WO2018182033A1 - Water production method and water production device - Google Patents
Water production method and water production device Download PDFInfo
- Publication number
- WO2018182033A1 WO2018182033A1 PCT/JP2018/014007 JP2018014007W WO2018182033A1 WO 2018182033 A1 WO2018182033 A1 WO 2018182033A1 JP 2018014007 W JP2018014007 W JP 2018014007W WO 2018182033 A1 WO2018182033 A1 WO 2018182033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- semipermeable membrane
- permeate
- downstream
- upstream
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 553
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- 239000012528 membrane Substances 0.000 claims abstract description 293
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 144
- 238000000034 method Methods 0.000 claims abstract description 75
- 239000012466 permeate Substances 0.000 claims description 171
- 239000013505 freshwater Substances 0.000 claims description 62
- 238000003809 water extraction Methods 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 8
- 238000000638 solvent extraction Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- 239000008400 supply water Substances 0.000 claims 1
- 238000001223 reverse osmosis Methods 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- -1 polybutylene terephthalate Polymers 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000010612 desalination reaction Methods 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 0 CC(C)CCC(C)C(C)=C[C@]1(C)C*CC1 Chemical compound CC(C)CCC(C)C(C)=C[C@]1(C)C*CC1 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001207 Noryl Polymers 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present invention relates to a fresh water generation method and a fresh water generation device that allows raw water to permeate through a semipermeable membrane to obtain the permeated water, and more particularly to a fresh water generation method and a fresh water generation device that suppress deterioration of water quality due to operating conditions and operating conditions.
- a solution containing a solute such as salt is allowed to permeate through a reverse osmosis membrane at a pressure equal to or higher than the osmotic pressure of the solution, thereby reducing the liquid ( Permeated water) and concentrated water.
- This technology can obtain drinking water level water from, for example, seawater, brine, and water containing harmful substances, and it can also be used for industrial ultrapure water production, wastewater treatment, recovery of valuable materials, etc. It is used.
- a plurality of semipermeable membrane elements are connected in series to one pressure vessel by connecting water collecting pipes located inside each semipermeable membrane element (this is called a module). ).
- the raw water supplied to the semipermeable membrane element on the module inlet side (upstream side) is supplied to the semipermeable membrane surface through a gap in the semipermeable membrane element, and is separated into permeated water and concentrated water.
- the separated permeated water is collected in a water collecting pipe and taken out from a permeated water outlet provided at the end of the module and connected to the water collecting pipe.
- the raw water is not uniformly supplied to the entire module, but the permeated water is separated in order from the upstream element, so the amount of raw water supplied decreases as it approaches the module outlet side (downstream side), The salt concentration increases. Along with this, the amount of permeated water also decreases, the concentration increases, that is, the permeated water quality deteriorates.
- the operating pressure at the time of low water temperature may exceed the allowable pressure of the semipermeable membrane module, for example, 8.0 to 9.0 MPa.
- TDS Total Dissolved Solids
- Factors that lower the permeated water quality include fouling (film surface contamination) and film deterioration. Fouling is caused by the growth of microorganisms, salt precipitation, and the like. The film deterioration is caused by the film surface being scratched by an insoluble material or the film being destroyed by an oxide such as hypochlorous acid. When these occur, the performance is restored by cleaning with chemicals, but irreversible changes accumulate, and the performance gradually deteriorates and the water quality deteriorates. At this time, if the number of semipermeable membrane elements is reduced, it becomes possible to obtain a desired water quality. However, in order to implement this, it takes a lot of time and labor, such as once stopping the operation. Replace with a new semi-permeable membrane element when the performance drops.
- Patent Document 1 discloses a reverse osmosis separation device for changing the cross-sectional area of a raw water flow path of a reverse osmosis membrane element in a module and its According to Patent Document 2, a reverse osmosis membrane treatment apparatus and a structure in which a shutter mechanism for blocking a water collecting pipe forming a flow path of permeated water and a valve mechanism for adjusting the flow rate of permeated water on the supply side (upstream side) are provided.
- the water method includes a resistor that separates permeate water into a supply side (upstream side) and a discharge side (downstream side), and further includes a valve that adjusts the flow rate of permeate water on the supply side (upstream side).
- a provided reverse osmosis treatment apparatus is disclosed. However, in either case, the water quality deterioration due to temperature change or the like was not suppressed, and the operating range was not expanded or the replacement frequency of the semipermeable membrane element was not reduced.
- the number of semipermeable membrane elements is designed to be small in advance and operated at a high operating pressure in order to obtain a desired amount of permeated water, or the semipermeable membrane element It was dealt with by exchange. For this reason, there is a problem that the required power of the pump is increased and the power cost is increased, the replacement cost of the semipermeable membrane element is increased, and the designable temperature range is limited.
- the present invention suppresses permeate quality degradation even when permeate quality declines, lowers operating pressure and replacement frequency of the semipermeable membrane element, lowers the operating cost of the fresh water generator, and can be designed at the same time.
- An object of the present invention is to provide a wide water production method and water production apparatus.
- the present invention provides a fresh water generation method for separating raw water with a semipermeable membrane and discharging concentrated water to take out the permeated water.
- a first water generator including a configuration in which the upstream semiperme
- the present invention also relates to a fresh water generator that separates raw water with a semipermeable membrane and discharges concentrated water to take out permeated water.
- the raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water channel, and the permeated water channel Concentrated water discharged from the former semipermeable membrane element is supplied to the latter semipermeable membrane element as raw water for m semipermeable membrane elements (m is an integer of 2 or more) equipped with a water collecting pipe for collecting and taking out the permeated water.
- the upstream semipermeable membrane module communicated through the water collecting pipe and the p semipermeable membrane elements (p is a natural number satisfying p ⁇ m) are discharged from the preceding semipermeable membrane element.
- a first raw water connected to the upstream semipermeable membrane module including a downstream semipermeable membrane module communicating with a collecting pipe so that the concentrated water is supplied as raw water to the latter semipermeable membrane element; Supply path, discharged from the upstream semipermeable membrane module Concentrated water connection path connected so that upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module Permeate connection path connected to join downstream permeate obtained from the above, a first concentrated water discharge path connected to the downstream semipermeable membrane module, and permeate connection path switching capable of switching the flow path And a downstream permeated water discharge path connected to the permeated water connection path switching section.
- the present invention also relates to a fresh water generator that separates raw water with a semipermeable membrane and discharges the concentrated water to take out the permeated water.
- the raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water flow path, the permeated water flow Concentrated water discharged from the former semipermeable membrane element is used as raw water for the semipermeable membrane element in the latter stage.
- the upstream semipermeable membrane module communicated through the water collecting pipe and p semipermeable membrane elements (p is a natural number satisfying p ⁇ m) are discharged from the preceding semipermeable membrane element so as to be supplied.
- a first semi-permeable membrane module connected to the upstream semi-permeable membrane module including a downstream semi-permeable membrane module communicating with a water collecting pipe so that the concentrated water is supplied as raw water to the latter semi-permeable membrane element.
- Discharge from raw water supply channel upstream semipermeable membrane module
- the concentrated water connection path connected so that the upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, the upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module
- the permeated water connection path connected to join the downstream permeate obtained from the first semi-concentrated water discharge path connected to the downstream semipermeable membrane module, provided at a location different from the permeate connection path.
- a fresh water generator characterized by comprising a water connection path valve.
- the present invention is also a water making apparatus comprising a high-pressure pump for boosting raw water, separating the raw water with a semipermeable membrane, discharging concentrated water and taking out the permeated water, the raw water supply port, the concentrated water discharge port, the semipermeable membrane Concentrated water discharged from the former semipermeable membrane element is the latter stage of n semipermeable membrane elements (n is an integer of 3 or more) having a membrane, raw water flow channel, permeated water flow channel, and a water collecting pipe for collecting and taking out permeated water.
- a semipermeable membrane module communicating with a semi-permeable membrane element so as to be supplied as raw water to the semipermeable membrane element, wherein the semipermeable membrane module includes a second raw water supply path and a second concentrated water discharge path.
- a downstream permeated water extraction path for extracting downstream permeated water obtained from less than n / 2 semipermeable membrane elements counted from the downstream side in the semipermeable membrane module, and an upstream obtained from the remaining semipermeable membrane elements Upstream permeate to remove side permeate or
- a water collecting pipe partitioning section provided with a water collecting pipe on the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side, provided with a permeated water extraction path, and the downstream
- a flow rate or flow path control unit for controlling the flow rate or flow path provided in the side permeate extraction path, or the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream
- the fresh water generation method of the present invention when the permeated water quality is lowered, it is possible to suppress the degradation of the permeated water quality by taking out only the upstream permeated water, and when the permeated water quality is good, the upstream permeated water and the downstream The required power of the pump can be suppressed by taking out the total permeated water combined with the side permeated water. Therefore, the temperature range in which operation can be performed is widened, and economical operation is possible by reducing the replacement frequency of the semipermeable membrane element and reducing the electricity cost.
- FIG. 1 is an example of a fresh water generator according to an embodiment of the present invention.
- FIG. 2 is an example of a fresh water generator having a permeate connection path valve and no downstream permeate discharge path according to another embodiment of the present invention.
- FIG. 3 is an example of a desalinator according to another embodiment of the present invention in which the downstream permeate discharge path is connected to the first raw water supply path.
- FIG. 4 is an example of a fresh water generator including a semipermeable membrane module provided with a water collecting pipe partitioning section or a water collecting pipe valve according to another embodiment of the present invention.
- FIG. 1 is an example of a fresh water generator according to an embodiment of the present invention.
- FIG. 2 is an example of a fresh water generator having a permeate connection path valve and no downstream permeate discharge path according to another embodiment of the present invention.
- FIG. 3 is an example of a desalinator according to another embodiment of the present invention in which the downstream permeate discharge path is connected to the first raw water
- FIG. 5 is an example of a water producing device according to another embodiment of the present invention in which the downstream permeate take-out path is connected to the upstream permeate extract or the total permeate take-out path.
- FIG. 6 is an example of a desalinator according to another embodiment of the present invention, in which the downstream permeate take-out path is connected to the upstream permeate or total permeate take-out path and the second raw water supply path.
- FIG. 7 is an example of a water producing device according to another embodiment of the present invention, in which the downstream permeate take-out path is connected to the upstream permeate or total permeate take-out path and the downstream permeate discharge path.
- FIG. 8 is an example of a water producing device according to another embodiment of the present invention, in which semipermeable membrane modules including a semipermeable membrane module provided with a water collecting pipe partitioning section or a water collecting pipe valve are arranged in multiple stages.
- FIG. 9 is a schematic view of a spiral type reverse osmosis membrane element according to an embodiment of the present invention.
- FIG. 1 is a conceptual diagram of a desalination apparatus suitable for a desalination method according to a preferred embodiment of the present invention.
- This apparatus includes a high-pressure pump 29, a first raw water supply path (raw water supply path) 1, an upstream side semi-permeable.
- the downstream permeated water discharge path 10 is composed of an upstream semipermeable membrane module 22 and a downstream semipermeable membrane module 23 connected by a concentrated water connecting path 8 and a permeated water connecting path 9.
- the permeate connection path 9 is provided with a permeate connection path switching unit or a permeate connection path valve 28, and the permeate connection path switching unit or the permeate connection path valve 28 is connected to the downstream permeate discharge path 4. It is connected.
- the upstream side semipermeable membrane module 22 has m semipermeable membrane elements (m is a muffler element) including a raw water supply port, a concentrated water discharge port, a semipermeable membrane, a raw water flow channel, a permeate flow channel, and a water collecting pipe for collecting and taking out permeate. 2 or more) is loaded through the water collecting pipe so that the concentrated water discharged from the former semipermeable membrane element is supplied as raw water to the latter semipermeable membrane element.
- the membrane module 23 is loaded with p semipermeable membrane elements (p is a natural number satisfying p ⁇ m) in the same manner as the upstream membrane membrane 22.
- the raw water pressurized by the high-pressure pump 29 is introduced into the upstream semipermeable membrane module 22 through the first raw water supply path 1.
- the introduced raw water is subjected to a semipermeable membrane treatment by a semipermeable membrane element, and the permeated water is collected in a water collecting pipe by a gap provided by a permeated water flow path material, and is connected to the water collecting pipe through the water collecting pipe. Or it is led to the total permeate extraction path 3 or permeate connection path 9.
- the concentrated water that has not permeated through the semipermeable membrane element is introduced as raw water into the semipermeable membrane element arranged on the downstream side, and the permeated water is taken out from the upstream side permeated water or the total permeated water connected to the water collecting pipe as described above. It is guided to the path 3 or the permeate connection path 9.
- the permeated water is the upstream permeated water or total permeated water extraction path 3 connected to the water collecting pipe as described above, or the permeated water connecting path 9.
- the concentrated water is introduced as raw water into the downstream semipermeable membrane module 23 disposed on the downstream side via the concentrated water connection path 8.
- the concentrated water discharged from the downstream semipermeable membrane module 23 is discharged to the outside of the downstream semipermeable membrane module 23 through the first concentrated water discharge path 2, and the permeated water is connected to the water collecting pipe through the water collecting pipe. Guided to connection path 9.
- the permeate connection path switching unit or the permeate connection path valve 28 is a three-way valve, one through the permeate connection path 9 to the upstream semipermeable membrane module 22 and the other through the permeate connection path 9.
- the downstream semipermeable membrane module 23 is connected to the downstream permeate discharge path 10.
- the permeated water obtained from the upstream semipermeable membrane module 22 is obtained. All the permeated water (total permeated water) including the permeated water (downstream permeated water) obtained from the (upstream permeated water) and the downstream semipermeable membrane module 23 is taken from the upstream permeated water or the total permeated water extraction path 3. It is taken out.
- Total permeated water can be taken out from both of the discharge paths 10.
- the operation method for taking out the total permeated water in this way is referred to as a first operation method.
- the upstream permeated water can be the upstream permeated water or the total permeated water.
- the water is extracted from the water extraction path 3 and the downstream permeate is discharged from the downstream permeate discharge path 10.
- the operation method in which the upstream permeate water and the downstream permeate water are divided in this way to extract only the upstream permeate water is referred to as a second operation method.
- the downstream semipermeable membrane module When the amount of permeated water obtained from the upstream semipermeable membrane element increases due to an increase in the temperature of the supplied water due to seasonal fluctuations, the downstream semipermeable membrane module obtains a small amount of permeated water having relatively poor water quality. At this time, by switching from the first operation method to the second operation method, the downstream permeate having a small amount of water and poor water quality is removed, and as a result, the amount of permeate (upstream permeate only) obtained from the water generator. The deterioration of water quality is suppressed while maintaining
- any method can be used as long as it is possible to directly or indirectly determine the deterioration of the quality of the total permeated water.
- the first operating method may be switched to the second operating method.
- the above-described operation can be performed regardless of whether the fresh water generator is operating or stopped, the above-described operation may be performed at an arbitrary timing.
- the number of semipermeable membrane elements loaded in the upstream semipermeable membrane module 22 is m (m is an integer of 2 or more), and the downstream semipermeable membrane.
- m is an integer of 2 or more
- p is a natural number
- the semipermeable membrane element there are a method in which a flat membrane is incorporated in a spiral, tubular or plate-and-frame element, and a hollow fiber is bundled and used in the element.
- the flat membrane spiral type has a large amount of permeated water to be taken out, and the raw water and the downstream semipermeable membrane supplied to the upstream semipermeable membrane module. Since the difference in the amount and concentration of raw water supplied to the module increases, it is preferable for obtaining the effects of the present invention.
- FIG. 9 is a conceptual diagram of a spiral-type semipermeable membrane element, in which a semipermeable membrane 40, a raw water channel material 41 located on the raw water side of the semipermeable membrane, and a permeated water channel material 42 located on the permeate side of the semipermeable membrane.
- the water collecting pipe 24 collects the permeated water 32.
- the raw water 30 flows into the spiral semipermeable membrane element, and the concentrated water 31 is discharged.
- the semipermeable membrane module connects a plurality of semipermeable membrane elements via a collecting pipe so that the concentrated water obtained from the former semipermeable membrane element is supplied to the latter semipermeable membrane element as raw water, and is connected in series to a pressure vessel. Is in the box. There is no particular limitation on the number of elements, but 4 to 8 elements are preferably incorporated. Moreover, what arrange
- the water to be treated in the fresh water generator of the present invention is not particularly limited in view of the gist of the present invention, but may be seawater, brackish water, high-concentrated brackish water having a solute concentration in the solution of 0.5% by weight or more.
- the difference in the amount and concentration of the raw water supplied to the upstream semipermeable membrane element and the raw water supplied to the downstream semipermeable membrane element is increased, which is preferable because the effects of the present invention are sufficiently exhibited.
- the raw water concentration is 30000 mg / L or more seawater or high-concentration brine.
- the operating conditions of the fresh water generator of the present invention are not particularly limited in view of the gist of the present invention, but the recovery rate representing the amount of permeated water recovered relative to the amount of raw water is 30% or more. If it exists, the raw
- FIG. 2 is a conceptual diagram of a fresh water generator according to another embodiment suitable for the fresh water generation method of the present invention.
- the permeate connection path switching unit or the permeate connection path valve 28 is a valve that can be switched between open and closed. There is no permeate extraction path.
- the permeate connection path switching part or the permeate connection path valve 28 is opened, the first operation method is taken, and if the permeate connection path switching part or the permeate connection path valve 28 is closed, the second operation method is taken. You can take a driving method.
- the connection path switching unit or the permeate connection path valve 28 is preferably pressure-resistant since pressure is applied when the downstream permeate is stopped, and more preferably can be assumed as the operating pressure on the raw water side. It is preferable to have pressure resistance that can withstand 0.0 MPa.
- the permeated water connection path switching unit or the permeated water connection path valve 28 may be connected to the first raw water supply path 1 via the raw water confluence path 6 as shown in FIG.
- the permeate connection path switching unit or the permeate connection path valve 28 is opened in the direction of the upstream semipermeable membrane module 22 and the downstream semipermeable membrane module 23 and the direction of the raw water merging path 6 is closed, The first driving method is taken.
- the second operation method is taken.
- the permeated water connection path switching unit or the permeated water connection path valve 28 may be a gate valve, a globe valve, a two-way ball valve, a three-way ball valve, a butterfly valve, a ⁇ port valve, or the like.
- a gate valve or a globe valve excellent in performance is preferable, and a three-way ball valve is preferable when used for switching the flow path.
- FIG. 4 is a conceptual diagram of a fresh water generator according to another embodiment suitable for the fresh water generation method of the present invention.
- the fresh water generator includes a semipermeable membrane module 21, a second raw water supply path (raw water supply path) 1, a first 2 from the concentrated water discharge path (concentrated water discharge path) 2, the upstream permeate or total permeate take-out path 3, the downstream permeate take-out path 4, the high-pressure pump 29, the water stop portion or the flow rate or the flow path control section 25.
- the semipermeable membrane module 21 is loaded with a plurality of semipermeable membrane elements 20 connected through a water collecting pipe.
- the water collecting pipe 24 positioned between the semipermeable membrane elements 20b and 20c is provided with a water collecting pipe separating section 26 or a water collecting pipe valve 27 having a function of giving resistance to the permeated water.
- the first operation method is adopted, and the permeated water that has passed through the semipermeable membrane elements 20a, 20b, and 20c is not separated, and the upstream side It is taken out from at least one of the permeated water or total permeated water take-out path 3 or the downstream permeate take-out path 4.
- the second operation method is adopted, and the permeated water that has permeated the semipermeable membrane elements 20a and 20b passes through the upstream permeated water or the total permeated water extraction path 3.
- the permeated water taken out and permeated through the semipermeable membrane element 20 c is taken out through the downstream permeated water take-out path 4.
- the permeated water that has permeated the semipermeable membrane element 20 c passes through the downstream permeated water extraction path 4, and is downstream permeated by the water stop portion or the flow rate or the flow path control unit 25 provided in the downstream permeated water extraction path 4. It can be switched between taking out the water with the upstream permeate water, stopping the water, returning it to the raw water, discharging it with the concentrated water, or taking it out for another use.
- the water collecting pipe delimiter 26 or the water collecting pipe valve 27 sets the number of semipermeable membrane elements loaded in the semipermeable membrane module 21 (n is an integer of 3 or more). ), It is necessary to install it on the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side.
- the water collecting pipe separator 26 or the water collecting pipe valve 27 described above only needs to give resistance to permeated water, and plugs, caps, flanges, orifices, gate valves, globe valves, ball valves, and the like can be used.
- the material is iron, stainless steel, aluminum, aluminum alloy, nickel, nickel alloy, copper, copper alloy, silver, silver alloy, gold, gold alloy, platinum, platinum alloy, titanium, titanium nickel alloy, indium alloy, alumina, Aluminum oxide, silicon carbide, silicon nitride, zirconia, aluminum nitride, natural rubber, butyl rubber, urethane rubber, silicone rubber, fluororubber, polybutylene terephthalate, polyethylene terephthalate, polyethylene sulfide, low density polyethylene, high density polyethylene, polyvinyl chloride, Polypropylene, polystyrene, polyacetal, polyamide, polyamideimide, polyetheretherketone, polyphenylene sulfide, polytetrafluor
- the operation method of the water collection pipe valve 27 of this embodiment is effective in any case, since it can be operated without opening the semipermeable membrane module 21, it can be operated from the outside of the semipermeable membrane module 21.
- the thing which can be operated by non-contact using infrared rays etc. from the exterior of the semipermeable membrane module 21 is more preferable.
- a porous body that allows a part of the permeated water to pass therethrough may be used, and a shape memory alloy that changes the degree of opening and closing according to the water temperature may be used.
- the water stop or flow rate or flow path control unit 25 provided in the downstream permeate take-out path 4 uses a gate valve, a globe valve, a two-way ball valve, a three-way ball valve, a butterfly valve, a ⁇ port valve, or the like.
- a gate valve or a globe valve having excellent pressure resistance is preferable, and when controlling the flow path, a three-way ball valve is preferable.
- the flow path control unit 25 preferably has pressure resistance, and more preferably can be assumed as the operating pressure on the raw water side. It is preferable to have pressure resistance that can withstand 0 MPa.
- FIG. 5 is a conceptual diagram of a fresh water generator in which a flow path is added to the fresh water generator of FIG. 4, and the water stop or flow rate or flow path controller 25 provided in the downstream permeate take-out path 4 is a permeate merge.
- the upstream permeated water or the total permeated water extraction path 3 is connected via the path 5.
- the water collecting pipe delimiter 26 or the water collecting pipe valve 27 is opened and the flow path control section 25 is opened or closed, or the water collecting pipe delimiter 26 or the water collection pipe valve 27 is closed and the water stop section or the flow rate or flow path control section.
- the first operation method is used, and if the water collecting pipe separator 26 or the water collecting pipe valve 27 and the water stop or flow rate or flow path control unit 25 are both closed, the second operation method is used. Can do.
- the water stop or flow rate or flow path control unit 25 is connected to the upstream permeate or total permeate take-out path 3 via the permeate merge path 5, and in addition, the second stop via the raw water merge path 6.
- the raw water supply path 1 may be connected.
- the water stop portion or the flow rate or the flow path control section 25 is a flow path control section, and a water collection pipe partition section 26 or a water collection pipe valve 27 is installed in the water collection pipe.
- the water collecting pipe delimiter 26 or the water collecting pipe valve 27 is opened or closed and the flow path control unit 25 is directed to the permeate merging path 5, the first operation method is adopted, and the water collecting pipe delimiter 26 or the water collecting pipe is used.
- valve 27 If the valve 27 is closed and the flow path control unit 25 is directed to the raw water merge path 6, the second operation method is taken.
- running method is taken, raw power density
- the water stop portion or the flow rate or the flow path control portion 25 may be connected to the upstream permeate water or the total permeate take-out route 3 via the permeate merge passage 5 as shown in FIG. In addition, it may be connected to the second concentrated water discharge path 2 via the downstream permeate discharge path 10.
- the water stop portion or the flow rate or the flow path control section 25 is a flow path control section, and a water collection pipe partition section 26 or a water collection pipe valve 27 is installed in the water collection pipe.
- the flow path control unit 25 is for the permeate merge path 5, the first operation method is used, and if the flow path control unit 25 is switched for the downstream side permeate discharge path 10, the second operation method is used. .
- FIG. 8 is a conceptual diagram of a desalination apparatus in which semipermeable membrane modules are arranged in multiple stages and the concentrated water obtained from the former semipermeable membrane module 21a is supplied as raw water to the latter semipermeable membrane module 21b.
- the semipermeable membrane module 21b is similar to the semipermeable membrane module shown in FIG. 4 in that the water collecting pipe separator 26 or the water collecting pipe valve 27, the upstream permeate or total permeate takeout path 3, the downstream permeate takeout path 4,
- the water stop or flow rate or flow path control unit 25 is connected to the upstream permeate or total permeate take-out path 3 via the permeate merge path 5, It is connected to the second raw water supply path 1 via the raw water merge path 6.
- the permeated water extraction method can be switched in the downstream semi-permeable membrane element having the lowest permeated water quality and the least permeated water amount in the apparatus, which is effective in suppressing deterioration of the permeated water quality.
- the above-mentioned desalination apparatus has the above-described configuration such as the path connected to the semi-permeable membrane module 21b and the semi-permeable membrane module 21b in the subsequent stage, but is connected to the semi-permeable membrane module 21a and the semi-permeable membrane module 21a in the preceding stage.
- the route may be in the form described above, and both the preceding stage and the subsequent stage may be in the form described above.
- Example 1 As in the embodiment shown in FIG. 1, the high-pressure pump, the first raw water supply path, the upstream reverse osmosis membrane module, the upstream permeate or total permeate take-out path, the concentrated water connection path, the permeate connection path, and the downstream side
- a fresh water generator comprising a three-way valve provided in the reverse osmosis membrane module, the first concentrated water discharge path, the downstream permeate discharge path, and the downstream permeate connection path and connected to the downstream permeate discharge path was used.
- the upstream reverse osmosis membrane module has an effective membrane area of 37 m 2 , a salt removal rate of 99.75%, a permeated water amount of 24.6 m 3 / d, and a spiral reverse type having a maximum operating pressure of 8.3 MPa.
- Five osmotic membrane elements were loaded, and one downstream osmosis membrane element was loaded on the downstream reverse osmosis membrane module.
- the raw water temperature was set to 15 ° C., and the operation was continuously performed for 3 hours by the first operation method.
- the module inlet pressure was 7.65 MPa on average and the permeated water salt concentration was 206 mg / l on average.
- the raw water temperature was set to 45 ° C., and the operation was continuously performed for 3 hours by the second operation method.
- the module inlet pressure was 6.87 MPa on average and the permeated water salt concentration was 824 mg / l on average.
- the module inlet pressure averaged 6.53 MPa and the permeate salt concentration averaged 964 mg / l, which exceeded the upper limit of the permeate salt concentration. .
- the module inlet pressure was 8.49 MPa on average and the permeated water salt concentration was 185 mg / l, which exceeded the maximum operating pressure of the reverse osmosis membrane element.
- Raw water supply route (first raw water supply route, second raw water supply route) 2: Concentrated water discharge path (first concentrated water discharge path, second concentrated water discharge path) 3: Upstream permeate water or total permeate water extraction path 4: Downstream permeate water extraction path 5: Permeate water merge path 6: Raw water merge path (reflux path) 8: Concentrated water connection path 9: Permeate connection path 10: Downstream permeate discharge paths 20a, 20b, 20c: Semipermeable membrane element 21: Semipermeable membrane module 22: Upstream semipermeable membrane module 23: Downstream semipermeable membrane Membrane module 24: Water collecting pipe 25: Water stop part or flow rate or flow path control part 26: Water collecting pipe separating part 27: Water collecting pipe valve 28: Permeate connection path switching part or permeate connection path valve 29: High pressure pump 30: Raw water 31: Concentrated water 32: Permeated water 40: Semipermeable membrane 41: Raw water channel material 42: Permeated water channel material
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A water production method that freely switches between the following: a first operation method for extracting all filtered water, which is a combination of upstream filtered water obtained from an upstream semipermeable membrane module or an upstream semipermeable element, and downstream filtered water obtained from a downstream semipermeable membrane module or a downstream semipermeable element; and a second operation method for separating the upstream filtered water and the downstream filtered water, and extracting only the upstream filtered water.
Description
本発明は、原水を半透膜に透過させてその透過水を得る造水方法及び造水装置に係り、特に運転条件や運転状態による水質の低下を抑制する造水方法及び造水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fresh water generation method and a fresh water generation device that allows raw water to permeate through a semipermeable membrane to obtain the permeated water, and more particularly to a fresh water generation method and a fresh water generation device that suppress deterioration of water quality due to operating conditions and operating conditions.
高濃度溶液の浄水化技術には様々なものがあるが、省エネルギーおよび省資源プロセスの一例として、半透膜を用いた膜分離方法が利用されている。膜分離方法の一例である逆浸透法によれば、塩分等の溶質を含んだ溶液を、該溶液の浸透圧以上の圧力をもって逆浸透膜を透過させることで、溶質分が低減された液体(透過水)と濃縮水とに分離することができる。この技術は、例えば海水、かん水、有害物を含んだ水から飲料水レベルの水を得ることも可能であるし、また、工業用超純水の製造、排水処理、有価物の回収などにも用いられている。
There are various water purification technologies for high-concentration solutions, and membrane separation methods using semipermeable membranes are used as an example of energy-saving and resource-saving processes. According to the reverse osmosis method, which is an example of a membrane separation method, a solution containing a solute such as salt is allowed to permeate through a reverse osmosis membrane at a pressure equal to or higher than the osmotic pressure of the solution, thereby reducing the liquid ( Permeated water) and concentrated water. This technology can obtain drinking water level water from, for example, seawater, brine, and water containing harmful substances, and it can also be used for industrial ultrapure water production, wastewater treatment, recovery of valuable materials, etc. It is used.
半透膜分離法は、通常複数本の半透膜エレメントを、各半透膜エレメントの内部に位置する集水管を連結させて1本の圧力容器に直列に装填した状態(これをモジュールと称す)で使用される。モジュール入口側(上流側)の半透膜エレメントに供給された原水は、半透膜エレメント内の間隙を通って半透膜面に供給され、透過水と濃縮水とに分離される。分離された透過水は集水管に集められ、モジュール端部に設けられ集水管に連結された透過水取り出し口から取り出される。この際、原水はモジュール全体に均一に供給されるのではなく、上流側のエレメントから順に透過水が分離されるため、モジュール出口側(下流側)に近づくにつれて供給される原水量は減少し、塩濃度は高くなる。またこれに伴って透過水量も減少していき、その濃度は高くなって、すなわち透過水質が悪化していく。
In the semipermeable membrane separation method, usually a plurality of semipermeable membrane elements are connected in series to one pressure vessel by connecting water collecting pipes located inside each semipermeable membrane element (this is called a module). ). The raw water supplied to the semipermeable membrane element on the module inlet side (upstream side) is supplied to the semipermeable membrane surface through a gap in the semipermeable membrane element, and is separated into permeated water and concentrated water. The separated permeated water is collected in a water collecting pipe and taken out from a permeated water outlet provided at the end of the module and connected to the water collecting pipe. At this time, the raw water is not uniformly supplied to the entire module, but the permeated water is separated in order from the upstream element, so the amount of raw water supplied decreases as it approaches the module outlet side (downstream side), The salt concentration increases. Along with this, the amount of permeated water also decreases, the concentration increases, that is, the permeated water quality deteriorates.
このような現象は季節変動に伴う水温上昇が生じた際、より顕著に現れる。温度が上昇すると、半透膜が膨張し孔径が大きくなり、かつ粘度が低下することで単位面積当たりの透過水量と塩透過率が増加する。上流側の半透膜エレメントを透過する水量が増加する分、下流側の半透膜エレメントに供給される原水量は減少し、下流側半透膜エレメントでは比較的水質の悪い透過水を少量得ることとなる。このとき透過水質の悪化を防止するため、予め半透膜エレメントの本数を少なくしておき、水温が低いときは所望の透過水量を得るために運転圧力を高くして運転される。また年間の水温変動が大きくなると、低水温時の運転圧力が半透膜モジュールの許容圧力、例えば、8.0~9.0MPaを超える可能性があるため、例えば原水濃度(ここでは濃度=TDS:Total Dissolved Solids)が45000mg/Lであれば、運転可能な温度範囲は約40℃までに制限される場合もあった。
Such a phenomenon appears more prominently when the water temperature rises due to seasonal fluctuations. When the temperature rises, the semipermeable membrane expands to increase the pore diameter, and the viscosity decreases to increase the amount of permeated water and the salt permeability per unit area. The amount of raw water supplied to the downstream semipermeable membrane element decreases as the amount of water passing through the upstream semipermeable membrane element increases, and the downstream semipermeable membrane element obtains a small amount of permeated water with relatively poor water quality. It will be. At this time, in order to prevent deterioration of permeated water quality, the number of semipermeable membrane elements is reduced in advance, and when the water temperature is low, the operation pressure is increased to obtain a desired amount of permeated water. In addition, when the annual water temperature fluctuation increases, the operating pressure at the time of low water temperature may exceed the allowable pressure of the semipermeable membrane module, for example, 8.0 to 9.0 MPa. For example, the raw water concentration (concentration = TDS here) : Total Dissolved Solids) was 45000 mg / L, the operable temperature range was sometimes limited to about 40 ° C.
透過水質を低下させる要因としては、ファウリング(膜面汚れ)や膜劣化も挙げられる。ファウリングは微生物の繁殖や塩の析出などが原因であり、膜劣化は不溶物による膜表面の擦過や次亜塩素酸等の酸化物で膜が破壊されることが原因である。これらが生じた際は薬品での洗浄等で性能の回復を図るが、不可逆的な変化が蓄積し、次第に性能が低下し水質が悪化していく。このとき、半透膜エレメント本数を少なくすれば所望の水質を得ることが可能となるが、これを実施するには一旦運転を停止するなど多大な時間と労力を要するため、従来技術ではある水準まで性能が低下したところで新品の半透膜エレメントへと交換する。
Factors that lower the permeated water quality include fouling (film surface contamination) and film deterioration. Fouling is caused by the growth of microorganisms, salt precipitation, and the like. The film deterioration is caused by the film surface being scratched by an insoluble material or the film being destroyed by an oxide such as hypochlorous acid. When these occur, the performance is restored by cleaning with chemicals, but irreversible changes accumulate, and the performance gradually deteriorates and the water quality deteriorates. At this time, if the number of semipermeable membrane elements is reduced, it becomes possible to obtain a desired water quality. However, in order to implement this, it takes a lot of time and labor, such as once stopping the operation. Replace with a new semi-permeable membrane element when the performance drops.
半透膜エレメントに供給される原水の流量を均一化し安定的に運転する装置及び方法として、特許文献1ではモジュール内の逆浸透膜エレメントの原水流路横断面積を変化させる逆浸透分離装置およびその方法が、特許文献2では透過水の流路をなす集水管を遮断するシャッタ機構を設け、さらに供給側(上流側)透過水の流量を調整するバルブ機構を設けた逆浸透膜処理装置および造水方法が、特許文献3では、透過水を供給側(上流側)と排出側(下流側)とに分離する抵抗体を備え、さらに供給側(上流側)透過水の流量を調整するバルブを設けた逆浸透処理装置が開示されている。しかしいずれの場合も、温度変化等が原因で生じる透過水の水質低下を抑制し、運転範囲を広げたり半透膜エレメントの交換頻度を低下させたりするものではなかった。
As a device and a method for operating stably by uniformizing the flow rate of raw water supplied to a semipermeable membrane element, Patent Document 1 discloses a reverse osmosis separation device for changing the cross-sectional area of a raw water flow path of a reverse osmosis membrane element in a module and its According to Patent Document 2, a reverse osmosis membrane treatment apparatus and a structure in which a shutter mechanism for blocking a water collecting pipe forming a flow path of permeated water and a valve mechanism for adjusting the flow rate of permeated water on the supply side (upstream side) are provided. In Patent Document 3, the water method includes a resistor that separates permeate water into a supply side (upstream side) and a discharge side (downstream side), and further includes a valve that adjusts the flow rate of permeate water on the supply side (upstream side). A provided reverse osmosis treatment apparatus is disclosed. However, in either case, the water quality deterioration due to temperature change or the like was not suppressed, and the operating range was not expanded or the replacement frequency of the semipermeable membrane element was not reduced.
従来の技術では、このように透過水質を低下させる現象に対し、予め半透膜エレメントの本数を少なく設計し、かつ所望の透過水量を得るために高い運転圧力で運転するか、半透膜エレメントの交換により対処していた。そのためポンプの必要動力が大きくなって電力費が高くなったり、半透膜エレメントの交換費用が掛かったり、設計可能な温度範囲が制限されたりする問題があった。
In the conventional technology, in order to reduce the quality of the permeated water in this way, the number of semipermeable membrane elements is designed to be small in advance and operated at a high operating pressure in order to obtain a desired amount of permeated water, or the semipermeable membrane element It was dealt with by exchange. For this reason, there is a problem that the required power of the pump is increased and the power cost is increased, the replacement cost of the semipermeable membrane element is increased, and the designable temperature range is limited.
本発明は、透過水質の低下時においても透過水質の低下を抑制し、運転圧力の低減や半透膜エレメント交換頻度の低減を図って造水装置の運転コストを下げ、同時に設計可能な温度範囲の広い造水方法および造水装置を提供することを目的とする。
The present invention suppresses permeate quality degradation even when permeate quality declines, lowers operating pressure and replacement frequency of the semipermeable membrane element, lowers the operating cost of the fresh water generator, and can be designed at the same time. An object of the present invention is to provide a wide water production method and water production apparatus.
前記課題を解決するため、本発明は、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水方法であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントを、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる半透膜モジュールを含み、前記半透膜エレメントm本(mは2以上の整数)が連通されてなり上流側に位置する上流側半透膜モジュールと、前記半透膜エレメントp本(pはp<mを満たす自然数)が連通されてなり下流側に位置する下流側半透膜モジュールと、前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路を有し、前記濃縮水接続経路と、前記透過水接続経路とを介して、前記上流側半透膜モジュールと前記下流側半透膜モジュールが接続される構成を含む第1の造水装置、または、前記半透膜エレメントn本(nは3以上の整数)が連通されてなり、かつ下流側から数えてn/2本未満の下流側半透膜エレメントと残りの上流側半透膜エレメントの間に位置する集水管に透過水に抵抗を与える集水管区切り部または集水管バルブが設けられた半透膜モジュールと、第2の原水供給経路、第2の濃縮水排出経路、前記下流側半透膜エレメントから得られる下流側透過水を取り出す下流側透過水取り出し経路、前記上流側半透膜エレメントから得られる上流側透過水を取り出す上流側透過水または全透過水取り出し経路を含む第2の造水装置のいずれかを用い、前記上流側半透膜モジュールまたは前記上流側半透膜エレメントから得られる上流側透過水と前記下流側半透膜モジュールまたは前記下流側半透膜エレメントから得られる下流側透過水とを合わせた全透過水を取り出す第1の運転方法と、上流側透過水と下流側透過水とを分割して上流側透過水のみを取り出す第2の運転方法とを、任意に切り替えることを特徴とする造水方法を提供する。
また本発明は、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる上流側半透膜モジュールと、前記半透膜エレメントp本(pはp<mを満たす自然数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる下流側半透膜モジュールを含み、前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路、流路の切り替えが可能な透過水接続経路切り替え部及び前記透過水接続経路切り替え部に接続された下流側透過水排出経路を備えることを特徴とする、造水装置を提供する。
また、本発明は、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる上流側半透膜モジュールと、前記半透膜エレメントp本(pはp<mを満たす自然数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる下流側半透膜モジュールを含み、前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路、前記透過水接続経路とは異なる場所に設けられ上流側透過水または上流側透過水と下流側透過水とを合わせた全透過水を取り出す上流側透過水または全透過水取り出し経路、前記透過水接続経路に設けられた開閉の切り替えが可能な透過水接続経路バルブを備えることを特徴とする、造水装置を提供する。
また、本発明は、原水昇圧用高圧ポンプを備え、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントn本(nは3以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる半透膜モジュールを含み、前記半透膜モジュールは、第2の原水供給経路、第2の濃縮水排出経路、前記半透膜モジュール内の下流側から数えてn/2本未満の半透膜エレメントから得られる下流側透過水を取り出す下流側透過水取り出し経路と、残りの半透膜エレメントから得られる上流側透過水を取り出す上流側透過水または全透過水取り出し経路を備え、下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側の集水管に設けられた、透過水に抵抗を与える集水管区切り部と、前記下流側透過水取り出し経路に設けられた流量ないし流路を制御する流量ないし流路制御部を備えること、もしくは、下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側の集水管に設けられた、開閉の切り替えが可能な集水管バルブに加え、前記下流側透過水取り出し経路に設けられた止水部または流量ないし流路制御部の少なくともいずれか1つを備えることを特徴とする造水装置を提供する。 In order to solve the above-mentioned problems, the present invention provides a fresh water generation method for separating raw water with a semipermeable membrane and discharging concentrated water to take out the permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, A semipermeable membrane element comprising a water flow channel, a permeated water flow channel, and a water collecting pipe for collecting and taking out the permeated water, so that the concentrated water discharged from the former semipermeable membrane element is supplied as raw water to the latter semipermeable membrane element. An upstream semipermeable membrane module located on the upstream side, in which the m semipermeable membrane elements (m is an integer of 2 or more) are communicated, including a semipermeable membrane module communicated via a water collecting pipe; A downstream semipermeable membrane module located on the downstream side, in which p semipermeable membrane elements (p is a natural number satisfying p <m) are connected, and a first raw water supply connected to the upstream semipermeable membrane module Pathway, discharged from the upstream semipermeable membrane module Concentrated water connection path connected so that upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module A permeate connection path connected to join the downstream permeate obtained from the first semiconducting water discharge path connected to the downstream semipermeable membrane module, the concentrated water connection path, and the permeate A first water generator including a configuration in which the upstream semipermeable membrane module and the downstream semipermeable membrane module are connected via a water connection path, or n semipermeable membrane elements (n is 3) The above integer) is connected, and resistance to the permeated water is reduced in the water collecting pipe located between the downstream semipermeable membrane element less than n / 2 counted from the downstream side and the remaining upstream semipermeable membrane element. Giving drain separator or also A semipermeable membrane module provided with a water collecting pipe valve, a second raw water supply path, a second concentrated water discharge path, and a downstream permeate extraction path for extracting downstream permeate obtained from the downstream semipermeable membrane element , Using either the upstream permeated water obtained from the upstream semipermeable membrane element or the second fresh water generator including a total permeated water take-out path, or the upstream semipermeable membrane module or the A first operation method of taking out the total permeated water obtained by combining the upstream permeated water obtained from the upstream semipermeable membrane element and the downstream permeated water obtained from the downstream semipermeable membrane module or the downstream semipermeable membrane element. And a fresh water generation method characterized in that the upstream operation water and the downstream operation water are divided and the second operation method for extracting only the upstream operation water is arbitrarily switched.
The present invention also relates to a fresh water generator that separates raw water with a semipermeable membrane and discharges concentrated water to take out permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water channel, and the permeated water channel Concentrated water discharged from the former semipermeable membrane element is supplied to the latter semipermeable membrane element as raw water for m semipermeable membrane elements (m is an integer of 2 or more) equipped with a water collecting pipe for collecting and taking out the permeated water. As described above, the upstream semipermeable membrane module communicated through the water collecting pipe and the p semipermeable membrane elements (p is a natural number satisfying p <m) are discharged from the preceding semipermeable membrane element. A first raw water connected to the upstream semipermeable membrane module, including a downstream semipermeable membrane module communicating with a collecting pipe so that the concentrated water is supplied as raw water to the latter semipermeable membrane element; Supply path, discharged from the upstream semipermeable membrane module Concentrated water connection path connected so that upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module Permeate connection path connected to join downstream permeate obtained from the above, a first concentrated water discharge path connected to the downstream semipermeable membrane module, and permeate connection path switching capable of switching the flow path And a downstream permeated water discharge path connected to the permeated water connection path switching section.
The present invention also relates to a fresh water generator that separates raw water with a semipermeable membrane and discharges the concentrated water to take out the permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water flow path, the permeated water flow Concentrated water discharged from the former semipermeable membrane element is used as raw water for the semipermeable membrane element in the latter stage. The upstream semipermeable membrane module communicated through the water collecting pipe and p semipermeable membrane elements (p is a natural number satisfying p <m) are discharged from the preceding semipermeable membrane element so as to be supplied. A first semi-permeable membrane module connected to the upstream semi-permeable membrane module, including a downstream semi-permeable membrane module communicating with a water collecting pipe so that the concentrated water is supplied as raw water to the latter semi-permeable membrane element. Discharge from raw water supply channel, upstream semipermeable membrane module The concentrated water connection path connected so that the upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, the upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module The permeated water connection path connected to join the downstream permeate obtained from the first semi-concentrated water discharge path connected to the downstream semipermeable membrane module, provided at a location different from the permeate connection path. Upstream permeate or upstream permeate combined with upstream permeate and downstream permeate, or permeate connection path that can be switched between opening and closing provided in the permeate connection path. Provided is a fresh water generator characterized by comprising a water connection path valve.
The present invention is also a water making apparatus comprising a high-pressure pump for boosting raw water, separating the raw water with a semipermeable membrane, discharging concentrated water and taking out the permeated water, the raw water supply port, the concentrated water discharge port, the semipermeable membrane Concentrated water discharged from the former semipermeable membrane element is the latter stage of n semipermeable membrane elements (n is an integer of 3 or more) having a membrane, raw water flow channel, permeated water flow channel, and a water collecting pipe for collecting and taking out permeated water. A semipermeable membrane module communicating with a semi-permeable membrane element so as to be supplied as raw water to the semipermeable membrane element, wherein the semipermeable membrane module includes a second raw water supply path and a second concentrated water discharge path. , A downstream permeated water extraction path for extracting downstream permeated water obtained from less than n / 2 semipermeable membrane elements counted from the downstream side in the semipermeable membrane module, and an upstream obtained from the remaining semipermeable membrane elements Upstream permeate to remove side permeate or A water collecting pipe partitioning section provided with a water collecting pipe on the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side, provided with a permeated water extraction path, and the downstream A flow rate or flow path control unit for controlling the flow rate or flow path provided in the side permeate extraction path, or the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side In addition to the water collecting pipe valve provided in the water collecting pipe and capable of switching between opening and closing, it is provided with at least one of a water stop part or a flow rate or a flow path control part provided in the downstream permeate water extraction path. A water freshening device is provided.
また本発明は、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる上流側半透膜モジュールと、前記半透膜エレメントp本(pはp<mを満たす自然数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる下流側半透膜モジュールを含み、前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路、流路の切り替えが可能な透過水接続経路切り替え部及び前記透過水接続経路切り替え部に接続された下流側透過水排出経路を備えることを特徴とする、造水装置を提供する。
また、本発明は、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる上流側半透膜モジュールと、前記半透膜エレメントp本(pはp<mを満たす自然数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる下流側半透膜モジュールを含み、前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路、前記透過水接続経路とは異なる場所に設けられ上流側透過水または上流側透過水と下流側透過水とを合わせた全透過水を取り出す上流側透過水または全透過水取り出し経路、前記透過水接続経路に設けられた開閉の切り替えが可能な透過水接続経路バルブを備えることを特徴とする、造水装置を提供する。
また、本発明は、原水昇圧用高圧ポンプを備え、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントn本(nは3以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる半透膜モジュールを含み、前記半透膜モジュールは、第2の原水供給経路、第2の濃縮水排出経路、前記半透膜モジュール内の下流側から数えてn/2本未満の半透膜エレメントから得られる下流側透過水を取り出す下流側透過水取り出し経路と、残りの半透膜エレメントから得られる上流側透過水を取り出す上流側透過水または全透過水取り出し経路を備え、下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側の集水管に設けられた、透過水に抵抗を与える集水管区切り部と、前記下流側透過水取り出し経路に設けられた流量ないし流路を制御する流量ないし流路制御部を備えること、もしくは、下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側の集水管に設けられた、開閉の切り替えが可能な集水管バルブに加え、前記下流側透過水取り出し経路に設けられた止水部または流量ないし流路制御部の少なくともいずれか1つを備えることを特徴とする造水装置を提供する。 In order to solve the above-mentioned problems, the present invention provides a fresh water generation method for separating raw water with a semipermeable membrane and discharging concentrated water to take out the permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, A semipermeable membrane element comprising a water flow channel, a permeated water flow channel, and a water collecting pipe for collecting and taking out the permeated water, so that the concentrated water discharged from the former semipermeable membrane element is supplied as raw water to the latter semipermeable membrane element. An upstream semipermeable membrane module located on the upstream side, in which the m semipermeable membrane elements (m is an integer of 2 or more) are communicated, including a semipermeable membrane module communicated via a water collecting pipe; A downstream semipermeable membrane module located on the downstream side, in which p semipermeable membrane elements (p is a natural number satisfying p <m) are connected, and a first raw water supply connected to the upstream semipermeable membrane module Pathway, discharged from the upstream semipermeable membrane module Concentrated water connection path connected so that upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module A permeate connection path connected to join the downstream permeate obtained from the first semiconducting water discharge path connected to the downstream semipermeable membrane module, the concentrated water connection path, and the permeate A first water generator including a configuration in which the upstream semipermeable membrane module and the downstream semipermeable membrane module are connected via a water connection path, or n semipermeable membrane elements (n is 3) The above integer) is connected, and resistance to the permeated water is reduced in the water collecting pipe located between the downstream semipermeable membrane element less than n / 2 counted from the downstream side and the remaining upstream semipermeable membrane element. Giving drain separator or also A semipermeable membrane module provided with a water collecting pipe valve, a second raw water supply path, a second concentrated water discharge path, and a downstream permeate extraction path for extracting downstream permeate obtained from the downstream semipermeable membrane element , Using either the upstream permeated water obtained from the upstream semipermeable membrane element or the second fresh water generator including a total permeated water take-out path, or the upstream semipermeable membrane module or the A first operation method of taking out the total permeated water obtained by combining the upstream permeated water obtained from the upstream semipermeable membrane element and the downstream permeated water obtained from the downstream semipermeable membrane module or the downstream semipermeable membrane element. And a fresh water generation method characterized in that the upstream operation water and the downstream operation water are divided and the second operation method for extracting only the upstream operation water is arbitrarily switched.
The present invention also relates to a fresh water generator that separates raw water with a semipermeable membrane and discharges concentrated water to take out permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water channel, and the permeated water channel Concentrated water discharged from the former semipermeable membrane element is supplied to the latter semipermeable membrane element as raw water for m semipermeable membrane elements (m is an integer of 2 or more) equipped with a water collecting pipe for collecting and taking out the permeated water. As described above, the upstream semipermeable membrane module communicated through the water collecting pipe and the p semipermeable membrane elements (p is a natural number satisfying p <m) are discharged from the preceding semipermeable membrane element. A first raw water connected to the upstream semipermeable membrane module, including a downstream semipermeable membrane module communicating with a collecting pipe so that the concentrated water is supplied as raw water to the latter semipermeable membrane element; Supply path, discharged from the upstream semipermeable membrane module Concentrated water connection path connected so that upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module Permeate connection path connected to join downstream permeate obtained from the above, a first concentrated water discharge path connected to the downstream semipermeable membrane module, and permeate connection path switching capable of switching the flow path And a downstream permeated water discharge path connected to the permeated water connection path switching section.
The present invention also relates to a fresh water generator that separates raw water with a semipermeable membrane and discharges the concentrated water to take out the permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water flow path, the permeated water flow Concentrated water discharged from the former semipermeable membrane element is used as raw water for the semipermeable membrane element in the latter stage. The upstream semipermeable membrane module communicated through the water collecting pipe and p semipermeable membrane elements (p is a natural number satisfying p <m) are discharged from the preceding semipermeable membrane element so as to be supplied. A first semi-permeable membrane module connected to the upstream semi-permeable membrane module, including a downstream semi-permeable membrane module communicating with a water collecting pipe so that the concentrated water is supplied as raw water to the latter semi-permeable membrane element. Discharge from raw water supply channel, upstream semipermeable membrane module The concentrated water connection path connected so that the upstream concentrated water is supplied as raw water to the downstream semipermeable membrane module, the upstream permeated water obtained from the upstream semipermeable membrane module, and the downstream semipermeable membrane module The permeated water connection path connected to join the downstream permeate obtained from the first semi-concentrated water discharge path connected to the downstream semipermeable membrane module, provided at a location different from the permeate connection path. Upstream permeate or upstream permeate combined with upstream permeate and downstream permeate, or permeate connection path that can be switched between opening and closing provided in the permeate connection path. Provided is a fresh water generator characterized by comprising a water connection path valve.
The present invention is also a water making apparatus comprising a high-pressure pump for boosting raw water, separating the raw water with a semipermeable membrane, discharging concentrated water and taking out the permeated water, the raw water supply port, the concentrated water discharge port, the semipermeable membrane Concentrated water discharged from the former semipermeable membrane element is the latter stage of n semipermeable membrane elements (n is an integer of 3 or more) having a membrane, raw water flow channel, permeated water flow channel, and a water collecting pipe for collecting and taking out permeated water. A semipermeable membrane module communicating with a semi-permeable membrane element so as to be supplied as raw water to the semipermeable membrane element, wherein the semipermeable membrane module includes a second raw water supply path and a second concentrated water discharge path. , A downstream permeated water extraction path for extracting downstream permeated water obtained from less than n / 2 semipermeable membrane elements counted from the downstream side in the semipermeable membrane module, and an upstream obtained from the remaining semipermeable membrane elements Upstream permeate to remove side permeate or A water collecting pipe partitioning section provided with a water collecting pipe on the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side, provided with a permeated water extraction path, and the downstream A flow rate or flow path control unit for controlling the flow rate or flow path provided in the side permeate extraction path, or the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side In addition to the water collecting pipe valve provided in the water collecting pipe and capable of switching between opening and closing, it is provided with at least one of a water stop part or a flow rate or a flow path control part provided in the downstream permeate water extraction path. A water freshening device is provided.
本発明の造水方法によれば、透過水質が低下した際に上流側透過水のみを取り出すことで透過水質の低下を抑制することができ、かつ透過水質がよい場合は上流側透過水と下流側透過水を合わせた全透過水を取り出すことでポンプの所要動力を抑えることができる。従って、運転可能な温度範囲が広がるとともに、半透膜エレメントの交換頻度の低減及び電気代の低減により、経済的な運転が可能となる。
According to the fresh water generation method of the present invention, when the permeated water quality is lowered, it is possible to suppress the degradation of the permeated water quality by taking out only the upstream permeated water, and when the permeated water quality is good, the upstream permeated water and the downstream The required power of the pump can be suppressed by taking out the total permeated water combined with the side permeated water. Therefore, the temperature range in which operation can be performed is widened, and economical operation is possible by reducing the replacement frequency of the semipermeable membrane element and reducing the electricity cost.
以下、発明の実施の形態を図面を用いて説明する。
図1は本発明の好ましい実施形態の造水方法に好適な造水装置の概念図であって、本装置は高圧ポンプ29、第1の原水供給経路(原水供給経路)1、上流側半透膜モジュール22、下流側半透膜モジュール23、第1の濃縮水排出経路(濃縮水排出経路)2、上流側透過水または全透過水取り出し経路3、濃縮水接続経路8、透過水接続経路9、下流側透過水排出経路10からなり、上流側半透膜モジュール22と下流側半透膜モジュール23は濃縮水接続経路8及び透過水接続経路9により接続されている。また、透過水接続経路9には透過水接続経路切り替え部または透過水接続経路バルブ28が設けられており、透過水接続経路切り替え部または透過水接続経路バルブ28は下流側透過水取り出し経路4に接続されている。 Hereinafter, embodiments of the invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of a desalination apparatus suitable for a desalination method according to a preferred embodiment of the present invention. This apparatus includes a high-pressure pump 29, a first raw water supply path (raw water supply path) 1, an upstream side semi-permeable. Membrane module 22, downstream semipermeable membrane module 23, first concentrated water discharge path (concentrated water discharge path) 2, upstream permeated water or total permeated water extraction path 3, concentrated water connection path 8, permeate connection path 9 The downstream permeated water discharge path 10 is composed of an upstream semipermeable membrane module 22 and a downstream semipermeable membrane module 23 connected by a concentrated water connecting path 8 and a permeated water connecting path 9. Further, the permeate connection path 9 is provided with a permeate connection path switching unit or a permeate connection path valve 28, and the permeate connection path switching unit or the permeate connection path valve 28 is connected to the downstream permeate discharge path 4. It is connected.
図1は本発明の好ましい実施形態の造水方法に好適な造水装置の概念図であって、本装置は高圧ポンプ29、第1の原水供給経路(原水供給経路)1、上流側半透膜モジュール22、下流側半透膜モジュール23、第1の濃縮水排出経路(濃縮水排出経路)2、上流側透過水または全透過水取り出し経路3、濃縮水接続経路8、透過水接続経路9、下流側透過水排出経路10からなり、上流側半透膜モジュール22と下流側半透膜モジュール23は濃縮水接続経路8及び透過水接続経路9により接続されている。また、透過水接続経路9には透過水接続経路切り替え部または透過水接続経路バルブ28が設けられており、透過水接続経路切り替え部または透過水接続経路バルブ28は下流側透過水取り出し経路4に接続されている。 Hereinafter, embodiments of the invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of a desalination apparatus suitable for a desalination method according to a preferred embodiment of the present invention. This apparatus includes a high-
上流側半透膜モジュール22には、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)が、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通して装填されており、下流側半透膜モジュール23には、半透膜エレメントp本(pはp<mを満たす自然数)が上流側半透膜モジュール22と同様に装填されている。
The upstream side semipermeable membrane module 22 has m semipermeable membrane elements (m is a muffler element) including a raw water supply port, a concentrated water discharge port, a semipermeable membrane, a raw water flow channel, a permeate flow channel, and a water collecting pipe for collecting and taking out permeate. 2 or more) is loaded through the water collecting pipe so that the concentrated water discharged from the former semipermeable membrane element is supplied as raw water to the latter semipermeable membrane element. The membrane module 23 is loaded with p semipermeable membrane elements (p is a natural number satisfying p <m) in the same manner as the upstream membrane membrane 22.
高圧ポンプ29により昇圧された原水は、第1の原水供給経路1を通って上流側半透膜モジュール22に導入される。導入された原水は、半透膜エレメントにより半透膜処理がなされ、透過水は透過水流路材によって設けられた間隙によって集水管に集められ、集水管を通じて集水管に接続された上流側透過水または全透過水取り出し経路3または透過水接続経路9に導かれる。半透膜エレメントを透過しなかった濃縮水は下流側に配置された半透膜エレメントに原水として導入され、透過水は上述のように集水管に接続された上流側透過水または全透過水取り出し経路3、または透過水接続経路9に導かれる。上流側半透膜モジュールの最下流に位置する半透膜エレメントにおいては、透過水は上述のように集水管に接続された上流側透過水または全透過水取り出し経路3、または透過水接続経路9に導かれ、濃縮水は濃縮水接続経路8を介して下流側に配置された下流側半透膜モジュール23に原水として導入される。
The raw water pressurized by the high-pressure pump 29 is introduced into the upstream semipermeable membrane module 22 through the first raw water supply path 1. The introduced raw water is subjected to a semipermeable membrane treatment by a semipermeable membrane element, and the permeated water is collected in a water collecting pipe by a gap provided by a permeated water flow path material, and is connected to the water collecting pipe through the water collecting pipe. Or it is led to the total permeate extraction path 3 or permeate connection path 9. The concentrated water that has not permeated through the semipermeable membrane element is introduced as raw water into the semipermeable membrane element arranged on the downstream side, and the permeated water is taken out from the upstream side permeated water or the total permeated water connected to the water collecting pipe as described above. It is guided to the path 3 or the permeate connection path 9. In the semipermeable membrane element located on the most downstream side of the upstream semipermeable membrane module, the permeated water is the upstream permeated water or total permeated water extraction path 3 connected to the water collecting pipe as described above, or the permeated water connecting path 9. The concentrated water is introduced as raw water into the downstream semipermeable membrane module 23 disposed on the downstream side via the concentrated water connection path 8.
下流側半透膜モジュール23から排出される濃縮水は第1の濃縮水排出経路2を通じて下流側半透膜モジュール23の外部へ排出され、透過水は集水管を通じて集水管に接続された透過水接続経路9へ導かれる。
The concentrated water discharged from the downstream semipermeable membrane module 23 is discharged to the outside of the downstream semipermeable membrane module 23 through the first concentrated water discharge path 2, and the permeated water is connected to the water collecting pipe through the water collecting pipe. Guided to connection path 9.
ここで、透過水接続経路切り替え部または透過水接続経路バルブ28は三方弁であり、一方は透過水接続経路9を介して上流側半透膜モジュール22に、一方は透過水接続経路9を介して下流側半透膜モジュール23に、一方は下流側透過水排出経路10に接続してされている。
Here, the permeate connection path switching unit or the permeate connection path valve 28 is a three-way valve, one through the permeate connection path 9 to the upstream semipermeable membrane module 22 and the other through the permeate connection path 9. The downstream semipermeable membrane module 23 is connected to the downstream permeate discharge path 10.
従って、上流側半透膜モジュール22及び下流側半透膜モジュール23の方向を開とし、下流側透過水排出経路10の方向を閉とすれば、上流側半透膜モジュール22から得られる透過水(上流側透過水)及び下流側半透膜モジュール23から得られる透過水(下流側透過水)を合わせた全ての透過水(全透過水)は上流側透過水または全透過水取り出し経路3から取り出される。あるいは上流側半透膜モジュール22、下流側半透膜モジュール23、下流側透過水排出経路10の全ての方向を開とすれば、上流側透過水または全透過水取り出し経路3または下流側透過水排出経路10の両方から全透過水を取り出すこともできる。このように全透過水を取り出す運転方法を第1の運転方法と呼ぶ。
Therefore, if the direction of the upstream semipermeable membrane module 22 and the downstream semipermeable membrane module 23 is opened and the direction of the downstream permeated water discharge path 10 is closed, the permeated water obtained from the upstream semipermeable membrane module 22 is obtained. All the permeated water (total permeated water) including the permeated water (downstream permeated water) obtained from the (upstream permeated water) and the downstream semipermeable membrane module 23 is taken from the upstream permeated water or the total permeated water extraction path 3. It is taken out. Alternatively, if all the directions of the upstream semipermeable membrane module 22, the downstream semipermeable membrane module 23, and the downstream permeated water discharge path 10 are opened, the upstream permeated water or the total permeated water extraction path 3 or the downstream permeated water. Total permeated water can be taken out from both of the discharge paths 10. The operation method for taking out the total permeated water in this way is referred to as a first operation method.
また、上流側半透膜モジュール22の方向を閉とし、下流側半透膜モジュール23及び下流側透過水排出経路10の方向を開とすれば、上流側透過水は上流側透過水または全透過水取り出し経路3から取り出され、下流側透過水は下流側透過水排出経路10から排出される。このように上流側透過水と下流側透過水とを分割して上流側透過水のみを取り出す運転方法を第2の運転方法と呼ぶ。
Further, if the direction of the upstream semipermeable membrane module 22 is closed and the direction of the downstream semipermeable membrane module 23 and the downstream permeated water discharge path 10 is opened, the upstream permeated water can be the upstream permeated water or the total permeated water. The water is extracted from the water extraction path 3 and the downstream permeate is discharged from the downstream permeate discharge path 10. The operation method in which the upstream permeate water and the downstream permeate water are divided in this way to extract only the upstream permeate water is referred to as a second operation method.
季節変動に伴う供給水温の上昇などにより、上流側半透膜エレメントから得られる透過水量が増加したとき、下流側半透膜モジュールでは比較的水質の悪い透過水を少量得ることとなる。このとき第1の運転方法から第2の運転方法に切り替えることで、水量が少なく水質の悪い下流側透過水が除かれ、結果として造水装置から得る透過水(上流側透過水のみ)の水量を維持しつつ水質の低下が抑制される。
When the amount of permeated water obtained from the upstream semipermeable membrane element increases due to an increase in the temperature of the supplied water due to seasonal fluctuations, the downstream semipermeable membrane module obtains a small amount of permeated water having relatively poor water quality. At this time, by switching from the first operation method to the second operation method, the downstream permeate having a small amount of water and poor water quality is removed, and as a result, the amount of permeate (upstream permeate only) obtained from the water generator. The deterioration of water quality is suppressed while maintaining
上述の操作を行う基準としては、全透過水の水質低下が直接的、または間接的に判断できるものであればよく、原水、濃縮水、上流側透過水、下流側透過水、全透過水のうちいずれか1つ以上の、水温、水量、水質(塩濃度)が判断材料となりうる。例えば、いずれかの水温が35℃を上回った場合、上流側透過水の水質(塩濃度)が800mg/lを上回った場合、下流側透過水の水質が2000mg/lを上回った場合、上流側透過水に対する下流側透過水の水量の割合が10%を下回った場合、全透過水の水質が900mg/lを上回った場合に第1の運転方法から第2の運転方法に切り替えればよい。
As a standard for performing the above-described operation, any method can be used as long as it is possible to directly or indirectly determine the deterioration of the quality of the total permeated water. Raw water, concentrated water, upstream permeated water, downstream permeated water, total permeated water Any one or more of these can be used as a judgment material, such as water temperature, amount of water, and water quality (salt concentration). For example, if any of the water temperatures exceeds 35 ° C., the quality of the upstream permeated water (salt concentration) exceeds 800 mg / l, the quality of the downstream permeated water exceeds 2000 mg / l, the upstream side When the ratio of the amount of downstream permeated water to the permeated water is less than 10%, when the quality of the total permeated water exceeds 900 mg / l, the first operating method may be switched to the second operating method.
あるいは、上述の水質低下が生じた際は下流側半透膜モジュールにおいて塩の濃縮がほとんど生じなくなるため、上流側濃縮水の水質に対する下流側濃縮水の水質(塩濃度)の比が105%を下回った場合に第1の運転方法から第2の運転方法に切り替えればよい。
Alternatively, when the above water quality deterioration occurs, salt concentration hardly occurs in the downstream semipermeable membrane module, so the ratio of the downstream concentrated water quality (salt concentration) to the upstream concentrated water quality is 105%. What is necessary is just to switch from the 1st driving | running method to the 2nd driving | running method, when it falls below.
尚、運転方法を切り替える基準は上記に限定されるものではなく、案件に応じて求められる水質や水量に合わせて適宜変更してよい。
In addition, the reference | standard which switches an operation method is not limited to the above, You may change suitably according to the water quality and water quantity calculated | required according to a project.
また、上述の操作は造水装置が稼働中であっても停止中であっても実施できるため、上述の操作は任意のタイミングで行えばよい。
In addition, since the above-described operation can be performed regardless of whether the fresh water generator is operating or stopped, the above-described operation may be performed at an arbitrary timing.
ここで、第1の運転方法において透過水量を確保するため、上流側半透膜モジュール22に装填される半透膜エレメントの本数をm本(mは2以上の整数)、下流側半透膜エレメントに装填される半透膜エレメントの本数をp本(pは自然数)としたとき、p<mを満たす必要がある。
Here, in order to secure the amount of permeated water in the first operation method, the number of semipermeable membrane elements loaded in the upstream semipermeable membrane module 22 is m (m is an integer of 2 or more), and the downstream semipermeable membrane. When the number of semipermeable membrane elements loaded in the element is p (p is a natural number), it is necessary to satisfy p <m.
半透膜エレメントの形態としては、平膜ではスパイラル、チューブラー、プレート・アンド・フレームのエレメントに組み込んだもの、中空糸では束ねた上でエレメントに組み込んで使用するなどの方法がある。本発明ではこれらの形態によって左右されるものではないが、好ましくは平膜のスパイラル型であると、取り出される透過水量が多く、上流側半透膜モジュールに供給される原水と下流側半透膜モジュールに供給される原水の水量や濃度の差が大きくなるため、本発明の効果を得るに好ましい。
As a form of the semipermeable membrane element, there are a method in which a flat membrane is incorporated in a spiral, tubular or plate-and-frame element, and a hollow fiber is bundled and used in the element. Although it does not depend on these forms in the present invention, it is preferable that the flat membrane spiral type has a large amount of permeated water to be taken out, and the raw water and the downstream semipermeable membrane supplied to the upstream semipermeable membrane module. Since the difference in the amount and concentration of raw water supplied to the module increases, it is preferable for obtaining the effects of the present invention.
図9はスパイラル型半透膜エレメントの概念図であって、半透膜40、半透膜の原水側に位置する原水流路材41、半透膜の透過側に位置する透過水流路材42、透過水32を集める集水管24より構成されている。原水30がスパイラル型半透膜エレメントに流れ込み、濃縮水31が排出される。
FIG. 9 is a conceptual diagram of a spiral-type semipermeable membrane element, in which a semipermeable membrane 40, a raw water channel material 41 located on the raw water side of the semipermeable membrane, and a permeated water channel material 42 located on the permeate side of the semipermeable membrane. The water collecting pipe 24 collects the permeated water 32. The raw water 30 flows into the spiral semipermeable membrane element, and the concentrated water 31 is discharged.
半透膜モジュールは複数個の半透膜エレメントを、前段の半透膜エレメントから得られる濃縮水を後段の半透膜エレメントに原水として供給するよう集水管を介して接続し、直列に圧力容器の中に収めたものである。エレメントの本数に特に規定はないが、好ましくは4~8本のエレメントを組み込むとよい。また、この半透膜モジュールを並列に配置したものを半透膜モジュールユニットと呼び、その組み合わせ、本数、配列は目的に応じて任意に行うことができる。
The semipermeable membrane module connects a plurality of semipermeable membrane elements via a collecting pipe so that the concentrated water obtained from the former semipermeable membrane element is supplied to the latter semipermeable membrane element as raw water, and is connected in series to a pressure vessel. Is in the box. There is no particular limitation on the number of elements, but 4 to 8 elements are preferably incorporated. Moreover, what arrange | positioned this semipermeable membrane module in parallel is called a semipermeable membrane module unit, The combination, the number, and arrangement | sequence can be arbitrarily performed according to the objective.
本発明の造水装置における被処理水は本発明の主旨から言って特に限定されるものではないが、溶液中の溶質濃度が0.5重量%以上の海水、かん水、高濃度かん水などであれば、上流側半透膜エレメントに供給される原水と下流側半透膜エレメントに供給される原水の水量や濃度の差が大きくなるため、本発明の効果が十分発揮され好ましい。さらに好ましくは、原水濃度が30000mg/L以上である海水や高濃度かん水であるとよい。
The water to be treated in the fresh water generator of the present invention is not particularly limited in view of the gist of the present invention, but may be seawater, brackish water, high-concentrated brackish water having a solute concentration in the solution of 0.5% by weight or more. For example, the difference in the amount and concentration of the raw water supplied to the upstream semipermeable membrane element and the raw water supplied to the downstream semipermeable membrane element is increased, which is preferable because the effects of the present invention are sufficiently exhibited. More preferably, the raw water concentration is 30000 mg / L or more seawater or high-concentration brine.
また、本発明の造水装置の運転条件は本発明の主旨から言って特に限定されるものではないが、原水の水量に対して回収される透過水の水量を表す回収率が30%以上であると、後段の半透膜エレメントに供給される原水濃度が高くなり、本発明の効果が十分発揮され好ましい。
The operating conditions of the fresh water generator of the present invention are not particularly limited in view of the gist of the present invention, but the recovery rate representing the amount of permeated water recovered relative to the amount of raw water is 30% or more. If it exists, the raw | natural water density | concentration supplied to a semi-permeable membrane element of a latter stage will become high, and the effect of this invention is fully exhibited, and is preferable.
図2は本発明の造水方法に好適な別の実施形態における造水装置の概念図であって、透過水接続経路切り替え部または透過水接続経路バルブ28は開閉の切り替えが可能なバルブであり、透過水取り出し経路は有しない。ここで、透過水接続経路切り替え部または透過水接続経路バルブ28を開とすれば第1の運転方法を取り、透過水接続経路切り替え部または透過水接続経路バルブ28を閉とすれば第2の運転方法を取ることができる。
FIG. 2 is a conceptual diagram of a fresh water generator according to another embodiment suitable for the fresh water generation method of the present invention. The permeate connection path switching unit or the permeate connection path valve 28 is a valve that can be switched between open and closed. There is no permeate extraction path. Here, if the permeate connection path switching part or the permeate connection path valve 28 is opened, the first operation method is taken, and if the permeate connection path switching part or the permeate connection path valve 28 is closed, the second operation method is taken. You can take a driving method.
上述の下流側半透膜モジュールの集水管と、下流側半透膜モジュール23から透過水接続経路切り替え部または透過水接続経路バルブ28の間に位置する下流側透過水接続経路9と、透過水接続経路切り替え部または透過水接続経路バルブ28は、下流側透過水を止水した際に圧力が掛かるため、耐圧性を有すことが好ましく、より好ましくは原水側の運転圧力として想定され得る9.0MPaに耐えられる耐圧性を有すると好ましい。
The water collecting pipe of the downstream semipermeable membrane module, the downstream permeated water connecting route 9 located between the downstream semipermeable membrane module 23 and the permeated water connecting route switching unit or the permeated water connecting route valve 28, and the permeated water. The connection path switching unit or the permeate connection path valve 28 is preferably pressure-resistant since pressure is applied when the downstream permeate is stopped, and more preferably can be assumed as the operating pressure on the raw water side. It is preferable to have pressure resistance that can withstand 0.0 MPa.
透過水接続経路切り替え部または透過水接続経路バルブ28は図3のように原水合流経路6を介して第1の原水供給経路1に接続されてもよい。ここで透過水接続経路切り替え部または透過水接続経路バルブ28を、上流側半透膜モジュール22及び下流側半透膜モジュール23の方向を開とし、原水合流経路6の方向を閉とすれば、第1の運転方法をとる。また、上流側半透膜モジュール22の方向を閉とし、下流側半透膜モジュール23及び原水合流経路6の方向を閉とすれば、第2の運転方法をとる。
The permeated water connection path switching unit or the permeated water connection path valve 28 may be connected to the first raw water supply path 1 via the raw water confluence path 6 as shown in FIG. Here, if the permeate connection path switching unit or the permeate connection path valve 28 is opened in the direction of the upstream semipermeable membrane module 22 and the downstream semipermeable membrane module 23 and the direction of the raw water merging path 6 is closed, The first driving method is taken. Moreover, if the direction of the upstream semipermeable membrane module 22 is closed and the direction of the downstream semipermeable membrane module 23 and the raw water merge path 6 is closed, the second operation method is taken.
このとき第2の運転方法において、原水濃度を下げて高圧ポンプの所要動力を下げることが可能となり好ましい。
At this time, in the second operation method, it is possible to lower the raw water concentration and lower the required power of the high pressure pump.
上述の透過水接続経路切り替え部または透過水接続経路バルブ28は、ゲートバルブ、グローブバルブ、二方ボールバルブ、三方ボールバルブ、バタフライバルブ、Λポートバルブなどを用いるとよく、止水する場合は耐圧性に優れるゲートバルブまたはグローブバルブが好ましく、流路の切り替えに用いる場合は三方ボールバルブが好ましい。
The permeated water connection path switching unit or the permeated water connection path valve 28 may be a gate valve, a globe valve, a two-way ball valve, a three-way ball valve, a butterfly valve, a Λ port valve, or the like. A gate valve or a globe valve excellent in performance is preferable, and a three-way ball valve is preferable when used for switching the flow path.
図4は本発明の造水方法に好適な別の実施形態における造水装置の概念図であって、本装置は半透膜モジュール21、第2の原水供給経路(原水供給経路)1、第2の濃縮水排出経路(濃縮水排出経路)2、上流側透過水または全透過水取り出し経路3、下流側透過水取り出し経路4、高圧ポンプ29、止水部または流量ないし流路制御部25からなり、半透膜モジュール21には、集水管を介して接続される複数の半透膜エレメント20が装填されている。また、半透膜エレメント20b、20cの間に位置する集水管24に、透過水に抵抗を与える機能を有する集水管区切り部26または集水管バルブ27が設けられている。
FIG. 4 is a conceptual diagram of a fresh water generator according to another embodiment suitable for the fresh water generation method of the present invention. The fresh water generator includes a semipermeable membrane module 21, a second raw water supply path (raw water supply path) 1, a first 2 from the concentrated water discharge path (concentrated water discharge path) 2, the upstream permeate or total permeate take-out path 3, the downstream permeate take-out path 4, the high-pressure pump 29, the water stop portion or the flow rate or the flow path control section 25. Thus, the semipermeable membrane module 21 is loaded with a plurality of semipermeable membrane elements 20 connected through a water collecting pipe. Further, the water collecting pipe 24 positioned between the semipermeable membrane elements 20b and 20c is provided with a water collecting pipe separating section 26 or a water collecting pipe valve 27 having a function of giving resistance to the permeated water.
ここで、集水管区切り部26または集水管バルブ27が開であれば、第1の運転方法をとり、半透膜エレメント20a、20b、20cを透過した透過水は分離されることなく、上流側透過水または全透過水取り出し経路3または下流側透過水取り出し経路4の少なくともいずれか一方から取り出される。
Here, if the water collecting pipe delimiter 26 or the water collecting pipe valve 27 is open, the first operation method is adopted, and the permeated water that has passed through the semipermeable membrane elements 20a, 20b, and 20c is not separated, and the upstream side It is taken out from at least one of the permeated water or total permeated water take-out path 3 or the downstream permeate take-out path 4.
集水管区切り部26または集水管バルブ27が閉であれば、第2の運転方法をとり、半透膜エレメント20a、20bを透過した透過水は上流側透過水または全透過水取り出し経路3を通って取り出され、半透膜エレメント20cを透過した透過水は、下流側透過水取り出し経路4を通って取り出される。また、半透膜エレメント20cを透過した透過水は下流側透過水取り出し経路4を通り、下流側透過水取り出し経路4に設けられた止水部または流量ないし流路制御部25により、下流側透過水を上流側透過水とともに取り出すか、止水するか、原水に還流させるか、濃縮水とともに排出するか、あるいは別の用途のために取り出すか、切り替えることができる。
If the water collecting pipe delimiter 26 or the water collecting pipe valve 27 is closed, the second operation method is adopted, and the permeated water that has permeated the semipermeable membrane elements 20a and 20b passes through the upstream permeated water or the total permeated water extraction path 3. The permeated water taken out and permeated through the semipermeable membrane element 20 c is taken out through the downstream permeated water take-out path 4. Further, the permeated water that has permeated the semipermeable membrane element 20 c passes through the downstream permeated water extraction path 4, and is downstream permeated by the water stop portion or the flow rate or the flow path control unit 25 provided in the downstream permeated water extraction path 4. It can be switched between taking out the water with the upstream permeate water, stopping the water, returning it to the raw water, discharging it with the concentrated water, or taking it out for another use.
集水管区切り部26または集水管バルブ27は、第1の運転方法において透過水量を確保するため、半透膜モジュール21に装填される半透膜エレメントの本数をn本(nは3以上の整数)としたとき、下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側に設置する必要がある。
In order to secure the amount of permeated water in the first operation method, the water collecting pipe delimiter 26 or the water collecting pipe valve 27 sets the number of semipermeable membrane elements loaded in the semipermeable membrane module 21 (n is an integer of 3 or more). ), It is necessary to install it on the upstream side of the semipermeable membrane element at a position of less than n / 2 counting from the downstream side.
特に半透膜エレメントが下流側にあればあるほど、該半透膜エレメントに供給される原水量が低下し、その透過水質は悪化するため、集水管区切り部26または集水管バルブ27を、最も下流側に位置する半透膜エレメントの上流側に設置するとより好ましい。
In particular, the more the semipermeable membrane element is located on the downstream side, the lower the amount of raw water supplied to the semipermeable membrane element, and the quality of the permeated water deteriorates. More preferably, it is installed on the upstream side of the semipermeable membrane element located on the downstream side.
上述の集水管区切り部26または集水管バルブ27は透過水に抵抗を与えるものであればよく、プラグ、キャップ、フランジ、オリフィス、ゲートバルブ、グローブバルブ、ボールバルブなどを用いることができる。またその材質は鉄、ステンレス鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、銅、銅合金、銀、銀合金、金、金合金、白金、白金合金、チタン、チタンニッケル合金、インジウム合金、アルミナ、酸化アルミ、炭化ケイ素、窒化ケイ素、ジルコニア、窒化アルミ、天然ゴム、ブチルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンサルファイド、低密度ポリエチレン、高密度ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ポリアセタール、ポリアミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、ポリアセタール、ポリカーボネート、ポリフェニレンオキシド、ポリウレタン、ポリ乳酸、メタクリル樹脂、AS樹脂、ABS樹脂、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ノリル樹脂、FRPなどを用いるとよい。本発明ではいずれの素材も有効であるが、より好ましくは透過水への溶出が少なく、耐蝕性、耐薬性、耐圧性に優れるステンレス鋼、ノリル樹脂、FRP、ポリエチレンテレフタレートを用いるとよい。
The water collecting pipe separator 26 or the water collecting pipe valve 27 described above only needs to give resistance to permeated water, and plugs, caps, flanges, orifices, gate valves, globe valves, ball valves, and the like can be used. The material is iron, stainless steel, aluminum, aluminum alloy, nickel, nickel alloy, copper, copper alloy, silver, silver alloy, gold, gold alloy, platinum, platinum alloy, titanium, titanium nickel alloy, indium alloy, alumina, Aluminum oxide, silicon carbide, silicon nitride, zirconia, aluminum nitride, natural rubber, butyl rubber, urethane rubber, silicone rubber, fluororubber, polybutylene terephthalate, polyethylene terephthalate, polyethylene sulfide, low density polyethylene, high density polyethylene, polyvinyl chloride, Polypropylene, polystyrene, polyacetal, polyamide, polyamideimide, polyetheretherketone, polyphenylene sulfide, polytetrafluoroethylene, polyacetal, polycarbonate, polyphenylene ox De, polyurethane, polylactic acid, methacrylic resin, AS resin, ABS resin, phenol resin, urea resin, epoxy resin, melamine resin, unsaturated polyester resin, Noryl resin, or the like may be used FRP. In the present invention, any material is effective, but it is more preferable to use stainless steel, noryl resin, FRP, or polyethylene terephthalate that is less leached into permeated water and has excellent corrosion resistance, chemical resistance, and pressure resistance.
本実施形態の集水管バルブ27の操作方法はいずれの場合も有効であるが、半透膜モジュール21を開放することなく操作することが可能であるため、半透膜モジュール21の外部から操作できるものがよく、より好ましくは半透膜モジュール21の外部から赤外線等を用いて非接触で操作できるものがよい。
Although the operation method of the water collection pipe valve 27 of this embodiment is effective in any case, since it can be operated without opening the semipermeable membrane module 21, it can be operated from the outside of the semipermeable membrane module 21. The thing which can be operated by non-contact using infrared rays etc. from the exterior of the semipermeable membrane module 21 is more preferable.
上述の集水管区切り部26または集水管バルブ27に代わり、透過水の一部を通過させる多孔質体でもよく、水温に応じて開閉の程度が変わる形状記憶合金を用いてもよい。
Instead of the above-described water collecting pipe delimiter 26 or the water collecting pipe valve 27, a porous body that allows a part of the permeated water to pass therethrough may be used, and a shape memory alloy that changes the degree of opening and closing according to the water temperature may be used.
上述の下流側透過水取り出し経路4に設けられた止水部または流量ないし流路制御部25は、ゲートバルブ、グローブバルブ、二方ボールバルブ、三方ボールバルブ、バタフライバルブ、Λポートバルブなどを用いるとよく、止水する場合は耐圧性に優れるゲートバルブまたはグローブバルブが好ましく、流路を制御する場合は三方ボールバルブが好ましい。
The water stop or flow rate or flow path control unit 25 provided in the downstream permeate take-out path 4 uses a gate valve, a globe valve, a two-way ball valve, a three-way ball valve, a butterfly valve, a Λ port valve, or the like. When stopping water, a gate valve or a globe valve having excellent pressure resistance is preferable, and when controlling the flow path, a three-way ball valve is preferable.
上述の集水管区切り部26または集水管バルブ27と、半透膜モジュール21から止水部または流量ないし流路制御部25の間に位置する下流側透過水取り出し経路4と、止水部または流量ないし流路制御部25は、下流側透過水を止水ないし流量を制御する際に圧力が掛かるため、耐圧性を有すことが好ましく、より好ましくは原水側の運転圧力として想定され得る9.0MPaに耐えられる耐圧性を有すると好ましい。
The above-described water collecting pipe separator 26 or water collecting pipe valve 27, the downstream permeated water extraction path 4 located between the semi-permeable membrane module 21 and the water stop part or flow rate or flow path control part 25, and the water stop part or flow rate. Since the pressure is applied when the downstream permeate is stopped or the flow rate is controlled, the flow path control unit 25 preferably has pressure resistance, and more preferably can be assumed as the operating pressure on the raw water side. It is preferable to have pressure resistance that can withstand 0 MPa.
図5は図4の造水装置に流路を加えた造水装置の概念図であって、下流側透過水取り出し経路4に備えられる止水部または流量ないし流路制御部25は透過水合流経路5を介し上流側透過水または全透過水取り出し経路3に接続される。ここで、集水管区切り部26または集水管バルブ27を開かつ流路制御部25が開または閉、または集水管区切り部26または集水管バルブ27を閉かつ止水部または流量ないし流路制御部25が開であれば第1の運転方法をとり、集水管区切り部26または集水管バルブ27と止水部または流量ないし流路制御部25が共に閉であれば第2の運転方法をとることができる。
FIG. 5 is a conceptual diagram of a fresh water generator in which a flow path is added to the fresh water generator of FIG. 4, and the water stop or flow rate or flow path controller 25 provided in the downstream permeate take-out path 4 is a permeate merge. The upstream permeated water or the total permeated water extraction path 3 is connected via the path 5. Here, the water collecting pipe delimiter 26 or the water collecting pipe valve 27 is opened and the flow path control section 25 is opened or closed, or the water collecting pipe delimiter 26 or the water collection pipe valve 27 is closed and the water stop section or the flow rate or flow path control section. If 25 is open, the first operation method is used, and if the water collecting pipe separator 26 or the water collecting pipe valve 27 and the water stop or flow rate or flow path control unit 25 are both closed, the second operation method is used. Can do.
止水部または流量ないし流路制御部25は図6のように透過水合流経路5を介し上流側透過水または全透過水取り出し経路3に接続され、加えて原水合流経路6を介して第2の原水供給経路1に接続されてもよい。このとき、止水部または流量ないし流路制御部25は流路制御部であり、集水管には集水管区切り部26または集水管バルブ27が設置される。ここで、集水管区切り部26または集水管バルブ27を開または閉とし、流路制御部25を透過水合流経路5行きとすれば第1の運転方法をとり、集水管区切り部26または集水管バルブ27を閉とし流路制御部25を原水合流経路6行きとすれば第2の運転方法をとる。ここで、第2の運転方法をとった場合、原水濃度を下げて高圧ポンプの所要動力を下げることができる。
As shown in FIG. 6, the water stop or flow rate or flow path control unit 25 is connected to the upstream permeate or total permeate take-out path 3 via the permeate merge path 5, and in addition, the second stop via the raw water merge path 6. The raw water supply path 1 may be connected. At this time, the water stop portion or the flow rate or the flow path control section 25 is a flow path control section, and a water collection pipe partition section 26 or a water collection pipe valve 27 is installed in the water collection pipe. Here, if the water collecting pipe delimiter 26 or the water collecting pipe valve 27 is opened or closed and the flow path control unit 25 is directed to the permeate merging path 5, the first operation method is adopted, and the water collecting pipe delimiter 26 or the water collecting pipe is used. If the valve 27 is closed and the flow path control unit 25 is directed to the raw water merge path 6, the second operation method is taken. Here, when the 2nd driving | running method is taken, raw power density | concentration can be lowered | hung and the required motive power of a high pressure pump can be lowered | hung.
また、止水部または流量ないし流路制御部25は図7のように透過水合流経路5を介し上流側透過水または全透過水取り出し経路3に接続されてもよい。加えて、下流側透過水排出経路10を介して第2の濃縮水排出経路2に接続されてもよい。このとき、止水部または流量ないし流路制御部25は流路制御部であり、集水管には集水管区切り部26または集水管バルブ27が設置される。ここで、流路制御部25を透過水合流経路5行きとすれば第1の運転方法をとり、流路制御部25を下流側透過水排出経路10行きに切り替えれば第2の運転方法をとる。
Further, the water stop portion or the flow rate or the flow path control portion 25 may be connected to the upstream permeate water or the total permeate take-out route 3 via the permeate merge passage 5 as shown in FIG. In addition, it may be connected to the second concentrated water discharge path 2 via the downstream permeate discharge path 10. At this time, the water stop portion or the flow rate or the flow path control section 25 is a flow path control section, and a water collection pipe partition section 26 or a water collection pipe valve 27 is installed in the water collection pipe. Here, if the flow path control unit 25 is for the permeate merge path 5, the first operation method is used, and if the flow path control unit 25 is switched for the downstream side permeate discharge path 10, the second operation method is used. .
図8は半透膜モジュールが多段に配置され、かつ前段の半透膜モジュール21aから得られる濃縮水を後段の半透膜モジュール21bに原水として供給する造水装置の概念図であって、後段の半透膜モジュール21bは図4に示す半透膜モジュールと同様に集水管区切り部26または集水管バルブ27、上流側透過水または全透過水取り出し経路3、下流側透過水取り出し経路4、止水部または流量ないし流路制御部25を有し、止水部または流量ないし流路制御部25は透過水合流経路5を介し上流側透過水または全透過水取り出し経路3に接続され、加えて原水合流経路6を介して第2の原水供給経路1に接続される。
FIG. 8 is a conceptual diagram of a desalination apparatus in which semipermeable membrane modules are arranged in multiple stages and the concentrated water obtained from the former semipermeable membrane module 21a is supplied as raw water to the latter semipermeable membrane module 21b. The semipermeable membrane module 21b is similar to the semipermeable membrane module shown in FIG. 4 in that the water collecting pipe separator 26 or the water collecting pipe valve 27, the upstream permeate or total permeate takeout path 3, the downstream permeate takeout path 4, The water stop or flow rate or flow path control unit 25 is connected to the upstream permeate or total permeate take-out path 3 via the permeate merge path 5, It is connected to the second raw water supply path 1 via the raw water merge path 6.
このとき、装置中で最も透過水質が悪く、かつ透過水量が少ない後段下流側の半透膜エレメントにおいて、透過水取り出し方法を切り替えられるため、透過水質の低下を抑制するに効果的である。
At this time, the permeated water extraction method can be switched in the downstream semi-permeable membrane element having the lowest permeated water quality and the least permeated water amount in the apparatus, which is effective in suppressing deterioration of the permeated water quality.
上述の造水装置は後段の半透膜モジュール21b及び半透膜モジュール21bに接続される経路などが上述の形態であるが、前段の半透膜モジュール21a及び半透膜モジュール21aに接続される経路が上述の形態であってもよく、前段、後段ともに上述の形態であってもよい。
The above-mentioned desalination apparatus has the above-described configuration such as the path connected to the semi-permeable membrane module 21b and the semi-permeable membrane module 21b in the subsequent stage, but is connected to the semi-permeable membrane module 21a and the semi-permeable membrane module 21a in the preceding stage. The route may be in the form described above, and both the preceding stage and the subsequent stage may be in the form described above.
かくして上述の本発明の造水方法および装置によれば、全透過水の水質低下が懸念される際には上流側透過水のみを取り出すことで、装置から得られる透過水の水質の低下を抑制することができる。
Thus, according to the fresh water generation method and apparatus of the present invention described above, when there is a concern about deterioration of the quality of the total permeated water, only the upstream permeated water is taken out, thereby suppressing the deterioration of the quality of the permeated water obtained from the apparatus. can do.
以下に具体的実施例を挙げて本発明を説明する。実施例ではスパイラル型逆浸透膜エレメントを用いた場合についてのみ説明を行っているが、本発明はこれら実施例により何ら限定されるものではない。
Hereinafter, the present invention will be described with specific examples. In the examples, only the case where a spiral type reverse osmosis membrane element is used will be described. However, the present invention is not limited to these examples.
<実施例1>
図1に示される形態と同様に、高圧ポンプ、第1の原水供給経路、上流側逆浸透膜モジュール、上流側透過水または全透過水取り出し経路、濃縮水接続経路、透過水接続経路、下流側逆浸透膜モジュール、第1の濃縮水排出経路、下流側透過水取り出し経路、下流側透過水接続経路に設けられ下流側透過水取り出し経路に接続された三方弁からなる造水装置を使用した。ここで上流側逆浸透膜モジュールには、有効膜面積37m2、塩除去率99.75%、透過水量24.6m3/dの性能を有し、最大運転圧力が8.3MPaのスパイラル型逆浸透膜エレメント5本を装填し、下流側逆浸透膜モジュールには上述の逆浸透膜エレメントを1本装填した。 <Example 1>
As in the embodiment shown in FIG. 1, the high-pressure pump, the first raw water supply path, the upstream reverse osmosis membrane module, the upstream permeate or total permeate take-out path, the concentrated water connection path, the permeate connection path, and the downstream side A fresh water generator comprising a three-way valve provided in the reverse osmosis membrane module, the first concentrated water discharge path, the downstream permeate discharge path, and the downstream permeate connection path and connected to the downstream permeate discharge path was used. Here, the upstream reverse osmosis membrane module has an effective membrane area of 37 m 2 , a salt removal rate of 99.75%, a permeated water amount of 24.6 m 3 / d, and a spiral reverse type having a maximum operating pressure of 8.3 MPa. Five osmotic membrane elements were loaded, and one downstream osmosis membrane element was loaded on the downstream reverse osmosis membrane module.
図1に示される形態と同様に、高圧ポンプ、第1の原水供給経路、上流側逆浸透膜モジュール、上流側透過水または全透過水取り出し経路、濃縮水接続経路、透過水接続経路、下流側逆浸透膜モジュール、第1の濃縮水排出経路、下流側透過水取り出し経路、下流側透過水接続経路に設けられ下流側透過水取り出し経路に接続された三方弁からなる造水装置を使用した。ここで上流側逆浸透膜モジュールには、有効膜面積37m2、塩除去率99.75%、透過水量24.6m3/dの性能を有し、最大運転圧力が8.3MPaのスパイラル型逆浸透膜エレメント5本を装填し、下流側逆浸透膜モジュールには上述の逆浸透膜エレメントを1本装填した。 <Example 1>
As in the embodiment shown in FIG. 1, the high-pressure pump, the first raw water supply path, the upstream reverse osmosis membrane module, the upstream permeate or total permeate take-out path, the concentrated water connection path, the permeate connection path, and the downstream side A fresh water generator comprising a three-way valve provided in the reverse osmosis membrane module, the first concentrated water discharge path, the downstream permeate discharge path, and the downstream permeate connection path and connected to the downstream permeate discharge path was used. Here, the upstream reverse osmosis membrane module has an effective membrane area of 37 m 2 , a salt removal rate of 99.75%, a permeated water amount of 24.6 m 3 / d, and a spiral reverse type having a maximum operating pressure of 8.3 MPa. Five osmotic membrane elements were loaded, and one downstream osmosis membrane element was loaded on the downstream reverse osmosis membrane module.
運転条件は、中東地域にて海水から工業用水を得る案件を想定し、原水pHを7、原水TDSを45000mg/l、原水流量を200m3/d、透過水量を80m3/d(回収率:40%)、透過水塩濃度の上限を900mg/lと設定した。
Operating conditions, assuming the matter to obtain industrial water from seawater in the Middle East, the raw water pH 7, the raw water TDS 45000mg / l, the raw water flow rate 200 meters 3 / d, the amount of the permeated water 80 m 3 / d (recovery rate: 40%), and the upper limit of the permeate salt concentration was set to 900 mg / l.
まずは原水温度を15℃とし、第1の運転方法にて連続で3時間運転した。このとき、モジュール入口圧力は平均7.65MPa、透過水塩濃度は平均206mg/lであった。
First, the raw water temperature was set to 15 ° C., and the operation was continuously performed for 3 hours by the first operation method. At this time, the module inlet pressure was 7.65 MPa on average and the permeated water salt concentration was 206 mg / l on average.
次に原水温度を45℃とし、第2の運転方法にて連続で3時間運転した。このとき、モジュール入口圧力は平均6.87MPa、透過水塩濃度は平均824mg/lであった。
Next, the raw water temperature was set to 45 ° C., and the operation was continuously performed for 3 hours by the second operation method. At this time, the module inlet pressure was 6.87 MPa on average and the permeated water salt concentration was 824 mg / l on average.
<比較例1>
実施例1と同様の造水装置を使用し、運転条件の変更に関係なく常に第1の運転方法にて運転した。 <Comparative Example 1>
The fresh water generator similar to Example 1 was used, and it was always operated by the first operation method regardless of changes in the operation conditions.
実施例1と同様の造水装置を使用し、運転条件の変更に関係なく常に第1の運転方法にて運転した。 <Comparative Example 1>
The fresh water generator similar to Example 1 was used, and it was always operated by the first operation method regardless of changes in the operation conditions.
原水温度を15℃として3時間の連続運転を行ったところ、モジュール入口圧力は平均7.62MPa、透過水塩濃度は平均213mg/lであり、実施例1と同様であった。
When the raw water temperature was 15 ° C. and the continuous operation was performed for 3 hours, the module inlet pressure was 7.62 MPa on average and the permeated water salt concentration was 213 mg / l on average, which was the same as Example 1.
次に原水温度を45℃として3時間の連続運転を行ったところ、モジュール入口圧力は平均6.53MPa、透過水塩濃度は平均964mg/lとなり、透過水塩濃度の上限を超える結果となった。
Next, when the raw water temperature was 45 ° C. and the continuous operation was performed for 3 hours, the module inlet pressure averaged 6.53 MPa and the permeate salt concentration averaged 964 mg / l, which exceeded the upper limit of the permeate salt concentration. .
<比較例2>
実施例1と同様の造水装置を使用し、運転条件の変更に関係なく常に第2の運転方法にて運転した。 <Comparative example 2>
The fresh water generator similar to Example 1 was used, and it always drive | operated with the 2nd driving | running method irrespective of the change of the driving | running condition.
実施例1と同様の造水装置を使用し、運転条件の変更に関係なく常に第2の運転方法にて運転した。 <Comparative example 2>
The fresh water generator similar to Example 1 was used, and it always drive | operated with the 2nd driving | running method irrespective of the change of the driving | running condition.
原水温度を15℃として3時間の連続運転を行ったところ、モジュール入口圧力は平均8.49MPa、透過水塩濃度は185mg/lとなり、逆浸透膜エレメントの最大運転圧力を超える結果となった。
When the raw water temperature was 15 ° C. and continuous operation was performed for 3 hours, the module inlet pressure was 8.49 MPa on average and the permeated water salt concentration was 185 mg / l, which exceeded the maximum operating pressure of the reverse osmosis membrane element.
次に原水温度を45℃として3時間の連続運転を行ったところ、モジュール入口圧力は平均6.91MPa、透過水塩濃度は平均830mg/lであり、実施例1と同様であった。
実施例及び比較例の結果を表1に示す。 Next, when the raw water temperature was 45 ° C. and continuous operation was performed for 3 hours, the module inlet pressure was 6.91 MPa on average and the permeated water salt concentration was 830 mg / l on average, which was the same as in Example 1.
The results of Examples and Comparative Examples are shown in Table 1.
実施例及び比較例の結果を表1に示す。 Next, when the raw water temperature was 45 ° C. and continuous operation was performed for 3 hours, the module inlet pressure was 6.91 MPa on average and the permeated water salt concentration was 830 mg / l on average, which was the same as in Example 1.
The results of Examples and Comparative Examples are shown in Table 1.
本出願は、2017年3月31日出願の日本特許出願、特願2017-070197に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on Japanese Patent Application No. 2017-070197 filed on Mar. 31, 2017, the contents of which are incorporated herein by reference.
1:原水供給経路(第1の原水供給経路、第2の原水供給経路)
2:濃縮水排出経路(第1の濃縮水排出経路、第2の濃縮水排出経路)
3:上流側透過水または全透過水取り出し経路
4:下流側透過水取り出し経路
5:透過水合流経路
6:原水合流経路(還流経路)
8:濃縮水接続経路
9:透過水接続経路
10:下流側透過水排出経路
20a,20b,20c:半透膜エレメント
21:半透膜モジュール
22:上流側半透膜モジュール
23:下流側半透膜モジュール
24:集水管
25:止水部または流量ないし流路制御部
26:集水管区切り部
27:集水管バルブ
28:透過水接続経路切り替え部または透過水接続経路バルブ
29:高圧ポンプ
30:原水
31:濃縮水
32:透過水
40:半透膜
41:原水流路材
42:透過水流路材 1: Raw water supply route (first raw water supply route, second raw water supply route)
2: Concentrated water discharge path (first concentrated water discharge path, second concentrated water discharge path)
3: Upstream permeate water or total permeate water extraction path 4: Downstream permeate water extraction path 5: Permeate water merge path 6: Raw water merge path (reflux path)
8: Concentrated water connection path 9: Permeate connection path 10: Downstream permeate discharge paths 20a, 20b, 20c: Semipermeable membrane element 21: Semipermeable membrane module 22: Upstream semipermeable membrane module 23: Downstream semipermeable membrane Membrane module 24: Water collecting pipe 25: Water stop part or flow rate or flow path control part 26: Water collecting pipe separating part 27: Water collecting pipe valve 28: Permeate connection path switching part or permeate connection path valve 29: High pressure pump 30: Raw water 31: Concentrated water 32: Permeated water 40: Semipermeable membrane 41: Raw water channel material 42: Permeated water channel material
2:濃縮水排出経路(第1の濃縮水排出経路、第2の濃縮水排出経路)
3:上流側透過水または全透過水取り出し経路
4:下流側透過水取り出し経路
5:透過水合流経路
6:原水合流経路(還流経路)
8:濃縮水接続経路
9:透過水接続経路
10:下流側透過水排出経路
20a,20b,20c:半透膜エレメント
21:半透膜モジュール
22:上流側半透膜モジュール
23:下流側半透膜モジュール
24:集水管
25:止水部または流量ないし流路制御部
26:集水管区切り部
27:集水管バルブ
28:透過水接続経路切り替え部または透過水接続経路バルブ
29:高圧ポンプ
30:原水
31:濃縮水
32:透過水
40:半透膜
41:原水流路材
42:透過水流路材 1: Raw water supply route (first raw water supply route, second raw water supply route)
2: Concentrated water discharge path (first concentrated water discharge path, second concentrated water discharge path)
3: Upstream permeate water or total permeate water extraction path 4: Downstream permeate water extraction path 5: Permeate water merge path 6: Raw water merge path (reflux path)
8: Concentrated water connection path 9: Permeate connection path 10: Downstream
Claims (16)
- 原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水方法であって、
原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントを、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる半透膜モジュールを含み、
前記半透膜エレメントm本(mは2以上の整数)が連通されてなり上流側に位置する上流側半透膜モジュールと、前記半透膜エレメントp本(pはp<mを満たす自然数)が連通されてなり下流側に位置する下流側半透膜モジュールと、前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路を有し、
前記濃縮水接続経路と、前記透過水接続経路とを介して、前記上流側半透膜モジュールと前記下流側半透膜モジュールが接続される構成を含む第1の造水装置、または、
前記半透膜エレメントn本(nは3以上の整数)が連通されてなり、かつ下流側から数えてn/2本未満の下流側半透膜エレメントと残りの上流側半透膜エレメントの間に位置する集水管に透過水に抵抗を与える集水管区切り部または集水管バルブが設けられた半透膜モジュールと、第2の原水供給経路、第2の濃縮水排出経路、前記下流側半透膜エレメントから得られる下流側透過水を取り出す下流側透過水取り出し経路、前記上流側半透膜エレメントから得られる上流側透過水を取り出す上流側透過水または全透過水取り出し経路を含む第2の造水装置のいずれかを用い、
前記上流側半透膜モジュールまたは前記上流側半透膜エレメントから得られる上流側透過水と前記下流側半透膜モジュールまたは前記下流側半透膜エレメントから得られる下流側透過水とを合わせた全透過水を取り出す第1の運転方法と、上流側透過水と下流側透過水とを分割して上流側透過水のみを取り出す第2の運転方法とを、任意に切り替えることを特徴とする、造水方法。 A fresh water generation method in which raw water is separated by a semipermeable membrane, concentrated water is discharged and permeate is taken out,
Concentrated water discharged from the preceding semipermeable membrane element is a semipermeable membrane element having a raw water supply port, a concentrated water discharge port, a semipermeable membrane, a raw water flow channel, a permeated water flow channel, and a water collecting pipe for collecting and taking out the permeated water. Including a semipermeable membrane module that is communicated via a water collecting pipe so as to be supplied as raw water to the latter semipermeable membrane element;
An upstream side semipermeable membrane module located on the upstream side in which m pieces of the semipermeable membrane elements (m is an integer of 2 or more) are connected, and p pieces of the semipermeable membrane elements (p is a natural number satisfying p <m). Downstream semipermeable membrane module that is connected to the downstream semipermeable membrane module, the first raw water supply path connected to the upstream semipermeable membrane module, and the upstream side concentration discharged from the upstream side semipermeable membrane module Concentrated water connection path connected to supply water as raw water to the downstream semipermeable membrane module, upstream permeated water obtained from the upstream semipermeable membrane module, and downstream obtained from the downstream semipermeable membrane module A permeate connection path connected to join the side permeate, a first concentrated water discharge path connected to the downstream semipermeable membrane module,
A first fresh water generator comprising a configuration in which the upstream semipermeable membrane module and the downstream semipermeable membrane module are connected via the concentrated water connecting route and the permeated water connecting route, or
The n semipermeable membrane elements (n is an integer of 3 or more) communicated, and between the downstream semipermeable membrane element less than n / 2 counted from the downstream side and the remaining upstream semipermeable membrane elements. A semipermeable membrane module provided with a water collecting pipe partitioning section or a water collecting pipe valve that provides resistance to the permeated water to the water collecting pipe located in the second water supply path, a second raw water supply path, a second concentrated water discharge path, and the downstream side semipermeable film A second structure including a downstream permeate extraction path for extracting the downstream permeate obtained from the membrane element, an upstream permeate or a total permeate extraction path for extracting the upstream permeate obtained from the upstream semipermeable membrane element; Use one of the water devices,
The total of the upstream permeable water obtained from the upstream semipermeable membrane module or the upstream semipermeable membrane element and the downstream permeable water obtained from the downstream semipermeable membrane module or the downstream semipermeable membrane element. A first operation method for extracting permeate and a second operation method for separating only the upstream permeate and dividing the upstream permeate to separate only the upstream permeate are arbitrarily switched. Water way. - 前記第1の造水装置を用いた造水方法であって、
前記透過水接続経路に設けられ、流路の切り替えが可能な透過水接続経路切り替え部、及び前記透過水接続経路切り替え部に接続された下流側透過水排出経路を備える造水装置を用い、
前記第1の運転方法と前記第2の運転方法とを、前記透過水接続経路切り替え部によって任意に切り替えることを特徴とする、請求項1に記載の造水方法。 A fresh water generation method using the first fresh water generator,
Using a fresh water generating device provided in the permeate connection path and having a permeate connection path switching unit capable of switching a flow path, and a downstream permeate discharge path connected to the permeate connection path switching unit,
The fresh water generation method according to claim 1, wherein the first operation method and the second operation method are arbitrarily switched by the permeate connection path switching unit. - 前記第1の造水装置を用いた造水方法であって、
前記透過水接続経路に設けられ、開閉の切り替えが可能な透過水接続経路バルブを備える造水装置を用い、
前記第1の運転方法と前記第2の運転方法とを、前記透過水接続経路バルブによって任意に切り替えることを特徴とする、請求項1に記載の造水方法。 A fresh water generation method using the first fresh water generator,
Using a fresh water generator provided with a permeate connection path valve provided in the permeate connection path and capable of switching between opening and closing,
The fresh water generation method according to claim 1, wherein the first operation method and the second operation method are arbitrarily switched by the permeate connection path valve. - 前記第2の造水装置を用いた造水方法であって、
前記集水管区切り部に加え、前記下流側透過水取り出し経路に設けられた流量ないし流路を制御する流量ないし流路制御部を備える造水装置、
もしくは、
前記集水管バルブに加え、前記下流側透過水取り出し経路に設けられた止水部、または流量ないし流路制御部の少なくともいずれか1つを備える造水装置において、
前記第1の運転方法と前記第2の運転方法とを、前記流量ないし流路制御部もしくは前記集水管バルブによって任意に切り替えることを特徴とする、請求項1に記載の造水方法。 A fresh water generation method using the second fresh water generator,
A fresh water generator comprising a flow rate or a flow path control unit for controlling a flow rate or a flow path provided in the downstream permeate take-out path in addition to the water collecting pipe partitioning part;
Or
In addition to the water collecting pipe valve, a fresh water generator comprising at least one of a water stop part provided in the downstream permeate water extraction path, or a flow rate or a flow path control part,
The fresh water generation method according to claim 1, wherein the first operation method and the second operation method are arbitrarily switched by the flow rate or the flow path control unit or the water collecting pipe valve. - 前記造水方法において、原水、上流側濃縮水、濃縮水、上流側透過水、下流側透過水、全透過水からなる群から選ばれる少なくとも1つについて、
水質、水温、水量、水圧からなる群から選ばれる少なくとも1つを測定し、
測定された値があらかじめ定められた範囲内である場合に、前記第1の運転方法をとり、
測定された値があらかじめ定められた範囲から逸脱した場合に、前記第2の運転方法をとること
を特徴とする、請求項1から4のいずれか1項に記載の造水方法。 In the fresh water generation method, about at least one selected from the group consisting of raw water, upstream concentrated water, concentrated water, upstream permeated water, downstream permeated water, total permeated water,
Measure at least one selected from the group consisting of water quality, water temperature, water volume, water pressure,
When the measured value is within a predetermined range, the first operation method is taken,
The fresh water generation method according to any one of claims 1 to 4, wherein the second operation method is taken when the measured value deviates from a predetermined range. - 前記造水方法において、
上流側濃縮水の電気伝導度に対する下流側濃縮水の電気伝導度の比があらかじめ定められた値を上回った場合、
下流側透過水または全透過水の水質があらかじめ定められた値を超えて悪化した場合、
原水、上流側濃縮水、濃縮水、上流側透過水、下流側透過水、全透過水のいずれかの水温があらかじめ定められた値を上回った場合、
下流側透過水量があらかじめ定められた値を下回った場合、
上流側透過水量に対する下流側透過水量の割合があらかじめ定められた値を下回った場合のうち、
少なくとも1つの条件に該当するとき、前記第2の運転方法をとり、
いずれの条件にも当てはまらないとき、前記第1の運転方法をとることを特徴とする、請求項1から5のいずれか1項に記載の造水方法。 In the fresh water generation method,
If the ratio of the electrical conductivity of the downstream concentrated water to the electrical conductivity of the upstream concentrated water exceeds a predetermined value,
If the water quality of the downstream permeate or total permeate deteriorates beyond a predetermined value,
If the water temperature of raw water, upstream concentrated water, concentrated water, upstream permeated water, downstream permeated water, or total permeated water exceeds a predetermined value,
When the downstream permeate flow rate falls below a predetermined value,
Among the cases where the ratio of the downstream permeate flow rate to the upstream permeate flow rate falls below a predetermined value,
When at least one condition is met, the second driving method is taken,
The fresh water generation method according to any one of claims 1 to 5, wherein the first operation method is adopted when none of the conditions is satisfied. - 前記造水方法において、原水塩濃度が30000mg/L以上、回収率が30%以上であることを特徴とする、請求項1から6のいずれか1項に記載の造水方法。 The fresh water generation method according to any one of claims 1 to 6, wherein the raw water salt concentration is 30000 mg / L or more and the recovery rate is 30% or more.
- 原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、
原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる上流側半透膜モジュールと、
前記半透膜エレメントp本(pはp<mを満たす自然数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる下流側半透膜モジュールを含み、
前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路、流路の切り替えが可能な透過水接続経路切り替え部及び前記透過水接続経路切り替え部に接続された下流側透過水排出経路を備えることを特徴とする、造水装置。 A fresh water generator that separates raw water with a semipermeable membrane, discharges concentrated water, and extracts permeated water,
The semi-permeable membrane element (m is an integer of 2 or more) having a raw water supply port, a concentrated water discharge port, a semipermeable membrane, a raw water flow channel, a permeated water flow channel, and a collecting pipe for collecting and taking out permeated water An upstream semipermeable membrane module that is communicated via a water collection pipe so that the concentrated water discharged from the permeable membrane element is supplied as raw water to the subsequent semipermeable membrane element;
The p semipermeable membrane elements (p is a natural number satisfying p <m) are passed through a water collecting pipe so that the concentrated water discharged from the former semipermeable membrane element is supplied as raw water to the latter semipermeable membrane element. Including a downstream semipermeable membrane module in communication with each other,
A first raw water supply path connected to the upstream semipermeable membrane module is connected so that upstream concentrated water discharged from the upstream semipermeable membrane module is supplied as raw water to the downstream semipermeable membrane module. The concentrated water connection path, the permeate connection path connected to join the upstream permeate obtained from the upstream semipermeable membrane module and the downstream permeate obtained from the downstream semipermeable membrane module, the downstream side A first concentrated water discharge path connected to the semipermeable membrane module; a permeate connection path switching unit capable of switching the flow path; and a downstream permeate discharge path connected to the permeate connection path switching unit. A fresh water generator. - 原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、
原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントm本(mは2以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる上流側半透膜モジュールと、
前記半透膜エレメントp本(pはp<mを満たす自然数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる下流側半透膜モジュールを含み、
前記上流側半透膜モジュールに接続された第1の原水供給経路、前記上流側半透膜モジュールから排出される上流側濃縮水が前記下流側半透膜モジュールに原水として供給されるよう接続された濃縮水接続経路、前記上流側半透膜モジュールから得られる上流側透過水と前記下流側半透膜モジュールから得られる下流側透過水を合流させるよう接続された透過水接続経路、前記下流側半透膜モジュールに接続された第1の濃縮水排出経路、前記透過水接続経路とは異なる場所に設けられ上流側透過水または上流側透過水と下流側透過水とを合わせた全透過水を取り出す上流側透過水または全透過水取り出し経路、前記透過水接続経路に設けられた開閉の切り替えが可能な透過水接続経路バルブを備えることを特徴とする、造水装置。 A fresh water generator that separates raw water with a semipermeable membrane, discharges concentrated water, and extracts permeated water,
The semi-permeable membrane element (m is an integer of 2 or more) having a raw water supply port, a concentrated water discharge port, a semipermeable membrane, a raw water flow channel, a permeated water flow channel, and a collecting pipe for collecting and taking out permeated water An upstream semipermeable membrane module that is communicated via a water collection pipe so that the concentrated water discharged from the permeable membrane element is supplied as raw water to the subsequent semipermeable membrane element;
The p semipermeable membrane elements (p is a natural number satisfying p <m) are passed through a water collecting pipe so that the concentrated water discharged from the former semipermeable membrane element is supplied as raw water to the latter semipermeable membrane element. Including a downstream semipermeable membrane module in communication with each other,
A first raw water supply path connected to the upstream semipermeable membrane module is connected so that upstream concentrated water discharged from the upstream semipermeable membrane module is supplied as raw water to the downstream semipermeable membrane module. The concentrated water connection path, the permeate connection path connected to join the upstream permeate obtained from the upstream semipermeable membrane module and the downstream permeate obtained from the downstream semipermeable membrane module, the downstream side The first concentrated water discharge path connected to the semipermeable membrane module, the total permeated water that is provided in a place different from the permeated water connection path or the upstream permeated water or the upstream permeated water and the downstream permeated water. An apparatus for producing fresh water, comprising: an upstream permeate or total permeate take-out path to be taken out; and a permeate connection path valve provided in the permeate connection path and capable of switching between opening and closing. - 前記濃縮水接続経路と、
前記透過水接続経路と、
前記透過水接続経路バルブと、
前記透過水接続経路のうち、前記下流側半透膜モジュールから前記透過水接続経路バルブまでの間に位置する経路が、
原水側の運転圧に耐えられる耐圧性を有することを特徴とする、請求項9に記載の造水装置。 The concentrated water connection path;
The permeate connection path;
The permeate connection path valve;
Among the permeate connection paths, a path located between the downstream semipermeable membrane module and the permeate connection path valve,
The fresh water generator according to claim 9, which has pressure resistance capable of withstanding the operating pressure on the raw water side. - 前記下流側半透膜モジュールに収容される前記半透膜エレメントが1本であることを特徴とする請求項8から10のいずれか1項に記載の造水装置。 The fresh water generator according to any one of claims 8 to 10, wherein the number of the semipermeable membrane elements accommodated in the downstream semipermeable membrane module is one.
- 前記下流側透過水排出経路と、前記第1の原水供給経路とが、原水合流経路(還流経路)を介して接続されることを特徴とする、請求項8に記載の造水装置。 The fresh water generator according to claim 8, wherein the downstream permeated water discharge path and the first raw water supply path are connected via a raw water confluence path (reflux path).
- 原水昇圧用高圧ポンプを備え、原水を半透膜で分離し濃縮水を排出して透過水を取り出す造水装置であって、原水供給口、濃縮水排出口、半透膜、原水流路、透過水流路、透過水を集めて取り出す集水管を備える半透膜エレメントn本(nは3以上の整数)を、前段の半透膜エレメントから排出される濃縮水が後段の半透膜エレメントに原水として供給されるよう、集水管を介して連通してなる半透膜モジュールを含み、前記半透膜モジュールは、第2の原水供給経路、第2の濃縮水排出経路、前記半透膜モジュール内の下流側から数えてn/2本未満の半透膜エレメントから得られる下流側透過水を取り出す下流側透過水取り出し経路と、残りの半透膜エレメントから得られる上流側透過水を取り出す上流側透過水または全透過水取り出し経路を備え、
下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側の集水管に設けられた、透過水に抵抗を与える集水管区切り部と、前記下流側透過水取り出し経路に設けられた流量ないし流路を制御する流量ないし流路制御部を備えること、
もしくは、
下流側から数えてn/2本未満の位置にある半透膜エレメントの上流側の集水管に設けられた、開閉の切り替えが可能な集水管バルブに加え、前記下流側透過水取り出し経路に設けられた止水部または流量ないし流路制御部の少なくともいずれか1つを備えること
を特徴とする造水装置。 A fresh water generator that has a high-pressure pump for boosting raw water, separates the raw water with a semipermeable membrane and discharges the concentrated water to take out the permeated water. The raw water supply port, the concentrated water discharge port, the semipermeable membrane, the raw water flow path, Concentrated water discharged from the semipermeable membrane element in the former stage is used as the semipermeable membrane element in the latter stage for n semipermeable membrane elements (n is an integer of 3 or more) having a permeate flow path and a water collecting pipe for collecting and taking out the permeated water. A semipermeable membrane module that is communicated via a water collecting pipe so as to be supplied as raw water, and the semipermeable membrane module includes a second raw water supply route, a second concentrated water discharge route, and the semipermeable membrane module. A downstream permeate extraction path for extracting downstream permeate obtained from less than n / 2 semipermeable membrane elements counting from the downstream side, and an upstream for extracting upstream permeate obtained from the remaining semipermeable membrane elements Side permeate or total permeate takeout With the road,
Provided in the water collection pipe delimiter for providing resistance to the permeate, provided in the water collection pipe on the upstream side of the semipermeable membrane element located at a position of less than n / 2 from the downstream side, and provided in the downstream permeate take-out path A flow rate or flow path control unit that controls the flow rate or flow path that is provided,
Or
In addition to the water collection pipe valve provided on the upstream side of the semipermeable membrane element at the position of less than n / 2 counting from the downstream side and capable of switching between opening and closing, it is provided in the downstream permeate extraction path. A fresh water generating device comprising at least one of a water stop portion or a flow rate or a flow path control portion. - 前記集水管区切り部もしくは前記集水管バルブと、
前記下流側透過水取り出し経路のうち、前記半透膜モジュールから前記止水部または流量ないし流路制御部までの間に位置する経路と、
前記止水部または流量ないし流路制御部が、
原水側の運転圧に耐えられる耐圧性を有することを特徴とする請求項13に記載の造水装置。 The water collecting pipe separator or the water collecting valve,
Of the downstream permeated water extraction path, a path located between the semipermeable membrane module and the water stop or flow rate or flow path control unit,
The water stop part or flow rate or flow path control part is
14. The fresh water generator according to claim 13, which has pressure resistance capable of withstanding the operating pressure on the raw water side. - 前記半透膜モジュールに収容されたn本の半透膜エレメントのうち、最も下流側に位置する半透膜エレメントの集水管の上流側に、前記集水管区切り部もしくは前記集水管バルブが設置されていることを特徴とする請求項13または14に記載の造水装置。 Of the n semipermeable membrane elements housed in the semipermeable membrane module, the water collecting tube partitioning portion or the water collecting tube valve is installed on the upstream side of the water collecting tube of the semipermeable membrane element located on the most downstream side. The fresh water generator according to claim 13 or 14, wherein the fresh water generator is provided.
- 前記下流側透過水取り出し経路と、前記第2の原水供給経路とが、前記半透膜モジュールの外で前記流量ないし流路制御部、及び原水合流経路(還流経路)を介して接続されることを特徴とする、請求項13から15のいずれか1項に記載の造水装置。 The downstream permeated water extraction path and the second raw water supply path are connected to each other outside the semipermeable membrane module via the flow rate or flow path control unit and the raw water merging path (reflux path). The fresh water generator according to any one of claims 13 to 15, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018525490A JPWO2018182033A1 (en) | 2017-03-31 | 2018-03-30 | Fresh water producing method and fresh water producing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017070197 | 2017-03-31 | ||
JP2017-070197 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018182033A1 true WO2018182033A1 (en) | 2018-10-04 |
Family
ID=63677746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014007 WO2018182033A1 (en) | 2017-03-31 | 2018-03-30 | Water production method and water production device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018182033A1 (en) |
WO (1) | WO2018182033A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020163252A (en) * | 2019-03-28 | 2020-10-08 | 栗田工業株式会社 | Operation method of reverse osmosis membrane device and reverse osmosis membrane device |
WO2023190850A1 (en) * | 2022-03-31 | 2023-10-05 | 東レ株式会社 | Reverse osmosis membrane device and method of operating reverse osmosis membrane device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59228988A (en) * | 1983-06-10 | 1984-12-22 | Jgc Corp | Method for obtaining pure water from high-conductivity water by reverse osmosis method |
JP2001137672A (en) * | 1999-11-18 | 2001-05-22 | Toray Ind Inc | Reverse osmosis treatment device and water making method |
JP2001239134A (en) * | 2000-03-01 | 2001-09-04 | Toray Ind Inc | Method for operating reverse osmosis treatment device, control device therefor and method for making water |
WO2003039708A1 (en) * | 2001-11-06 | 2003-05-15 | Ionics, Incorporated | Branched flow filtration and system |
JP2008307487A (en) * | 2007-06-15 | 2008-12-25 | Mitsubishi Heavy Ind Ltd | Desalting device |
WO2010089912A1 (en) * | 2009-02-06 | 2010-08-12 | 三菱重工業株式会社 | Spiral-type seawater desalination system |
WO2012086477A1 (en) * | 2010-12-20 | 2012-06-28 | 株式会社日立プラントテクノロジー | Reverse osmosis processing device |
WO2014129341A1 (en) * | 2013-02-20 | 2014-08-28 | 三菱重工業株式会社 | Method for operating reverse osmosis membrane device |
WO2015135545A1 (en) * | 2014-03-11 | 2015-09-17 | Gea Process Engineering A/S | Apparatus and method for membrane filtration |
JP2015196113A (en) * | 2014-03-31 | 2015-11-09 | 栗田工業株式会社 | Treatment method for water containing low molecular weight organic substances |
-
2018
- 2018-03-30 WO PCT/JP2018/014007 patent/WO2018182033A1/en active Application Filing
- 2018-03-30 JP JP2018525490A patent/JPWO2018182033A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59228988A (en) * | 1983-06-10 | 1984-12-22 | Jgc Corp | Method for obtaining pure water from high-conductivity water by reverse osmosis method |
JP2001137672A (en) * | 1999-11-18 | 2001-05-22 | Toray Ind Inc | Reverse osmosis treatment device and water making method |
JP2001239134A (en) * | 2000-03-01 | 2001-09-04 | Toray Ind Inc | Method for operating reverse osmosis treatment device, control device therefor and method for making water |
WO2003039708A1 (en) * | 2001-11-06 | 2003-05-15 | Ionics, Incorporated | Branched flow filtration and system |
JP2008307487A (en) * | 2007-06-15 | 2008-12-25 | Mitsubishi Heavy Ind Ltd | Desalting device |
WO2010089912A1 (en) * | 2009-02-06 | 2010-08-12 | 三菱重工業株式会社 | Spiral-type seawater desalination system |
WO2012086477A1 (en) * | 2010-12-20 | 2012-06-28 | 株式会社日立プラントテクノロジー | Reverse osmosis processing device |
WO2014129341A1 (en) * | 2013-02-20 | 2014-08-28 | 三菱重工業株式会社 | Method for operating reverse osmosis membrane device |
WO2015135545A1 (en) * | 2014-03-11 | 2015-09-17 | Gea Process Engineering A/S | Apparatus and method for membrane filtration |
JP2015196113A (en) * | 2014-03-31 | 2015-11-09 | 栗田工業株式会社 | Treatment method for water containing low molecular weight organic substances |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020163252A (en) * | 2019-03-28 | 2020-10-08 | 栗田工業株式会社 | Operation method of reverse osmosis membrane device and reverse osmosis membrane device |
JP7147659B2 (en) | 2019-03-28 | 2022-10-05 | 栗田工業株式会社 | Method of operating reverse osmosis membrane device and reverse osmosis membrane device |
WO2023190850A1 (en) * | 2022-03-31 | 2023-10-05 | 東レ株式会社 | Reverse osmosis membrane device and method of operating reverse osmosis membrane device |
JP7525067B2 (en) | 2022-03-31 | 2024-07-30 | 東レ株式会社 | Reverse osmosis membrane device and method for operating the reverse osmosis membrane device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018182033A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Emerging membrane technology for sustainable water treatment | |
US6702944B2 (en) | Multi-stage filtration and softening module and reduced scaling operation | |
US10995016B2 (en) | Membrane filtration system with concentrate staging and concentrate recirculation, switchable stages, or both | |
US20180280888A1 (en) | Reverse osmosis treatment apparatus and reverse osmosis treatment method | |
US20120298578A1 (en) | Systems and methods for filtration | |
CN103619450A (en) | Membrane filtration method and membrane filtration device | |
US20150144560A1 (en) | Separation membrane unit and method for using the same to produce fresh water | |
JP4251879B2 (en) | Operation method of separation membrane module | |
JP2001239134A (en) | Method for operating reverse osmosis treatment device, control device therefor and method for making water | |
CN105073650A (en) | Multi-stage reverse osmosis membrane device and its operation method | |
CN103316590A (en) | Raw water separator for spiral membrane module, membrane module containing separator and reverse osmosis membrane device | |
US11014834B2 (en) | Osmotic concentration of produced and process water using hollow fiber membrane | |
EP3268317B1 (en) | A subsea installation and method for treatment of seawater | |
WO2018182033A1 (en) | Water production method and water production device | |
KR20170140920A (en) | Reverse osmosis membrane apparatus for energy saving and water treating method using the same | |
WO2020169883A1 (en) | Feed spacer for cross-flow membrane element | |
WO2004022206A1 (en) | Separation membrane module and method of operating separation membrane module | |
JP7426478B2 (en) | Filter structure with selective water collection function at both ends and filtration method using the same | |
Voutchkov | Seawater desalination-costs and technology trends | |
AU2008200413A1 (en) | Water treatment process | |
US20190300396A1 (en) | Method and apparatus for improved filtration by a ceramic membrane | |
WO2020244999A1 (en) | Membrane filtration assembly | |
JP2000262867A (en) | Reverse osmosis membrane separator and method for separating water | |
Sarfraz | Recent trends in membrane processes for water purification of brackish water | |
Wilf | Reverse osmosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018525490 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776040 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776040 Country of ref document: EP Kind code of ref document: A1 |