+

WO2018182250A1 - Self-healing ultra-heat-resistant nickel alloy - Google Patents

Self-healing ultra-heat-resistant nickel alloy Download PDF

Info

Publication number
WO2018182250A1
WO2018182250A1 PCT/KR2018/003512 KR2018003512W WO2018182250A1 WO 2018182250 A1 WO2018182250 A1 WO 2018182250A1 KR 2018003512 W KR2018003512 W KR 2018003512W WO 2018182250 A1 WO2018182250 A1 WO 2018182250A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel alloy
self
healing
temperature
super heat
Prior art date
Application number
PCT/KR2018/003512
Other languages
French (fr)
Korean (ko)
Inventor
이영국
이석진
남재훈
이상민
강석현
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority claimed from KR1020180034341A external-priority patent/KR20180109723A/en
Publication of WO2018182250A1 publication Critical patent/WO2018182250A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • the present invention relates to a nickel alloy. Specifically, the present invention relates to a self-healing super heat resistant nickel alloy due to boron precipitation and segregation at high temperature.
  • Monocrystalline nickel-based alloys have been used for existing parts used at ultra-high temperatures of 700 ° C. or higher, such as aircraft engines or gas turbines.
  • the existing nickel-based alloys still need to increase the available temperature and increase the limit creep strength due to the problem of improving fuel efficiency and extending the life of the product.
  • Japanese Laid-Open Patent Publication No. 2005-179755 discloses Fe- (0.04-0.1) C-( ⁇ 1.0) Si-( ⁇ 2.0) Mn-( ⁇ 0.003) S- (9-13) Ni- (17-20) Cr- (0.3 ⁇ 1.0) (Nb, Ta)-(0.3 ⁇ 0.6) Cu- (0.002 ⁇ 0.02) Ce- (0.005 ⁇ 0.01) B (Mass%) After the heat treatment of the stainless steel, water-cooled to inhibit precipitation Creep experiments were conducted. During the creep test, a void surface is formed inside the specimen, in which boron (B), a solid solution element in the base material, diffuses into the void surface. In this way, a method of suppressing the growth of creep voids by segregating boron on the surface of the creep voids, expressing self-healing function against breakage caused by creep void growth, and improving the creep limit strength has been proposed.
  • Self-healing super heat-resistant nickel alloy according to the present invention has the following challenges.
  • the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05-0.2% by weight, boron (B ): A self-healing super heat-resistant nickel alloy containing ⁇ 200 ppm of components and composed of the balance of nickel (Ni) and other inevitable impurities.
  • the nickel alloy further contains 0.001 to 1.0% by weight of titanium (Ti).
  • the nickel alloy further contains 0.001-3.0 wt% of at least one total selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al).
  • the optimum self-healing temperature of the nickel alloy is preferably 700-800 ° C.
  • the present invention is a nickel alloy having a self-healing function, when a void is formed in the nickel alloy, boride (Boride) is precipitated at the void interface, the boride is boron (B), molybdenum (Mo) , Chromium (Cr), nickel (Ni) and cobalt (Co).
  • Nickel alloy according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05-0.2% by weight , Boron (B): a base composition containing a component of ⁇ 200 ppm and containing a balance of nickel (Ni) and other unavoidable impurities; Or one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) in the first composition further containing titanium (Ti): 0.001-1.0 wt% in the basic composition. It is preferable that the above is a composition which further contains at least one composition of the 2nd composition which contained 0.001-3.0 weight% further.
  • Method for producing a self-healing super heat-resistant nickel alloy is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C ): 0.05-0.2 wt%, boron (B): nickel alloy hot rolled steel sheet containing a base composition containing ⁇ 200 ppm of components and containing a balance of nickel (Ni) and other unavoidable impurities, or titanium ( Ti): 0.001-3.0% by weight of at least one selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al) in the first composition further containing 0.001-1.0% by weight of components Providing a hot rolled steel sheet or hot forged steel sheet of nickel alloy further containing at least one of the further second compositions; Step S4 of reheating the steel sheet of nickel alloy to a predetermined temperature; S5 step of maintaining isothermal and heat treatment at a pre
  • the reheating temperature of the step S4 according to the present invention is preferably higher than the temperature at which the boride pre-precipitated in the nickel alloy is dissolved.
  • the preset temperature at which isothermal is maintained is preferably 1150-1250 ° C.
  • the preset temperature at which isothermal is maintained is preferably 1250-1300 ° C.
  • Step S6 according to the present invention is preferably cooled by water cooling.
  • step S6 is preferably austenite single phase.
  • the steel sheet providing step according to the present invention is a step S1 to melt and melt the nickel alloy having the composition; S2 step of hot rolling or hot forging the solution-molded nickel alloy; And S3 cooling the hot rolled or hot forged steel sheet.
  • the self-healing super heat resistant nickel alloy according to the present invention has the following effects.
  • the addition of B or Si has the effect of healing the initial defects from the local solute precipitation effect of the supersaturation region, preventing further defect propagation and improving creep resistance.
  • FIG. 1 shows a method for producing a self-healing super heat resistant nickel alloy in the present invention.
  • FIG. 2 is a diagram illustrating a manufacturing and heat treatment process of a hot rolled sheet of a nickel alloy according to the present invention.
  • Figure 3 is a graph showing the results of thermodynamic calculation of the fraction of the microstructure with temperature using the TCFE9 program of the nickel alloy according to the present invention.
  • Figure 4 is a graph showing the results of thermodynamic calculation of the constituent fraction of the boron (B) precipitates with temperature using the TCFE9 program of the nickel alloy according to the present invention.
  • Figure 5 shows the initial microstructure of the hot rolled plate of the nickel alloy according to the present invention
  • Figure 4a is an optical microscope picture
  • Figure 4b is a scanning microscope picture.
  • Figure 6 shows the microstructure after fracture test of the hot rolled sheet of nickel alloy according to the present invention
  • Figure 6a is an optical microscope picture
  • Figure 6b is a scanning microscope picture.
  • FIG. 7 and 8 are photographs showing the distribution of each element after the tensile test fracture of the hot rolled sheet of nickel alloy according to the present invention.
  • FIG. 9 shows the microstructure after heat treatment of the hot rolled sheet of nickel alloy according to the present invention after heat treatment at 800 ° C. for 14 hours.
  • 10 and 11 are photographs showing the distribution of each element after heat treatment of the hot-rolled sheet of nickel alloy according to the present invention after heat treatment at 800 ° C. for 14 hours.
  • FIG. 12 is an optical micrograph showing the microstructure after 33% deformation of the hot rolled sheet of nickel alloy according to the present invention.
  • FIG. 13 is a graph showing tensile test results of two specimens in which a tensile test of 33% of a hot rolled sheet of nickel alloy according to the present invention was deformed.
  • FIG 14 is a graph showing the results of the tensile test before and after the heat treatment of 800 °C 16 hours of the specimen subjected to the 33% tensile test of the hot rolled sheet of nickel alloy according to the present invention.
  • the present invention is a self-healing super heat-resistant nickel alloy, cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05 -0.2% by weight, boron (B): it is preferably composed of components containing ⁇ 200 ppm, the balance of nickel (Ni) and other inevitably contained impurities.
  • the content of the composition herein is described using weight percent.
  • the present specification provides a (1) self-healing super heat-resistant nickel alloy design and (2) a method of manufacturing the same to replace the existing alloy to improve the precipitation-based creep characteristics.
  • Nickel alloy according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05-0.2% by weight , Boron (B): ⁇ 200 ppm by weight of the component, it is characterized by being composed of the balance of nickel (Ni) and other inevitable impurities (hereinafter referred to as 'base composition').
  • the nickel alloy according to the present invention may further contain 0.001-1.0 wt% of titanium (Ti) (hereinafter referred to as 'first composition').
  • the nickel alloy according to the present invention may further contain 0.001-3.0 wt% of one or more total selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al) (hereinafter referred to as 'second composition'). ).
  • the present invention may further contain at least one of a first composition and a second composition in the basic composition.
  • Co Co + 10-15 wt%
  • Cobalt (Co) has little effect of solid-solution strengthening at room temperature, but at high temperature, it increases high capacity and slows the precipitation strengthening time, thereby increasing the high temperature strength significantly. Therefore, in order to maintain strength at a high temperature for a long time, 10 wt% or more is required. However, when cobalt (Co) exceeds 15 wt%, it combines with other alloying elements to form an intermetallic compound, thereby reducing the strength. . Therefore, the content of cobalt (Co) in the present invention is preferably 10-15% by weight.
  • Chromium (Cr) is an element that improves the corrosion resistance and oxidation resistance in super heat resistant alloys, and inhibits the formation of carbides to promote the formation of borides expected in the present invention. If the content of chromium (Cr) is less than 15% by weight, it is difficult to expect corrosion and oxidation resistance effects. If the content of chromium (Cr) exceeds 30% by weight, creep properties are deteriorated, and it causes a decrease in strength because it promotes the deposition of harmful phases such as the TCP (Topologically Close Packed) phase, which adversely affects the mechanical properties when exposed to high temperatures at high temperatures. . Therefore, the content of chromium (Cr) in the present invention is preferably 10-15% by weight.
  • Molybdenum (Mo) is a solid solution strengthening element to improve the high temperature tensile characteristics and creep characteristics of super heat-resistant alloys. In addition, it binds with carbon (C) to form M 6 C-type carbide at grain boundaries to suppress grain growth.
  • C carbon
  • the molybdenum (Mo) content is less than 5% by weight, it is difficult to expect a solid solution strengthening effect. When molybdenum (Mo) content exceeds 15 weight%, hot workability will fall and a TCP phase will form easily. Therefore, the content of molybdenum (Mo) in the present invention is preferably 10-15% by weight.
  • Carbon (C) is combined with titanium (Ti), tungsten (W), molybdenum (Mo), chromium (Cr) and the like to form carbides in the form of MC, M 6 C or M 23 C 6 to contribute to grain refinement.
  • the grain strength is improved by forming carbides at grain boundaries. If the content of carbon (C) is less than 0.05% by weight, sufficient carbides are not formed. If the content of carbon (C) is more than 0.2% by weight, too much carbide is formed and ductility, workability, and the like decrease. Therefore, the content of carbon (C) in the present invention is preferably 10-15% by weight.
  • Boron (B) segregates at grain boundaries to improve grain strength and to suppress grain growth. And it is an essential element for forming boride which is the self-healing effect of this invention.
  • Boride means a compound consisting of a metal element and boron (B).
  • the content of boron (B) in the present invention is preferably 200 ppm or less.
  • Titanium (Ti) is an element that strengthens the ⁇ 'phase by substituting the ⁇ ' phase aluminum as the ⁇ 'phase forming element together with aluminum (Al), and improves the high temperature corrosion resistance of the alloy.
  • the content of titanium (Ti) is less than 0.001% by weight, it is difficult to expect that the strength is improved by substituting aluminum (Al). If it exceeds 0.1% by weight, the manufacturing cost will rise excessively.
  • Eta (Ni 3 Ti) phase is formed during the casting of the alloy, thereby lowering the phase stability and mechanical properties. Therefore, the content of titanium (Ti) in the present invention is preferably 0.001-1.0% by weight.
  • At least one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) is contained in an amount of 0.001-3.0 wt%.
  • Iron (Fe) improves creep ductility, contributes to improvement of creep rupture strength, and contributes to improvement of room temperature workability.
  • iron (Fe) improves creep ductility, contributes to improvement of creep rupture strength, and contributes to improvement of room temperature workability.
  • the addition amount of iron (Fe) is small, it is difficult to expect the above effects, and in many cases, the creep rupture strength and hot workability are deteriorated.
  • Silicon (Si) serves to improve the oxidation resistance of the alloy.
  • the addition amount is small, the addition amount is insignificant, and therefore, it is difficult to properly exhibit the oxidation resistance improving effect.
  • the addition amount is large, the oxidation resistance is improved, but there is a problem that the creep characteristics are sharply lowered.
  • Aluminum (Al) is a member of the ⁇ 'phase, which is a major strengthening phase, and contributes to the improvement of oxidation resistance.
  • the total of at least one selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al) is preferably included in 0.001-3.0% by weight.
  • Boride means a compound containing boron as a boron (B) precipitate.
  • the optimum self-healing temperature of the nickel alloy according to the present invention is preferably 700-800 ° C. At 1250 ° C. or lower, which is the deposition temperature of boride, boride is deposited into a void formed in the nickel alloy.
  • the self-healing alloy of the stainless steel base has an available temperature of only 400-500 ° C.
  • the nickel alloy according to the present invention has the advantage that the self-healing function operates smoothly not only at 400-500 ° C., but also at 700-800 ° C. above the temperature. There is this.
  • the present invention includes a nickel alloy in which boride is precipitated in a void. That is, when a void is formed inside the nickel alloy, boride is deposited at the void interface, thereby filling the void.
  • the element of boride to be precipitated is preferably specified as boron (B), molybdenum (Mo), chromium (Cr), nickel (Ni) and cobalt (Co).
  • composition components and composition ratios of the nickel alloys are different, borides having the five constituent elements described above are precipitated.
  • the nickel alloy in which the boride is precipitated according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C) : 0.05-0.2% by weight, boron (B): basic composition containing components of ⁇ 200 ppm and containing balance nickel (Ni) and other unavoidable impurities; Or one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) in the first composition further containing titanium (Ti): 0.001-1.0 wt% in the basic composition. It is preferable that the above is a composition which further contains at least one composition of the 2nd composition which contained 0.001-3.0 weight% further.
  • the alloy production method according to the present invention is a melt-solvation step (S1 step), hot rolling or hot forging step (S2 step), cooling step (S3 step), reheating step (S4 step) and heat treatment step (S5 step) Contains,
  • the solvation temperature of S1 step is 1200 degreeC, and the melting temperature is more than the solvation temperature.
  • Solvation time means the time required until all the alloying elements are uniformly dissolved, and proceeded to 30 minutes in the embodiment.
  • hot rolling or hot forging temperature exceeds 1200 ° C.
  • hot rolling may result in energy loss.
  • the hot rolling or hot forging temperature is less than 900 °C, precipitates may be precipitated during hot rolling or hot forging, where the precipitate may adversely affect self-healing in the subsequent creep experiment. In other words, it can inhibit the self-healing performance to be obtained in the present invention. Therefore, the hot rolling temperature of the step S2 is preferably 900-1200 ° C.
  • step S2 It is necessary to prevent precipitation of precipitates in the cooling process after hot rolling or hot forging in step S2.
  • quenching through a water cooling method was first applied as an example. After that, while cooling by general air cooling method, the difference of microstructure after hot rolling according to the cooling rate was examined. As a result, not only the water cooling method but also the air cooling method confirmed that the precipitate hardly precipitated after hot rolling.
  • the fact that the self-healing is implemented by the air cooling method can be seen that the applicability in the actual industry is very high.
  • step S3 is preferably at least one of a cooling method of water cooling or air cooling.
  • a water cooling method was selected as an example.
  • step S4 it is preferable to control the precipitates by reheating the temperature of step S4.
  • the reheating temperature of the step S4 is preferably set to the temperature at which the precipitated boride is dissolved again and the temperature at which it is not reprecipitated.
  • the temperature is raised to a predetermined temperature through reheating in step S4, and heat treatment is performed while isothermally maintaining the temperature in step S5.
  • the heat treatment temperature of the step S4 is a temperature in the region where the precipitate of boride, which is a boron precipitate, and a small amount of boride precipitate, are precipitated, but in a region where the size of the crystal grains of the nickel alloy can be minimized.
  • Figure 3 is a result of thermodynamic calculation of the microstructure for each heat treatment temperature of the boron (B) addition nickel alloy according to the present invention using the TCFE9 program.
  • the heat treatment is performed based on these results, precipitates are precipitated for each temperature region.
  • boride the most important boron (B) precipitate for self-healing, precipitates in an area of 1250 ° C or lower.
  • the boron precipitate is an element to be used when self-healing as it is deposited inside a void, which is a defect space generated by stress or the like.
  • the heat treatment temperature of the step S4 is preferably the temperature of the region where the precipitate of boride, which is boron precipitate, does not precipitate.
  • step S5 it means maintaining the isothermal temperature in a state where the temperature is raised to the reheating temperature range in step S4.
  • the isothermal holding time is preferably until the precipitated boride dissolves to the maximum and disappears. In the present specification, 30 minutes were applied in one embodiment.
  • boride (B) precipitates, such as boride and nickel alloys. Therefore, it is necessary to solidify the precipitated boride back to the nickel alloy, it is important to minimize the size of the grains.
  • the isothermal holding temperature in step S5 may be divided into two sections. All of the precipitated borides remain in trace and do not dissolve, reducing the self-healing effect. However, since the creep strength improvement due to the minimization of the grain size of the nickel alloy may be greater, the self-healing may be realized, and thus the temperature may be set to a temperature that minimizes the grain size.
  • the first temperature range may be 1150 ° C. or more and 1250 ° C. It is preferable that it is the temperature range of 1150 degreeC-1250 degreeC which is the following temperatures.
  • the dissolution temperature means the precipitation temperature.
  • the second temperature section may be set to a temperature at which the precipitated boride is dissolved again and not re-precipitated, and is preferably in a temperature range of 1250 ° C to 1300 ° C that exceeds 1250 ° C and 1300 ° C or less.
  • a first temperature section or a second temperature section may be selectively applied.
  • the isothermally maintained hot rolled plate is quenched to room temperature. If it is not quenched, boron precipitates may remain at room temperature, which may cause a problem that the self-healing effect is not sufficiently secured. Therefore, in the step S6, a quenching system such as water cooling is preferable.
  • the steps S1 to S6 may be performed in succession, or may be performed separately.
  • one practitioner performs steps S1 to S3 and prepares an intermediate result.
  • another operator may be provided with an intermediate result to further perform steps S4 to S6 to produce a final result.
  • an initial defect was generated in the hot rolled sheet due to micropore formation or stress.
  • the alloy plate was heated and maintained to a temperature for evaluating creep resistance. It was maintained at the heating temperature for 10-100000 hours. It is difficult to evaluate a creep phenomenon when the said heat holding time is less than 10 hours.
  • the boron (B) precipitate is composed of elements based on boron (B), molybdenum (Mo) and chromium (Cr).
  • the elemental composition of boride (B), which is a boron (B) precipitate is determined by thermodynamic calculation using the TCFE9 program, and thus boron (B), molybdenum (Mo), chromium (Cr), nickel (Ni), and cobalt (Co). It was confirmed that the (see Figure 4).
  • a steel slab (Inconel 617B), which is prepared as shown in Table 1, was heated for 30 minutes at a reheating temperature of 1150 ° C to 1250 ° C and hot rolled. At this time, hot rolling was finished hot rolling at 900 °C-1100 °C, and re-heated at 1300 °C for 30 minutes to control the boron precipitate was water cooled.
  • FIGS. 1 and 2 The microstructure of the water cooled hot rolled sheet is shown in FIG. 5.
  • the microstructure after heat treatment is shown in FIG.
  • the distribution of each element of the microstructure is shown in FIGS. 10 and 11. Unlike the microstructure before heat treatment, it was confirmed that boron (B), molybdenum (Mo), and chromium (Cr) segregated around defects. As a result, it was confirmed that the supersaturated invasive solid solution selectively precipitated on the material defect site.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to a self-healing ultra-heat-resistant nickel alloy containing 10-15 wt% of cobalt (Co), 15-30 wt% of chromium (Cr), 5-15 weight% of molybdenum (Mo), 0.05-0.2 wt% of carbon (C), and < 200 ppm of boron (B), and the balance nickel (Ni) and other inevitably contained impurities.

Description

자가치유 초내열 니켈합금Self-Healing Super Heat-resistant Nickel Alloy
본 발명은 니켈 합금에 관한 것이다. 구체적으로는 고온에서의 보론 석출 및 편석에 따른 자가치유 초내열 니켈합금에 관한 것이다.The present invention relates to a nickel alloy. Specifically, the present invention relates to a self-healing super heat resistant nickel alloy due to boron precipitation and segregation at high temperature.
최근 대기오염과 같은 환경문제가 대두되면서, 이산화탄소를 비롯한 온실가스의 방출을 최소하하기 위하여, 엔진 및 발전기의 효율을 높이기 위한 많은 방법이 제기되고 있다. 고온에서 작동되는 엔진 및 발전기의 특성상, 특히 최대 가용온도를 증가시키는 것이 중요한 쟁점으로 부각되었다.Recently, as environmental problems such as air pollution have emerged, in order to minimize the emission of greenhouse gases, including carbon dioxide, many methods have been proposed to increase the efficiency of engines and generators. Due to the nature of engines and generators operating at high temperatures, increasing the maximum usable temperature, in particular, has emerged as an important issue.
항공기 엔진이나 가스 발전용 터빈과 같이 700℃ 이상의 초고온에서 사용되는 기존의 부품에는 단결정 니켈계 합금이 사용되고 있었다. 그러나 기존의 니켈계 합금에서 여전히 연료 효율 향상 및 제품의 수명 연장들의 문제로 가용온도의 증대와 한계 크리프 강도의 증대가 요구되고 있었다.Monocrystalline nickel-based alloys have been used for existing parts used at ultra-high temperatures of 700 ° C. or higher, such as aircraft engines or gas turbines. However, the existing nickel-based alloys still need to increase the available temperature and increase the limit creep strength due to the problem of improving fuel efficiency and extending the life of the product.
이러한 사회적 요구에 따라 스테인레스강(Stainless steel)에서 실제 크랙을 자가치유하는 연구가 수행되었다. 일본공개특허 제2005-179755호는 Fe-(0.04~0.1)C-(<1.0)Si-(<2.0)Mn-(<0.003)S-(9~13)Ni-(17~20)Cr-(0.3~1.0)(Nb, Ta)-(0.3~0.6)Cu-(0.002~0.02)Ce-(0.005~0.01)B (Mass %)조성의 스테인레스강을 열처리 후 수냉하여 석출물의 석출을 억제시키고, 크리프(creep) 실험을 진행하였다. 크리프 실험 도중 시편 내부에 보이드(void) 표면이 형성되는데, 이때 모재 내 고용원소인 보론(B)이 보이드 표면으로 확산을 하게 된다. 이를 통해 크리프 보이드 표면에 보론을 편석시킴으로써 크리프 보이드의 성장을 억제하여, 크리프 보이드 성장에 의한 파단에 대해 자가치유 기능을 발현시켜 크리프 한계 강도를 향상시키는 방법이 제안되었다.In response to these social demands, studies have been conducted to self-heale actual cracks in stainless steel. Japanese Laid-Open Patent Publication No. 2005-179755 discloses Fe- (0.04-0.1) C-(<1.0) Si-(<2.0) Mn-(<0.003) S- (9-13) Ni- (17-20) Cr- (0.3 ~ 1.0) (Nb, Ta)-(0.3 ~ 0.6) Cu- (0.002 ~ 0.02) Ce- (0.005 ~ 0.01) B (Mass%) After the heat treatment of the stainless steel, water-cooled to inhibit precipitation Creep experiments were conducted. During the creep test, a void surface is formed inside the specimen, in which boron (B), a solid solution element in the base material, diffuses into the void surface. In this way, a method of suppressing the growth of creep voids by segregating boron on the surface of the creep voids, expressing self-healing function against breakage caused by creep void growth, and improving the creep limit strength has been proposed.
하지만, 상기 종래 기술은 스테인레스강에 기반한 것으로서, 가용온도에 대한 사회적 요구보다 한참 낮은 크리프 한계 강도를 보이는 문제점이 있다. 즉 700℃ 이상의 고온에서 사용될 때, 자가치유 능력이 저하되고, 수명이 짧아 잦은 주기의 부품 교체로 효율 저하 및 가격 상승원이 된다. 이는 약 400-500℃의 낮은 가용 온도를 가지는 스테인레스 강들이 가지는 문제점이다. However, the prior art is based on stainless steel, there is a problem that shows a creep limit strength much lower than the social demand for the available temperature. In other words, when used at a high temperature of 700 ℃ or more, the self-healing ability is reduced, the life is short, the frequent cycle of parts replacement is a source of efficiency and cost increases. This is a problem with stainless steels having low usable temperatures of about 400-500 ° C.
이에 따라 유효 최적가용온도 내지 최적 가용온도가 높고, 자가치유 효과가 나타나 높은 크리프 한계 강도를 가지는 새로운 합금 설계에 대한 요구가 있으나, 이에 대한 해결방안이 제시되지 못하는 실정이었다.Accordingly, there is a need for a new alloy design having a high effective optimum temperature to an optimum available temperature and having a high self-healing effect and having a high creep limit strength, but a solution for this has not been proposed.
본 발명에 따른 자가치유 초내열 니켈합금은 다음과 같은 해결과제를 가진다.Self-healing super heat-resistant nickel alloy according to the present invention has the following challenges.
첫째, 기존 금속 고용체 내 과포화 영역의 나노 단위 정밀제어를 통한 자가치유 구현 온도 즉 가용온도를 높이고자 한다.First, it is intended to increase the self-healing temperature, that is, the available temperature, through nano-scale precise control of supersaturated regions in the existing solid solution.
둘째, 초기 결함을 치유, 추가 결함 전파를 방지하고 크리프 저항성을 향상시키고자 한다.Second, we want to cure early defects, prevent further defect propagation and improve creep resistance.
셋째, 사용 온도에서 합금 소재의 내산화성을 향상시키고자 한다.Third, to improve the oxidation resistance of the alloy material at the use temperature.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어질 수 있을 것이다. The problem of the present invention is not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피하게 함유되는 불순물로 조성되는 것을 특징으로 하는 자가치유 초내열 니켈합금이다.The present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05-0.2% by weight, boron (B ): A self-healing super heat-resistant nickel alloy containing <200 ppm of components and composed of the balance of nickel (Ni) and other inevitable impurities.
본 발명에 있어서, 상기 니켈합금에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 것이 가능하다.In the present invention, it is possible that the nickel alloy further contains 0.001 to 1.0% by weight of titanium (Ti).
본 발명에 있어서, 상기 니켈합금에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상의 총합이 0.001-3.0 중량% 더 함유되는 것이 가능하다.In the present invention, it is possible that the nickel alloy further contains 0.001-3.0 wt% of at least one total selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al).
본 발명에 있어서, 니켈 합금의 자가치유 최적 가용온도는 700-800℃인 것이 바람직하다.In the present invention, the optimum self-healing temperature of the nickel alloy is preferably 700-800 ° C.
본 발명은 자가치유 기능을 가진 니켈 합금으로서, 니켈 합금 내부에 보이드(void)가 형성되면, 상기 보이드 계면에서 보라이드(Boride)가 석출되며, 상기 보라이드는 보론(B), 몰리브덴(Mo), 크롬(Cr), 니켈(Ni) 및 코발트(Co)로 구성될 수 있다.The present invention is a nickel alloy having a self-healing function, when a void is formed in the nickel alloy, boride (Boride) is precipitated at the void interface, the boride is boron (B), molybdenum (Mo) , Chromium (Cr), nickel (Ni) and cobalt (Co).
본 발명에 따른 니켈 합금은 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피한 불순물을 함유하는 기본 조성; 또는 상기 기본 조성에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 제1 조성 및 상기 기본 조성에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-3.0 중량% 더 함유된 제2 조성 중 적어도 한 조성을 더 함유한 조성인 것이 바람직하다.Nickel alloy according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05-0.2% by weight , Boron (B): a base composition containing a component of <200 ppm and containing a balance of nickel (Ni) and other unavoidable impurities; Or one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) in the first composition further containing titanium (Ti): 0.001-1.0 wt% in the basic composition. It is preferable that the above is a composition which further contains at least one composition of the 2nd composition which contained 0.001-3.0 weight% further.
본 발명에 따른 자가치유 초내열 니켈합금의 제조방법은 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피한 불순물을 함유하는 기본 조성을 함유한 니켈 합금 열연강판 또는 상기 기본 조성에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 제1 조성 및 상기 기본 조성에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-3.0 중량% 더 함유된 제2 조성 중 적어도 한 조성을 더 함유한 니켈합금의 열간압연 강판 또는 열간단조 강판이 제공되는 단계; 상기 니켈합금의 강판을 기 설정된 온도로 재가열하는 S4 단계; 기 설정된 온도에서 등온을 유지하고 열처리하는 S5 단계; 및 등온 유지된 강판을 냉각하는 S6 단계를 포함할 수 있다.Method for producing a self-healing super heat-resistant nickel alloy according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C ): 0.05-0.2 wt%, boron (B): nickel alloy hot rolled steel sheet containing a base composition containing <200 ppm of components and containing a balance of nickel (Ni) and other unavoidable impurities, or titanium ( Ti): 0.001-3.0% by weight of at least one selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al) in the first composition further containing 0.001-1.0% by weight of components Providing a hot rolled steel sheet or hot forged steel sheet of nickel alloy further containing at least one of the further second compositions; Step S4 of reheating the steel sheet of nickel alloy to a predetermined temperature; S5 step of maintaining isothermal and heat treatment at a predetermined temperature; And it may include the step S6 for cooling the steel sheet isothermally maintained.
본 발명에 따른 S4 단계의 재가열 온도는 니켈 합금에 기 석출된 보라이드가 용해되는 온도 이상인 것이 바람직하다.The reheating temperature of the step S4 according to the present invention is preferably higher than the temperature at which the boride pre-precipitated in the nickel alloy is dissolved.
본 발명에 따른 S5 단계에서 등온이 유지되는 기 설정온도는 1150-1250℃인 것이 바람직하다.In the step S5 according to the present invention, the preset temperature at which isothermal is maintained is preferably 1150-1250 ° C.
본 발명에 따른 S5 단계에서 등온이 유지되는 기 설정온도는 1250-1300℃인 것이 바람직하다.In the step S5 according to the present invention, the preset temperature at which isothermal is maintained is preferably 1250-1300 ° C.
본 발명에 따른 S6 단계는 수냉 방식으로 냉각되는 것이 바람직하다.Step S6 according to the present invention is preferably cooled by water cooling.
본 발명에 따른 S6 단계의 미세조직은 오스테나이트 단상인 것이 바람직하다.The microstructure of step S6 according to the present invention is preferably austenite single phase.
본 발명에 따른 강판 제공단계는 상기 조성을 갖는 니켈 합금을 용해한 후 용체화하는 S1 단계; 상기 용체화된 니켈합금을 열간압연 또는 열간단조하는 S2 단계; 및 상기 열간압연 또는 열간단조된 강판을 냉각하는 S3 단계를 포함할 수 있다.The steel sheet providing step according to the present invention is a step S1 to melt and melt the nickel alloy having the composition; S2 step of hot rolling or hot forging the solution-molded nickel alloy; And S3 cooling the hot rolled or hot forged steel sheet.
본 발명에 따른 자가치유 초내열 니켈합금은 다음과 같은 효과를 가진다.The self-healing super heat resistant nickel alloy according to the present invention has the following effects.
첫째, 기존 금속 고용체 내 과포화 영역의 나노 단위 정밀제어를 통한 자가치유 구현 가용온도 즉 가용온도를 증대시키는 효과가 있다.First, there is an effect of increasing the available temperature, that is, the available temperature for self-healing through nano-scale precise control of the supersaturated region in the existing metal solid solution.
둘째, B 또는 Si 첨가함에 따라 과포화 영역의 국부적 용질 석출 효과로부터 초기 결함을 치유, 추가 결함 전파를 방지하고 크리프 저항성을 향상시키는 효과가 있다.Second, the addition of B or Si has the effect of healing the initial defects from the local solute precipitation effect of the supersaturation region, preventing further defect propagation and improving creep resistance.
셋째, 기존 소재의 Nb 합금이나 Mo 합금보다 내산화성이 뛰어난 효과가 있다. Third, there is an effect excellent oxidation resistance than Nb alloy or Mo alloy of the existing material.
넷째, 높은 산소/질소 친화도에 의해 치밀한 산화/질화막 형성이 가능한 용질 원소를 소재 표면에 과포화시켜, 고온에서 표면 결합력과 외부물질 침투 방지 효과가 우수한 산화/질화 피막을 자발 형성시킴으로써 사용 온도에서 합금 소재의 내산화성을 향상시키는 효과가 있다.Fourth, by supersaturating the surface of the material with high oxygen / nitrogen affinity to form a dense oxidized / nitride film, and spontaneously forming an oxidized / nitride film with excellent surface bonding ability and prevention of foreign material penetration at high temperature. There is an effect of improving the oxidation resistance of the material.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects that are not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명에 자가치유 초내열 니켈합금의 제조방법을 나타낸다.1 shows a method for producing a self-healing super heat resistant nickel alloy in the present invention.
도 2는 본 발명에 따른 니켈 합금의 열연판의 제조 및 열처리 공정을 도식화한 그림이다.2 is a diagram illustrating a manufacturing and heat treatment process of a hot rolled sheet of a nickel alloy according to the present invention.
도 3은 본 발명에 따른 니켈 합금의 TCFE9 프로그램을 이용한 온도에 따른 미세조직의 분율을 열역학적으로 계산한 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of thermodynamic calculation of the fraction of the microstructure with temperature using the TCFE9 program of the nickel alloy according to the present invention.
도 4는 본 발명에 따른 니켈 합금의 TCFE9 프로그램을 이용한 온도에 따른 보론(B) 석출물의 구성 원소 분율을 열역학적으로 계산한 결과를 나타낸 그래프이다.Figure 4 is a graph showing the results of thermodynamic calculation of the constituent fraction of the boron (B) precipitates with temperature using the TCFE9 program of the nickel alloy according to the present invention.
도 5는 본 발명에 따른 니켈 합금의 열연판의 초기 미세조직을 나타내며, 도 4a는 광학현미경 사진이고 도 4b는 주사현미경 사진이다.Figure 5 shows the initial microstructure of the hot rolled plate of the nickel alloy according to the present invention, Figure 4a is an optical microscope picture and Figure 4b is a scanning microscope picture.
도 6은 본 발명에 따른 니켈 합금의 열연판을 인장실험 파단 후 미세조직을 나타내며, 도 6a는 광학현미경 사진이고, 도 6b는 주사현미경 사진이다.Figure 6 shows the microstructure after fracture test of the hot rolled sheet of nickel alloy according to the present invention, Figure 6a is an optical microscope picture, Figure 6b is a scanning microscope picture.
도 7 및 도 8은 본 발명에 따른 니켈 합금의 열연판을 인장실험 파단 후 각 원소의 분포를 나타내는 사진이다.7 and 8 are photographs showing the distribution of each element after the tensile test fracture of the hot rolled sheet of nickel alloy according to the present invention.
도 9는 본 발명에 따른 니켈 합금의 열연판을 인장실험 파단 후 800℃ 14시간 열처리 후 미세조직을 나타낸다.9 shows the microstructure after heat treatment of the hot rolled sheet of nickel alloy according to the present invention after heat treatment at 800 ° C. for 14 hours.
도 10 및 도 11은 본 발명에 따른 니켈 합금의 열연판을 인장실험 파단 후 800℃ 14시간 열처리 후 각 원소의 분포를 나타내는 사진이다.10 and 11 are photographs showing the distribution of each element after heat treatment of the hot-rolled sheet of nickel alloy according to the present invention after heat treatment at 800 ° C. for 14 hours.
도 12는 본 발명에 따른 니켈 합금의 열연판을 인장실험 33% 변형 후 미세조직을 나타내는 광학현미경 사진이다.12 is an optical micrograph showing the microstructure after 33% deformation of the hot rolled sheet of nickel alloy according to the present invention.
도 13은 본 발명에 따른 니켈 합금의 열연판을 인장실험 33% 변형한 시편 2개를 인장실험 결과를 보여주는 그래프이다.FIG. 13 is a graph showing tensile test results of two specimens in which a tensile test of 33% of a hot rolled sheet of nickel alloy according to the present invention was deformed.
도 14는 본 발명에 따른 니켈 합금의 열연판을 인장실험 33% 변형한 시편의 800℃ 16시간 열처리 전/후 인장실험 결과를 보여주는 그래프이다.14 is a graph showing the results of the tensile test before and after the heat treatment of 800 16 hours of the specimen subjected to the 33% tensile test of the hot rolled sheet of nickel alloy according to the present invention.
본 발명은 자가치유 초내열 니켈합금으로서, 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피하게 함유되는 불순물로 조성되는 것이 바람직하다.The present invention is a self-healing super heat-resistant nickel alloy, cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05 -0.2% by weight, boron (B): it is preferably composed of components containing <200 ppm, the balance of nickel (Ni) and other inevitably contained impurities.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art can easily understand, the embodiments described below may be modified in various forms without departing from the concept and scope of the present invention. Where possible, the same or similar parts are represented using the same reference numerals in the drawings.
본 명세서에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지는 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite.
본 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.As used herein, the meaning of "comprising" embodies a particular property, region, integer, step, operation, element, and / or component, and other specific properties, region, integer, step, operation, element, component, and / or It does not exclude the presence or addition of groups.
본 명세서에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.All terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Terms defined in advance are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
본 명세서에서 조성물의 함량은 중량%를 사용하여 설명한다.The content of the composition herein is described using weight percent.
본 명세서에서는 기존의 석출 기반 크리프특성을 향상시키는 합금을 대체하는 (1) 자가치유 초내열 니켈 합금 설계와 (2) 그 제조방법을 제공한다. 이하, 본 발명을 상세하게 설명한다.The present specification provides a (1) self-healing super heat-resistant nickel alloy design and (2) a method of manufacturing the same to replace the existing alloy to improve the precipitation-based creep characteristics. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
(1) 자가치유 초내열 니켈합급 설계(1) Self-healing super heat resistant nickel alloy design
본 발명에 따른 니켈 합금은 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): <200 ppm 중량%의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피하게 함유되는 불순물로 조성(이하, '기본 조성'이라 함)되는 것을 특징으로 한다.Nickel alloy according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C): 0.05-0.2% by weight , Boron (B): <200 ppm by weight of the component, it is characterized by being composed of the balance of nickel (Ni) and other inevitable impurities (hereinafter referred to as 'base composition').
본 발명에 따른 니켈 합금은 티타늄(Ti): 0.001-1.0 중량%를 더 함유할 수 있다(이하 '제1 조성'이라 함).The nickel alloy according to the present invention may further contain 0.001-1.0 wt% of titanium (Ti) (hereinafter referred to as 'first composition').
본 발명에 따른 니켈 합금은 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상의 총합 0.001-3.0 중량%을 더 함유할 수 있다(이하 '제2 조성'이라 함).The nickel alloy according to the present invention may further contain 0.001-3.0 wt% of one or more total selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al) (hereinafter referred to as 'second composition'). ).
본 발명은 상기 기본 조성에 제1 조성 및 제2 조성 중 적어도 한 조성을 더 함유할 수 있다.The present invention may further contain at least one of a first composition and a second composition in the basic composition.
이하, 본 발명에 따른 니켈 합금에 함유된 각 원소에 대하여 설명한다.Hereinafter, each element contained in the nickel alloy which concerns on this invention is demonstrated.
코발트(Co): 10-15 중량%Cobalt (Co): 10-15 wt%
코발트(Co)는 상온에서 고용강화(solid-solution strengthening)의 효과가 적지만 고온에서는 고용량을 증대시키고, 석출강화(precipitation strengthening) 시간을 느리게 하여 고온강도를 현저히 증가시킨다. 따라서 고온에서 장시간 강도를 유지하기 위하여는 10 중량% 이상이 필요하다, 다만, 코발트(Co)가 15 중량%를 초과하면 다른 합금원소들과 결합하여 금속간 화합물을 형성함으로써, 강도를 저하시키게 된다. 따라서, 본 발명에서 코발트(Co)의 함량은 10-15 중량%인 것이 바람직하다.Cobalt (Co) has little effect of solid-solution strengthening at room temperature, but at high temperature, it increases high capacity and slows the precipitation strengthening time, thereby increasing the high temperature strength significantly. Therefore, in order to maintain strength at a high temperature for a long time, 10 wt% or more is required. However, when cobalt (Co) exceeds 15 wt%, it combines with other alloying elements to form an intermetallic compound, thereby reducing the strength. . Therefore, the content of cobalt (Co) in the present invention is preferably 10-15% by weight.
크롬(Cr): 15-30 중량%Chromium (Cr): 15-30 wt%
크롬(Cr)은 초내열합금에서 내식성과 내산화성을 향상시켜주는 원소이며, 탄화물 생성을 억제시켜 본 발명에서 기대하는 보라이드(boride) 형성을 촉진시킨다. 크롬(Cr) 함량이 15 중량% 미만이면 내식성 및 내산화성 효과를 기대하기 힘들다. 크롬(Cr) 함량이 30 중량%를 초과하면 크리프 특성이 저하되며, 고온에서 장시간 노출 시 기계적 특성에 나쁜 영향을 주는 TCP(Topologically Close Packed) 상 등 해로운 상의 석출을 조장시키므로 강도저하의 원인이 된다. 따라서, 본 발명에서 크롬(Cr)의 함량은 10-15 중량%인 것이 바람직하다.Chromium (Cr) is an element that improves the corrosion resistance and oxidation resistance in super heat resistant alloys, and inhibits the formation of carbides to promote the formation of borides expected in the present invention. If the content of chromium (Cr) is less than 15% by weight, it is difficult to expect corrosion and oxidation resistance effects. If the content of chromium (Cr) exceeds 30% by weight, creep properties are deteriorated, and it causes a decrease in strength because it promotes the deposition of harmful phases such as the TCP (Topologically Close Packed) phase, which adversely affects the mechanical properties when exposed to high temperatures at high temperatures. . Therefore, the content of chromium (Cr) in the present invention is preferably 10-15% by weight.
몰리브덴(Mo): 5-15 중량%Molybdenum (Mo): 5-15 wt%
몰리브덴(Mo)은 고용강화 원소로 초내열합금의 고온인장 특성, 크리프 특성을 향상시키는 역할을 한다. 또 탄소(C)와 결합하여 결정립계에 M6C형 탄화물을 형성하여 결정립 성장을 억제한다. 하지만, 많은 양이 첨가되면 TCP 상이 생성되고 열간가공성이 저하될 우려가 있다. 몰리브덴(Mo) 함량이 5 중량% 미만이면, 고용강화 효과를 기대하기 어렵다. 몰리브덴(Mo) 함량이 15 중량%를 초과하면 열간 가공성이 저하되고 TCP상이 형성되기 쉽다. 따라서, 본 발명에서 몰리브덴(Mo)의 함량은 10-15 중량%인 것이 바람직하다.Molybdenum (Mo) is a solid solution strengthening element to improve the high temperature tensile characteristics and creep characteristics of super heat-resistant alloys. In addition, it binds with carbon (C) to form M 6 C-type carbide at grain boundaries to suppress grain growth. However, if a large amount is added, there is a fear that a TCP phase is generated and the hot workability is lowered. If the molybdenum (Mo) content is less than 5% by weight, it is difficult to expect a solid solution strengthening effect. When molybdenum (Mo) content exceeds 15 weight%, hot workability will fall and a TCP phase will form easily. Therefore, the content of molybdenum (Mo) in the present invention is preferably 10-15% by weight.
탄소(C): 0.05-0.2 중량%Carbon (C): 0.05-0.2 wt%
탄소(C)는 티타늄(Ti), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr) 등과 결합하여 MC, M6C 또은 M23C6 형태의 탄화물을 형성하여 결정립계 미세화에 기여한다. 또한, 탄화물을 입계에 형성시킴으로써 결정립계 강도를 향상시킨다. 탄소(C)의 함량이 0.05 중량% 미만이면 충분한 탄화물이 형성되지 않는다, 탄소(C)의 함량이 0.2 중량%를 초과하면 지나치게 많은 탄화물이 형성되어 연성, 가공성 등이 저하된다. 따라서, 본 발명에서 탄소(C)의 함량은 10-15 중량%인 것이 바람직하다.Carbon (C) is combined with titanium (Ti), tungsten (W), molybdenum (Mo), chromium (Cr) and the like to form carbides in the form of MC, M 6 C or M 23 C 6 to contribute to grain refinement. In addition, the grain strength is improved by forming carbides at grain boundaries. If the content of carbon (C) is less than 0.05% by weight, sufficient carbides are not formed. If the content of carbon (C) is more than 0.2% by weight, too much carbide is formed and ductility, workability, and the like decrease. Therefore, the content of carbon (C) in the present invention is preferably 10-15% by weight.
보론(B): < 200 ppmBoron (B): <200 ppm
보론(B)은 결정립계에 편석되어 입계 강도를 향상시키고 결정립 성장을 억제시킨다. 그리고 본 발명의 자가치유 효과인 보라이드(boride) 형성을 하는 필수 원소이다. 보라이드(boride)는 금속 원소와 보론(B)으로 이루어진 화합물을 의미한다. 그러나 보론(B)이 과도하게 첨가되면, 재료의 융점을 저하시켜서 열간 가공성을 저하시키고, 연성이 저하된다. 따라서, 본 발명에서 보론(B)의 함량은 200 ppm 이하인 것이 바람직하다.Boron (B) segregates at grain boundaries to improve grain strength and to suppress grain growth. And it is an essential element for forming boride which is the self-healing effect of this invention. Boride means a compound consisting of a metal element and boron (B). However, when boron (B) is added excessively, melting | fusing point of a material will fall, hot workability will fall, and ductility will fall. Therefore, the content of boron (B) in the present invention is preferably 200 ppm or less.
티타늄(Ti): 0.001-1.0 중량%Titanium (Ti): 0.001-1.0 wt%
티타늄(Ti)은 알루미늄(Al)과 함께 γ′상 형성원소로서 γ′상의 알루미늄을 치환하여 γ′상을 강화하고, 합금의 고온 내부식성을 향상시키는 원소이다. 티타늄(Ti)의 함량이 0.001 중량% 미만이 되면, 알루미늄(Al)을 치환하여 강도가 향상되는 것을 기대하기 어렵다. 0.1 중량%를 초과하게 되면, 제조 비용이 과도하게 상승하게 된다. 또한 합금의 주조 시 Eta (Ni3Ti) 상을 형성하여 상안정성 및 기계적 특성을 저하시킨다. 따라서, 본 발명에서 티타늄(Ti)의 함량은 0.001-1.0 중량%인 것이 바람직하다.Titanium (Ti) is an element that strengthens the γ 'phase by substituting the γ' phase aluminum as the γ 'phase forming element together with aluminum (Al), and improves the high temperature corrosion resistance of the alloy. When the content of titanium (Ti) is less than 0.001% by weight, it is difficult to expect that the strength is improved by substituting aluminum (Al). If it exceeds 0.1% by weight, the manufacturing cost will rise excessively. In addition, Eta (Ni 3 Ti) phase is formed during the casting of the alloy, thereby lowering the phase stability and mechanical properties. Therefore, the content of titanium (Ti) in the present invention is preferably 0.001-1.0% by weight.
철(Fe), 규소(Si) 및 알루미늄(Al) 중 1종 이상의 총합 : 0.001-3.0 중량%Total of at least one of iron (Fe), silicon (Si) and aluminum (Al): 0.001-3.0 wt%
상기 합금은 추가적으로, 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-3.0 중량% 포함되는 것이 바람직하다. In the alloy, preferably, at least one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) is contained in an amount of 0.001-3.0 wt%.
철(Fe)은 크리프 연성을 개선하고, 크리프 파단 강도의 향상에 기여하며 상온 가공성의 개선에도 기여한다. 철(Fe)의 첨가량이 적을 경우, 상기 효과를 기대하기 힘들며, 많을 경우에는 오히려 크리프 파단 강도 및 열간 가공성을 저하시킨다. Iron (Fe) improves creep ductility, contributes to improvement of creep rupture strength, and contributes to improvement of room temperature workability. When the addition amount of iron (Fe) is small, it is difficult to expect the above effects, and in many cases, the creep rupture strength and hot workability are deteriorated.
규소(Si)은 합금의 내산화성을 향상시키는 역할을 한다. 첨가량이 적을 경우에는 그 첨가량이 미미한 관계로 내산화성 향상 효과를 제대로 발휘하기 힘들고, 많을 경우에는 내산화성은 향상되나, 크립 특성이 급격히 저하되는 문제가 있다.Silicon (Si) serves to improve the oxidation resistance of the alloy. When the addition amount is small, the addition amount is insignificant, and therefore, it is difficult to properly exhibit the oxidation resistance improving effect. When the addition amount is large, the oxidation resistance is improved, but there is a problem that the creep characteristics are sharply lowered.
알루미늄(Al)은 주 강화상인 γ′상의 구성원소이며 내산화성 향상에 기여한다. 첨가량이 적을 경우, γ′상 석출 및 내산화성 향상 효과를 제대로 발휘하는데 어려움이 있으며, 많을 경우 과도한 γ′상의 석출로 가공성이 저하되는 문제가 있다. 따라서, 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상의 총합은 0.001-3.0 중량%로 포함되는 것이 바람직하다.Aluminum (Al) is a member of the γ 'phase, which is a major strengthening phase, and contributes to the improvement of oxidation resistance. When the addition amount is small, it is difficult to properly exhibit the γ 'phase precipitation and the oxidation resistance improving effect, and in many cases, there is a problem that the workability is degraded due to excessive precipitation of the γ' phase. Therefore, the total of at least one selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al) is preferably included in 0.001-3.0% by weight.
보라이드(Boride)Boride
보라이드(Boride)는 보론(B) 석출물로서 보론을 함유하는 화합물을 의미한다. 본 발명에 따른 니켈 합금의 자가치유 최적 가용온도는 700-800℃인 것이 바람직하다. 보라이드(Boride)의 석출온도인 1250℃ 이하에서, 니켈 합금 내부에 형성된 보이드(void) 속으로 보라이드가 석출된다. 스테인리스강 베이스의 자가치유 합금은 가용온도가 400-500℃에 불과하지만, 본 발명에 따른 니켈 합금은 400-500℃ 뿐 아니라, 그 온도를 넘어선 700-800℃에서도 자가치유 기능이 원활히 작동되는 장점이 있다.Boride means a compound containing boron as a boron (B) precipitate. The optimum self-healing temperature of the nickel alloy according to the present invention is preferably 700-800 ° C. At 1250 ° C. or lower, which is the deposition temperature of boride, boride is deposited into a void formed in the nickel alloy. Although the self-healing alloy of the stainless steel base has an available temperature of only 400-500 ° C., the nickel alloy according to the present invention has the advantage that the self-healing function operates smoothly not only at 400-500 ° C., but also at 700-800 ° C. above the temperature. There is this.
본 발명은 보이드(void)에 보라이드(Boride)가 석출되는 니켈 합금을 포함한다. 즉 니켈 합금 내부에 보이드(void)가 형성되면, 보이드 계면에서 보라이드(Boride)가 석출되면서, 보이드(void)를 채우게 된다. 본 발명에 있어서, 석출되는 보라이드(Boride)의 구성원소는 보론(B), 몰리브덴(Mo), 크롬(Cr), 니켈(Ni) 및 코발트(Co)로 특정되는 것이 바람직하다. The present invention includes a nickel alloy in which boride is precipitated in a void. That is, when a void is formed inside the nickel alloy, boride is deposited at the void interface, thereby filling the void. In the present invention, the element of boride to be precipitated is preferably specified as boron (B), molybdenum (Mo), chromium (Cr), nickel (Ni) and cobalt (Co).
본 발명에 니켈 합금의 조성성분과 조성비를 달리하는 경우라도, 전술한 5가지 구성 원소를 가지는 보라이드가 석출되는 것을 특징으로 한다. 다만, 다음의 조성성분과 조성비를 갖는 것이 더욱 바람직하다.In the present invention, even when the composition components and composition ratios of the nickel alloys are different, borides having the five constituent elements described above are precipitated. However, it is more preferable to have the following composition components and composition ratios.
즉 본 발명에 따른 보라이드가 석출되는 니켈 합금은 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피한 불순물을 함유하는 기본 조성; 또는 상기 기본 조성에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 제1 조성 및 상기 기본 조성에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-3.0 중량% 더 함유된 제2 조성 중 적어도 한 조성을 더 함유한 조성인 것이 바람직하다.That is, the nickel alloy in which the boride is precipitated according to the present invention is cobalt (Co): 10-15% by weight, chromium (Cr): 15-30% by weight, molybdenum (Mo): 5-15% by weight, carbon (C) : 0.05-0.2% by weight, boron (B): basic composition containing components of <200 ppm and containing balance nickel (Ni) and other unavoidable impurities; Or one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) in the first composition further containing titanium (Ti): 0.001-1.0 wt% in the basic composition. It is preferable that the above is a composition which further contains at least one composition of the 2nd composition which contained 0.001-3.0 weight% further.
(2) 합금 제조방법(2) alloy manufacturing method
본 발명에 따른 합금 제조방법은 용해-용체화 단계(S1 단계), 열간압연 또는 열간단조 단계(S2 단계), 냉각 단계(S3 단계), 재가열 단계(S4 단계) 및 열처리 단계(S5 단계)를 포함한다,The alloy production method according to the present invention is a melt-solvation step (S1 step), hot rolling or hot forging step (S2 step), cooling step (S3 step), reheating step (S4 step) and heat treatment step (S5 step) Contains,
① 용해-용체화 단계(S1 단계)① dissolution-solvation step (S1 step)
S1 단계의 용체화 온도는 1200℃인 것이 바람직하며, 용해온도는 용체화온도 이상인 것이 바람직하다. 용체화 시간은 모든 합금원소가 균일하게 고용될 때까지 소요되는 시간을 의미하며, 실시예에서는 30분으로 진행하였다.It is preferable that the solvation temperature of S1 step is 1200 degreeC, and the melting temperature is more than the solvation temperature. Solvation time means the time required until all the alloying elements are uniformly dissolved, and proceeded to 30 minutes in the embodiment.
② 열간압연 또는 열간단조 단계(S2 단계)② Hot rolling or hot forging step (S2 step)
열간압연 또는 열간단조 온도가 1200℃를 초과하면, 열간압연을 진행함에 있어, 에너지 손실을 초래할 수 있다. 열간압연 또는 열간단조 온도가 900℃ 미만이면, 열간압연 또는 열간단조 도중 석출물이 석출될 수 있는데, 이때 석출된 석출물은 추후 크리프 실험 시 자가치유에 악영향을 미칠 수 있다. 즉 본 발명에서 얻고자 하는 자가치유성능을 저해할 수 있다. 따라서, S2 단계의 열간 압연 온도는 900-1200℃인 것이 바람직하다.If hot rolling or hot forging temperature exceeds 1200 ° C., hot rolling may result in energy loss. If the hot rolling or hot forging temperature is less than 900 ℃, precipitates may be precipitated during hot rolling or hot forging, where the precipitate may adversely affect self-healing in the subsequent creep experiment. In other words, it can inhibit the self-healing performance to be obtained in the present invention. Therefore, the hot rolling temperature of the step S2 is preferably 900-1200 ° C.
③ 냉각 단계(S3 단계) ③ Cooling stage (S3 stage)
S2 단계의 열간압연 또는 열간단조 이후 냉각과정에서 석출물들의 석출을 방지하는 것이 필요하다. 이를 위해, 처음에는 수냉방식을 통한 급냉을 실시예로서 적용하였다. 그 후 일반적인 공냉방식으로 서냉을 하면서, 냉각속도에 따른 열간압연 이후 미세조직의 차이를 살펴 보았다. 결과적으로 수냉방식 뿐만 아니라, 공냉방식도 열간압연 이후 석출물이 거의 석출되지 않은 것을 확인하였다. 여기서, 공냉방식으로도 자가치유가 구현되는 점은 실제 산업에서의 적용성이 매우 높다고 볼 수 있다.It is necessary to prevent precipitation of precipitates in the cooling process after hot rolling or hot forging in step S2. To this end, quenching through a water cooling method was first applied as an example. After that, while cooling by general air cooling method, the difference of microstructure after hot rolling according to the cooling rate was examined. As a result, not only the water cooling method but also the air cooling method confirmed that the precipitate hardly precipitated after hot rolling. Here, the fact that the self-healing is implemented by the air cooling method can be seen that the applicability in the actual industry is very high.
정리하면, S3 단계는 수냉 또는 공냉 중 적어도 어느 하나의 냉각 방식인 것이 바람직하다. 본 발명에서 실시예로 수냉방식을 선택하였다. In summary, step S3 is preferably at least one of a cooling method of water cooling or air cooling. In the present invention, a water cooling method was selected as an example.
한편, 만약 석출물이 발생된 경우에는, S4 단계의 승온 재가열을 통해 석출물을 제어하는 것이 바람직하다.On the other hand, if precipitates are generated, it is preferable to control the precipitates by reheating the temperature of step S4.
④ 재가열 단계(S4 단계)④ Reheating step (S4 step)
자가치유를 구현하는데 있어서 가장 큰 역할을 하는 것은 보론(B) 석출물인 보라이드(Boride)이다. 따라서, 기 석출된 보라이드를 다시 니켈 합금에 고용시키는 것이 필요하다. 그러므로, S4 단계의 재가열 온도는 석출된 보라이드가 다시 용해되는 온도 및 재석출 되지 않는 온도로 설정되는 것이 바람직하다. The most important role in implementing self-healing is boride (B) precipitate. Therefore, it is necessary to solidify the precipitated boride back to the nickel alloy. Therefore, the reheating temperature of the step S4 is preferably set to the temperature at which the precipitated boride is dissolved again and the temperature at which it is not reprecipitated.
S4 단계의 재가열을 통해 기 설정된 온도까지 승온되고, S5 단계에서 해당 온도를 등온유지하면서 열처리가 수행된다.The temperature is raised to a predetermined temperature through reheating in step S4, and heat treatment is performed while isothermally maintaining the temperature in step S5.
따라서, S4 단계의 열처리 온도는 보론 석출물인 보라이드(Boride)의 석출물이 석출되지 않는 영역과 미량의 보라이드 석출물이 석출되지만, 니켈 합금의 결정립의 크기를 최소화 할 수 있는 영역의 온도인 것이 바람직하다.Therefore, the heat treatment temperature of the step S4 is a temperature in the region where the precipitate of boride, which is a boron precipitate, and a small amount of boride precipitate, are precipitated, but in a region where the size of the crystal grains of the nickel alloy can be minimized. Do.
도 3은 TCFE9 프로그램을 이용하여, 본 발명에 따른 보론(B) 첨가 니켈 합금의 열처리 온도별 미세조직을 열역학적으로 계산한 결과이다. 이러한 결과를 바탕으로 열처리를 진행하면, 온도 영역별로 석출물이 석출된다. 특히, 자가치유에 가장 중요한 보론(B) 석출물인 보라이드(boride)는 1250℃ 이하의 영역에서 석출된다. 그런데 보론 석출물은 응력 등으로 발생된 결함 공간인 보이드(void) 내부에 석출되어 자가치유를 할 때 사용될 원소이다. 이러한 원소인 보론이 열처리 단계에서 미리 석출된다면, 추후 응력 등으로 보이드(void)가 발생되었을때, 보론(B)이 석출되는 현상을 저해하여 자가치유성능을 낮추는 문제점이 발생될 수 있다. 따라서, S4 단계의 열처리 온도는 보론 석출물인 보라이드(Boride)의 석출물이 석출되지 않는 영역의 온도인 것이 바람직하다.Figure 3 is a result of thermodynamic calculation of the microstructure for each heat treatment temperature of the boron (B) addition nickel alloy according to the present invention using the TCFE9 program. When the heat treatment is performed based on these results, precipitates are precipitated for each temperature region. In particular, boride, the most important boron (B) precipitate for self-healing, precipitates in an area of 1250 ° C or lower. However, the boron precipitate is an element to be used when self-healing as it is deposited inside a void, which is a defect space generated by stress or the like. If boron, which is such an element, is precipitated in advance in the heat treatment step, when voids are generated due to stress or the like, a problem of lowering self-healing performance may be generated by inhibiting the phenomenon in which boron B is precipitated. Therefore, the heat treatment temperature of the step S4 is preferably the temperature of the region where the precipitate of boride, which is boron precipitate, does not precipitate.
한편, 온도가 1300℃보다 높으면 재료 자체의 녹는점과 밀접하여 액체화가 진행되는 문제점이 있다. 따라서, S4 단계의 재가열을 통해 1150-1300℃의 온도범위까지 승온시키는 것이 더욱 바람직하다. On the other hand, if the temperature is higher than 1300 ℃ there is a problem that the liquidation proceeds in close contact with the melting point of the material itself. Therefore, it is more preferable to raise the temperature to a temperature range of 1150-1300 ° C through reheating in step S4.
⑤ 등온유지-열처리 단계(S5 단계)⑤ isothermal holding-heat treatment step (S5 step)
S5 단계는 S4 단계에서 재가열 온도범위까지 승온된 상태에서 등온을 유지하는 것을 의미한다. 등온 유지 시간은 석출된 보라이드가 최대한으로 용해되어 사라질 때까지로 하는 것이 바람직하다. 본 명세서에서는 일 실시예로 30분이 적용되었다. In step S5, it means maintaining the isothermal temperature in a state where the temperature is raised to the reheating temperature range in step S4. The isothermal holding time is preferably until the precipitated boride dissolves to the maximum and disappears. In the present specification, 30 minutes were applied in one embodiment.
자가치유 기능 구현에 큰 역할을 하는 것은 보론(B) 석출물인 보라이드(Boride)와 니켈 합금의 결정립 크기이다. 따라서, 기 석출된 보라이드를 다시 니켈 합금에 고용시키는 것이 필요하며, 결정립의 크기를 최소화 하는 것이 중요하다.A large role in the implementation of self-healing is the grain size of boride (B) precipitates, such as boride and nickel alloys. Therefore, it is necessary to solidify the precipitated boride back to the nickel alloy, it is important to minimize the size of the grains.
이를 위해, 본 발명에 따른 S5 단계에서 등온유지온도는 두 개의 구간으로 구분될 수 있다. 석출된 보라이드가 모두 용해되지 않고 미량으로 남아 있게 되어 자가치유 효과가 감소한다. 하지만, 니켈 합금의 결정립 크기의 최소화로 인한 크리프 강도 향상이 더 클 수 있기에 자가치유가 구현되면서 결정립의 크기를 최소화하는 온도로 설정될 수 있으며, 따라서, 제1 온도구간은 1150℃ 이상, 1250℃ 이하의 온도인 1150℃~1250℃의 온도범위인 것이 바람직하다. 참고로 용해 온도는 석출 온도를 의미한다. To this end, the isothermal holding temperature in step S5 according to the present invention may be divided into two sections. All of the precipitated borides remain in trace and do not dissolve, reducing the self-healing effect. However, since the creep strength improvement due to the minimization of the grain size of the nickel alloy may be greater, the self-healing may be realized, and thus the temperature may be set to a temperature that minimizes the grain size. Thus, the first temperature range may be 1150 ° C. or more and 1250 ° C. It is preferable that it is the temperature range of 1150 degreeC-1250 degreeC which is the following temperatures. For reference, the dissolution temperature means the precipitation temperature.
제2 온도구간은 석출된 보라이드가 다시 용해되는 온도 및 재석출 되지 않는 온도로 설정될 수 있으며, 1250℃를 초과하고, 1300℃ 이하인 1250℃~1300℃의 온도범위인 것이 바람직하다.The second temperature section may be set to a temperature at which the precipitated boride is dissolved again and not re-precipitated, and is preferably in a temperature range of 1250 ° C to 1300 ° C that exceeds 1250 ° C and 1300 ° C or less.
본 발명에 따른 자가치유 니켈 합금은 사용되는 용도에 따라, 제1 온도구간 또는 제2 온도구간이 선택적으로 적용될 수 있다.In the self-healing nickel alloy according to the present invention, a first temperature section or a second temperature section may be selectively applied.
⑥ 냉각 단계(S6 단계)⑥ Cooling stage (S6 stage)
상기 등온 유지된 열연판을 상온까지 급냉한다. 급냉이 아닌 경우 보론 석출물이 상온에서 남아있어서 추후 자가치유 효과가 충분히 확보되지 않는 문제점이 발생될 수 있다. 따라서, S6 단계에서는 수냉 등의 급냉방식이 바람직하다.The isothermally maintained hot rolled plate is quenched to room temperature. If it is not quenched, boron precipitates may remain at room temperature, which may cause a problem that the self-healing effect is not sufficiently secured. Therefore, in the step S6, a quenching system such as water cooling is preferable.
본 발명에 있어서, 상기 S1 단계 내지 S6 단계는 연속하여 실시될 수도 있고, 구분되어 실시될 수도 있다. 예를 들어, 일 실시자는 S1 단계 내지 S3 단계를 수행하고 중간 결과물을 제조하고, 이때 타 실시자는 중간 결과물을 제공받아, S4 단계 내지 S6 단계를 추가로 실시하여 최종 결과물을 제조하는 것이 가능하다.In the present invention, the steps S1 to S6 may be performed in succession, or may be performed separately. For example, one practitioner performs steps S1 to S3 and prepares an intermediate result. At this time, another operator may be provided with an intermediate result to further perform steps S4 to S6 to produce a final result.
이하에서는 전술한 제조방법의 일 실시예를 설명한다. 나아가 제조된 니켈 합금에 발생된 결함에 대하여, 자가치유의 기능작용이 구현되었는지를 설명하고자 한다.Hereinafter, an embodiment of the above-described manufacturing method will be described. Furthermore, with respect to defects generated in the manufactured nickel alloy, it will be described whether the function of self-healing is implemented.
본 발명에 있어서, 자가치유 구현을 관찰하기 위해 상기 열연판에 마이크로기공 형성 혹은 응력에 의한 초기 결함을 발생시켰다. 크리프 저항성을 평가하기 위한 온도까지 상기 합금판을 가열하고 유지하였다. 가열온도에서 10-100000 시간동안 유지하였다. 상기 가열 유지시간이 10시간 미만이면 크리프 현상을 평가하기 어렵다. In the present invention, in order to observe the self-healing implementation, an initial defect was generated in the hot rolled sheet due to micropore formation or stress. The alloy plate was heated and maintained to a temperature for evaluating creep resistance. It was maintained at the heating temperature for 10-100000 hours. It is difficult to evaluate a creep phenomenon when the said heat holding time is less than 10 hours.
본 발명에 있어서, 자가치유를 구현하는데 있어서 가장 큰 역할을 하는 것은 보론(B) 석출물이다. 이러한 보론(B) 석출물은 보론(B), 몰리브덴(Mo) 및 크롬(Cr)의 원소를 기반으로 구성되어 있다. In the present invention, the most important role in implementing self-healing is boron (B) precipitate. The boron (B) precipitate is composed of elements based on boron (B), molybdenum (Mo) and chromium (Cr).
실시예에서는 TCFE9 프로그램을 이용한 열역학적 계산을 통하여 보론(B) 석출물인 보라이드(Boride)의 원소 구성이 보론(B), 몰리브덴(Mo), 크롬(Cr), 니켈(Ni) 및 코발트(Co)로 되어있음을 확인하였다(도 4 참조).In this embodiment, the elemental composition of boride (B), which is a boron (B) precipitate, is determined by thermodynamic calculation using the TCFE9 program, and thus boron (B), molybdenum (Mo), chromium (Cr), nickel (Ni), and cobalt (Co). It was confirmed that the (see Figure 4).
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예 1]Example 1
하기 표 1과 같이 조성되는 강 슬라브(Inconel 617B)를 재가열온도 1150℃-1250℃ 온도범위에서 30분 가열하고 열간압연을 실시하였다. 이때, 열간압연은 900℃-1100℃에서 열간압연을 종료하였으며, 보론 석출물 제어를 위해 1300℃에서 30분간 재가열 후 수냉하였다. 이러한 공정 및 열처리 조건을 도 1 및 도 2에 자세히 나타내었다. 수냉한 열연판의 미세조직은 도 5에 나타난다.A steel slab (Inconel 617B), which is prepared as shown in Table 1, was heated for 30 minutes at a reheating temperature of 1150 ° C to 1250 ° C and hot rolled. At this time, hot rolling was finished hot rolling at 900 ℃-1100 ℃, and re-heated at 1300 ℃ for 30 minutes to control the boron precipitate was water cooled. These processes and heat treatment conditions are shown in detail in FIGS. 1 and 2. The microstructure of the water cooled hot rolled sheet is shown in FIG. 5.
강종Steel grade NiNi BB AlAl CoCo CrCr MoMo MnMn FeFe TiTi CC SiSi SS PP
발명강(Inconel 617B)Invenel 617B BaseBase 0.0040.004 1.091.09 12.2012.20 22.2022.20 9.539.53 0.070.07 1.151.15 0.380.38 0.090.09 0.080.08 0.0020.002 0.0030.003
이렇게 제조된 열연판을 이용하여 결함을 발생시키기 위해 인장시편을 제작하여 파단까지 인장실험을 진행하였다. 인장 후 미세조직은 도 6에 나타난다. 미세조직의 각 원소의 분포는 도 7 및 도 8에 나타난다. 인장 후 결함 주위에 원소가 편석 혹은 석출이 일어나는 것을 관찰하지 못 하였다.Using the hot rolled sheet thus prepared to prepare a tensile specimen to generate a defect was carried out a tensile test until failure. Microstructure after tension is shown in FIG. 6. The distribution of each element of the microstructure is shown in FIGS. 7 and 8. Elemental segregation or precipitation was not observed around the defects after tensioning.
자가치유를 구현하기 위해 인장 후 시편을 800℃에서 14 시간동안 가열하고 수냉하였다. 열처리 후 미세조직은 도면 9에 나타난다. 미세조직의 각 원소의 분포는 도 10 및 도 11에 나타난다. 열처리 전 미세조직과 달리 결함 주위에 보론(B), 몰리브덴(Mo), 크롬(Cr) 등이 편석됨을 확인하였다. 이에 따라 과포화된 침입형 고용원소가 재료 결함부위에 선택적으로 석출함을 확인하였다.After tensioning the specimens were heated and water cooled at 800 ° C. for 14 hours to achieve self healing. The microstructure after heat treatment is shown in FIG. The distribution of each element of the microstructure is shown in FIGS. 10 and 11. Unlike the microstructure before heat treatment, it was confirmed that boron (B), molybdenum (Mo), and chromium (Cr) segregated around defects. As a result, it was confirmed that the supersaturated invasive solid solution selectively precipitated on the material defect site.
[실시예 2]Example 2
자가치유가 기계적 물성에 미치는 영향을 확인하기 위해 상기 실시예 1의 동일한 열연판에서 인장시편을 두 개 제작하여 파단 전 33%의 변형만 주었다. 33% 변형을 준 인장시편의 미세조직은 도 12에 나타난다.In order to confirm the effect of self-healing on the mechanical properties, two tensile specimens were fabricated in the same hot-rolled sheet of Example 1, giving only 33% of deformation before fracture. The microstructure of the tensile specimens with 33% strain is shown in FIG. 12.
자가치유를 구현하기 위해 우선 33% 인장응력을 가한 2개의 시편을 준비하였다. 2개의 인장실험 결과는 도 13에 나타난다. 이 후, 한 개의 인장 시편만을 800℃에서 16시간동안 가열하고 수냉하였다. 열처리 전/후의 33% 변형된 인장시편들의 인장실험 결과는 도 14에 나타난다. 열처리를 하지 않은 인장 시편보다 열처리한 인장 시편의 연신율이 회복된 것으로 보아 자가치유가 된 것으로 확인된다.To implement self-healing, two specimens were first applied with 33% tensile stress. Two tensile test results are shown in FIG. 13. Thereafter, only one tensile specimen was heated at 800 ° C. for 16 hours and water cooled. Tensile test results of 33% strained tensile specimens before and after heat treatment are shown in FIG. 14. The elongation of the tensilely annealed tensile specimens was restored to that of the non-annealed tensile specimens, indicating self-healing.
본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments described in the present specification and the accompanying drawings merely illustrate some of the technical ideas included in the present invention. Therefore, since the embodiments disclosed herein are not intended to limit the technical spirit of the present invention but to explain, it is obvious that the scope of the technical spirit of the present invention is not limited by these embodiments. Modifications and specific embodiments that can be easily inferred by those skilled in the art within the scope of the technical idea included in the specification and drawings of the present invention should be construed as being included in the scope of the present invention.

Claims (16)

  1. 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피하게 함유되는 불순물로 조성되는 것을 특징으로 하는 자가치유 초내열 니켈합금.Cobalt (Co): 10-15 wt%, Chromium (Cr): 15-30 wt%, Molybdenum (Mo): 5-15 wt%, Carbon (C): 0.05-0.2 wt%, Boron (B): < A self-healing super heat-resistant nickel alloy containing 200 ppm of components and composed of residual nickel (Ni) and other inevitable impurities.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 니켈합금에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 것을 특징으로 자가치유 초내열 니켈합금.Titanium (Ti): the self-healing super heat-resistant nickel alloy, characterized in that it further contains 0.001-1.0% by weight of the component.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 니켈합금에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상의 총합이 0.001-3.0 중량% 더 함유되는 것을 특징으로 자가치유 초내열 니켈합금.Self-healing super heat-resistant nickel alloy, characterized in that the nickel alloy further contains 0.001-3.0% by weight of at least one total selected from the group consisting of iron (Fe), silicon (Si) and aluminum (Al).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 니켈 합금의 자가치유 최적 가용온도는 700-800℃인 것을 특징으로 자가치유 초내열 니켈합금.Self-healing superheat-resistant nickel alloy, characterized in that the optimum self-healing temperature of the nickel alloy is 700-800 ℃.
  5. 자가치유 기능을 가진 니켈 합금으로서, Nickel alloy with self-healing function,
    니켈 합금 내부에 보이드(void)가 형성되면, 상기 보이드 계면에서 보라이드(Boride)가 석출되며, When a void is formed inside the nickel alloy, boride is deposited at the void interface.
    상기 보라이드는 보론(B), 몰리브덴(Mo), 크롬(Cr), 니켈(Ni) 및 코발트(Co)로 구성된 것을 특징으로 하는 자가치유 초내열 니켈합금.The boride is self-healing super heat-resistant nickel alloy, characterized in that consisting of boron (B), molybdenum (Mo), chromium (Cr), nickel (Ni) and cobalt (Co).
  6. 청구항 5에 있어서, 상기 니켈 합금은 The method of claim 5, wherein the nickel alloy
    코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피한 불순물을 함유하는 기본 조성; 또는Cobalt (Co): 10-15 wt%, Chromium (Cr): 15-30 wt%, Molybdenum (Mo): 5-15 wt%, Carbon (C): 0.05-0.2 wt%, Boron (B): < A base composition containing 200 ppm of the component and containing the balance of nickel (Ni) and other unavoidable impurities; or
    상기 기본 조성에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 제1 조성 및 상기 기본 조성에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-3.0 중량% 더 함유된 제2 조성 중 적어도 한 조성을 더 함유한 조성인 것을 특징으로 하는 것을 특징으로 하는 자가치유 초내열 니켈합금.At least one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) in the first composition further containing titanium (Ti): 0.001-1.0 wt% in the basic composition. A self-healing super heat-resistant nickel alloy, characterized in that the composition further contains at least one of the second compositions containing 0.001-3.0% by weight.
  7. 코발트(Co): 10-15 중량%, 크롬(Cr): 15-30 중량%, 몰리브덴(Mo): 5-15 중량%, 탄소(C): 0.05-0.2 중량%, 보론(B): < 200 ppm의 성분을 함유하고, 잔부인 니켈(Ni) 및 기타 불가피한 불순물을 함유하는 기본 조성을 함유한 니켈 합금 열연강판 또는Cobalt (Co): 10-15 wt%, Chromium (Cr): 15-30 wt%, Molybdenum (Mo): 5-15 wt%, Carbon (C): 0.05-0.2 wt%, Boron (B): < Nickel alloy hot rolled steel sheet containing a basic composition containing 200 ppm of components and containing the balance of nickel (Ni) and other unavoidable impurities, or
    상기 기본 조성에 티타늄(Ti): 0.001-1.0 중량%의 성분이 더 함유된 제1 조성 및 상기 기본 조성에 철(Fe), 규소(Si) 및 알루미늄(Al)으로 이루어진 그룹에서 선택된 1종 이상이 0.001-3.0 중량% 더 함유된 제2 조성 중 적어도 한 조성을 더 함유한 니켈합금의 열간압연 강판 또는 열간단조 강판이 제공되는 단계;At least one selected from the group consisting of iron (Fe), silicon (Si), and aluminum (Al) in the first composition further containing titanium (Ti): 0.001-1.0 wt% in the basic composition. Providing a hot rolled steel sheet or a hot forged steel sheet of nickel alloy further containing at least one of the second compositions containing 0.001-3.0% by weight;
    상기 니켈합금의 강판을 기 설정된 온도로 재가열하는 S4 단계;Step S4 of reheating the steel sheet of nickel alloy to a predetermined temperature;
    기 설정된 온도에서 등온을 유지하고 열처리하는 S5 단계; 및S5 step of maintaining isothermal and heat treatment at a predetermined temperature; And
    등온 유지된 강판을 냉각하는 S6 단계를 포함하는 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.Method of producing a self-healing super heat-resistant nickel alloy comprising the step S6 of cooling the steel sheet isothermally maintained.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 S4 단계의 재가열 온도는 니켈 합금에 기 석출된 보라이드가 용해되는 온도 이상인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The reheating temperature of the step S4 is a method of producing a self-healing super heat-resistant nickel alloy, characterized in that more than the temperature at which the pre-deposited boride is dissolved in the nickel alloy.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 S5 단계에서 등온이 유지되는 기 설정온도는 1150-1250℃인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The pre-set temperature at which the isothermal temperature is maintained in the step S5 is 1150-1250 ℃ manufacturing method of self-healing super heat resistant nickel alloy.
  10. 청구항 7에 있어서,The method according to claim 7,
    상기 S5 단계에서 등온이 유지되는 기 설정온도는 1250-1300℃인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The method of manufacturing a self-healing super heat-resistant nickel alloy, characterized in that the predetermined temperature is maintained at step S5 is 1250-1300 ℃.
  11. 청구항 7에 있어서,The method according to claim 7,
    상기 S6 단계는 수냉 방식으로 냉각되는 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The step S6 is a method of producing a self-healing super heat-resistant nickel alloy, characterized in that the cooling by water cooling.
  12. 청구항 7에 있어서,The method according to claim 7,
    상기 S6 단계의 미세조직은 오스테나이트 단상인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The microstructure of step S6 is a method for producing a self-healing super heat-resistant nickel alloy, characterized in that the austenite single phase.
  13. 청구항 7에 있어서,The method according to claim 7,
    상기 강판 제공단계는 The steel sheet providing step
    상기 조성을 갖는 니켈 합금을 용해한 후 용체화하는 S1 단계;S1 step of dissolving and then melting the nickel alloy having the composition;
    상기 용체화된 니켈합금을 열간압연 또는 열간단조하는 S2 단계; 및S2 step of hot rolling or hot forging the solution-molded nickel alloy; And
    상기 열간압연 또는 열간단조된 강판을 냉각하는 S3 단계를 포함하는 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.Method of producing a self-healing super heat-resistant nickel alloy comprising the step S3 of cooling the hot rolled or hot forged steel sheet.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 S1 단계의 용체화 온도는 1200℃이며, 용해온도는 용체화 온도 이상인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The solution temperature of the step S1 is 1200 ℃, the dissolution temperature is a method of producing a self-healing super heat-resistant nickel alloy, characterized in that the solution temperature or more.
  15. 청구항 13에 있어서,The method according to claim 13,
    상기 S2 단계의 열간압연 또는 열간단조 온도는 900-1200℃인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The hot rolling or hot forging temperature of the step S2 is 900-1200 ℃ manufacturing method of self-healing super heat-resistant nickel alloy.
  16. 청구항 13에 있어서,The method according to claim 13,
    상기 S3 단계는 수냉 또는 공냉 중 적어도 어느 하나의 냉각 방식인 것을 특징으로 하는 자가치유 초내열 니켈합금의 제조방법.The step S3 is a method of producing a self-healing super heat-resistant nickel alloy, characterized in that the cooling method of at least one of water or air cooling.
PCT/KR2018/003512 2017-03-27 2018-03-26 Self-healing ultra-heat-resistant nickel alloy WO2018182250A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170038220 2017-03-27
KR10-2017-0038220 2017-03-27
KR1020180034341A KR20180109723A (en) 2017-03-27 2018-03-26 SELF-HEALING Ni ALLOY HAVING HIGH HEAT-RESISTANCE
KR10-2018-0034341 2018-03-26

Publications (1)

Publication Number Publication Date
WO2018182250A1 true WO2018182250A1 (en) 2018-10-04

Family

ID=63678089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003512 WO2018182250A1 (en) 2017-03-27 2018-03-26 Self-healing ultra-heat-resistant nickel alloy

Country Status (1)

Country Link
WO (1) WO2018182250A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310839A (en) * 1998-04-28 1999-11-09 Hitachi Ltd High-strength Ni-base superalloy directionally solidified casting
KR20100010841A (en) * 2008-07-23 2010-02-02 삼성전자주식회사 Semiconductor chip layout and semiconductor chip with chip seperation region
JP2013049902A (en) * 2011-08-31 2013-03-14 Nippon Steel & Sumitomo Metal Corp Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
KR20150104318A (en) * 2014-03-05 2015-09-15 한국원자력연구원 super heat resistant alloy and the manufacturing method thereof
JP2017036485A (en) * 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 Ni-based superalloy powder for additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310839A (en) * 1998-04-28 1999-11-09 Hitachi Ltd High-strength Ni-base superalloy directionally solidified casting
KR20100010841A (en) * 2008-07-23 2010-02-02 삼성전자주식회사 Semiconductor chip layout and semiconductor chip with chip seperation region
JP2013049902A (en) * 2011-08-31 2013-03-14 Nippon Steel & Sumitomo Metal Corp Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
KR20150104318A (en) * 2014-03-05 2015-09-15 한국원자력연구원 super heat resistant alloy and the manufacturing method thereof
JP2017036485A (en) * 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 Ni-based superalloy powder for additive manufacturing

Similar Documents

Publication Publication Date Title
WO2015099363A1 (en) Low-temperature ingot steel having excellent surface processing quality
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2018074743A1 (en) High-strength fe-cr-ni-al multiplex stainless steel and manufacturing method therefor
WO2016105002A1 (en) Low-temperature steel sheet with excellent surface processing quality and method for manufacturing same
WO2010074473A2 (en) High strength steel plate for nuclear reactor containment vessel and method of manufacturing the same
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2020116876A2 (en) Hot press forming member having excellent resistance to hydrogen embrittlement, and method for manufacturing same
WO2017082684A1 (en) Wire having excellent cold forgeability and manufacturing method therefor
WO2021100959A1 (en) Austenitic stainless steel containing large amount of uniformly distributed nano sized precipitates and manufacturing method therefor
WO2017131260A1 (en) Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
WO2012011622A1 (en) Method for manufacturing high-nitrogen steel wire, and overhead power line using same
KR102227228B1 (en) SELF-HEALING Ni ALLOY HAVING HIGH HEAT-RESISTANCE
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
JP3722975B2 (en) Method for recovering performance of Ni-base heat-resistant alloy
WO2016104883A1 (en) Ferritic stainless steel material having superb ductility and method for producing same
WO2018182250A1 (en) Self-healing ultra-heat-resistant nickel alloy
WO2021080205A1 (en) Chromium steel having excellent high-temperature oxidation resistance and high-temperature strength, and method of manufacturing same
WO2021125858A2 (en) Enamel steel sheet and manufacturing method therefor
WO2024225720A1 (en) High-strength aluminum-zinc-magnesium-copper alloy thick plate and method for producing same
WO2021025499A1 (en) High-strength and high-formability beta titanium alloy
KR20150092361A (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
WO2016072679A1 (en) Wire rod having enhanced strength and impact toughness and preparation method for same
WO2020085852A1 (en) High manganese austenitic steel having high yield strength and manufacturing method for same
WO2020085847A1 (en) Austenitic high manganese steel for cryogenic applications having excellent surface quality and resistance to stress corrosion cracking, and manufacturing method for same
WO2019009636A1 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774762

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载