WO2018181334A1 - 造形システム及び造形方法 - Google Patents
造形システム及び造形方法 Download PDFInfo
- Publication number
- WO2018181334A1 WO2018181334A1 PCT/JP2018/012465 JP2018012465W WO2018181334A1 WO 2018181334 A1 WO2018181334 A1 WO 2018181334A1 JP 2018012465 W JP2018012465 W JP 2018012465W WO 2018181334 A1 WO2018181334 A1 WO 2018181334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cover member
- modeling
- outlet
- supply port
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/22—Driving means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/44—Radiation means characterised by the configuration of the radiation means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/70—Gas flow means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0652—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/144—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/364—Conditioning of environment
- B29C64/371—Conditioning of environment using an environment other than air, e.g. inert gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a modeling system and a modeling method, and more particularly to a modeling system and a modeling method for forming a three-dimensional modeled object on a target surface using a beam.
- the modeling system and the modeling method according to the present invention can be suitably used for forming a three-dimensional modeled object by rapid prototyping (sometimes referred to as 3D printing, addition manufacturing, or direct digital manufacturing).
- a technique for generating a 3D (three-dimensional) shape directly from CAD data is called rapid prototyping (sometimes referred to as 3D printing, additive manufacturing, or direct digital manufacturing; hereinafter, rapid prototyping is used as a generic term).
- rapid prototyping sometimes referred to as 3D printing, additive manufacturing, or direct digital manufacturing; hereinafter, rapid prototyping is used as a generic term.
- a modeling apparatus that forms a three-dimensional modeled object by rapid prototyping such as a 3D printer, is classified according to the material to be handled, it can be broadly classified into one that handles resin and one that handles metal.
- a metal three-dimensional structure manufactured by rapid prototyping is used as a part of an actual mechanical structure (whether it is a mass-produced product or a prototype).
- M3DP Metal 3D Printer
- PBF Powder Fedion
- DED Directed Energy Deposition
- DED a method in which a dissolved metal material is adhered to a processing target.
- powder metal is injected in the vicinity of the focal point of the laser beam focused by the condenser lens (see, for example, Patent Document 1).
- DED has been improved compared to PBF in handling of powder metal as a raw material, but there are many points to be improved.
- a modeling system that forms a three-dimensional structure on a target surface using a beam, a beam irradiation unit that emits a beam that passes through an optical path inclined with respect to an axis; It has a material supply port, and has a material supply part that supplies powdery modeling material irradiated with the beam from the beam irradiation part along the axis, and an inner surface that gradually converges from one end side to the other end side.
- a cover member in which an exit through which a beam from the beam irradiation unit passes is formed at the other end, a gas supply device that supplies an inert gas into a space inside the cover member via a gas supply port, A modeling system in which the inert gas flows out of the space through the outlet of the cover member, and the modeling material is supplied out of the space through the outlet of the cover member.
- the target surface is a surface on which a modeling target site is set.
- the second aspect of the present invention is a modeling system that forms a three-dimensional modeled object on a target surface using a beam, and a beam irradiation unit that emits a beam that passes through an optical path inclined with respect to an axis;
- a material supply port having a material supply port and supplying a powdery modeling material irradiated with a beam from the beam irradiation unit along the axis; and an inner surface arranged to surround at least a part of the optical path
- a cover member formed with an outlet through which a beam from the beam irradiation unit passes, and a gas supply device that supplies an inert gas into a space inside the cover member via a gas supply port.
- the inert gas becomes a swirling flow and flows toward the outlet along the inner surface of the cover member, and the inert gas flows out of the space through the outlet of the cover member;
- the modeling material is the cover Shaping system to be supplied to the outside of the space through the outlet of the timber is provided.
- a modeling system that forms a three-dimensional structure on a target surface using a beam, a beam irradiation unit that emits a beam passing through an optical path inclined with respect to an axis;
- a material supply port having a material supply port and supplying a powdery modeling material irradiated with a beam from the beam irradiation unit along the axis; and an inner surface arranged to surround at least a part of the optical path
- a cover member formed with an outlet through which a beam from the beam irradiation unit passes, and a gas supply device that supplies an inert gas into a space inside the cover member via a gas supply port.
- the inert gas is swirled around the axis and flows toward the outlet, the inert gas flows out of the space through the outlet of the cover member, and the modeling material Is the outlet of the cover member Shaping system to be supplied to the outside of the space through is provided.
- a modeling system that forms a three-dimensional structure on a target surface using a beam, a beam irradiation unit that emits a beam that passes through an optical path inclined with respect to an axis;
- a material supply port having a material supply port and supplying a powder as a modeling material along the axis; a cover member formed with an outlet through which a beam from the beam irradiation unit passes; and a space inside the cover member
- a modeling system is provided that is supplied to the target surface outside the space via the outlet of the cover member.
- the fifth aspect of the present invention is a modeling method for forming a three-dimensional modeled object on a target surface using a beam, and a beam passing through an optical path inclined with respect to an axis is emitted from the beam irradiation unit. And supplying the powdery modeling material irradiated with the beam along the axis, and an inner surface gradually converging from one end side to the other end side, and the other end from the beam irradiation unit Supplying an inert gas through a gas supply port into a space inside the cover member in which an outlet through which the beam passes is formed, and the inert gas passes through the outlet of the cover member.
- a modeling method is provided in which the modeling material flows outside the space, and the modeling material is supplied to the target surface outside the space via the outlet of the cover member.
- a modeling method for forming a three-dimensional modeled object on a target surface using a beam and emitting a beam passing through an optical path inclined with respect to an axis from a beam irradiation unit.
- a modeling method for forming a three-dimensional structure on a target surface using a beam and emitting a beam passing through an optical path inclined with respect to an axis from a beam irradiation unit.
- supplying a powdery modeling material irradiated with the beam along the axis, and an inner surface arranged to surround at least a part of the optical path, and the beam from the beam irradiation unit is Supplying an inert gas through a gas supply port into a space inside the cover member in which an outlet for passage is formed, and the inert gas is swirled around the axis, The inert gas flows toward the outlet, the inert gas flows out of the space through the outlet of the cover member, and the modeling material is outside the space through the outlet of the cover member.
- the modeling method supplied to the surface is provided That.
- a modeling method for forming a three-dimensional modeled object on a target surface using a beam, and emitting a beam passing through an optical path inclined with respect to an axis from a beam irradiation unit. And supplying the powdery modeling material irradiated with the beam along the axis, and an inner surface gradually converging from one end side to the other end side, and the other end from the beam irradiation unit Supplying an inert gas through a gas supply port into a space inside the cover member in which an outlet through which the beam passes is formed, and the inert gas passes through the outlet of the cover member.
- a modeling method is provided in which the modeling material flows outside the space, and the modeling material is supplied to the target surface outside the space via the outlet of the cover member.
- FIG. 3 is an enlarged view showing a lens barrel 85 and a lower portion thereof in FIG. 2 together with a vicinity of a target portion TA of a workpiece W.
- control apparatus which mainly comprises the control system of a modeling apparatus. It is a figure for demonstrating the modification which supplies the inert gas to the inside of a cover member via a some supply port, and produces the flow of the gas which flows up and down.
- the modeling system 100 is a DED M3DP.
- the modeling system 100 can be used to form a three-dimensional structure on a table to be described later by rapid prototyping, but performs additional processing by three-dimensional modeling on a workpiece (for example, an existing part). Can also be used. In the present embodiment, the description will be made centering on the case of performing additional machining on the latter workpiece.
- the modeling system 100 includes a moving device 200, a measuring device 400, a modeling head unit 500, and a control device 600 that controls the entire modeling system 100 including these units.
- the measuring device 400 and the modeling head unit 500 are arranged apart in a predetermined direction. In the following description, for convenience, it is assumed that the measuring device 400 and the modeling head unit 500 are arranged apart from each other in the X-axis direction (see FIG. 2) described later.
- FIG. 2 shows the modeling head unit 500 together with the table 12 on which the workpiece W is mounted.
- the direction orthogonal to the paper surface in FIG. 2 is the X-axis direction
- the left-right direction in the paper surface is the Y-axis direction
- the direction orthogonal to the X-axis and Y-axis is the Z-axis direction
- the X-axis, Y-axis, and Z-axis directions The rotation (tilt) direction will be described as ⁇ x, ⁇ y, and ⁇ z directions, respectively.
- the positions of the three degrees of freedom in the ⁇ x, ⁇ y, and ⁇ z directions of the table, work, or target surface are collectively referred to as “posture” as appropriate, and the remaining three degrees of freedom directions (X The positions of the axis, the Y-axis, and the Z-axis direction) are collectively referred to as “position” where appropriate.
- the moving device 200 includes a Stewart platform type 6-degree-of-freedom parallel link mechanism as the drive mechanism 11 of the table 12, it has features such as high accuracy, high rigidity, large support force, and easy inverse kinematics calculation. is there.
- the moving device 200 is not limited to a device that can move the table in the direction of six degrees of freedom.
- the position and posture of the work (table 12) are controlled with respect to the beam from the irradiation unit.
- the beam from the beam irradiation unit may be movable, or both the beam and the work (table) may be movable.
- the table 12 has a workpiece W to be subjected to additional processing mounted on the upper surface thereof.
- the table 12 is provided with a chuck mechanism 13 (not shown in FIG. 2, refer to FIG. 6) for fixing the workpiece W.
- a mechanical chuck or a vacuum chuck is used as the chuck mechanism 13.
- the shape of the table 12 may be any shape such as a rectangular plate shape or a disk shape.
- the controller 600 uses the inverse kinematics calculation in a manner similar to that disclosed in US Pat. No. 6,940,582 to determine the position of the table 12 via the drive mechanism 11 (parallel link mechanism). Control attitude.
- the parallel link mechanism includes six extendable rods (links), and the length of each rod is controlled by the control device 600 via six extension / contraction mechanisms that individually extend / contract each rod.
- Rod length information (amount of change in length from the reference state) is measured by the linear encoders 24 1 to 24 6 (see FIG. 6). Note that the linear encoder is actually provided on the six extendable rods constituting the parallel link mechanism, but is shown separately from the drive mechanism 11 in FIG. 6 for convenience.
- the entire drive mechanism 11 including the table 12 has a floor surface (or base) on which the stator of the planar motor 26 is provided by a plurality of air bearings provided on the bottom surface of the slider together with the movable element of the planar motor 26 described above. ) Is levitated above.
- the entire drive mechanism 11 including the table 12 is moved on the floor (or base) by the flat motor 26.
- the moving device 200 can freely move the table 12 between the measuring device 400 and the modeling head unit 500 shown in FIG. 1 and the workpiece transfer system 300 (not shown in FIG. 1, refer to FIG. 6). It is movable.
- the moving apparatus 200 may include a plurality of tables 12 on which the workpieces W are mounted.
- a plurality of tables 12 on which the workpieces W are mounted.
- measurement using the measuring device 400 is performed on a workpiece held on another table. May be.
- each table may be freely movable between the measuring device 400, the modeling head unit 500, and the workpiece transfer system 300 (not shown in FIG. 1, refer to FIG. 6).
- a table that holds the workpiece exclusively during measurement using the measuring device 400 and a table that holds the workpiece exclusively during processing using the modeling head unit 500 are provided, and the workpiece is loaded into the two tables.
- the slider which comprises the base platform of each parallel link mechanism may be fixed on the floor (or base). Even when a plurality of tables 12 are provided, each table 12 is movable in the direction of 6 degrees of freedom, and the position in the direction of 6 degrees of freedom can be controlled.
- the planar motor 26 is not limited to the air levitation method, and a magnetic levitation method planar motor may be used. In the latter case, the slider need not be provided with an air bearing.
- control device 600 by controlling at least one of the magnitude and direction of the current supplied to each coil of the coil unit constituting the planar motor 26, the slider is placed on the floor (or base) in the X, Y two-dimensional manner. It can move freely in any direction.
- the moving device 200 includes a position measurement system 28 (see FIG. 6) that measures position information regarding the X-axis direction and the Y-axis direction of the slider.
- the position measurement system 28 can be configured by, for example, an encoder system or an interferometer system.
- the position information (the shape in the present embodiment) in the three-dimensional space of at least a part of the target surface (for example, the upper surface) on the work W mounted on the table 12 is measured by the measuring device 400.
- Information) is measured, and after the measurement, additional processing (modeling) is performed on the workpiece W. Therefore, when measuring the shape information of at least a part of the target surface on the workpiece W, the control device 600 measures the measurement results and the parallel link mechanism at the time of measurement by the linear encoders 24 1 to 24 6 .
- the position and orientation of the target surface on the workpiece W mounted on the table 12 can be determined by the modeling system 100. And a reference coordinate system (hereinafter referred to as a table coordinate system).
- a table coordinate system hereinafter referred to as a table coordinate system.
- the workpiece W is controlled by the open loop control of the position in the direction of 6 degrees of freedom of the table 12 based on the measurement information of the lengths of the six rods of the parallel link mechanism and the measurement result of the position measurement system 28.
- Position control in the direction of 6 degrees of freedom with respect to the target value of the upper target surface TAS is possible.
- the above-described position information in the three-dimensional space is not limited to the shape, and it is sufficient if the position information is at least three points according to the shape of the target surface.
- a linear motor may be used in place of the planar motor 26 as a driving device that moves the slider in the XY plane.
- the mechanism for moving the table 12 may be configured by using a parallel link mechanism of a type other than the aforementioned Stewart platform type 6-degree-of-freedom parallel link mechanism, or a mechanism other than the parallel link mechanism.
- the structure of the mechanism for moving the table of the moving device 200 is basically that the table (movable member) on which the work is placed is tilted in the direction of three degrees of freedom in the XY plane, the Z-axis direction, and the XY plane. Any structure that can move in the direction of at least five degrees of freedom of ( ⁇ x or ⁇ y) may be used.
- the table 12 itself may be levitated and supported (non-contact support) via a predetermined clearance (gap or gap) on the upper surface of a support member such as a base by air levitation or magnetic levitation.
- a predetermined clearance gap or gap
- the table moves in a non-contact manner with respect to a member that supports the table, which is extremely advantageous in terms of positioning accuracy and greatly contributes to improvement in modeling accuracy.
- the table 12 may be movable only in the three-degree-of-freedom directions of the X axis, the Y axis, and the Z axis.
- the mechanism for moving the table 12 may not include a slider that moves in the XY plane.
- the movement system may be configured by a table and a robot that moves the table.
- the measuring device 400 measures the three-dimensional position information of the work for associating the position and orientation of the work mounted on the table 12 with the table coordinate system, for example, the shape.
- the measuring device 400 includes a laser non-contact type three-dimensional measuring machine 401, for example.
- the three-dimensional measuring instrument 401 is configured in the same manner as the shape measuring apparatus disclosed in, for example, US Patent Application Publication No. 2012/0105867.
- a line-shaped projection pattern composed of one line light is projected onto the surface of the test object, and the line-shaped projection pattern Each time the entire surface of the test object is scanned, the line-shaped projection pattern projected onto the test object is imaged from an angle different from the projection direction. Then, the height from the reference plane of the surface of the test object is calculated from the captured image of the surface of the test object for each pixel in the longitudinal direction of the linear projection pattern using the principle of triangulation, etc. Find the three-dimensional shape of the surface.
- the scanning of the line light in the direction parallel to the X and Y planes with respect to the test object is performed by the movement of the sensor unit in the apparatus described in US 2012/0105867.
- This embodiment is different in that it is performed by moving the table 12.
- the above-described scanning may be performed by movement of the sensor unit or by movement of both the sensor unit and the table 12.
- the measuring apparatus 400 may include a mark detection system 56 (see FIG. 6) that optically detects an alignment mark instead of the above-described three-dimensional measuring device 401 or in addition to the above-described three-dimensional measuring device. .
- the mark detection system 56 can detect, for example, an alignment mark formed on the workpiece.
- the control device 600 calculates the position and orientation of the workpiece (or table 12) by accurately detecting the center positions (three-dimensional coordinates) of at least three alignment marks using the mark detection system 56, respectively.
- the mark detection system 56 can be configured to include a stereo camera, for example.
- the mark detection system 56 may optically detect at least three alignment marks formed in advance on the table 12.
- control device 600 scans the surface (target surface) of the workpiece W using the three-dimensional measuring device 401 as described above, and acquires the surface shape data. Then, the control device 600 performs a least square process using the surface shape data, and associates the three-dimensional position and orientation of the target surface on the workpiece with the table coordinate system.
- the control device 600 since the position of the table 12 in the six-degree-of-freedom direction is managed on the table coordinate system by the control device 600, including the above-described measurement with respect to the test object (work W), the three-dimensional position of the work And after the posture is associated with the table coordinate system, the control of the position of the workpiece W in the 6 degrees of freedom direction (that is, the position and the posture) is all in accordance with the table coordinate system, including the time of additional processing by three-dimensional modeling. This can be done by open loop control of the table 12.
- measuring device 400 may not be provided.
- the modeling head unit 500 includes a light source system 510 and a condensing optical system 82, and is inclined in the YZ plane with respect to the optical axis AX via the condensing optical system 82 (terminal lens 82a).
- a beam irradiation unit 520 that emits beams LB 1 and LB 2 that pass through the optical path, a material supply unit 530 that supplies powdered modeling material PD, and a lower end of a lens barrel 85 that holds the condensing optical system 82.
- a cover member 30, and a gas supply device 40 for supplying an inert gas, for example, nitrogen (N 2 ) to the first space 30a inside the cover member 30 through a gas supply port described later, It has.
- the light source system 510 includes, for example, a light source unit 60 including a plurality of laser units (not shown in FIG. 2, refer to FIG. 6), an illuminance uniformizing optical system (not shown) including a double fly-eye optical system, a condenser lens system, and the like. And using a uniform illumination optical system, the beams respectively emitted from the plurality of laser units are mixed to generate a parallel beam with a uniform cross-sectional illumination distribution.
- the configuration of the illuminance uniforming optical system is not particularly limited.
- the illuminance uniforming optical system may be configured using a rod integrator, a collimator lens system, or the like.
- the light source unit 60 (a plurality of laser units) of the light source system 510 is connected to a control device 600 (see FIG. 6), and on / off of the plurality of laser units is individually controlled by the control device 600. Thereby, the light quantity (laser output) of the laser beam irradiated to the workpiece
- work W upper target surface
- the modeling system 100 may not include a light source or a light source and an illuminance uniforming optical system.
- a parallel beam having a desired light amount (energy) and desired illuminance uniformity may be supplied to the modeling system 100 from an external device.
- the beam irradiation unit 520 includes, in addition to the light source system 510, a beam cross-sectional intensity conversion optical system 78 and a spatial light modulator (SLM) that are sequentially arranged on the optical path of the parallel beam from the light source system 510.
- a mirror array 80 which is a kind of Spatial (Light Modulator) and a condensing optical system 82 for condensing light from the mirror array 80.
- the spatial light modulator is a general term for elements that spatially modulate the amplitude (intensity), phase, or polarization state of light traveling in a predetermined direction.
- the beam cross-sectional intensity conversion optical system 78 converts the cross-sectional intensity distribution of the parallel beam from the light source system 510.
- the beam cross-section intensity conversion optical system 78 converts the parallel beam from the light source system 510 into a donut-shaped (annular) parallel beam in which the intensity of the region including the center of the cross-section is substantially zero.
- the beam cross-section intensity conversion optical system 78 is constituted by, for example, a convex cone reflector and a concave cone reflector that are sequentially arranged on the optical path of the parallel beam from the light source system 510.
- the parallel beam from the light source system 510 is reflected radially by the reflecting surface of the convex cone reflector, and the reflected beam is reflected by the reflecting surface of the concave cone reflector, thereby being converted into an annular parallel beam. .
- the parallel beam that has passed through the beam cross-sectional intensity conversion optical system 78 is irradiated onto the workpiece via a mirror array 80 and a condensing optical system 82 as described later.
- the beam cross-sectional intensity conversion optical system 78 By converting the cross-sectional intensity distribution of the parallel beam from the light source system 510 using the beam cross-sectional intensity conversion optical system 78, the intensity of the beam incident on the pupil plane (incident pupil) PP of the condensing optical system 82 from the mirror array 80. It is possible to change the distribution. Further, by converting the cross-sectional intensity distribution of the parallel beam from the light source system 510 using the beam cross-sectional intensity conversion optical system 78, the emission of the beam substantially emitted from the condensing optical system 82 is emitted. It is also possible to change the intensity distribution on the surface.
- the beam cross-sectional intensity conversion optical system 78 is not limited to a combination of a convex conical reflector and a concave conical reflector.
- the diffractive optical element disclosed in US Patent Application Publication No. 2008/0030852 A combination of a focal lens and a conical axicon system may be used.
- the beam cross-sectional intensity conversion optical system 78 may be any one that converts the cross-sectional intensity distribution of the beam, and various configurations are conceivable.
- the intensity of the parallel beam from the light source system 510 in the region including the center of the cross-section is not substantially zero, It is also possible to make it smaller than the intensity in the region.
- the mirror array 80 includes a base member 80A having a plane (hereinafter referred to as a reference plane for convenience) that forms 45 degrees ( ⁇ / 4) with respect to the XY plane and the XZ plane, and a base member 80A.
- a reference plane for convenience
- the mirror array 80 adjusts the inclination of a large number of mirror elements 81 p, q with respect to the reference plane (for example, by making the reflection surfaces of all the mirror elements 81 p, q substantially parallel to the reference plane).
- a large reflective surface parallel to the surface can be formed substantially.
- each mirror element 81p , q of the mirror array 80 is, for example, rectangular.
- Each mirror element 81 p, q of the mirror array 80 for example, each mirror element 81 p, rotatable in the one axis of rotation parallel to the diagonal line of the reflecting surface of q, inclined with respect to the reference plane of the reflecting surface
- the angle can be set to an arbitrary angle within a predetermined angle range.
- the angle of the reflecting surface of each mirror element is measured by a sensor that detects the rotation angle of the rotating shaft, for example, a rotary encoder 83 p, q (not shown in FIG. 2, see FIG. 6).
- the drive unit 87 includes, for example, an electromagnet or a voice coil motor as an actuator, and each mirror element 81 p, q is moved by the actuator and operates with a very high response.
- each of the mirror elements 81p and q illuminated by the annular parallel beam from the light source system 510 has a reflected beam in a direction according to the inclination angle of its reflecting surface. (Parallel beam) is emitted and incident on the condensing optical system 82 (see FIG. 3).
- the cross-sectional shape (cross-sectional intensity distribution) of the parallel beam incident on the mirror array 80 may be different from the annular shape.
- the beam may be irradiated to the beam.
- the beam cross-sectional intensity conversion optical system 78 may not be provided.
- Condensing optical system 82 has a numerical aperture of N.P. A. Is an optical system with a high NA of 0.5 or more, preferably 0.6 or more, and low aberration. As shown in FIG. 2, the condensing optical system 82 includes one or a plurality of large-diameter lenses including a terminal lens 82a held by a cylindrical lens barrel 85 (in FIG. 2, etc., the terminal lens 82a is representative). (Illustrated). In the present embodiment, a lens having a hollow portion TH penetrating in the optical axis AX direction at the center including the optical axis AX (referred to as a hollow lens for convenience) is used as the terminal lens 82a.
- the lenses other than the terminal lens 82a may be a hollow lens or may not be a hollow lens.
- the condensing optical system 82 has a large aperture, low aberration, and high N.P. A. Therefore, a plurality of parallel beams from the mirror array 80 can be collected on the rear focal plane.
- the beam irradiation unit 520 can collect the beam emitted from the condensing optical system 82 (terminal lens 82a), for example, in a spot shape. Further, since the condensing optical system 82 is composed of one or a plurality of large-diameter lenses, the area of incident light can be increased, and thereby the numerical aperture N.P. A.
- the beam condensed by the condensing optical system 82 according to the present embodiment is extremely sharp and has a high energy density, which makes it possible to increase the processing accuracy of the additional processing.
- the table 12 by moving the table 12 in a scanning direction parallel to the XY plane (in FIG. 2, as an example, the Y-axis direction), a workpiece W having a beam and a modeling target surface TAS at the upper end.
- a scanning direction parallel to the XY plane in FIG. 2, as an example, the Y-axis direction
- a workpiece W having a beam and a modeling target surface TAS at the upper end.
- modeling processing
- the table 12 may be moved in at least one of the X axis direction, the Z axis direction, the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction while the table 12 is moving in the Y axis direction. Needless to say.
- the powdery modeling material (metal material) supplied by the material supply unit 530 is melted by the energy of the laser beam. Therefore, as described above, if the total amount of energy taken in by the condensing optical system 82 increases, the energy of the beam emitted from the condensing optical system 82 increases, and the amount of metal that can be dissolved per unit time increases. Accordingly, if the supply amount of the modeling material and the speed of the table 12 are increased, the modeling throughput is improved.
- the modeling target surface TAS is aligned with a predetermined surface (hereinafter referred to as a modeling surface MP) (see, for example, FIGS. 2 and 5).
- a modeling surface MP a predetermined surface
- a spot-shaped beam irradiation region (beam spot) is formed on the modeling surface MP, and the workpiece W (target surface TAS) is made relative to the beam (spot beam) that forms the beam spot.
- Modeling processing can be performed while scanning.
- the above-described modeling surface MP is the rear focal plane of the condensing optical system 82 (see, for example, FIGS. 2 and 5), but the modeling plane may be a plane near the rear focal plane. good.
- the modeling surface MP is perpendicular to the optical axis AX on the exit side of the condensing optical system 82, but may not be perpendicular.
- the incident angles of a plurality of parallel beams incident on the condensing optical system 82 A technique for controlling the distribution can be employed.
- the condensing optical system 82 of this embodiment has a configuration in which the pupil plane (incidence pupil) PP and the front focal plane coincide, the incident angles of a plurality of parallel beams LB using the mirror array 80 are used.
- the converging position of the plurality of parallel beams LB can be controlled accurately and simply, but the pupil plane (incident pupil) of the condensing optical system 82 and the front focal plane are not matched. May be.
- the mirror array 80 is employed, and the control device 600 operates each mirror element 81 p, q with a very high response, thereby allowing a plurality of parallel rays incident on the pupil plane PP of the condensing optical system 82.
- the incident angle of the beam LB is controlled.
- the intensity distribution of the beam on the modeling surface MP can be set or changed.
- the control device 600 is on the modeling surface MP during the relative movement between the beam and the target surface TAS (the surface on which the modeling target portion TA is set, which is the surface on the workpiece W in this embodiment). It is possible to change the intensity distribution of the beam, for example, at least one of the shape, size and number of the irradiation region of the beam.
- control device 600 can change the intensity distribution of the beam on the modeling surface MP continuously or intermittently.
- the control device 600 can also change the intensity distribution of the beam on the modeling surface MP according to the relative position between the beam and the target surface TAS.
- the control device 600 can also change the intensity distribution of the beam on the modeling surface MP according to the required modeling accuracy and throughput.
- the control device 600 detects the state of each mirror element (here, the inclination angle of the reflecting surface) using the rotary encoder 83 p, q described above, and thereby the state of each mirror element is determined. Since the monitoring is performed in real time, the inclination angle of the reflecting surface of each mirror element of the mirror array 80 can be accurately controlled.
- a pupil surface of the condensing optical system 82 is used instead of the mirror array 80 by using a solid mirror having a desired shape. It is also possible to change the position of the irradiation region by controlling the incident angle of one parallel beam incident on.
- FIG. 4 shows the condensing optical system 82 (lens 85) and the lower part of FIG. 2 as viewed from the ⁇ Y direction.
- FIG. 5 is an enlarged view of the lens barrel 85 in FIG. 2 and a portion below the lens barrel 85 together with a portion near the target portion TA on the workpiece W.
- the material supply unit 530 includes a supply tube 84 that extends in the Z-axis direction and is disposed in the hollow portion TH of the terminal lens 82 a of the condensing optical system 82 along the optical axis AX. And a material supply device 86 connected to one end (upper end) of 84 via a pipe 90a.
- a material supply port 84 a is formed at the other end (lower end) of the supply pipe 84, and the material supply port 84 a is disposed in the first space 30 a inside the cover member 30.
- the supply tube 84 is disposed in the hollow portion of the terminal lens 82 a, and the gap between the outer peripheral surface of the supply tube 84 and the inner surface of the hollow portion TH of the terminal lens 82 a is sealed by the seal member 89.
- the first space 30a inside the cover member 30 below the terminal lens 82a is separated from the space (second space) 85a inside the lens barrel 85 above the terminal lens 82a.
- the cover member 30 is composed of a hollow conical member (a plate member having a substantially uniform thickness having conical surfaces on the outer surface and the inner surface), and the bottom surface (the upper side in FIG. 5).
- a mounting portion 31 having an annular shape in plan view is provided on the surface.
- the attachment portion 31 is formed of an annular plate member whose inner diameter is smaller than the bottom surface of the cover member 30 (slightly larger than the outer diameter of the terminal lens 82 a) and whose outer diameter is slightly larger than the bottom surface of the cover member 30.
- the cover member 30 is fixed to the lower end surface of the lens barrel 85 via the attachment portion 31. That is, the cover member 30 is suspended and supported by the lens barrel 85.
- an exit 30b of the beam (LB 1 , LB 2 ) irradiated to the target surface TAS is formed at the distal end.
- the outer surface of the cover member 30 may not be a conical surface, and may not be a plate member having a uniform thickness.
- the material supply device 86 includes a cartridge in which the modeling material PD is accommodated, and the modeling material PD in the cartridge is discharged from the material supply port 84 a to the outlet 30 b via the pipe 90 a and the supply pipe 84.
- the modeling material PD is dropped freely by pushing it at a predetermined pressure, or it is dropped by pushing it at a predetermined pressure, and supplied onto the target surface along the optical axis AX.
- the modeling material PD is freely dropped as described above, the modeling material usually diffuses as it goes downward (as it approaches the tip of the cover member 30), and the distance from the lower end of the supply pipe 84 to the target surface TAS is a predetermined distance. If it exists, it will spread
- the conical shape of the inner surface 30c of the cover member 30 is used, and a spiral swirl flow indicated by SF in FIG. 5 is generated along the conical inner surface 30c.
- the aforementioned gas supply device 40 (see FIG. 6) for supplying nitrogen N 2 which is a kind of active gas to the internal space (first space) 30a of the cover member 30 is provided.
- the gas supply device 40 replaces nitrogen with a rare gas (such as helium, neon, or argon) that is a kind of inert gas, a mixed gas of nitrogen and at least one rare gas, or a plurality of rare gases.
- a gas mixture may be supplied into the first space 30a.
- an opening 30d for connecting the gas supply pipe 42 shown in FIG. 5 is formed.
- One end of a gas supply pipe 42 is connected to the opening 30d.
- the one end of the gas supply pipe 42 is, for example, a cover member in the tangential direction of the peripheral wall of the cover member 30 so as to intersect the wall of the cover member 30 at an acute angle in plan view (viewed from above).
- the gas supply port 42 a at the tip of the gas supply pipe 42 is exposed in the first space 30 a inside the cover member 30.
- the gas supply port 42 a is located above the center in the height direction of the cover member 30.
- the gas supply port 42a is located at a position higher than the material supply port 84a.
- one end portion of the gas supply pipe 42 is slightly inclined with respect to the XY plane so that one end side is lower than the other end side in a state of being inserted into the opening 30d. That is, the above-described opening 30d is formed in the cover member 30 in a direction that intersects the peripheral wall of the cover member 30 at an acute angle in a plan view and is slightly inclined with respect to the XY plane.
- the other end of the gas supply pipe 42 is connected to a gas supply device 40 (see FIG. 6).
- a gas supply device 40 for example, along the conical inner surface 30 c of the cover member 30 via the gas supply port 42 a of the gas supply pipe 42, for example, the tangent line of the inner surface 30 c of the cover member 30.
- Nitrogen N 2 in the operating state of the gas supply device 40, for example, along the conical inner surface 30 c of the cover member 30 via the gas supply port 42 a of the gas supply pipe 42, for example, the tangent line of the inner surface 30 c of the cover member 30.
- Nitrogen N 2 in the operating state of the gas supply device 40, for example, along the conical inner surface 30 c of the cover member 30 via the gas supply port 42 a of the gas supply pipe 42, for example, the tangent line of the inner surface 30 c of the cover member 30.
- Nitrogen N 2 in the operating state of the gas supply device 40, for example, along the conical inner surface 30 c
- the static pressure decreases as it approaches the center according to Bernoulli's theorem (except for the vicinity of the center where the influence of viscosity is strong).
- the diameter of the inner surface 30c of the cover member 30 is smaller as it goes downward (as it approaches the outlet 30b of the cover member 30). Therefore, the cover member 30 functions as a convergent nozzle (convergent nozzle) for accelerating the fluid, and the closer to the narrow portion (the front end portion of the cover member 30), the faster the flow rate of the gas flowing inside the cover member 30 is. The pressure is lowered.
- the static pressure in the swirling flow SF is lowest at the center of the position of the outlet 30b of the cover member 30.
- the powdery modeling material PD that falls directly below the supply pipe 84 goes down (as it approaches the outlet 30b of the cover member 30), and the cover member 30 is swirled by nitrogen N 2 (inert gas). It is narrowed down corresponding to the shape of the inner surface 30c. Therefore, in the operating state of the gas supply device 40, the powdery modeling material PD supplied from the supply pipe 84 can be converged to almost one point (here, a point on the optical axis AX), and the modeling material PD is beamed.
- the gas supply device 40 can adjust the temperature, flow rate, and the like of the inert gas sent into the first space 30a.
- the opening 30d provided in the cover member 30 may be used as a gas supply port.
- the tip of the gas supply pipe 42 may be connected to the opening 30d of the cover member 30 so as not to be exposed to the first space 30a.
- gas supply port 42 a (opening 30 d) may be disposed below the center in the height direction of the cover member 30. Further, the gas supply port 42a (opening 30d) may be disposed below the material supply port 84a.
- the beam irradiation region on the modeling surface MP is formed by the beams LB 1 and LB 2 emitted through the outlet 30b, so that the beam is formed on the modeling surface.
- the range in which the shape, size, or position of the irradiated region can be changed is limited by the shape and size of the outlet 30b.
- the gas supply port 42a is provided at a position substantially the same height as the lower surface of the terminal lens 82a, so that the terminal lens 82a is driven by a high-speed inert gas flow.
- the terminal lens 82a can be protected from contamination (including adhesion of a modeling material from the material supply port 84a).
- the end lens 82a is physically protected by the cover member 30, and is protected from contamination by contaminants in the atmosphere outside the cover member 30.
- the material supply device 86 includes, for example, two powder cartridges, and each of the two powder cartridges contains powder of a first modeling material (for example, titanium) and a second modeling material (for example, stainless steel). .
- the material supply device 86 includes two powder cartridges for supplying two types of modeling materials.
- the material supply device 86 may include only one powder cartridge.
- the material supply device 86 is connected to the control device 600 (see FIG. 6), and 2 2 by the material supply device 86 (internal control unit) in response to an instruction from the control device 600 during modeling.
- One of the two powder cartridges is selected, and the modeling material from the selected powder cartridge is supplied to the supply pipe 84 via the pipe 90a.
- the supply pipe 84 may be supplied.
- the control device 600 can adjust the supply amount of the modeling material supplied to the supply pipe 84 from the powder cartridge selected by the material supply device 86 per unit time.
- the adjustment of the supply amount of the modeling material supplied to the supply pipe 84 per unit time is to obtain a negative pressure on the outside of the powder cartridge with respect to the inside when acquiring the powder from the powder cartridge. It can be performed by adjusting, or by providing a valve for adjusting the amount of powder supplied from the material supply device 86 to the pipe 90a and adjusting the opening of the valve.
- the reflected beam from the mirror array 80 is a partial region (partial region having a large NA) in the vicinity of the periphery of the condensing optical system 82.
- the shaping surface MP of the condensing optical system 82 through the region of the peripheral edge away from the optical axis AX of the terminal lens 82a located at the exit end of the condensing optical system 82, that is, the exit end of the beam irradiation unit 520.
- the light is condensed on the rear focal plane of the condensing optical system 82) (see FIG. 2).
- a beam spot is formed only by light passing through a portion near the periphery of the same condensing optical system 82. For this reason, it is possible to form a high-quality beam spot as compared with the case where a beam spot (laser spot) is formed by condensing light through different optical systems in the same region.
- the irradiation of the beam to the supply pipe 84 disposed in the hollow portion TH of the terminal lens 82a of the condensing optical system 82 and the pipe 90a having one end connected to the upper end of the supply pipe 84 is limited. be able to.
- the mirror array 80 is illuminated by an annular parallel beam.
- the condensing optical system 82 terminal lens 82a
- the + Y side of the supply pipe 84 and ⁇ Beams (shown as beams LB1 1 and LB1 2 for convenience in FIGS. 2 and 5) passing through the optical path on the Y side (front and rear in the scanning direction of the workpiece W (table 12)) are collected directly below the supply pipe 84.
- the beam spot is formed on the modeling surface by being illuminated, and the powdered modeling material PD is supplied to the spot beam that forms the beam spot via the supply tube 84 along the optical axis AX, and the outlet 30b of the cover member 30.
- a molten pool WP is formed immediately below the supply pipe 84.
- the molten pool WP is formed while scanning the table 12 in the scanning direction (+ Y direction in FIG. 5).
- a bead (melted and solidified metal) BE having a predetermined width and a predetermined length (the width of the beam spot).
- the beams LB 1 and LB 2 shown in FIG . It may be a separate parallel beam reflected at q and incident on the pupil plane PP of the condensing optical system 82 at a different incident angle, or may be a part of the same parallel beam, for example, a parallel beam having a ring-shaped cross section. Also good.
- the width in the X-axis direction or the Y axis When the incident angles of the plurality of parallel beams LB incident on the condensing optical system 82 are adjusted so that the width in the direction, or the width in the X-axis direction and the width in the Y-axis direction are gradually narrowed, the beam is condensed.
- the density energy density increases.
- the thickness of the formed bead BE layer is kept constant, and the throughput is increased. Can be kept at a high level.
- the thickness of the bead BE layer to be formed can be kept constant by using other adjustment methods as well as the adjustment method.
- the laser output (the amount of energy of the laser beam) of at least one of the plurality of laser units according to the width in the X-axis direction, the width in the Y-axis direction, or the width in the X-axis direction and the width in the Y-axis direction. ) May be adjusted, or the number of parallel beams LB incident on the condensing optical system 82 from the mirror array 80 may be changed. In this case, the throughput is somewhat lower than the adjustment method described above, but the adjustment is simple.
- FIG. 6 is a block diagram showing the input / output relationship of the control device 600 that mainly configures the control system of the modeling system 100.
- the control device 600 includes a workstation (or a microcomputer) and the like, and comprehensively controls each component of the modeling system 100.
- the basic function of the modeling system 100 is to add a desired shape to an existing part (work) by three-dimensional modeling.
- the workpiece is input into the modeling system 100, and after a desired shape is accurately added, the workpiece is unloaded from the modeling system 100.
- the actual shape data of the added shape is sent from the control device 600 to an external device, for example, a host device.
- a series of operations performed in the modeling system 100 is roughly as follows.
- the table 12 is at a predetermined loading / unloading position, the workpiece is loaded on the table 12 by the workpiece transfer system 300.
- the table 12 on which the workpiece W is mounted is moved below the measuring device 400 by the control device 600.
- the table 12 is moved by the control device 600 controlling the planar motor 26 based on the measurement information of the position measurement system 28 and moving the slider in the X-axis direction (and Y-axis direction) on the floor (or base). It is done by doing. During this movement, the above-described reference state is maintained on the table 12.
- the control device 600 uses the measuring device 400 to store position information (shape information in the present embodiment) in at least a part of the target surface TAS on the workpiece W on the table 12 in the reference state in the three-dimensional space. Measurement is performed. Thereafter, based on this measurement result, the position of the target surface TAS on the workpiece W in the direction of 6 degrees of freedom can be managed by open loop control on the table coordinate system (reference coordinate system).
- position information shape information in the present embodiment
- the table 12 on which the workpiece W on which measurement of at least a part of the shape information of the target surface TAS has been completed is moved by the control device 600 below the modeling head unit 500 (cover member 30).
- additional processing is performed by three-dimensional modeling to add a shape corresponding to 3D data to the workpiece on the table 12.
- This additional processing is performed as follows, for example.
- the control device 600 converts the 3D CAD data of the shape to be added by the additional processing (the shape obtained by removing the shape of the workpiece to be subjected to the additional processing from the shape of the object created after the additional processing) to the data for three-dimensional modeling.
- the data is converted into STL (Stereo-Lithography) data, and data of each layer sliced in the Z-axis direction is generated from the three-dimensional STL data.
- the control device 600 controls the moving device 200 and the modeling head unit 500 to perform additional processing of each layer on the workpiece based on the data of each layer, thereby forming the beam spot and supplying tube for the spot beam described above.
- the formation of the molten pool WP by supplying the modeling material PD from 84 is repeatedly performed for each layer while scanning the table 12 in the scanning direction.
- the control of the position and orientation of the target surface on the workpiece during the additional machining is performed in consideration of the shape information of the target surface measured previously.
- the target surface (for example, the upper surface) TAS on which the target portion TA for the additional processing of the workpiece W is set is perpendicular to the optical axis of the condensing optical system 82 by adjusting the tilt of the table 12. Assuming that the surface is a flat surface (a surface parallel to the XY plane), modeling with the scanning operation of the table 12 is performed.
- control device 600 moves the table 12 on which the workpiece W subjected to the additional machining is moved to the aforementioned loading / unloading position.
- the control device 600 instructs the workpiece transfer system 300 to unload the workpiece.
- the workpiece transfer system 300 takes out the workpiece W that has undergone additional processing from the table 12 and transfers it to the outside of the modeling system 100.
- the control device 600 sets the table 12 of the moving device 200 to the reference state. As a result, the moving device 200 stands by in preparation for loading the next workpiece at the loading / unloading position.
- the irradiation surface (beam spot) of the spot-shaped beam is the modeling surface MP (for example, FIG. 2 and FIG. 2) on which the modeling target surface TAS is to be aligned.
- Forming can be performed while the workpiece W is relatively scanned with respect to the beam (spot beam) formed on the beam spot (see FIG. 5).
- the table 12 is moved in at least one of the X axis direction, the Z axis direction, the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction while the table 12 is moving in the Y axis direction. You can also
- the powdered modeling material (metal material) PD supplied by the material supply unit 530 is melted by the energy of the laser beam.
- the gas supply device 40 is actuated by the control device 600, and the spiral swirl flow along the inner surface 30c of the cover member 30 through the gas supply port 42a of the gas supply pipe 42 (see FIG. 5 (see symbol SF in FIG. 5), nitrogen (inert gas) is fed into the cover member 30.
- the powdery modeling material PD supplied by natural fall directly below the supply pipe 84 goes down (approaching the tip of the cover member 30), the cover The member 30 is narrowed down correspondingly to the shape of the inner surface 30c (inner wall surface) of the member 30.
- the powdery modeling material PD supplied from the supply pipe 84 can be converged to almost one point (here, a point on the optical axis AX), and the modeling material PD is melted by the beams LB 1 and LB 2.
- the lower surface of the terminal lens 82a can be purged with a high-speed inert gas flow, and the terminal lens 82a can be protected from contamination.
- the end lens 82a is physically protected by the cover member 30, it is protected from contamination by contaminants in the atmosphere outside the cover member 30. In this respect, it is possible to prevent a decrease in modeling accuracy.
- the condensing optical system 82 is configured by one or a plurality of large-diameter lenses, the area of incident light can be increased, thereby opening the aperture.
- the beam condensed by the condensing optical system 82 according to the present embodiment is extremely sharp and has a high energy density, so that the processing accuracy by modeling can be increased.
- the throughput of modeling processing by the modeling head unit 500 is improved.
- the intensity distribution of the beam on the modeling surface MP is set or changed by controlling the incident angle distribution of a plurality of parallel beams incident on the condensing optical system 82. be able to.
- a modeled object can be formed on the target surface TAS of the workpiece W with high processing accuracy and high throughput by, for example, rapid prototyping.
- the modeling system 100 includes a plurality of, for example, two powder cartridges, and a powder of a first modeling material (for example, titanium) and a second modeling material are provided inside each of the two powder cartridges. (For example, stainless steel) powder is contained.
- the control device 600 switches the supply of powder to the supply pipe 84 using the material supply device 86.
- the powder of the first modeling material (for example, titanium) and the powder of the second modeling material (for example, stainless steel) are alternatively supplied to the supply pipe 84. Therefore, the joining shape of different materials can be easily generated by simply switching the powder material supplied by the control device 600 according to the site. The switching can be performed almost instantaneously.
- it is possible to make “alloys” on the spot by mixing and supplying different materials, or to change the composition depending on the place or to make it gradation.
- the seal member 89 seals the gap between the outer peripheral surface of the supply pipe 84 arranged in the hollow portion TH of the terminal lens 82a and the inner surface of the hollow portion TH of the terminal lens 82a.
- the space inside the cover member 30 below the end lens 82a (first space 30a) and the space inside the lens barrel 85 above the end lens 82a (second space 85a) are separated, but instead.
- the inside of the second space 85a may be set to a positive pressure compared to the inside of the first space 30a.
- the two spaces may be separated to such an extent that the pressure difference between the first space 30a and the second space 85a can be maintained, but the gas (inert gas) is always directed from the second space 85a toward the first space 30a. Etc.). Even in such a case, the inflow of gas from the first space into the second space is prevented.
- the inert gas is supplied from the gas supply pipe 42 downward from the horizontal to the cover member 30 (first space 30a) via the gas supply port 42a.
- the inert gas may be supplied into the cover member 30 through the gas supply port 42a in the horizontal direction.
- a plurality of openings may be formed in the cover member 30, and the gas supply pipes 42 may be individually connected to the openings.
- a plurality of openings are formed on the circular bottom surface (upper surface in FIG. 5) of the cover member 30 so that the gas supply pipes 42 can be connected to the positions where the central angles are equiangular intervals. May be.
- nitrogen N 2 from the gas supply ports 42a of the plurality of gas supply pipes 42 in the tangential direction of the inner surface 30c of the cover member 30, one of the same rotation direction (clockwise or counterclockwise) is provided. It is good also as producing a swirl flow.
- the optical axis AX direction (Z-axis direction) of the gas supply port 42a of at least one gas supply pipe 42 is used. (Position in the height direction) may be different from the remaining at least one gas supply port.
- the inert gas supplied from the gas supply port 42a of the at least one gas supply pipe 42 is different in temperature, flow rate, and the like from the inert gas supplied from the remaining at least one gas supply port.
- the components or types of the inert gas may be different.
- the different components of the inert gas mean a case where the component gases are different from each other when the inert gas is a mixed gas of a plurality of types of rare gases, for example.
- the inert gas may be a mixed gas of nitrogen and a rare gas.
- the inert gas is supplied into the first space 30 a along the tangential direction of the conical inner surface 30 c of the cover member 30, thereby spirally turning along the inner surface 30 c of the cover member 30.
- a plurality of gas supply ports 42 a are provided at almost equal intervals over the entire circumference of the cover member 30, and an inert gas is supplied from each of the gas supply ports 42 a.
- the modeling material PD is generated from the material supply port 84a along the optical axis AX toward the outlet 30b by the plurality of inert gas flows LF. It is good also as making it converge on an axis.
- the cover member 30 is illustrated as a hollow conical member, that is, a member such as a hood.
- the cover member has an outlet in the Z-axis direction (a direction parallel to the optical axis AX).
- the modeling head unit 500 includes the condensing optical system 82, and the hollow lens in which the through hole is formed so as to include the optical axis AX is used as the terminal lens 82 a of the condensing optical system 82.
- the optical element at the end of the condensing optical system may be a normal lens having no through hole, or a mirror other than the lens.
- the modeling head part 500 does not need to have a condensing optical system.
- a beam passing through an optical path inclined with respect to an axis (vertical axis) along the supply path of the modeling material from the supply pipe may be emitted from the beam irradiation unit.
- the present invention is not limited to this, and the gas supply is not performed via the cover member 30.
- the tube 42 may be inserted into the first space 30a.
- High N.sub.2 including the terminal lens 82a of the condensing optical system 82; A.
- a vibration isolating member such as rubber
- the cover member may be supported.
- cover member 30 may be movable with respect to the lens barrel 85.
- the mirror array 80 is used as the spatial light modulator.
- a digital micromirror device (registered trademark) manufactured by MEMS technology is used. ) May be used in a large area.
- the case where the intensity distribution of the beam on the modeling surface is changed by individually controlling the incident angles of the plurality of parallel beams incident on the pupil plane of the condensing optical system 82 has been described.
- the incident angles of the plurality of parallel beams incident on the pupil plane of the condensing optical system 82 may not be controllable (changeable). Therefore, when the incident angle of the parallel beam incident on the condensing optical system 82 is controlled using a mirror array as in the above embodiment, all mirror elements are in the state of the reflecting surface (the position and the inclination angle of the reflecting surface). At least one of them may not be changeable.
- the reflective spatial light modulator that can be used to control the incident angles of a plurality of parallel beams incident on the condensing optical system 82 of the above embodiment is not limited to the above-described mirror array.
- Examples of usable reflective spatial light modulators include reflective liquid crystal display elements, electrophoretic displays (EPD), electronic paper (or electronic ink), and light diffractive light valves (Grating Light Light Valve). Is given as an example.
- the beam intensity distribution on the modeling surface is changed by changing the aperture (size, shape, number) of the mask arranged on the incident surface side of the condensing optical system (projection optical system). Also good.
- a mask may be disposed on the object plane of the condensing optical system, and the image plane or the vicinity thereof may be used as a modeling plane.
- the beam intensity distribution on the pupil plane of the condensing optical system is made, for example, in a zonal shape, or a light shielding member that shields a circular area including the optical axis is arranged on the pupil plane.
- the terminal lens of the optical system can be a hollow lens.
- the condensing optical system 82 has a large aperture.
- a condensing optical system having a smaller than 0.5 may be used.
- the modeling system 100 may include a sensor capable of arranging the light receiving unit on the rear focal plane of the condensing optical system 82 or in the vicinity thereof.
- a CCD image sensor capable of arranging the light receiving unit on the rear focal plane of the condensing optical system 82 or in the vicinity thereof.
- the intensity distribution of the beam can be managed in consideration of the fluctuation factors such as thermal aberration of the condensing optical system 82. It becomes possible.
- the beam intensity distribution on the rear focal plane of the condensing optical system 82 can be set to a desired state with high accuracy. Further, the position of the beam in the reference coordinate system may be managed using this sensor.
- the cover member 30 collects the powdered modeling material that has not been melted together with the beam outlet, the inert gas outlet, and the outlet 30b that also functions as the modeling material outlet. It may have a mouth (suction port).
- the usage of the modeling system 100 including the modeling head unit 500 according to the present embodiment is not limited to this, and a normal 3D printer or the like Similarly, it is also possible to generate a three-dimensional shape by modeling from a place where there is nothing on the table 12. In this case, it is nothing but to perform additional processing on the work "None".
- the control device 600 uses the mark detection system 56 (see FIG. 6) included in the measurement device 400 to form at least three places that are formed in advance on the table 12.
- the position information in the direction of six degrees of freedom of the target surface of the modeling set on the table 12 is obtained by optically detecting the alignment mark, and on the table 12 with respect to the beam (irradiation area) based on this result Three-dimensional modeling may be performed while controlling the position and orientation of the target surface.
- the control device 600 controls the components of the moving device 200, the measurement device 400, and the modeling head unit 500.
- the present invention is not limited thereto, and the control device of the modeling system is used.
- a plurality of hardware units each including a processing unit such as a microprocessor may be used.
- each of the moving device 200, the measuring device 400, and the modeling head unit 500 may be provided with a processing device, or the second device that controls two of the moving device 200, the measuring device 400, and the modeling head unit 500.
- a combination of one processing device and a second processing device that controls the remaining one may be used.
- each processing device is responsible for a part of the function of the control device 600 described above.
- you may comprise the control apparatus of a modeling system by several processing apparatuses, such as a microprocessor, and the host computer which manages these processing apparatuses comprehensively.
- the shape of the member, the opening, the hole, and the like may be described using a circle, a rectangle, or the like, but it goes without saying that the shape is not limited to these shapes.
- the modeling system and the modeling method according to the present invention are suitable for forming a three-dimensional modeled object.
- SYMBOLS 30 Cover member, 30a ... 1st space, 30b ... Outlet, 30c ... Inner surface, 33 ... Guide part 40 ... Gas supply apparatus, 42a ... Gas supply port, 82 ... Condensing optical system, 82a ... Terminal lens, 84 ... Supply Tube 84a ... Material supply port 85 ... Lens barrel 85a ... Second space 89 ... Sealing member 100 ... Modeling system 200 ... Moving device 520 ... Beam irradiation unit 530 ... Material supply unit 600 ... Control device AX, optical axis, LB 1 , LB 2 beam, PD, modeling material, SF, swirling flow, TA, target site, TAS, target surface, TH, through-hole.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Environmental & Geological Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
ビームを用いて対象面(TAS)上に三次元造形物を形成する造形システムは、軸(AX)に対して傾斜する光路を通るビーム(LB1、LB2)を射出するビーム照射部(520)と、材料供給口を有し、ビーム照射部からのビームで照射される粉状の造形材料(PD)を軸(AX)に沿って供給する材料供給部(530)と、一端側から他端側に徐々に収束する内面を有し、他端にビーム照射部からのビームが通過する出口が形成されたカバー部材(30)と、カバー部材内部の空間(30a)内にガス供給口を介して不活性ガスを供給するガス供給装置(42)と、を備え、不活性ガスが、カバー部材の出口を介して空間の外に流れ、造形材料は、カバー部材の出口を介して前記空間の外に供給される。
Description
本発明は、造形システム及び造形方法に係り、さらに詳しくは、ビームを用いて対象面上に三次元造形物を形成する造形システム及び造形方法に関する。本発明に係る造形システム及び造形方法は、ラピッドプロトタイピング(3Dプリンティング、あるいは付加製造、あるいはダイレクトデジタル製造と呼ばれることもある)による三次元造形物の形成に好適に用いることができる。
CADデータから直接3D(三次元)形状を生成する技術は、ラピッドプロトタイピング(3Dプリンティング、あるいは付加製造、あるいはダイレクトデジタル製造と呼ばれることもあるが、以下、ラピッドプロトタイピングを総称として用いる)と呼ばれる。3Dプリンタ等のラピッドプロトタイピングにより三次元造形物を形成する造形装置を、扱う材料で分類すると、樹脂を扱うものと金属を扱うものに大別できる。ラピッドプロトタイピングで製作される金属製の三次元造形物は、実際の機械構造物の一部(それが量産品にせよ試作品にせよ)として用いられることになる。既存の金属用3Dプリンタ(以下、M3DP(Metal 3D Printer)と略記する)として、PBF(Powder Bed Fusion)とDED(Directed Energy Deposition)の2種類がよく知られている。
DEDでは、溶解させた金属材料を、加工対象に付着させる方法をとっている。例えば、集光レンズで絞ったレーザビームの焦点付近に、粉末金属を噴射する(例えば、特許文献1参照)。
DEDでは、粉末材料は加工ヘッドから必要に応じて必要な量だけ供給されるため、無駄が少ない。
上述したように、DEDは、PBFに比べて、原材料となる粉末金属の扱いなどにおいて改善が図られているが、改善すべき点は多い。
本発明の第1の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形システムであって、軸に対して傾斜する光路を通るビームを射出するビーム照射部と、材料供給口を有し、前記ビーム照射部からのビームで照射される粉状の造形材料を前記軸に沿って供給する材料供給部と、一端側から他端側に徐々に収束する内面を有し、前記他端に前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外に供給される造形システムが、提供される。
本明細書において、対象面は、造形の目標部位が設定される面である。
本発明の第2の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形システムであって、軸に対して傾斜する光路を通るビームを射出するビーム照射部と、材料供給口を有し、前記ビーム照射部からのビームで照射される粉状の造形材料を前記軸に沿って供給する材料供給部と、前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、前記不活性ガスは、旋回流となって、前記カバー部材の内面に沿って前記出口に向かって流れ、前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外に供給される造形システムが、提供される。
本発明の第3の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形システムであって、軸に対して傾斜する光路を通るビームを射出するビーム照射部と、材料供給口を有し、前記ビーム照射部からのビームで照射される粉状の造形材料を前記軸に沿って供給する材料供給部と、前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、前記不活性ガスは、前記軸の周りを旋回流となって、前記出口に向かって流れ、前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外に供給される造形システムが、提供される。
本発明の第4の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形システムであって、軸に対して傾斜する光路を通るビームを射出するビーム照射部と、材料供給口を有し、造形材料としての紛体を前記軸に沿って供給する材料供給部と、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形システムが、提供される。
本発明の第5の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形方法であって、ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、一端側から他端側に徐々に収束する内面を有し、前記他端に前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法が、提供される。
本発明の第6の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形方法であって、ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、前記不活性ガスは、旋回流となって、前記カバー部材の内面に沿って前記出口に向かって流れ、前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法が、提供される。
本発明の第7の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形方法であって、ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、前記不活性ガスは、前記軸の周りを旋回流となって、前記出口に向かって流れ、前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法が、提供される。
本発明の第8の態様によれば、ビームを用いて対象面上に三次元造形物を形成する造形方法であって、ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、一端側から他端側に徐々に収束する内面を有し、前記他端に前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法が、提供される。
以下、一実施形態について、図1~図6に基づいて説明する。図1には、一実施形態に係る造形システム100の全体構成が、ブロック図にて示されている。
造形システム100は、DED方式のM3DPである。造形システム100は、ラピッドプロトタイピングにより、後述するテーブル上で三次元造形物を形成するのにも用いることができるが、ワーク(例えば、既存の部品)に対して三次元造形による付加加工を行うのにも用いることもできる。本実施形態では、後者のワークに対する付加加工を行う場合を中心として説明を行う。
造形システム100は、移動装置200、計測装置400及び造形ヘッド部500と、これら各部を含む造形システム100の全体を制御する制御装置600とを備えている。このうち、計測装置400と、造形ヘッド部500とは、所定方向、に離れて配置されている。以下の説明では、便宜上、計測装置400と、造形ヘッド部500とは、後述するX軸方向(図2参照)に離れて配置されているものとする。
図2には、造形ヘッド部500が、ワークWが搭載されたテーブル12とともに示されている。以下では、図2における紙面に直交する方向をX軸方向、紙面内の左右方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向とし、X軸、Y軸及びZ軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として説明を行う。
移動装置200は、造形の対象面(ここではワークW上の目標部位TAが設定される面)TAS(例えば図2及び図5参照)の位置及び姿勢を変更する。具体的には、対象面TASを有するワークWが搭載されるテーブル12を6自由度方向(X軸、Y軸、Z軸、θx、θy及びθzの各方向)に移動することで、対象面の6自由度方向の位置の変更を行う。本明細書においては、テーブル、ワーク又は対象面などについて、θx、θy及びθz方向の3自由度方向の位置を適宜「姿勢」と総称し、これに対応して残りの3自由度方向(X軸、Y軸及びZ軸方向)の位置を適宜「位置」と総称する。
移動装置200は、ワークWが載置されるテーブル12と、XY平面に平行な床面上に配置され、テーブル12の位置及び姿勢を変更する駆動機構11(図2では不図示、図6参照)と、テーブル12、ワークW及び駆動機構11の全体を床面に沿って2次元方向に移動するための平面モータ26(図2では不図示、図6参照)とを備えている。ここで、移動装置200は、テーブル12の駆動機構11として、一例としてベースプラットホームを構成するスライダと、エンドエフェクタを構成するテーブル12と、を備え、例えば米国特許第6,940,582号明細書に開示されるのと同様に構成されたスチュワートプラットホーム型の6自由度パラレルリンク機構を備えている。移動装置200は、テーブル12の駆動機構11として、スチュワートプラットホーム型の6自由度パラレルリンク機構を備えているので、高精度、高剛性、支持力が大きい、逆運動学計算が容易などの特徴がある。なお、移動装置200は、テーブルを6自由度方向に移動できるものに限定されない。
本実施形態に係る造形システム100では、ワークに対する付加加工時等において、ワークに対して所望の形状の造形物を形成する等のため、造形ヘッド部500に対し、より具体的には後述するビーム照射部からのビームに対してワーク(テーブル12)の位置及び姿勢が制御される。原理的には、この逆にビーム照射部からのビームの方が可動であっても良いし、ビームとワーク(テーブル)の両方が可動であっても良い。
テーブル12は、その上面に付加加工対象のワークWが搭載される。テーブル12には、ワークWを固定するためのチャック機構13(図2では不図示、図6参照)が設けられている。チャック機構13としては、例えばメカニカルチャックあるいは真空チャックなどが用いられる。なお、テーブル12の形状は、矩形板状、円盤状など如何なる形状でも良い。制御装置600は米国特許第6,940,582号明細書に開示されているのと同様の方法により、逆運動学計算を用いて駆動機構11(パラレルリンク機構)を介してテーブル12の位置及び姿勢を制御する。なお、パラレルリンク機構は、6本の伸縮可能なロッド(リンク)を備えており、各ロッドを個別に伸縮させる6つの伸縮機構を介して各ロッドの長さが制御装置600により制御され、各ロッドの長さ情報(基準状態からの長さの変化量)がリニアエンコーダ241~246(図6参照)によってそれぞれ計測される。なお、リニアエンコーダは、実際には、パラレルリンク機構を構成する6本の伸縮可能なロッドに設けられるが、図6では、便宜上、駆動機構11とは別に示されている。
平面モータ26としては、ムービングマグネット型(又はムービングコイル型)のエア浮上方式の平面モータが用いられている。すなわち、テーブル12を含む駆動機構11の全体は、スライダの底面に前述の平面モータ26の可動子とともに設けられた複数のエアベアリングによって、平面モータ26の固定子が設けられた床面(又はベース)上で浮上支持されている。平面モータ26によって、テーブル12を含む駆動機構11の全体は、床面(又はベース)上で移動される。本実施形態では、移動装置200は、図1に示される計測装置400及び造形ヘッド部500、並びにワーク搬送系300(図1では不図示、図6参照)の相互間で、テーブル12を自在に移動可能である。なお、移動装置200が、それぞれにワークWを搭載する複数のテーブル12を備えていても良い。例えば複数のテーブルの1つに保持されたワークに対して造形ヘッド部500を用いた加工を行っている間に、別のテーブルに保持されたワークに対して計測装置400を用いた計測を行っても良い。かかる場合においても、計測装置400及び造形ヘッド部500、並びにワーク搬送系300(図1では不図示、図6参照)の相互間で、それぞれのテーブルが自在に移動可能にすれば良い。あるいは、もっぱら計測装置400を用いた計測のときにワークを保持するテーブルと、もっぱら造形ヘッド部500を用いた加工のときにワークを保持するテーブルとを設けるとともに、その2つのテーブルに対するワークの搬入及び搬出がワーク搬送系300等によって可能となる構成を採用した場合には、それぞれのパラレルリンク機構のベースプラットホームを構成するスライダは、床面(又はベース)上に固定されていても良い。複数のテーブル12を設ける場合であっても、それぞれのテーブル12は、6自由度方向に可動であり、その6自由度方向の位置の制御が可能である。
なお、平面モータ26としては、エア浮上方式に限らず、磁気浮上方式の平面モータを用いても良い。後者の場合、スライダには、エアベアリングを設ける必要はない。
制御装置600では、平面モータ26を構成するコイルユニットの各コイルに供給される電流の大きさ及び方向の少なくとも一方を制御することで、スライダを、床面(又はベース)上でX、Y2次元方向に自在に移動することができる。
本実施形態では、移動装置200は、スライダのX軸方向及びY軸方向に関する位置情報を計測する位置計測系28(図6参照)を備えている。位置計測系28は、例えばエンコーダシステムあるいは干渉計システムなどによって構成することができる。
本実施形態では、後述するように、計測装置400により、テーブル12上に搭載されたワークW上の対象面(例えば上面)の少なくとも一部の三次元空間内の位置情報(本実施形態では形状情報)が計測され、その計測後にワークWに対する付加加工(造形)が行われる。したがって、制御装置600は、ワークW上の対象面の少なくとも一部の形状情報を計測したときに、その計測結果と、リニアエンコーダ241~246によって計測される、その計測時におけるパラレルリンク機構の6本のロッドそれぞれの長さの計測情報と、位置計測系28の計測結果と、を対応づけることで、テーブル12に搭載されたワークW上の対象面の位置及び姿勢を、造形システム100の基準座標系(以下、テーブル座標系と呼ぶ)と関連付けることができる。これにより、それ以後は、パラレルリンク機構の6本のロッドそれぞれの長さの計測情報及び位置計測系28の計測結果に基づくテーブル12の6自由度方向の位置のオープンループの制御により、ワークW上の対象面TASの目標値に対する6自由度方向に関する位置制御が可能になっている。なお、テーブル12の6自由度方向の位置のオープンループの制御によるワークW上の対象面の目標値に対する6自由度方向に関する位置制御を可能にするために用いられる、計測装置400で計測すべき前述の三次元空間内の位置情報は、形状に限らず、対象面の形状に応じた少なくとも3点の三次元位置情報であれば足りる。
なお、本実施形態では、スライダをXY平面内で動かす駆動装置として、平面モータ26に代えてリニアモータを用いても良い。
また、テーブル12を移動するための機構を、前述のスチュワートプラットホーム型の6自由度パラレルリンク機構以外のタイプのパラレルリンク機構、あるいはパラレルリンク機構以外の機構を用いて構成しても良い。移動装置200のテーブルを移動するための機構の構成は、要は、ワークが載置されるテーブル(可動部材)をXY平面内の3自由度方向、及びZ軸方向、並びにXY平面に対する傾斜方向(θx又はθy)の少なくとも5自由度方向に移動できる構成であれば良い。この場合において、テーブル12そのものを、エア浮上又は磁気浮上によって、ベースなどの支持部材の上面上に所定のクリアランス(ギャップ又は隙間)を介して浮上支持(非接触支持)しても良い。このような構成を採用すると、テーブルは、これを支持する部材に対して非接触で移動するので、位置決め精度上極めて有利であり、造形精度向上に大きく寄与する。なお、テーブル12は、X軸、Y軸、Z軸の3自由度方向にだけ可動であっても良い。
なお、テーブル12を移動するための機構は、XY平面内で移動するスライダを備えていなくても良い。例えばテーブルとこのテーブルを移動するロボットによって移動システムを構成しても良い。
計測装置400は、テーブル12に搭載されたワークの位置及び姿勢をテーブル座標系と関連付けるためのワークの三次元位置情報、一例として形状の計測を行う。計測装置400は、図6に示されるように、例えばレーザ非接触式の三次元計測機401を備えている。三次元計測機401は、例えば米国特許出願公開第2012/0105867号明細書に開示されている形状測定装置と同様に構成されている。
本実施形態に係る三次元計測機401を用いる計測方法では、例えば光切断法を用いることで、被検物の表面に一本のライン光からなるライン状投影パターンを投影し、ライン状投影パターンを被検物表面の全域を走査させる毎に、被検物に投影されたライン状投影パターンを投影方向と異なる角度から撮像する。そして、撮像された被検物表面の撮像画像よりライン状投影パターンの長手方向の画素毎に三角測量の原理等を用いて被検物表面の基準平面からの高さを算出し、被検物表面の三次元形状を求める。ただし、ライン光の被検物に対するX、Y平面に平行な方向の走査は、米国特許出願公開第2012/0105867号明細書に記載されている装置では、センサ部の移動によって行われるのに対し、本実施形態では、テーブル12の移動によって行われる点が相違する。もちろん、センサ部の移動によって、あるいはセンサ部とテーブル12の両方の移動によって前述の走査が行われても良い。
計測装置400は、上述の三次元計測機401の代わりに、あるいは上述の三次元計測機に加えて、アライメントマークを光学的に検出するマーク検出系56(図6参照)を備えていても良い。マーク検出系56は、例えばワークに形成されたアライメントマークを検出することができる。制御装置600は、マーク検出系56を用いて少なくとも3つのアライメントマークの中心位置(三次元座標)をそれぞれ正確に検出することで、ワーク(又はテーブル12)の位置及び姿勢を算出する。かかるマーク検出系56は、例えばステレオカメラを含んで構成することができる。マーク検出系56により、テーブル12上に予め形成された最低三か所のアライメントマークを光学的に検出することとしても良い。
本実施形態では、制御装置600は、上述したようにして三次元計測機401を用いて、ワークWの表面(対象面)を走査し、その表面形状データを取得する。そして、制御装置600は、その表面形状データを用いて最小自乗的処理を行いワーク上の対象面の三次元的位置及び姿勢をテーブル座標系に対して関連付けを行う。ここで、被検物(ワークW)に対する上述した計測中を含み、テーブル12の6自由度方向の位置は、制御装置600によってテーブル座標系上で管理されているので、ワークの三次元的位置及び姿勢がテーブル座標系に対して関連付けられた後は、三次元造形による付加加工時を含み、ワークWの6自由度方向の位置(すなわち位置及び姿勢)の制御は全てテーブル座標系に従ったテーブル12のオープンループの制御により行うことができる。
なお、計測装置400を備えていなくても良い。
図2に示されるように、造形ヘッド部500は、光源系510及び集光光学系82を含み、集光光学系82(終端レンズ82a)を介して光軸AXに対してYZ面内で傾斜する光路を通るビームLB1、LB2を射出するビーム照射部520と、粉状の造形材料PDを供給する材料供給部530と、集光光学系82を保持する鏡筒85の下端に接続されたカバー部材30と、カバー部材30の内部の第1空間30a内に後述するガス供給口を介して不活性ガス、例えば窒素(N2)を供給するガス供給装置40(図6参照)と、を備えている。
光源系510は、例えば複数のレーザユニットを含む光源ユニット60(図2では不図示、図6参照)と、ダブルフライアイ光学系及びコンデンサレンズ系等を備えた照度均一化光学系(不図示)とを備え、照度均一化光学系を用いて、複数のレーザユニットからそれぞれ射出されるビームを混合し、断面照度分布が均一化された平行ビームを生成する。
なお、照度均一化光学系の構成は、特に問わない。例えば、ロッドインテグレータ、コリメーターレンズ系などを用いて照度均一化光学系を構成しても良い。
光源系510の光源ユニット60(複数のレーザユニット)は、制御装置600(図6参照)に接続されており、制御装置600によって、複数のレーザユニットのオンオフが、個別に制御される。これにより、ビーム照射部520からワークW(上の対象面)に照射されるレーザビームの光量(レーザ出力)が調整可能である。
なお、造形システム100が、光源、あるいは光源と照度均一化光学系を備えていなくても良い。例えば、所望の光量(エネルギー)と所望の照度均一性を有する平行ビームを、外部装置から造形システム100に供給しても良い。
ビーム照射部520は、図2に示されるように、光源系510の他、光源系510からの平行ビームの光路上に順次配置されたビーム断面強度変換光学系78及び空間光変調器(SLM:Spatial Light Modulator)の一種であるミラーアレイ80と、ミラーアレイ80からの光を集光する集光光学系82とを有する。ここで、空間光変調器とは、所定方向へ進行する光の振幅(強度)、位相あるいは偏光の状態を空間的に変調する素子の総称である。
ビーム断面強度変換光学系78は、光源系510からの平行ビームの断面の強度分布を変換する。本実施形態では、ビーム断面強度変換光学系78は、光源系510からの平行ビームを、その断面の中心を含む領域の強度がほぼ零となるドーナツ状(輪帯状)の平行ビームに変換する。ビーム断面強度変換光学系78は、本実施形態では、例えば光源系510からの平行ビームの光路上に順次配置された凸型円錐反射鏡及び凹型円錐反射鏡によって構成されている。光源系510からの平行ビームは、凸型円錐反射鏡の反射面により放射状に反射され、この反射ビームが凹型円錐反射鏡の反射面で反射されることで、輪帯状の平行ビームに変換される。
本実施形態では、ビーム断面強度変換光学系78を経由した平行ビームは、後述するようにミラーアレイ80及び集光光学系82を介してワークに照射される。ビーム断面強度変換光学系78を用いて光源系510からの平行ビームの断面強度分布を変換することによって、ミラーアレイ80から集光光学系82の瞳面(入射瞳)PPに入射するビームの強度分布を変更することが可能である。また、ビーム断面強度変換光学系78を用いて光源系510からの平行ビームの断面強度分布を変換することによって、実質的に集光光学系82から射出されるビームの集光光学系82の射出面における強度分布を変更することも可能である。
なお、ビーム断面強度変換光学系78は、凸型円錐反射鏡と凹型円錐反射鏡との組み合わせに限らず、例えば米国特許出願公開第2008/0030852号明細書に開示される、回折光学素子、アフォーカルレンズ、及び円錐アキシコン系の組み合わせを用いて構成しても良い。ビーム断面強度変換光学系78は、ビームの断面強度分布を変換するものであれば良く、種々の構成が考えられる。ビーム断面強度変換光学系78の構成によっては、光源系510からの平行ビームを、その断面の中心(集光光学系82の光軸)を含む領域での強度をほぼ零でなく、その外側の領域での強度よりも小さくすることも可能である。
ミラーアレイ80は、本実施形態では、XY平面及びXZ平面に対して45度(π/4)を成す面(以下、便宜上基準面と呼ぶ)を一面に有するベース部材80Aと、ベース部材80Aの基準面上に例えばP行Q列のマトリクス状に配置された例えばM(=P×Q)個のミラー素子81p,q(p=1~P、q=1~Q)と、各ミラー素子81p,qを個別に動かすM個のアクチュエータ(不図示)を含む駆動部87(図2では不図示、図6参照)とを有している。ミラーアレイ80は、多数のミラー素子81p,qの基準面に対する傾きを調整することにより(例えば、すべてのミラー素子81p,qの反射面を基準面とほぼ平行にすることにより)、基準面と平行な大きな反射面を実質的に形成可能である。
ミラーアレイ80の各ミラー素子81p,qの反射面は、例えば矩形である。ミラーアレイ80の各ミラー素子81p,qは、例えば各ミラー素子81p,qの反射面の一方の対角線に平行な回転軸回りに回動可能に構成され、その反射面の基準面に対する傾斜角度を所定角度範囲内の任意の角度に設定可能である。各ミラー素子の反射面の角度は、回転軸の回転角度を検出するセンサ、例えばロータリエンコーダ83p,q(図2では不図示、図6参照)によって計測される。
駆動部87は、例えばアクチュエータとして電磁石あるいはボイスコイルモータを含み、個々のミラー素子81p,qは、アクチュエータによって動かされて非常に高応答で動作する。
ミラーアレイ80を構成する複数のミラー素子のうち、光源系510からの輪帯状の平行ビームによって照明されたミラー素子81p,qのそれぞれは、その反射面の傾斜角度に応じた方向に反射ビーム(平行ビーム)を射出し、集光光学系82に入射させる(図3参照)。なお、本実施形態において、ミラーアレイ80に入射する平行ビームの断面形状(断面強度分布)を輪帯形状とは異ならせても良い。例えば、集光光学系82の瞳面PPにおいて、光軸AXの周囲の輪帯状の領域の一部(例えば、光軸AXに対して一側の第1部分と他側の第2部分)だけにビームが照射されるようにしても良い。またビーム断面強度変換光学系78を設けなくても良い。
集光光学系82は、開口数N.A.が例えば0.5以上、好ましくは0.6以上の高NAで、低収差の光学系である。集光光学系82は、図2に示されるように、円筒状の鏡筒85によって保持された終端レンズ82aを含む1又は複数枚の大口径のレンズ(図2等では、終端レンズ82aを代表的に図示)によって構成される。本実施形態では、終端レンズ82aとして、光軸AXを含む中心部に光軸AX方向に貫通する中空部THを有するレンズ(便宜上、中抜けレンズと呼ぶ)が用いられている。集光光学系82が複数枚のレンズを有する場合、終端レンズ82a以外のレンズは、中抜けレンズであっても良いし、中抜けレンズでなくても良い。集光光学系82は、大口径、低収差かつ高N.A.であるため、ミラーアレイ80からの複数の平行ビームを後側焦点面上に集光することができる。ビーム照射部520は、集光光学系82(終端レンズ82a)から射出されるビームを、例えば、スポット状に集光することができる。また、集光光学系82は、1又は複数枚の大口径のレンズによって構成されるので、入射光の面積を大きくすることができ、これにより、開口数N.A.が小さい集光光学系を用いる場合に比べてより多量の光エネルギを取り込むことができる。したがって、本実施形態に係る集光光学系82によって集光されたビームは、極めてシャープで高エネルギ密度を有することとなり、これにより、付加加工の加工精度を高めることが可能となる。
本実施形態では、後述するように、テーブル12をXY平面に平行な走査方向(図2では、一例としてY軸方向)に移動することにより、ビームと造形の対象面TASを上端に有するワークWとを走査方向(スキャン方向)に相対走査しながら造形(加工処理)を行う場合を説明する。なお、造形の際に、テーブル12のY軸方向への移動中に、X軸方向、Z軸方向、θx方向、θy方向、及びθz方向の少なくとも1つの方向にテーブル12を移動しても良いことは言うまでもない。また、本実施形態では、後述するように、材料供給部530によって供給された粉状の造形材料(金属材料)をレーザビームのエネルギにより溶融するようになっている。したがって、前述したように、集光光学系82が取り込むエネルギの総量が大きくなれば、集光光学系82から射出されるビームのエネルギが大きくなり、単位時間に溶解できる金属の量が増える。その分、造形材料の供給量とテーブル12の速度とを上げれば、造形のスループットが向上する。
本実施形態に係る造形システム100では、造形の対象面TASが所定面(以下、造形面MPと呼ぶ)に位置合わせされる(例えば図2及び図5参照)。造形システム100では、例えばスポット状のビームの照射領域(ビームスポット)を、造形面MP上に形成し、そのビームスポットを形成するビーム(スポットビーム)に対してワークW(対象面TAS)を相対走査しながら造形(加工処理)を行うことができる。
なお、本実施形態において、上述の造形面MPは、集光光学系82の後側焦点面である(例えば図2及び図5参照)が、造形面は、後側焦点面の近傍の面でも良い。また、本実施形態において、造形面MPは、集光光学系82の射出側の光軸AXに垂直であるが、垂直でなくても良い。
造形面MP上におけるビームの強度分布を設定する、あるいは変更する方法(例えば、上述したようなビームスポットを形成する方法)としては、例えば集光光学系82に入射する複数の平行ビームの入射角度分布を制御する手法を採用することができる。
なお、本実施形態の集光光学系82は、その瞳面(入射瞳)PPと前側焦点面とが一致する構成となっているため、ミラーアレイ80を用いた複数の平行ビームLBの入射角度の変更により、その複数の平行ビームLBの集光位置を正確に、簡便に制御することができるが、集光光学系82の瞳面(入射瞳)と前側焦点面とが一致する構成でなくても良い。
本実施形態では、ミラーアレイ80を採用し、制御装置600が、各ミラー素子81p,qを非常に高応答で動作させることで、集光光学系82の瞳面PPに入射する複数の平行ビームLBの入射角度をそれぞれ制御する。これにより、造形面MP上におけるビームの強度分布を設定又は変更することができる。この場合、制御装置600は、ビームと対象面TAS(造形の目標部位TAが設定される面であり、本実施形態ではワークW上の面である)との相対移動中に造形面MP上におけるビームの強度分布、例えばビームの照射領域の形状、大きさ、個数の少なくとも1つを変化させることが可能である。この場合において、制御装置600は、造形面MP上におけるビームの強度分布を連続的、あるいは断続的に変更することができる。制御装置600は、ビームと対象面TASとの相対位置に応じて造形面MP上におけるビームの強度分布を変化させることもできる。制御装置600は、要求される造形精度とスループットとに応じて、造形面MPにおけるビームの強度分布を変化させることもできる。
また、本実施形態では、制御装置600が、前述したロータリエンコーダ83p,qを用いて、各ミラー素子の状態(ここでは反射面の傾斜角度)を検出し、これにより各ミラー素子の状態を、リアルタイムでモニタしているので、ミラーアレイ80の各ミラー素子の反射面の傾斜角度を正確に制御できる。
なお、造形面に形成される照射領域の形状、及び大きさを可変にしないのであれば、ミラーアレイ80に代えて、所望の形状のソリッドなミラーを用いて、集光光学系82の瞳面に入射する1つの平行ビームの入射角度を制御して、照射領域の位置を変更することもできる。
図4には、図2の集光光学系82(鏡筒85)及びその下方の部分が-Y方向から見て示されている。また、図5には、図2における鏡筒85及びその下方の部分が、ワークW上の対象部位TA近傍部分とともに拡大して示されている。材料供給部530は、図4に示されるように、集光光学系82の終端レンズ82aの中空部TH内に光軸AXに沿って配置されたZ軸方向に延びる供給管84と、供給管84の一端(上端)に配管90aを介して接続された材料供給装置86と、を有している。供給管84の他端(下端)には、材料供給口84aが形成され、材料供給口84aは、カバー部材30内部の第1空間30a内に配置されている。
供給管84は、図4に示されるように、終端レンズ82aの中空部内に配置され、供給管84の外周面と終端レンズ82aの中空部TH内面との間の隙間が、シール部材89によってシールされている。このため、図5に示されるように、終端レンズ82a下方のカバー部材30内部の第1空間30aは、終端レンズ82a上方の鏡筒85内部の空間(第2空間)85aとは、分離されており、第1空間30aから第2空間85aへの気体の流入が阻止されている。
カバー部材30は、図5に拡大して示されるように、中空の円錐状の部材(外面及び内面に円錐面を有するほぼ均一な厚さの板部材)から成り、その底面(図5における上側の面)に平面視円環状の取付部31が設けられている。取付部31は、内径がカバー部材30の底面より小さく(終端レンズ82aの外径より僅かに大きく)、外径がカバー部材30の底面より僅かに大きい円環状の板部材から成る。カバー部材30は、取付部31を介して鏡筒85の下端面に固定されている。すなわち、カバー部材30は、鏡筒85に吊り下げ支持されている。カバー部材30の先端部(図5における下端部)には、その先端に、対象面TASに照射されるビーム(LB1、LB2)の出口30bが形成されている。なお、カバー部材30の外面は、円錐面でなくても良く、厚さが均一な板部材でなくても良い。
図4に戻り、材料供給装置86は、内部に、造形材料PDが収容されたカートリッジを有し、カートリッジ内の造形材料PDを、配管90a及び供給管84を介して材料供給口84aから出口30bに向かって例えば自由落下させたり、あるいは所定の圧力で押し出すことで落下させたりして、光軸AXに沿って対象面上に供給する。このように造形材料PDを自由落下させる場合、通常、造形材料は、下に行くほど(カバー部材30の先端に近づくほど)拡散し、供給管84の下端から対象面TASまでの距離が所定距離以上あると、出口30bより広い面積の領域にまで拡散する。これでは、造形材料PDをビームLB1、LB2で溶融させても、対象面上で微細な造形は困難となる。
そこで、本実施形態では、カバー部材30の内面30cの円錐形状を利用し、その円錐状の内面30cに沿って図5中に符号SFで示される螺旋状の旋回流を生じさせるように、不活性ガスの一種である窒素N2をカバー部材30の内部空間(第1空間)30aに供給する前述のガス供給装置40(図6参照)が設けられている。なお、ガス供給装置40は、窒素に代えて、不活性ガスの一種である希ガス(例えばヘリウム、ネオン、アルゴンなど)、窒素と少なくとも1種類の希ガスとの混合ガス、あるいは複数種類の希ガスの混合ガスを第1空間30a内に供給しても良い。
カバー部材30の上端部近傍には、図5に示されるガス供給管42を接続するための開口30dが形成されている。開口30dには、ガス供給管42の一端が接続されている。これをさらに詳述すると、ガス供給管42の一端は、カバー部材30の壁に対して平面視(上方から見て)鋭角で交差するように、例えばカバー部材30の周壁の接線方向にカバー部材30に形成された開口30dに外側から挿入され、ガス供給管42の先端のガス供給口42aがカバー部材30内部の第1空間30a内に露出している。この場合、ガス供給口42aは、カバー部材30の高さ方向の中央より上部に位置している。また、ガス供給口42aは、材料供給口84aよりも高い位置に位置している。
また、ガス供給管42の一端部は、開口30dに挿入された状態で一端側が他端側に比べて低くなるようにXY平面に対して僅かに傾斜している。すなわち、上述の開口30dは、平面視でカバー部材30の周壁に対して鋭角で交差し、かつXY平面に対して僅かに傾斜する向きで、カバー部材30に形成されている。
ガス供給管42の他端は、ガス供給装置40(図6参照)に接続されている。このため、ガス供給装置40の作動状態では、ガス供給管42のガス供給口42aを介して、カバー部材30の円錐状の内面30cに実質的に沿って、例えばカバー部材30の内面30cの接線方向に実質的に沿って、窒素N2(不活性ガス)が第1空間内30a内に送り込まれ、その送り込まれた窒素N2は、図5に符号SFで示されるようなカバー部材30の内面30cに沿った光軸AXの周りの螺旋状の旋回流(循環による旋回流)となってカバー部材30の出口30bに向かって流れ、出口30bから第1空間30aの外部に流出する。この場合の旋回流SFは、流速が中心に近付くほど速くなるので、(粘性影響が強くなる中心の極近傍を除いて)ベルヌーイの定理により中心に近付くほど静圧は低くなる。また、カバー部材30の内面30cの直径は、下に行くほど(カバー部材30の出口30bに近づくほど)小さい。従って、カバー部材30は、流体を加速させる収束ノズル(コンバージェント・ノズル)として機能し、狭い部分(カバー部材30の先端部)に近づく程、カバー部材30の内部を流れるガスの流速は速く、圧力は低くなる。従って、旋回流SFにおける静圧は、カバー部材30の出口30bの位置の中心部で最も低くなる。このため、供給管84から真下に落下する粉状の造形材料PDは、下に行くほど(カバー部材30の出口30bに近づくほど)、窒素N2(不活性ガス)の旋回流によってカバー部材30の内面30cの形状に対応して細く絞られる。したがって、ガス供給装置40の作動状態では、供給管84から供給される粉状の造形材料PDをほぼ一点(ここでは、光軸AX上の点)に収束させることができ、造形材料PDをビームLB1、LB2で溶かすことによって、優れた造形精度、高分解能を確保した3次元造形物の作製が可能となる。本実施形態に係るガス供給装置40は、第1空間30a内に送り込む不活性ガスの温度、流速等を調整可能である。
なお、カバー部材30に設けられた開口30dをガス供給口としても良い。この場合、ガス供給管42の先端は、第1空間30aに露出しないようにカバー部材30の開口30dに接続すれば良い。
また、ガス供給口42a(開口30d)を、カバー部材30の高さ方向の中央より下方に配置しても良い。また、ガス供給口42a(開口30d)を、材料供給口84aよりも下方に配置しても良い。
なお、上述の説明から明らかなように、本実施形態では、出口30bを介して射出されたビームLB1、LB2によって、造形面MPにおけるビームの照射領域が形成されるので、造形面に形成される照射領域の形状、大きさ、あるいは位置の変更ができる範囲は、出口30bの形状及び大きさで制限される。
また、本実施形態では、図5から明らかなように、ガス供給口42aが、終端レンズ82aの下面とほぼおなじ高さの位置に設けられているので、高速の不活性ガス流によって終端レンズ82aの下面がガスパージされ、終端レンズ82aを汚染(材料供給口84aからの造形材料の付着を含む)から守ることが可能になる。加えて、終端レンズ82aは、カバー部材30によって物理的に保護されているで、カバー部材30外部雰囲気中の汚染物質による汚染から守られている。
説明が前後したが、ここで材料供給装置86について説明する。材料供給装置86は、例えば2つの粉末カートリッジを有し、2つの粉末カートリッジのそれぞれには、第1の造形材料(例えばチタン)、第2の造形材料(例えばステンレス)の粉末が収容されている。なお、本実施形態では、材料供給装置86は、2種類の造形材料を供給するために2つの粉末カートリッジを備えているが、材料供給装置86が備える粉末カートリッジは1つでも良い。
本実施形態では、材料供給装置86は、制御装置600に接続されており(図6参照)、造形時に、制御装置600からの指示に応じ、材料供給装置86(内部のコントロールユニット)によって、2つの粉末カートリッジの一方が選択され、その選択された粉末カートリッジからの造形材料が、配管90aを介して供給管84に供給される。なお、材料供給装置86の構成を変更することで、必要な場合に一方の粉末カートリッジからの第1の造形材料と他方の粉末カートリッジからの第2の造形材料との混合物を、配管90aを介して供給管84に供給できる構成としても良い。
制御装置600は、材料供給装置86によって選択された粉末カートリッジから供給管84に供給される造形材料の単位時間あたりの供給量を調整可能である。供給管84に供給される造形材料の単位時間あたりの供給量の調整は、粉末カートリッジからの粉末の取得に際し、粉末カートリッジの外部を内部に対して負圧にするが、その負圧のレベルを調整すること、あるいは材料供給装置86から配管90aに供給される粉末の量を調整するバルブを設け、そのバルブの開度を調整すること、等により行うことができる。
本実施形態では、輪帯状の平行ビームがミラーアレイ80に照射されるので、ミラーアレイ80からの反射ビームは、集光光学系82の周縁近傍の部分領域(N.A.が大きな部分領域)に入射し、集光光学系82の射出端、すなわちビーム照射部520の射出端に位置する終端レンズ82aの光軸AXから離れた周縁部の領域を介して集光光学系82の造形面MP(本実施形態では集光光学系82の後側焦点面に一致)に集光される(図2参照)。すなわち、同一の集光光学系82の周縁近傍の部分を通る光のみによって、例えばビームスポットが形成される。このため、別々の光学系を介した光を同一領域に集光してビームスポット(レーザスポット)を形成する場合に比べて、高品質なビームスポットの形成が可能である。また、本実施形態では、集光光学系82の終端レンズ82aの中空部TH内に配置された供給管84及び供給管84の上端に一端が接続された配管90aへのビームの照射を制限することができる。このため、本実施形態では、ミラーアレイ80からの反射ビームを全てスポットの形成に利用することが可能になるとともに、集光光学系82の入射面側の供給管84に対応する部分にビームが供給管84に照射されるのを制限するための遮光部材等を設ける必要がなくなる。かかる理由により、輪帯状の平行ビームによりミラーアレイ80を照明することとしている。
なお、集光光学系82から供給管84に入射するビームを制限するために、例えば図4に二点鎖線で示される制限部材92を集光光学系82の入射面側(例えば瞳面PP)に設けても良い。制限部材92によって、集光光学系82からのビームの供給管84への入射を制限する。制限部材92としては、遮光部材を用いても良いが、減光フィルタ等を用いても良い。かかる場合において、集光光学系82に入射する平行ビームは、断面円形の平行ビームであっても良いし、輪帯状の平行ビームであっても良い。後者では、ビームが制限部材92に照射されることがないので、ミラーアレイ80からの反射ビームを全てスポットの形成に利用することが可能になる。
本実施形態では、ワークに対する付加加工時等には、図2及び図5に示されるように、集光光学系82(終端レンズ82a)の周縁部近傍を通過し供給管84の+Y側及び-Y側(ワークW(テーブル12)のスキャン方向の前方及び後方)の光路を通るビーム(図2、図5に便宜上ビームLB11、LB12として示されている)が供給管84の真下に集光されて、ビームスポットが造形面上に形成され、そのビームスポットを形成するスポットビームに対して供給管84を介して粉末状の造形材料PDが光軸AXに沿ってカバー部材30の出口30bを通って供給される。これにより、供給管84の真下に溶融池WPが形成される。そして、かかる溶融池WPの形成がテーブル12をスキャン方向(図5では+Y方向)に走査しながら行われる。これにより、所定幅(ビームスポットの幅)で所定長さのビード(溶融凝固した金属)BEを形成することが可能である。なお、図5に示されるビームLB1、LB2は、ミラーアレイ80の異なるミラー素子81p.qでそれぞれ反射され集光光学系82の瞳面PPに異なる入射角度で入射した別々の平行ビームであっても良いし、同一の平行ビーム、例えば断面輪帯状の平行ビームの一部であっても良い。
複数の平行ビームを集光光学系82の瞳面PPに入射させる場合において、例えば集光光学系82に入射する平行ビームLBの数を減らさずに、ビームのX軸方向の幅、又はY軸方向の幅、又はX軸方向の幅及びY軸方向の幅が徐々に狭まるように、集光光学系82に入射する複数の平行ビームLBの入射角度の調整を行った場合、ビームの集光密度(エネルギー密度)が高くなる。したがって、それに応じて、単位時間当たりの粉末(造形材料)の供給量を増やし、かつ対象面TASのスキャン速度を上げることで、形成されるビードBEの層の厚さを一定に保つとともに、スループットを高いレベルで保つことが可能になる。ただし、かかる調整方法に限らず、他の調整方法を用いて、形成されるビードBEの層の厚さを一定に保つこともできる。例えば、ビームのX軸方向の幅、又はY軸方向の幅、又はX軸方向の幅及びY軸方向の幅に応じて複数のレーザユニットのうちの少なくとも1つのレーザ出力(レーザビームのエネルギ量)を調節しても良いし、ミラーアレイ80から集光光学系82に入射する平行ビームLBの数を変更しても良い。この場合、上述した調整方法に比べて、スループットは幾分低下するが、調整が簡便である。
図6には、造形システム100の制御系を中心的に構成する制御装置600の入出力関係を示すブロック図が示されている。制御装置600は、ワークステーション(又はマイクロコンピュータ)等を含み、造形システム100の構成各部を統括制御する。
上述のようにして構成された本実施形態に係る造形システム100の基本的機能は、既存の部品(ワーク)に対し、三次元造形により所望の形状を付け加えることである。ワークは造形システム100に投入され、所望の形状を正確に付け加えられた後に造形システム100から搬出される。このとき、その付け加えられた形状の実際の形状データは、制御装置600から外部の装置、例えば上位装置に送られる。造形システム100で行われる一連の動作は、大略次の通りである。
まず、テーブル12が、所定のローディング/アンローディングポジションにあるときに、ワーク搬送系300によってワークがテーブル12に搭載される。このとき、テーブル12は、基準状態(Z、θx、θy、θz)=(Z0、0、0、0)にあり、そのXY位置は、位置計測系28によって計測されている駆動機構11のスライダのX、Y位置と一致している。
次いで、制御装置600により、ワークWを搭載したテーブル12が計測装置400の下方に移動される。テーブル12の移動は、制御装置600が位置計測系28の計測情報に基づいて、平面モータ26を制御して、スライダを床面(又はベース)上でX軸方向(及びY軸方向)に移動することで行われる。この移動中も、テーブル12は、前述した基準状態が維持されている。
次に制御装置600により、計測装置400を用いて、基準状態にあるテーブル12上のワークW上の対象面TASの少なくとも一部の三次元空間内の位置情報(本実施形態では形状情報)の計測が行われる。これ以後は、この計測結果に基づき、ワークW上の対象面TASの6自由度方向の位置は、テーブル座標系(基準座標系)上で、オープンループの制御により管理することが可能になる。
次に制御装置600により、対象面TASの少なくとも一部の形状情報の計測が終了したワークWを搭載したテーブル12が、造形ヘッド部500(カバー部材30)の下方に移動される。
次に、テーブル12上のワークに3Dデータに対応する形状を付加する三次元造形による付加加工が行われる。この付加加工は、例えば次のようにして行われる。
すなわち、制御装置600は、付加加工により付加すべき形状(付加加工後に作られる物体の形状から付加加工の対象となるワークの形状を取り去った形状)の三次元CADデータを三次元造形用のデータとして、例えばSTL(Stereo Lithography)データに変換し、更に、この三次元STLデータから、Z軸方向にスライスした各レイヤ(層)のデータを生成する。そして、制御装置600は、各レイヤのデータに基づき、ワークに対する各層の付加加工を行うべく、移動装置200及び造形ヘッド部500を制御して、前述したビームスポットの形成、及びスポットビームに対する供給管84からの造形材料PDの供給による溶融池WPの形成を、テーブル12をスキャン方向に走査しながら行うことを、各層について繰り返し行う。ここで、付加加工時におけるワーク上の対象面の位置及び姿勢の制御は、先に計測した対象面の形状情報を考慮して行われる。
ここで、上の説明では、ワークWの付加加工の目標部位TAが設定される対象面(例えば上面)TASが、テーブル12の傾きを調整することで、集光光学系82の光軸に垂直な面(XY平面に平行な面)に設定される平面であることを前提とし、テーブル12のスキャン動作を伴う造形が行われるものとしている。
ワークWに対する付加加工の終了後、制御装置600により、付加加工済みのワークWを搭載したテーブル12が前述のローディング/アンローディングポジションに移動される。
次いで制御装置600により、ワーク搬送系300に対し、ワークのアンロードが指示される。この指示に応じ、ワーク搬送系300によって、付加加工済みのワークWがテーブル12上から取り出され、造形システム100の外部に搬送される。そして、制御装置600により、移動装置200のテーブル12が基準状態に設定される。これにより、移動装置200は、ローディング/アンローディングポジションにて、次のワークの搬入に備えて待機することとなる。
以上、詳細に説明したように、本実施形態に係る造形システム100では、スポット状のビームの照射領域(ビームスポット)を、造形の対象面TASを位置合わせすべき造形面MP(例えば図2及び図5参照)上に形成し、そのビームスポットを形成するビーム(スポットビーム)に対してワークWを相対走査しながら造形(加工処理)を行うことができる。造形システム100では、造形の際に、テーブル12のY軸方向への移動中に、X軸方向、Z軸方向、θx方向、θy方向、及びθz方向の少なくとも1つの方向にテーブル12を移動することもできる。
また、造形システム100では、材料供給部530によって供給された粉状の造形材料(金属材料)PDをレーザビームのエネルギにより溶融する。造形システム100では、造形に際し、ガス供給装置40が、制御装置600によって作動され、ガス供給管42のガス供給口42aを介して、カバー部材30の内面30cに沿った螺旋状の旋回流(図5に符号SF参照)が生じるようにカバー部材30内に窒素(不活性ガス)が送り込まれる。この窒素(不活性ガス)の旋回流によって、供給管84から真下に向けて自然落下により供給される粉状の造形材料PDは、下に行くほど(カバー部材30の先端に近づくほど)、カバー部材30の内面30c(内壁面)の形状に対応して細く絞られる。これにより、供給管84から供給される粉状の造形材料PDをほぼ一点(ここでは、光軸AX上の点)に収束させることができ、造形材料PDをビームLB1、LB2で溶かすことによって、優れた造形精度、高分解能を確保した3次元造形物の作製が可能となる。
また、本実施形態に係る造形ヘッド部500では、高速の不活性ガス流によって終端レンズ82aの下面をガスパージすることができ、終端レンズ82aを汚染から守ることが可能になる。加えて、終端レンズ82aは、カバー部材30によって物理的に保護されているので、カバー部材30外部雰囲気中の汚染物質による汚染から守られる。この点において、造形精度の低下を防止することができる。
また、本実施形態に係る造形ヘッド部500では、集光光学系82が、1又は複数枚の大口径のレンズによって構成されるので、入射光の面積を大きくすることができ、これにより、開口数N.A.が小さい集光光学系を用いる場合に比べてより多量の光エネルギを取り込むことができる。したがって、本実施形態に係る集光光学系82によって集光されたビームは、極めてシャープで高エネルギ密度を有することとなり、これにより、造形による加工精度を高めることができる。また、集光光学系82が取り込むエネルギの総量が大きくなれば、集光光学系82から射出されるビームのエネルギが大きくなり、単位時間に溶解できる金属の量が増える。その分、造形材料の供給量とテーブル12の速度とを上げれば、造形ヘッド部500による造形加工のスループットが向上する。
また、本実施形態に係る造形ヘッド部500では、例えば集光光学系82に入射する複数の平行ビームの入射角度分布を制御することで、造形面MP上におけるビームの強度分布を設定又は変更することができる。
したがって、本実施形態に係る造形システム100では、例えばラピッドプロトタイピングにより造形物をワークWの対象面TAS上に高い加工精度でかつ高スループットで形成することが可能になる。
また、本実施形態に係る造形システム100は、複数、例えば2つの粉末カートリッジを有し、2つの粉末カートリッジそれぞれの内部には、第1の造形材料(例えばチタン)の粉末、第2の造形材料(例えばステンレス)の粉末が収容されている。そして、付加加工時(造形時)に、制御装置600により、材料供給装置86を用いた供給管84に対する粉末の供給の切り換えが行われる。これにより、第1の造形材料(例えばチタン)の粉末と第2の造形材料(例えばステンレス)の粉末とが択一的に供給管84に供給される。したがって、制御装置600が供給する粉末材料を部位に応じて切り換えるだけで、異種材料の接合形状が容易に生成可能である。また、その切り換えはほぼ瞬時に行うことが可能である。更に異種材料を混合して供給することで「合金を」その場で作ってしまうことも、その組成を場所によって変えたりグラデーションにしたりすることも可能である。
なお、上記実施形態では、終端レンズ82aの中空部TH内に配置された供給管84の外周面と終端レンズ82aの中空部TH内面との間の隙間を、シール部材89によってシールすることで、終端レンズ82a下方のカバー部材30内の空間(第1空間30a)と、終端レンズ82a上方の鏡筒85内部の空間(第2空間85a)とを、分離するものとしたが、これに代えて、あるいはこれに加えて、第1空間30aの内部に比べて第2空間85aの内部を陽圧に設定することとしても良い。この場合、第1空間30aと第2空間85aとの圧力差が維持できる程度に両空間が分離されていても良いが、第2空間85aから第1空間30aに向かって常時気体(不活性ガスなど)を噴き出していても良い。かかる場合にも、第1空間から第2空間内への気体の流入が阻止される。
なお、上記実施形態では、ガス供給管42から、水平より下方に向けて不活性ガスがガス供給口42aを介してカバー部材30(第1空間30a)内に供給されるものとしたが、これに限らず、水平方向に向けて不活性ガスがガス供給口42aを介してカバー部材30内に供給されることとしても良い。
また、カバー部材30に開口を複数形成して、それぞれの開口にガス供給管42を個別に接続しても良い。この場合、例えばカバー部材30の円形の底面(図5における上側の面)において、中心角が等角度間隔となる位置にそれぞれガス供給管42を接続可能となるように、複数の開口を形成しても良い。この場合、複数のガス供給管42のそれぞれのガス供給口42aからカバー部材30の内面30cの接線方向に窒素N2を供給することで、同一回り方向(時計回り又は反時計回り)の1つの旋回流を生じさせることとしても良い。
また、カバー部材30に開口を複数形成して、それぞれの開口にガス供給管42を個別に接続する場合、少なくとも1つのガス供給管42のガス供給口42aの光軸AX方向(Z軸方向)の位置(高さ方向の位置)を残りの少なくとも1つのガス供給口と異ならせても良い。この場合において、少なくとも1つのガス供給管42のガス供給口42aから供給される不活性ガスは、温度、流速などが、残りの少なくとも1つのガス供給口から供給される不活性ガスと異なっていても良いし、不活性ガスの成分又は種類が異なっていても良い。不活性ガスの成分が異なるとは、不活性ガスが例えば複数種類の希ガスの混合ガスである場合に、その成分ガスが互いに異なるような場合を意味する。勿論、不活性ガスは、窒素と希ガスの混合ガスであっても良い。
また、上記実施形態では、カバー部材30の円錐状の内面30cの接線方向に沿って不活性ガスを第1空間30a内に供給することで、カバー部材30の内面30cに沿って螺旋状の旋回流(循環による旋回流)SFを生じさせ、中心に近付くほど静圧は低くなること及び内面30cの直径が出口30b側に向かって徐々に狭くなることを利用して、材料供給口84aから光軸AXに沿って出口30bに向かって供給される造形材料PDを光軸上に収束させる場合について説明した。しかしながら、これに限らず、例えば図7に示されるように、複数のガス供給口42aを、カバー部材30の全周に渡りほぼ等間隔で設け、この複数のガス供給口42aそれぞれから不活性ガスを供給することで、一端(上端)側から他端(下端)側に徐々に収束するカバー部材30の内面30cに沿って上側から下側に向かって流れる不活性ガスの流れLFを、複数、光軸の周囲全周に渡りほぼ等間隔で生じさせ、この複数の不活性ガスの流れLFによって、材料供給口84aから光軸AXに沿って出口30bに向かって供給される造形材料PDを光軸上に収束させることとしても良い。なお、図7では、作図の便宜上等の理由から流れLFは2つのみ示されているが、複数のガス供給口42aのそれぞれに対応して流れLFは生じさせることができる。この場合、出口30b付近では、不活性ガスの流れはその開口断面の全面を流れ、中心部ほど流速が速く(静圧が低く)なるので、造形材料PDを光軸上に収束させることが可能になる。この場合、カバー部材30の内面30cに、図7に示されるような複数のガイド部33を設けても良い。これに限らず、ガイド部として、例えば、前述の旋回流SFと同様の螺旋状のガイド溝が形成されるような凹凸部をカバー部材の内面30cに形成しても良い。
この他、ガス供給管42の一端部のカバー部材30に取付けられる部分が、XY平面に対してチルト可能となる構成を採用しても良い。
なお、上記実施形態では、カバー部材30が、中空円錐状の部材、すなわちフードのような部材である場合について例示したが、カバー部材は、Z軸方向(光軸AXと平行な方向)に関して出口30bとは反対側から出口30b側に向かって収束する一部に曲面を含む形状、例えば円錐状又は楕円錐状の内面を有する部材であれば良く、その外観形状は特に問わない。
また、上記実施形態では、造形ヘッド部500が、集光光学系82を有し、集光光学系82の終端レンズ82aとして、光軸AXを含むように貫通孔が形成された中抜きレンズが用いられる場合について説明したが、これに限らず、集光光学系の終端の光学素子は、貫通孔を有しない通常のレンズであっても良いし、レンズ以外のミラーなどであっても良い。また、造形ヘッド部500が、集光光学系を有していなくても良い。集光光学系を有しない場合、ビーム照射部から、供給管からの造形材料の供給路に沿った軸(鉛直軸)に対して傾斜した光路を通るビームが射出されることとしても良い。
なお、上記実施形態及び図7の変形例では、ガス供給管42がカバー部材30の周壁に外側から接続される場合について説明したが、これに限らず、カバー部材30を介することなく、ガス供給管42を第1空間30a内に挿入しても良い。
また、上記実施形態では、カバー部材30を、取付部31を介して鏡筒85に取り付ける場合(鏡筒85にカバー部材30が吊り下げ支持される場合)について例示したが、カバー部材30からの集光光学系82の終端レンズ82aを含む高N.A.の各光学素子への振動の伝達を抑制するため、鏡筒85とカバー部材30との間に防振部材(ゴムなど)を配置しても良いし、鏡筒85とは異なる別の部材によって、カバー部材を支持することとしても良い。
また、カバー部材30が、鏡筒85に対して可動であっても良い。
なお、上記実施形態では、空間光変調器としてミラーアレイ80を用いる場合について説明したが、これに代えて、MEMS技術によって作製されるデジタル・マイクロミラー・デバイス(Digital Micromirror Device:DMD(登録商標))を多数マトリクス状に配置して成る大面積のデジタル・ミラーデバイスを用いても良い。
なお、上記実施形態では、集光光学系82の瞳面に入射する複数の平行ビームの入射角度を個別に制御することにより造形面上でのビームの強度分布の変更を行う場合について説明したが、集光光学系82の瞳面に入射する複数の平行ビームの全ての入射角度が制御(変更)可能でなくても良い。したがって、上記実施形態と同様にミラーアレイを用いて集光光学系82に入射する平行ビームの入射角度を制御する場合などに、全てのミラー素子が反射面の状態(反射面の位置及び傾斜角度の少なくとも一方)を変更可能でなくても良い。また、上記実施形態の集光光学系82に入射する複数の平行ビームの入射角度の制御に用いることができる反射型空間光変調器は、上述のミラーアレイに限られない。使用可能な反射型空間光変調器としては、例えば、反射型液晶表示素子、電気泳動ディスプレイ(EPD:Electro Phonetic Display)、電子ペーパー(又は電子インク)、光回折型ライトバルブ(Grating Light Valve)等が例として挙げられる。
また、造形面上でのビームの強度分布の変更を、集光光学系(投影光学系)の入射面側に配置されるマスクの開口(大きさ、形状、数)を変更することによって行っても良い。この場合、集光光学系の物体面にマスクを配置し、像面、またはその近傍を造形面とすれば良い。また、この場合、集光光学系の瞳面におけるビーム強度分布を、例えば輪帯状にしたり、あるいは光軸を含む円形領域を遮光する遮光部材を瞳面に配置したりすることによって、その集光光学系の終端レンズを中抜けレンズとすることもできる。
また、上述したように、集光光学系82は大口径であることが望ましいが、開口数N.A.が0.5より小さい集光光学系を用いても良い。
また、上記実施形態において、ビームの強度分布を管理するために、集光光学系82の後側焦点面、又はその近傍に受光部を配置可能なセンサを造形システム100が備えていても良い。例えば、テーブル12上にCCDイメージセンサを搭載し、該CCDイメージセンサにより、ビームの強度分布(造形面における照射領域内の強度分布)を適当な頻度でキャリブレーションすることが望ましい。このように、集光光学系82からのビームを受光するセンサでビームの強度分布を計測することで、集光光学系82の熱収差などの変動要因も加味されたビームの強度分布の管理が可能となる。また、その結果に基づいてミラーアレイ80などを制御することによって、集光光学系82の後側焦点面などにおけるビームの強度分布を所望状態に精度良く設定することができる。また、このセンサを使って基準座標系におけるビームの位置を管理するようにしても良い。
なお、上記実施形態では、造形材料としてチタン、ステンレスの粉末を用いる場合につて例示したが、鉄粉その他の金属の粉末は勿論、ナイロン、ポリプロピレン、ABS等の粉末など金属以外の粉末を用いることも可能である。
なお、上記実施形態の造形システム100において、カバー部材30は、ビームの出口及び不活性ガスの出口、並びに造形材料の出口を兼ねる出口30bとともに、溶融されなかった粉状の造形材料を回収する回収口(吸引口)を有していても良い。
これまでは、既存のワークに形状を付け加える例について説明したが、本実施形態に係る造形ヘッド部500を備えた造形システム100の使用用途がこれに限られるものではなく、通常の3Dプリンタなどと同様に、テーブル12上で何もないところから三次元形状を造形によって生成することも可能である。この場合は、「無」というワークに、付加加工を施すことに他ならない。かかるテーブル12上での三次元造形物の造形の際には、制御装置600は、計測装置400が備えるマーク検出系56(図6参照)により、テーブル12上に予め形成された最低三か所のアライメントマークを光学的に検出することで、テーブル12上に設定される造形の対象面の6自由度方向の位置情報を求め、この結果に基づいてビーム(の照射領域)に対するテーブル12上の対象面の位置及び姿勢を制御しつつ、三次元造形を行えば良い。
なお、上記実施形態では、一例として、制御装置600が、移動装置200、計測装置400及び造形ヘッド部500の構成各部を制御する場合について説明したが、これに限らず、造形システムの制御装置を、マイクロプロセッサ等の処理装置をそれぞれ含む複数のハードウェアにより構成しても良い。この場合において、移動装置200、計測装置400及び造形ヘッド部500のそれぞれが処理装置を備えていても良いし、移動装置200、計測装置400及び造形ヘッド部500のうちの2つを制御する第1処理装置と、残りの1つを制御する第2処理装置の組み合わせであっても良い。いずれの場合もそれぞれの処理装置が、上述した制御装置600の機能の一部を受け持つことになる。あるいは、複数のマイクロプロセッサ等の処理装置と、これらの処理装置を統括的に管理するホスト・コンピュータとによって、造形システムの制御装置を構成しても良い。
また、上述の各実施形態では、部材、開口、穴などの形状を、円形、矩形などを用いて説明している場合があるが、これらの形状に限られないことは言うまでもない。
なお、上記実施形態で引用した全ての米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。
以上説明したように、本発明に係る造形システム及び造形方法は、三次元造形物の形成に適している。
30…カバー部材、30a…第1空間、30b…出口、30c…内面、33…ガイド部40…ガス供給装置、42a…ガス供給口、82…集光光学系、82a…終端レンズ、84…供給管、84a…材料供給口、85…鏡筒、85a…第2空間、89…シール部材、100…造形システム、200…移動装置、520…ビーム照射部、530…材料供給部、600…制御装置、AX…光軸、LB1,LB2…ビーム、PD…造形材料、SF…旋回流、TA…目標部位、TAS…対象面、TH…貫通孔。
Claims (34)
- ビームを用いて対象面上に三次元造形物を形成する造形システムであって、
軸に対して傾斜する光路を通るビームを射出するビーム照射部と、
材料供給口を有し、前記ビーム照射部からのビームで照射される粉状の造形材料を前記軸に沿って供給する材料供給部と、
一端側から他端側に徐々に収束する内面を有し、前記他端に前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、
前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、
前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外に供給される造形システム。 - 前記不活性ガスは、旋回流となって、前記カバー部材の内面に沿って前記出口に向かって流れる請求項1に記載の造形システム。
- ビームを用いて対象面上に三次元造形物を形成する造形システムであって、
軸に対して傾斜する光路を通るビームを射出するビーム照射部と、
材料供給口を有し、前記ビーム照射部からのビームで照射される粉状の造形材料を前記軸に沿って供給する材料供給部と、
前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、
前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、
前記不活性ガスは、旋回流となって、前記カバー部材の内面に沿って前記出口に向かって流れ、
前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外に供給される造形システム。 - 前記不活性ガスは、前記軸の周りを旋回流となって、前記出口に向かって流れる請求項2又は3に記載の造形システム。
- ビームを用いて対象面上に三次元造形物を形成する造形システムであって、
軸に対して傾斜する光路を通るビームを射出するビーム照射部と、
材料供給口を有し、前記ビーム照射部からのビームで照射される粉状の造形材料を前記軸に沿って供給する材料供給部と、
前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、
前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、
前記不活性ガスは、前記軸の周りを旋回流となって、前記出口に向かって流れ、
前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外に供給される造形システム。 - 前記旋回流が形成されるように、前記ガス供給口から前記不活性ガスを供給する請求項2~5のいずれか一項に記載の造形システム。
- ビームを用いて対象面上に三次元造形物を形成する造形システムであって、
軸に対して傾斜する光路を通るビームを射出するビーム照射部と、
材料供給口を有し、造形材料としての紛体を前記軸に沿って供給する材料供給部と、
前記ビーム照射部からのビームが通過する出口が形成されたカバー部材と、
前記カバー部材内部の空間内にガス供給口を介して不活性ガスを供給するガス供給装置と、を備え、
前記不活性ガスが、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形システム。 - 前記ガス供給口は、前記カバー部材の高さ方向の中央より上部に位置する請求項1~7のいずれか一項に記載の造形システム。
- 前記ガス供給装置は、前記カバー部材の前記内面に実質的に沿って前記不活性ガスを前記ガス供給口から前記空間内に供給する請求項1~8のいずれか一項に記載の造形システム。
- 前記カバー部材の前記内面は、少なくとも一部に曲面を含み、
前記ガス供給装置は、前記曲面の接線方向に実質的に沿って前記不活性ガスを前記供給口から前記空間内に供給する請求項9に記載の造形システム。 - 前記ガス供給装置は、水平より下方に向けて前記不活性ガスを前記ガス供給口を介して前記空間内に供給する請求項9又は10に記載の造形システム。
- 前記ビーム照射部は、集光光学系を有する請求項1~11のいずれか一項に記載の造形システム。
- 前記集光光学系は、前記軸に対して傾斜した光路を通過する前記ビームを射出する終端レンズを有し、
前記軸は、前記終端レンズの光軸とほぼ平行である請求項12に記載の造形システム。 - 前記ガス供給口は、前記軸の方向において、前記終端レンズの射出面とほぼ同じ位置にある請求項13に記載の造形システム。
- 前記終端レンズには、前記光軸を含むように貫通孔が形成されている請求項13又は14に記載の造形システム。
- 前記材料供給部は、前記終端レンズの前記貫通孔内に配置された、前記造形材料の供給管を有する請求項15に記載の造形システム。
- 前記供給管と前記終端レンズとの間は、シール部材でシールされている請求項16に記載の造形システム。
- 前記材料供給口は、前記カバー部材の前記出口と前記終端レンズとの間に配置されている請求項13~17のいずれか一項に記載の造形システム。
- 前記終端レンズを保持する保持部材を有し、前記保持部材内部の空間は、前記カバー部材内部の空間に対して陽圧である請求項13~18のいずれか一項に記載の造形システム。
- 前記終端レンズを保持する保持部材を有し、
前記カバー部材は、前記保持部材に保持されている請求項13~18のいずれか一項に記載の造形システム。 - 前記材料供給口は、前記軸上に配置されている請求項1~20のいずれか一項に記載の造形システム。
- 前記カバー部材の前記出口は前記軸上に配置されており、
前記材料供給口から供給された前記造形材料は、前記軸に沿って前記出口に向かって流れる請求項21に記載の造形システム。 - 前記軸の方向において、前記ガス供給口は、前記材料供給口と異なる位置に配置されている請求項1~22のいずれか一項に記載の造形システム。
- 前記軸の方向において、前記ガス供給口は、前記材料供給口よりも前記出口から離れている請求項23に記載の造形システム。
- 前記ガス供給装置は、第1ガス供給口としての前記ガス供給口を有し、
前記ガス供給装置は、前記カバー部材内部の空間内に不活性ガスを供給可能な第2ガス供給口を有する請求項1~24のいずれか一項に記載の造形システム。 - 前記第2ガス供給口の前記軸の方向の位置は、前記第1ガス供給口の前記軸の方向の位置と異なる請求項25に記載の造形システム。
- 前記第2ガス供給口の前記軸周りの方向の位置は、前記第1ガス供給口の前記軸周りの方向の位置と異なる請求項25又は26に記載の造形システム。
- 前記カバー部材の前記内面には、前記不活性ガスの流れをガイドするガイド部が設けられている請求項1~27のいずれか一項に記載の造形システム。
- 前記カバー部材の前記内面は、前記軸と平行な方向に関して前記出口とは反対側から前記出口側に向かって収束する円錐状又は楕円錐状の面である請求項1~28のいずれか一項に記載の造形システム。
- 前記対象面と前記ビームとを相対的に移動する移動装置と、
前記対象面と前記ビームとを相対移動させつつ前記造形材料を前記材料供給口から供給することにより前記対象面上の目標部位に造形が施されるように、前記対象面上に形成する三次元造形物の3Dデータに基づいて、前記移動装置と前記ビーム照射部からの前記ビームの照射状態とを制御する制御装置と、をさらに備える請求項1~29のいずれか一項に記載の造形システム。 - ビームを用いて対象面上に三次元造形物を形成する造形方法であって、
ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、
前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、
一端側から他端側に徐々に収束する内面を有し、前記他端に前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、
前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法。 - ビームを用いて対象面上に三次元造形物を形成する造形方法であって、
ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、
前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、
前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、
前記不活性ガスは、旋回流となって、前記カバー部材の内面に沿って前記出口に向かって流れ、
前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法。 - ビームを用いて対象面上に三次元造形物を形成する造形方法であって、
ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、
前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、
前記光路の少なくとも一部を囲むように配置された内面を有し、前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、
前記不活性ガスは、前記軸の周りを旋回流となって、前記出口に向かって流れ、
前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法。 - ビームを用いて対象面上に三次元造形物を形成する造形方法であって、
ビーム照射部から軸に対して傾斜する光路を通るビームを射出することと、
前記ビームで照射される粉状の造形材料を前記軸に沿って供給することと、
一端側から他端側に徐々に収束する内面を有し、前記他端に前記ビーム照射部からのビームが通過する出口が形成されたカバー部材の内部の空間内にガス供給口を介して不活性ガスを供給することと、を含み、
前記不活性ガスは、前記カバー部材の前記出口を介して前記空間の外に流れ、
前記造形材料は、前記カバー部材の前記出口を介して前記空間の外の前記対象面に供給される造形方法。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019509898A JP7099443B2 (ja) | 2017-03-31 | 2018-03-27 | 造形システム及び造形方法 |
| EP18778149.7A EP3603853A4 (en) | 2017-03-31 | 2018-03-27 | MODELING SYSTEM AND MODELING PROCESS |
| CN201880035548.6A CN110709195B (zh) | 2017-03-31 | 2018-03-27 | 造型系统及造型方法 |
| US16/587,774 US20200108464A1 (en) | 2017-03-31 | 2019-09-30 | Shaping system and shaping method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017-069706 | 2017-03-31 | ||
| JP2017069706 | 2017-03-31 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/587,774 Continuation US20200108464A1 (en) | 2017-03-31 | 2019-09-30 | Shaping system and shaping method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018181334A1 true WO2018181334A1 (ja) | 2018-10-04 |
Family
ID=63676199
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/012465 Ceased WO2018181334A1 (ja) | 2017-03-31 | 2018-03-27 | 造形システム及び造形方法 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20200108464A1 (ja) |
| EP (1) | EP3603853A4 (ja) |
| JP (1) | JP7099443B2 (ja) |
| CN (1) | CN110709195B (ja) |
| WO (1) | WO2018181334A1 (ja) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12194681B2 (en) | 2020-10-21 | 2025-01-14 | General Electric Company | Material supply system and method for using the same |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020176855A1 (en) | 2019-02-28 | 2020-09-03 | 3D Systems, Inc. | High resolution three-dimensional printing system |
| IT201900009366A1 (it) * | 2019-06-18 | 2020-12-18 | Prima Ind Spa | Apparato di lavorazione laser e procedimento di lavorazione laser corrispondente |
| US20220134440A1 (en) * | 2019-08-27 | 2022-05-05 | Edison Welding Institute, Inc. | Multi-beam coaxial laser optical system for use in additive manufacturing |
| JP7468614B2 (ja) * | 2020-02-25 | 2024-04-16 | 株式会社ニコン | 加工システム |
| WO2021214899A1 (ja) * | 2020-04-22 | 2021-10-28 | 株式会社ニコン | 加工システム |
| CN115666824A (zh) * | 2020-05-20 | 2023-01-31 | 株式会社荏原制作所 | Am装置及am方法 |
| CN112445088B (zh) * | 2020-12-04 | 2025-10-10 | 百及纳米科技(上海)有限公司 | 一种步进式光刻机、其工作方法及图形对准装置 |
| US11845201B2 (en) * | 2021-10-01 | 2023-12-19 | The Boeing Company | Methods of configuring gas flow in additive-manufacturing machines |
| WO2023094674A1 (en) * | 2021-11-26 | 2023-06-01 | Bellaseno Gmbh | Method for forming a 3d object by an additive manufacturing machine with levitated print beds and corresponding additive manufacturing machine |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09216083A (ja) * | 1995-12-05 | 1997-08-19 | Mitsubishi Heavy Ind Ltd | レーザー加工ヘッド及びレーザー加工方法 |
| JP2003266189A (ja) * | 2002-03-15 | 2003-09-24 | Laserx:Kk | 溶接装置、溶接方法、および溶接された被溶接物を有する物品の製造方法 |
| US20030206820A1 (en) | 1999-07-07 | 2003-11-06 | Keicher David M. | Forming structures from CAD solid models |
| JP2004322183A (ja) * | 2003-04-28 | 2004-11-18 | Daido Castings:Kk | レーザ肉盛装置 |
| US6940582B1 (en) | 1999-09-20 | 2005-09-06 | Nikon Corporation | Parallel link mechanism, exposure system and method of manufacturing the same, and method of manufacturing devices |
| US20080030852A1 (en) | 2004-10-19 | 2008-02-07 | Koji Shigematsu | Lighting Optical Device,Exposure System,And Exposure Method |
| US20120105867A1 (en) | 2010-10-27 | 2012-05-03 | Manabu Komatsu | Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system |
| WO2016075803A1 (ja) * | 2014-11-14 | 2016-05-19 | 株式会社ニコン | 造形装置及び造形方法 |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1984002296A1 (en) * | 1982-12-17 | 1984-06-21 | Inoue Japax Res | Laser machining apparatus |
| JPS59163093A (ja) * | 1983-03-05 | 1984-09-14 | Oimatsu Sangyo:Kk | レ−ザ加工機におけるレ−ザビ−ムヘツド |
| JPS61135496A (ja) * | 1984-12-05 | 1986-06-23 | Sumitomo Electric Ind Ltd | 炭酸ガスレ−ザ加工ヘツド |
| DE3918363A1 (de) * | 1989-06-06 | 1990-12-13 | Inst Nat Sciences Appliq | Vorrichtung fuer einen leistungslaser |
| JPH11245077A (ja) * | 1998-03-04 | 1999-09-14 | Isuzu Motors Ltd | レーザ加工ヘッド |
| US6396025B1 (en) * | 1999-07-01 | 2002-05-28 | Aeromet Corporation | Powder feed nozzle for laser welding |
| JP3752112B2 (ja) * | 1999-09-28 | 2006-03-08 | 三菱重工業株式会社 | レーザー加工装置及びレーザー加工ヘッド |
| US6756561B2 (en) * | 1999-09-30 | 2004-06-29 | National Research Council Of Canada | Laser consolidation apparatus for manufacturing precise structures |
| DE50009924D1 (de) * | 2000-08-12 | 2005-05-04 | Trumpf Lasertechnik Gmbh | Laserbearbeitungsmaschine mit gasgespültem Strahlführungsraum |
| US7605345B2 (en) * | 2002-03-14 | 2009-10-20 | Hitachi Zosen Corporation | Method and device for prevention of adhesion of dirt and contamination on optical parts in laser beam machine |
| DE102005034155B3 (de) * | 2005-07-21 | 2006-11-16 | Eos Gmbh Electro Optical Systems | Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts |
| JP4635839B2 (ja) * | 2005-11-15 | 2011-02-23 | トヨタ自動車株式会社 | 孔あけ加工方法および孔あけ加工装置 |
| CN101148760B (zh) * | 2006-09-22 | 2010-07-21 | 苏州大学 | 激光加工成形制造光内送粉工艺与光内送粉喷头 |
| CN101468393B (zh) * | 2007-12-26 | 2011-06-01 | 沈阳航空工业学院 | 一种金属粉末激光成形系统的金属粉末送给装置 |
| US9561622B2 (en) * | 2008-05-05 | 2017-02-07 | Georgia Tech Research Corporation | Systems and methods for fabricating three-dimensional objects |
| JP5364439B2 (ja) * | 2009-05-15 | 2013-12-11 | パナソニック株式会社 | 三次元形状造形物の製造方法 |
| JP5653358B2 (ja) * | 2009-10-21 | 2015-01-14 | パナソニック株式会社 | 三次元形状造形物の製造方法およびその製造装置 |
| CN101733550B (zh) * | 2010-01-09 | 2012-04-25 | 苏州大学 | 一种送丝送粉复合激光熔覆成形方法及装置 |
| CN104289811A (zh) * | 2013-07-18 | 2015-01-21 | 沈阳新松机器人自动化股份有限公司 | 一种多光束中心送丝激光加工头及其加工方法 |
| JP5931946B2 (ja) * | 2014-03-18 | 2016-06-08 | 株式会社東芝 | 光照射装置および積層造形装置 |
| JP5931947B2 (ja) | 2014-03-18 | 2016-06-08 | 株式会社東芝 | ノズルおよび積層造形装置 |
| JP6338422B2 (ja) * | 2014-03-31 | 2018-06-06 | 三菱重工業株式会社 | 三次元積層装置 |
| JP6254036B2 (ja) * | 2014-03-31 | 2017-12-27 | 三菱重工業株式会社 | 三次元積層装置及び三次元積層方法 |
| KR102283654B1 (ko) * | 2014-11-14 | 2021-07-29 | 가부시키가이샤 니콘 | 조형 장치 및 조형 방법 |
| WO2017115406A1 (ja) * | 2015-12-28 | 2017-07-06 | Dmg森精機株式会社 | 付加加工用ヘッド、加工機械および加工方法 |
| CN205661049U (zh) * | 2016-05-19 | 2016-10-26 | 浙江工贸职业技术学院 | 摆动支架打印头 |
| EP3463821A4 (en) * | 2016-06-01 | 2020-01-08 | Arevo, Inc. | LOCALIZED HEATING TO IMPROVE INTERLAYER LINK IN 3D PRINTING |
| US10457035B2 (en) * | 2017-03-07 | 2019-10-29 | General Electric Company | Apparatuses and systems for net shape manufacturing |
-
2018
- 2018-03-27 WO PCT/JP2018/012465 patent/WO2018181334A1/ja not_active Ceased
- 2018-03-27 EP EP18778149.7A patent/EP3603853A4/en active Pending
- 2018-03-27 JP JP2019509898A patent/JP7099443B2/ja active Active
- 2018-03-27 CN CN201880035548.6A patent/CN110709195B/zh active Active
-
2019
- 2019-09-30 US US16/587,774 patent/US20200108464A1/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09216083A (ja) * | 1995-12-05 | 1997-08-19 | Mitsubishi Heavy Ind Ltd | レーザー加工ヘッド及びレーザー加工方法 |
| US20030206820A1 (en) | 1999-07-07 | 2003-11-06 | Keicher David M. | Forming structures from CAD solid models |
| US6940582B1 (en) | 1999-09-20 | 2005-09-06 | Nikon Corporation | Parallel link mechanism, exposure system and method of manufacturing the same, and method of manufacturing devices |
| JP2003266189A (ja) * | 2002-03-15 | 2003-09-24 | Laserx:Kk | 溶接装置、溶接方法、および溶接された被溶接物を有する物品の製造方法 |
| JP2004322183A (ja) * | 2003-04-28 | 2004-11-18 | Daido Castings:Kk | レーザ肉盛装置 |
| US20080030852A1 (en) | 2004-10-19 | 2008-02-07 | Koji Shigematsu | Lighting Optical Device,Exposure System,And Exposure Method |
| US20120105867A1 (en) | 2010-10-27 | 2012-05-03 | Manabu Komatsu | Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system |
| WO2016075803A1 (ja) * | 2014-11-14 | 2016-05-19 | 株式会社ニコン | 造形装置及び造形方法 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3603853A4 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12194681B2 (en) | 2020-10-21 | 2025-01-14 | General Electric Company | Material supply system and method for using the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110709195A (zh) | 2020-01-17 |
| JP7099443B2 (ja) | 2022-07-12 |
| JPWO2018181334A1 (ja) | 2020-02-06 |
| EP3603853A1 (en) | 2020-02-05 |
| US20200108464A1 (en) | 2020-04-09 |
| EP3603853A4 (en) | 2020-12-23 |
| CN110709195B (zh) | 2022-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7099443B2 (ja) | 造形システム及び造形方法 | |
| US11969822B2 (en) | Processing method and processing system | |
| KR102549649B1 (ko) | 조형 장치 및 조형 방법 | |
| TWI760620B (zh) | 造形裝置及造形方法 | |
| JP7255635B2 (ja) | 造形装置及び造形方法 | |
| JP2019151931A (ja) | 造形装置及び造形方法 | |
| WO2016075803A1 (ja) | 造形装置及び造形方法 | |
| JP6886422B2 (ja) | 造形装置及び造形方法 | |
| JP2019137071A (ja) | 造形装置及び造形方法 | |
| JP6886423B2 (ja) | 造形装置及び造形方法 | |
| HK1234367A1 (en) | Shaping device and a shaping method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18778149 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019509898 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2018778149 Country of ref document: EP Effective date: 20191031 |