WO2018184354A1 - 高隔离度双极化宽频天线 - Google Patents
高隔离度双极化宽频天线 Download PDFInfo
- Publication number
- WO2018184354A1 WO2018184354A1 PCT/CN2017/101984 CN2017101984W WO2018184354A1 WO 2018184354 A1 WO2018184354 A1 WO 2018184354A1 CN 2017101984 W CN2017101984 W CN 2017101984W WO 2018184354 A1 WO2018184354 A1 WO 2018184354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rectangular
- hollow
- shaped
- axe
- dielectric plate
- Prior art date
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 100
- 229910052751 metal Inorganic materials 0.000 claims abstract description 100
- 230000005404 monopole Effects 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 5
- 230000009977 dual effect Effects 0.000 abstract 1
- 230000010287 polarization Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 12
- 238000004088 simulation Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a high-isolation dual-polarized broadband antenna.
- a primary object of the present invention is to provide a high-isolation dual-polarized wideband antenna, which aims to solve the technical problem that the existing dual-polarized antenna has a large size and poor isolation.
- a high isolation dual-polarization broadband antenna includes a dielectric plate, a hollow metal sheet, an L-shaped metal microstrip line, a first SMA head, an axe monopole structure, and a second SMA head
- the hollow metal sheet is attached to the upper surface of the dielectric plate, and the L-shaped metal microstrip line and the axe monopole structure are attached to the lower surface of the dielectric plate; Etching a stepped hollow gap, wherein the stepped hollow gap is formed by a first rectangular hollow, a second rectangular hollow, a third rectangular hollow, a fourth rectangular hollow, and a fifth rectangular hollow;
- the L-shaped metal microstrip a transverse portion of the line is parallel to a long side of a lower surface of the dielectric plate, a vertical portion of the L-shaped metal microstrip line being perpendicular to a long side of a lower surface of the dielectric plate;
- the axe monopole structure comprising a strip-shaped vertical portion and an axe-shaped transverse portion
- the first rectangular hollow, the second rectangular hollow, the third rectangular hollow, the fourth rectangular hollow, and the wide side of the fifth rectangular hollow are parallel to the central axis of the broad side of the upper surface of the dielectric plate;
- the first rectangular cutout, the second rectangular cutout, the third rectangular cutout, the fourth rectangular cutout, and the fifth rectangular cutout are symmetric about the central axis of the wide side.
- the dielectric plate is a dielectric substrate of FR4, and the dielectric plate has a thickness of 0.8 mm and a dielectric constant of 4.4.
- the length of the dielectric plate and the hollow metal sheet is 74 mm, the width of the dielectric plate and the hollow metal sheet is 106 mm; the length of the first rectangular hollow is 52 mm, and the first rectangular hollow a width of 44 mm; a length of the second rectangular hollow is 32 mm, a width of the second rectangular hollow is 6 mm; a length of the third rectangular hollow is 6.7 mm, and a width of the third rectangular hollow is 10.5 mm;
- the fourth rectangular hollow has a length of 2.6 mm, the fourth rectangular hollow has a width of 17.7 mm, the fifth rectangular hollow has a length of 9.6 mm, and the fifth rectangular hollow has a width of 1.5 mm.
- the distance between the lower longitudinal edge of the stepped hollow gap and the lower longitudinal edge of the upper surface of the dielectric plate is 6.3 mm.
- the width of the L-shaped metal microstrip line is 1.32 mm
- the length of the lateral portion of the L-shaped metal microstrip line is 27.6 mm
- the length of the vertical portion of the L-shaped metal microstrip line is 11.32mm.
- the distance between the vertical portion of the L-shaped metal microstrip line and the left wide side of the lower surface of the dielectric plate is 20.4 mm.
- the length of the first rectangular metal piece of the axe monopole structure is 2.5 mm, the width of the first rectangular metal piece is 36 mm; the second rectangle of the axe monopole structure The length of the metal piece is 1 mm, the width of the second rectangular metal piece is 11 mm; the length of the upper base of the equilateral trapezoidal metal piece of the axe-shaped monopole structure is 2.5 mm, and the equilateral trapezoidal metal piece The length of the lower base is 16mm, the equilateral The height of the trapezoidal metal piece is 6.75 mm.
- a vertical distance between a center point of the equilateral trapezoidal metal piece of the axe-shaped monopole structure and a lower bottom side of the first rectangular metal piece of the axe-shaped monopole structure is 9.8 mm.
- the high-isolation dual-polarized broadband antenna of the present invention realizes the dual-polarized antenna by effectively adopting the orthogonal electric field mode of the stepped hollow-spaced slit resonance by setting the stepped hollow-spaced slit resonance, and can sufficiently reduce the antenna design size, and A high isolation is formed between the two feed ports so that the frequencies of the two feed ports can be independently tuned.
- FIG. 1 is a schematic structural view of a preferred embodiment of a high isolation dual-polarization broadband antenna according to the present invention
- FIG. 2 is a schematic structural view of a preferred embodiment of a hollow metal sheet of a high isolation dual-polarization broadband antenna of the present invention
- FIG. 3 is a schematic structural view of a preferred embodiment of an L-shaped metal microstrip line and an axe monopole structure of the high isolation dual-polarization broadband antenna of the present invention
- FIG. 4 is a schematic diagram showing simulation results of reflection coefficients of a high isolation dual-polarization broadband antenna of the present invention
- FIG. 5 is a schematic diagram showing a simulation result of a reflection coefficient of a high isolation dual-polarization broadband antenna L0 parameter of the present invention
- FIG. 6 is a schematic diagram showing a simulation result of a reflection coefficient of a dl parameter of a high isolation dual-polarization broadband antenna according to the present invention
- 7 is a schematic diagram showing a simulation result of a reflection coefficient of a high isolation dual-polarization broadband antenna W4 parameter of the present invention
- FIG. 8 is a schematic diagram showing a simulation result of a reflection coefficient of a high isolation dual-polarization broadband antenna LP3 parameter of the present invention
- 9 is a schematic diagram showing simulation results of reflection coefficient of the high isolation dual-polarization broadband antenna S1 parameter of the present invention.
- FIG. 1 is a plan view showing a preferred embodiment of a preferred embodiment of the high isolation dual-polarization wideband antenna of the present invention.
- the high-isolation dual-polarization broadband antenna 1 includes a dielectric plate 10, a hollow metal sheet 20, an L-shaped metal microstrip line 30, and a first SMA (Sub-Miniature-A) head 40, an axe-shaped single The pole structure 50 and the second SMA (Sub-Miniature-A) head 60.
- the high-isolation dual-polarized broadband antenna 1 has a rectangular parallelepiped structure (only a schematic plan view is shown in FIG. 1), and the hollow metal sheet 20, the L-shaped metal microstrip line 30, and the axe monopole structure 50 are both Copper.
- the dielectric plate 10 is a dielectric substrate of FR4 having a thickness of 0.8 mm and a dielectric constant of preferably 4.4.
- the first SMA head 40 and the second SMA head 60 are coaxial connectors.
- the hollow metal sheet 20 is attached to the upper surface of the dielectric plate 10, and the L-shaped metal microstrip line 30 and the axe monopole structure 50 are attached to the lower surface of the dielectric plate 10.
- the stepped hollow sheet 21 is etched with a stepped hollow slit 21, and the stepped hollow slit 21 is composed of a first rectangular hollow 211, a second rectangular hollow 212, a third rectangular hollow 213, a fourth rectangular hollow 214, and a fifth rectangular shape.
- the hollow 215 is connected in sequence; the lateral portion 31 of the L-shaped metal microstrip line is parallel to the long side of the lower surface of the dielectric plate 10, and the vertical portion 32 of the L-shaped metal microstrip line and the dielectric plate 10
- the long side of the lower surface is vertical;
- the axe monopole structure 50 includes a strip-shaped vertical portion 51 and an axe-shaped cross portion 52, and the strip-shaped vertical portion 51 of the axe-shaped monopole structure includes a first rectangular shape to be connected a metal piece 511 and a second rectangular metal piece 512, the strip-shaped vertical portion 51 of the axe-shaped monopole structure is perpendicular to a long side of a lower surface of the dielectric plate 10;
- the transverse portion 5 2 includes a strip-shaped vertical portion symmetrically disposed on the axe monopole structure An equilateral trapezoidal metal piece 521 on both sides of the 51, the axe-shaped monopole
- the vertical portion 32 of the L-shaped metal microstrip line extends to the bottom long side of the lower surface of the dielectric plate 10, and the first SMA head 40 is disposed at the L
- a first feeding port S is formed on the dielectric plate 10 at a position where the vertical portion 32 of the metal microstrip line intersects the long side of the bottom surface of the lower surface of the dielectric plate 10 11;
- a vertical portion 51 of the axe monopole structure extends to a top long side of a lower surface of the dielectric plate 10
- the second SMA head 60 is disposed at a vertical portion 51 of the axe monopole structure
- a second feed port S22 is formed on the dielectric plate 10 at a position intersecting the top long side of the lower surface of the dielectric plate 10.
- the high-isolation dual-polarized broadband antenna of the present invention realizes the dual-polarized antenna by effectively adopting the orthogonal electric field mode of the stepped hollow-spaced slit resonance by setting the stepped hollow-spaced slit resonance, and can sufficiently reduce the antenna design size, and A high isolation is formed between the two feed ports so that the frequencies of the two feed ports can be independently tuned.
- FIG. 2 is a schematic structural view of a preferred embodiment of a hollow metal sheet of a high isolation dual-polarization broadband antenna.
- the wide sides of the first rectangular hollow 211, the second rectangular hollow 212, the third rectangular hollow 213, the fourth rectangular hollow 214, and the fifth rectangular hollow 215 are opposite to the upper surface of the dielectric plate 10.
- the broad side central axis is parallel; the first rectangular hollow 211, the second rectangular hollow 212, the third rectangular hollow 2 13 , the fourth rectangular hollow 214 and the fifth rectangular hollow 214 are symmetrical about the broad side central axis.
- the length W of the dielectric plate 10 and the hollow metal sheet 20 is 74 mm, the width L of the dielectric plate 10 and the hollow metal sheet 20 is 106 mm; and the length W0 of the first rectangular hollow 211 is 52 mm.
- the width L0 of the first rectangular hollow 211 is 44 mm; the length W1 of the second rectangular hollow 212 is 32 mm, the width L1 of the second rectangular hollow 212 is 6 mm; and the length W2 of the third rectangular hollow 213 is 6.7.
- the width L2 of the third rectangular hollow 213 is 10.5 mm; the length W3 of the fourth rectangular hollow 214 is 2.6 mm, and the width L3 of the fourth rectangular hollow 214 is 17.7 mm; The length W4 of the 215 is 9.6 mm, and the width L4 of the fifth rectangular hollow 215 is 1.5 mm.
- the distance dx between the lower long side of the stepped hollow slit 21 and the lower longitudinal side of the upper surface of the dielectric plate 10 is 6.3 mm.
- FIG. 3 is a schematic structural view of a preferred embodiment of an L-shaped metal microstrip line and an axe monopole structure of a high isolation dual-polarization broadband antenna.
- the width WP1 of the L-shaped metal microstrip line 30 is 1.32 mm
- the length d2 of the lateral portion 31 of the L-shaped metal microstrip line is 27.6 mm
- the length dl of the vertical portion 32 of the L-shaped metal microstrip line It is 11.32mm.
- the distance dO between the vertical portion 32 of the L-shaped metal microstrip line and the left wide side of the lower surface of the dielectric plate 10 is 20.4 mm.
- the length WP2 of the first rectangular metal piece 511 of the axe-shaped monopole structure 50 is 2.5 mm
- the width LP2 of the first rectangular metal piece 511 is 36 mm
- the second rectangle of the axe-shaped monopole structure 50 The length WP3 of the metal piece 512 is 1 mm
- the width of the second rectangular metal piece 512 is 11 mm
- the length of the upper base S2 of the equilateral trapezoidal metal piece 521 of the axe-shaped monopole structure 50 is 2. 5mm
- the lower base length SI of the equilateral trapezoidal metal piece is 16 mm
- the height d3 of the equilateral trapezoidal metal piece is 6.75 mm.
- the vertical distance between the center point of the equilateral trapezoidal metal piece 521 of the axe-shaped monopole structure 50 and the lower bottom side of the first rectangular metal piece 511 of the axe-shaped monopole structure 50 is 9.8 mm.
- FIG. 4 is a schematic diagram showing simulation results of reflection coefficients of a high isolation dual-polarization broadband antenna of the present invention.
- the isolation between the first feed port S11 and the second feed port S22 is less than -32 dB.
- FIG. 5 is a schematic diagram showing the simulation result of the reflection coefficient of the L0 parameter of the high isolation dual-polarization broadband antenna of the present invention.
- independent tuning of fm2 can be achieved by adjusting the width L0 of the first rectangular cutout 211.
- FIG. 6 is a schematic diagram showing simulation results of reflection coefficients of the dl parameter of the high isolation dual-polarization broadband antenna of the present invention.
- independent tuning of fm3 can be achieved by adjusting the length dl of the vertical portion 32 of the L-shaped metal microstrip line.
- FIG. 7 is a schematic diagram showing the simulation results of the reflection coefficient of the W4 parameter of the high isolation dual-polarization broadband antenna of the present invention. As can be seen from Figure 7, tuning of fml is accomplished by adjusting the length W4 of the fifth rectangular cutout 215.
- FIG. 8 is a schematic diagram showing the simulation results of the reflection coefficient of the LP3 parameter of the high isolation dual-polarization broadband antenna of the present invention.
- independent tuning of fpl can be achieved by adjusting the width LP3 of the second rectangular metal piece 512 of the axe monopole structure 50.
- Fig. 9 is a schematic diagram showing the simulation results of the reflection coefficient of the S1 parameter of the high-isolation dual-polarized broadband antenna of the present invention.
- independent tuning of fp2 can be achieved by adjusting the length S of the lower base of the equilateral trapezoidal metal piece 521 of the axe monopole structure 50.
- the high isolation dual-polarization broadband antenna of the present invention can reduce the size of the antenna design by setting a stepped hollow gap resonance and realizing the dual-polarized antenna by effectively utilizing the orthogonal electric field mode of the stepped hollow gap resonance, and can sufficiently reduce the antenna design size, and A high isolation is created between the two feed ports so that the frequencies of the two feed ports can be independently tuned.
- the high isolation dual-polarization broadband antenna of the invention realizes the dual-polarized antenna by effectively adopting the orthogonal electric field mode of the stepped hollow-spaced slit resonance by setting the stepped hollow-spaced slit resonance, and can sufficiently reduce the antenna design size and High isolation between the electrical ports, making the frequencies of the two feed ports independent
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
本发明公开一种高隔离度双极化宽频天线,包括贴合于介质板的上表面的镂空金属片,贴合于介质板的下表面的L形金属微带线和斧形单极子结构;镂空金属片上刻蚀有阶梯型镂空缝隙;L形金属微带线的横部与介质板的下表面的长边平行,L形金属微带线的竖部与介质板的下表面的长边垂直;斧形单极子结构包括条形竖部和斧形横部;镂空金属片与第一SMA头的接地端电连接,L形金属微带线与第一SMA头的馈电端电连接;斧形单极子结构与第二SMA头的馈电端电连接,镂空金属片与第二SMA头的接地端电连接;。本发明高隔离度双极化宽频天线利用阶梯型镂空缝隙谐振的正交电场模式来实现双极化,使得两个馈电端口可独立谐调。
Description
说明书 发明名称:高隔离度双极化宽频天线 技术领域
[0001] 本发明涉及通信技术领域, 尤其涉及一种高隔离度双极化宽频天线。
背景技术
[0002] 为了便于通信终端和射频识别系统的大规模推广应用, 终端或系统的经济成本 和体积大小都是至关重要的考虑因素, 作为其中重要部件的天线, 在保证较高 性能指标的前提下, 必须都需要多频化、 宽带化、 小型化。 现有技术的双极化 天线设计的主流方法是通过将两个相同的天线单元, 按照相互垂直的正交式布 局来实现。 虽然两个天线单元在垂直放置吋正好形状相互嵌入式紧密结合可以 减小天线总体尺寸, 但是受制于天线单元的设计尺寸, 使得双极化天线的尺寸 很难再缩小。 并且两个天线单元也较难形成较好的隔离度。
技术问题
[0003] 本发明的主要目的提供一种高隔离度双极化宽频天线, 旨在解决现有的双极化 天线尺寸大, 并且隔离度差的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 一种高隔离度双极化宽频天线, 包括介质板、 镂空金属片、 L形金属微带线、 第一 SMA头、 斧形单极子结构和第二 SMA头, 所述镂空金属片 贴合于所述介质板的上表面, 所述 L形金属微带线和所述斧形单极子结构贴合于 所述介质板的下表面; 所述镂空金属片上刻蚀有阶梯型镂空缝隙, 所述阶梯型 镂空缝隙由第一矩形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第 五矩形镂空依次连接构成; 所述 L形金属微带线的横部与所述介质板的下表面的 长边平行, 所述 L形金属微带线的竖部与所述介质板的下表面的长边垂直; 所述 斧形单极子结构包括条形竖部和斧形横部, 所述斧形单极子结构的条形竖部包 括连接的第一矩形金属片和第二矩形金属片, 所述斧形单极子结构的条形竖部 与所述介质板的下表面的长边垂直; 所述斧形单极子结构的斧形横部包括对称
设置于所述斧形单极子结构的条形竖部两侧的等边梯形金属片, 所述斧形单极 子结构关于所述介质板的下表面的宽边中轴线对称; 所述第一 SMA头设置于所 述介质板上, 所述镂空金属片与第一 SMA头的接地端电连接, 所述 L形金属微带 线与第一 SMA头的馈电端电连接; 所述第二 SMA头设置于所述介质板上, 所述 斧形单极子结构与第二 SMA头的馈电端电连接, 所述镂空金属片与第二 SMA头 的接地端电连接。
[0005] 优选的, 所述第一矩形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和 第五矩形镂空的宽边与所述介质板的上表面的宽边中轴线平行; 所述第一矩形 镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩形镂空关于所述 宽边中轴线对称。
[0006] 优选的, 所述介质板为 FR4的介质基板, 所述介质板的厚度为 0.8mm且介电常 数为 4.4。
[0007] 优选的, 所述介质板和镂空金属片的长度为 74mm, 所述介质板和镂空金属片 的宽度为 106mm; 所述第一矩形镂空的长度为 52mm, 所述第一矩形镂空的宽度 为 44mm; 所述第二矩形镂空的长度为 32mm, 所述第二矩形镂空的宽度为 6mm ; 所述第三矩形镂空的长度为 6.7mm, 所述第三矩形镂空的宽度为 10.5mm; 所 述第四矩形镂空的长度为 2.6mm, 所述第四矩形镂空的宽度为 17.7mm; 所述第 五矩形镂空的长度为 9.6mm, 所述第五矩形镂空的宽度为 1.5mm。
[0008] 优选的, 阶梯型镂空缝隙的下部长边与所述介质板的上表面的下部长边的距离 为 6.3mm。
[0009] 优选的, 所述 L形金属微带线的宽度为 1.32mm, 所述 L形金属微带线的横部的 长度为 27.6mm, 所述 L形金属微带线的竖部长度为 11.32mm。
[0010] 优选的, 所述 L形金属微带线的竖部与所述介质板的下表面的左边宽边的距离 为 20.4mm。
[0011] 优选的, 所述斧形单极子结构的第一矩形金属片的长度为 2.5mm, 所述第一矩 形金属片的宽度为 36mm; 所述斧形单极子结构的第二矩形金属片的长度为 lmm , 所述第二矩形金属片的宽度为 11mm; 所述斧形单极子结构的等边梯形金属片 的上底边长度为 2.5mm, 所述等边梯形金属片的下底边长度为 16mm, 所述等边
梯形金属片的高度为 6.75mm。
[0012] 优选的, 所述斧形单极子结构的等边梯形金属片的中心点与所述斧形单极子结 构的第一矩形金属片的下底边的垂直距离为 9.8mm。
发明的有益效果
有益效果
[0013] 本发明高隔离度双极化宽频天线通过设置阶梯型镂空缝隙谐振, 有效利用阶梯 型镂空缝隙谐振的正交电场模式来实现双极化天线, 可以充分减小天线设计尺 寸, 并在两个馈电端口间形成高的隔离度, 使得两个馈电端口的频率可独立谐 调。
对附图的简要说明
附图说明
[0014] 图 1是本发明高隔离度双极化宽频天线优选实施例的结构示意图;
[0015] 图 2是本发明高隔离度双极化宽频天线的镂空金属片优选实施例的结构示意图
[0016] 图 3是本发明高隔离度双极化宽频天线的 L形金属微带线和斧形单极子结构优选 实施例的结构示意图;
[0017] 图 4是本发明高隔离度双极化宽频天线的反射系数仿真结果示意图;
[0018] 图 5是本发明高隔离度双极化宽频天线 L0参数的反射系数仿真结果示意图; [0019] 图 6是本发明高隔离度双极化宽频天线 dl参数的反射系数仿真结果示意图; [0020] 图 7是本发明高隔离度双极化宽频天线 W4参数的反射系数仿真结果示意图; [0021] 图 8是本发明高隔离度双极化宽频天线 LP3参数的反射系数仿真结果示意图; [0022] 图 9是本发明高隔离度双极化宽频天线 S1参数的反射系数仿真结果示意图。
[0023] 本发明目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分一并 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0024] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附
图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效进行详细说 明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定 本发明。
[0025] 参照图 1所示, 图 1是本发明高隔离度双极化宽频天线优选实施例的平面结构示 意图。 在本实施例中, 高隔离度双极化宽频天线 1, 包括介质板 10、 镂空金属片 20、 L形金属微带线 30和第一 SMA (Sub-Miniature-A) 头 40、 斧形单极子结构 50 和第二 SMA (Sub-Miniature-A) 头 60。 所述高隔离度双极化宽频天线 1为长方体 结构 (图 1中仅示出了平面示意图) , 所述镂空金属片 20、 L形金属微带线 30及 斧形单极子结构 50均为铜质。 所述介质板 10为 FR4的介质基板, 所述介质板 10厚 度为 0.8mm且介电常数优选为 4.4。 所述第一 SMA头 40、 第二 SMA头 60为同轴连 接器。 所述镂空金属片 20贴合于所述介质板 10的上表面, 所述 L形金属微带线 30 和所述斧形单极子结构 50贴合于所述介质板 10的下表面; 所述镂空金属片 20上 刻蚀有阶梯型镂空缝隙 21, 所述阶梯型镂空缝隙 21由第一矩形镂空 211、 第二矩 形镂空 212、 第三矩形镂空 213、 第四矩形镂空 214和第五矩形镂空 215依次连接 构成; 所述 L形金属微带线的横部 31与所述介质板 10的下表面的长边平行, 所述 L形金属微带线的竖部 32与所述介质板 10的下表面的长边垂直; 所述斧形单极子 结构 50包括条形竖部 51和斧形横部 52, 所述斧形单极子结构的条形竖部 51包括 连接的第一矩形金属片 511和第二矩形金属片 512, 所述斧形单极子结构的条形 竖部 51与所述介质板 10的下表面的长边垂直; 所述斧形单极子结构的斧形横部 5 2包括对称设置于所述斧形单极子结构的条形竖部 51两侧的等边梯形金属片 521 , 所述斧形单极子结构 50关于所述介质板 10的下表面的宽边中轴线对称; 所述 第一 SMA头 40穿设于所述介质板 10上, 所述镂空金属片 20与第一 SMA头 40的接 地端电连接, 所述 L形金属微带线 30与第一 SMA头 40的馈电端电连接; 所述第二 SMA头 60设置于所述介质板 10上, 所述斧形单极子结构 50与第二 SMA头 60的馈 电端电连接, 所述镂空金属片 20与第二 SMA头 60的接地端电连接。
[0026] 作为本发明的优选实施例, 所述 L形金属微带线的竖部 32延伸至所述介质板 10 的下表面的底部长边, 所述第一 SMA头 40设置于所述 L形金属微带线的竖部 32与 所述介质板 10的下表面的底部长边相交位置的介质板 10上, 形成第一馈电端口 S
11 ; 所述斧形单极子结构的竖部 51延伸至所述介质板 10的下表面的顶部长边, 所述第二 SMA头 60设置于所述斧形单极子结构的竖部 51与所述介质板 10的下表 面的顶部长边相交位置的介质板 10上, 形成第二馈电端口 S22。
[0027] 本发明高隔离度双极化宽频天线通过设置阶梯型镂空缝隙谐振, 有效利用阶梯 型镂空缝隙谐振的正交电场模式来实现双极化天线, 可以充分减小天线设计尺 寸, 并在两个馈电端口间形成高的隔离度, 使得两个馈电端口的频率可独立谐 调。
[0028] 参照图 2所示, 图 2是高隔离度双极化宽频天线的镂空金属片优选实施例的结构 示意图。 在本实施例中, 所述第一矩形镂空 211、 第二矩形镂空 212、 第三矩形 镂空 213、 第四矩形镂空 214和第五矩形镂空 215的宽边与所述介质板 10的上表面 的宽边中轴线平行; 所述第一矩形镂空 211、 第二矩形镂空 212、 第三矩形镂空 2 13、 第四矩形镂空 214和第五矩形镂空 214关于所述宽边中轴线对称。
[0029] 所述介质板 10和镂空金属片 20的长度 W为 74mm, 所述介质板 10和镂空金属片 2 0的宽度 L为 106mm; 所述第一矩形镂空 211的长度 W0为 52mm, 所述第一矩形镂 空 211的宽度 L0为 44mm; 所述第二矩形镂空 212的长度 W1为 32mm, 所述第二矩 形镂空 212的宽度 L1为 6mm; 所述第三矩形镂空 213的长度 W2为 6.7mm, 所述第 三矩形镂空 213的宽度 L2为 10.5mm; 所述第四矩形镂空 214的长度 W3为 2.6mm, 所述第四矩形镂空 214的宽度 L3为 17.7mm; 所述第五矩形镂空 215的长度 W4为 9. 6mm, 所述第五矩形镂空 215的宽度 L4为 1.5mm。 所述阶梯型镂空缝隙 21的下部 长边与所述介质板 10的上表面的下部长边的距离 dx为 6.3mm。
[0030] 参照图 3所示, 图 3是高隔离度双极化宽频天线的 L形金属微带线和斧形单极子 结构优选实施例的结构示意图。 所述 L形金属微带线 30的宽度 WP1为 1.32mm, 所 述 L形金属微带线的横部 31的长度 d2为 27.6mm, 所述 L形金属微带线的竖部 32的 长度 dl为 11.32mm。 所述 L形金属微带线的竖部 32与所述介质板 10的下表面的左 边宽边的距离 dO为 20.4mm。 所述斧形单极子结构 50的第一矩形金属片 511的长度 WP2为 2.5mm, 所述第一矩形金属片 511的宽度 LP2为 36mm; 所述斧形单极子结 构 50的第二矩形金属片 512的长度 WP3为 lmm, 所述第二矩形金属片 512的宽度 为 LP3为 11mm; 所述斧形单极子结构 50的等边梯形金属片 521的上底 S2长度为 2.
5mm, 所述等边梯形金属片的下底边长度 SI为 16mm, 所述等边梯形金属片的高 度 d3为 6.75mm。 所述斧形单极子结构 50的等边梯形金属片 521的中心点与所述斧 形单极子结构 50的第一矩形金属片 511的下底边的垂直距离为 9.8mm。
[0031] 参考图 4所示, 图 4是本发明高隔离度双极化宽频天线的反射系数仿真结果示意 图。 从图 4可以看出, 所述高隔离度双极化宽频天线 1有两个馈电端口, 所述第 一馈电端口 SI 1的反射系数在 -10dB以下, 工作频率可以覆盖 1.15GHz到 2.93GHz , FBW=86.9% , 实现了 fml、 fm2、 fm3三个谐振模式; 所述第二馈电端口 S22的 反射系数在 -10dB以下, 工作频率可以覆盖 1.15GHz到 2.99GHz, FBW=58.9%, 实现了 fpl、 fP2两个谐振模式。 所述第一馈电端口 S11和所述第二馈电端口 S22间 的隔离度小于 -32dB。
[0032] 参考图 5所示, 图 5是本发明高隔离度双极化宽频天线 L0参数的反射系数仿真结 果示意图。 从图 5中可以看出, 通过调节所述第一矩形镂空 211的宽度 L0, 可以 实现对 fm2的独立调谐。 参考图 6所示, 图 6是本发明高隔离度双极化宽频天线 dl 参数的反射系数仿真结果示意图。 从图 6中可以看出, 通过调节 L形金属微带线 的竖部 32的长度 dl, 可以实现对 fm3的独立调谐。 参考图 7所示, 图 7是本发明高 隔离度双极化宽频天线 W4参数的反射系数仿真结果示意图。 从图 7中可以看出, 通过调节所述第五矩形镂空 215的长度 W4来实现对 fml的调谐。
[0033] 参考图 8所示, 图 8是本发明高隔离度双极化宽频天线 LP3参数的反射系数仿真 结果示意图。 从图 8中可以看出, 通过调节斧形单极子结构 50的第二矩形金属片 512的宽度 LP3, 可以实现对 fpl的独立调谐。 参考图 9所示, 图 9是本发明高隔离 度双极化宽频天线 S1参数的反射系数仿真结果示意图。 从图 9中可以看出, 通过 调节所述斧形单极子结构 50的等边梯形金属片 521的下底长度 Sl, 可以实现对 fp2 的独立调谐。
[0034] 本发明高隔离度双极化宽频天线通过设置阶梯型镂空缝隙谐振, 通过有效利用 阶梯型镂空缝隙谐振的正交电场模式来实现双极化天线, 可以充分减小天线设 计尺寸, 并在两个馈电端口间形成高的隔离度, 使得两个馈电端口的频率可独 立谐调。
[0035] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本
发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
本发明高隔离度双极化宽频天线通过设置阶梯型镂空缝隙谐振, 有效利用阶梯 型镂空缝隙谐振的正交电场模式来实现双极化天线, 可以充分减小天线设计尺 寸, 并在两个馈电端口间形成高的隔离度, 使得两个馈电端口的频率可独立谐
Claims
权利要求书
[权利要求 1] 一种高隔离度双极化宽频天线, 包括介质板、 镂空金属片、 L形金属 微带线、 第一 SMA头、 斧形单极子结构和第二 SMA头, 其特征在于 : 所述镂空金属片贴合于所述介质板的上表面, 所述 L形金属微带线 和所述斧形单极子结构贴合于所述介质板的下表面; 所述镂空金属片 上刻蚀有阶梯型镂空缝隙, 所述阶梯型镂空缝隙由第一矩形镂空、 第 二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩形镂空依次连接 构成; 所述 L形金属微带线的横部与所述介质板的下表面的长边平行 , 所述 L形金属微带线的竖部与所述介质板的下表面的长边垂直; 所 述斧形单极子结构包括条形竖部和斧形横部, 所述斧形单极子结构的 条形竖部包括连接的第一矩形金属片和第二矩形金属片, 所述斧形单 极子结构的条形竖部与所述介质板的下表面的长边垂直; 所述斧形单 极子结构的斧形横部包括对称设置于所述斧形单极子结构的条形竖部 两侧的等边梯形金属片, 所述斧形单极子结构关于所述介质板的下表 面的宽边中轴线对称; 所述第一 SMA头设置于所述介质板上, 所述 镂空金属片与第一 SMA头的接地端电连接, 所述 L形金属微带线与第 一 SMA头的馈电端电连接; 所述第二 SMA头设置于所述介质板上, 所述斧形单极子结构与第二 SMA头的馈电端电连接, 所述镂空金属 片与第二 SMA头的接地端电连接。
[权利要求 2] 如权利要求 1所述的高隔离度双极化宽频天线, 其特征在于, 所述第 一矩形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩 形镂空的宽边与所述介质板的上表面的宽边中轴线平行; 所述第一矩 形镂空、 第二矩形镂空、 第三矩形镂空、 第四矩形镂空和第五矩形镂 空关于所述宽边中轴线对称。
[权利要求 3] 如权利要求 1所述的高隔离度双极化宽频天线, 其特征在于, 所述介 质板为 FR4的介质基板, 所述介质板的厚度为 0.8mm且介电常数为 4.4
[权利要求 4] 如权利要求 1-3任一项所述的高隔离度双极化宽频天线, 其特征在于
, 所述介质板和镂空金属片的长度为 74mm, 所述介质板和镂空金属 片的宽度为 106mm; 所述第一矩形镂空的长度为 52mm, 所述第一矩 形镂空的宽度为 44mm; 所述第二矩形镂空的长度为 32mm, 所述第 二矩形镂空的宽度为 6mm; 所述第三矩形镂空的长度为 6.7mm, 所述 第三矩形镂空的宽度为 10.5mm; 所述第四矩形镂空的长度为 2.6mm , 所述第四矩形镂空的宽度为 17.7mm; 所述第五矩形镂空的长度为 9. 6mm, 所述第五矩形镂空的宽度为 1.5mm。
如权利要求 4所述的高隔离度双极化宽频天线, 其特征在于, 所述阶 梯型镂空缝隙的下部长边与所述介质板的上表面的下部长边的距离为 6.3mm。
如权利要求 5所述的高隔离度双极化宽频天线, 其特征在于, 所述 L 形金属微带线的宽度为 1.32mm, 所述 L形金属微带线的横部的长度为
27.6mm, 所述 L形金属微带线的竖部长度为 11.32mm。
如权利要求 6所述的三模宽带阶梯型缝隙天线, 其特征在于, 所述 L 形金属微带线的竖部与所述介质板的下表面的左边宽边的距离为 20.4 mm。
如权利要求 7所述的高隔离度双极化宽频天线, 其特征在于, 所述斧 形单极子结构的第一矩形金属片的长度为 2.5mm, 所述第一矩形金属 片的宽度为 36mm; 所述斧形单极子结构的第二矩形金属片的长度为 1 mm, 所述第二矩形金属片的宽度为 11mm; 所述斧形单极子结构的 等边梯形金属片的上底边长度为 2.5mm, 所述等边梯形金属片的下底 边长度为 16mm, 所述等边梯形金属片的高度为 6.75mm。
如权利要求 8所述的高隔离度双极化宽频天线, 其特征在于, 所述斧 形单极子结构的等边梯形金属片的中心点与所述斧形单极子结构的第 一矩形金属片的下底边的垂直距离为 9.8mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710225701.9A CN106972250A (zh) | 2017-04-07 | 2017-04-07 | 高隔离度双极化宽频天线 |
CN201710225701.9 | 2017-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018184354A1 true WO2018184354A1 (zh) | 2018-10-11 |
Family
ID=59336040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/101984 WO2018184354A1 (zh) | 2017-04-07 | 2017-09-16 | 高隔离度双极化宽频天线 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106972250A (zh) |
WO (1) | WO2018184354A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107181051A (zh) * | 2017-04-07 | 2017-09-19 | 深圳市景程信息科技有限公司 | 可重构的高隔离度双极化宽频天线 |
CN206806517U (zh) * | 2017-04-07 | 2017-12-26 | 深圳市景程信息科技有限公司 | 双极化宽频天线 |
CN106972250A (zh) * | 2017-04-07 | 2017-07-21 | 深圳市景程信息科技有限公司 | 高隔离度双极化宽频天线 |
CN206673107U (zh) * | 2017-04-07 | 2017-11-24 | 深圳市景程信息科技有限公司 | 利用微带线馈电的三模宽带阶梯型缝隙天线 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072439A (en) * | 1998-01-15 | 2000-06-06 | Andrew Corporation | Base station antenna for dual polarization |
CN101667680A (zh) * | 2009-08-31 | 2010-03-10 | 深圳市启汉科技有限公司 | 一种单级射频天线 |
CN202585734U (zh) * | 2012-06-08 | 2012-12-05 | 天津职业技术师范大学 | 一种小型三频段印刷天线 |
CN104241827A (zh) * | 2014-09-18 | 2014-12-24 | 厦门大学 | 一种多频兼容叠层微带天线 |
CN106972250A (zh) * | 2017-04-07 | 2017-07-21 | 深圳市景程信息科技有限公司 | 高隔离度双极化宽频天线 |
CN107181051A (zh) * | 2017-04-07 | 2017-09-19 | 深圳市景程信息科技有限公司 | 可重构的高隔离度双极化宽频天线 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088133A (zh) * | 2010-12-13 | 2011-06-08 | 上海大学 | 金属吊顶环境下室内覆盖平面天线 |
CN103296424B (zh) * | 2013-05-07 | 2015-06-17 | 清华大学 | 一种基于单片双面印刷电路板的宽带双极化天线 |
CN103779654B (zh) * | 2014-01-14 | 2016-02-03 | 西安电子科技大学 | 一种采用自相似馈电技术的双频宽带领结天线 |
-
2017
- 2017-04-07 CN CN201710225701.9A patent/CN106972250A/zh not_active Withdrawn
- 2017-09-16 WO PCT/CN2017/101984 patent/WO2018184354A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6072439A (en) * | 1998-01-15 | 2000-06-06 | Andrew Corporation | Base station antenna for dual polarization |
CN101667680A (zh) * | 2009-08-31 | 2010-03-10 | 深圳市启汉科技有限公司 | 一种单级射频天线 |
CN202585734U (zh) * | 2012-06-08 | 2012-12-05 | 天津职业技术师范大学 | 一种小型三频段印刷天线 |
CN104241827A (zh) * | 2014-09-18 | 2014-12-24 | 厦门大学 | 一种多频兼容叠层微带天线 |
CN106972250A (zh) * | 2017-04-07 | 2017-07-21 | 深圳市景程信息科技有限公司 | 高隔离度双极化宽频天线 |
CN107181051A (zh) * | 2017-04-07 | 2017-09-19 | 深圳市景程信息科技有限公司 | 可重构的高隔离度双极化宽频天线 |
Also Published As
Publication number | Publication date |
---|---|
CN106972250A (zh) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018184354A1 (zh) | 高隔离度双极化宽频天线 | |
WO2018184357A1 (zh) | 可重构的斧形双模单极子天线 | |
JP3990735B2 (ja) | アンテナ素子 | |
EP3168930B1 (en) | Antenna and communication device | |
US9559431B2 (en) | Antenna configuration for use in a mobile communication device | |
US20050024268A1 (en) | Multiband antenna with parasitically-coupled resonators | |
WO2018184355A1 (zh) | 可重构的高隔离度双极化宽频天线 | |
CN110190392A (zh) | 一种适用于4g/5g微基站的双频双极化电磁偶极子天线单元 | |
WO2014206111A1 (zh) | 多天线系统及移动终端 | |
JP2004088218A (ja) | 平面アンテナ | |
US6781553B2 (en) | Antenna device and radio communication device comprising the same | |
WO2018184356A1 (zh) | 斧形双模单极子天线 | |
CN109088165A (zh) | 一种基于超表面的宽带双极化天线 | |
EP1022803B1 (en) | Dual polarisation antennas | |
KR102196518B1 (ko) | 유전체 공진기 안테나와 이를 구비하는 mimo 안테나 및 무선 통신 장치 | |
KR20000047642A (ko) | 패치 안테나 및 그것을 이용한 전자 기기 | |
CN105071044A (zh) | 一种小型高隔离度双极化介质谐振器天线 | |
WO2018161597A1 (zh) | 频率及方向图可重构缝隙天线 | |
JP2002524953A (ja) | アンテナ | |
US6445906B1 (en) | Micro-slot antenna | |
WO2018184358A1 (zh) | 三模宽带阶梯型缝隙天线 | |
CN113193355A (zh) | 用于5g通信的双频双极化介质谐振天线及移动终端设备 | |
WO2018184369A1 (zh) | 小型化可重构的斧形双模单极子天线 | |
US6765537B1 (en) | Dual uncoupled mode box antenna | |
WO2018184370A1 (zh) | 利用微带线馈电的三模宽带阶梯型缝隙天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904401 Country of ref document: EP Kind code of ref document: A1 |