+

WO2018184495A1 - 一步法构建扩增子文库的方法 - Google Patents

一步法构建扩增子文库的方法 Download PDF

Info

Publication number
WO2018184495A1
WO2018184495A1 PCT/CN2018/080864 CN2018080864W WO2018184495A1 WO 2018184495 A1 WO2018184495 A1 WO 2018184495A1 CN 2018080864 W CN2018080864 W CN 2018080864W WO 2018184495 A1 WO2018184495 A1 WO 2018184495A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplicon
seq
sequence
gene
chr7
Prior art date
Application number
PCT/CN2018/080864
Other languages
English (en)
French (fr)
Inventor
阎海
王思振
焦宇辰
徐大勇
郑乔松
师晓
Original Assignee
北京泛生子基因科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京泛生子基因科技有限公司 filed Critical 北京泛生子基因科技有限公司
Priority to SG11201908777P priority Critical patent/SG11201908777PA/en
Priority to KR1020197024150A priority patent/KR102204274B1/ko
Priority to JP2020502754A priority patent/JP2020512405A/ja
Priority to EP18780976.9A priority patent/EP3608452A4/en
Priority to US16/481,938 priority patent/US11155862B2/en
Publication of WO2018184495A1 publication Critical patent/WO2018184495A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/191Modifications characterised by incorporating an adaptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/122Massive parallel sequencing

Definitions

  • the invention relates to the field of biotechnology, and in particular to a method for rapidly constructing an amplicon library by one-step method.
  • NGS Next-generation sequencing
  • amplicon library in the Life NGS platform is cumbersome, requires PCR amplification, digestion, addition, and purification, and takes about 5 hours; and because of the need to open the lid in a multi-step operation, the library is easy to use. Contaminated, the library loss rate is high; in addition, in the traditional method of constructing the amplicon library, the cost of establishing a library for a single sample is relatively high, 200-1000 yuan / case.
  • the method can construct the amplicon library by simple PCR in a simple and rapid manner, and since the barcode is introduced before the start of PCR, the possibility of cross-contamination between the sample and the library is greatly reduced, and the requirements of the experimental site partition can be simplified.
  • the method also controls the cost of establishing a single sample library at 30 yuan/case.
  • the present invention provides the following technical solutions:
  • a method for constructing an amplicon library of a DNA sample comprising the steps of:
  • a primer combination for synthesizing an amplicon library for constructing a DNA sample comprising:
  • An upstream fusion primer designed according to the target amplicon comprising a first linker sequence (Bridge sequence) arranged in the order of 5' to 3' and a specific upstream primer sequence designed according to the target amplicon;
  • downstream fusion primer designed according to the target amplicon
  • the downstream fusion primer comprising a second linker sequence (trP1 sequence) arranged in the order of 5' to 3' and a specific downstream primer sequence designed according to the target amplicon;
  • An upstream universal primer comprising a third linker sequence (A sequence), a barcode sequence and a first linker sequence arranged in the order of 5' to 3';
  • a downstream universal primer comprising a universal sequence (Uni sequence) and a second linker sequence arranged in the order of 5' to 3';
  • the first linker sequence comprises the sequence of SEQ ID: 1, and the nucleotide sequence of the sequence of SEQ ID: 1 is GGCATACGTCCTCGTCTA.
  • the second linker sequence comprises the sequence of SEQ ID: 2, and the nucleotide sequence of the sequence of SEQ ID: 2 is TCTATGGGCAGTCGGTGAT.
  • the third linker sequence comprises the sequence of SEQ ID:3, and the nucleotide sequence of the sequence of SEQ ID:3 is CCATCTCATCCCTGCGTGTCTCCGACTCAG.
  • the universal sequence comprises the sequence of SEQ ID: 4, and the nucleotide sequence of the sequence of SEQ ID: 4 is CCACTACGCCTCCGCTTTCCTC.
  • the barcode sequence in the upstream universal primer is the same;
  • the barcode sequences in the upstream universal primers are different.
  • the barcode sequence corresponds to the sample.
  • the barcode sequence is different between different samples. As long as different samples can be distinguished, the barcode sequence is not specific and its sequence can be changed.
  • the above method for constructing an amplicon library of a DNA sample is in another embodiment, an upstream fusion primer designed according to any one of the target amplicon, a downstream fusion primer designed according to any one of the target amplicon, and upstream
  • the universal primer and the downstream universal primer were both at a concentration of 100 ⁇ M.
  • the upstream fusion primer designed according to the target amplicon are a combination of downstream fusion primers designed according to each target amplicon.
  • the molar ratio of the upstream fusion primer designed according to any one of the target amplicon and the downstream fusion primer designed according to the target amplicon is 1:1; the molar ratio of the upstream universal primer to the downstream universal primer is 1:1.
  • the specific amount of upstream universal primers and downstream universal primers should be adjusted according to the number of target amplicons during PCR amplification. For example, when PCR amplification, 5 target amplicons need to be amplified and 22 target amplifications need to be amplified.
  • the specific amount of the upstream universal primer and the downstream universal primer may be different, and a specific amount of the upstream universal primer and the downstream universal primer may be determined by those skilled in the art according to conventional techniques in the art.
  • the DNA sample is genomic DNA.
  • the genomic DNA is extracted from a tissue sample or a formalin-fixed paraffin-embedded sample.
  • the target amplicon comprises at least one selected from the group consisting of 22 target amplicons:
  • the Chr2:29432588-29432707 (Hg19) amplicon of the ALK gene has the sequence shown in SEQ ID:5:
  • the Chr3:178936056-178936179 (Hg19) amplicon of the PIK3CA gene has the sequence shown as SEQ ID:21.
  • the Chr3:178952000-178952092 (Hg19) amplicon of the PIK3CA gene has the sequence shown as SEQ ID:22:
  • the Chr17:7578389-7578537 (Hg19) amplicon of the TP53 gene has the sequence shown as SEQ ID:26:
  • the specific upstream primer sequence designed according to the Chr2:29432588-29432707 (Hg19) amplicon of the ALK gene is set forth in SEQ ID:27. :ACTGCCTCTTGACCTGTCC; the specific downstream primer sequence designed according to the Chr2:29432588-29432707 (Hg19) amplicon of the ALK gene is shown as SEQ ID: 28: TAAGGGACAAGCAGCCACAC.
  • the specific upstream primer sequence designed according to the Chr2:29443616-29443730 (Hg19) amplicon of the ALK gene is set forth in SEQ ID:29. :CCAGACTCAGCTCAGTTAATTTTGG; the specific downstream primer sequence designed according to the Chr2:29443616-29443730 (Hg19) amplicon of the ALK gene is shown as SEQ ID: 30: CGGAGGAAGGACTTGAGGT.
  • the specific upstream primer sequence designed according to the Chr7:140453091-140453197 (Hg19) amplicon of the BRAF gene is represented by SEQ ID:31. : CTACTGTTTTCCTTTACTTACTACACCTC; the specific downstream primer sequence designed according to the Chr7:140453091-140453197 (Hg19) amplicon of the BRAF gene is shown as SEQ ID: 32: CCTCAATTCTTACCATCCACAAAATGG.
  • the specific upstream primer sequence designed according to the Chr7:55241604-55241726 (Hg19) amplicon of the EGFR gene is set forth in SEQ ID:33. :TGACCCTTGTCTCTGTGTTCTTG; the specific downstream primer sequence designed according to the Chr7:55241604-55241726 (Hg19) amplicon of the EGFR gene is shown as SEQ ID: 34: CCAGGGACCTTACCTTATACACC.
  • the specific upstream primer sequence designed according to the Chr7:55242398-55242513 (Hg19) amplicon of the EGFR gene is set forth in SEQ ID:35. :ACAATTGCCAGTTAACGTCTTCC;
  • the specific downstream primer sequence designed according to the Chr7:55242398-55242513 (Hg19) amplicon of the EGFR gene is shown as SEQ ID: 36: ACACAGCAAAGCAGAAACTCAC.
  • the specific upstream primer sequence designed according to the Chr7:55248970-55249096 (Hg19) amplicon of the EGFR gene is set forth in SEQ ID:37. :GAAGCCACACTGACGTGC; the specific downstream primer sequence designed according to the Chr7:55248970-55249096 (Hg19) amplicon of the EGFR gene is shown as SEQ ID: 38: GTGTTCCCGGACATAGTCCAG.
  • the specific upstream primer sequence designed according to the Chr7: 55259505-55259621 (Hg19) amplicon of the EGFR gene is set forth in SEQ ID: 39. :CCGCAGCATGTCAAGATCACA;
  • the specific downstream primer sequence designed according to the Chr7:55259505-55259621 (Hg19) amplicon of the EGFR gene is shown as SEQ ID: 40: TAAACAATACAGCTAGTGGGAAGGC.
  • the specific upstream primer sequence designed according to the Chr17:37880969-37881082 (Hg19) amplicon of the ERBB2 gene is set forth in SEQ ID:41. :CATACCCTCTCAGCGTACCC; the specific downstream primer sequence designed according to the Chr17:37880969-37881082 (Hg19) amplicon of the ERBB2 gene is shown as SEQ ID: 42: CGGACATGGTCTAAGAGGCAG.
  • the specific upstream primer sequence designed according to the Chr12:25380261-25380363 (Hg19) amplicon of the KRAS gene is set forth in SEQ ID:43. :TGCACTGTAATAATCCAGACTGTGT; the specific downstream primer sequence designed according to the Khr12:25380261-25380363 (Hg19) amplicon of the KRAS gene is shown as SEQ ID: 44: AGTCCTCATGTACTGGTCCCTC.
  • the specific upstream primer sequence designed according to the Chr12:25398183-25398310 (Hg19) amplicon of the KRAS gene is set forth in SEQ ID: 45. : AAGGCCTGCTGAAAATGACTGA; specific downstream primer sequence designed according to the Khr12:25398183-25398310 (Hg19) amplicon of the KRAS gene as shown in SEQ ID: 46: AAAGAATGGTCCTGCACCAGTA.
  • the specific upstream primer sequence designed according to the Chr7: 116340233-116340335 (Hg19) amplicon of the MET gene is set forth in SEQ ID: 47. :TCGATCTGCCATGTGTGCATT;
  • the specific downstream primer sequence designed according to the Chr7:116340233-116340335 (Hg19) amplicon of the MET gene is shown as SEQ ID: 48: GGGAACTGATGTGACTTACCCT.
  • the specific upstream primer sequence designed according to the Chr7: 116411880-116412005 (Hg19) amplicon of the MET gene is set forth in SEQ ID: 49. : CCATGATAGCCGTCTTTAACAAGC; the specific downstream primer sequence designed according to the 219 gene of Chr7: 116411880-116412005 (Hg19) amplicon is shown as SEQ ID: 50: AGCTCGGTAGTCTACAGATTCATTT.
  • the specific upstream primer sequence designed according to the Chr7: 116417426-116417546 (Hg19) amplicon of the MET gene is set forth in SEQ ID: 51. : ATGTTACGCAGTGCTAACCAAG; specific downstream primer sequence designed according to the 219 gene of Chr7: 116417426-116417546 (Hg19) amplicon is shown as SEQ ID: 52: GTTGCAAACCACAAAAGTATACTCCA.
  • the specific upstream primer sequence designed according to the Chr7: 116423399-116423499 (Hg19) amplicon of the MET gene is set forth in SEQ ID: 53. : CAGTCAAGGTTGCTGATTTTGGTC; the specific downstream primer sequence designed according to the 219 gene of Chr7: 116423399-116423499 (Hg19) amplicon is shown as SEQ ID: 54: CACATCTGACTTGGTGGTAAACTT.
  • the specific upstream primer sequence designed according to the Chr1:115256507-115256586 (Hg19) amplicon of the NRAS gene is set forth in SEQ ID: 55. :CACCCCCAGGATTCTTACAGAAAA; the specific downstream primer sequence designed according to the Chr1:115256507-115256586 (Hg19) amplicon of the NRAS gene is shown as SEQ ID: 56: TTCGCCTGTCCTCATGTATTGG.
  • the specific upstream primer sequence designed according to the Chr1:115258651-115258755 (Hg19) amplicon of the NRAS gene is set forth in SEQ ID: 57. : CTGAGTACAAACTGGTGGTGGT; the specific downstream primer sequence designed according to the Chr1:115258651-115258755 (Hg19) amplicon of the NRAS gene is shown as SEQ ID: 58: TGAGAGACAGGATCAGGTCAGC.
  • the specific upstream primer sequence designed according to the Chr3: 178936056-178936179 (Hg19) amplicon of the PIK3CA gene is set forth in SEQ ID: 59. : GGAAAATGACAAAGAACAGCTCAAAG; the specific downstream primer sequence designed according to the Chr3:178936056-178936179 (Hg19) amplicon of the PIK3CA gene is shown as SEQ ID: 60: AACATGCTGAGATCAGCCAAATTC.
  • the specific upstream primer sequence designed according to the Chr3: 178952000-178952092 (Hg19) amplicon of the PIK3CA gene is set forth in SEQ ID: 61. :ATGCCAGAACTACAATCTTTTGATGAC; the specific downstream primer sequence designed according to the Chr3:178952000-178952092 (Hg19) amplicon of the PIK3CA gene is shown as SEQ ID: 62: CAATCCATTTTTGTTGTCCAGCC.
  • the specific upstream primer sequence designed according to the Chr17:7577027-7577154 (Hg19) amplicon of the TP53 gene is set forth in SEQ ID: 63. : CTCTTTTCCTATCCTGAGTAGTGGTAATC; the specific downstream primer sequence designed according to the Chr17:7577027-7577154 (Hg19) amplicon of the TP53 gene is shown as SEQ ID: 64: CTTCTTGTCCTGCTTGCTTACC.
  • the specific upstream primer sequence designed according to the Chr17:7577507-7577613 (Hg19) amplicon of the TP53 gene is set forth in SEQ ID:65. :TCTTGGGCCTGTGTTATCTCCTAG; the specific downstream primer sequence designed according to the Chr17:7577507-7577613 (Hg19) amplicon of the TP53 gene is represented by SEQ ID: 66: GCAAGTGGCTCCTGACCTG.
  • the specific upstream primer sequence designed according to the Chr17:7578182-7578298 (Hg19) amplicon of the TP53 gene is set forth in SEQ ID:67. :CCTCTGATTCCTCACTGATTGCTC; the specific downstream primer sequence designed according to the Chr17:7578182-7578298 (Hg19) amplicon of the TP53 gene is shown as SEQ ID: 68: CCCCAGTTGCAAACCAGAC.
  • the specific upstream primer sequence designed according to the Chr17:7578389-7578537 (Hg19) amplicon of the TP53 gene is represented by SEQ ID: 69. :CAGTACTCCCCTGCCCTCAA; the specific downstream primer sequence designed according to the Chr17:7578389-7578537 (Hg19) amplicon of the TP53 gene is shown as SEQ ID: 70: ACCATCGCTATCTGAGCAGC.
  • the target amplicon is the following 22 species:
  • Chr2:29443616-29443730 (Hg19) amplicon of ALK gene, the sequence of which is shown in SEQ ID:6;
  • Chr12:25380261-25380363 (Hg19) amplicon of KRAS gene, the sequence of which is shown in SEQ ID: 13;
  • Chr12:25398183-25398310 (Hg19) amplicon of KRAS gene, the sequence of which is shown as SEQ ID:14;
  • the Chr17:7578389-7578537 (Hg19) amplicon of the TP53 gene has the sequence shown as SEQ ID:26.
  • the above method for constructing an amplicon library of a DNA sample is another embodiment, a combination of upstream fusion primers designed according to the above 22 target amplicon, and a downstream fusion primer designed according to the above 22 target amplicon
  • the molar ratio between the combination, the upstream universal primer and the downstream universal primer is: 0.1-0.3: 0.1-0.3: 0.5-1: 0.5-1, for example 0.1: 0.1: 0.5: 0.5.
  • the PCR reaction system comprises the following components:
  • the PCR premix is KAPA HiFi PCR Kits 2 ⁇ .
  • reaction procedure for performing PCR is:
  • a step of purifying the PCR amplification product is further included.
  • the present invention has the following beneficial effects:
  • the invention is based on the design of the PGM platform, and can effectively amplify multiple target regions (amplicons) at the same time.
  • the invention only involves one round of PCR reaction and one round of product purification steps, which greatly simplifies the experimental operation of the existing commercial kit (such as PCR process, purification step, digestion and joints, etc.) Step), saving the construction time, the entire database construction process only takes 2.5 hours (including the same sample of DNA and RNA database).
  • the amplicon library obtained by the method has a single structure and reliable data, and the DNA strand composition of the obtained library is simple and clear, and the subsequent bioinformatics analysis is more simplified.
  • Example 1 is a distribution diagram of an amplification product detected after completion of construction of an amplicon library in Example 1 of the present invention.
  • Figure 2 is a related parameter of 22 amplicons in the library obtained in Example 1 of the present invention.
  • the samples to be tested were 6 FFPE samples (ie, formalin-fixed paraffin-embedded samples, FFPE stands for Formalin-Fixed and Parrffin-Embedded), 4 of which were FFPE samples from patients with non-small cell lung cancer, and 2 of which were non- FFPE samples from patients with cancer.
  • Amplified primers were used to construct an amplicon DNA library from 6 FFPE samples using a specific designed fusion primer. The specific process is as follows:
  • An upstream fusion primer designed according to the target amplicon comprising a first linker sequence arranged in the order of 5' to 3' and a specific upstream primer sequence designed according to the target amplicon;
  • downstream fusion primer designed according to the target amplicon
  • the downstream fusion primer comprising a second linker sequence arranged in the order of 5' to 3' and a specific downstream primer sequence designed according to the target amplicon
  • An upstream universal primer comprising a third linker sequence, a barcode sequence and a first linker sequence arranged in the order of 5' to 3';
  • a downstream universal primer comprising a universal sequence and a second linker sequence arranged in the order of 5' to 3'.
  • the information of the specific upstream primer sequence and the specific downstream primer sequence designed according to the target amplicon is as follows:
  • the first linker sequence is GGCATACGTCCTCGTCTA
  • the second linker sequence is TCTATGGGCAGTCGGTGAT
  • the third linker sequence is CCATCTCATCCCTGCGTGTCTCCGACTCAG
  • the universal sequence is CCACTACGCCTCCGCTTTCCTC.
  • the specific PCR reaction system is as follows:
  • Primer combinations for constructing an amplicon library of the same DNA sample were prepared by the following methods: (1) the upstream universal primer synthesized in step 2, the downstream universal primer, and each upstream fusion primer designed according to the 22 target amplicon And each downstream fusion primer was dissolved in water to a concentration of 100 ⁇ M; (2) 22 upstream primers with a serial number ranging from small to large were respectively 100 ⁇ M, and the molar ratio was 1:2:1:4:2:1:2:4.
  • the fusion primers are mixed in an equal volume to obtain a downstream fusion primer combination, and then the upstream fusion primer combination and the downstream fusion primer combination are mixed in equal volume; (3) the upstream universal primers having a concentration of 100 ⁇ M and the downstream universal primer are mixed in equal volumes; 4) The upstream fusion primer combination, the downstream fusion primer combination, the upstream universal primer and the downstream universal primer are mixed according to a molar ratio of 0.1:0.1:0.5:0.5, so that the prepared amplicons for constructing the DNA sample are obtained.
  • Primer combinations of libraries Six different sets of samples to be tested need to correspond to primer combinations containing six different barcode sequence tags.
  • the PCR instrument uses the 2720 Thermal Cycler of Applied Bio-system.
  • the PCR reaction procedure is as follows:
  • the magnetic beads were vortexed again sufficiently, and 20 ul of magnetic beads were added to the system, repeatedly blown 5 times or more, or vortexed thoroughly, and allowed to stand at room temperature for 5 minutes.
  • Figure 1 shows the distribution of amplified products detected by Agilent 2200 TapeStation Systems after the completion of the library.
  • the abscissa is the length of the fragment
  • the ordinate is the signal intensity (FU)
  • the lower peak is the 25 bp position marker.
  • the upper peak is a 1500 bp position marker.
  • the PCR products obtained by PCR amplification are concentrated in the range of 241-271 bp.
  • Figure 1 shows that the experimental results are consistent with the experimental design. From Figure 1, the size of the constructed library can be judged. And library concentration.
  • the amplicon library obtained by the fusion primer one-step method described above was subjected to amplicon sequencing using the 318 chip of the Ion PGM platform, and the data amount of each library was 50 M bps.
  • the average sequencing depth of each sample was not less than 1600X, and the single amplicon sequencing depth reached 600X.
  • the obtained sequencing results are shown in Fig. 2. From Fig. 2, it is further possible to analyze whether or not each amplicon of the 22 amplicons is amplified and the amplification uniformity of each amplicon.
  • the results of sequencing were analyzed by data processing and bioinformatics analysis to obtain mutations in the detected genes.
  • the data processing process includes sequencing data conversion, quality control, sequence alignment (reference genome is NCBI GRCh37/Hg19), mutation site analysis and other processes, and the mutation information of the detected sample is obtained through data processing analysis.
  • the actual sample collection was as follows: Among the FFPE samples of 6 subjects, 2 cases of normal human samples did not detect tumor-related mutations, and 4 of the FFPE samples of tumor patients detected Sample1 detected p.R248W mutation, sample2 The p.T790M mutation was detected, the p.G12A mutation was detected in sample3, and the p.E545K mutation was detected in Sample4. This result is consistent with the results of the sanger test. The practical applicability and good specificity of the present invention are fully illustrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一步法快速构建扩增子文库的方法,包括以下步骤:1、合成用于构建DNA样品的扩增子文库的引物组合,所述用于构建DNA样品的扩增子文库的引物组合包括:根据目标扩增子设计的上游融合引物,根据目标扩增子设计的下游融合引物,上游通用引物和下游通用引物;2、构建DNA样品的PCR反应体系;3、进行PCR。

Description

[根据细则37.2由ISA制定的发明名称] 一步法构建扩增子文库的方法
本发明要求北京泛生子基因科技有限公司于2017年4月5日向中国专利局提交的、申请号为201710218529.4、发明名称为“一步法快速构建扩增子文库的方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及生物技术领域,特别涉及一种一步法快速构建扩增子文库的方法。
背景技术
下一代测序(next-generation sequencing,NGS)由于高通量、高灵敏度、高度自动化等特性,近年来在疾病的研究和诊断治疗中越来越多地被应用。NGS技术能实现多基因平行检测,比传统检测方法节省样本,且灵敏度更高,能更真实还原肿瘤变异全景。但Life NGS平台中传统的构建扩增子文库的方法步骤繁琐,需要经过PCR扩增、消化、加接头、纯化等步骤,需要花费约5h;并且由于多步骤操作中需要开盖,因此文库易被污染,文库损失率高;另外在传统的构建扩增子文库的方法中,单个样品建立文库的成本较高,为200-1000元/例。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种一步法快速构建扩增子文库的方法。该方法可以简便、快速的经1步PCR构建扩增子文库,且由于在PCR起始前就引入barcode,使得样本及文库间交叉污染的可能性大大降低,并能简化实验场地分区的要求,该方法还能将单个样品建立文库的成本控制在30元/例。
为实现上述目的,本发明提供了以下技术方案:
一种用于构建DNA样品的扩增子文库的方法,包括以下步骤:
1、合成用于构建DNA样品的扩增子文库的引物组合,所述用于构建DNA样品的扩增子文库的引物组合包括:
根据目标扩增子设计的上游融合引物,所述上游融合引物包括按照5’到3’的方向依次 排列的第一接头序列(Bridge序列)和根据目标扩增子设计的特异性上游引物序列;
根据目标扩增子设计的下游融合引物,所述下游融合引物包括按照5’到3’的方向依次排列的第二接头序列(trP1序列)和根据目标扩增子设计的特异性下游引物序列;
上游通用引物,所述上游通用引物包括按照5’到3’的方向依次排列的第三接头序列(A序列)、barcode序列和第一接头序列;和
下游通用引物,所述下游通用引物包括按照5’到3’的方向依次排列的通用序列(Uni序列)和第二接头序列;
2、构建DNA样品的PCR反应体系,将根据目标扩增子设计的上游融合引物、根据目标扩增子设计的下游融合引物、上游通用引物和下游通用引物混合以作为PCR反应体系中的引物组合;
3、进行PCR。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述第一接头序列包括SEQ ID:1序列,SEQ ID:1序列的核苷酸序列为GGCATACGTCCTCGTCTA。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述第二接头序列包括SEQ ID:2序列,SEQ ID:2序列的核苷酸序列为TCTATGGGCAGTCGGTGAT。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述第三接头序列包括SEQ ID:3序列,SEQ ID:3序列的核苷酸序列为CCATCTCATCCCTGCGTGTCTCCGACTCAG。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述通用序列包括SEQ ID:4序列,SEQ ID:4序列的核苷酸序列为CCACTACGCCTCCGCTTTCCTC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,用于构建同一个DNA样品的扩增子文库的引物组合中,上游通用引物中的barcode序列相同;用于构建不同DNA样品的扩增子文库的引物组合中,上游通用引物中的barcode序列不同。barcode序列是与样品相对应的,不同样品之间的barcode序列不同,只要能区分不同样品就可以,因此barcode序列不是特异性的,其序列可以变动。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据任意一种目标扩增子设计的上游融合引物、根据任意一种目标扩增子设计的下游融合引物、上游通用引物和下游通用引物的浓度均为100μM。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,当同一个PCR反应中的目标扩增子的数量>1时,所述根据目标扩增子设计的上游融合引物为根据每一 种目标扩增子设计的上游融合引物的组合,所述根据目标扩增子设计的下游融合引物为根据每一种目标扩增子设计的下游融合引物的组合。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据任意一种目标扩增子设计的上游融合引物和根据该目标扩增子设计的下游融合引物的摩尔比为1:1;所述上游通用引物和下游通用引物的摩尔比为1:1。上游通用引物和下游通用引物的具体用量要根据PCR扩增时目标扩增子的数量进行调整,如:PCR扩增时,需扩增5种目标扩增子和需扩增22种目标扩增子时,上游通用引物和下游通用引物的具体用量可能不同,本领域技术人员可根据本领域的常规技术手段确定上游通用引物和下游通用引物的具体用量。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述DNA样品为基因组DNA。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,基因组DNA提取自组织样本或福尔马林固定石蜡包埋样本。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述目标扩增子包括选自下组22种目标扩增子中的至少一个:
ALK基因的Chr2:29432588-29432707(Hg19)扩增子,其序列如SEQ ID:5所示:
Figure PCTCN2018080864-appb-000001
ALK基因的Chr2:29443616-29443730(Hg19)扩增子,其序列如SEQ ID:6所示:
Figure PCTCN2018080864-appb-000002
BRAF基因的Chr7:140453091-140453197(Hg19)扩增子,其序列如SEQ ID:7所示:
Figure PCTCN2018080864-appb-000003
EGFR基因的Chr7:55241604-55241726(Hg19)扩增子,其序列如SEQ ID:8所示:
Figure PCTCN2018080864-appb-000004
Figure PCTCN2018080864-appb-000005
EGFR基因的Chr7:55242398-55242513(Hg19)扩增子,其序列如SEQ ID:9所示:
Figure PCTCN2018080864-appb-000006
EGFR基因的Chr7:55248970-55249096(Hg19)扩增子,其序列如SEQ ID:10所示:
Figure PCTCN2018080864-appb-000007
EGFR基因的Chr7:55259505-55259621(Hg19)扩增子,其序列如SEQ ID:11所示:
Figure PCTCN2018080864-appb-000008
ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子,其序列如SEQ ID:12所示:
Figure PCTCN2018080864-appb-000009
KRAS基因的Chr12:25380261-25380363(Hg19)扩增子,其序列如SEQ ID:13所示:
Figure PCTCN2018080864-appb-000010
KRAS基因的Chr12:25398183-25398310(Hg19)扩增子,其序列如SEQ ID:14所示:
Figure PCTCN2018080864-appb-000011
MET基因的Chr7:116340233-116340335(Hg19)扩增子,其序列如SEQ ID:15所示:
Figure PCTCN2018080864-appb-000012
MET基因的Chr7:116411880-116412005(Hg19)扩增子,其序列如SEQ ID:16所示:
Figure PCTCN2018080864-appb-000013
MET基因的Chr7:116417426-116417546(Hg19)扩增子,其序列如SEQ ID:17所示:
Figure PCTCN2018080864-appb-000014
MET基因的Chr7:116423399-116423499(Hg19)扩增子,其序列如SEQ ID:18所示:
Figure PCTCN2018080864-appb-000015
NRAS基因的Chr1:115256507-115256586(Hg19)扩增子,其序列如SEQ ID:19所示:
Figure PCTCN2018080864-appb-000016
NRAS基因的Chr1:115258651-115258755(Hg19)扩增子,其序列如SEQ ID:20所示:
Figure PCTCN2018080864-appb-000017
PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子,其序列如SEQ ID:21所示:
Figure PCTCN2018080864-appb-000018
PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子,其序列如SEQ ID:22所示:
Figure PCTCN2018080864-appb-000019
TP53基因的Chr17:7577027-7577154(Hg19)扩增子,其序列如SEQ ID:23所示:
Figure PCTCN2018080864-appb-000020
TP53基因的Chr17:7577507-7577613(Hg19)扩增子,其序列如SEQ ID:24所示:
Figure PCTCN2018080864-appb-000021
TP53基因的Chr17:7578182-7578298(Hg19)扩增子,其序列如SEQ ID:25所示:
Figure PCTCN2018080864-appb-000022
TP53基因的Chr17:7578389-7578537(Hg19)扩增子,其序列如SEQ ID:26所示:
Figure PCTCN2018080864-appb-000023
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据ALK基因的Chr2:29432588-29432707(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:27所示:ACTGCCTCTTGACCTGTCC;根据ALK基因的Chr2:29432588-29432707(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:28所示:TAAGGGACAAGCAGCCACAC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据ALK基因的Chr2:29443616-29443730(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:29所示:CCAGACTCAGCTCAGTTAATTTTGG;根据ALK基因的Chr2:29443616-29443730(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:30所示:CGGAGGAAGGACTTGAGGT。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据BRAF基因的Chr7:140453091-140453197(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:31所示:CTACTGTTTTCCTTTACTTACTACACCTC;根据BRAF基因的Chr7:140453091-140453197(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:32所示: CCTCAATTCTTACCATCCACAAAATGG。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据EGFR基因的Chr7:55241604-55241726(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:33所示:TGACCCTTGTCTCTGTGTTCTTG;根据EGFR基因的Chr7:55241604-55241726(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:34所示:CCAGGGACCTTACCTTATACACC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据EGFR基因的Chr7:55242398-55242513(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:35所示:ACAATTGCCAGTTAACGTCTTCC;根据EGFR基因的Chr7:55242398-55242513(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:36所示:ACACAGCAAAGCAGAAACTCAC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据EGFR基因的Chr7:55248970-55249096(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:37所示:GAAGCCACACTGACGTGC;根据EGFR基因的Chr7:55248970-55249096(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:38所示:GTGTTCCCGGACATAGTCCAG。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据EGFR基因的Chr7:55259505-55259621(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:39所示:CCGCAGCATGTCAAGATCACA;根据EGFR基因的Chr7:55259505-55259621(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:40所示:TAAACAATACAGCTAGTGGGAAGGC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:41所示:CATACCCTCTCAGCGTACCC;根据ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:42所示:CGGACATGGTCTAAGAGGCAG。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据KRAS基因的Chr12:25380261-25380363(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:43所示:TGCACTGTAATAATCCAGACTGTGT;根据KRAS基因的Chr12:25380261-25380363(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:44所示:AGTCCTCATGTACTGGTCCCTC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据KRAS基因的Chr12:25398183-25398310(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:45所示: AAGGCCTGCTGAAAATGACTGA;根据KRAS基因的Chr12:25398183-25398310(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:46所示:AAAGAATGGTCCTGCACCAGTA。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据MET基因的Chr7:116340233-116340335(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:47所示:TCGATCTGCCATGTGTGCATT;根据MET基因的Chr7:116340233-116340335(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:48所示:GGGAACTGATGTGACTTACCCT。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据MET基因的Chr7:116411880-116412005(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:49所示:CCATGATAGCCGTCTTTAACAAGC;根据MET基因的Chr7:116411880-116412005(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:50所示:AGCTCGGTAGTCTACAGATTCATTT。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据MET基因的Chr7:116417426-116417546(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:51所示:ATGTTACGCAGTGCTAACCAAG;根据MET基因的Chr7:116417426-116417546(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:52所示:GTTGCAAACCACAAAAGTATACTCCA。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据MET基因的Chr7:116423399-116423499(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:53所示:CAGTCAAGGTTGCTGATTTTGGTC;根据MET基因的Chr7:116423399-116423499(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:54所示:CACATCTGACTTGGTGGTAAACTT。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据NRAS基因的Chr1:115256507-115256586(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:55所示:CACCCCCAGGATTCTTACAGAAAA;根据NRAS基因的Chr1:115256507-115256586(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:56所示:TTCGCCTGTCCTCATGTATTGG。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据NRAS基因的Chr1:115258651-115258755(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:57所示:CTGAGTACAAACTGGTGGTGGT;根据NRAS基因的Chr1:115258651-115258755(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:58所示: TGAGAGACAGGATCAGGTCAGC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:59所示:GGAAAATGACAAAGAACAGCTCAAAG;根据PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:60所示:AACATGCTGAGATCAGCCAAATTC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:61所示:ATGCCAGAACTACAATCTTTTGATGAC;根据PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:62所示:CAATCCATTTTTGTTGTCCAGCC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据TP53基因的Chr17:7577027-7577154(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:63所示:CTCTTTTCCTATCCTGAGTAGTGGTAATC;根据TP53基因的Chr17:7577027-7577154(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:64所示:CTTCTTGTCCTGCTTGCTTACC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据TP53基因的Chr17:7577507-7577613(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:65所示:TCTTGGGCCTGTGTTATCTCCTAG;根据TP53基因的Chr17:7577507-7577613(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:66所示:GCAAGTGGCTCCTGACCTG。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据TP53基因的Chr17:7578182-7578298(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:67所示:CCTCTGATTCCTCACTGATTGCTC;根据TP53基因的Chr17:7578182-7578298(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:68所示:CCCCAGTTGCAAACCAGAC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据TP53基因的Chr17:7578389-7578537(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:69所示:CAGTACTCCCCTGCCCTCAA;根据TP53基因的Chr17:7578389-7578537(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:70所示:ACCATCGCTATCTGAGCAGC。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述目标扩增子为以下22种:
ALK基因的Chr2:29432588-29432707(Hg19)扩增子,其序列如SEQ ID:5所示;
ALK基因的Chr2:29443616-29443730(Hg19)扩增子,其序列如SEQ ID:6所示;
BRAF基因的Chr7:140453091-140453197(Hg19)扩增子,其序列如SEQ ID:7所示;
EGFR基因的Chr7:55241604-55241726(Hg19)扩增子,其序列如SEQ ID:8所示;
EGFR基因的Chr7:55242398-55242513(Hg19)扩增子,其序列如SEQ ID:9所示;
EGFR基因的Chr7:55248970-55249096(Hg19)扩增子,其序列如SEQ ID:10所示;
EGFR基因的Chr7:55259505-55259621(Hg19)扩增子,其序列如SEQ ID:11所示;
ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子,其序列如SEQ ID:12所示;
KRAS基因的Chr12:25380261-25380363(Hg19)扩增子,其序列如SEQ ID:13所示;
KRAS基因的Chr12:25398183-25398310(Hg19)扩增子,其序列如SEQ ID:14所示;
MET基因的Chr7:116340233-116340335(Hg19)扩增子,其序列如SEQ ID:15所示;
MET基因的Chr7:116411880-116412005(Hg19)扩增子,其序列如SEQ ID:16所示;
MET基因的Chr7:116417426-116417546(Hg19)扩增子,其序列如SEQ ID:17所示;
MET基因的Chr7:116423399-116423499(Hg19)扩增子,其序列如SEQ ID:18所示;
NRAS基因的Chr1:115256507-115256586(Hg19)扩增子,其序列如SEQ ID:19所示;
NRAS基因的Chr1:115258651-115258755(Hg19)扩增子,其序列如SEQ ID:20所示;
PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子,其序列如SEQ ID:21所示;
PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子,其序列如SEQ ID:22所示;
TP53基因的Chr17:7577027-7577154(Hg19)扩增子,其序列如SEQ ID:23所示;
TP53基因的Chr17:7577507-7577613(Hg19)扩增子,其序列如SEQ ID:24所示;
TP53基因的Chr17:7578182-7578298(Hg19)扩增子,其序列如SEQ ID:25所示;和
TP53基因的Chr17:7578389-7578537(Hg19)扩增子,其序列如SEQ ID:26所示。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据上述22种目标扩增子设计的上游融合引物的组合、根据上述22种目标扩增子设计的下游融合引物的组合、上游通用引物和下游通用引物之间的摩尔比为:0.1-0.3:0.1-0.3:0.5-1:0.5-1,例如0.1:0.1:0.5:0.5。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,根据ALK基因的Chr2:29432588-29432707(Hg19)扩增子设计的上游融合引物、根据ALK基因的Chr2:29443616-29443730(Hg19)扩增子设计的上游融合引物、根据BRAF基因的Chr7:140453091-140453197(Hg19)扩增子设计的上游融合引物、根据EGFR基因的Chr7: 55241604-55241726(Hg19)扩增子设计的上游融合引物、根据EGFR基因的Chr7:55242398-55242513(Hg19)扩增子设计的上游融合引物、根据EGFR基因的Chr7:55248970-55249096(Hg19)扩增子设计的上游融合引物、根据EGFR基因的Chr7:55259505-55259621(Hg19)扩增子设计的上游融合引物、根据ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子设计的上游融合引物;KRAS基因的Chr12:25380261-25380363(Hg19)扩增子设计的上游融合引物、根据KRAS基因的Chr12:25398183-25398310(Hg19)扩增子设计的上游融合引物;根据MET基因的Chr7:116340233-116340335(Hg19)扩增子设计的上游融合引物、根据MET基因的Chr7:116411880-116412005(Hg19)扩增子设计的上游融合引物、根据MET基因的Chr7:116417426-116417546(Hg19)扩增子设计的上游融合引物、根据MET基因的Chr7:116423399-116423499(Hg19)扩增子设计的上游融合引物、根据NRAS基因的Chr1:115256507-115256586(Hg19)扩增子设计的上游融合引物、根据NRAS基因的Chr1:115258651-115258755(Hg19)扩增子设计的上游融合引物、根据PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子设计的上游融合引物、根据PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子设计的上游融合引物、根据TP53基因的Chr17:7577027-7577154(Hg19)扩增子设计的上游融合引物、根据TP53基因的Chr17:7577507-7577613(Hg19)扩增子设计的上游融合引物、根据TP53基因的Chr17:7578182-7578298(Hg19)扩增子设计的上游融合引物、和根据TP53基因的Chr17:7578389-7578537(Hg19)扩增子设计的上游融合引物的摩尔比为:1:2:1:4:2:1:2:4:2:2:2:2:1:4:2:2:2:2:4:2:4:2。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,PCR反应体系包括以下组分:
PCR预混液 10μl;
DNA样品 1-8μl共20ng;
用于构建同一个DNA样品的扩增子文库的引物组合 2μl;
DNAase-free H2O 补足至20μl。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,所述PCR预混液为KAPA HiFi PCR Kits 2×。
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,进行PCR的反应程序为:
Figure PCTCN2018080864-appb-000024
上述用于构建DNA样品的扩增子文库的方法在另一种实施方式中,PCR反应结束后,还包括对PCR扩增产物进行纯化的步骤。
与现有技术相比,本发明具有如下有益效果:
本发明基于PGM平台设计的,使用其可以准确的同时对多个目标区域(扩增子)进行有效扩增。在使用其进行建库的过程中,本发明只涉及一轮PCR反应及1轮产物纯化步骤,大大的简化了现有商业化试剂盒的实验操作(如PCR过程、纯化步骤以及消化加接头等步骤),节省了建库时间,整个建库流程只需2.5小时(包括了同一样本的DNA和RNA建库)。
有效杜绝样本及文库污染。操作流程的大大简化使我们建库过程更加的安全可靠,操作过程及步骤的减少有效的杜绝了建库过程中有可能造成的文库污染。
简化的生物信息学分析流程。该方法所得到的扩增子文库结构单一,数据可靠,所得文库的DNA链组成简单明了,后续的生物信息学分析更加的简化。
文库构建完成之后,只需Qubit 2.0定量即可,省去了qPCR定量环节,进一步缩短了建库时间并减少了相应的操作步骤,避免繁琐的实验流程可能造成的实验误差。
附图说明
图1是本发明实施例1中扩增子文库构建完成后检测得到的扩增产物分布图。
图2是本发明实施例1中所得文库里22个扩增子的相关参数。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1
待测样本为6份FFPE样本(即:福尔马林固定石蜡包埋样本,FFPE代表Formalin-Fixed and Parrffin-Embedded),其中4份为非小细胞肺癌患者的FFPE样本,另外2份为非肿瘤患者的FFPE样本。利用特异性设计的融合引物采用一步法对6份FFPE样本构建扩增子DNA文库,具体过程如下:
1、基因组DNA的提取:使用Qiagen FFPE DNA Kit(离心柱型)试剂盒提取FFPE样本中的基因组DNA,具体步骤参照试剂盒操作说明,将所得基因组DNA溶解于Tris-HCl缓冲液,Nano Drop检测DNA提取质量,用Qubit 3.0检测样本DNA浓度后,将每份基因组DNA样本稀释到浓度为20ng/μl。
2、设计并合成引物:
根据目标扩增子设计的上游融合引物,所述上游融合引物包括按照5’到3’的方向依次排列的第一接头序列和根据目标扩增子设计的特异性上游引物序列;
根据目标扩增子设计的下游融合引物,所述下游融合引物包括按照5’到3’的方向依次排列的第二接头序列和根据目标扩增子设计的特异性下游引物序列;
上游通用引物,所述上游通用引物包括按照5’到3’的方向依次排列的第三接头序列、barcode序列和第一接头序列;和
下游通用引物,所述下游通用引物包括按照5’到3’的方向依次排列的通用序列和第二接头序列。
构建DNA样品的扩增子文库的引物组合中,根据目标扩增子设计的特异性上游引物序列和特异性下游引物序列的信息如下:
以下表格中给出了不同目标扩增子的信息,并给出了针对这些扩增子设计的特异性上游引物序列Special Primer Start和特异性下游引物序列Special Primer End。另外还给出了根据目标扩增子设计的上游融合引物、根据目标扩增子设计的下游融合引物、上游通用引物和下游通用引物的序列。Puf代表可选择的上游通用引物,Pur代表下游通用引物。
Figure PCTCN2018080864-appb-000025
Figure PCTCN2018080864-appb-000026
Figure PCTCN2018080864-appb-000027
Figure PCTCN2018080864-appb-000028
Figure PCTCN2018080864-appb-000029
第一接头序列为GGCATACGTCCTCGTCTA,第二接头序列为TCTATGGGCAGTCGGTGAT,第三接头序列为CCATCTCATCCCTGCGTGTCTCCGACTCAG,通用序列为CCACTACGCCTCCGCTTTCCTC。
3、形成PCR反应体系,具体PCR反应体系如下:
Figure PCTCN2018080864-appb-000030
用于构建同一个DNA样品的扩增子文库的引物组合通过以下方法配制:(1)将步骤2中合成的上游通用引物、下游通用引物、根据22种目标扩增子设计的各上游融合引物和各下游融合引物分别加水溶解至浓度100μM;(2)将22条序列号从小到大浓度分别为100μM的上游融合引物按照摩尔比为1:2:1:4:2:1:2:4:2:2:2:2:1:4:2:2:2:2:4:2:4:2混合得到上游融合引物组合,将22条浓度分别为100μM的下游融合引物按照与相应上游融合引物等体积的量进行混合得到下游融合引物组合,再将上游融合引物组合和下游融合引物组合等体积混合;(3)将浓度分别为100μM的上游通用引物和下游通用引物等体积混合;(4)再将上游融合引物组合、下游融合引物组合、上游通用引物和下游通用引物按照摩尔比为:0.1:0.1:0.5:0.5进行混合,即得准备好的用于构建DNA样品的扩增子文库的引物组合。6组不同的待检样本需要含有6个不同的barcode序列标签的引物组合分别对应。
4、进行PCR程序,PCR仪使用Applied bio-system的2720Thermal Cycler,PCR反应程序如下:
Figure PCTCN2018080864-appb-000031
Figure PCTCN2018080864-appb-000032
5、PCR反应结束后,用Beckman Coulter公司的Agencourt AMPure XP Kit(货号A63880/A63881/A63882)进行纯化。操作步骤如下:
1)提前30分钟取出Agencourt AMPure XP Kit,充分涡旋后,室温静置。
2)PCR反应结束后,将磁珠再次充分涡旋,向体系中加入20ul磁珠,反复吹打5次以上或充分涡旋,室温静置5分钟。
3)将EP管转移至置于磁力架上,静置5分钟至溶液澄清后,用移液枪小心除去上清,注意不要触碰磁珠。
4)每管加入100ul新鲜配置的80%乙醇溶液,EP管置于磁力架上缓慢旋转2圈,静置5m,弃去上清。
5)重复4步一次。
6)将EP管打开,室温静置,使液体挥发干净,以磁珠表面无光泽为准,注意不要过分干燥磁珠。
7)从磁力架上取下EP管,加入30ul PCR级纯化水,涡旋混匀后,室温静置10分钟。
8)将上步的EP管置于磁力架上2分钟或直至溶液澄清后,用移液枪在远离磁石的一面小心吸取上清液,注意不要触碰磁珠。
至此,扩增子文库构建完成,图1为文库构建完成后Agilent 2200 TapeStation Systems检测得到的扩增产物分布图,横坐标为片段长度,纵坐标为信号强度(FU),lower峰为25bp位置marker,upper峰为1500bp位置marker,如图1所示经PCR扩增后所得PCR产物集中在241-271bp范围内,图1说明实验结果和实验设计相符合,从图1可以判断所构建文库的大小及文库浓度。
6、上机测序及结果分析
上述通过融合引物一步法获得的扩增子文库,使用Ion PGM平台的318芯片,进行扩增子测序,每个文库的数据量为50M bps。每个样本平均测序深度不低于1600X,单个扩增子测序深度均达到600X。所得测序结果如图2所示,从图2可以进一步对22扩增子的各扩增子是否进行了扩增以及各扩增子的扩增均一性进行分析。
测序的结果经过数据处理、生物信息学分析之后得到检测基因的突变情况。数据处理过程包括测序数据的转换、质控、序列比对(参考基因组为NCBI GRCh37/Hg19)、突变位点分析等过程,通过数据处理分析后得到检测样本的突变信息。
实际收集的样本检测情况如下:6例受检者的FFPE样本中,2例正常人样本未检测到肿瘤相关突变,4例肿瘤患者的FFPE样本检测结果中,Sample1检测到p.R248W突变,sample2检测到p.T790M突变,sample3检测到p.G12A突变,Sample4检测到p.E545K突变。该结果和sanger检测的结果一致。充分说明了本发明的实际应用性和良好特异性。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种用于构建DNA样品的扩增子文库的方法,其特征在于,包括以下步骤:
    1)合成用于构建DNA样品的扩增子文库的引物组合,所述用于构建DNA样品的扩增子文库的引物组合包括:
    根据目标扩增子设计的上游融合引物,所述上游融合引物包括按照5’到3’的方向依次排列的第一接头序列(Bridge序列)和根据目标扩增子设计的特异性上游引物序列;
    根据目标扩增子设计的下游融合引物,所述下游融合引物包括按照5’到3’的方向依次排列的第二接头序列(trP1序列)和根据目标扩增子设计的特异性下游引物序列;
    上游通用引物,所述上游通用引物包括按照5’到3’的方向依次排列的第三接头序列(A序列)、barcode序列和第一接头序列;和
    下游通用引物,所述下游通用引物包括按照5’到3’的方向依次排列的通用序列(Uni序列)和第二接头序列;
    2)构建DNA样品的PCR反应体系,将根据目标扩增子设计的上游融合引物、根据目标扩增子设计的下游融合引物、上游通用引物和下游通用引物混合以作为PCR反应体系中的引物组合;
    3)进行PCR。
  2. 如权利要求1所述的用于构建DNA样品的扩增子文库的方法,其特征在于:所述第一接头序列包括SEQ ID:1序列;可选的,所述第二接头序列包括SEQ ID:2序列;可选的,所述第三接头序列包括SEQ ID:3序列;可选的,所述通用序列包括SEQ ID:4序列。
  3. 如权利要求1所述的用于构建DNA样品的扩增子文库的方法,其特征在于:用于构建同一个DNA样品的扩增子文库的引物组合中,上游通用引物中的barcode序列相同;用于构建不同DNA样品的扩增子文库的引物组合中,上游通用引物中的 barcode序列不同。
  4. 如权利要求1所述的用于构建DNA样品的扩增子文库的方法,其特征在于:当同一个PCR反应中的目标扩增子的数量>1时,所述根据目标扩增子设计的上游融合引物为根据每一种目标扩增子设计的上游融合引物的组合,所述根据目标扩增子设计的下游融合引物为根据每一种目标扩增子设计的下游融合引物的组合。
  5. 如权利要求1所述的用于构建DNA样品的扩增子文库的方法,其特征在于:所述DNA样品为基因组DNA;可选的,基因组DNA提取自组织样本或福尔马林固定石蜡包埋样本。
  6. 如权利要求1所述的用于构建DNA样品的扩增子文库的方法,其特征在于:所述目标扩增子包括选自下组22种目标扩增子中的至少一个:
    ALK基因的Chr2:29432588-29432707(Hg19)扩增子,其序列如SEQ ID:5所示;
    ALK基因的Chr2:29443616-29443730(Hg19)扩增子,其序列如SEQ ID:6所示;
    BRAF基因的Chr7:140453091-140453197(Hg19)扩增子,其序列如SEQ ID:7所示;
    EGFR基因的Chr7:55241604-55241726(Hg19)扩增子,其序列如SEQ ID:8所示;
    EGFR基因的Chr7:55242398-55242513(Hg19)扩增子,其序列如SEQ ID:9所示;
    EGFR基因的Chr7:55248970-55249096(Hg19)扩增子,其序列如SEQ ID:10所示;
    EGFR基因的Chr7:55259505-55259621(Hg19)扩增子,其序列如SEQ ID:11所示;
    ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子,其序列如SEQ ID:12所示;
    KRAS基因的Chr12:25380261-25380363(Hg19)扩增子,其序列如SEQ ID:13所示;
    KRAS基因的Chr12:25398183-25398310(Hg19)扩增子,其序列如SEQ ID:14所示;
    MET基因的Chr7:116340233-116340335(Hg19)扩增子,其序列如SEQ ID:15所示;
    MET基因的Chr7:116411880-116412005(Hg19)扩增子,其序列如SEQ ID:16所示;
    MET基因的Chr7:116417426-116417546(Hg19)扩增子,其序列如SEQ ID:17所示;
    MET基因的Chr7:116423399-116423499(Hg19)扩增子,其序列如SEQ ID:18所示;
    NRAS基因的Chr1:115256507-115256586(Hg19)扩增子,其序列如SEQ ID:19所示;
    NRAS基因的Chr1:115258651-115258755(Hg19)扩增子,其序列如SEQ ID:20所示;
    PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子,其序列如SEQ ID:21所示;
    PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子,其序列如SEQ ID:22所示;
    TP53基因的Chr17:7577027-7577154(Hg19)扩增子,其序列如SEQ ID:23所示;
    TP53基因的Chr17:7577507-7577613(Hg19)扩增子,其序列如SEQ ID:24所示;
    TP53基因的Chr17:7578182-7578298(Hg19)扩增子,其序列如SEQ ID:25所示;
    TP53基因的Chr17:7578389-7578537(Hg19)扩增子,其序列如SEQ ID:26所示。
  7. 如权利要求6所述的用于构建DNA样品的扩增子文库的方法,其特征在于:
    根据ALK基因的Chr2:29432588-29432707(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:27所示;根据ALK基因的Chr2:29432588-29432707(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:28所示;
    可选的,根据ALK基因的Chr2:29443616-29443730(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:29所示;根据ALK基因的Chr2:29443616-29443730(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:30所示;
    可选的,根据BRAF基因的Chr7:140453091-140453197(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:31所示;根据BRAF基因的Chr7:140453091-140453197(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:32所示;
    可选的,根据EGFR基因的Chr7:55241604-55241726(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:33所示;根据EGFR基因的Chr7:55241604-55241726(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:34所示;
    可选的,根据EGFR基因的Chr7:55242398-55242513(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:35所示;根据EGFR基因的Chr7:55242398-55242513(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:36所示;
    可选的,根据EGFR基因的Chr7:55248970-55249096(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:37所示;根据EGFR基因的Chr7:55248970-55249096(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:38所示;。
    可选的,根据EGFR基因的Chr7:55259505-55259621(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:39所示;根据EGFR基因的Chr7:55259505-55259621(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:40所示;
    可选的,根据ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:41所示;根据ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:42所示;
    可选的,根据KRAS基因的Chr12:25380261-25380363(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:43所示;根据KRAS基因的Chr12:25380261-25380363(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:44所示;
    可选的,根据KRAS基因的Chr12:25398183-25398310(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:45所示;根据KRAS基因的Chr12:25398183-25398310(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:46所示;
    可选的,根据MET基因的Chr7:116340233-116340335(Hg19)扩增子设计的特异 性上游引物序列如SEQ ID:47所示;根据MET基因的Chr7:116340233-116340335(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:48所示;
    可选的,根据MET基因的Chr7:116411880-116412005(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:49所示;根据MET基因的Chr7:116411880-116412005(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:50所示;
    可选的,根据MET基因的Chr7:116417426-116417546(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:51所示;根据MET基因的Chr7:116417426-116417546(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:52所示;
    可选的,根据MET基因的Chr7:116423399-116423499(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:53所示;根据MET基因的Chr7:116423399-116423499(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:54所示;
    可选的,根据NRAS基因的Chr1:115256507-115256586(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:55所示;根据NRAS基因的Chr1:115256507-115256586(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:56所示;
    可选的,根据NRAS基因的Chr1:115258651-115258755(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:57所示;根据NRAS基因的Chr1:115258651-115258755(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:58所示;
    可选的,根据PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:59所示;根据PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:60所示;
    可选的,根据PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:61所示;根据PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:62所示;
    可选的,根据TP53基因的Chr17:7577027-7577154(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:63所示;根据TP53基因的Chr17:7577027-7577154(Hg19)扩增 子设计的特异性下游引物序列如SEQ ID:64所示;
    可选的,根据TP53基因的Chr17:7577507-7577613(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:65所示;根据TP53基因的Chr17:7577507-7577613(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:66所示;
    可选的,根据TP53基因的Chr17:7578182-7578298(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:67所示;根据TP53基因的Chr17:7578182-7578298(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:68所示;
    可选的,根据TP53基因的Chr17:7578389-7578537(Hg19)扩增子设计的特异性上游引物序列如SEQ ID:69所示;根据TP53基因的Chr17:7578389-7578537(Hg19)扩增子设计的特异性下游引物序列如SEQ ID:70所示;
  8. 如权利要求1所述的用于构建DNA样品的扩增子文库的方法,其特征在于:所述目标扩增子为以下22种:
    ALK基因的Chr2:29432588-29432707(Hg19)扩增子,其序列如SEQ ID:5所示;
    ALK基因的Chr2:29443616-29443730(Hg19)扩增子,其序列如SEQ ID:6所示;
    BRAF基因的Chr7:140453091-140453197(Hg19)扩增子,其序列如SEQ ID:7所示;
    EGFR基因的Chr7:55241604-55241726(Hg19)扩增子,其序列如SEQ ID:8所示;
    EGFR基因的Chr7:55242398-55242513(Hg19)扩增子,其序列如SEQ ID:9所示;
    EGFR基因的Chr7:55248970-55249096(Hg19)扩增子,其序列如SEQ ID:10所示;
    EGFR基因的Chr7:55259505-55259621(Hg19)扩增子,其序列如SEQ ID:11所示;
    ERBB2基因的Chr17:37880969-37881082(Hg19)扩增子,其序列如SEQ ID:12所示;
    KRAS基因的Chr12:25380261-25380363(Hg19)扩增子,其序列如SEQ ID:13所示;
    KRAS基因的Chr12:25398183-25398310(Hg19)扩增子,其序列如SEQ ID:14所示;
    MET基因的Chr7:116340233-116340335(Hg19)扩增子,其序列如SEQ ID:15所示;
    MET基因的Chr7:116411880-116412005(Hg19)扩增子,其序列如SEQ ID:16所示;
    MET基因的Chr7:116417426-116417546(Hg19)扩增子,其序列如SEQ ID:17所示;
    MET基因的Chr7:116423399-116423499(Hg19)扩增子,其序列如SEQ ID:18所示;
    NRAS基因的Chr1:115256507-115256586(Hg19)扩增子,其序列如SEQ ID:19所示;
    NRAS基因的Chr1:115258651-115258755(Hg19)扩增子,其序列如SEQ ID:20所示;
    PIK3CA基因的Chr3:178936056-178936179(Hg19)扩增子,其序列如SEQ ID:21所示;
    PIK3CA基因的Chr3:178952000-178952092(Hg19)扩增子,其序列如SEQ ID:22所示;
    TP53基因的Chr17:7577027-7577154(Hg19)扩增子,其序列如SEQ ID:23所示;
    TP53基因的Chr17:7577507-7577613(Hg19)扩增子,其序列如SEQ ID:24所示;
    TP53基因的Chr17:7578182-7578298(Hg19)扩增子,其序列如SEQ ID:25所示;和
    TP53基因的Chr17:7578389-7578537(Hg19)扩增子,其序列如SEQ ID:26所示。
  9. 如权利要求8所述的用于构建DNA样品的扩增子文库的方法,其特征在于:根据权利要求8中的22种目标扩增子设计的上游融合引物的组合、根据上述22种目标扩增子设计的下游融合引物的组合、上游通用引物和下游通用引物之间的摩尔比为:0.1-0.3:0.1-0.3:0.5-1:0.5-1。
  10. 如权利要求9所述的用于构建DNA样品的扩增子文库的方法,其特征在于:PCR反应体系包括以下组分:
    Figure PCTCN2018080864-appb-100001
PCT/CN2018/080864 2017-04-05 2018-03-28 一步法构建扩增子文库的方法 WO2018184495A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201908777P SG11201908777PA (en) 2017-04-05 2018-03-28 Method for rapidly constructing amplicon library through one-step process
KR1020197024150A KR102204274B1 (ko) 2017-04-05 2018-03-28 1 단계 프로세스를 통한 앰플리콘 라이브러리 구축 방법
JP2020502754A JP2020512405A (ja) 2017-04-05 2018-03-28 ワンステップでアンプリコンライブラリを迅速に構築する方法
EP18780976.9A EP3608452A4 (en) 2017-04-05 2018-03-28 PROCESS OF CONSTRUCTING AN AMPLICON LIBRARY THROUGH A SINGLE-STEP PROCESS
US16/481,938 US11155862B2 (en) 2017-04-05 2018-03-28 Method for rapidly constructing amplicon library through one-step process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710218529.4 2017-04-05
CN201710218529.4A CN106835292B (zh) 2017-04-05 2017-04-05 一步法快速构建扩增子文库的方法

Publications (1)

Publication Number Publication Date
WO2018184495A1 true WO2018184495A1 (zh) 2018-10-11

Family

ID=59142887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080864 WO2018184495A1 (zh) 2017-04-05 2018-03-28 一步法构建扩增子文库的方法

Country Status (7)

Country Link
US (1) US11155862B2 (zh)
EP (1) EP3608452A4 (zh)
JP (1) JP2020512405A (zh)
KR (1) KR102204274B1 (zh)
CN (1) CN106835292B (zh)
SG (1) SG11201908777PA (zh)
WO (1) WO2018184495A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835292B (zh) 2017-04-05 2019-04-09 北京泛生子基因科技有限公司 一步法快速构建扩增子文库的方法
CN107604045A (zh) * 2017-10-19 2018-01-19 北京泛生子基因科技有限公司 一种用于检测目的基因低频突变的扩增子文库的构建方法
CN112301430B (zh) * 2019-07-30 2022-05-17 北京泛生子基因科技有限公司 一种建库方法及应用
CN112322704B (zh) * 2020-12-02 2021-07-20 武汉艾迪晶生物科技有限公司 一种批量快速检测dna序列突变的方法
CN115233316A (zh) * 2021-04-25 2022-10-25 中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所 一种测序文库的制备方法及其应用
CN115233317A (zh) * 2021-04-25 2022-10-25 中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所 一种多重扩增子测序文库的制备方法及其应用
CN115247281A (zh) * 2021-04-25 2022-10-28 中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所 一种扩增子文库的制备方法及其应用
CN113308526B (zh) * 2021-07-13 2022-04-08 北京爱普益生物科技有限公司 融合引物直扩法人类线粒体全基因组高通量测序试剂盒
CN117661123A (zh) * 2023-12-02 2024-03-08 云准医药科技(广州)有限公司 一种多样品混合的单细胞建库方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049638A1 (en) * 2014-09-26 2016-03-31 The Regents Of The University Of California Methods and systems for detection of a genetic mutation
CN106319064A (zh) * 2016-09-13 2017-01-11 北京天科雅生物科技有限公司 一种基于高通量测序构建人tcra文库的多重pcr引物及方法
CN106835292A (zh) * 2017-04-05 2017-06-13 北京泛生子基因科技有限公司 一步法快速构建扩增子文库的方法
CN106834286A (zh) * 2017-04-05 2017-06-13 北京泛生子基因科技有限公司 一步法快速构建扩增子文库的引物组合
CN106906210A (zh) * 2017-04-05 2017-06-30 北京泛生子医学检验实验室有限公司 一种快速构建扩增子文库的融合引物组合
CN107604045A (zh) * 2017-10-19 2018-01-19 北京泛生子基因科技有限公司 一种用于检测目的基因低频突变的扩增子文库的构建方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2189631B1 (es) * 2001-03-12 2005-01-01 BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. Metodo para la amplificacion de adn mediante semi-nested pcr en un solo paso y su empleo en la identificacion de especies de plasmodium.
SG174617A1 (en) * 2009-04-02 2011-10-28 Fluidigm Corp Multi-primer amplification method for barcoding of target nucleic acids
EP2559774A1 (en) * 2011-08-17 2013-02-20 Roche Diagniostics GmbH Improved method for amplification of target nucleic acids using a multi-primer approach
WO2014106076A2 (en) * 2012-12-28 2014-07-03 Quest Diagnostics Investments Incorporated Universal sanger sequencing from next-gen sequencing amplicons
US20140288116A1 (en) * 2013-03-15 2014-09-25 Life Technologies Corporation Classification and Actionability Indices for Lung Cancer
US9708657B2 (en) * 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
US20160222443A1 (en) * 2013-10-03 2016-08-04 Biocartis N.V. Quantification of Micro RNA
CN103555846B (zh) * 2013-11-07 2015-12-30 中国海洋大学 一种基于液相分子杂交原理的高通量低成本snp分型方法
LT3108009T (lt) * 2014-02-18 2021-07-12 Illumina, Inc. Būdai ir kompozicijos, skirti dnr profiliavimui
US9745611B2 (en) * 2014-05-06 2017-08-29 Genewiz Inc. Methods and kits for identifying microorganisms in a sample
CN104263818B (zh) * 2014-09-02 2016-06-01 武汉凯吉盈科技有限公司 基于高通量测序技术的全血免疫组库探测方法
EP3256607B1 (en) * 2015-02-13 2021-01-20 Patel, Abhijit Ajit Methods for highly parallel and accurate detection of nucleic acids
CN105442054B (zh) * 2015-11-19 2018-04-03 杭州谷坤生物技术有限公司 对血浆游离dna进行多目标位点扩增建库的方法
CN106011230A (zh) * 2016-05-10 2016-10-12 人和未来生物科技(长沙)有限公司 用于检测碎片化dna目标区域的引物组合物及其应用
CN105861724B (zh) * 2016-06-03 2019-07-16 人和未来生物科技(长沙)有限公司 一种kras基因超低频突变检测试剂盒
CN106048008A (zh) * 2016-06-03 2016-10-26 人和未来生物科技(长沙)有限公司 一种egfr基因超低频突变检测试剂盒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049638A1 (en) * 2014-09-26 2016-03-31 The Regents Of The University Of California Methods and systems for detection of a genetic mutation
CN106319064A (zh) * 2016-09-13 2017-01-11 北京天科雅生物科技有限公司 一种基于高通量测序构建人tcra文库的多重pcr引物及方法
CN106835292A (zh) * 2017-04-05 2017-06-13 北京泛生子基因科技有限公司 一步法快速构建扩增子文库的方法
CN106834286A (zh) * 2017-04-05 2017-06-13 北京泛生子基因科技有限公司 一步法快速构建扩增子文库的引物组合
CN106906210A (zh) * 2017-04-05 2017-06-30 北京泛生子医学检验实验室有限公司 一种快速构建扩增子文库的融合引物组合
CN107604045A (zh) * 2017-10-19 2018-01-19 北京泛生子基因科技有限公司 一种用于检测目的基因低频突变的扩增子文库的构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608452A4

Also Published As

Publication number Publication date
CN106835292A (zh) 2017-06-13
EP3608452A1 (en) 2020-02-12
CN106835292B (zh) 2019-04-09
US20190352711A1 (en) 2019-11-21
SG11201908777PA (en) 2019-10-30
EP3608452A4 (en) 2021-01-13
US11155862B2 (en) 2021-10-26
KR20190104611A (ko) 2019-09-10
JP2020512405A (ja) 2020-04-23
KR102204274B1 (ko) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2018184495A1 (zh) 一步法构建扩增子文库的方法
CN113614246B (zh) 用于鉴别肿瘤模型的方法和组合物
CN104372093B (zh) 一种基于高通量测序的snp检测方法
CN107058551B (zh) 检测微卫星位点不稳定性的方法及装置
CN106591441B (zh) 基于全基因捕获测序的α和/或β-地中海贫血突变的检测探针、方法、芯片及应用
CN105442054B (zh) 对血浆游离dna进行多目标位点扩增建库的方法
EP3385379B1 (en) Method for constructing second-generation sequencing library for detection of low-frequency mutation, and kit therefor
WO2016049878A1 (zh) 一种基于snp分型的亲子鉴定方法及应用
CN106906210A (zh) 一种快速构建扩增子文库的融合引物组合
CN110885883B (zh) Dna参照标准及其应用
WO2019076018A1 (zh) 一种用于检测目的基因低频突变的扩增子文库的构建方法
CN102839168A (zh) 核酸探针及其制备方法和应用
CN108070658B (zh) 检测msi的非诊断方法
CN107012139A (zh) 一种快速构建扩增子文库的方法
CN106834286B (zh) 一步法快速构建扩增子文库的引物组合
CN106399553B (zh) 一种基于多重pcr的人线粒体全基因组高通量测序方法
CN109686404B (zh) 检测样本混淆的方法及装置
CN112266948A (zh) 一种高通量靶向建库的方法和应用
EP3643789A1 (en) Pcr primer pair and application thereof
JP2021536255A (ja) Rnaライブラリーの構築のための方法及びキット
CN109280696B (zh) Snp检测技术拆分混合样本的方法
CN113699213A (zh) 一种用于二代测序文库构建方法及试剂盒
WO2021018127A1 (zh) 一种建库方法及应用
WO2019014936A1 (zh) 用于检测低频突变的靶向富集方法和试剂盒
WO2012083845A1 (zh) 用于除去测序文库中载体片段的方法及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024150

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020502754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018780976

Country of ref document: EP

Effective date: 20191105

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载