WO2018181746A1 - Couche intermédiaire pour verre feuilleté et verre feuilleté - Google Patents
Couche intermédiaire pour verre feuilleté et verre feuilleté Download PDFInfo
- Publication number
- WO2018181746A1 WO2018181746A1 PCT/JP2018/013323 JP2018013323W WO2018181746A1 WO 2018181746 A1 WO2018181746 A1 WO 2018181746A1 JP 2018013323 W JP2018013323 W JP 2018013323W WO 2018181746 A1 WO2018181746 A1 WO 2018181746A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminated glass
- weight
- less
- layer
- acetal resin
- Prior art date
Links
- 239000005340 laminated glass Substances 0.000 title claims abstract description 243
- 239000011229 interlayer Substances 0.000 title claims abstract description 122
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 146
- 239000011354 acetal resin Substances 0.000 claims abstract description 141
- 229920006324 polyoxymethylene Polymers 0.000 claims abstract description 141
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims abstract description 139
- 239000004014 plasticizer Substances 0.000 claims abstract description 49
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 32
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000009477 glass transition Effects 0.000 claims abstract description 13
- 239000011521 glass Substances 0.000 claims description 94
- 229920005989 resin Polymers 0.000 claims description 60
- 239000011347 resin Substances 0.000 claims description 60
- -1 benzyl acetal resin Chemical compound 0.000 claims description 40
- 229920000058 polyacrylate Polymers 0.000 claims description 18
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 12
- 241000510672 Cuminum Species 0.000 claims description 4
- 235000007129 Cuminum cyminum Nutrition 0.000 claims description 4
- 238000009413 insulation Methods 0.000 abstract description 39
- 239000010410 layer Substances 0.000 description 204
- 239000002245 particle Substances 0.000 description 86
- 230000001965 increasing effect Effects 0.000 description 58
- 239000003795 chemical substances by application Substances 0.000 description 57
- 238000005452 bending Methods 0.000 description 45
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 42
- 239000003963 antioxidant agent Substances 0.000 description 31
- 229920005992 thermoplastic resin Polymers 0.000 description 30
- 230000035515 penetration Effects 0.000 description 28
- 230000003078 antioxidant effect Effects 0.000 description 25
- 238000000034 method Methods 0.000 description 24
- 229920000193 polymethacrylate Polymers 0.000 description 20
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 19
- 229910001930 tungsten oxide Inorganic materials 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000006359 acetalization reaction Methods 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 230000021736 acetylation Effects 0.000 description 13
- 238000006640 acetylation reaction Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 11
- 238000000016 photochemical curing Methods 0.000 description 11
- 239000002356 single layer Substances 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 8
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000005357 flat glass Substances 0.000 description 7
- 150000007524 organic acids Chemical class 0.000 description 7
- 238000005191 phase separation Methods 0.000 description 7
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 6
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 5
- FRQDZJMEHSJOPU-UHFFFAOYSA-N Triethylene glycol bis(2-ethylhexanoate) Chemical compound CCCCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CCCC FRQDZJMEHSJOPU-UHFFFAOYSA-N 0.000 description 5
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 5
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- JEYLQCXBYFQJRO-UHFFFAOYSA-N 2-[2-[2-(2-ethylbutanoyloxy)ethoxy]ethoxy]ethyl 2-ethylbutanoate Chemical compound CCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CC JEYLQCXBYFQJRO-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 4
- 150000002895 organic esters Chemical class 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 150000001278 adipic acid derivatives Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004049 embossing Methods 0.000 description 3
- 239000005329 float glass Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 2
- YJGHMLJGPSVSLF-UHFFFAOYSA-N 2-[2-(2-octanoyloxyethoxy)ethoxy]ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCCC YJGHMLJGPSVSLF-UHFFFAOYSA-N 0.000 description 2
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical group OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical group CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- 125000004036 acetal group Chemical group 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- WTWBUQJHJGUZCY-UHFFFAOYSA-N cuminaldehyde Chemical compound CC(C)C1=CC=C(C=O)C=C1 WTWBUQJHJGUZCY-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000007589 penetration resistance test Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- KJYSXRBJOSZLEL-UHFFFAOYSA-N (2,4-ditert-butylphenyl) 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 KJYSXRBJOSZLEL-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- XCTNDJAFNBCVOM-UHFFFAOYSA-N 1h-imidazo[4,5-b]pyridin-2-ylmethanamine Chemical compound C1=CC=C2NC(CN)=NC2=N1 XCTNDJAFNBCVOM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- CKQNDABUGIXFCL-UHFFFAOYSA-N 2-(2-octanoyloxyethoxy)ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOC(=O)CCCCCCC CKQNDABUGIXFCL-UHFFFAOYSA-N 0.000 description 1
- LHPPDQUVECZQSW-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O LHPPDQUVECZQSW-UHFFFAOYSA-N 0.000 description 1
- UNNGUFMVYQJGTD-UHFFFAOYSA-N 2-Ethylbutanal Chemical compound CCC(CC)C=O UNNGUFMVYQJGTD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- GCDUWJFWXVRGSM-UHFFFAOYSA-N 2-[2-(2-heptanoyloxyethoxy)ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCC GCDUWJFWXVRGSM-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- SSKNCQWPZQCABD-UHFFFAOYSA-N 2-[2-[2-(2-heptanoyloxyethoxy)ethoxy]ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCC SSKNCQWPZQCABD-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- VWSWIUTWLQJWQH-UHFFFAOYSA-N 2-butyl-6-[(3-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CCCCC1=CC(C)=CC(CC=2C(=C(CCCC)C=C(C)C=2)O)=C1O VWSWIUTWLQJWQH-UHFFFAOYSA-N 0.000 description 1
- DOLUDYHJTUKVMT-UHFFFAOYSA-N 2-ethyloctyl prop-2-enoate Chemical compound CCCCCCC(CC)COC(=O)C=C DOLUDYHJTUKVMT-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- FLZYQMOKBVFXJS-UHFFFAOYSA-N 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoic acid Chemical compound CC1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O FLZYQMOKBVFXJS-UHFFFAOYSA-N 0.000 description 1
- QYBPUVGDDCVYPC-UHFFFAOYSA-N 3-[4,4-bis(5-tert-butyl-3-hydroxy-2-methylphenyl)butan-2-yl]-5-tert-butyl-2-methylphenol Chemical compound C=1C(C(C)(C)C)=CC(O)=C(C)C=1C(C)CC(C=1C(=C(O)C=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=CC(O)=C1C QYBPUVGDDCVYPC-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 1
- BJIUNQZHYLBUNL-UHFFFAOYSA-N 6-heptoxy-6-oxohexanoic acid Chemical compound CCCCCCCOC(=O)CCCCC(O)=O BJIUNQZHYLBUNL-UHFFFAOYSA-N 0.000 description 1
- OIUGWVWLEGLAGH-UHFFFAOYSA-N 6-nonoxy-6-oxohexanoic acid Chemical compound CCCCCCCCCOC(=O)CCCCC(O)=O OIUGWVWLEGLAGH-UHFFFAOYSA-N 0.000 description 1
- SXKCDRRSQHPBOI-UHFFFAOYSA-N 6-o-cyclohexyl 1-o-hexyl hexanedioate Chemical compound CCCCCCOC(=O)CCCCC(=O)OC1CCCCC1 SXKCDRRSQHPBOI-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- HUUJFOGLCYMPCS-UHFFFAOYSA-N C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C Chemical compound C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C HUUJFOGLCYMPCS-UHFFFAOYSA-N 0.000 description 1
- OLTXBWMLMKNZHJ-UHFFFAOYSA-N C(C=C)(=O)OC(C)COC(C)COC(C)COC(C=C)=O.C(C=C)(=O)OC1CCCCC1.C(C=C)(=O)OCC1=CC=CC=C1.C(C=C)(=O)OCCO.C(C=C)(=O)OCCCC.C(C=C)(=O)OCC Chemical compound C(C=C)(=O)OC(C)COC(C)COC(C)COC(C=C)=O.C(C=C)(=O)OC1CCCCC1.C(C=C)(=O)OCC1=CC=CC=C1.C(C=C)(=O)OCCO.C(C=C)(=O)OCCCC.C(C=C)(=O)OCC OLTXBWMLMKNZHJ-UHFFFAOYSA-N 0.000 description 1
- PPRZEPPKBKXKPD-UHFFFAOYSA-N C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC Chemical compound C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC PPRZEPPKBKXKPD-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- MOABYHZDQQELLG-UHFFFAOYSA-N OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC Chemical compound OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC MOABYHZDQQELLG-UHFFFAOYSA-N 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- FSRKEDYWZHGEGG-UHFFFAOYSA-N [2-(8-methylnonyl)phenyl] dihydrogen phosphate Chemical compound CC(C)CCCCCCCC1=CC=CC=C1OP(O)(O)=O FSRKEDYWZHGEGG-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- ZCZFEIZSYJAXKS-UHFFFAOYSA-N [3-hydroxy-2,2-bis(hydroxymethyl)propyl] prop-2-enoate Chemical compound OCC(CO)(CO)COC(=O)C=C ZCZFEIZSYJAXKS-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- ZEFSGHVBJCEKAZ-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OCC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C ZEFSGHVBJCEKAZ-UHFFFAOYSA-N 0.000 description 1
- IHTSDBYPAZEUOP-UHFFFAOYSA-N bis(2-butoxyethyl) hexanedioate Chemical compound CCCCOCCOC(=O)CCCCC(=O)OCCOCCCC IHTSDBYPAZEUOP-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000005690 diesters Chemical group 0.000 description 1
- 229940031769 diisobutyl adipate Drugs 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- CQQJGTPWCKCEOQ-UHFFFAOYSA-L magnesium dipropionate Chemical compound [Mg+2].CCC([O-])=O.CCC([O-])=O CQQJGTPWCKCEOQ-UHFFFAOYSA-L 0.000 description 1
- JOADGALWHMAAKM-UHFFFAOYSA-L magnesium;2-ethylbutanoate Chemical compound [Mg+2].CCC(CC)C([O-])=O.CCC(CC)C([O-])=O JOADGALWHMAAKM-UHFFFAOYSA-L 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- WULHNIUKYXJEJE-UHFFFAOYSA-N n'-(2-ethoxyphenyl)oxamide Chemical compound CCOC1=CC=CC=C1NC(=O)C(N)=O WULHNIUKYXJEJE-UHFFFAOYSA-N 0.000 description 1
- FPZPOPVQWNRDHA-UHFFFAOYSA-N n'-(2-ethylphenyl)oxamide Chemical class CCC1=CC=CC=C1NC(=O)C(N)=O FPZPOPVQWNRDHA-UHFFFAOYSA-N 0.000 description 1
- ZBNMOUGFCKAGGQ-UHFFFAOYSA-N n'-(5-tert-butyl-2-ethoxyphenyl)-n-(2-ethylphenyl)oxamide Chemical compound CCOC1=CC=C(C(C)(C)C)C=C1NC(=O)C(=O)NC1=CC=CC=C1CC ZBNMOUGFCKAGGQ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 1
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229950002083 octabenzone Drugs 0.000 description 1
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 125000005461 organic phosphorous group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Chemical class 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 description 1
- 239000004331 potassium propionate Substances 0.000 description 1
- 235000010332 potassium propionate Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- WWJZWCUNLNYYAU-UHFFFAOYSA-N temephos Chemical compound C1=CC(OP(=S)(OC)OC)=CC=C1SC1=CC=C(OP(=S)(OC)OC)C=C1 WWJZWCUNLNYYAU-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- PZTAGFCBNDBBFZ-UHFFFAOYSA-N tert-butyl 2-(hydroxymethyl)piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CO PZTAGFCBNDBBFZ-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OXFUXNFMHFCELM-UHFFFAOYSA-N tripropan-2-yl phosphate Chemical compound CC(C)OP(=O)(OC(C)C)OC(C)C OXFUXNFMHFCELM-UHFFFAOYSA-N 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- MGMXGCZJYUCMGY-UHFFFAOYSA-N tris(4-nonylphenyl) phosphite Chemical compound C1=CC(CCCCCCCCC)=CC=C1OP(OC=1C=CC(CCCCCCCCC)=CC=1)OC1=CC=C(CCCCCCCCC)C=C1 MGMXGCZJYUCMGY-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- PEXOFOFLXOCMDX-UHFFFAOYSA-N tritridecyl phosphite Chemical compound CCCCCCCCCCCCCOP(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC PEXOFOFLXOCMDX-UHFFFAOYSA-N 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10743—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
Definitions
- the present invention relates to an interlayer film for laminated glass used for obtaining laminated glass. Moreover, this invention relates to the laminated glass using the said intermediate film for laminated glasses.
- Laminated glass is superior in safety even if it is damaged by an external impact and the amount of glass fragments scattered is small. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
- the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
- Patent Document 1 As an example of the interlayer film for laminated glass, Patent Document 1 listed below discloses that 100 parts by weight of a polyvinyl acetal resin having a degree of acetalization of 60 to 85 mol% and at least one of alkali metal salts and alkaline earth metal salts. A sound insulating layer containing 0.001 to 1.0 parts by weight of a metal salt of the above and a plasticizer exceeding 30 parts by weight is disclosed. This sound insulation layer may be a single layer and used as an intermediate film.
- Patent Document 1 also describes a multilayer intermediate film in which the sound insulation layer and other layers are laminated.
- the other layer laminated on the sound insulation layer is composed of 100 parts by weight of a polyvinyl acetal resin having an acetalization degree of 60 to 85 mol%, and at least one metal salt of at least one of an alkali metal salt and an alkaline earth metal salt. 1.0 part by weight and a plasticizer that is 30 parts by weight or less are included.
- Patent Document 2 discloses an intermediate film which is a polymer layer having a glass transition temperature of 33 ° C. or higher. Patent Document 2 describes that the polymer layer is disposed between glass plates having a thickness of 4.0 mm or less.
- the bending rigidity may be low. For this reason, for example, when laminated glass is used as a window glass for a side door of an automobile, there is no frame for fixing the laminated glass, and due to bending due to the low rigidity of the laminated glass, May interfere with opening and closing.
- the laminated glass can be reduced in weight if the bending rigidity of the laminated glass can be increased due to the intermediate film.
- the laminated glass is lightweight, the amount of material used for the laminated glass can be reduced, and the environmental load can be reduced.
- fuel efficiency can be improved, and as a result, environmental load can be reduced.
- laminated glass using an interlayer film is desired to have high sound insulation and penetration resistance in addition to high bending rigidity.
- the composition contains a polyvinyl acetal resin and a plasticizer, has a gel fraction determined by the following formula (X) of 10% by weight to 80% by weight, and a glass transition temperature of ⁇ 30 ° C. or higher.
- X a glass transition temperature
- an interlayer film for laminated glass hereinafter sometimes referred to as an interlayer film
- the content of the polyvinyl acetal resin is 10% by weight or more in 100% by weight of the insoluble component of the interlayer film with respect to tetrahydrofuran at 23 ° C.
- the intermediate film includes a second resin other than the polyvinyl acetal resin.
- the content of the polyvinyl acetal resin is 25% by weight or more in a total of 100% by weight of the polyvinyl acetal resin and the second resin.
- the intermediate film includes an acrylic polymer as the second resin.
- the content of the acrylic polymer is 75% by weight or less in a total of 100% by weight of the polyvinyl acetal resin and the second resin.
- the polyvinyl acetal resin contained in the interlayer film is a polyvinyl acetoacetal resin, a polyvinyl butyral resin, a polyvinyl benzyl acetal resin, or a polyvinyl cumin acetal resin.
- the thickness is 3 mm or less.
- an intermediate film uses the 1st glass plate which is 1.6 mm or less in thickness, Between the said 1st glass plate and a 2nd glass plate. Arranged and used to obtain laminated glass.
- an intermediate film is arrange
- the total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
- the first laminated glass member, the second laminated glass member, and the interlayer film for laminated glass described above are provided, and the first laminated glass member and the second laminated glass are provided.
- the first laminated glass member is a first glass plate, and the thickness of the first glass plate is 1.6 mm or less.
- a said 1st laminated glass member is a 1st glass plate
- a said 2nd laminated glass member is a 2nd glass plate
- the said 1st glass The total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
- the interlayer film for laminated glass according to the present invention contains a polyvinyl acetal resin and a plasticizer.
- the gel fraction determined by the formula (X) is from 10% by weight to 80% by weight
- the glass transition temperature is from ⁇ 30 ° C. to 0 ° C.
- the maximum value of tan ⁇ in the temperature range from 0 ° C. to 0 ° C. is 0.1 or more. Since the interlayer film for laminated glass according to the present invention has the above-described configuration, the bending rigidity at 23 ° C. of the laminated glass using the interlayer film for laminated glass according to the present invention can be increased. The sound insulation and penetration resistance of glass can be improved.
- FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the second embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
- FIG. 4 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
- FIG. 5 is a schematic diagram for explaining a method for measuring bending stiffness.
- the interlayer film for laminated glass according to the present invention (hereinafter sometimes referred to as an interlayer film) has a structure of one layer or a structure of two or more layers.
- the intermediate film according to the present invention may have a single-layer structure or a two-layer structure.
- the intermediate film according to the present invention may have a two-layer structure, may have a structure of two or more layers, may have a structure of three layers, or may have a structure of three or more layers. You may have.
- the intermediate film according to the present invention includes a first layer.
- the intermediate film according to the present invention may be a single-layer intermediate film including only the first layer, or may be a multilayer intermediate film including the first layer and another layer.
- the interlayer film for laminated glass according to the present invention contains a polyvinyl acetal resin and a plasticizer.
- the gel fraction obtained by the following formula (X) is 10% by weight or more and 80% by weight or less.
- the glass transition temperature is present between ⁇ 30 ° C. and 0 ° C. Furthermore, in the intermediate film according to the present invention, the maximum value of tan ⁇ in the temperature range of ⁇ 30 ° C. or more and 0 ° C. or less is 0.1 or more.
- the interlayer film according to the present invention has the above-described configuration, the bending rigidity at 23 ° C. of the laminated glass using the interlayer film according to the present invention can be increased. Moreover, in order to obtain a laminated glass, an intermediate film is often disposed between the first glass plate and the second glass plate. Even if the thickness of the first glass plate is thin, the bending rigidity of the laminated glass can be sufficiently increased by using the interlayer film according to the present invention. Moreover, even if the thickness of both the first glass plate and the second glass plate is thin, the bending rigidity of the laminated glass can be sufficiently increased by using the interlayer film according to the present invention. In addition, when the thickness of both the 1st glass plate and the 2nd glass plate is thick, the bending rigidity of a laminated glass will become still higher.
- the intermediate film according to the present invention has the above-described configuration, the sound insulation of the laminated glass using the intermediate film can be improved.
- the intermediate film according to the present invention has the above-described configuration, the penetration resistance of the laminated glass using the intermediate film can be improved. Even if the laminated glass is damaged by an external impact, the amount of glass fragments scattered is reduced.
- the gel fraction is 10% by weight or more and 80% by weight or less.
- the improvement effect of penetration resistance becomes high.
- the gel fraction is 80% by weight or less, the penetration resistance is considerably increased.
- the gel fraction is preferably 30% by weight or more, and preferably 50% by weight or less.
- Examples of the method for bringing the gel fraction within the above range include a method of adding a cross-linking agent during the preparation of the intermediate film, a method using a molecule having a crosslinkable group as a resin component, and a solubility in an organic solvent during the preparation of the intermediate film The method of adding a component with low is mentioned.
- the interlayer film has a glass transition temperature of ⁇ 30 ° C. or higher and 0 ° C. or lower. From the viewpoint of further improving the sound insulation, the interlayer film preferably has a glass transition temperature of ⁇ 25 ° C. or higher and 0 ° C. or lower, and more preferably ⁇ 20 ° C. or higher and 0 ° C. or lower.
- the glass transition temperature is not less than the above lower limit and not more than the above upper limit, the temperature corresponding to the coincidence frequency can be obtained from the time-temperature conversion rule, and the sound insulation can be effectively improved. Further, since it is possible to cope with a high speed, the energy absorption of high-speed impact is increased, and the penetration resistance is effectively improved.
- a viscoelasticity measuring device “DMA + 1000” manufactured by Metraviv was used immediately after the intermediate film was stored for 12 hours in an environment of room temperature 23 ⁇ 2 ° C. and humidity 25 ⁇ 5%. And a method of measuring viscoelasticity.
- the intermediate film was cut out with a length of 50 mm and a width of 20 mm, and the temperature was increased from ⁇ 50 ° C. to 100 ° C. at a rate of temperature increase of 2 ° C./min in the shear mode, and under the conditions of frequency 1 Hz and strain 0.05% It is preferable to measure the glass transition temperature.
- the maximum value of tan ⁇ in the temperature range of ⁇ 30 ° C. or more and 0 ° C. or less of the intermediate film is 0.1 or more.
- the maximum value of tan ⁇ in the temperature range of ⁇ 30 ° C. to 0 ° C. of the intermediate film is preferably 0.11 or more, preferably 1 or less, more preferably 0.8 or less, and still more preferably 0.6 or less.
- the maximum value of tan ⁇ is equal to or greater than the above lower limit, energy loss increases, so that sound insulation, penetration resistance, and bendability are effectively enhanced.
- the maximum value of tan ⁇ is less than or equal to the above upper limit, the shear storage modulus is appropriately increased, and the bending rigidity and penetration resistance are effectively increased.
- the interlayer film may be applied to bent glass for the purpose of obtaining a curved laminated glass.
- the bendability mentioned above means the ease of alignment when matching to bent glass.
- Tan ⁇ is preferably 0.1 or more in a temperature range of 10% or more of the temperature range of ⁇ 30 ° C. or more and 0 ° C. or less. In this case, the sound insulation is effectively increased over a wide temperature range. Sound insulation is effectively increased.
- the intermediate film preferably has a phase separation structure.
- One of the factors that achieve these effects is considered to be that energy distribution proceeds smoothly by the phase separation structure.
- the phase separation structure is preferably a co-continuous structure or a sea-island structure.
- the phase separation structure may be a co-continuous structure or a sea-island structure.
- the polyvinyl acetal resin and the second resin are preferably contained in different phases. In the case of a sea-island structure, penetration resistance is improved when the polyvinyl acetal resin is a sea part and the second resin is an island part. In the phase separation structure, the polyvinyl acetal resin and the second resin may form a co-continuous structure. In the case of the bicontinuous structure, the penetration resistance is improved when the polyvinyl acetal resin is continuous (has a continuous structure).
- the polyvinyl acetal resin may be present in a network form.
- the polyvinyl acetal resin and the second resin preferably have a sea-island structure or a bicontinuous structure. That is, in the phase separation structure, it is preferable that the polyvinyl acetal resin and the second resin form a sea-island structure or a bicontinuous structure.
- the average diameter of the island part is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, particularly preferably 30 nm or more, preferably 13 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably. 2 ⁇ m or less.
- the diameter of one island part indicates the maximum diameter, and the average of the island parts is obtained by averaging the diameters (maximum diameters) of a plurality of islands.
- the intermediate film may have a structure of two or more layers, and may include a second layer in addition to the first layer.
- the intermediate film preferably further includes a second layer.
- the second layer is disposed on the first surface side of the first layer.
- the intermediate film may have a structure of three or more layers, and may include a third layer in addition to the first layer and the second layer.
- the intermediate film preferably further includes a third layer.
- the third layer is disposed on the second surface side of the first layer opposite to the first surface.
- the surface of the second layer opposite to the first layer side is preferably a surface on which a laminated glass member or a glass plate is laminated.
- stacked on the said 2nd layer becomes like this.
- it is 1.6 mm or less, More preferably, it is 1.3 mm or less.
- the second surface opposite to the first surface of the first layer may be a surface on which a laminated glass member or a glass plate is laminated.
- stacked on the said 1st layer becomes like this.
- the surface of the third layer opposite to the first layer side is preferably a surface on which a laminated glass member or a glass plate is laminated.
- the thickness of the glass plate laminated on the third layer is preferably 1.6 mm or less, more preferably 1.3 mm or less.
- the intermediate film is disposed between the first glass plate and the second glass plate and is preferably used for obtaining laminated glass. Since the bending rigidity can be sufficiently increased due to the intermediate film, the total thickness of the first glass plate and the second glass plate is preferably 3.5 mm or less, more preferably 3 mm. It is as follows.
- the said intermediate film is arrange
- the intermediate film includes a first glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less) and a second glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less). It is used between the first glass plate and the second glass plate and is more preferably used to obtain laminated glass. Also in this case, the bending rigidity can be sufficiently increased due to the intermediate film.
- FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
- the intermediate film 11 shown in FIG. 1 is a multilayer intermediate film having a structure of two or more layers.
- the intermediate film 11 is used to obtain a laminated glass.
- the intermediate film 11 is an intermediate film for laminated glass.
- the intermediate film 11 includes a first layer 1, a second layer 2, and a third layer 3.
- On the first surface 1a of the first layer 1, the second layer 2 is disposed and laminated.
- the third layer 3 is disposed on the second surface 1b opposite to the first surface 1a of the first layer 1 and laminated.
- the first layer 1 is an intermediate layer.
- Each of the second layer 2 and the third layer 3 is a protective layer, and is a surface layer in the present embodiment.
- the first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between them. Therefore, the intermediate film 11 has a multilayer structure (second layer 2 / first layer 1 / third layer) in which the second layer 2, the first layer 1, and the third layer 3 are laminated in this order. Having layer
- layers may be disposed between the second layer 2 and the first layer 1 and between the first layer 1 and the third layer 3, respectively.
- the second layer 2 and the first layer 1 and the first layer 1 and the third layer 3 are preferably laminated directly.
- examples of other layers include layers containing polyethylene terephthalate and the like.
- FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the second embodiment of the present invention.
- the intermediate film 11A shown in FIG. 2 is a single-layer intermediate film having a single-layer structure.
- the intermediate film 11A is a first layer.
- the intermediate film 11A is used to obtain a laminated glass.
- the intermediate film 11A is an intermediate film for laminated glass.
- the details of the first layer, the second layer, and the third layer constituting the intermediate film according to the present invention, and the first layer, the second layer, and the third layer are as follows. The detail of each component contained is demonstrated.
- the interlayer film includes a polyvinyl acetal resin.
- Each of the first layer, the second layer, and the third layer preferably includes a polyvinyl acetal resin.
- the said polyvinyl acetal resin only 1 type may be used and 2 or more types may be used together.
- the content of the polyvinyl acetal resin is preferably 10% by weight or more in 100% by weight of the insoluble component of the interlayer film with respect to tetrahydrofuran at 23 ° C.
- the insoluble component of the intermediate film with respect to tetrahydrofuran at 23 ° C. is an intermediate film after the intermediate film is taken out after being immersed in tetrahydrofuran at 23 ° C. and dried.
- the content of the polyvinyl acetal resin is preferably 20% by weight or more, more preferably 25% by weight or more, and further preferably 30% by weight or more. Especially preferably, it is 35 weight% or more, Preferably it is 100 weight% or less.
- the content of the polyvinyl acetal resin may be less than 100% by weight, 90% by weight or less, and 80% by weight. May be 75% by weight or less, 70% by weight or less, or 65% by weight or less.
- the content of the polyvinyl acetal resin is not more than the above upper limit, the sound insulation is effectively increased.
- the polyvinyl acetal resin is a polyvinyl acetoacetal resin, a polyvinyl butyral resin, a polyvinyl benzyl acetal resin, or a polyvinyl cumin acetal.
- a resin is preferred.
- a polyvinyl acetoacetal resin is preferable.
- polyvinyl acetal resins include acetoacetalized resins, benzyl acetalized resins, and cumin acetalized resins.
- the intermediate film preferably includes a second resin other than the polyvinyl acetal resin.
- each of the first layer, the second layer, and the third layer preferably contains a second resin other than the polyvinyl acetal resin.
- the second resin include thermosetting resins and thermoplastic resins.
- the intermediate film preferably contains a thermoplastic resin (second thermoplastic resin other than polyvinyl acetal resin) as the second resin.
- a thermoplastic resin other than the polyvinyl acetal resin may be referred to as a second thermoplastic resin, as distinguished from the polyvinyl acetal resin.
- As for said 2nd resin only 1 type may be used and 2 or more types may be used together.
- the intermediate film contains a polyolefin resin, an acrylic polymer, a urethane polymer, a silicone polymer, rubber, or a vinyl acetate polymer as the second resin. It is more preferable that it contains an acrylic polymer.
- the acrylic polymer is preferably a polymer of a polymerizable component containing (meth) acrylic acid ester.
- the acrylic polymer is preferably a poly (meth) acrylic acid ester.
- the poly (meth) acrylic acid ester is not particularly limited.
- examples of the poly (meth) acrylic acid ester include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate n-propyl, poly (meth) acrylate i-propyl, poly N-butyl (meth) acrylate, i-butyl poly (meth) acrylate, t-butyl poly (meth) acrylate, 2-ethylhexyl poly (meth) acrylate, 2-hydroxyethyl poly (meth) acrylate, Poly (meth) acrylate 2-hydroxypropyl, poly (meth) acrylate 4-hydroxybutyl, poly (meth) acrylate glycidyl, poly (meth) acrylate octyl, poly (meth) acrylate propyl, poly (meth) 2-ethyloctyl acrylate, poly (meth)
- Examples of (meth) acrylic acid having a polar group and (meth) acrylic acid ester include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and Examples include glycidyl (meth) acrylate.
- the polyacrylic acid ester is preferred because the temperature showing the maximum value of the loss tangent can be easily controlled within an appropriate range, and polyacrylic acid ester is preferable. 2-ethylhexyl acrylate or octyl polyacrylate is more preferred.
- the productivity of the intermediate film and the balance of the characteristics of the intermediate film are further improved.
- the said poly (meth) acrylic acid ester only 1 type may be used and 2 or more types may be used together.
- the content of the second resin other than the polyvinyl acetal resin is preferably 20% by weight or more, more preferably 25% by weight or more, and still more preferably 30%. % By weight or more, particularly preferably 35% by weight or more, and preferably 100% by weight or less.
- the content of the second resin may be less than 100% by weight, preferably 90% by weight or less, more preferably 80% by weight. % Or less, more preferably 75% by weight or less, particularly preferably 70% by weight or less, and most preferably 65% by weight or less.
- the content of the second resin is not more than the upper limit, the bending rigidity is effectively increased.
- the content of the acrylic polymer is preferably 20% by weight or more, more preferably 25% by weight or more, still more preferably 30% by weight or more, particularly preferably. Is 35% by weight or more, preferably 100% by weight or less.
- the content of the acrylic polymer may be less than 100% by weight, preferably 90% by weight or less, more preferably 80% by weight.
- it is more preferably 75% by weight or less, particularly preferably 70% by weight or less, and most preferably 65% by weight or less.
- the second resin has a crosslinked structure, or the polyvinyl acetal resin and the second resin are crosslinked.
- the intermediate film may contain the polyvinyl acetal resin and the second resin as a crosslinked product in which the polyvinyl acetal resin and the second resin are crosslinked.
- the thermoplastic resin may have a crosslinked structure. With the cross-linked structure, the shear storage elastic modulus can be controlled, and an intermediate film having both excellent flexibility and high strength can be produced.
- the first layer (including a single-layer intermediate film) preferably includes a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (1)).
- the first layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (1)) as the thermoplastic resin (1).
- the intermediate film is a single-layer intermediate film composed of only the first layer, the intermediate film contains the polyvinyl acetal resin (1).
- the second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (2)).
- the second layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (2)) as the thermoplastic resin (2).
- the third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (3)).
- the third layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (3)) as the thermoplastic resin (3).
- the polyvinyl acetal resin (1), the polyvinyl acetal resin (2), and the polyvinyl acetal resin (3) may be the same or different. Since the sound insulation is further enhanced, the polyvinyl acetal resin (1) is preferably different from the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3).
- the thermoplastic resin (1), the thermoplastic resin (2), and the thermoplastic resin (3) may be the same or different.
- the said polyvinyl acetal resin (1), the said polyvinyl acetal resin (2), and the said polyvinyl acetal resin (3) only 1 type may respectively be used and 2 or more types may be used together.
- the said thermoplastic resin (1), the said thermoplastic resin (2), and the said thermoplastic resin (3) only 1 type may respectively be used and 2 or more types may be used together.
- thermoplastic resin examples include polyvinyl acetal resin, polyacrylic resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
- the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
- the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
- the saponification degree of the polyvinyl alcohol is generally 70 to 99.9 mol%.
- the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, most preferably 2700 or more, preferably It is 5000 or less, more preferably 4000 or less, and still more preferably 3500 or less.
- the average degree of polymerization is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased.
- the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
- the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
- the carbon number of the acetal group is preferably 2 to 10, more preferably 2 to 5, and further preferably 2, 3 or 4.
- the carbon number of the acetal group in the polyvinyl acetal resin is preferably 2 or 4, and in this case, the production of the polyvinyl acetal resin is efficient.
- an aldehyde having 1 to 10 carbon atoms is suitably used as the aldehyde.
- the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde, cumin aldehyde, and benzaldehyde.
- Acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde are preferred. Acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde or n-valeraldehyde is more preferred, and acetaldehyde, n-butyraldehyde or n-valeraldehyde is still more preferred. As for the said aldehyde, only 1 type may be used and 2 or more types may be used together.
- the hydroxyl content (hydroxyl group amount) of the polyvinyl acetal resin (1) is preferably in the following range.
- the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and even more preferably 31.5 mol%. More preferably, it is at least 32 mol%, particularly preferably at least 33 mol%.
- the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin (1) is preferably not more than 37 mol%, more preferably not more than 36.5 mol%, still more preferably not more than 36 mol%.
- the hydroxyl group content is at least the above lower limit, the bending rigidity is further increased, and the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
- the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, preferably 28 mol% or less, more preferably. Is 27 mol% or less, more preferably 25 mol% or less, and particularly preferably 24 mol% or less.
- the polyvinyl acetal resin (1) when used as a part of a multilayer interlayer film, it is preferable that the lower limit and the upper limit of the hydroxyl group content are satisfied. When the hydroxyl group content is equal to or higher than the lower limit, the mechanical strength of the interlayer film is further increased.
- the hydroxyl group content of the polyvinyl acetal resin (1) is 20 mol% or more, the reaction efficiency is high and the productivity is excellent, and when it is 28 mol% or less, the sound insulation of the laminated glass is further enhanced. . Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated. In particular, a laminated glass using an interlayer film having a hydroxyl group content of 28 mol% or less in the polyvinyl acetal resin (1) tends to have a low bending rigidity. Can improve.
- the content of each hydroxyl group in the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and still more preferably. It is 31.5 mol% or more, more preferably 32 mol% or more, and particularly preferably 33 mol% or more.
- Each content rate of the hydroxyl group of the said polyvinyl acetal resin (2) and the said polyvinyl acetal resin (3) becomes like this. Preferably it is 37 mol% or less, More preferably, it is 36.5 mol% or less, More preferably, it is 36 mol% or less.
- the hydroxyl group content is at least the above lower limit, the bending rigidity is further increased, and the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
- the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (2). From the viewpoint of further increasing the sound insulation, the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (3). From the viewpoint of further improving sound insulation, the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 1 mol% or more.
- the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more.
- the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 20 mol% or less.
- the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 20 mol% or less.
- the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
- the amount of the ethylene group to which the hydroxyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
- the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, still more preferably 9 It is at least mol%, preferably at most 30 mol%, more preferably at most 25 mol%, still more preferably at most 24 mol%.
- the degree of acetylation is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer or other thermoplastic resin is increased, the sound insulation and penetration resistance are further improved, and the performance is further improved over a long period of time. Stabilize.
- the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
- the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol% or more and 25 mol% or less, the penetration resistance is further improved.
- Each degree of acetylation of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably. Is 2 mol% or less.
- the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
- the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
- the degree of acetylation is a value obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
- the amount of ethylene group to which the acetyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
- the degree of acetalization of the polyvinyl acetal resin (1) is preferably 47 mol% or more, more preferably 60 mol% or more, still more preferably 68 mol% or more, preferably It is 85 mol% or less, More preferably, it is 80 mol% or less, More preferably, it is 75 mol% or less.
- the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
- the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
- the degree of acetalization (degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 60 mol% or more, preferably Is 75 mol% or less, more preferably 71 mol% or less.
- degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
- the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
- the degree of acetalization is obtained as follows. First, a value obtained by subtracting the amount of ethylene groups bonded with hydroxyl groups and the amount of ethylene groups bonded with acetyl groups from the total amount of ethylene groups in the main chain is obtained. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. A value indicating the mole fraction as a percentage is the degree of acetalization.
- the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. However, measurement by ASTM D1396-92 may be used.
- the polyvinyl acetal resin is a polyvinyl butyral resin
- the hydroxyl group content (hydroxyl amount), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the results measured by
- the intermediate film includes a plasticizer.
- the first layer (including a single-layer interlayer) preferably includes a plasticizer (hereinafter sometimes referred to as a plasticizer (1)).
- the second layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (2)).
- the third layer preferably contains a plasticizer (hereinafter may be referred to as a plasticizer (3)).
- a plasticizer By using a plasticizer, and by using a polyvinyl acetal resin and a plasticizer in combination, the penetration resistance is further improved, and the adhesive strength of the layer containing the polyvinyl acetal resin and the plasticizer to the laminated glass member or other layers is moderately high. Become.
- the plasticizer is not particularly limited.
- the plasticizer (1), the plasticizer (2), and the plasticizer (3) may be the same or different. As for the said plasticizer (1), the said plasticizer (2), and the said plasticizer (3), only 1 type may respectively be used and 2 or more types may be used together.
- plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. .
- organic ester plasticizers are preferred.
- the plasticizer is preferably a liquid plasticizer.
- Examples of the monobasic organic acid ester include glycol esters obtained by a reaction between glycol and a monobasic organic acid.
- Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
- Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
- polybasic organic acid ester examples include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
- polybasic organic acid examples include adipic acid, sebacic acid, and azelaic acid.
- organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-eth
- organic phosphate plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate, tricresyl phosphate, triisopropyl phosphate, and the like.
- the plasticizer is preferably a diester plasticizer represented by the following formula (1).
- R1 and R2 each represent an organic group having 2 to 10 carbon atoms
- R3 represents an ethylene group, an isopropylene group or an n-propylene group
- p represents an integer of 3 to 10
- R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
- the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. .
- the plasticizer preferably includes triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and further includes triethylene glycol di-2-ethylhexanoate. preferable.
- the plastic with respect to 100 parts by weight of the thermoplastic resin (2) (when the thermoplastic resin (2) is a polyvinyl acetal resin (2), 100 parts by weight of the polyvinyl acetal resin (2)).
- content of an agent (2) be content (2).
- the plastic relative to 100 parts by weight of the thermoplastic resin (3) (when the thermoplastic resin (3) is a polyvinyl acetal resin (3), 100 parts by weight of the polyvinyl acetal resin (3)).
- content of an agent (3) be content (3).
- the content (2) and the content (3) are each preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 40 parts by weight or less, more preferably 35 parts by weight or less, and still more preferably 32 parts.
- the content (2) and the content (3) are equal to or higher than the lower limit, the flexibility of the intermediate film is increased and the handling of the intermediate film is facilitated.
- the content (2) and the content (3) are equal to or lower than the upper limit, the bending rigidity is further increased.
- the plastic relative to 100 parts by weight of the thermoplastic resin (1) (or 100 parts by weight of the polyvinyl acetal resin (1) when the thermoplastic resin (1) is a polyvinyl acetal resin (1)).
- content of an agent (1) be content (1).
- the content (1) is preferably 1 part by weight or more, more preferably 2 parts by weight or more, still more preferably 3 parts by weight or more, still more preferably 5 parts by weight or more, preferably 90 parts by weight or less, more preferably 85 parts by weight or less, more preferably 80 parts by weight or less, particularly preferably less than 60 parts by weight, and most preferably less than 50 parts by weight.
- the content (1) may be 50 parts by weight or more, 55 parts by weight or more, or 60 parts by weight or more.
- the content (1) may be 30 parts by weight or less, 20 parts by weight or less, or 10 parts by weight or less.
- the content (1) is preferably larger than the content (2) in order to enhance the sound insulation of the laminated glass, and the content (1) is It is preferable that there is more than the said content (3).
- the laminated glass using the intermediate film having the content (1) of 55 parts by weight or more tends to have low bending rigidity, but the structure of the present invention can remarkably improve the bending rigidity.
- the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more.
- the absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are each preferably 80 parts by weight or less. More preferably, it is 75 weight part or less, More preferably, it is 70 weight part or less.
- the intermediate film preferably contains a heat shielding material (heat shielding compound).
- the first layer preferably contains a heat shielding material.
- the second layer preferably includes a heat shielding material.
- the third layer preferably contains a heat shielding material. As for the said heat-shielding compound, only 1 type may be used and 2 or more types may be used together.
- the heat-insulating substance preferably contains at least one component X of phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds, or contains heat-shielding particles. In this case, both the component X and the heat shielding particles may be included.
- the intermediate film preferably includes at least one component X among a phthalocyanine compound, a naphthalocyanine compound, and an anthracocyanine compound.
- the first layer preferably contains the component X.
- the second layer preferably contains the component X.
- the third layer preferably contains the component X.
- the component X is a heat shielding material. As for the said component X, only 1 type may be used and 2 or more types may be used together.
- the component X is not particularly limited.
- component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
- the component X is preferably at least one selected from the group consisting of phthalocyanine, phthalocyanine derivatives, naphthalocyanine, and naphthalocyanine derivatives. More preferably, it is at least one of phthalocyanine and phthalocyanine derivatives.
- the component X preferably contains a vanadium atom or a copper atom.
- the component X preferably contains a vanadium atom, and preferably contains a copper atom.
- the component X is more preferably at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom.
- the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
- the content of the component X is preferably 0.001% by weight or more, more preferably 0.005. % By weight or more, more preferably 0.01% by weight or more, particularly preferably 0.02% by weight or more. In 100% by weight of the layer containing the component X (first layer, second layer, or third layer), the content of the component X is preferably 0.2% by weight or less, more preferably 0.1%. % By weight or less, more preferably 0.05% by weight or less, particularly preferably 0.04% by weight or less.
- the content of the component X is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
- the visible light transmittance can be 70% or more.
- Thermal barrier particles The intermediate film preferably contains heat shielding particles.
- the first layer (including a single-layer intermediate film) preferably includes the heat shielding particles.
- the second layer preferably includes the heat shielding particles.
- the third layer preferably contains the heat shielding particles.
- the heat shielding particles are heat shielding materials. By using heat shielding particles, infrared rays (heat rays) can be effectively blocked. As for the said heat-shielding particle, only 1 type may be used and 2 or more types may be used together.
- the heat shielding particles are more preferably metal oxide particles.
- the heat shielding particles are preferably particles (metal oxide particles) formed of a metal oxide.
- Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
- infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
- heat shielding particles By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
- the heat shielding particles mean particles that can absorb infrared rays.
- heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
- Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
- Metal oxide particles are preferred because of their high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferred, and ITO particles or tungsten oxide particles are particularly preferred.
- tin-doped indium oxide particles (ITO particles) are preferable, and tungsten oxide particles are also preferable because they have a high heat ray shielding function and are easily available.
- the tungsten oxide particles are preferably metal-doped tungsten oxide particles.
- the “tungsten oxide particles” include metal-doped tungsten oxide particles. Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
- cesium-doped tungsten oxide particles are particularly preferable.
- the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
- the average particle diameter of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
- the average particle size is not less than the above lower limit, the heat ray shielding property is sufficiently increased.
- the average particle size is not more than the above upper limit, the dispersibility of the heat shielding particles is increased.
- the above “average particle diameter” indicates the volume average particle diameter.
- the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
- the content of the heat shielding particles is preferably 0.01% by weight or more, more preferably 0%. .1% by weight or more, more preferably 1% by weight or more, and particularly preferably 1.5% by weight or more.
- the content of the heat shielding particles is preferably 6% by weight or less, more preferably 5.5%. % By weight or less, more preferably 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably 3% by weight or less.
- the intermediate film preferably contains at least one metal salt (hereinafter sometimes referred to as metal salt M) among alkali metal salts, alkaline earth metal salts, and magnesium salts.
- the first layer preferably includes the metal salt M.
- the second layer preferably contains the metal salt M.
- the third layer preferably contains the metal salt M.
- Use of the metal salt M makes it easy to control the adhesion between the interlayer film and the laminated glass member or the adhesion between the layers in the interlayer film.
- the said metal salt M only 1 type may be used and 2 or more types may be used together.
- the metal salt M preferably contains at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
- the metal salt contained in the interlayer film preferably contains at least one metal of K and Mg.
- the metal salt M is an alkali metal salt of an organic acid having 2 to 16 carbon atoms, an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms, or a magnesium salt of an organic acid having 2 to 16 carbon atoms. Is more preferable, and it is more preferably a carboxylic acid magnesium salt having 2 to 16 carbon atoms or a carboxylic acid potassium salt having 2 to 16 carbon atoms.
- Examples of the C 2-16 carboxylic acid magnesium salt and the C 2-16 carboxylic acid potassium salt include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, 2-ethylbutanoic acid. Examples include potassium, magnesium 2-ethylhexanoate, and potassium 2-ethylhexanoate.
- the total content of Mg and K in the layer containing the metal salt M is preferably 5 ppm or more, more preferably 10 ppm or more, and even more preferably 20 ppm or more. , Preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less.
- the adhesion between the interlayer film and the laminated glass member or the adhesion between the layers in the interlayer film can be controlled even better.
- the intermediate film preferably contains an ultraviolet shielding agent.
- the first layer preferably contains an ultraviolet shielding agent.
- the second layer preferably contains an ultraviolet shielding agent.
- the third layer preferably contains an ultraviolet shielding agent.
- the ultraviolet shielding agent includes an ultraviolet absorber.
- the ultraviolet shielding agent is preferably an ultraviolet absorber.
- the ultraviolet shielding agent examples include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), UV screening agent having triazine structure (triazine compound), UV screening agent having malonate ester structure (malonic acid ester compound), UV screening agent having oxalic acid anilide structure (oxalic acid anilide compound) and benzoate structure Examples thereof include an ultraviolet shielding agent (benzoate compound).
- Examples of the ultraviolet shielding agent containing a metal atom include platinum particles, particles having platinum particles coated with silica, palladium particles, and particles having palladium particles coated with silica.
- the ultraviolet shielding agent is preferably not a heat shielding particle.
- the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure, an ultraviolet shielding agent having a benzophenone structure, an ultraviolet shielding agent having a triazine structure, or an ultraviolet shielding agent having a benzoate structure.
- the ultraviolet shielding agent is more preferably an ultraviolet shielding agent having a benzotriazole structure or an ultraviolet shielding agent having a benzophenone structure, and more preferably an ultraviolet shielding agent having a benzotriazole structure.
- Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
- Examples of the ultraviolet screening agent having the benzotriazole structure include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) And “Tinuvin 326” manufactured by BASF, etc.) and the like.
- the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure containing a halogen atom, and may be an ultraviolet shielding agent having a benzotriazole structure containing a chlorine atom. More preferred.
- Examples of the ultraviolet shielding agent having the benzophenone structure include octabenzone (“Chimasorb 81” manufactured by BASF).
- UV shielding agent having the triazine structure examples include “LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin 1577FF” manufactured by BASF) and the like.
- UV screening agent having a malonic ester structure examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
- 2- (p-methoxybenzylidene) malonate examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
- Examples of commercially available ultraviolet screening agents having a malonic ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
- Examples of the ultraviolet shielding agent having the oxalic anilide structure include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl)- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as N ′-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2′-ethoxy-oxyanilide (“SlandorVSU” manufactured by Clariant)kind.
- ultraviolet shielding agent having the benzoate structure examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF). .
- the content of the ultraviolet screening agent is preferably 0.1% by weight or more, more preferably 0%. .2% by weight or more, more preferably 0.3% by weight or more, and particularly preferably 0.5% by weight or more.
- the content of the ultraviolet shielding agent is preferably 2.5% by weight or less, more preferably 2%. % By weight or less, more preferably 1% by weight or less, particularly preferably 0.8% by weight or less.
- the content of the ultraviolet shielding agent is not less than the above lower limit and not more than the above upper limit, a decrease in visible light transmittance after a lapse of time can be further suppressed.
- the content of the ultraviolet shielding agent is 0.2% by weight or more, thereby reducing the visible light transmittance after the passage of the intermediate film and the laminated glass. Remarkably suppressed.
- the intermediate film preferably contains an antioxidant.
- the first layer preferably contains an antioxidant.
- the second layer preferably contains an antioxidant.
- the third layer preferably contains an antioxidant. As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
- antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
- the phenolic antioxidant is an antioxidant having a phenol skeleton.
- the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
- the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
- the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
- phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis- (4-methyl-6-butylphenol), 2,2′-methylenebis- (4-ethyl-6) -T-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydro) Loxy-5-t-butylphenol) butane, 1,3,5-trimethyl-2,4,6
- Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos.
- antioxidants examples include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical Co., Ltd., and Sakai Chemical Industry Examples thereof include “H-BHT” and “IRGANOX 1010” manufactured by BASF.
- a layer in 100% by weight of the interlayer film or containing an antioxidant.
- the content of the antioxidant is preferably 0.1% by weight or more.
- the content of the antioxidant is preferably 2% by weight or less in 100% by weight of the intermediate film or 100% by weight of the layer containing the antioxidant.
- the intermediate film, the first layer, the second layer, and the third layer are respectively a coupling agent containing silicon, aluminum, or titanium, a dispersant, a surfactant, a flame retardant, Additives such as antistatic agents, fillers, pigments, dyes, adhesive strength modifiers, moisture-proofing agents, fluorescent brighteners and infrared absorbers may be included. As for these additives, only 1 type may be used and 2 or more types may be used together.
- the intermediate film, the first layer, the second layer, and the third layer may contain a filler.
- the filler include calcium carbonate particles and silica particles. Silica particles are preferable from the viewpoint of effectively increasing the bending rigidity and effectively suppressing the decrease in transparency.
- the content of the filler is preferably 1% by weight or more, more preferably 5% by weight or more, and still more preferably. It is 10 weight part or more, Preferably it is 60 weight% or less, More preferably, it is 50 weight% or less.
- the thickness of the intermediate film is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently enhancing the penetration resistance and bending rigidity of the laminated glass, the thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more Preferably it is 1.5 mm or less. When the thickness of the interlayer film is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased. When the thickness of the interlayer film is not more than the above upper limit, the transparency of the interlayer film is further improved.
- T is the thickness of the intermediate film.
- the thickness of the first layer is preferably 0.035T or more, more preferably 0.0625T or more, further preferably 0.1T or more, preferably 0.4T or less, more preferably 0.375T or less, and still more preferably. It is 0.25 T or less, particularly preferably 0.15 T or less. When the thickness of the first layer is 0.4 T or less, the bending rigidity is further improved.
- Each thickness of the second layer and the third layer is preferably 0.3 T or more, more preferably 0.3125 T or more, still more preferably 0.375 T or more, preferably 0.97 T or less, more preferably 0. 9375T or less, more preferably 0.9T or less.
- Each thickness of the second layer and the third layer may be 0.46875T or less, or 0.45T or less. Further, when the thicknesses of the second layer and the third layer are not less than the lower limit and not more than the upper limit, the rigidity and sound insulation of the laminated glass are further enhanced.
- the total thickness of the second layer and the third layer is preferably 0.625 T or more, more preferably 0.75 T or more, still more preferably 0.85 T or more, preferably 0.97 T or less, more preferably 0.9375T or less, more preferably 0.9T or less. Further, when the total thickness of the second layer and the third layer is not less than the above lower limit and not more than the above upper limit, the rigidity and sound insulation of the laminated glass are further enhanced.
- the intermediate film may be an intermediate film having a uniform thickness or an intermediate film having a changed thickness.
- the cross-sectional shape of the intermediate film may be rectangular or wedge-shaped.
- the method for producing the interlayer film according to the present invention is not particularly limited.
- Examples of the method for producing an interlayer film according to the present invention include a method of extruding a resin composition using an extruder in the case of a single-layer interlayer film.
- a method for producing an interlayer film according to the present invention in the case of a multilayer interlayer film, for example, a method in which each layer is formed using each resin composition for forming each layer and then the obtained layers are stacked.
- a method of laminating each layer by coextruding each resin composition for forming each layer using an extruder may be used. Since it is suitable for continuous production, an extrusion method is preferred.
- the same polyvinyl acetal resin is contained in the second layer and the third layer. Since the production efficiency of the intermediate film is excellent, it is more preferable that the same polyvinyl acetal resin and the same plasticizer are contained in the second layer and the third layer. Since the production efficiency of the intermediate film is excellent, it is more preferable that the second layer and the third layer are formed of the same resin composition.
- the intermediate film preferably has an uneven shape on at least one of the surfaces on both sides. More preferably, the intermediate film has a concavo-convex shape on both surfaces. It does not specifically limit as a method of forming said uneven
- the embossing roll method is preferable because it can form a large number of concavo-convex embossments that are quantitatively constant.
- FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
- the intermediate film 11 is disposed between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched.
- the first laminated glass member 21 is laminated on the first surface 11 a of the intermediate film 11.
- a second laminated glass member 22 is laminated on the second surface 11 b opposite to the first surface 11 a of the intermediate film 11.
- a first laminated glass member 21 is laminated on the outer surface 2 a of the second layer 2.
- a second laminated glass member 22 is laminated on the outer surface 3 a of the third layer 3.
- FIG. 4 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
- a laminated glass 31A shown in FIG. 4 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11A.
- 11 A of intermediate films are arrange
- the first laminated glass member 21 is laminated on the first surface 11a of the intermediate film 11A.
- a second laminated glass member 22 is laminated on the second surface 11b opposite to the first surface 11a of the intermediate film 11A.
- the laminated glass which concerns on this invention is equipped with the 1st laminated glass member, the 2nd laminated glass member, and the intermediate film, and this intermediate film is the intermediate film for laminated glasses which concerns on this invention. It is.
- the interlayer film is disposed between the first laminated glass member and the second laminated glass member.
- the first laminated glass member is preferably a first glass plate.
- the second laminated glass member is preferably a second glass plate.
- the laminated glass member examples include a glass plate and a PET (polyethylene terephthalate) film.
- Laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
- the laminated glass is a laminate including a glass plate, and preferably at least one glass plate is used.
- Each of the first laminated glass member and the second laminated glass member is a glass plate or a PET film, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one.
- the glass plate examples include inorganic glass and organic glass.
- the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, and wire-containing plate glass.
- the organic glass is a synthetic resin glass that replaces the inorganic glass.
- examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates.
- Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
- the thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
- the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
- the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
- the use of the interlayer film according to the present invention makes it possible to maintain the bending rigidity of the laminated glass high even if the laminated glass is thin.
- the thickness of the glass plate is preferably 2 mm or less, more preferably 1.8 mm or less, even more preferably 1.6 mm or less, still more preferably 1.5 mm or less, still more preferably 1.4 mm or less, and even more preferably 1. 0.3 mm or less, still more preferably 1.0 mm or less, and particularly preferably 0.7 mm or less.
- the laminated glass can be reduced in weight
- the environmental load can be reduced by reducing the material of the laminated glass
- the environmental load can be reduced by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass. .
- the total thickness of the first glass plate and the second glass plate is preferably 3.5 mm or less, more preferably 3.2 mm or less, still more preferably 3 mm or less, particularly preferably 2.8 mm or less. It is.
- the laminated glass can be reduced in weight
- the environmental load can be reduced by reducing the material of the laminated glass
- the environmental load can be reduced by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass. .
- the method for producing the laminated glass is not particularly limited. First, an interlayer film is sandwiched between the first laminated glass member and the second laminated glass member to obtain a laminate. Next, for example, by passing the obtained laminate through a pressing roll or putting it in a rubber bag and sucking under reduced pressure, the first laminated glass member, the second laminated glass member, and the intermediate film The remaining air is deaerated. Thereafter, pre-bonding is performed at about 70 to 110 ° C. to obtain a pre-bonded laminate. Next, the pre-pressed laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained. You may laminate
- the interlayer film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
- the said intermediate film and the said laminated glass can be used besides these uses.
- the interlayer film and the laminated glass are preferably a vehicle or architectural interlayer film and a laminated glass, and more preferably a vehicle interlayer film and a laminated glass.
- the intermediate film and the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
- the interlayer film and the laminated glass are suitably used for automobiles.
- the interlayer film is used for obtaining laminated glass for automobiles.
- Polyvinyl acetal resin Polyvinyl acetal resins shown in Tables 1 to 5 below were appropriately used.
- the degree of acetalization degree of butyralization
- the degree of acetylation degree of acetylation
- the hydroxyl group content was measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
- ASTM D1396-92 the same numerical value as the method based on JIS K6728 “Testing method for polyvinyl butyral” was shown.
- the degree of acetalization is similarly measured for the degree of acetylation and the hydroxyl group content, and the molar fraction is calculated from the obtained measurement results, Subsequently, it calculated by subtracting the acetylation degree and the content rate of a hydroxyl group from 100 mol%.
- the acrylic polymers shown in the following Tables 1 to 5 are acrylic polymers obtained by polymerizing polymerizable components containing the following compounds in the contents shown in the following Tables 1 to 5.
- Tinuvin 326 (2- (2′-hydroxy-3′-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, “Tinuvin 326” manufactured by BASF)
- Example 1 Preparation of a composition for forming an intermediate film (first layer): 100 parts by weight of a polyvinyl acetal resin of the type shown in Table 1 below, 100 parts by weight of an acrylic polymer of the type shown in Table 1 below, 5 parts by weight of a plasticizer (3GO), and an ultraviolet shielding agent (Tinvin 326) 0. 2 parts by weight and 0.2 parts by weight of an antioxidant (BHT) were mixed to obtain a composition for forming an intermediate film.
- a polyvinyl acetal resin of the type shown in Table 1 below 100 parts by weight of an acrylic polymer of the type shown in Table 1 below, 5 parts by weight of a plasticizer (3GO), and an ultraviolet shielding agent (Tinvin 326) 0. 2 parts by weight and 0.2 parts by weight of an antioxidant (BHT) were mixed to obtain a composition for forming an intermediate film.
- BHT antioxidant
- Preparation of interlayer film The composition for forming the intermediate film was extruded using an extruder to produce an intermediate film having a thickness shown in Table 1 below.
- Laminated glass production (for bending stiffness measurement): The obtained intermediate film was cut into a size of 20 cm long ⁇ 2.5 cm wide. As a 1st laminated glass member and a 2nd laminated glass member, the two glass plates (clear float glass, 20 cm long x 2.5 cm wide) of the thickness shown in following Table 1 were prepared. The obtained interlayer film was sandwiched between the two glass plates to obtain a laminate. The obtained laminate was put in a rubber bag and deaerated at a vacuum degree of 2660 Pa (20 torr) for 20 minutes. Thereafter, the laminate was vacuum-pressed while being deaerated while being further kept at 90 ° C. for 30 minutes in an autoclave. The laminated body preliminarily pressure-bonded in this manner was pressure-bonded for 20 minutes in an autoclave under conditions of 135 ° C. and a pressure of 1.2 MPa (12 kg / cm 2 ) to obtain a laminated glass.
- Laminated glass production (for sound insulation measurement): The obtained intermediate film was cut into a size of 30 cm long ⁇ 2.5 cm wide.
- two glass plates (clear float glass, length 30 cm ⁇ width 2.5 cm) having thicknesses shown in Table 1 below were prepared.
- An interlayer film was sandwiched between two glass plates to obtain a laminate.
- This laminated body is put in a rubber bag, deaerated at a vacuum degree of 2.6 kPa for 20 minutes, transferred to an oven while being deaerated, and further kept at 90 ° C. for 30 minutes and vacuum-pressed. Crimped.
- the pre-pressed laminate was pressed for 20 minutes in an autoclave at 135 ° C. and a pressure of 1.2 MPa to obtain a laminated glass.
- Laminated glass production (for penetration resistance test): The obtained intermediate film was cut into a size of 15 cm long ⁇ 15 cm wide.
- two glass plates (clear float glass, 15 cm long ⁇ 15 cm wide) having thicknesses shown in Table 1 below were prepared.
- An interlayer film was sandwiched between two glass plates to obtain a laminate.
- This laminated body is put in a rubber bag, deaerated at a vacuum degree of 2.6 kPa for 20 minutes, transferred to an oven while being deaerated, and further kept at 90 ° C. for 30 minutes and vacuum-pressed. Crimped.
- the pre-pressed laminate was pressed for 20 minutes in an autoclave at 135 ° C. and a pressure of 1.2 MPa to obtain a laminated glass.
- Examples 2 to 12 and Comparative Examples 1 to 10, 13 The composition of the composition for forming the interlayer film was set as shown in Tables 1 to 5 below, and the thicknesses of the interlayer film, the first laminated glass member, and the second laminated glass member were set as in Table 1 below.
- An interlayer film and a laminated glass were obtained in the same manner as in Example 1 except that the settings were made as shown in FIGS.
- the same type of ultraviolet shielding agent and antioxidant as in Example 1 were added in the same amount as in Example 1 (based on 100 parts by weight of polyvinyl acetal resin). 0.2 parts by weight).
- composition for forming an intermediate film (first layer): 100 parts by weight of the polyvinyl acetal resin of the kind shown in Table 5 below, 5 parts by weight of an acrylic polymer of the kind shown in Table 5 below, 5 parts by weight of a plasticizer (3GH), and the kind of kind shown in Table 5 below.
- a composition for forming an intermediate film was obtained by mixing 0.5 part by weight of a photopolymerization initiator and 0.1 part by weight of a polymerization inhibitor of the type shown in Table 5 below.
- no ultraviolet absorber and antioxidant were used.
- Preparation of intermediate film before photocuring The composition for forming the intermediate film was extruded using an extruder to prepare an intermediate film before photocuring having a thickness shown in Table 5 below.
- Laminated glass production (for bending stiffness measurement): A laminated glass before photocuring was obtained in the same manner as in Example 1. Thereafter, this laminated glass was irradiated with ultraviolet rays of 1700 mJ / cm 3 (measured with ORC UV-302A, wavelength range 320 to 390 nm, peak 350 nm) using an ultrahigh pressure mercury lamp, and the interlayer film was crosslinked and cured. Intermediate film (1) and laminated glass were obtained.
- Laminated glass production (for sound insulation measurement): A laminated glass before photocuring was obtained in the same manner as in Example 1. Thereafter, this laminated glass was irradiated with ultraviolet rays of 1700 mJ / cm 3 (measured with ORC UV-302A, wavelength range 320 to 390 nm, peak 350 nm) using an ultrahigh pressure mercury lamp, and the interlayer film was crosslinked and cured. Of the intermediate film (2) and laminated glass were obtained.
- Laminated glass production (for penetration resistance test): A laminated glass before photocuring was obtained in the same manner as in Example 1. Thereafter, this laminated glass was irradiated with ultraviolet rays of 1700 mJ / cm 3 (measured with ORC UV-302A, wavelength range 320 to 390 nm, peak 350 nm) using an ultrahigh pressure mercury lamp, and the interlayer film was crosslinked and cured. Of the intermediate film (3) and laminated glass were obtained.
- Comparative Example 12 An intermediate film and a laminated glass were obtained in the same manner as in Comparative Example 11 except that the composition of the composition for forming the intermediate film was set as shown in Table 5 below.
- the intermediate film (Comparative Examples 11 and 12 is an intermediate film after photocuring) was immersed in tetrahydrofuran at 23 ° C. and dried. Then, the intermediate film (insoluble component of the intermediate film with respect to tetrahydrofuran at 23 ° C.) was prepared as a test piece.
- the IR spectrum of the test piece was measured by ATR method using a Fourier transform infrared microscope iN10 manufactured by Thermo Fisher Scientific. TiP-ATR (Ge crystal, incident angle of infrared light 27 degrees) was used as an accessory. The test piece and the crystal were sufficiently adhered. Measurement range 4000 ⁇ 675 cm -1 of the spectrum, the spectral resolution were measured at 8 cm -1. About the aperture, the surface was set to 200 ⁇ m ⁇ 200 ⁇ m, and the cross section was set to 30 ⁇ m in the thickness direction ⁇ 200 ⁇ m in the plane direction.
- IR spectra were measured for samples having different blending ratios between the polyvinyl acetal resin and the second resin, and a calibration curve was created between the peak value of 1725 cm ⁇ 1 derived from C ⁇ O and the weight ratio of the polyvinyl acetal resin.
- the content of the polyvinyl acetal resin was calculated from a calibration curve.
- the content of polyvinyl acetal resin in 100% by weight of insoluble components was determined according to the following criteria.
- the flexural rigidity was evaluated by the test method schematically shown in FIG.
- UTA-500 manufactured by Orientec Co., Ltd. equipped with a three-point bending test jig was used as a measuring apparatus.
- the measurement conditions are: a measurement temperature of 23 ° C. (23 ° C. ⁇ 3 ° C.), a distance D1 of 12 cm, a distance D2 of 20 cm, a displacement of 1 mm / min.
- the bending stiffness was calculated by measuring the stress when adding. The bending stiffness was determined according to the following criteria. The higher the value of bending rigidity, the better the bending rigidity.
- Bending rigidity is 55 N / mm or more ⁇ : Bending rigidity is less than 55 N / mm
- the obtained laminated glass was vibrated with a vibration generator for vibration test (“Vibrator G21-005D” manufactured by KENKEN Co., Ltd.).
- the vibration characteristics obtained therefrom were amplified by a mechanical impedance measuring device (“XG-81” manufactured by Lion Co., Ltd.), and the vibration spectrum was analyzed using an FFT spectrum analyzer (“FFT analyzer HP3582A” manufactured by Yokogawa Hewlett-Packard Co.).
- TL value is 35 dB or more ⁇ : TL value is 30 dB or more and less than 35 dB ⁇ : TL value is less than 30 dB
- Penetration resistance The obtained laminated glass was adjusted so that the surface temperature might be 20 degreeC. Next, from a height of 2.0 m, a hard sphere having a mass of 2260 g and a diameter of 82 mm was dropped onto the center portion of the laminated glass for each of the six laminated glasses. For all six laminated glasses, the case where the hard sphere did not penetrate within 5 seconds after the collision of the hard sphere was regarded as acceptable. If the number of laminated glasses in which the hard sphere did not penetrate within 5 seconds after the collision of the hard sphere was 3 or less, it was rejected. In the case of four sheets, the penetration resistance of six new laminated glasses was evaluated.
- the penetration resistance was determined according to the following criteria.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
L'invention concerne une couche intermédiaire pour verre feuilleté avec laquelle il est possible d'augmenter la rigidité à la flexion du verre feuilleté à 23 °C, et d'améliorer les propriétés en matière d'isolation acoustique, ainsi que la résistance à la perforation du verre feuilleté. Cette couche intermédiaire pour verre feuilleté contient une résine de polyvinylacétal et un plastifiant, et la fraction de gel déterminée par la formule (X) se situe dans la plage de 10 % à 80 % en poids (bornes incluses), la température de transition vitreuse se situe dans la plage de -30 °C à 0 °C (bornes incluses), et la valeur maximale de tanδ dans la plage de températures de -30 °C à 0 °C est au moins égale à 0,1. Formule (X) : fraction de gel (% en poids) = W2/W1 × 100 (dans la formule, W1 est le poids de la couche intermédiaire avant immersion dans du tétrahydrofurane à 23 °C, et W2 est le poids de la couche intermédiaire immergée dans du tétrahydrofurane à 23 °C puis séchée).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018519997A JP7028769B2 (ja) | 2017-03-31 | 2018-03-29 | 合わせガラス用中間膜及び合わせガラス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-072896 | 2017-03-31 | ||
JP2017072896 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181746A1 true WO2018181746A1 (fr) | 2018-10-04 |
Family
ID=63678242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013323 WO2018181746A1 (fr) | 2017-03-31 | 2018-03-29 | Couche intermédiaire pour verre feuilleté et verre feuilleté |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7028769B2 (fr) |
TW (1) | TW201841752A (fr) |
WO (1) | WO2018181746A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072367A (zh) * | 2019-07-02 | 2022-02-18 | 积水化学工业株式会社 | 夹层玻璃用中间膜以及夹层玻璃 |
US20220332092A1 (en) * | 2019-12-12 | 2022-10-20 | Sekisui Chemical Co., Ltd. | Laminated glass interlayer, and laminated glass |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015187075A (ja) * | 2013-09-30 | 2015-10-29 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2016039477A1 (fr) * | 2014-09-12 | 2016-03-17 | 積水化学工業株式会社 | Couche intermédiaire pour verre feuilleté et verre feuilleté |
WO2016158696A1 (fr) * | 2015-03-31 | 2016-10-06 | 積水化学工業株式会社 | Film intermédiaire pour verre feuilleté et verre feuilleté |
-
2018
- 2018-03-29 WO PCT/JP2018/013323 patent/WO2018181746A1/fr active Application Filing
- 2018-03-29 JP JP2018519997A patent/JP7028769B2/ja active Active
- 2018-03-31 TW TW107111455A patent/TW201841752A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015187075A (ja) * | 2013-09-30 | 2015-10-29 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
WO2016039477A1 (fr) * | 2014-09-12 | 2016-03-17 | 積水化学工業株式会社 | Couche intermédiaire pour verre feuilleté et verre feuilleté |
WO2016158696A1 (fr) * | 2015-03-31 | 2016-10-06 | 積水化学工業株式会社 | Film intermédiaire pour verre feuilleté et verre feuilleté |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072367A (zh) * | 2019-07-02 | 2022-02-18 | 积水化学工业株式会社 | 夹层玻璃用中间膜以及夹层玻璃 |
US11724481B2 (en) | 2019-07-02 | 2023-08-15 | Sekisui Chemical Co., Ltd. | Interlayer film for laminated glass, and laminated glass |
CN114072367B (zh) * | 2019-07-02 | 2023-09-22 | 积水化学工业株式会社 | 夹层玻璃用中间膜以及夹层玻璃 |
US20220332092A1 (en) * | 2019-12-12 | 2022-10-20 | Sekisui Chemical Co., Ltd. | Laminated glass interlayer, and laminated glass |
Also Published As
Publication number | Publication date |
---|---|
JP7028769B2 (ja) | 2022-03-02 |
TW201841752A (zh) | 2018-12-01 |
JPWO2018181746A1 (ja) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6147421B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6163259B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2016039472A1 (fr) | Couche intermédiaire pour verre feuilleté et verre feuilleté | |
WO2018181758A1 (fr) | Couche intermédiaire pour verre feuilleté et verre feuilleté | |
WO2017171043A1 (fr) | Couche intermédiaire pour verre feuilleté, et verre feuilleté | |
WO2018181748A1 (fr) | Film intermédiaire pour verre feuilleté, et verre feuilleté | |
WO2018181751A1 (fr) | Intercouche pour verre feuilleté et verre feuilleté | |
WO2018181747A1 (fr) | Film intermédiaire pour verre feuilleté, et verre feuilleté | |
WO2018181754A1 (fr) | Couche intermédiaire pour verre feuilleté et verre feuilleté | |
WO2018181755A1 (fr) | Corps moulé et verre feuilleté | |
WO2018181746A1 (fr) | Couche intermédiaire pour verre feuilleté et verre feuilleté | |
WO2017171042A1 (fr) | Film de résine ionomère de poly(acétal de vinyle), et verre feuilleté | |
JP6974212B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6949757B2 (ja) | 合わせガラス用中間膜及び合わせガラスの製造方法 | |
WO2019151325A1 (fr) | Film intermédiaire pour verre feuilleté, corps laminé et verre feuilleté | |
WO2018181757A1 (fr) | Film intermédiaire pour verre feuilleté, et verre feuilleté | |
JP7188889B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP2019147707A (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP2019147706A (ja) | 合わせガラス用中間膜及び合わせガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018519997 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18775868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18775868 Country of ref document: EP Kind code of ref document: A1 |