WO2018185419A1 - Procédé de fabrication de condensateurs électrochimiques - Google Patents
Procédé de fabrication de condensateurs électrochimiques Download PDFInfo
- Publication number
- WO2018185419A1 WO2018185419A1 PCT/FR2018/050820 FR2018050820W WO2018185419A1 WO 2018185419 A1 WO2018185419 A1 WO 2018185419A1 FR 2018050820 W FR2018050820 W FR 2018050820W WO 2018185419 A1 WO2018185419 A1 WO 2018185419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methyl
- electrodes
- electropolymerization
- butyl
- group
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000003990 capacitor Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000011244 liquid electrolyte Substances 0.000 claims abstract description 18
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 15
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 15
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 4
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 4
- 239000002121 nanofiber Substances 0.000 claims abstract description 4
- 239000011858 nanopowder Substances 0.000 claims abstract description 4
- 239000002071 nanotube Substances 0.000 claims abstract description 4
- 229920000642 polymer Polymers 0.000 claims description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 27
- 239000000178 monomer Substances 0.000 claims description 24
- 239000002608 ionic liquid Substances 0.000 claims description 19
- -1 elongate nanoobjects Substances 0.000 claims description 15
- 239000003792 electrolyte Substances 0.000 claims description 13
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 claims description 12
- 230000001351 cycling effect Effects 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 claims description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 8
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229920006254 polymer film Polymers 0.000 claims description 7
- PXELHGDYRQLRQO-UHFFFAOYSA-N 1-butyl-1-methylpyrrolidin-1-ium Chemical compound CCCC[N+]1(C)CCCC1 PXELHGDYRQLRQO-UHFFFAOYSA-N 0.000 claims description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 125000005842 heteroatom Chemical group 0.000 claims description 5
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 claims description 4
- FEKWWZCCJDUWLY-UHFFFAOYSA-N 3-methyl-1h-pyrrole Chemical compound CC=1C=CNC=1 FEKWWZCCJDUWLY-UHFFFAOYSA-N 0.000 claims description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920000123 polythiophene Polymers 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- MAXRBXCATDASNL-UHFFFAOYSA-N 1-(2-ethoxyethyl)-1-methylpiperidin-1-ium Chemical compound CCOCC[N+]1(C)CCCCC1 MAXRBXCATDASNL-UHFFFAOYSA-N 0.000 claims description 2
- BALQHGGQGPVPFD-UHFFFAOYSA-N 1-butan-2-yl-1-methylpiperidin-1-ium Chemical compound CCC(C)[N+]1(C)CCCCC1 BALQHGGQGPVPFD-UHFFFAOYSA-N 0.000 claims description 2
- UVCPHBWNKAXVPC-UHFFFAOYSA-N 1-butyl-1-methylpiperidin-1-ium Chemical compound CCCC[N+]1(C)CCCCC1 UVCPHBWNKAXVPC-UHFFFAOYSA-N 0.000 claims description 2
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 claims description 2
- XRWKKLHEAYMIDH-UHFFFAOYSA-N 1-ethyl-1-methoxy-2-methylpiperidin-1-ium Chemical compound CC[N+]1(OC)CCCCC1C XRWKKLHEAYMIDH-UHFFFAOYSA-N 0.000 claims description 2
- IRGDPGYNHSIIJJ-UHFFFAOYSA-N 1-ethyl-2,3-dimethylimidazol-3-ium Chemical compound CCN1C=C[N+](C)=C1C IRGDPGYNHSIIJJ-UHFFFAOYSA-N 0.000 claims description 2
- COPVYYIIVFKLAY-UHFFFAOYSA-N 1-ethyl-3,4-dimethylimidazol-1-ium Chemical compound CC[N+]=1C=C(C)N(C)C=1 COPVYYIIVFKLAY-UHFFFAOYSA-N 0.000 claims description 2
- KCMURHBGXMBAIG-UHFFFAOYSA-N 1-methyl-1-(2-methylpropyl)piperidin-1-ium Chemical compound CC(C)C[N+]1(C)CCCCC1 KCMURHBGXMBAIG-UHFFFAOYSA-N 0.000 claims description 2
- RRYKUXCBJXYIOD-UHFFFAOYSA-N 1-methyl-1-pentylpyrrolidin-1-ium Chemical compound CCCCC[N+]1(C)CCCC1 RRYKUXCBJXYIOD-UHFFFAOYSA-N 0.000 claims description 2
- KIIGNXWGCXYLMJ-UHFFFAOYSA-N 1-methyl-1-propan-2-ylpiperidin-1-ium Chemical compound CC(C)[N+]1(C)CCCCC1 KIIGNXWGCXYLMJ-UHFFFAOYSA-N 0.000 claims description 2
- OGLIVJFAKNJZRE-UHFFFAOYSA-N 1-methyl-1-propylpiperidin-1-ium Chemical compound CCC[N+]1(C)CCCCC1 OGLIVJFAKNJZRE-UHFFFAOYSA-N 0.000 claims description 2
- YQFWGCSKGJMGHE-UHFFFAOYSA-N 1-methyl-1-propylpyrrolidin-1-ium Chemical compound CCC[N+]1(C)CCCC1 YQFWGCSKGJMGHE-UHFFFAOYSA-N 0.000 claims description 2
- UYVTYBDVUSLCJA-UHFFFAOYSA-N 1-methyl-3-propan-2-ylimidazol-1-ium Chemical compound CC(C)[N+]=1C=CN(C)C=1 UYVTYBDVUSLCJA-UHFFFAOYSA-N 0.000 claims description 2
- WVDDUSFOSWWJJH-UHFFFAOYSA-N 1-methyl-3-propylimidazol-1-ium Chemical compound CCCN1C=C[N+](C)=C1 WVDDUSFOSWWJJH-UHFFFAOYSA-N 0.000 claims description 2
- CRTKBIFIDSNKCN-UHFFFAOYSA-N 1-propylpyridin-1-ium Chemical compound CCC[N+]1=CC=CC=C1 CRTKBIFIDSNKCN-UHFFFAOYSA-N 0.000 claims description 2
- TZWNFYNYOUMRRE-UHFFFAOYSA-N 1-tert-butylpyridin-1-ium Chemical compound CC(C)(C)[N+]1=CC=CC=C1 TZWNFYNYOUMRRE-UHFFFAOYSA-N 0.000 claims description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 2
- RCNOGGGBSSVMAS-UHFFFAOYSA-N 2-thiophen-3-ylacetic acid Chemical compound OC(=O)CC=1C=CSC=1 RCNOGGGBSSVMAS-UHFFFAOYSA-N 0.000 claims description 2
- PFRKGGQLYAMPST-UHFFFAOYSA-N 3,4-dichloro-1h-pyrrole Chemical compound ClC1=CNC=C1Cl PFRKGGQLYAMPST-UHFFFAOYSA-N 0.000 claims description 2
- QVFXSOFIEKYPOE-UHFFFAOYSA-N 3,4-dichlorothiophene Chemical compound ClC1=CSC=C1Cl QVFXSOFIEKYPOE-UHFFFAOYSA-N 0.000 claims description 2
- LKYDJXOAZWBJIM-UHFFFAOYSA-N 3,4-dipropoxythiophene Chemical compound CCCOC1=CSC=C1OCCC LKYDJXOAZWBJIM-UHFFFAOYSA-N 0.000 claims description 2
- ZZHFDFIWLDELCX-UHFFFAOYSA-N 3-bromo-1h-pyrrole Chemical compound BrC=1C=CNC=1 ZZHFDFIWLDELCX-UHFFFAOYSA-N 0.000 claims description 2
- XCMISAPCWHTVNG-UHFFFAOYSA-N 3-bromothiophene Chemical compound BrC=1C=CSC=1 XCMISAPCWHTVNG-UHFFFAOYSA-N 0.000 claims description 2
- ATWNFFKGYPYZPJ-UHFFFAOYSA-N 3-butyl-1h-pyrrole Chemical compound CCCCC=1C=CNC=1 ATWNFFKGYPYZPJ-UHFFFAOYSA-N 0.000 claims description 2
- KPOCSQCZXMATFR-UHFFFAOYSA-N 3-butylthiophene Chemical compound CCCCC=1C=CSC=1 KPOCSQCZXMATFR-UHFFFAOYSA-N 0.000 claims description 2
- RLLBWIDEGAIFPI-UHFFFAOYSA-N 3-ethyl-1h-pyrrole Chemical compound CCC=1C=CNC=1 RLLBWIDEGAIFPI-UHFFFAOYSA-N 0.000 claims description 2
- SLDBAXYJAIRQMX-UHFFFAOYSA-N 3-ethylthiophene Chemical compound CCC=1C=CSC=1 SLDBAXYJAIRQMX-UHFFFAOYSA-N 0.000 claims description 2
- OTODBDQJLMYYKQ-UHFFFAOYSA-N 3-methoxy-1h-pyrrole Chemical compound COC=1C=CNC=1 OTODBDQJLMYYKQ-UHFFFAOYSA-N 0.000 claims description 2
- RFSKGCVUDQRZSD-UHFFFAOYSA-N 3-methoxythiophene Chemical compound COC=1C=CSC=1 RFSKGCVUDQRZSD-UHFFFAOYSA-N 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910020366 ClO 4 Inorganic materials 0.000 claims description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- XHIHMDHAPXMAQK-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butylpyridin-1-ium Chemical compound CCCC[N+]1=CC=CC=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F XHIHMDHAPXMAQK-UHFFFAOYSA-N 0.000 claims description 2
- VJBODIYZSOOKES-UHFFFAOYSA-N butyl-ethyl-dimethylazanium Chemical compound CCCC[N+](C)(C)CC VJBODIYZSOOKES-UHFFFAOYSA-N 0.000 claims description 2
- 239000002134 carbon nanofiber Substances 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- ZOZZQPFBMNNPPO-UHFFFAOYSA-N ethyl-dimethyl-propylazanium Chemical compound CCC[N+](C)(C)CC ZOZZQPFBMNNPPO-UHFFFAOYSA-N 0.000 claims description 2
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 claims description 2
- 229920001197 polyacetylene Polymers 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229920000329 polyazepine Polymers 0.000 claims description 2
- 229920000323 polyazulene Polymers 0.000 claims description 2
- 229920001088 polycarbazole Polymers 0.000 claims description 2
- 229920002098 polyfluorene Polymers 0.000 claims description 2
- 229920000417 polynaphthalene Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920000128 polypyrrole Polymers 0.000 claims description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000004434 sulfur atom Chemical group 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- 150000003852 triazoles Chemical class 0.000 claims description 2
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 claims 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 claims 1
- 125000004429 atom Chemical group 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 150000003222 pyridines Chemical class 0.000 claims 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 description 8
- 238000004070 electrodeposition Methods 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000001075 voltammogram Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- LRESCJAINPKJTO-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-ethyl-3-methylimidazol-3-ium Chemical compound CCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F LRESCJAINPKJTO-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- BZZKRSZKOPTFHH-UHFFFAOYSA-N 1-methyl-1-(2-propoxyethyl)pyrrolidin-1-ium Chemical compound CCCOCC[N+]1(C)CCCC1 BZZKRSZKOPTFHH-UHFFFAOYSA-N 0.000 description 1
- 239000004966 Carbon aerogel Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021401 carbide-derived carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000002238 carbon nanotube film Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003236 pyrrolines Chemical class 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/64—Liquid electrolytes characterised by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/80—Gaskets; Sealings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention relates to the field of electrical capacitors, and more particularly that of electrochemical capacitors with double layers. State of the art
- (Super) double layer electrochemical capacitors have been known for a long time. They are based on a capacitive mechanism: the charges adsorb on an electrode by creating a double electrochemical layer. More specifically, they comprise a negative electrode and a positive electrode, separated by a separator and immersed in an electrolyte. If the electrodes and the separator are all flexible sheets, they can be wound; other geometric shapes exist. The presence of a liquid electrolyte requires a sealed container.
- a basic presentation of ultracapacitors is given, for example, in Maxwell Technologies® Product Guide BOOSTCAP® Ultracapacitors, published by Maxwell in 2009.
- WO 03/038846 (Maxwell Technologies) describes a double-layer electrochemical capacitor comprising electrodes manufactured from carbon powder, namely a first layer of conductive carbon powder, in contact with the metal collector, and a second layer of activated carbon in contact with the liquid electrolyte contained in a porous separator. These powders generally contain organic binders.
- WO 2007/062126 and US 2009/0290288 describe electrodes comprising a mixture of conductive carbon, activated carbon and organic binder.
- Nanostructured carbon-based materials are being considered, and a detailed discussion is given in the article "Review of nanostructured carbon mateiral for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon” , carbon aerogels, carbon nanotubes, carbon monoxide, and graphene by W. Gu and G. Yushin, WIRE Energy Circa 2013, doi: 10.1002 / wene.102.
- VACNTs vertically aligned carbon nanotubes
- the preparation of which is described for example in WO 2015/071408 (Commission for Atomic Energy and Alternative Energys) represent a favorable substrate for such coatings; this is described in document EP 2 591 151 (Commission for Atomic Energy and Alternative Energys) and in the thesis "Polythiophene nanocomposites / aligned carbon nanotubes: Elaboration, characterizations and applications to supercapacitors in ionic liquid medium” by Sébastien Lade (University of Cergy-Pontoise, 2010) and the publication "Poly (3-methylthiophene) / Vertically Aligned Multi-walled Carbon Nanotubes: Electrochemical Synthesis, Characterizations and Electrochemical Storage Properties in Lonic Liquids" by S.
- the problem solved by the present invention is to simplify the process for manufacturing supercapacitors comprising a conductive polymer deposited on a substrate, in particular on a substrate made of carbon-based material, in order to reduce the direct and indirect costs of this process.
- Figure 1 shows a block diagram of the invention.
- Figures 2 to 14 illustrate an exemplary embodiment of the invention which is described in detail below.
- FIG. 3 illustrates the steps of the method using the components of the experimental device shown in FIG. 2.
- FIGS. 4 to 6 relate to an electrochemical cycling test with a progressive rise in voltage: FIG. 4 shows the capacitance as a function of the applied voltage, FIG. 5 shows the evolution of the capacitance of the last ten cycles between 0 V and 2.5 V, Figure 6 shows a voltammogram of the cell with 10% 3MT monomer in EMITFSI electrolyte diluted in acetonitrile. The scanning speed was 5 mV / s.
- Figures 7 and 8 relate to an electrochemical cycling test with a direct rise to 2.5 V:
- Figure 7 shows a voltammogram of the cell with 10% 3MT monomer in EMITFSI electrolyte diluted in acetonitrile. The scanning speed was 5 mV / s.
- Figure 8 shows the evolution of the capacitance of the last ten cycles between 0 V and 2.5 V.
- Figure 9 shows a voltammogram of the cell with 10% 3MT monomer in EMITFSI electrolyte diluted in acetonitrile.
- the scanning speed was 5 mV / s.
- Curve A was recorded with a progressive rise, curve B with a direct rise.
- Figure 10 shows a voltammogram of the cell with 10% 3MT monomer in electrolyte EMITFSI diluted in acetonitrile, after polymerization in situ (curve C) and without polymer (curve D).
- Figures 1 to 14 allow to appreciate the visual appearance of the inside of the bag after the cycling tests:
- Figure 1 1 shows the inside of the bag after electropolymerization.
- Figure 12 shows the separator after electropolymerization: on the left the part of the separator that touched the rear face of the positive electrode, at the center the part of the separator taken between the two electrodes, on the right the part of the separator which touched the rear face of the negative electrode.
- Figure 13 shows the electrodes after electropolymerization, on the right the negative activated carbon, on the left the positive formed VACNT with polymer deposition by electropolymerization.
- Figure 14 shows a scanning electron micrograph of the positive after cycling.
- the problem is solved by performing the electroplating of the polymer from the same liquid electrolyte that will be used in the capacitor during its operation.
- the electrodeposition of the polymer is carried out in the same envelope or enclosure as that in which the capacitor will be encapsulated for its operation.
- the electrodeposition of the polymer is carried out using the same electrodes as those which will be used for the charging and discharging cycles of the capacitor during its operation.
- the electrodeposition of the polymer is carried out in the same liquid electrolyte that will be used in the capacitor during its operation.
- the electrodeposition of the polymer is carried out in the same envelope or enclosure as that in which the final capacitor will be encapsulated, and using the same electrodes as those which will be used for the charging and charging cycles. discharge of the capacitor during its operation.
- the electroplating of the polymer is carried out after encapsulation of the capacitor.
- Electropolymerization is performed by applying a current or voltage to said electrodes.
- the electrodeposition is carried out by means of cycling in voltage and current, and / or in pulsed mode, and / or in galvanostatic mode.
- a first object of the invention is a method of manufacturing an electrochemical capacitor comprising in a sealed envelope: two electrodes, namely a positive electrode and a negative electrode, a separator separating said positive electrode and said negative electrode, and a liquid electrolyte, in which process a polymer is deposited by electropolymerization on at least one of said electrodes, said electropolymerization being carried out after the introduction of said positive electrode, said negative electrode; and said separator in said envelope.
- Said sealed envelope may be a flexible or rigid envelope, and is advantageously selected from the group formed by: plastic bags, rigid shells made of polymer, shells made of sheet metal internally coated with an electrically insulating film, ceramic shells , glass hulls.
- the term "shell” here includes housings and all types of sealed containers.
- Said liquid electrolyte comprises at least one monomer capable of forming a polymer film by electropolymerization.
- hermetic sealing of said sealed envelope is carried out before proceeding with the electropolymerization.
- said positive and / or negative electrodes comprise nanoobjects, preferably selected from the group formed by: nanopowders, elongated nanoobjects, nanofibers, nanotubes, carbon nanotubes (possibly doped with heteroatoms), vertically aligned carbon nanotube mats, graphene, graphene derivatives.
- the said positive and negative electrodes may comprise a porous material with a high specific surface area, such as activated carbon. More particularly, said positive and negative electrodes may comprise carbon nanotubes or nanofibers, preferably vertically aligned.
- the polymer film is an electrically conductive polymer. A list of polymers which are particularly suitable for carrying out the invention is given in the description below. Similarly, a list of monomers which are particularly suitable for carrying out the invention is given in the description below.
- said electrolyte comprises at least one ionic liquid.
- ionic liquids which are particularly suitable for carrying out the invention is given in the description below.
- said electrolyte also comprises a solvent.
- solvents that are particularly suitable for carrying out the invention is given in the description below.
- said separator is a polypropylene sheet. At least the positive electrode or the negative electrode can be wrapped in said separator sheet.
- Another subject of the invention is an electrochemical capacitor capable of being obtained by the process according to the invention.
- polymer embraces copolymers.
- envelope encompasses enclosures.
- the method according to the invention comprises the following steps:
- a positive electrode, a negative electrode, a separator separating the two electrodes, and a liquid electrolyte are supplied.
- the latter comprises at least one monomer capable of forming, by electropolymerization, a polymer film on one of the two electrodes, as well as an envelope.
- Said liquid electrolyte comprises an ionic liquid, in which said at least one monomer and / or oligomer is dissolved; the liquid electrolyte may comprise a suitable solvent.
- the positive electrode may be a VACNT mat
- the negative electrode may be activated carbon
- the separator may be a polypropylene membrane
- the liquid electrolyte may comprise an ionic liquid (such as 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (abbreviated EMITFSI) or N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (abbreviated PYRTFSI)), the monomer (such as 3-methylthiophene (abbreviated 3MT)), and as the solvent acetonitrile.
- EMITFSI 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide
- PYRTFSI N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide
- 3MT 3-methylthiophen
- a second step the electrodes and the separator are positioned in said envelope, the collectors which make the connection between each electrode and its terminal situated outside said envelope are placed in place, said liquid electrolyte is poured into said envelope.
- a third step is deposited by electropolymerization a polymer film on at least one of the electrodes, for example on the positive electrode. This will be done by applying a sufficient voltage across the device.
- the electropolymerization can be done in any appropriate manner, especially in galvanostatic mode, pulsed mode or cyclic mode.
- the device is able to function as an electrochemical capacitor.
- the envelope must be sealed.
- said envelope is sealed after the second step and before the third step to obtain a device. It is also possible to seal the envelope after the third step; this possibly makes it possible to modify the composition of the liquid electrolyte, or even to replace it.
- the method according to the invention can be used for many capacitor systems, defined by the nature of the materials forming the substrates of each of the electrodes, by the nature of the polymer deposited on one and / or the other of these electrodes, and by the ionic liquid.
- said electrodepositable electrically deposited polymer consists of one or more polymers or copolymers selected from the group consisting of polyfluorenes, polypyrenes, polyazulenes, polynaphthalenes, polypyrroles, polycarbazoles and polyindoles.
- the substrate advantageously comprises nanoobjects, which can be selected from the group formed by: nanopowders, elongate nanoobjects, nanofibers, nanotubes, carbon nanotubes (possibly doped with heteroatoms), carbon nanotubes vertically aligned, or on a substrate comprising a porous material with a high specific surface area, such as activated carbon.
- nanoobjects can be selected from the group formed by: nanopowders, elongate nanoobjects, nanofibers, nanotubes, carbon nanotubes (possibly doped with heteroatoms), carbon nanotubes vertically aligned, or on a substrate comprising a porous material with a high specific surface area, such as activated carbon.
- said at least one monomer is selected from the monomer (s) bearing a double bond and / or an aromatic ring and optionally one or more heteroatoms such as an oxygen atom, a nitrogen atom, a sulfur atom or a fluorine atom, and is preferably selected from the group consisting of: pyrrole and its derivatives, and preferably 3-methylpyrrole, 3-ethylpyrrole, 3-butylpyrrole, 3-bromo pyrrole, 3-methoxypyrrole, 3,4-dichloro pyrrole and 3-methylpyrrole; 4-dipropoxypyrrole;
- thiophene and its derivatives and preferably 3-thiophene acetic acid, 3,4-ethylene dioxythiophene, 3-methyl thiophene, 3-ethyl thiophene, 3-butyl thiophene, 3-bromo thiophene, 3-methoxy thiophene, 3,4-dichloro thiophene and 3,4-dipropoxy thiophene.
- said at least one ionic liquid advantageously comprises a cation selected from the group consisting of: 1-ethyl-3-methyl imidazolium, 1-methyl-3-propyl imidazolium, 1-methyl-3-isopropyl imidazolium, 1 butyl-3-methyl imidazolium, 1-ethyl-2,3-dimethyl imidazolium, 1-ethyl-3,4-dimethyl imidazolium, N-propyl pyridinium, N-butyl pyridinium, N-tert-butyl pyridinium, N -tert-butanol-pentyl pyridinium, N-methyl-N-propylpyrrolidinium, N-butyl-N-methylpyrrolidinium, N-methyl-N-pentylpyrrolidinium, N-propoxyethyl-N-methylpyrrolidinium, N-methyl-N-propylpiperidinium
- said at least one ionic liquid advantageously comprises an anion selected from the group consisting of: fluoride (F “ ), chloride (CI “ ), bromide (Br “ ), iodide (), perchlorate (ClO 4 " ) nitrate (N0 3 “ ), tetrafluoroborate (BF 4 " ), hexafluorophosphate (PF 6 " ), N (CN) 2 “ ; RS0 3 “ , RCOO " (where R is an alkyl or phenyl group, possibly substituted); (CF 3) 2 PF 4 -, (CF 3) 3 PF 3, (CF 3) 4 PF 2 -, (CF 3) 5 PF, (CF 3) 6 P ", (CF 2 S0 3") 2, (CF 2 CF 2 SO 3 -) 2 , (CF 3 S0 2 -) 2 N-, CF 3 CF 2 (CF 3 ) 2 CO-, (CF 3 S0 2 -) 2 CH
- said at least one ionic liquid comprises at least one cation selected from the group consisting of pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, thiazole, oxazole, triazole, ammonium, pyrrolidine and pyrroline derivatives.
- said at least one solvent is selected from the group consisting of acetic acid, methanol, ethanol, liquid glycols (especially ethylene glycol and propylene glycol), halogenated alkanes (especially dichloromethane), dimethylformamide (abbreviated DMF), ketones (especially acetone and 2-butanone), acetonitrile, tetrahydrofuran (abbreviated THF), N-methylpyrrolidone (abbreviated NMP), dimethyl sulfoxide (abbreviated as DMSO), propylene carbonate.
- acetic acid especially ethylene glycol and propylene glycol
- halogenated alkanes especially dichloromethane
- DMF dimethylformamide
- ketones especially acetone and 2-butanone
- THF tetrahydrofuran
- NMP N-methylpyrrolidone
- DMSO dimethyl sulfoxide
- FIG. 1 One embodiment of the invention is shown schematically in FIG.
- the sealed envelope which may be for example a flexible bag or a solid shell
- an assembly of the positive and negative electrodes separated by a separator is placed.
- the positive electrode is represented by broken lines in order to distinguish it from the negative electrode represented by a solid line: the choice of a broken line does not mean an electrical discontinuity of the electrode.
- the liquid electrolyte comprises EMITFSI ionic liquid, acetonitrile solvent and 3MT monomer.
- the sealed envelope is hermetically encapsulated, electroplating is carried out (for example, 1-V cycling) and a ready-to-use capacitor product is obtained.
- the process according to the invention has many advantages. It simplifies the assembly of the capacitor: the assembly of the device (including the establishment and the connection of the electrical contacts) is made before the deposition of the polymer, the polymer deposit can take place in the sealed device. Thus, the number of steps is reduced, and in particular the manipulation of the electrodes after the electrodeposition of the polymer is avoided.
- the method according to the invention also avoids the loss of electrolyte: the electrolyte in which the electroplating process of the polymer takes place can be used directly for the operation of the electrochemical capacitor, it is in fact the same liquid (except that it becomes depleted in monomer during electroplating). No drying of the electrodes is necessary before the assembly of the device, since the electrodes are only wet once put in place in their envelope.
- the invention has been implemented with an experimental device. To do this, the following components were supplied: a plastic bag as an envelope, two metal strips as collectors, two metal strips as a solder ring, a ternary liquid mixture (comprising a monomer (3MT, at a rate of 10% by volume).
- the positive electrode has been positioned on the separator, the separator, the negative electrode was placed on the separator, the electrodes were wrapped with the separator, the collectors were welded to the metal strips of the electrodes (the solder rings made it possible to improve the welding between the collector and the electrode and also to stiffen the collector), the collectors were sealed to the bag, the bag was filled with the liquid mixture described above, and the bag was sealed; only the collectors protruded outside the pocket.
- Two identical bags were prepared in this way.
- a third bag was prepared in the same manner as the two previous ones, but without monomer in the liquid mixture.
- FIG. 6 shows the capacitance as a function of the applied voltage
- Figure 5 shows the evolution of the capacitance of the last ten cycles between 0 V and 2.5 V.
- FIG. 7 shows the voltammogram. A very strong current is noted at a voltage close to 2.3 V; this peak of tension decreases with the number of cycles.
- Figure 8 changes the capacitance of the last ten cycles between 0 V and 2.5 V.
- FIG. 9 compares the two systems after in situ polymerization: curve A represents the electropolymerized sample with a progressive rise in voltage (pocket 1), curve B represents the sample electropolymerized with a direct rise (pocket 2).
- the capacitances obtained with these two variants are fairly close, but it is observed that the peak of electroactivity is for the conditions of gradual rise to about 0.95 V, while it is at about 1, 1 V in direct rise .
- FIG. 10 compares the curve B of FIG. 9 with the curve obtained in a control bag, prepared identically to that of the bag 2, but without monomer in the liquid mixture (curve C): it can be seen that without monomer l Electropolymerization does not take place, and the device is not able to function as a capacitor.
- FIG. 1 1 to 14 allow to appreciate the visual appearance of the inside of the pocket after the cycling tests.
- Figure 11 shows the inside of the pocket; no degradation is observed.
- FIG. 12 assembles the separator sheet after electropolymerization: on the left, the part of the separator which has been in contact with the rear face of the positive electrode, in the center the part of the separator taken between the two electrodes, on the right the part of the separator which has been in contact with the back side of the negative electrode.
- Figure 13 shows the electrodes after electropolymerization, on the right the activated carbon negative electrode, on the left the VACNT positive electrode with polymerization by electropolymerization.
- Figure 14 shows a scanning electron micrograph of the positive electrode after cycling. The electrolyte after the test, the color disappears which confirms the consumption of the monomer. The absence of coloration after polymerization demonstrates the absence of oligomers.
- Capacitors have also been made with other solvents (eg propylene carbonate), other monomers and other ionic liquids.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
<b>Procédé</b> de fabrication de condensateurs électrochimiques Procédé de fabrication d'un condensateur électrochimique comprenant dans une enveloppe étanche : deux électrodes, à savoir une électrode positive et une électrode négative, un séparateur séparant les deux électrodes, et un électrolyte liquide, Le procédé comprend le dépot d'un polymère conducteur par électropolymérisation sur au moins une desdites électrodes. L'électropolymérisation étant effectuée après la mise en place des deux électrodes et du séparateur dans ladite enveloppe. par ailleurs, les électrodes posites ou négatives comprennent des nanoobjets selectionnés parmis les nanopoudres, les nanoobjets allongés, les nanofibres, les nanotubes les nanotubes en carbone, les tapis de nanotubes en carbone verticalement alignés, le graphène et les dérivés de graphène.
Description
Procédé de fabrication de condensateurs électrochimiques Domaine technique de l'invention
L'invention concerne le domaine des condensateurs électriques, et plus particulièrement celui des condensateurs électrochimiques à double couche. Etat de la technique
Les (super)condensateurs électrochimiques à double couche sont connus depuis longtemps. Ils sont basés sur un mécanisme capacitif : les charges adsorbent sur une électrode en créant une double couche électrochimique. Plus précisément, ils comprennent une électrode négative et une électrode positive, séparées par un séparateur et baignant dans un électrolyte. Si les électrodes et le séparateur sont tous des feuilles souples, elles peuvent être enroulées ; d'autres formes géométriques existent. La présence d'un électrolyte liquide nécessite un récipient étanche. Une présentation de base des ultracapaciteurs est donnée par exemple dans la brochure « Product Guide Maxwell Technologies® BOOSTCAP® Ultracapacitors » publiée par la société Maxwell en 2009.
Ces condensateurs utilisent souvent des électrodes en carbone, sous des formes différentes. On cherche à diminuer la résistance série de ces dispositifs, qui conduit à chaque charge et à chaque décharge à la transformation d'énergie électrique en chaleur ; chaque interface solide / solide et solide / liquide contribue à la résistance série. De nombreux travaux ont été menés pour optimiser la nature des matériaux carbonés formant les électrodes. Ces électrodes doivent présenter une grande surface de contact et une bonne conductivité électrique intrinsèque. A titre d'exemple, WO 03/038846 (Maxwell Technologies) décrit un condensateur électrochimique à double couche comprenant des électrodes fabriquées à partir de poudre de carbone, à savoir une première couche de poudre de carbone conducteur, en contact avec le collecteur métallique, et une seconde couche de charbon actif, en contact avec l'électrolyte liquide contenu dans un séparateur poreux. Ces poudres contiennent en règle générale des liants organiques. WO 2007/062126 et US 2009/0290288 (Maxwell Technologies) décrivent des électrodes comprenant un mélange de carbone conducteur, charbon actif et liant organique. On envisage d'utiliser des matériaux à base de carbone nanostructurés, et une discussion détaillée est donnée dans l'article « Review of nanostructured carbon mateiral for electrochemcial capacitor applications : advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels,
carbon nanotubes, oinon-li e carbon, and graphene » par W. Gu and G. Yushin, WIRE Energy Environ 2013, doi : 10.1002/wene.102.
Un autre concept de supercondensateurs fait intervenir des effets dits pseudocapacitifs, liés notamment à des réactions redox, à l'intercalation et à l'électrosorption. Ainsi, des super-condensateurs utilisant des électrodes en polymères présentant une conductivité électronique et capables de montrer un comportement rédox ont été décrits dans la littérature. Il a été imaginé d'utiliser ces polymères sous la forme d'un revêtement sur un substrat de carbone conducteur à haute surface spécifique. Cela est décrit par exemple dans la publication « Carbon Redox-Polymer-Gel Hybrid Supercapacitors » par A. Vlad et al., parue dans Sci. Rep. 6, 22194; doi: 10.1038/srep22194 (2016). Une approche similaire a été mise en œuvre sur des films de nanotubes en carbone, voir la publication « 3-V Solid State Flexible Supercapacitors with lonic-Liquid-Based Polymer Gel Electyrolyte for AC Line Filtering » par Y.J.Kang et al., Appl. Materials & Intefaces, accessible sur http://pubs.acs.org/doi/abs/10.1021/acsami. 6b02690. En particulier, les nanotubes de carbone verticalement alignés (VACNT - « Vertically Aligned Carbon NanoTubes), dont la préparation est décrite par exemple dans WO 2015/071408 (Commissariat à l'Energie Atomique et aux Energies Alternatives), représentent un substrat propice pour de tels revêtements ; cela est décrit dans le document EP 2 591 151 (Commissariat à l'Energie Atomique et aux Energies Alternatives) et dans la thèse « Nanocomposites polythiophènes /nanotubes de carbone alignés : Elaboration, caractérisations et applications aux supercondensateurs en milieu liquide ionique » de Sébastien Lagoutte (Université de Cergy-Pontoise, 2010) ainsi que la publication « Poly(3-methylthiophene)/Vertically Aligned Multi-walled Carbon Nanotubes : Electrochemical Synthesis, Characterizations and Electrochemical Storage Properties in lonic Liquids » par S. Lagoutte et al., parue dans Electrochimica Acta 130 (2014), p. 754- 765. Selon cette publication, certains polymères à propriétés redox peuvent être déposés par électropolymérisation dans un liquide ionique. Ensuite, ces VACNT avec leur dépôt de polymère doivent être transformés et assemblés pour former un condensateur, c'est-à- dire on doit les poser dans un boîtier, ajouter le séparateur, procéder au soudage des connexions électriques, encapsuler l'ensemble, et ajouter l'électrolyte à travers une ouverture de remplissage, et fermer hermétiquement ladite ouverture.
Il s'agit donc d'un procédé complexe faisant intervenir de multiples étapes, dont certaines sont des étapes impliquant une phase liquide très coûteuse (à savoir les liquides ioniques), et d'autres sont des étapes d'assemblage mécanique.
Le problème que cherche à résoudre la présente invention est de simplifier le procédé de fabrication des supercondensateurs comportant un polymère conducteur déposé sur un substrat, notamment sur un substrat en matériau à base de carbone, afin de réduire les coûts directs et indirects de ce procédé. Figures
La figure 1 montre un schéma de principe de l'invention. Les figures 2 à 14 illustrent un exemple d'exécution de l'invention qui est décrit en grand détail ci-dessous.
La figure 2 montre les composants du dispositif expérimental utilisé pour démontré la faisabilité de l'invention. La figure 3 illustre les étapes du procédé utilisant les composants du dispositif expérimental montrés sur la figure 2.
Les figures 4 à 6 se rapportent à un essai de cyclage électrochimique avec une montée progressive en tension : La figure 4 montre la capacitance en fonction de la tension appliquée, la figure 5 montre l'évolution de la capacitance des dix derniers cycles entre 0 V et 2,5 V, la figure 6 montre un voltampérogramme de la cellule avec 10% de monomère 3MT dans un électrolyte EMITFSI dilué dans l'acétonitrile. La vitesse de balayage était de 5 mV/s.
Les figures 7 et 8 se rapportent à un essai de cyclage électrochimique avec une montée directe à 2,5 V : La figure 7 montre un voltampérogramme de la cellule avec 10% de monomère 3MT dans un électrolyte EMITFSI dilué dans l'acétonitrile. La vitesse de balayage était de 5 mV/s. La figure 8 montre l'évolution de la capacitance des dix derniers cycles entre 0 V et 2,5 V.
La figure 9 montre un voltampérogramme de la cellule avec 10% de monomère 3MT dans un électrolyte EMITFSI dilué dans l'acétonitrile. La vitesse de balayage était de 5 mV/s. La courbe A a été enregistrée avec une monte progressive, la courbe B avec une montée directe.
La figure 10 montre un voltampérogramme de la cellule avec 10% de monomère 3MT dans un électrolyte EMITFSI dilué dans l'acétonitrile, après polymérisation in situ (courbe C) et sans polymère (courbe D). Les figures 1 1 à 14 permettent d'apprécier l'aspect visuel de l'intérieur de la poche après les essais de cyclage : La Figure 1 1 montre l'intérieur de la poche après électropolymérisation. La Figure 12 montre le séparateur après électropolymérisation : à gauche la partie du séparateur qui a touché la face arrière de l'électrode positive, au
centre la partie du séparateur pris entre les deux électrodes, à droite la partie du séparateur qui a touché la face arrière de l'électrode négative. La Figure 13 montre les électrodes après électropolymérisation, à droite la négative en carbone activé, à gauche la positive formée de VACNT avec dépôt de polymère par électropolymérisation. La figure 14 montre une micrographie électronique à balayage de la positive après cyclage.
Objets de l'invention
Selon un aspect de l'invention, le problème est résolu en effectuant l'électrodéposition du polymère à partir du même électrolyte liquide que celui qui sera utilisé dans le condensateur lors de son fonctionnement.
Selon un autre aspect l'électrodéposition du polymère est effectuée dans la même enveloppe ou enceinte que celle dans laquelle le condensateur sera encapsulé en vue de son fonctionnement.
Selon un autre aspect de l'invention l'électrodéposition du polymère est effectuée en utilisant les mêmes électrodes que celles qui seront utilisées pour les cycles de charge et décharge du condensateur lors de son fonctionnement.
Selon un autre aspect de l'invention, l'électrodéposition du polymère est effectuée dans le même électrolyte liquide que celui qui sera utilisé dans le condensateur lors de son fonctionnement. Selon un autre aspect de l'invention, l'électrodéposition du polymère est effectuée dans la même enveloppe ou enceinte que celle dans laquelle le condensateur final sera encapsulé, et en utilisant les mêmes électrodes que celles qui seront utilisées pour les cycles de charge et de décharge du condensateur lors de son fonctionnement.
Selon un mode de réalisation avantageux, l'électrodéposition du polymère est effectuée après l'encapsulation du condensateur.
L'électropolymérisation est effectuée en appliquant un courant ou une tension auxdites électrodes. Selon une variante, l'électrodéposition est effectuée par l'intermédiaire d'un cyclage en tension et en courant, et/ou en mode puisé, et/ou en mode galvanostatique.
Un premier objet de l'invention est un procédé fabrication d'un condensateur électrochimique comprenant dans une enveloppe étanche : deux électrodes, à savoir une électrode positive et une électrode négative,
un séparateur séparant ladite électrode positive et ladite électrode négative, et un électrolyte liquide, dans lequel procédé on dépose un polymère par électropolymérisation sur au moins une desdites électrodes, ladite électropolymérisation étant effectuée après la mise en place de ladite électrode positive, de ladite électrode négative et dudit séparateur dans ladite enveloppe. Ladite enveloppe étanche peut être une enveloppe souple ou rigide, et est avantageusement sélectionnée dans le groupe formé par : les poches plastiques, les coques rigides en polymère, les coques en tôle revêtue à l'intérieur par un film électriquement isolant, les coques en céramique, les coques en verre. Le terme « coque » comprend ici les boîtiers et tous types de récipients étanches.
Ledit électrolyte liquide comprend au moins un monomère capable de former un film de polymère par électropolymérisation.
Dans un mode de réalisation qui peut être combiné avec tous les modes de réalisation précités, on procède au scellement hermétique de ladite enveloppe étanche avant de procéder à l'électropolymérisation.
Dans un mode de réalisation qui peut être combiné avec tous les modes de réalisation précités, lesdites électrodes positive et/ou négative comprennent des nanoobjets, de préférence sélectionnés dans le groupe formé par : les nanopoudres, les nanoobjets allongés, les nanofibres, les nanotubes, les nanotubes en carbone (possiblement dopés par des hétéroatomes), les tapis de nanotubes en carbone verticalement alignés, le graphène, les dérivés de graphène. Lesdites électrodes positive et négative peuvent comprendre un matériau poreux à haute surface spécifique, tel que le charbon actif. Plus particulièrement, lesdites électrodes positive et négative peuvent comprendre des nanotubes ou nanofibres de carbone, de préférence verticalement alignés. Avantageusement, le film de polymère est un polymère conducteur d'électricité. Une liste de polymères qui conviennent particulièrement pour l'exécution de l'invention est donnée dans la description ci-dessous. De même, une liste de monomères qui conviennent particulièrement pour l'exécution de l'invention est donnée dans la description ci-dessous.
Dans un mode de réalisation qui peut être combiné avec tous les modes de réalisation précités, ledit électrolyte comprend au moins un liquide ionique. Une liste de liquides ioniques qui conviennent particulièrement pour l'exécution de l'invention est donnée dans la description ci-dessous.
Dans un mode de réalisation qui peut être combiné avec tous les modes de réalisation précités, ledit électrolyte comprend également un solvant. Une liste de solvants qui
conviennent particulièrement pour l'exécution de l'invention est donnée dans la description ci-dessous.
Dans un mode de réalisation qui peut être combiné avec tous les modes de réalisation précités, ledit séparateur est une feuille en polypropylène. On peut envelopper au moins l'électrode positive ou l'électrode négative dans ladite feuille de séparateur.
Un autre objet de l'invention est un condensateur électrochimique susceptible d'être obtenu par le procédé selon l'invention.
Description Dans la présente description, le terme « polymère » englobe les copolymères. Le terme « enveloppe » englobe les enceintes.
Dans un mode de réalisation, le procédé selon l'invention comprend les étapes suivantes :
Dans une première étape on approvisionne une électrode positive, une électrode négative, un séparateur séparant les deux électrodes, et un électrolyte liquide. Ce dernier comprend au moins un monomère capable de former par électropolymérisation un film de polymère sur l'une des deux électrodes, ainsi qu'une enveloppe.
Ledit électrolyte liquide comprend un liquide ionique, dans lequel est dissout ledit au moins monomère et/ou oligomère ; l'électrolyte liquide peut comprendre un solvant approprié.
A titre d'exemple, l'électrode positive peut être un tapis de VACNT, l'électrode négative peut être du carbone activé, le séparateur peut être une membrane en polypropylène, l'électrolyte liquide peut comprendre un liquide ionique (tel que le(1 -éthyl-3-méthyl- imidazolium-bis(trifluorométhane sulfonyl) imide (abrégé EMITFSI) ou le N-butyl-N- méthyl-pyrrolidinium bis(trifluorométhane-sulfonyl) imide (abrégé PYRTFSI)), le monomère (tel que le 3-méthylthiophène (abrégé 3MT)), et à titre de solvant l'acétonitrile.
Dans une deuxième étape on positionne les électrodes et le séparateur dans ladite enveloppe, on met en place les collecteurs qui font la liaison entre chaque électrode et sa borne située à l'extérieur de ladite enveloppe, on verse ledit électrolyte liquide dans laite enveloppe.
Dans une troisième étape on dépose par l'électropolymérisation un film de polymère sur au moins une des électrodes, par exemple sur l'électrode positive. Cela se fera par l'application d'une tension suffisante aux bornes du dispositif. L'électropolymérisation peut se faire de toute manière appropriée, et notamment en mode galvanostatique, en mode puisé ou en mode cyclique.
Ensuite, le dispositif est capable de fonctionner comme un condensateur électrochimique. Pour cela son enveloppe doit être fermée de manière étanche. Dans une variante préférée de l'invention on procède à la fermeture étanche de ladite enveloppe après la deuxième étape et avant la troisième étape, pour obtenir un dispositif. On peut également procéder à la fermeture étanche de l'enveloppe après la troisième étape ; cela permet éventuellement de modifier la composition de l'électrolyte liquide, voire de le remplacer.
Le procédé selon l'invention est utilisable pour de nombreux systèmes de condensateur, définis par la nature des matériaux formant les substrats de chacune des électrodes, par la nature du polymère déposé sur l'une et/ou l'autre de ces électrodes, et par le liquide ionique.
Selon l'invention, ledit polymère conducteur d'électricité déposé par électrodéposition est constitué d'un ou plusieurs polymères ou copolymères sélectionné dans le groupe formé par les polyfluorènes, les polypyrènes, les polyazulènes, les polynaphtalènes, les polypyrroles, les polycarbazoles, les polyindoles, les polyazépines, les polyanilines, les polythiophènes, les poly(p-phénylène sulfide), les polyacétylènes, les poly(p-phénylène vinylène). En tous les cas les monomères doivent être choisis en fonction du polymère souhaité.
Selon l'invention, le substrat comprend avantageusement des nanoobjets, qui peuvent être sélectionnés dans le groupe formé par : les nanopoudres, les nanoobjets allongés, les nanofibres, les nanotubes, les nanotubes en carbone (possiblement dopés par des hétéroatomes), les tapis de nanotubes en carbone verticalement alignés, ou encore sur un substrat comprenant un matériau poreux à haute surface spécifique, tel que le charbon actif. Selon l'invention, ledit au moins un monomère est sélectionné parmi les monomère(s) portant une double liaison et/ou un cycle aromatique et éventuellement un ou plusieurs hétéroatomes tel qu'un atome d'oxygène, un atome d'azote, un atome de soufre ou un atome de fluor, et est de préférence sélectionné dans le groupe formé par :
o le pyrrole et ses dérivés, et de préférence le 3-méthyl pyrrole, le 3-éthyl pyrrole, le 3-butyl pyrrole, le 3-bromo pyrrole, le 3-méthoxy pyrrole, le 3,4-dichloro pyrrole et le 3,4-dipropoxypyrrole ;
o le carbazole et ses dérivés ;
o l'aniline et ses dérivés ;
o le thiophène et ses dérivés, et de préférence le 3-acide acétique thiophène, le 3,4- éthylène dioxythiophène, le 3-méthyl thiophène, le 3-éthyl thiophène, le 3-butyl thiophène, le 3-bromo thiophène, le 3-méthoxy thiophène, le 3,4-dichloro thiophène et le 3,4-dipropoxy thiophène.
Selon l'invention, ledit au moins un liquide ionique comprend avantageusement un cation sélectionné dans le groupe formé par : 1 -éthyl-3-méthyl imidazolium, 1 -méthyl-3-propyl imidazolium, 1 -méthyl-3-isopropyl imidazolium, 1 -butyl-3-méthyl imidazolium, 1 -éthyl-2,3- diméthyl imidazolium, 1 -éthyl-3,4-diméthyl imid-azolium, N-propyl pyridinium, N-butyl pyridinium, N-tert-butyl pyridinium, N-tert-butanol-pentyl pyridinium, N-méthyl-N- propylpyrrolidinium, N-butyl-N-méthylpyrrolidinium, N-méthyl-N-pentyl pyrrolidinium, N- propoxyéthyl-N-méthyl pyrrolidinium, N-méthyl-N-propyl piperidinium, N-méthyl-N- isopropyl piperidinium, N-butyl-N-méthyl piperidinium, N-N-isobutylméthyl piperidinium, N- sec-butyl-N-méthyl piperidinium, N-méthoxy-N-éthylméthyl piperidinium, N-éthoxyéthyl-N- méthyl piperidinium ; butyl-N-N,N,N-triméthyl ammonium, N-éthyl-N,N-diméthyl-N-propyl ammonium, N-butyl-N-éthyl-N,N-diméthyl ammonium, (1 -éthyl-3-méthyl-imidazolium- bis(trifluorométhane sulfonyl) imide (abrégé EMITFSI), N-butyl-N-méthyl-pyrrolidinium bis(trifluorométhane-sulfonyl) imide (abrégé PYRTFSI).
Selon l'invention, ledit au moins un liquide ionique comprend avantageusement un anion sélectionné dans le groupe formé par : fluorure (F"), chlorure (CI"), bromure (Br"), iodure ( ), perchlorate (CI04 "), nitrate (N03 "), tétrafluoroborate (BF4 "), hexafluorophosphate (PF6 "), N(CN)2 " ; RS03 " , RCOO" (où R est un groupe alkyl ou phényle, possiblement substitué) ; (CF3)2PF4-, (CF3)3PF3, (CF3)4PF2-, (CF3)5PF, (CF3)6P", (CF2S03 ")2, (CF2CF2S03-)2, (CF3S02-)2N-, CF3CF2(CF3)2CO-, (CF3S02-)2CH-, (SF5)3C (CF3S02S02)3C-, [0(CF3)2C2(CF3)20]2PO, CF3(CF2)7S03 ", bis(trifluoro-méthanesulfonyl) amide (abrégé TFSI), bis(trifluorosulfonyl) amide (abrégé FSI).
Dans un mode de réalisation particulier, ledit au moins un liquide ionique comprend au moins un cation sélectionné dans le groupe formé par les dérivés du pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, thiazole, oxazole, triazole, ammonium, pyrrolidine, pyrroline, pyrrole, et piperidine, et au moins un anion sélectionné dans le
groupe formé par F", CI" , Br" , I"■ N03" , N(CN)2 " , BF4 " , CI04 "■ PF6 ", RS03 ", RCOO" où R est un groupe alkyl ou phénole, (CF3)2PF4 ", (CF3)3PF3! (CF3)4PF2 ", (CF3)5PF, (CF3)6P", (CF2S03-)2, (CF2CF2S03-)2, (CF3S02-)2N-, CF3CF2(CF3)2CO-, (CF3S02-)2CH-, (SF5)3C, (CF3S02)3C, [0(CF3)2C2(CF3)20]2PO", CF3(CF2)7S03 ", 1 -éthyl-3-méthymimidazole bis(trifluoro-méthyl-sulfonyl)imide (abrégé [EMIM][Tf2N]).
Selon l'invention, ledit au moins solvant est sélectionné dans le groupe formé par l'acide acétique, le méthanol, l'éthanol, les glycols liquides (notamment l'éthylèneglycol et le propylèneglycol), les alcanes halogénés (notamment le dichlorométhane), la diméthylformamide (abrégé DMF), les cétones (notamment l'acétone et la 2-butanone), l'acétonitrile, le tétrahydrofuranne (abrégé THF), la N-méthylpyrrolidone (abrégé NMP), le diméthyl sulfoxyde (abrégé DMSO), le carbonate de propylène.
A titre d'exemple, on peut utiliser le procédé d'électrodéposition galvanostatique de poly(3-méthylthiophène) sur des nanotubes de carbone à partir de monomères de 3- méthyl-thiophène (abrégé 3MT) dissous dans des liquides ioniques de type EMITFSI [= (1 -éthyl-3-méthyl-imidazolium-bis(trifluorométhane sulfonyl) imide] ou PYRTFSI [= N- butyl-N-méthyl-pyrrolidinium bis(trifluorométhane-sulfonyl) imide] qui est décrit dans la publication précité de S. Lagoutte et al.
Un mode de réalisation de l'invention est montré schématiquement sur la figure 1 . On place dans l'enveloppe étanche (qui peut être par exemple une poche flexible ou une coque solide) un assemblage des électrodes positives et négatives, séparé par un séparateur. Sur la figure 1 , l'électrode positive est représentée par des lignes interrompues afin de la distinguer de l'électrode négative représentée par une ligne pleine : le choix d'une ligne interrompue ne signifie nullement une discontinuité électrique de l'électrode. L'électrolyte liquide comprend le liquide ionique EMITFSI, le solvant acétonitrile et le monomère 3MT. On encapsule hermétiquement l'enveloppe étanche, on effectue l'électrodéposition (par exemple cyclage l-V), et on obtient un produit condensateur prêt à l'emploi.
Le procédé selon l'invention présente de nombreux avantages. II simplifie l'assemblage du condensateur : l'assemblage du dispositif (y compris la mise en place et le branchement des contacts électriques) se fait avant le dépôt du polymère, le dépôt de polymère peut se dérouler dans le dispositif scellé. Ainsi on réduit le nombre d'étapes, et en particulier on évite la manipulation des électrodes après l'électrodéposition du polymère.
Le procédé selon l'invention évite aussi la perte d'électrolyte : l'électrolyte dans lequel se déroule le procédé d'électrodéposition du polymère pourra être utilisé directement pour le fonctionnement du condensateur électrochimique, c'est en fait le même liquide (sauf qu'il s'appauvrit en monomère au cours de l'électrodéposition). Aucun séchage des électrodes n'est nécessaire avant l'assemblage du dispositif, car les électrodes ne sont mouillées qu'une fois mises en place dans leur enveloppe.
Exemples
On a mis en œuvre l'invention avec un dispositif expérimental. Pour ce faire, on a approvisionné les composants suivants : une poche en matière plastique comme enveloppe, deux bandes métalliques comme collecteurs, deux bandes métalliques comme bague de soudure, un mélange liquide ternaire (comprenant un monomère (3MT, à raison de 10% volumiques), un liquide ionique (EMITFSI) et un solvant (acétonitrile, abrégé ici ACN)) comme électrolyte, une membrane en polypropylène de 25 μηη d'épaisseur (Celgard®2500) comme séparateur, une longueur de ruban adhésif (aussi appelé « scotch »), une électrode négative en carbone activé de 120 μηη d'épaisseur et une électrode positive en nanotubes de carbone verticalement alignés (multi-feuillets, épaisseur du tapis de VACNT environ 10 μηη) déposés sur un substrat en feuille d'aluminium de 20 μηη d'épaisseur, sachant que les électrodes sont pourvues d'un bande de contact métallique. Ces composants sont montrés sur la figure 2. Avec ces composants on a mis en œuvre le procédé selon l'invention, comme cela est illustré sur la figure 3 : On a positionné l'électrode positive sur le séparateur, on a mis en place le séparateur, on a posé l'électrode négative sur le séparateur, on a enveloppé les électrodes avec le séparateur, on a soudé les collecteurs aux bandes métalliques des électrodes (les bagues de soudures permettent améliorer la soudure entre le collecteur et l'électrode et aussi de rigidifier les collecteur), on a procédé au scellement des collecteurs à la poche, on a rempli la poche du mélange liquide décrit ci-dessus, et on a procédé au scellement de la poche ; seuls les collecteurs dépassaient à l'extérieur de la poche. Deux poches identiques ont été préparées de cette manière. Une troisième poche a été préparée de la même manière que les deux précédentes, mais sans monomère dans le mélange liquide.
Deux conditions d'électropolymérisation ont été étudiées avec les poches 1 et 2.
Dans un premier essai on a soumis une de ces poches (poche 1 ) à un essai de cyclage électrochimique avec une montée progressive en tension : De 0 V à 1 V, de 0 V à 1 , 1 V, de 0 V à 1 ,2 V et ainsi de suite jusqu'à 2,5 V ; on a ainsi exécuté dix cycles avec une vitesse de balayage de 5 mV/s. Un voltampérogramme représentant cet essai de cyclage
est montré sur la figure 6. La figure 4 montre la capacitance en fonction de la tension appliquée ; la figure 5 montre l'évolution de la capacitance des dix derniers cycles entre 0 V et 2,5 V.
Dans un deuxième essai on a soumis l'autre de ces poches (poche 2) à vingt cycles directs entre 0 et 2,5 V. La figure 7 montre le voltampérogramme. On note un très fort courant à une tension proche aux alentours de 2,3 V ; cette pointe de tension diminue avec le nombre de cycles. La figure 8 l'évolution de la capacitance des dix derniers cycles entre 0 V et 2,5 V.
La figure 9 compare les deux systèmes après polymérisation in situ : la courbe A représente l'échantillon électropolymérisé avec une montée progressive de la tension (poche 1 ), la courbe B représente l'échantillon électropolymérisé avec une montée directe (poche 2). Les capacitances obtenues avec ces deux variantes sont assez proches, mais on observe que le pic d'électroactivité se situe pour les conditions de montée progressive à environ 0,95 V, alors qu'il se situe à environ 1 ,1 V en montée directe. La figure 10 compare la courbe B de la figure 9 avec la courbe obtenue dans une poche de contrôle, préparée de manière identique à celle de la poche 2, mais sans monomère dans le mélange liquide (courbe C) : on voit que sans monomère l'électropolymérisation n'a pas lieu, et le dispositif n'est pas capable de fonctionner comme un condensateur.
Les figures 1 1 à 14 permettent d'apprécier l'aspect visuel de l'intérieur de la poche après les essais de cyclage. La figure 1 1 montre l'intérieur de la poche ; on n'observe aucune dégradation. La figure 12 monte la feuille de séparateur après électropolymérisation : à gauche la partie du séparateur qui a été en contact avec la face arrière de l'électrode positive, au centre la partie du séparateur pris entre les deux électrodes, à droite la partie du séparateur qui été en contact avec la face arrière de l'électrode négative. La Figure 13 montre les électrodes après électropolymérisation, à droite l'électrode négative en carbone activé, à gauche l'électrode positive formée de VACNT avec dépôt de polymère par électropolymérisation. La figure 14 montre une micrographie électronique à balayage de la électrode positive après cyclage. L'électrolyte après l'essai, la coloration disparait ce qui confirme la consommation du monomère. L'absence de coloration après polymérisation démontre l'absence d'oligomères.
Cet exemple montre que le procédé selon l'invention permet l'électropolymérisation directement dans l'enceinte du condensateur, et qu'un tel dispositif fonctionne en tant que condensateur.
On a fabriqué ainsi des condensateurs dont la capacitance a atteint 6 600 mFa et une densité d'énergie d'environ 0,9 Wh/kg, ramenée à la masse du dispositif final.
On a également réalisé des condensateurs avec d'autres solvants (par exemple le carbonate de propylène), d'autres monomères et d'autres liquides ioniques.
Claims
Revendications
Procédé de fabrication d'un condensateur électrochimique comprenant dans une enveloppe étanche :
o deux électrodes, à savoir une électrode positive et une électrode négative, o un séparateur séparant ladite électrode positive et ladite électrode négative, et o un électrolyte liquide, dans lequel procédé on dépose un polymère par électropolymérisation sur au moins une desdites électrodes, ladite électropolymérisation étant effectuée après la mise en place des deux électrodes et du séparateur dans ladite enveloppe.
Procédé selon la revendication 1 , dans lequel ledit électrolyte liquide comprend au moins un monomère capable de former un film de polymère par électropolymérisation .
Procédé selon la revendication 1 ou 2, dans lequel ladite électropolymérisation est effectuée en appliquant un courant ou une tension auxdites électrodes.
Procédé selon l'une quelconque des revendications 1 à 3, dans lequel on laisse en place lesdites électrodes après l'électropolymérisation.
Procédé selon l'une quelconque des revendications 1 à 4, dans lequel on laisse en place ledit électrolyte liquide après l'électropolymérisation.
Procédé selon l'une quelconque des revendications 1 à 5, dans lequel on procède au scellement hermétique de ladite enveloppe étanche avant de procéder à l'électropolymérisation.
Procédé selon l'une quelconque des revendications 1 à 6, dans lequel ladite enveloppe étanche est une enveloppe souple ou rigide, sélectionnée de préférence dans le groupe formé par : les poches plastiques, les coques rigides en polymère, les coques en tôle revêtue à l'intérieur par un film électriquement isolant, les coques en céramique, les coques en verre.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ladite électropolymérisation comprend un cyclage en courant et en tension, et/ou est effectué en mode puisé, et/ou est effectué en mode galvanostatique.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel lesdites électrodes positive et/ou négative comprennent comprend des nanoobjets, de préférence sélectionnés dans le groupe formé par : les nanopoudres, les nanoobjets allongés, les nanofibres, les nanotubes, les nanotubes en carbone (possiblement dopés par des hétéroatomes), les tapis de nanotubes en carbone verticalement alignés, le graphène, les dérivés de graphène.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel lesdites électrodes positive et négative comprennent un matériau poreux à haute surface spécifique, tel que le charbon actif.
1 1 . Procédé selon l'une quelconque des revendications 1 à 10, dans lequel lesdites électrodes positive et négative comprennent des nanotubes ou nanofibres de carbone, de préférence verticalement alignés.
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , dans lequel ledit film de polymère est un polymère conducteur d'électricité.
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel ledit film de polymère est constitué d'un ou plusieurs polymères ou copolymères sélectionné dans le groupe formé par les polyfluorènes, les polypyrènes, les polyazulènes, les polynaphtalènes, les polypyrroles, les polycarbazoles, les polyindoles, les polyazépines, les polyanilines, les polythiophènes, les poly(p-phénylène sulfide), les polyacétylènes, les poly(p-phénylène vinylène).
14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel ledit au moins un monomère est sélectionné parmi les monomère(s) portant une double liaison et/ou un cycle aromatique et éventuellement un hétéroatome tel qu'un atome d'oxygène, un atome d'azote, un atome de soufre ou un atome de fluor, et est de préférence sélectionné dans le groupe formé par :
o le pyrrole et ses dérivés, et de préférence le 3-méthyl pyrrole, le 3-éthyl pyrrole, le 3-butyl pyrrole, le 3-bromo pyrrole, le 3-méthoxy pyrrole, le 3,4-dichloro pyrrole et le 3,4-dipropoxypyrrole ;
o le carbazole et ses dérivés ;
o l'aniline et ses dérivés ;
o le thiophène et ses dérivés, et de préférence le 3-acide acétique thiophène, le 3,4- éthylène dioxythiophène, le 3-méthyl thiophène, le 3-éthyl thiophène, le 3-butyl
thiophène, le 3-bromo thiophène, le 3-méthoxy thiophène, le 3,4-dichloro thiophène et le 3,4-dipropoxy thiophène.
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel ledit au électrolyte comprend au moins un liquide ionique.
16. Procédé selon l'une quelconque des revendications 1 à 15, dans lequel ledit au moins un liquide ionique comprend au moins un cation sélectionné dans le groupe formé par : 1 -éthyl-3-méthyl imidazolium, 1 -méthyl-3-propyl imidazolium, 1 -méthyl-3- isopropyl imidazolium, 1 -butyl-3-méthyl imidazolium, 1 -éthyl-2,3-diméthyl imidazolium, 1 -éthyl-3,4-diméthyl imid-azolium, N-propyl pyridinium, N-butyl pyridinium, N-tert-butyl pyridinium, N-tert-butanol-pentyl pyridinium, N-méthyl-N- propylpyrrolidinium, N-butyl-N-méthylpyrrolidinium, N-méthyl-N-pentyl pyrrolidinium, N-propoxyéthyl-N-méthyl pyrrolidinium, N-méthyl-N-propyl piperidinium, N-méthyl-N- isopropyl piperidinium, N-butyl-N-méthyl piperidinium, N-N-isobutylméthyl piperidinium, N-sec-butyl-N-méthyl piperidinium, N-méthoxy-N-éthylméthyl piperidinium, N-éthoxyéthyl-N-méthyl piperidinium ; butyl-N-N,N,N-triméthyl ammonium, N-éthyl-N,N-diméthyl-N-propyl ammonium, N-butyl-N-éthyl-N,N-diméthyl ammonium, (1 -éthyl-3-méthyl-imidazolium-bis(trifluorométhane sulfonyl) imide, N- butyl-N-méthyl-pyrrolidinium bis(trifluorométhane-sulfonyl) imide.
17. Procédé selon l'une quelconque des revendications 1 à 16, dans lequel ledit au moins un liquide ionique comprend au moins un anion sélectionné dans le groupe formé par : fluorure (F"), chlorure (CI"), bromure (Br"), iodure ( ), perchlorate (CI04 "), nitrate (N03 "), tétraflu oroborate (BF4 "), hexafluorophosphate (PF6 "), N(CN)2 " ; RS03 " ,
RCOO" (où R est un groupe alkyl ou phényle, possiblement substitué) ; (CF3)2PF4 ", (CF3)3PF3, (CF3)4PF2-, (CF3)5PF, (CF3)6P", (CF2S03 ")2, (CF2CF2S03-)2, (CF3S02-)2N-, CF3CF2(CF3)2CO-, (CF3S02-)2CH-, (SF5)3C-, (CF3S02S02)3C-, [0(CF3)2C2(CF3)20]2PO, CF3(CF2)7S03 ", bis(trifluoro-méthanesulfonyl) amide, bis(trifluorosulfonyl) amide.
18. Procédé selon l'une quelconque des revendications 1 à 17, dans lequel ledit au moins un liquide ionique comprend au moins un cation sélectionné dans le groupe formé par les dérivés du pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, thiazole, oxazole, triazole, ammonium, pyrrolidine, pyrroline, pyrrole, et piperidine, et
au moins un anion sélectionné dans le groupe formé par F" , CI" , Br" , I" ' N03" , N(CN)2 " , BF4 " , CICv PF6 ", RS03 ", RCOO",
où R est un groupe alkyl ou phénole, (CF3)2PF4 ", (CF3)3PF3! (CF3)4PF2 ", (CF3)5PF", (CF3)6P-, (CF2S03-)2, (CF2CF2S03-)2, (CF3S02-)2N-, CF3CF2(CF3)2CC>-, (CF3S02 " )2CH-, (SF5)3C, (CF3S02)3C, [0(CF3)2C2(CF3)20]2PO-, CF3(CF2)7S03-, 1 -éthyl-3- méthymimidazole bis(trifluoro-méthylsulfonyl)imide ([EMIM][Tf2N]).
19. Procédé selon l'une quelconque des revendications 1 à 18, dans ledit électrolyte liquide comprend en plus au moins un solvant.
20. Procédé selon la revendication 19, dans lequel ledit au moins solvant est sélectionné dans le groupe formé par l'acide acétique, le méthanol, l'éthanol, les glycols liquides
(notamment l'éthylèneglycol et le propylèneglycol), les alcanes halogénés (notamment le dichlorométhane), la diméthylformamide, les cétones (notamment l'acétone et la 2-butanone), l'acétonitrile, le tétrahydrofuranne, la N- méthylpyrrolidone, le diméthyl sulfoxyde, le carbonate de propylène.
21 . Procédé selon l'une quelconque des revendications 1 à 20, dans lequel on enveloppe au moins une desdites électrodes positive ou négative dans ledit séparateur.
22. Procédé selon l'une quelconque des revendications 1 à 21 , dans lequel ledit séparateur est une feuille de polypropylène.
23. Condensateur électrochimique susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 1 à 22.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020503371A JP2020513166A (ja) | 2017-04-03 | 2018-04-03 | 電気化学キャパシタの製造方法 |
US16/500,181 US20210110981A1 (en) | 2017-04-03 | 2018-04-03 | Process for manufacturing electrochemical capacitors |
CN201880031464.5A CN110998770A (zh) | 2017-04-03 | 2018-04-03 | 电化学电容器的制造方法 |
EP18718602.8A EP3607571A1 (fr) | 2017-04-03 | 2018-04-03 | Procédé de fabrication de condensateurs électrochimiques |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1752839A FR3064812B1 (fr) | 2017-04-03 | 2017-04-03 | Procede de fabrication de condensateurs electrochimiques |
FR1752839 | 2017-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018185419A1 true WO2018185419A1 (fr) | 2018-10-11 |
Family
ID=59031160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2018/050820 WO2018185419A1 (fr) | 2017-04-03 | 2018-04-03 | Procédé de fabrication de condensateurs électrochimiques |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210110981A1 (fr) |
EP (1) | EP3607571A1 (fr) |
JP (1) | JP2020513166A (fr) |
CN (1) | CN110998770A (fr) |
FR (1) | FR3064812B1 (fr) |
WO (1) | WO2018185419A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110349756A (zh) * | 2019-05-21 | 2019-10-18 | 浙江工业大学 | 一种自支撑薄膜及其制备方法 |
WO2020193875A1 (fr) | 2019-03-25 | 2020-10-01 | Nawatechnologies | Procédé de fabrication de condensateurs électrochimiques |
CN114555673A (zh) * | 2019-11-14 | 2022-05-27 | 松下知识产权经营株式会社 | 介电组合物、介电膜和电容器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112795144A (zh) * | 2021-01-29 | 2021-05-14 | 森曼泰冷链科技(绍兴)有限公司 | 含导电聚合物的水分散液及其制备方法 |
CN117467226B (zh) * | 2023-12-28 | 2024-03-19 | 上海拜安传感技术有限公司 | 组合物、传感薄膜、传感器、制备方法及应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003038846A1 (fr) | 2001-11-01 | 2003-05-08 | Maxwell Technologies, Inc. | Condensateur electrochimique double couche a electrodes a poudre de charbon |
JP2004296931A (ja) * | 2003-03-27 | 2004-10-21 | Nippon Chemicon Corp | 固体電解コンデンサとその製造方法 |
JP2005109264A (ja) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | 固体電解コンデンサの製造方法 |
JP2007019469A (ja) * | 2005-06-10 | 2007-01-25 | Matsushita Electric Ind Co Ltd | 電気化学キャパシタと、その製造方法 |
WO2007062126A1 (fr) | 2005-11-22 | 2007-05-31 | Maxwell Technologies, Inc. | Electrode pou ultracondensateur presentant une teneur en liant regulee |
US20090290288A1 (en) | 2003-09-12 | 2009-11-26 | Maxwell Technologies, Inc. | Electrical energy storage devices with separator between electrodes and methods for fabricating the devices |
EP2591151A1 (fr) | 2010-07-07 | 2013-05-15 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Procédé de préparation d'un matériau composite, matériau ainsi obtenu et ses utilisations |
CN104637690A (zh) * | 2015-02-06 | 2015-05-20 | 肇庆绿宝石电子科技股份有限公司 | 一种固体电解质铝电解电容器及其制造方法 |
WO2015071408A1 (fr) | 2013-11-14 | 2015-05-21 | Commissariat à l'énergie atomique et aux énergies alternatives | Procede de fabrication au defile et en continu de nanostructures alignees sur un support et dispositif associe |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270226A (ja) * | 2001-03-12 | 2002-09-20 | Ngk Insulators Ltd | リチウム二次電池 |
CN100589218C (zh) * | 2005-09-05 | 2010-02-10 | 哈尔滨工程大学 | 内聚合式凝胶聚合物电解质超级电容器的制备工艺 |
CN101492545B (zh) * | 2009-02-17 | 2011-04-06 | 武汉工程大学 | 超级电容器用聚吡咯/聚噻吩衍生物复合导电高分子材料的制备方法 |
CN101527204B (zh) * | 2009-04-08 | 2011-11-16 | 华东师范大学 | 基于聚丙烯酰胺凝胶电解质的碳基超级电容器及制备方法 |
WO2013031642A1 (fr) * | 2011-08-29 | 2013-03-07 | 株式会社村田製作所 | Dispositif accumulateur |
CN103456505B (zh) * | 2012-05-31 | 2017-02-08 | 海洋王照明科技股份有限公司 | 一种聚乙烯基咔唑基凝胶聚合物电解质电容器的制备方法 |
-
2017
- 2017-04-03 FR FR1752839A patent/FR3064812B1/fr not_active Expired - Fee Related
-
2018
- 2018-04-03 US US16/500,181 patent/US20210110981A1/en not_active Abandoned
- 2018-04-03 CN CN201880031464.5A patent/CN110998770A/zh active Pending
- 2018-04-03 JP JP2020503371A patent/JP2020513166A/ja active Pending
- 2018-04-03 EP EP18718602.8A patent/EP3607571A1/fr not_active Withdrawn
- 2018-04-03 WO PCT/FR2018/050820 patent/WO2018185419A1/fr unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003038846A1 (fr) | 2001-11-01 | 2003-05-08 | Maxwell Technologies, Inc. | Condensateur electrochimique double couche a electrodes a poudre de charbon |
JP2004296931A (ja) * | 2003-03-27 | 2004-10-21 | Nippon Chemicon Corp | 固体電解コンデンサとその製造方法 |
US20090290288A1 (en) | 2003-09-12 | 2009-11-26 | Maxwell Technologies, Inc. | Electrical energy storage devices with separator between electrodes and methods for fabricating the devices |
JP2005109264A (ja) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | 固体電解コンデンサの製造方法 |
JP2007019469A (ja) * | 2005-06-10 | 2007-01-25 | Matsushita Electric Ind Co Ltd | 電気化学キャパシタと、その製造方法 |
WO2007062126A1 (fr) | 2005-11-22 | 2007-05-31 | Maxwell Technologies, Inc. | Electrode pou ultracondensateur presentant une teneur en liant regulee |
EP2591151A1 (fr) | 2010-07-07 | 2013-05-15 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Procédé de préparation d'un matériau composite, matériau ainsi obtenu et ses utilisations |
WO2015071408A1 (fr) | 2013-11-14 | 2015-05-21 | Commissariat à l'énergie atomique et aux énergies alternatives | Procede de fabrication au defile et en continu de nanostructures alignees sur un support et dispositif associe |
CN104637690A (zh) * | 2015-02-06 | 2015-05-20 | 肇庆绿宝石电子科技股份有限公司 | 一种固体电解质铝电解电容器及其制造方法 |
Non-Patent Citations (6)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020193875A1 (fr) | 2019-03-25 | 2020-10-01 | Nawatechnologies | Procédé de fabrication de condensateurs électrochimiques |
FR3094555A1 (fr) | 2019-03-25 | 2020-10-02 | Nawatechnologies | Procédé de fabrication de condensateurs électrochimiques |
CN110349756A (zh) * | 2019-05-21 | 2019-10-18 | 浙江工业大学 | 一种自支撑薄膜及其制备方法 |
CN114555673A (zh) * | 2019-11-14 | 2022-05-27 | 松下知识产权经营株式会社 | 介电组合物、介电膜和电容器 |
Also Published As
Publication number | Publication date |
---|---|
CN110998770A (zh) | 2020-04-10 |
US20210110981A1 (en) | 2021-04-15 |
FR3064812B1 (fr) | 2022-06-24 |
JP2020513166A (ja) | 2020-04-30 |
EP3607571A1 (fr) | 2020-02-12 |
FR3064812A1 (fr) | 2018-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3607571A1 (fr) | Procédé de fabrication de condensateurs électrochimiques | |
Suriyakumar et al. | Role of polymers in enhancing the performance of electrochemical supercapacitors: a review | |
CN107533923B (zh) | 电解电容器 | |
JP7089874B2 (ja) | 電解コンデンサ | |
US8907133B2 (en) | Electrolyte compositions and electrochemical double layer capacitors formed there from | |
JP7233016B2 (ja) | 電解コンデンサおよびその製造方法 | |
Suominen et al. | Electropolymerized polyazulene as active material in flexible supercapacitors | |
WO2014088712A1 (fr) | Compositions d'électrolyte et condensateurs à double couche électrochimique formés à partir desdites compositions d'électrolyte | |
KR20180104126A (ko) | 전도성 중합체 | |
Sandoval et al. | Electrochemical properties of poly (3, 4-ethylenedioxythiophene) grown on Pt (111) in imidazolium ionic liquids | |
JP7233383B2 (ja) | アルミニウム基板、配向カーボンナノチューブ及び導電性有機ポリマーを含む電極の調製方法、電極並びにそれらの使用 | |
Łępicka et al. | A redox conducting polymer of a meso-Ni (II)-SaldMe monomer and its application for a multi-composite supercapacitor | |
US20070206342A1 (en) | High Dielectric, Non-Linear Nano-Capacitor | |
US20170241036A1 (en) | Method of Forming a Dielectric Through Electrodeposition on an Electrode For a Capacitor | |
US7888229B2 (en) | Method for manufacturing an energy storage device | |
WO2020039145A1 (fr) | Procédé de croissance de nanotubes de carbone en surface et dans le volume d'un substrat carboné poreux et utilisation pour préparer une électrode | |
CN102592847B (zh) | 固体电解电容器及其制造方法 | |
EP3188203A1 (fr) | Solution électrolytique et dispositif électrochimique | |
Vaught et al. | Flexible zinc-ion hybrid micro-supercapacitors with polymeric current collector for integrated energy storage in wearable devices | |
Jung et al. | Aniline-substituted viologen-containing redox-active electrolytes for supercapacitors | |
FR2988900A1 (fr) | Electrode pour supercondensateur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18718602 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020503371 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018718602 Country of ref document: EP Effective date: 20191104 |