+

WO2018181978A1 - 光検出器 - Google Patents

光検出器 Download PDF

Info

Publication number
WO2018181978A1
WO2018181978A1 PCT/JP2018/013818 JP2018013818W WO2018181978A1 WO 2018181978 A1 WO2018181978 A1 WO 2018181978A1 JP 2018013818 W JP2018013818 W JP 2018013818W WO 2018181978 A1 WO2018181978 A1 WO 2018181978A1
Authority
WO
WIPO (PCT)
Prior art keywords
spad
voltage
detection unit
breakdown voltage
monitoring
Prior art date
Application number
PCT/JP2018/013818
Other languages
English (en)
French (fr)
Inventor
謙太 東
木村 禎祐
尾崎 憲幸
柏田 真司
武廣 秦
勇 高井
松原 弘幸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018022999A external-priority patent/JP6741703B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880021118.9A priority Critical patent/CN110462847B/zh
Publication of WO2018181978A1 publication Critical patent/WO2018181978A1/ja
Priority to US16/583,674 priority patent/US11296241B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/95Circuit arrangements
    • H10F77/953Circuit arrangements for devices having potential barriers
    • H10F77/959Circuit arrangements for devices having potential barriers for devices working in avalanche mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors

Definitions

  • This disclosure relates to a photodetector using the avalanche effect.
  • Patent Document 1 in a photodetector using an avalanche photodiode (hereinafter referred to as APD), in order to perform temperature compensation of APD, the temperature characteristic of current amplification factor is substantially the same as that of APD, and the reference is reverse-biased. It is disclosed to use a joint structure.
  • APD avalanche photodiode
  • a transistor having a current injection junction structure for injecting a reference current into the reference junction structure is used and applied to the APD and the reference junction structure so as to keep the amplification factor of the reference current at a predetermined value.
  • the multiplication factor of the APD is controlled.
  • Patent Document 1 Since the APD is temperature-compensated by controlling the multiplication factor of the APD, the one disclosed in Patent Document 1 is effective in the linear mode in which a reverse bias voltage less than the breakdown voltage is applied to the APD to operate. .
  • Patent Document 1 a problem has been found that the technique disclosed in Patent Document 1 cannot be applied to a photodetector that operates an APD in the Kaiger mode. That is, the APD operating in the Geiger mode is called SPAD, and the reverse bias voltage is set to a voltage value higher than the breakdown voltage. SPAD is an abbreviation for Single Photon Avalanche Diode.
  • the photodetector using SPAD is configured to output a pulse signal having a predetermined pulse width when SPAD is broken down.
  • the photodetector in a photodetector using SPAD, it is desirable to be able to compensate for temperature of SPAD detection sensitivity, more specifically, SPAD photon detection sensitivity.
  • the photodetector according to one aspect of the present disclosure includes a detection unit, a monitoring SPAD, a current source, and a voltage generation unit.
  • the detection unit includes a SPAD and is configured to detect light by applying a reverse bias voltage to the SPAD.
  • the monitoring SPAD is a SPAD having the same characteristics as the SPAD constituting the detection unit.
  • the current source operates the monitoring SPAD in the Geiger mode by supplying a constant current to the monitoring SPAD.
  • a breakdown voltage is generated between both ends thereof. Therefore, the voltage generation unit is based on a reference breakdown voltage set from the breakdown voltage and a predetermined excess voltage. A reverse bias voltage applied to the SPAD of the detection unit is generated.
  • the reverse bias voltage generated based on the reference breakdown voltage estimated to be the breakdown voltage when the photon is incident and the breakdown occurs and the predetermined excess voltage is applied to the SPAD of the detection unit. Will be.
  • a reverse bias voltage exceeding the breakdown voltage is applied to SPAD, and a photon is incident on SPAD, and a detection signal is output based on the current that flows when SPAD is broken down.
  • the breakdown voltage of SPAD changes with temperature. Specifically, the breakdown voltage increases as the temperature increases. For this reason, if the reverse bias voltage applied to SPAD is made constant, the excess voltage obtained by subtracting the breakdown voltage from the reverse bias voltage becomes lower as the temperature is higher. And the detection sensitivity of SPAD changes with the voltage change of excess voltage.
  • the monitoring SPAD is used to estimate the breakdown voltage of the SPAD of the detection unit as the reference breakdown voltage, and based on the reference breakdown voltage and a desired excess voltage, The bias voltage is set.
  • the photodetector of the present disclosure it is possible to compensate the temperature of the detection sensitivity of the SPAD constituting the detection unit, and perform light detection with a desired detection sensitivity without being affected by the temperature change of the SPAD Will be able to.
  • the photodetector 1A As shown in FIG. 1, the photodetector 1A according to the first embodiment includes a detection unit 10 including a plurality of SPADs 2 and a monitoring SPAD 12 having the same configuration as the SPAD 2 in the detection unit 10 and having similar characteristics. .
  • the SPAD2 and the monitoring SPAD12 are APDs that can operate in the Geiger mode as described above, and in the detection unit 10, the quenching resistors 4 are connected in series to the anodes of the plurality of SPAD2, respectively.
  • the quenching resistor 4 is for stopping the Geiger discharge of the SPAD2 by generating a voltage drop due to the current flowing through the SPAD2 when the photon is incident on the SPAD2 and the SPAD2 is broken down.
  • the quenching resistor 4 may be configured by a “resistor” which is a so-called general passive element, or may be configured by an active element such as a “transistor”.
  • the voltage generated between both ends of the quenching resistor 4 when each SPAD 2 breaks down and a current flows through the quenching resistor 4 is input to the pulse conversion unit 6 corresponding to each SPAD 2. Is done.
  • the pulse converter 6 is for outputting a pulse signal having a predetermined pulse width as a detection signal when photons enter the corresponding SPAD 2, and the voltage across the quenching resistor 4 is equal to or higher than the predetermined voltage. A digital pulse that is sometimes "1" is generated.
  • the breakdown voltage of SPAD2 estimates as a reference breakdown voltage V BD. Then, based on its reference breakdown voltage V BD and a predetermined excess voltage V EX, it generates a reverse bias voltage V SPAD, is applied to the cathode of each SPAD2 detection unit 10.
  • the photodetector 1A includes a current source 14 that supplies a constant current to the monitoring SPAD 12 , a voltage source 16 that generates an excess voltage V EX , and a voltage generator 18 that generates a reverse bias voltage V SPAD. Is provided.
  • the voltage generator 18 is configured to generate the reverse bias voltage V SPAD by adding the breakdown voltage of the monitoring SPAD 12 as the reference breakdown voltage V BD to the excess voltage V EX from the voltage source 16.
  • the voltage generating unit 18 based on the reference breakdown voltage V BD and excess voltage V EX, it is sufficient generate a reverse bias voltage V SPAD as excess voltage V EX is substantially constant voltage, necessarily respective voltages It is not necessary to configure to add as it is.
  • the current source 14 receives the power supply voltage V B sufficiently higher than the breakdown voltage of the monitoring SPAD 12, and supplies the constant current I SPAD to the monitoring SPAD 12, thereby operating the monitoring SPAD 12 in Geiger mode. It is what
  • monitoring SPAD 12 is not connected to a quenching resistor like the SPAD 2 in the detection unit 10, and is configured to continue to pass a current once it breaks down.
  • the voltage generating unit 18 always will be the reference breakdown voltage V BD which varies according to the temperature of the monitor SPAD12 is input. Since the monitoring SPAD 12 has the same characteristics as the SPAD 2 constituting the detection unit 10, the reference breakdown voltage VBD corresponds to the breakdown voltage of SPAD2.
  • a voltage obtained by adding a predetermined excess voltage V EX to a reference breakdown voltage V BD corresponding to the breakdown voltage of each SPAD 2 is always applied to the cathode of each SPAD 2 in the detection unit 10 as a reverse bias voltage V SPAD. Will be applied.
  • the detection sensitivity of each SPAD 2 in the detection unit 10 is a constant detection sensitivity corresponding to the excess voltage V EX without being affected by the temperature change. Therefore, according to the present embodiment, the temperature of the detection sensitivity of each SPAD 2 constituting the detection unit 10 can be compensated for temperature, and the change in detection accuracy due to temperature can be suppressed.
  • the monitoring SPAD 12 may be configured so that light is incident from the outside. However, as shown by a dotted line in FIG. 1, a light shielding film 13 that prevents light from entering the monitoring SPAD 12 is provided. It may be.
  • the reference breakdown voltage V BD can be input to the voltage generator 18.
  • the voltage generator 18 can generate the reverse bias voltage V SPAD more stably. it can.
  • the monitoring SPAD 12 may be arranged on the back side of the detection unit 10 so that the light incident on the monitoring SPAD 12 is less than the light incident on the detection unit 10. Even in this case, substantially the same effect as that obtained when the light shielding film 13 is provided on the monitoring SPAD 12 can be obtained.
  • the basic configuration of the photodetector 1B of the second embodiment is the same as that of the photodetector 1A of the first embodiment. The difference from the first embodiment is that the switch 22 and the voltage storage unit are different. 24 is added.
  • the switch 22 is provided in the energization path from the current source 14 to the monitoring SPAD 12, and the energization path is turned on or off according to the distance measurement operation signal from the distance measuring device 20 using the photodetector 1B. It is for blocking.
  • the switch 22 is turned off when the distance measuring device 20 is performing distance measurement based on the detection signal from the detection unit 10, and is turned on when the distance measuring device 20 is stopping distance measurement. It becomes.
  • the monitoring SPAD 12 is supplied with a current from the current source 14 and breaks down.
  • the voltage storage unit 24 uses the breakdown voltage of the monitoring SPAD 12 as the reference breakdown voltage V BD when the distance measurement device 20 stops distance measurement according to the distance measurement operation signal from the distance measurement device 20. Is set and stored as
  • the voltage storage unit 24 outputs the stored reference breakdown voltage VBD to the voltage generation unit 18 so that the voltage generation unit 18 receives the latest reference breakdown voltage VBD.
  • a reverse bias voltage V SPAD corresponding to BD is generated.
  • the reference breakdown voltage V BD is stored by the voltage storage unit 24 by, for example, latching the reference breakdown voltage V BD in a storage element by charging a capacitor or the like, or digitizing the reference breakdown voltage V BD. Is stored in the memory.
  • the monitoring SPAD 12 is operated when the distance measuring device 20 which is an external device stops the distance measurement. For this reason, when the detection unit 10 is used for the distance measuring operation, the operation of the monitoring SPAD 12 can be stopped, and an increase in the power consumption of the photodetector 1B due to the current flowing through the monitoring SPAD 12 can be suppressed. .
  • the distance measuring device 20 is mounted on a vehicle, for example, for irradiating distance measuring light forward in the traveling direction, and for measuring the distance from the reflected light to an obstacle existing in front of the vehicle. Yes, the detection unit of this embodiment is used to receive reflected light.
  • the operation of the switch 22 and the voltage storage unit 24 is switched according to the operation signal from the distance measuring device 20, but the operation of the switch 22 and the voltage storage unit 24 is switched by the distance. It is not limited to the measuring device 20. That is, the switch 22 and the voltage storage unit 24 may operate in response to a command from an external device that uses the detection signal from the detection unit 10.
  • the basic configuration of the photodetector 1C of the third embodiment is the same as that of the photodetector 1A of the first embodiment. The difference from the first embodiment is that a plurality of monitoring SPAD12- 1, 12-2,..., 12 -n, and a reference breakdown voltage V BD calculation and selection unit 30.
  • the current source 14 has a current I SPAD to be supplied to one monitoring SPAD in order to operate the plurality of monitoring SPADs 12-1, 12-2,..., 12-n in the Geiger mode. Is configured to supply a current that is n times the current. The supplied current is distributed to a plurality of monitoring SPADs 12-1, 12-2, ..., 12-n, and each of the monitoring SPADs 12-1, 12-2, ..., 12-n operates in Geiger mode. .
  • the breakdown voltages V BD1 , V BD2 ,..., V BDn of the monitor SPADs 12-1, 12-2,..., 12-n are input to the calculation / selection unit 30. This is used to generate a reference breakdown voltage VBD input to the voltage generator 18.
  • the calculation and selection unit 30 selects a preset minimum value, maximum value, or median value from among the plurality of breakdown voltages V BD1 , V BD2 ,..., V BDn , or selects an average value. By calculating, the reference breakdown voltage VBD input to the voltage generator 18 is generated.
  • the reference breakdown voltage VBD input to the voltage generation unit 18 is generated using a plurality of monitoring SPADs 12, so that even if the monitoring SPADs 12 have large variations, the reference breakdown voltage VBD is appropriate.
  • a reference breakdown voltage VBD can be generated.
  • the voltage generation unit 18 can generate a more appropriate reverse bias voltage V SPAD , and the temperature sensitivity of the detection sensitivity of the SPAD 2 in the detection unit 10 can be better compensated. be able to.
  • the calculation and selection unit 30 is for generating a more appropriate reference breakdown voltage V BD using a plurality of breakdown voltages V BD1 , V BD2 ,. Is preferable to select a median value from a plurality.
  • the basic configuration of the photodetector 1D of the fourth embodiment is the same as that of the photodetector 1A of the first embodiment.
  • the difference from the first embodiment is the voltage generator 18.
  • the voltage control unit 40 is provided for setting an excess voltage V EX to be added to the reference breakdown voltage V BD .
  • the voltage control unit 40 takes in the reference breakdown voltage V BD is input to the voltage generator 18, based on the reference breakdown voltage V BD, configured to set the excess voltage V EX Has been.
  • the reference breakdown voltage V BD utilized as a detection signal of the temperature of the SPAD2, according to excess voltage V EX used to generate the reverse bias voltage V SPAD by the voltage generator 18 to a temperature Is set.
  • the detection sensitivity of each SPAD 2 that constitutes the detection unit 10 can be temperature-compensated and detected by temperature. The change in accuracy can be suppressed.
  • the voltage control unit 40 is, for example, by the reference breakdown voltage V BD pressure resistance component, the excess voltage V EX, is changed in proportion to the reference breakdown voltage V BD, constituting at resistor divider It is possible.
  • V BD pressure resistance component the excess voltage V EX
  • V BD the reference breakdown voltage
  • the detection unit 10 is configured as a so-called light receiving array by arranging a plurality of SPADs 2 in a lattice pattern.
  • the quenching resistor 4 and the pulse conversion unit 6 are connected to the plurality of SPADs 2 provided in the detection unit 10 in the same manner as shown in FIG. For this reason, when breakdown occurs due to the incidence of photons on each SPAD 2, a digital pulse is output from the pulse converter 6 as a detection signal.
  • the output determination unit 50 counts the number of detection signals output from the plurality of SPADs 2 constituting the detection unit 10 via the pulse conversion unit 6, and detects when the count value is equal to or greater than a predetermined threshold value. It is determined that light is detected by the unit 10.
  • SPAD 2 may break down due to noise and output a detection signal via the pulse converter 6. That is, when the output determination unit 50 uses the detection unit 10 as one pixel for light detection, and the number of SPAD2s that output detection signals among the plurality of SPAD2s constituting the detection unit 10 is equal to or greater than a threshold value. The detection unit 10 determines that light is detected.
  • the output determination unit 50 determines that light is detected by the detection unit 10
  • the output determination unit 50 outputs a trigger signal indicating that light is detected by the detection unit 10.
  • the threshold control unit 52 sets the threshold used by the output determination unit 50 based on the breakdown voltage of the monitoring SPAD 12.
  • the predetermined breakdown voltage V EX is added to the reference breakdown voltage V BD to generate the reverse bias voltage V SPAD to be applied to each SPAD 2 of the detection unit 10, and thus the operation of each SPAD 2 This is because the voltage changes.
  • the reverse bias voltage V SPAD when the reverse bias voltage V SPAD is set by adding a predetermined excess voltage V EX to the reference breakdown voltage V BD , the detection sensitivity of each SPAD 2 can be suppressed from decreasing with temperature, but applied to the SPAD 2.
  • the reverse bias voltage V SPAD changes. When the reverse bias voltage V SPAD increases, the dark current flowing through the SPAD 2 increases, and the SPAD 2 is easily broken down by this dark current.
  • the detection unit 10 includes a quenching resistor 4 connected to the anode of each SPAD 2 and a connection point between the anode of each SPAD 2 and the quenching resistor 4. The detection signal is output via the pulse converter 6.
  • the voltage generator 18 by adding a reference breakdown voltage V BD and a predetermined excess voltage V EX, generates a reverse bias voltage V SPAD to a higher potential than the anode of each SPAD2, each SPAD2 Configured to be applied to the cathode.
  • the reverse bias voltage V SPAD is preferably a positive potential.
  • the detection unit 10 has a quenching resistor 4 connected to the cathode of each SPAD2, and the detection signal is sent to the cathode of each SPAD2.
  • the signal is output from the connection point with the quenching resistor 4 via the pulse converter 6.
  • the detection unit 10 the power supply voltage V B to the cathode of SPAD2 through the quenching resistor 4 are applied, in order to operate the SPAD2 in Geiger mode, the potential of the anode of the SPAD2, than the cathode It is necessary to lower the reverse bias voltage.
  • the cathode of the monitoring SPAD12 power supply voltage V B are applied, the current source 14 is connected to the anode of the monitor SPAD12, from anode to ground The current is made to flow.
  • the voltage generator 18 takes in a negative reference breakdown voltage ⁇ V BD lower than the power supply voltage V B from the anode of the monitoring SPAD 12, and adds a negative excess voltage obtained from the negative side of the voltage source 16 to the negative reference breakdown voltage ⁇ V BD. It is configured to add ⁇ V EX .
  • the voltage generator 18 adds the negative reference breakdown voltage ⁇ V BD and the negative excess voltage ⁇ V EX so that the reverse bias voltage ⁇ V SPAD that is lower than the cathode of the SPAD 2 is obtained. Generated. Then, the generated reverse bias voltage ⁇ V SPAD is applied to the anode of each SPAD 2 in the detection unit 10. For example, since the cathode of SPAD2 does not become a negative potential, the reverse bias voltage -V SPAD is preferably a negative potential.
  • the reverse bias voltage V SPAD obtained by adding the excess voltage V EX to the reference breakdown voltage V BD is applied between the cathode and anode of each SPAD 2 in the detection unit 10. The same effect as the above embodiment can be obtained.
  • the monitor SPAD 12 may be provided with the light shielding film 13 that blocks or suppresses the incidence of light.
  • the monitor The SPAD 12 may be provided with a light shielding film 13 to shield it from light. Further, when the monitor SPAD 12 is shielded from light, it is not always necessary to provide the light shielding film 13 as long as it can prevent light from entering the monitor SPAD 12.
  • the detection unit 10 has been described as being provided with a plurality of SPADs 2, but even when the detection unit 10 is provided with one SPAD 2, the configuration as in each of the above embodiments. If it does, it can suppress that the detection sensitivity by the detection part 10 falls.
  • a plurality of functions of one component in the above embodiment may be realized by a plurality of components, and one function of one component may be realized by a plurality of components. Further, a plurality of functions possessed by a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may abbreviate
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment.
  • all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this indication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)

Abstract

光検出器(1A)は、SPAD(4)に逆バイアス電圧を印加して光検出を行うように構成された検出部(10)と、検出部を構成するSPADと同様の特性を有するモニタ用SPAD(12)と、モニタ用SPADに定電流を供給してガイガーモードで動作させる電流源(14)と、モニタ用SPADの両端間に生じるブレイクダウン電圧から設定される基準ブレイクダウン電圧と所定のエクセス電圧とに基づき、検出部のSPADに印加する逆バイアス電圧を生成する電圧生成部(18)と、を備える。

Description

光検出器 関連出願の相互参照
 本国際出願は、2017年3月31日に日本国特許庁に出願された日本国特許出願第2017-71412号、及び、2018年2月13日に日本国特許庁に出願された日本国特許出願第2018-22999号に基づく優先権を主張するものであり、日本国特許出願第2017-71412号及び日本国特許出願第2018-22999号の全内容を参照により本国際出願に援用する。
 本開示は、アバランシェ効果を利用した光検出器に関する。
 特許文献1には、アバランシェフォトダイオード(以下、APD)を用いた光検出器において、APDの温度補償を行うために、電流増幅率の温度特性がAPDと略同じで、逆バイアスされた参照用接合構造を利用することが開示されている。
 この光検出器では、参照用接合構造に参照電流を注入する電流注入用接合構造を有するトランジスタを利用し、参照電流の増幅率を所定値に保つように、APDと参照用接合構造に印加する電圧を制御することで、APDの増倍率を制御する。
特許第5211095号公報
 特許文献1に開示されたものでは、APDの増倍率を制御することでAPDを温度補償制御することから、APDにブレイクダウン電圧未満の逆バイアス電圧を印加して動作させるリニアモードでは有効である。
 しかし、発明者の詳細な検討の結果、引用文献1に開示された技術は、APDをカイガーモードで動作させる光検出器に適用することはできないという課題が見出された。
 つまり、ガイガーモードで動作するAPDは、SPADと呼ばれ、逆バイアス電圧はブレイクダウン電圧よりも高い電圧値に設定される。なお、SPADは、Single Photon Avalanche Diode の略である。
 そして、SPADはフォトンの入射に応答すると、ブレイクダウンするため、SPADを利用する光検出器は、SPADがブレイクダウンしたときに所定パルス幅のパルス信号が出力されるよう構成される。
 従って、SPADを利用する光検出器の出力は「1」か「0」であり、この種の光検出器では、増倍率を制御する概念はない。このため、特許文献1に開示された技術を利用して、SPADによる検出感度を温度補償することは困難である。
 本開示の一局面では、SPADを用いた光検出器において、SPADの検出感度、より具体的にはSPADのフォトン検出感度、を温度補償できるようにすることが望ましい。
 本開示の一局面の光検出器は、検出部と、モニタ用SPADと、電流源と、電圧生成部とを備える。
 検出部は、SPADを備え、SPADに逆バイアス電圧を印加して光検出を行うように構成されている。また、モニタ用SPADは、検出部を構成するSPADと同様の特性を有するSPADである。
 電流源は、モニタ用SPADに定電流を供給することにより、モニタ用SPADをガイガーモードで動作させる。モニタ用SPADをガイガーモードで動作させると、その両端間にブレイクダウン電圧が発生するので、電圧生成部は、そのブレイクダウン電圧から設定される基準ブレイクダウン電圧と、所定のエクセス電圧とに基づき、検出部のSPADに印加する逆バイアス電圧を生成する。
 この結果、検出部のSPADには、フォトンが入射してブレイクダウンしたときのブレイクダウン電圧であると推定される基準ブレイクダウン電圧と所定のエクセス電圧とに基づき生成される、逆バイアス電圧が印加されることになる。
 従って、SPADの温度変化によってブレイクダウン電圧が変化しても、エクセス電圧は略所定の一定電圧となり、SPADによるフォトンの検出感度を安定化させることができる。
 つまり、SPADを利用する光検出器では、SPADにブレイクダウン電圧を超える逆バイアス電圧を印加し、SPADにフォトンが入射して、SPADがブレイクダウンしたときに流れる電流に基づき、検出信号を出力する。
 一方、SPADのブレイクダウン電圧は温度により変化する。具体的には、ブレイクダウン電圧は、温度が高いほど高くなる。このため、SPADに印加する逆バイアス電圧を一定にしていると、逆バイアス電圧からブレイクダウン電圧を減じた余剰電圧であるエクセス電圧は、温度が高いほど低くなる。そして、SPADの検出感度は、エクセス電圧の電圧変化によって変化する。
 そこで、本開示の光検出器では、モニタ用SPADを利用して、検出部のSPADのブレイクダウン電圧を基準ブレイクダウン電圧として推定し、この基準ブレイクダウン電圧と所望のエクセス電圧とに基づき、逆バイアス電圧を設定するのである。
 このため、本開示の光検出器によれば、検出部を構成するSPADの検出感度を温度補償することができ、SPADの温度変化の影響を受けることなく、所望の検出感度で光検出を行うことができるようになる。
 なお、請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
第1実施形態の光検出器の構成を表すブロック図である。 第2実施形態の光検出器の構成を表すブロック図である。 第3実施形態の光検出器の構成を表すブロック図である。 第4実施形態の光検出器の構成を表すブロック図である。 第5実施形態の光検出器の構成を表すブロック図である。 第6実施形態の光検出器の構成を表すブロック図である。
 以下に本開示の実施形態を図面と共に説明する。
[第1実施形態]
 図1に示すように、第1実施形態の光検出器1Aは、複数のSPAD2を備えた検出部10と、検出部10内のSPAD2と同一構成で同様の特性を有するモニタ用SPAD12とを備える。
 SPAD2及びモニタ用SPAD12は、上述したようにガイガーモードで動作可能なAPDであり、検出部10においては、複数のSPAD2のアノードに、それぞれ、クエンチング抵抗4が直列接続されている。
 クエンチング抵抗4は、SPAD2にフォトンが入射して、SPAD2がブレイクダウンしたときに、SPAD2に流れる電流により、電圧降下を発生して、SPAD2のガイガー放電を停止させるものである。なお、クエンチング抵抗4は、いわゆる一般的な受動素子である「抵抗器」で構成してもよいし、「トランジスタ」のような能動素子で構成してもよい。
 そして、検出部10において、各SPAD2がブレイクダウンしてクエンチング抵抗4に電流が流れることによりクエンチング抵抗4の両端間に発生する電圧は、それぞれ、各SPAD2に対応するパルス変換部6に入力される。
 パルス変換部6は、対応するSPAD2にフォトンが入射した際に、検出信号として、所定パルス幅のパルス信号を出力するためのものであり、クエンチング抵抗4の両端間電圧が所定電圧以上であるときに「1」となるデジタルパルスを発生する。
 ところで、検出部10を動作させるには、各SPAD2に対し、順方向とは逆方向に、ブレイクダウン電圧よりも大きい逆バイアス電圧VSPADを印加する必要がある。そして、逆バイアス電圧VSPADを一定にしていると、温度によって各SPAD2の検出感度が変化してしまう。
 そこで、本実施形態では、検出部10と同様の環境下に置かれるモニタ用SPAD12を使って、SPAD2のブレイクダウン電圧を、基準ブレイクダウン電圧VBDとして推定する。そして、その基準ブレイクダウン電圧VBDと所定のエクセス電圧VEXとに基づき、逆バイアス電圧VSPADを生成し、検出部10の各SPAD2のカソードに印加する。
 このため、光検出器1Aには、モニタ用SPAD12に定電流を供給する電流源14と、エクセス電圧VEXを発生する電圧源16と、逆バイアス電圧VSPADを生成する電圧生成部18とが備えられている。
 電圧生成部18は、モニタ用SPAD12のブレイクダウン電圧を基準ブレイクダウン電圧VBDとして、電圧源16からのエクセス電圧VEXに加算し、逆バイアス電圧VSPADを生成するよう構成されている。
 なお、電圧生成部18は、基準ブレイクダウン電圧VBDとエクセス電圧VEXとに基づき、エクセス電圧VEXがほぼ一定電圧となるように逆バイアス電圧VSPADを生成できればよく、必ずしもこれら各電圧をそのまま加算するように構成する必要はない。
 次に、電流源14は、モニタ用SPAD12のブレイクダウン電圧に比べて充分高い電源電圧VB を受けて、モニタ用SPAD12に一定電流ISPADを供給することにより、モニタ用SPAD12をガイガーモードで動作させるものである。
 なお、モニタ用SPAD12は、検出部10内のSPAD2のようにクエンチング抵抗は接続されておらず、一旦ブレイクダウンすると電流を流し続けるように構成されている。
 このため、電圧生成部18には、常に、モニタ用SPAD12の温度に応じて変化する基準ブレイクダウン電圧VBDが入力されることになる。そして、モニタ用SPAD12は検出部10を構成するSPAD2と同様の特性であるため、基準ブレイクダウン電圧VBDは、SPAD2のブレイクダウン電圧に対応する。
 従って、検出部10内の各SPAD2のカソードには、常に、各SPAD2のブレイクダウン電圧に対応した基準ブレイクダウン電圧VBDに所定のエクセス電圧VEXを加算した電圧が、逆バイアス電圧VSPADとして印加されることになる。
 よって、本実施形態の光検出器1Aにおいて、検出部10内の各SPAD2の検出感度は、温度変化の影響を受けることなく、エクセス電圧VEXに対応した一定の検出感度となる。従って、本実施形態によれば、検出部10を構成する各SPAD2の検出感度を温度補償することができ、温度によって検出精度が変化するのを抑制できる。
 なお、モニタ用SPAD12は、外部から光が入射するように構成されていてもよいが、図1に点線で示すように、モニタ用SPAD12に光が入射するのを阻止する遮光膜13を設けるようにしてもよい。
 このようにしても、モニタ用SPAD12は、ノイズによってブレイクダウンするので、基準ブレイクダウン電圧VBDを電圧生成部18に入力することができる。また、この場合、基準ブレイクダウン電圧VBDがモニタ用SPAD12に入射する光の影響を受けて変化することがないので、電圧生成部18において逆バイアス電圧VSPADをより安定して生成することができる。
 また、モニタ用SPAD12は、例えば、検出部10の裏側に配置することで、モニタ用SPAD12に入射する光が、検出部10に入射する光と比較して、少なくなるようにしてもよい。このようにしても、モニタ用SPAD12に遮光膜13を設けた場合と略同様の効果を得ることができる。
[第2実施形態]
 図2に示すように、第2実施形態の光検出器1Bは、基本構成は第1実施形態の光検出器1Aと同様であり、第1実施形態と異なる点は、スイッチ22と電圧記憶部24が追加されている点である。
 そこで、本実施形態では、第1実施形態と同様の構成については、図面に同一符号を付与することで詳細な説明は省略し、第1実施形態との相違点について説明する。
 図2に示すように、スイッチ22は、電流源14からモニタ用SPAD12への通電経路に設けられ、光検出器1Bを利用する距離測定装置20からの測距動作信号に従い、通電経路を導通又は遮断するためのものである。
 そして、スイッチ22は、距離測定装置20が検出部10からの検出信号に基づき距離測定を行っているときに、オフ状態になり、距離測定装置20が距離測定を停止しているときにオン状態となる。
 従って、モニタ用SPAD12は、距離測定装置20が距離測定を停止しているときに、電流源14から電流が供給されて、ブレイクダウンすることになる。
 このため、電圧記憶部24は、距離測定装置20からの測距動作信号に従い、距離測定装置20が距離測定を停止しているときに、モニタ用SPAD12のブレイクダウン電圧を基準ブレイクダウン電圧VBDとして設定し、記憶するよう構成されている。
 そして、電圧記憶部24は、距離測定装置20が距離測定を開始すると、記憶した基準ブレイクダウン電圧VBDを電圧生成部18に出力することで、電圧生成部18に最新の基準ブレイクダウン電圧VBDに対応した逆バイアス電圧VSPADを生成させる。
 なお、電圧記憶部24による基準ブレイクダウン電圧VBDの記憶は、例えば、コンデンサ等への充電により基準ブレイクダウン電圧VBDを記憶素子にラッチさせるか、或いは、基準ブレイクダウン電圧VBDを数値化してメモリに記憶させることにより行われる。
 このように、本実施形態の光検出器1Bによれば、外部装置である距離測定装置20が距離測定を停止しているときに、モニタ用SPAD12を動作させる。このため、検出部10が測距動作に使用されているときには、モニタ用SPAD12の動作を停止させることができ、モニタ用SPAD12に流れる電流によって光検出器1Bの消費電力が上昇するのを抑制できる。
 なお、距離測定装置20は、例えば車両に搭載されて、進行方向前方に距離測定用の光を照射し、その反射光から、車両前方に存在する障害物までの距離を測定するためのものであり、本実施形態の検出部は、反射光を受光するのに利用される。
 そして、本実施形態では、距離測定装置20からの動作信号に従い、スイッチ22及び電圧記憶部24の動作が切り替えられるものとして説明したが、スイッチ22及び電圧記憶部24の動作を切り替えるものは、距離測定装置20に限定されるものではない。つまり、スイッチ22及び電圧記憶部24は、検出部10からの検出信号を利用する外部装置からの指令に応じて動作するようにしてもよい。
[第3実施形態]
 図3に示すように、第3実施形態の光検出器1Cは、基本構成は第1実施形態の光検出器1Aと同様であり、第1実施形態と異なる点は、複数のモニタ用SPAD12-1,12-2,…,12-nと、基準ブレイクダウン電圧VBDの演算及び選択部30を備えた点である。
 そこで、本実施形態では、第1実施形態と同様の構成については、図面に同一符号を付与することで詳細な説明は省略し、第1実施形態との相違点について説明する。
 図3に示すように、電流源14は、複数のモニタ用SPAD12-1,12-2,…,12-nをガイガーモードで動作させるために、一つのモニタ用SPADに供給すべき電流ISPADのn倍の電流を供給するように構成されている。そして、その供給電流は、複数のモニタ用SPAD12-1,12-2,…,12-nに分配され、各モニタ用SPAD12-1,12-2,…,12-nはガイガーモードで動作する。
 また、各モニタ用SPAD12-1,12-2,…,12-nのブレイクダウン電圧VBD1 ,VBD2 ,…,VBDn は、演算及び選択部30に入力され、演算及び選択部30にて電圧生成部18に入力する基準ブレイクダウン電圧VBDを生成するのに利用される。
 そして、演算及び選択部30は、複数のブレイクダウン電圧VBD1 ,VBD2 ,…,VBDn の中から、予め設定された最小値、最大値、中央値を選択するか、或いは、平均値を演算することで、電圧生成部18に入力する基準ブレイクダウン電圧VBDを生成する。
 これは、モニタ用SPAD12をSPAD2と同一特性になるように構成しても、特性のバラツキを無くすことはできず、モニタ用SPAD12の特性のバラツキが大きいと、適正な基準ブレイクダウン電圧VBDを、電圧生成部18に入力できないからである。
 つまり、本実施形態では、電圧生成部18に入力する基準ブレイクダウン電圧VBDを、複数のモニタ用SPAD12を使って生成することで、モニタ用SPAD12にバラツキの大きいものがあっても、適正な基準ブレイクダウン電圧VBDを生成できるようにしている。
 このため、本実施形態によれば、電圧生成部18において、より適正な逆バイアス電圧VSPADを生成することができるようになり、検出部10内のSPAD2の検出感度をより良好に温度補償することができる。
 なお、演算及び選択部30は、複数のブレイクダウン電圧VBD1 ,VBD2 ,…,VBDn を使って、より適正な基準ブレイクダウン電圧VBDを生成するためのものであるので、一般的には、複数の中から中央値を選択するようにするとよい。
[第4実施形態]
 図4に示すように、第4実施形態の光検出器1Dは、基本構成は第1実施形態の光検出器1Aと同様であり、第1実施形態と異なる点は、電圧生成部18にて基準ブレイクダウン電圧VBDに加算されるエクセス電圧VEXを設定する、電圧制御部40を備えた点である。
 そこで、本実施形態では、第1実施形態と同様の構成については、図面に同一符号を付与することで詳細な説明は省略し、第1実施形態との相違点について説明する。
 図3に示すように、電圧制御部40は、電圧生成部18に入力される基準ブレイクダウン電圧VBDを取り込み、その基準ブレイクダウン電圧VBDに基づき、エクセス電圧VEXを設定するように構成されている。
 これは、SPAD2は温度によって特性が変化することから、検出感度を所望の検出感度に制御するには、エクセス電圧VEXも温度に応じて調整したほうが良いことも考えられるためである。
 つまり、本実施形態では、基準ブレイクダウン電圧VBDを、SPAD2の温度の検出信号として利用し、電圧生成部18にて逆バイアス電圧VSPADを生成するのに用いるエクセス電圧VEXを温度に応じて設定するのである。
 この結果、本実施形態の光検出器1Dにおいても、上記各実施形態の光検出器1A~1Cと同様、検出部10を構成する各SPAD2の検出感度を温度補償することができ、温度によって検出精度が変化するのを抑制できる。
 なお、電圧制御部40は、例えば、基準ブレイクダウン電圧VBDを抵抗分圧することで、エクセス電圧VEXを、基準ブレイクダウン電圧VBDに比例して変化させる、抵抗分圧回路にて構成することが考えられる。
[第5実施形態]
 図5に示すように、第5実施形態の光検出器1Eは、基本構成は第1実施形態の光検出器1Aと同様であり、第1実施形態と異なる点は、検出部10の構成と、出力判定部50及び閾値制御部52を備えた点である。
 そこで、本実施形態では、第1実施形態と同様の構成については、図面に同一符号を付与することで詳細な説明は省略し、第1実施形態との相違点について説明する。
 検出部10は、複数のSPAD2を格子状に配置することにより、所謂受光アレイとして構成されている。
 なお、検出部10に設けられる複数のSPAD2には、図1に示したものと同様、クエンチング抵抗4及びパルス変換部6が接続されている。このため、各SPAD2にフォトンが入射することにより、ブレイクダウンが発生すると、検出信号として、パルス変換部6からデジタルパルスが出力される。
 出力判定部50は、検出部10を構成する複数のSPAD2から、パルス変換部6を介してそれぞれ出力される検出信号の数をカウントし、そのカウント値が所定の閾値以上であるときに、検出部10にて光が検出されたと判定する。
 これは、SPAD2は、ノイズによりブレイクダウンして、パルス変換部6を介して検出信号を出力することがあるためである。つまり、出力判定部50は、検出部10を光検出用の一つの画素として利用し、検出部10を構成する複数のSPAD2のうち、検出信号を出力したSPAD2の数が閾値以上であるときに、検出部10にて光が検出されたと判定するのである。
 そして、出力判定部50は、検出部10にて光が検出されたと判断すると、検出部10にて光が検出されたことを表すトリガ信号を出力する。
 一方、閾値制御部52は、出力判定部50が判定に用いる閾値を、モニタ用SPAD12のブレイクダウン電圧に基づき設定する。
 これは、本実施形態では、基準ブレイクダウン電圧VBDに所定のエクセス電圧VEXを加算することで、検出部10の各SPAD2に印加する逆バイアス電圧VSPADを生成するので、各SPAD2の動作電圧が変化するためである。
 つまり、基準ブレイクダウン電圧VBDに所定のエクセス電圧VEXを加算することで逆バイアス電圧VSPADを設定すると、各SPAD2の検出感度が温度によって低下するのを抑制できるものの、SPAD2への印加される逆バイアス電圧VSPADが変化する。そして、逆バイアス電圧VSPADが増加すると、SPAD2に流れる暗電流が増加し、この暗電流によって、SPAD2がブレイクダウンし易くなる。
 そこで、本実施形態では、SPAD2が暗電流により誤動作し易くなっても、検出部10による光の検出精度が低下するのを抑制するため、基準ブレイクダウン電圧VBDに応じて、閾値を設定するのである。
 なお、温度上昇に伴い基準ブレイクダウン電圧VBDが高くなると、逆バイアス電圧VSPADも上昇して、SPAD2が誤動作し易くなるので、閾値制御部52は、基準ブレイクダウン電圧VBDが高くなると、閾値を増加させるように構成すればよい。
[第6実施形態]
 第1~第5実施形態の光検出器1A~1Eでは、検出部10は、各SPAD2のアノードにクエンチング抵抗4が接続されていて、各SPAD2のアノードとクエンチング抵抗4との接続点からパルス変換部6を介して検出信号を出力するように構成されている。
 このため、電圧生成部18は、基準ブレイクダウン電圧VBDと所定のエクセス電圧VEXとを加算することで、各SPAD2のアノードよりも高電位となる逆バイアス電圧VSPADを生成し、各SPAD2のカソードに印加するように構成される。例えば、SPAD2のアノードが負電位とならないために、逆バイアス電圧VSPADは正電位が好適である。
 これに対し、本実施形態の光検出器1Fでは、図6に示すように、検出部10は、各SPAD2のカソードにクエンチング抵抗4が接続されており、検出信号は、各SPAD2のカソードとクエンチング抵抗4との接続点からパルス変換部6を介して出力される。
 このため、検出部10においては、クエンチング抵抗4を介してSPAD2のカソードに電源電圧VB が印加されており、SPAD2をガイガーモードで動作させるには、SPAD2のアノードの電位を、カソードよりも逆バイアス電圧だけ低くする必要がある。
 そこで、本実施形態では、検出部10のSPAD2と同様、モニタ用SPAD12のカソードに電源電圧VB が印加されており、電流源14は、モニタ用SPAD12のアノードに接続され、アノードからグラウンドへと電流を流すようにされている。
 そして、電圧生成部18は、モニタ用SPAD12のアノードから、電源電圧VB よりも低い負の基準ブレイクダウン電圧-VBDを取り込み、これに、電圧源16の負極側から得られる負のエクセス電圧-VEXを加算するように構成されている。
 この結果、電圧生成部18においては、負の基準ブレイクダウン電圧-VBDと負のエクセス電圧-VEXとを加算することにより、SPAD2のカソードよりも低電位となる逆バイアス電圧-VSPADが生成される。そして、その生成された逆バイアス電圧-VSPADが、検出部10内の各SPAD2のアノードに印加される。例えば、SPAD2のカソードが負電位とならないために、逆バイアス電圧-VSPADは負電位が好適である。
 従って、本実施形態においても、検出部10内の各SPAD2のカソード-アノード間には、基準ブレイクダウン電圧VBDにエクセス電圧VEXを加算した逆バイアス電圧VSPADが印加されることになり、上記実施形態と同様の効果を得ることができる。
 以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 例えば、第1実施形態において、モニタ用SPAD12に、光が入射するのを阻止又は抑制する遮光膜13を設けてもよいことを説明したが、第2実施形態~第5実施形態においても、モニタ用SPAD12に遮光膜13を設けて、遮光するようにしてもよい。また、モニタ用SPAD12を遮光する場合、必ずしも遮光膜13を設ける必要はなく、モニタ用SPAD12に光が入射するのを防止できればよい。
 また、上記各実施形態では、検出部10には、複数のSPAD2が設けられるものとして説明したが、検出部10に一つのSPAD2が設けられる場合であっても、上記各実施形態のように構成すれば、検出部10による検出感度が低下するのを抑制できる。
 また、上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。

Claims (11)

  1.  ガイガーモードで動作可能なアバランシェフォトダイオードであるSPAD(2)を備え、該SPADに、順方向とは逆方向の逆バイアス電圧を印加して光検出を行うように構成された検出部(10)と、
     前記検出部を構成する前記SPADと同様の特性を有するモニタ用SPAD(12)と、
     前記モニタ用SPADに定電流を供給してガイガーモードで動作させるように構成された電流源(14)と、
     前記モニタ用SPADの両端間に生じるブレイクダウン電圧から設定される基準ブレイクダウン電圧と、所定のエクセス電圧とに基づいて、前記検出部の前記SPADに印加する逆バイアス電圧を生成するように構成された電圧生成部(18)と、
     を備えた、光検出器。
  2.  前記電圧生成部は、前記基準ブレイクダウン電圧と前記エクセス電圧を加算することにより、前記逆バイアス電圧を生成するよう構成されている、請求項1に記載の光検出器。
  3.  前記検出部において、前記SPADのカソードには、フォトンの入射により前記SPADがブレイクダウンしてガイガー放電するのを停止させるように構成されたクエンチング素子(4)が接続されており、
     前記電圧生成部は、前記SPADのアノードに、前記カソードよりも低電位となる逆バイアス電圧を印加するよう構成されている、請求項1又は請求項2に記載の光検出器。
  4.  前記検出部において、前記SPADのアノードには、フォトンの入射により前記SPADがブレイクダウンしてガイガー放電するのを停止させるように構成されたクエンチング素子が接続されており、
     前記電圧生成部は、前記SPADのカソードに、前記アノードよりも高電位となる逆バイアス電圧を印加するよう構成されている、請求項1又は請求項2に記載の光検出器。
  5.  前記モニタ用SPADは、遮光され、ノイズによりブレイクダウンするよう構成されている、請求項1~請求項4の何れか1項に記載の光検出器。
  6.  前記モニタ用SPADは、入射する光が、検出部に入射する光と比較して、少なくなるよう構成されている、請求項1~請求項4の何れか1項に記載の光検出器。
  7.  外部からの指令に従い前記電流源から前記モニタ用SPADへの通電経路を導通させるよう構成されたスイッチ(22)と、
     前記スイッチが前記通電経路を導通させているときに、前記モニタ用SPADの前記ブレイクダウン電圧から前記基準ブレイクダウン電圧を設定及び記憶し、前記通電経路の状態に依らず、前記電圧生成部に前記基準ブレイクダウン電圧を出力するように構成された電圧記憶部(24)と、
     を備えた、請求項1~請求項6の何れか1項に記載の光検出器。
  8.  前記モニタ用SPADの前記基準ブレイクダウン電圧に基づき、前記電圧生成部が前記ブレイク電圧を生成するのに用いる前記エクセス電圧を設定するように構成された電圧制御部(40)、
     を備えた、請求項1~請求項7の何れか1項に記載の光検出器。
  9.  前記モニタ用SPADを複数備え、該複数のモニタSPADから得られる複数のブレイクダウン電圧を用いて演算又は選択することで、前記基準ブレイクダウン電圧を設定し、前記電圧生成部に供給するように構成された演算及び選択部(30)、
     を備えた、請求項1~請求項8の何れか1項に記載の光検出器。
  10.  前記検出部は、前記SPADを複数備え、
     前記検出部の複数のSPADから出力される検出信号の数をカウントし、カウント値が所定の閾値以上であるとき、前記検出部にて光が検出されたと判定して、トリガ信号を出力するように構成された出力判定部(50)と、
     を備えた、請求項1~請求項9の何れか1項に記載の光検出器。
  11.  前記基準ブレイクダウン電圧に基づき、前記閾値を設定するように構成された閾値制御部(52)、
     を備えた、請求項10に記載の光検出器。
PCT/JP2018/013818 2017-03-31 2018-03-30 光検出器 WO2018181978A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880021118.9A CN110462847B (zh) 2017-03-31 2018-03-30 光检测器
US16/583,674 US11296241B2 (en) 2017-03-31 2019-09-26 Light detector having monitoring single photon avalanche diode (SPAD)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017071412 2017-03-31
JP2017-071412 2017-03-31
JP2018-022999 2018-02-13
JP2018022999A JP6741703B2 (ja) 2017-03-31 2018-02-13 光検出器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/583,674 Continuation US11296241B2 (en) 2017-03-31 2019-09-26 Light detector having monitoring single photon avalanche diode (SPAD)

Publications (1)

Publication Number Publication Date
WO2018181978A1 true WO2018181978A1 (ja) 2018-10-04

Family

ID=63677786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013818 WO2018181978A1 (ja) 2017-03-31 2018-03-30 光検出器

Country Status (2)

Country Link
US (1) US11296241B2 (ja)
WO (1) WO2018181978A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422240B2 (en) 2017-03-27 2022-08-23 Denso Corporation Light detector comprising a time interval adjusting performance by a delay setting module

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246863B2 (ja) * 2018-04-20 2023-03-28 ソニーセミコンダクタソリューションズ株式会社 受光装置、車両制御システム及び測距装置
US11221253B2 (en) * 2020-01-21 2022-01-11 Semiconductor Components Industries, Llc System with a SPAD-based semiconductor device having dark pixels for monitoring sensor parameters
US12144653B2 (en) 2020-02-21 2024-11-19 Hi Llc Systems, circuits, and methods for reducing common-mode noise in biopotential recordings
US11950879B2 (en) 2020-02-21 2024-04-09 Hi Llc Estimation of source-detector separation in an optical measurement system
US11969259B2 (en) 2020-02-21 2024-04-30 Hi Llc Detector assemblies for a wearable module of an optical measurement system and including spring-loaded light-receiving members
WO2021167893A1 (en) 2020-02-21 2021-08-26 Hi Llc Integrated detector assemblies for a wearable module of an optical measurement system
US11883181B2 (en) 2020-02-21 2024-01-30 Hi Llc Multimodal wearable measurement systems and methods
US11630310B2 (en) 2020-02-21 2023-04-18 Hi Llc Wearable devices and wearable assemblies with adjustable positioning for use in an optical measurement system
US12029558B2 (en) 2020-02-21 2024-07-09 Hi Llc Time domain-based optical measurement systems and methods configured to measure absolute properties of tissue
WO2021188486A1 (en) 2020-03-20 2021-09-23 Hi Llc Phase lock loop circuit based adjustment of a measurement time window in an optical measurement system
US11857348B2 (en) 2020-03-20 2024-01-02 Hi Llc Techniques for determining a timing uncertainty of a component of an optical measurement system
US11187575B2 (en) 2020-03-20 2021-11-30 Hi Llc High density optical measurement systems with minimal number of light sources
US12138068B2 (en) 2020-03-20 2024-11-12 Hi Llc Techniques for characterizing a nonlinearity of a time-to-digital converter in an optical measurement system
US11819311B2 (en) 2020-03-20 2023-11-21 Hi Llc Maintaining consistent photodetector sensitivity in an optical measurement system
US12059262B2 (en) 2020-03-20 2024-08-13 Hi Llc Maintaining consistent photodetector sensitivity in an optical measurement system
US11864867B2 (en) 2020-03-20 2024-01-09 Hi Llc Control circuit for a light source in an optical measurement system by applying voltage with a first polarity to start an emission of a light pulse and applying voltage with a second polarity to stop the emission of the light pulse
US12085789B2 (en) 2020-03-20 2024-09-10 Hi Llc Bias voltage generation in an optical measurement system
US11245404B2 (en) 2020-03-20 2022-02-08 Hi Llc Phase lock loop circuit based signal generation in an optical measurement system
US11877825B2 (en) 2020-03-20 2024-01-23 Hi Llc Device enumeration in an optical measurement system
WO2021188496A1 (en) 2020-03-20 2021-09-23 Hi Llc Photodetector calibration of an optical measurement system
WO2021188487A1 (en) 2020-03-20 2021-09-23 Hi Llc Temporal resolution control for temporal point spread function generation in an optical measurement system
CN115336012A (zh) * 2020-03-27 2022-11-11 索尼半导体解决方案公司 感测装置和电子装置
WO2022035626A1 (en) * 2020-08-11 2022-02-17 Hi Llc Maintaining consistent photodetector sensitivity in an optical measurement system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070487A2 (en) * 2008-12-15 2010-06-24 Koninklijke Philips Electronics N.V. Temperature compensation circuit for silicon photomultipliers and other single photon counters
JP2012060012A (ja) * 2010-09-10 2012-03-22 Toyota Central R&D Labs Inc 光検出器
JP2012519843A (ja) * 2009-03-06 2012-08-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 単一光子カウンタのための高度な温度報償及び制御回路
JP5211095B2 (ja) * 2010-03-25 2013-06-12 株式会社豊田中央研究所 光検出器
US20170089756A1 (en) * 2015-09-30 2017-03-30 Stmicroelectronics (Research & Development) Limited Sensing apparatus having a light sensitive detector field

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686036B2 (ja) * 1993-07-09 1997-12-08 浜松ホトニクス株式会社 アバランシェフォトダイオードのバイアス回路
JP3421103B2 (ja) * 1993-12-20 2003-06-30 浜松ホトニクス株式会社 アバランシェフォトダイオードを用いた光検出回路
FR2992067A1 (fr) * 2012-06-13 2013-12-20 St Microelectronics Grenoble 2 Procede et dispositif d'ajustement de la tension de polarisation d'une photodiode spad
GB201300334D0 (en) * 2013-01-09 2013-02-20 St Microelectronics Ltd Sensor circuit
US9911774B2 (en) * 2015-04-14 2018-03-06 Massachusetts Institute Of Technology Photodiode placement for cross talk suppression
EP3339888B1 (de) * 2016-12-22 2019-02-27 Sick AG Lichtempfänger mit einer vielzahl von lawinenphotodiodenelementen im geiger-modus und verfahren zur temperaturkompensation
JP6730217B2 (ja) 2017-03-27 2020-07-29 株式会社デンソー 光検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070487A2 (en) * 2008-12-15 2010-06-24 Koninklijke Philips Electronics N.V. Temperature compensation circuit for silicon photomultipliers and other single photon counters
JP2012519843A (ja) * 2009-03-06 2012-08-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 単一光子カウンタのための高度な温度報償及び制御回路
JP5211095B2 (ja) * 2010-03-25 2013-06-12 株式会社豊田中央研究所 光検出器
JP2012060012A (ja) * 2010-09-10 2012-03-22 Toyota Central R&D Labs Inc 光検出器
US20170089756A1 (en) * 2015-09-30 2017-03-30 Stmicroelectronics (Research & Development) Limited Sensing apparatus having a light sensitive detector field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422240B2 (en) 2017-03-27 2022-08-23 Denso Corporation Light detector comprising a time interval adjusting performance by a delay setting module

Also Published As

Publication number Publication date
US20200044098A1 (en) 2020-02-06
US11296241B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2018181978A1 (ja) 光検出器
JP6741703B2 (ja) 光検出器
US7907061B2 (en) Proximity sensors and methods for sensing proximity
JP5644294B2 (ja) 光検出器
US11411130B2 (en) Photodetector
US20180180473A1 (en) Light Receiver Having a Plurality of Avalanche Photodiode Elements and Method for Supplying a Bias Voltage
US20180275280A1 (en) High dynamic range analog front-end receiver for long range lidar
US20180180471A1 (en) Light Receiver Having a Plurality of Avalanche Photodiode Elements in Geiger Mode and Method for Temperature Compensation
US11112494B2 (en) Photodetector and portable electronic equipment
US8338773B2 (en) High-speed analog photon counter and method
WO2018181979A1 (ja) 光検出器及び測距装置
KR102527537B1 (ko) 광학 tof 측정을 위한 광원 동작 장치
US20110133059A1 (en) Photo detector having coupling capacitor
WO2006098278A1 (ja) 光検出回路
CN112098973A (zh) 用于激光雷达的光接收装置、光接收装置的动态调节方法
CN111936885A (zh) 光测距装置
US10761197B2 (en) Sensor arrangement and method for determining time-of-flight
US20190259899A1 (en) Photodetector and optical distance measuring device
JP2018174224A (ja) 光検出器
JP6958054B2 (ja) 光検出器
US20160056717A1 (en) Power supply stabilizing circuit and photodetector using the same
JP6728369B2 (ja) 光センサおよび電子機器
JP4608329B2 (ja) 光検出器
JP6835042B2 (ja) 測距装置
US12326503B2 (en) Distance measuring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774620

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载