを用いれば、X線撮像装置などに用いる、放射線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等の放射線がシンチレータに入射されると、フォトルミネッセンス現象により可視光線や紫外光線などの光(蛍光)に変換される。そして、当該光を光電変換素子10で検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮像装置を用いてもよい。 In addition, when a scintillator is used for the optical conversion layer 350, an imaging device that can be used for an X-ray imaging device or the like and obtain an image that visualizes the intensity of radiation can be obtained. When radiation such as X-rays transmitted through the subject is incident on the scintillator, it is converted into light (fluorescence) such as visible light or ultraviolet light by a photoluminescence phenomenon. Then, the photoelectric conversion element 10 detects the light to acquire image data. Further, the imaging device having the configuration may be used for a radiation detector or the like.

シンチレータは、X線やガンマ線などの放射線が照射されると、そのエネルギーを吸収して可視光や紫外光を発する物質を含む。例えば、GdS:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、CsI、CaF、BaF、CeF、LiF、LiI、ZnOなどを樹脂やセラミクスに分散させたものを用いることができる。 A scintillator contains a substance that emits visible light or ultraviolet light by absorbing energy when irradiated with radiation such as X-rays or gamma rays. For example, Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, Gd 2 O 2 S: Eu, BaFCl: Eu, NaI, CsI, CaF 2 , BaF 2 , CeF 3 , LiF, LiI, ZnO, etc. What was disperse | distributed to resin or ceramics can be used.

なお、セレン系材料を用いた光電変換素子10においては、X線等の放射線を電荷に直接変換することができるため、シンチレータを不要とする構成とすることもできる。 Note that the photoelectric conversion element 10 using a selenium-based material can directly convert radiation such as X-rays into electric charges, and thus can be configured to eliminate a scintillator.

また、図14(C)に示すように、カラーフィルタ330a、カラーフィルタ330bおよびカラーフィルタ330c上にマイクロレンズアレイ340を設けてもよい。マイクロレンズアレイ340が有する個々のレンズを通る光が直下のカラーフィルタを通り、光電変換素子10に照射されるようになる。また、図14(B)に示す光学変換層350上にマイクロレンズアレイ340を設けてもよい。 As shown in FIG. 14C, a microlens array 340 may be provided over the color filter 330a, the color filter 330b, and the color filter 330c. Light passing through the individual lenses of the microlens array 340 passes through the color filter directly below and is irradiated onto the photoelectric conversion element 10. Alternatively, the microlens array 340 may be provided over the optical conversion layer 350 illustrated in FIG.

以下では、イメージセンサチップを収めたパッケージおよびカメラモジュールの一例について説明する。当該イメージセンサチップには、上記撮像装置の構成を用いることができる。 Hereinafter, an example of a package and a camera module containing an image sensor chip will be described. The configuration of the imaging device can be used for the image sensor chip.

図15(A1)は、イメージセンサチップを収めたパッケージの上面側の外観斜視図である。当該パッケージは、イメージセンサチップ450を固定するパッケージ基板410、カバーガラス420および両者を接着する接着剤430等を有する。 FIG. 15A1 is an external perspective view of the upper surface side of the package containing the image sensor chip. The package includes a package substrate 410 for fixing the image sensor chip 450, a cover glass 420, and an adhesive 430 for bonding the two.

図15(A2)は、当該パッケージの下面側の外観斜視図である。パッケージの下面には、半田ボールをバンプ440としたBGA(Ball grid array)の構成を有する。なお、BGAに限らず、LGA(Land grid array)やPGA(Pin grid array)などであってもよい。 FIG. 15A2 is an external perspective view of the lower surface side of the package. The bottom surface of the package has a BGA (Ball grid array) configuration with solder balls as bumps 440. In addition, not only BGA but LGA (Land grid array), PGA (Pin grid array), etc. may be sufficient.

図15(A3)は、カバーガラス420および接着剤430の一部を省いて図示したパッケージの斜視図である。パッケージ基板410上には電極パッド460が形成され、電極パッド460およびバンプ440はスルーホールを介して電気的に接続されている。電極パッド460は、イメージセンサチップ450とワイヤ470によって電気的に接続されている。 FIG. 15A3 is a perspective view of the package shown with the cover glass 420 and part of the adhesive 430 omitted. An electrode pad 460 is formed on the package substrate 410, and the electrode pad 460 and the bump 440 are electrically connected through a through hole. The electrode pad 460 is electrically connected to the image sensor chip 450 by a wire 470.

また、図15(B1)は、イメージセンサチップをレンズ一体型のパッケージに収めたカメラモジュールの上面側の外観斜視図である。当該カメラモジュールは、イメージセンサチップ451を固定するパッケージ基板411、レンズカバー421、およびレンズ435等を有する。また、パッケージ基板411およびイメージセンサチップ451の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ490も設けられており、SiP(System in package)としての構成を有している。 FIG. 15B1 is an external perspective view of the upper surface side of the camera module in which the image sensor chip is housed in a lens-integrated package. The camera module includes a package substrate 411 that fixes the image sensor chip 451, a lens cover 421, a lens 435, and the like. In addition, an IC chip 490 having functions such as a drive circuit and a signal conversion circuit of the imaging device is also provided between the package substrate 411 and the image sensor chip 451, and has a configuration as a SiP (System in package). Yes.

図15(B2)は、当該カメラモジュールの下面側の外観斜視図である。パッケージ基板411の下面および側面には、実装用のランド441が設けられるQFN(Quad flat no−lead package)の構成を有する。なお、当該構成は一例であり、QFP(Quad flat package)や前述したBGA等であってもよい。 FIG. 15B2 is an external perspective view of the lower surface side of the camera module. The package substrate 411 has a QFN (Quad Flat No-Lead Package) configuration in which mounting lands 441 are provided on a lower surface and side surfaces. The configuration is an example, and may be a QFP (Quad Flat Package), the BGA described above, or the like.

図15(B3)は、レンズカバー421およびレンズ435の一部を省いて図示したモジュールの斜視図である。ランド441は電極パッド461と電気的に接続され、電極パッド461はイメージセンサチップ451またはICチップ490とワイヤ471によって電気的に接続されている。 FIG. 15B3 is a perspective view of the module shown with a part of the lens cover 421 and the lens 435 omitted. The land 441 is electrically connected to the electrode pad 461, and the electrode pad 461 is electrically connected to the image sensor chip 451 or the IC chip 490 by wires 471.

イメージセンサチップを上述したような形態のパッケージに収めることでプリント基板等への実装が容易になり、イメージセンサチップを様々な半導体装置、電子機器に組み込むことができる。 By mounting the image sensor chip in a package having the above-described form, mounting on a printed board or the like is facilitated, and the image sensor chip can be incorporated into various semiconductor devices and electronic devices.

(実施の形態3)
本発明の一態様に係る撮像装置を用いることができる電子機器として、表示機器、パーソナルコンピュータ、記録媒体を備えた画像記憶装置または画像再生装置、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図16に示す。
(Embodiment 3)
Electronic devices that can use the imaging device according to one embodiment of the present invention include a display device, a personal computer, an image storage device or an image playback device including a recording medium, a mobile phone, a portable game machine, and a portable data terminal , Digital book terminals, video cameras, digital still cameras and other cameras, goggles-type displays (head-mounted displays), navigation systems, sound playback devices (car audio, digital audio players, etc.), copiers, facsimiles, printers, printer multifunction devices Automatic teller machines (ATMs), vending machines, and the like. Specific examples of these electronic devices are shown in FIGS.

図16(A)は監視カメラであり、筐体951、レンズ952、支持部953等を有する。当該監視カメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。なお、監視カメラとは慣用的な名称であり、用途を限定するものではない。例えば監視カメラとしての機能を有する機器はカメラ、またはビデオカメラとも呼ばれる。 FIG. 16A illustrates a monitoring camera, which includes a housing 951, a lens 952, a support portion 953, and the like. The imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the monitoring camera. The surveillance camera is an idiomatic name and does not limit the application. For example, a device having a function as a surveillance camera is also called a camera or a video camera.

図16(B)はビデオカメラであり、第1筐体971、第2筐体972、表示部973、操作キー974、レンズ975、接続部976等を有する。操作キー974およびレンズ975は第1筐体971に設けられており、表示部973は第2筐体972に設けられている。当該ビデオカメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。 FIG. 16B illustrates a video camera, which includes a first housing 971, a second housing 972, a display portion 973, operation keys 974, a lens 975, a connection portion 976, and the like. The operation key 974 and the lens 975 are provided in the first housing 971, and the display portion 973 is provided in the second housing 972. The imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the video camera.

図16(C)はデジタルカメラであり、筐体961、シャッターボタン962、マイク963、発光部967、レンズ965等を有する。当該デジタルカメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。 FIG. 16C illustrates a digital camera, which includes a housing 961, a shutter button 962, a microphone 963, a light-emitting portion 967, a lens 965, and the like. The imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the digital camera.

図16(D)は腕時計型の情報端末であり、筐体931、表示部932、リストバンド933、操作用のボタン935、竜頭936、カメラ939等を有する。表示部932はタッチパネルとなっていてもよい。当該情報端末における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。 FIG. 16D illustrates a wristwatch-type information terminal including a housing 931, a display portion 932, a wristband 933, operation buttons 935, a crown 936, a camera 939, and the like. The display unit 932 may be a touch panel. The imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the information terminal.

図16(E)は携帯電話機の一例であり、筐体981、表示部982、操作ボタン983、外部接続ポート984、スピーカ985、マイク986、カメラ987等を有する。当該携帯電話機は、表示部982にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部982に触れることで行うことができる。当該携帯電話機における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。 FIG. 16E illustrates an example of a mobile phone, which includes a housing 981, a display portion 982, operation buttons 983, an external connection port 984, a speaker 985, a microphone 986, a camera 987, and the like. The mobile phone includes a touch sensor in the display portion 982. All operations such as making a call or inputting characters can be performed by touching the display portion 982 with a finger, a stylus, or the like. The imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the mobile phone.

図16(F)は携帯データ端末であり、筐体911、表示部912、カメラ919等を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができる。当該携帯データ端末における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。 FIG. 16F illustrates a portable data terminal, which includes a housing 911, a display portion 912, a camera 919, and the like. Information can be input and output by a touch panel function of the display portion 912. The imaging device of one embodiment of the present invention can be provided as one of the components for acquiring an image in the portable data terminal.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.

10  光電変換素子
20  画素
21  画素アレイ
22  回路
23  回路
24  回路
25  回路
41  電極
42  電極
43  半導体層
43a  半導体層
43b  半導体層
44  絶縁層
45  導電層
51  トランジスタ
52  トランジスタ
53  トランジスタ
54  トランジスタ
55  トランジスタ
56  トランジスタ
57  容量素子
58  トランジスタ
59  容量素子
61  層
62  層
63  層
65  電極
66  光電変換部
66a  層
66b  層
67  電極
71  配線
72  配線
73  配線
74  配線
75  配線
76  配線
77  配線
78  配線
79  配線
80  配線
81  配線
82  配線
84  配線
85a  画素
85b  画素
91  バックゲート
92  隔壁
93  絶縁層
200  シリコン基板
201  シリコン基板
202  シリコン基板
210  半導体層
220  絶縁層
300  絶縁層
310  遮光層
320  有機樹脂層
330  カラーフィルタ
330a  カラーフィルタ
330b  カラーフィルタ
330c  カラーフィルタ
340  マイクロレンズアレイ
350  光学変換層
360  絶縁層
410  パッケージ基板
411  パッケージ基板
420  カバーガラス
421  レンズカバー
430  接着剤
435  レンズ
440  バンプ
441  ランド
450  イメージセンサチップ
451  イメージセンサチップ
460  電極パッド
461  電極パッド
470  ワイヤ
471  ワイヤ
490  ICチップ
911  筐体
912  表示部
919  カメラ
931  筐体
932  表示部
933  リストバンド
935  ボタン
936  竜頭
939  カメラ
951  筐体
952  レンズ
953  支持部
961  筐体
962  シャッターボタン
963  マイク
965  レンズ
967  発光部
971  筐体
972  筐体
973  表示部
974  操作キー
975  レンズ
976  接続部
981  筐体
982  表示部
983  操作ボタン
984  外部接続ポート
985  スピーカ
986  マイク
987  カメラ
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element 20 Pixel 21 Pixel array 22 Circuit 23 Circuit 24 Circuit 25 Circuit 41 Electrode 42 Electrode 43 Semiconductor layer 43a Semiconductor layer 43b Semiconductor layer 44 Insulating layer 45 Conductive layer 51 Transistor 52 Transistor 53 Transistor 54 Transistor 55 Transistor 56 Transistor 57 Capacitor Element 58 Transistor 59 Capacitor 61 Layer 62 Layer 63 Layer 65 Electrode 66 Photoelectric conversion portion 66a Layer 66b Layer 67 Electrode 71 Wiring 72 Wiring 73 Wiring 74 Wiring 75 Wiring 76 Wiring 77 Wiring 78 Wiring 79 Wiring 81 Wiring 81 Wiring 82 Wiring 84 Wiring 85a pixel 85b pixel 91 back gate 92 partition wall 93 insulating layer 200 silicon substrate 201 silicon substrate 202 silicon substrate 210 semiconductor layer 220 insulating layer 300 Layer 310 Light shielding layer 320 Organic resin layer 330 Color filter 330a Color filter 330b Color filter 330c Color filter 340 Micro lens array 350 Optical conversion layer 360 Insulating layer 410 Package substrate 411 Package substrate 420 Cover glass 421 Lens cover 430 Adhesive 435 Lens 440 Bump 441 Land 450 Image sensor chip 451 Image sensor chip 460 Electrode pad 461 Electrode pad 470 Wire 471 Wire 490 IC chip 911 Housing 912 Display unit 919 Camera 931 Housing 932 Display unit 933 Wristband 935 Button 936 Crown 939 Camera 951 Housing 952 Lens 953 Supporting part 961 Case 962 Shutter button 963 Microphone 965 'S 967 emitting portion 971 housing 972 housing 973 display unit 974 operation keys 975 lens 976 connection portion 981 housing 982 display unit 983 operation button 984 an external connection port 985 speaker 986 microphone 987 camera

Claims (9)

 画素に容量素子及び光電変換素子を有し、
 前記容量素子は、金属層、絶縁層、半導体層が積層されたMIS構造を有し、
 前記半導体層は金属酸化物を有する撮像装置。
A pixel has a capacitive element and a photoelectric conversion element,
The capacitive element has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer are stacked,
The imaging device in which the semiconductor layer includes a metal oxide.
 光電変換素子と、第1乃至第4のトランジスタと、容量素子と、を有し、
 前記光電変換素子の一方の電極は、前記第1のトランジスタのソースまたはドレインの一方と電気的に接続され、
 前記第1のトランジスタのソースまたはドレインの一方は、前記第2のトランジスタのソースまたはドレインの一方と電気的に接続され、
 前記第1のトランジスタのソースまたはドレインの他方は、前記容量素子の一方の電極と電気的に接続され、
 前記第1のトランジスタのソースまたはドレインの他方は、前記第3のトランジスタのゲートと電気的に接続され、
 前記第3のトランジスタのソースまたはドレインの一方は前記第4のトランジスタのソースまたはドレインの一方と電気的に接続され、
 前記容量素子は、金属層、絶縁層、半導体層が積層されたMIS構造を有し、
 前記半導体層は金属酸化物を有する撮像装置。
A photoelectric conversion element, first to fourth transistors, and a capacitor;
One electrode of the photoelectric conversion element is electrically connected to one of a source or a drain of the first transistor,
One of the source and the drain of the first transistor is electrically connected to one of the source and the drain of the second transistor;
The other of the source and the drain of the first transistor is electrically connected to one electrode of the capacitor;
The other of the source and the drain of the first transistor is electrically connected to the gate of the third transistor;
One of a source and a drain of the third transistor is electrically connected to one of a source and a drain of the fourth transistor;
The capacitive element has a MIS structure in which a metal layer, an insulating layer, and a semiconductor layer are stacked,
The imaging device in which the semiconductor layer includes a metal oxide.
 請求項2において、
 前記光電変換素子は、光電変換層にセレンまたはセレンを含む化合物を有する撮像装置。
In claim 2,
The photoelectric conversion element is an imaging device having selenium or a compound containing selenium in a photoelectric conversion layer.
 請求項1乃至3のいずれか一項において、
 前記金属層は一方の電極として作用し、前記半導体層は他方の電極として作用する撮像装置。
In any one of Claims 1 thru | or 3,
The imaging device in which the metal layer acts as one electrode and the semiconductor layer acts as the other electrode.
 請求項4において、前記容量素子はゲート電極に前記金属層を有し、前記半導体層にソース領域およびドレイン領域を有するトランジスタ構造である撮像装置。 5. The imaging device according to claim 4, wherein the capacitor element has a transistor structure including the metal layer on a gate electrode and a source region and a drain region on the semiconductor layer.  請求項1乃至3のいずれか一項において、
 前記半導体層は、第1の金属酸化物層と、第2の金属酸化物層と、を有し、
 前記第1の金属酸化物層と、前記第2の金属酸化物層と、前記絶縁層は重なる領域を有し、
 前記第1の金属酸化物層は前記絶縁層と接する領域を有し、
 前記第1の金属酸化物層のバンドギャップは、前記第2の金属酸化物層よりも大きい撮像装置。
In any one of Claims 1 thru | or 3,
The semiconductor layer has a first metal oxide layer and a second metal oxide layer,
The first metal oxide layer, the second metal oxide layer, and the insulating layer have overlapping regions;
The first metal oxide layer has a region in contact with the insulating layer;
An imaging device in which a band gap of the first metal oxide layer is larger than that of the second metal oxide layer.
 請求項1乃至3のいずれか一項において、
 前記容量素子は複数である撮像装置。
In any one of Claims 1 thru | or 3,
An imaging apparatus having a plurality of capacitive elements.
 請求項1乃至3のいずれか一項において、
 前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Sn、Y、Zr、La、Ce、NdまたはHf)と、を有する撮像装置。
In any one of Claims 1 thru | or 3,
The metal oxide includes an imaging device including In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf).
 請求項1乃至3のいずれか一項に記載の撮像装置と、表示装置と、を有する電子機器。 An electronic apparatus comprising the imaging device according to any one of claims 1 to 3 and a display device.
PCT/IB2018/051912 2017-04-03 2018-03-22 Imaging device and electronic apparatus WO2018185587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019510492A JPWO2018185587A1 (en) 2017-04-03 2018-03-22 Imaging device and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073715 2017-04-03
JP2017-073715 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018185587A1 true WO2018185587A1 (en) 2018-10-11

Family

ID=63713382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051912 WO2018185587A1 (en) 2017-04-03 2018-03-22 Imaging device and electronic apparatus

Country Status (2)

Country Link
JP (1) JPWO2018185587A1 (en)
WO (1) WO2018185587A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027242A (en) * 2019-08-07 2021-02-22 キヤノン株式会社 Photoelectric conversion device, radiation imaging system, photoelectric conversion system, and mobile body
JP7562282B2 (en) 2019-06-28 2024-10-07 キヤノン株式会社 Image capture and display device, and wearable device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395666A (en) * 1986-10-13 1988-04-26 Fuji Photo Film Co Ltd Output mechanism of charge transfer device
US20050224843A1 (en) * 2004-04-07 2005-10-13 Christian Boemler High dynamic range pixel amplifier
JP2009231613A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Thin film field effect transistor and display unit
JP2013172279A (en) * 2012-02-21 2013-09-02 Hitachi Ltd Solid-state imaging device
JP2017022706A (en) * 2015-07-07 2017-01-26 株式会社半導体エネルギー研究所 Imaging apparatus and operation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709313B2 (en) * 2005-07-19 2010-05-04 International Business Machines Corporation High performance capacitors in planar back gates CMOS
KR101824123B1 (en) * 2009-11-06 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8643132B2 (en) * 2011-06-08 2014-02-04 Omnivision Technologies, Inc. In-pixel high dynamic range imaging
US8937307B2 (en) * 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2966856B1 (en) * 2014-07-08 2020-04-15 Sony Depthsensing Solutions N.V. A high dynamic range pixel and a method for operating it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395666A (en) * 1986-10-13 1988-04-26 Fuji Photo Film Co Ltd Output mechanism of charge transfer device
US20050224843A1 (en) * 2004-04-07 2005-10-13 Christian Boemler High dynamic range pixel amplifier
JP2009231613A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Thin film field effect transistor and display unit
JP2013172279A (en) * 2012-02-21 2013-09-02 Hitachi Ltd Solid-state imaging device
JP2017022706A (en) * 2015-07-07 2017-01-26 株式会社半導体エネルギー研究所 Imaging apparatus and operation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562282B2 (en) 2019-06-28 2024-10-07 キヤノン株式会社 Image capture and display device, and wearable device
JP2021027242A (en) * 2019-08-07 2021-02-22 キヤノン株式会社 Photoelectric conversion device, radiation imaging system, photoelectric conversion system, and mobile body
US11784262B2 (en) 2019-08-07 2023-10-10 Canon Kabushiki Kaisha Photoelectric conversion apparatus, radiation image capturing system, photoelectric conversion system, moving object
JP7406887B2 (en) 2019-08-07 2023-12-28 キヤノン株式会社 Photoelectric conversion device, radiation imaging system, photoelectric conversion system, mobile object

Also Published As

Publication number Publication date
JPWO2018185587A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US11728355B2 (en) Imaging device and electronic device
US11805335B2 (en) Imaging device and electronic device
US12294805B2 (en) Imaging device, operation method thereof, and electronic device
WO2018185587A1 (en) Imaging device and electronic apparatus
US12132060B2 (en) Imaging device and electronic device
US11521996B2 (en) Imaging panel comprising a photoelectric conversion element and a first pixel circuit, and imaging device
WO2019243949A1 (en) Method for operating imaging device
US20240222411A1 (en) Imaging device and electronic device
JP2021100025A (en) Imaging device and driving method for imaging device
US11825220B2 (en) Operation method of imaging device
WO2021048676A1 (en) Imaging device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780315

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载