WO2018181086A1 - Impeller, impeller manufacturing method, and rotating machine - Google Patents
Impeller, impeller manufacturing method, and rotating machine Download PDFInfo
- Publication number
- WO2018181086A1 WO2018181086A1 PCT/JP2018/011965 JP2018011965W WO2018181086A1 WO 2018181086 A1 WO2018181086 A1 WO 2018181086A1 JP 2018011965 W JP2018011965 W JP 2018011965W WO 2018181086 A1 WO2018181086 A1 WO 2018181086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- disk
- residual stress
- blade
- compressive residual
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/10—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/048—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/053—Shafts
- F04D29/054—Arrangements for joining or assembling shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/70—Treatment or modification of materials
- F05D2300/702—Reinforcement
Definitions
- the present invention relates to an impeller used for a rotating machine.
- Rotating machines such as industrial compressors, turbo refrigerators, and small gas turbines are equipped with an impeller in which a plurality of blades are attached to a disk fixed to a rotating shaft. This rotating machine gives pressure energy and velocity energy to gas by rotating an impeller.
- an object of this invention is to provide the impeller excellent in fatigue strength, and its manufacturing method.
- the impeller of the present invention includes a disk portion fixed to a rotating shaft that rotates about an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion, Is provided.
- the impeller of the present invention is characterized in that a compressive residual stress layer is provided on the surface layer of the boundary portion with the disk portion and the surface layer of the boundary portion with the cover portion at the tip of each blade portion.
- the blade part and the disk part can be integrally formed or joined to the boundary part with the disk part. Joining is based on the premise that the disk portion and the blade portion are manufactured separately. The same applies to the boundary portion with the cover portion, and the blade portion and the cover portion can be formed integrally or can be joined. Joining is based on the premise that the blade part and the cover part are produced separately.
- the present invention includes a disk portion fixed to a rotating shaft that rotates around an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion.
- An impeller manufacturing method is provided.
- the impeller manufacturing method of the present invention is characterized in that compressive residual stress is applied by shot peening to the surface layer of the boundary portion with the disk portion and the surface portion of the boundary portion with the cover portion at the blade tip of the blade portion.
- the application of compressive residual stress by shot peening according to the present invention includes a first step using a first shot having a first particle size and a second shot having a second particle size smaller than the first particle size. It is preferably performed in at least two steps of two steps.
- a rotating machine including the impeller described above is provided.
- the residual compressive stress layer is provided at the tip of the blade, which is likely to be damaged by fatigue, so that the fatigue strength against continuous operation of the impeller can be improved. Further, according to the impeller manufacturing method of the present invention, the compressive residual stress is applied by shot peening, so that even if it is a closed impeller, the compressive residual stress can be easily applied only to the tip.
- the centrifugal compressor 100 As shown in FIG. 1, the centrifugal compressor 100 according to the first embodiment includes a casing 102 and a rotating shaft 101 that is pivotally supported on the casing 102 via a journal bearing 103 and a thrust bearing 104.
- the rotating shaft 101 is supported so as to be rotatable around the axis O, and a plurality of impellers 1 are attached to the rotating shaft 101 side by side in the direction of the axis O.
- each impeller 1 has a substantially disk shape.
- the impeller 1 discharges the fluid sucked from the introduction port 3 opened on one side in the direction of the axis O from the discharge port 4 on the outer side in the radial direction through the flow path 105 formed inside the impeller 1. Is configured to do.
- Each impeller 1 compresses the gas G supplied from the upstream flow path 105 formed in the casing 102 into the downstream flow path 105 in a stepwise manner using centrifugal force generated by the rotation of the rotary shaft 101. Shed.
- the casing 102 is formed with a suction port 106 for allowing the gas G to flow in from the outside on the front side (F) in the direction of the axis O of the rotary shaft 101. Further, the casing 102 is formed with a discharge port 107 for allowing the gas G to flow out to the outside on the rear side (B) in the direction of the axis O.
- FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101.
- FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101.
- FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101.
- only one impeller 1 is provided on the rotating shaft 101 will be described.
- the impeller 1 includes a disk unit 30, a blade unit 40, and a cover unit 50.
- the disk part 30 is attached to the rotating shaft 101 by being fitted from the outside in the radial direction.
- the disk unit 30 includes a first disk unit 31 and a second disk unit 35 that are divided into two in the direction of the axis O by a bonding layer CL orthogonal to the axis O.
- the first disk part 31 and the second disk part 35 are joined by a joining layer CL.
- the bonding layer CL is preferably constituted by an adhesive and friction welding.
- the first disk portion 31 has a substantially cylindrical shape with the axis O as the center.
- the first disk portion 31 includes a grip portion A that is fitted to the rotating shaft 101 with a tightening margin on the front end portion 33 side on the front side (F) of the axis O.
- cold fitting or shrink fitting can be applied.
- the impeller 1 in this embodiment is fixed to the rotating shaft 101 only by the grip portion A.
- the first disk portion 31 includes an outer peripheral surface 34 that gradually increases in diameter toward the rear side (B) of the axis O. This outer peripheral surface 34 is a concave curved surface toward the outside in a cross section including the axis O.
- the rear end surface 32 of the rear side (B) of the axis O is bonded to the second disk portion 35 via a bonding layer CL formed by friction welding.
- the second disk portion 35 is formed in a disc shape extending from the rear end portion 36 side opposite to the front end portion 33 side in the direction of the axis O toward the radially outer side.
- the inner diameter side region 38 of the front end surface 37 is bonded to the rear end surface 32 of the first disk portion 31 via the bonding layer CL.
- the rear end face 32 and the inner diameter side region 38 of the front end face 37 constitute a bonding layer CL orthogonal to the axis O.
- a plurality of blade parts 40 are arranged at predetermined intervals in the circumferential direction of the disk part 30.
- the blade portion 40 is formed with a substantially constant plate thickness and protrudes from the front end surface 37 of the disk portion 30 toward the front side (F) in the direction of the axis O.
- the blade portion 40 has a slightly tapered shape toward the outside in the radial direction in a side view.
- each blade portion 40 is formed so as to go to the rear side in the rotation direction R of the impeller 1 as it goes to the outer side in the radial direction of the disk portion 30 when viewed from the direction of the axis O.
- Each blade portion 40 is formed to be concavely curved toward the rear side in the rotational direction R when viewed from the direction of the axis O.
- the blade portion 40 only needs to extend to the rear side in the rotational direction R toward the outer side in the radial direction.
- the blade portion 40 may be formed linearly when viewed from the direction of the axis O.
- the cover portion 50 covers the blade portion 40 from the front end portion 33 side in the direction of the axis O.
- the cover portion 50 has a rear end surface 52 in the direction of the axis O formed integrally with the front edge 41 of the blade portion 40.
- the cover part 50 is formed in a plate shape having a slightly thinner outer thickness in the radial direction, like the disk parts 30 arranged to face each other.
- the cover part 50 has a bent part 51 bent toward the front side in the direction of the axis O at the position of the inner end 42 of the blade part 40.
- the bonding layer CL is disposed inside the blade portion 40 in the radial direction. Further, the front end portion 33 of the first disk portion 31 is disposed so as to protrude forward (F) in the direction of the axis O from the front end edge 53 of the bent portion 51. Further, the impeller 1 has a flow path 105 through which the gas G flows by the outer peripheral surface 34 of the first disk portion 31, the front end surface 37 of the second disk portion 35, the side surface 43 of the blade portion 40, and the rear end surface 52 of the cover portion 50. Is formed.
- a compressive residual stress layer is provided on the surface of the boundary portion with the disk part 30 (second disk part 35) at the discharge port 107 side of the flow path 105, that is, at the tip E of the blade part 40.
- the impeller 1 is provided with a compressive residual stress layer on the surface layer at the boundary portion with the cover portion 50 at the tip E of the blade portion 40.
- the region where the compressive residual stress layer is provided is shown as CRS in FIGS.
- FIG. 2 shows an example in which a crack C has occurred at the boundary between the blade portion 40 and the disk portion 30.
- a compressive residual stress CRS is applied to the portion of the impeller 1.
- Fracture failure is broadly divided into crack initiation and propagation processes. Residual stress mainly affects the crack growth process. The mechanism of crack growth due to fatigue is due to repeated crack opening due to plastic slip at the crack edge (blunting), resharpening of the crack edge due to reverse stress, and new plastic slip due to the next cyclic stress. . Therefore, if a new plastic slip occurs at the crack edge, it can be said that the crack does not progress. The compressive residual stress improves the fatigue strength by closing the crack, thereby suppressing the progress of the crack.
- the compressive residual stress shows a peak at a certain depth from the surface layer, but the value of the compressive residual stress decreases when the depth becomes deeper than the position where the peak is shown, and when the depth exceeds a certain depth, the tensile residual stress It turns into residual stress.
- the impeller 1 prevents or suppresses the generation
- a positive value of residual stress indicates tension, and a negative value indicates compression.
- compressive residual stress is applied by shot peening.
- means other than shot peening for example, surface treatment such as quenching or nitriding can be employed.
- shot peening is effective for applying compressive residual stress only in the vicinity of the tip of the blade portion 40.
- Shot peening is a kind of machining that causes a large number of minute spherical particles, typically metal spheres, to collide with a metal surface at high speed, and these metal spheres are called shots. Since shots are generally harder than the workpiece, when the shot collides with the surface of the workpiece at a high speed, the surface of the workpiece is dented and a round recess remains. Therefore, the surface subjected to shot peening has a pear-like pattern, but in addition to the compressive residual stress being applied to the surface, the hardness of the surface is increased more than before shot peening. In the present embodiment, by providing the compressive residual stress layer at the tip of the blade portion 40, it is possible to prevent the occurrence or development of cracks in the portion.
- Shot peening includes an impeller method and a compressed air nozzle method based on a means for projecting a shot, but a compressed air nozzle method is suitable for obtaining a high compressive residual stress.
- FIG. 4 shows how shot peening is performed on the impeller 1 by the compressed air nozzle method.
- the air nozzle 110 is disposed toward the impeller 1, and a shot S is projected from the air nozzle 110.
- the air nozzle 110 is projected toward the boundary portion of the disk portion 30 at the tip E of the blade portion 40.
- the shot S is projected toward the boundary portion of the cover portion 50 at the tip E of the blade portion 40 with the air nozzle 110.
- the shot S generally has a particle size in the range of 0.2 mm to 1.2 mm, but fine particle peening (Fine ⁇ ⁇ ⁇ Particle Peening using a finer particle size of 0.04 to 0.2 mm) is used. ) Is also present. In addition, this particle size means a diameter. In the present embodiment, one or both of shot peening and fine particle peening with a general particle size can be applied.
- the main difference between general shot peening and fine particle peening appears in the depth at which the peak of compressive residual stress occurs. That is, the position where the peak of compressive residual stress is closer to the surface in fine particle peening than in shot peening having a general particle size.
- the peak depth is about 0.01 mm, for example, whereas in the case of shot peening with the general particle size described above, the peak depth is about 0.05 mm, for example. It is. That is, the compressive residual stress due to fine particle peening is given to a relatively shallow range from the surface layer, and the compressive residual stress due to shot peening due to a general particle size is applied to a relatively deep range from the surface layer.
- two-stage shot peening in which shots having different particle sizes are projected in two stages.
- two-stage shot peening As shown in FIG. 5B as “two-stage”, a compressive residual stress in which a compressive residual stress caused by a shot having a general particle diameter and a compressive residual stress caused by a fine particle shot are superimposed. Is granted. That is, since the peak due to the compressive residual stress occurs at two different locations in the depth direction, the compressive residual stress can be applied to a wider range in the depth direction.
- shot peening is performed with a general particle size (first particle size, first shot) as the first step, and then fine particles (second particle size, second shot) as the second step. ) It is preferable to perform shot peening. Note that three or more stages of shot peening can be performed using shots having different particle sizes.
- the impeller 1 of the present embodiment is provided with a compressive residual stress layer at the tip E of the blade part 40 and at the boundary part with the first disk part 31 and the boundary part with the cover part 50. Therefore, according to the impeller 1, since the fatigue strength of the boundary portion where cracks are likely to occur due to fatigue is improved and the occurrence and development of cracks can be prevented, the impeller 1 can have a longer life. Moreover, since the compressive residual stress is given to the said boundary part, the corresponding force corrosion cracking property of the said boundary part can be improved. In particular, since the impeller 1 applies compressive residual stress only to the tip portion where cracks are likely to occur, the generation and progress of cracks can be prevented efficiently.
- the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
- the impeller 1 in the present embodiment has the disk part 30 divided into a first disk part 31 and a second disk part 35, and the second disk part 35, the blade part 40, and the cover part 50 are integrally formed. It has a structure.
- the impeller of the present invention is not limited to this.
- the present invention can also be applied to an impeller that joins a disk portion and a blade portion that are formed integrally with a cover portion that is formed separately from these.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
An impeller 1 is provided which has excellent fatigue strength. The impeller 1 is characterized by being provided with a disc part 30 which is fixed to a rotation shaft 101 which rotates around an axis O, a cover part 50 which is arranged facing the disc part 30, and multiple blade parts 40 which are provided between the disc part 30 and the cover part 50. At the tips of each blade part 40, a compressive residual stress layer is provided on the surface layer at the boundary with the disc part 30 and the surface layer at the boundary with the cover part 50.<u/> <u/>
Description
本発明は、回転機械に用いられるインペラに関するものである。
The present invention relates to an impeller used for a rotating machine.
産業用圧縮機やターボ冷凍機、小型ガスタービンなどの回転機械は、回転軸に固定されたディスクに複数のブレードを取り付けたインペラを備えている。この回転機械は、インペラを回転させることで、ガスに圧力エネルギ及び速度エネルギを与えている。
Rotating machines such as industrial compressors, turbo refrigerators, and small gas turbines are equipped with an impeller in which a plurality of blades are attached to a disk fixed to a rotating shaft. This rotating machine gives pressure energy and velocity energy to gas by rotating an impeller.
インペラは、回転時に生じる遠心力により引張応力が作用し、この引張応力が材料強度を超えるとインペラが破損することになる。そこで、この引張応力に対向するために、例えば特許文献1及び特許文献2に記載されるように、インペラに圧縮応力を付与することが提案されている。
特許文献1及び特許文献2は、回転軸が嵌合される嵌合孔に差し込んだ冶具によって嵌合孔の内部からインペラを径方向の外側に向けて押圧することにより、インペラに圧縮残留応力を付与する。引用文献1及び引用文献2は、最大外径部分の根元が回転時に最も引張応力の影響を受けやすいことから、この根本に圧縮残留応力を付与する。 The impeller is subjected to tensile stress due to centrifugal force generated during rotation, and the impeller is damaged when the tensile stress exceeds the material strength. In order to face this tensile stress, for example, as described inPatent Document 1 and Patent Document 2, it has been proposed to apply a compressive stress to the impeller.
InPatent Document 1 and Patent Document 2, a compressive residual stress is applied to an impeller by pressing the impeller radially outward from the inside of the fitting hole by a jig inserted into the fitting hole into which the rotating shaft is fitted. Give. In Cited Document 1 and Cited Document 2, since the root of the maximum outer diameter portion is most susceptible to tensile stress during rotation, compressive residual stress is applied to the root.
特許文献1及び特許文献2は、回転軸が嵌合される嵌合孔に差し込んだ冶具によって嵌合孔の内部からインペラを径方向の外側に向けて押圧することにより、インペラに圧縮残留応力を付与する。引用文献1及び引用文献2は、最大外径部分の根元が回転時に最も引張応力の影響を受けやすいことから、この根本に圧縮残留応力を付与する。 The impeller is subjected to tensile stress due to centrifugal force generated during rotation, and the impeller is damaged when the tensile stress exceeds the material strength. In order to face this tensile stress, for example, as described in
In
インペラは、材料強度を超える引張応力が加わらなくても、疲労により破損することもある。
そこで本発明は、疲労強度に優れるインペラ及びその製造方法を提供することを目的とする。 Even if the impeller is not subjected to tensile stress exceeding the material strength, the impeller may be damaged due to fatigue.
Then, an object of this invention is to provide the impeller excellent in fatigue strength, and its manufacturing method.
そこで本発明は、疲労強度に優れるインペラ及びその製造方法を提供することを目的とする。 Even if the impeller is not subjected to tensile stress exceeding the material strength, the impeller may be damaged due to fatigue.
Then, an object of this invention is to provide the impeller excellent in fatigue strength, and its manufacturing method.
本発明のインペラは、軸線の回りに回転する回転軸に固定されるディスク部と、ディスク部に対向配置されるカバー部と、ディスク部とカバー部との間に設けられる複数のブレード部と、を備える。本発明のインペラは、それぞれのブレード部の先端における、ディスク部との境界部の表層、及び、カバー部との境界部の表層に圧縮残留応力層が設けられている、ことを特徴とする。
The impeller of the present invention includes a disk portion fixed to a rotating shaft that rotates about an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion, Is provided. The impeller of the present invention is characterized in that a compressive residual stress layer is provided on the surface layer of the boundary portion with the disk portion and the surface layer of the boundary portion with the cover portion at the tip of each blade portion.
本発明のインペラにおいて、ディスク部との境界部は、ブレード部とディスク部を一体に形成することもできるし、接合することもできる。接合するということは、ディスク部とブレード部を別体として作製することを前提とする。カバー部との境界部についても同様であり、ブレード部とカバー部を一体に形成することもできるし接合することもできる。接合するということは、ブレード部とカバー部を別体として作製することを前提とする。
In the impeller of the present invention, the blade part and the disk part can be integrally formed or joined to the boundary part with the disk part. Joining is based on the premise that the disk portion and the blade portion are manufactured separately. The same applies to the boundary portion with the cover portion, and the blade portion and the cover portion can be formed integrally or can be joined. Joining is based on the premise that the blade part and the cover part are produced separately.
本発明は、軸線の回りに回転する回転軸に固定されるディスク部と、ディスク部に対向配置されるカバー部と、ディスク部とカバー部との間に設けられる複数のブレード部と、を備えるインペラの製造方法を提供する。本発明のインペラの製造方法は、ブレード部のブレード先端における、ディスク部との境界部の表層、及び、カバー部との境界部の表層に、ショットピーニングにより圧縮残留応力を付与する、ことを特徴とする。
The present invention includes a disk portion fixed to a rotating shaft that rotates around an axis, a cover portion that is disposed to face the disk portion, and a plurality of blade portions that are provided between the disk portion and the cover portion. An impeller manufacturing method is provided. The impeller manufacturing method of the present invention is characterized in that compressive residual stress is applied by shot peening to the surface layer of the boundary portion with the disk portion and the surface portion of the boundary portion with the cover portion at the blade tip of the blade portion. And
本発明におけるショットピーニングによる圧縮残留応力の付与は、第一の粒径を有する第一ショットを用いる第一ステップと、第一の粒径より小さい第二の粒径を有する第二ショットを用いる第二ステップと、の少なくとも二段階で行われる、ことが好ましい。
The application of compressive residual stress by shot peening according to the present invention includes a first step using a first shot having a first particle size and a second shot having a second particle size smaller than the first particle size. It is preferably performed in at least two steps of two steps.
また、本発明によれば、以上説明したインペラを備える回転機械が提供される。
Moreover, according to the present invention, a rotating machine including the impeller described above is provided.
本発明のインペラによれば、疲労による破損が生じやすいブレードの先端に残留圧縮応力層を設けるので、インペラの継続的な運転に対する疲労強度を向上できる。
また、本発明のインペラの製造方法によれば、圧縮残留応力をショットピーニングで付与するので、クローズドインペラであっても容易に当該先端に限定して圧縮残留応力を付与できる。 According to the impeller of the present invention, the residual compressive stress layer is provided at the tip of the blade, which is likely to be damaged by fatigue, so that the fatigue strength against continuous operation of the impeller can be improved.
Further, according to the impeller manufacturing method of the present invention, the compressive residual stress is applied by shot peening, so that even if it is a closed impeller, the compressive residual stress can be easily applied only to the tip.
また、本発明のインペラの製造方法によれば、圧縮残留応力をショットピーニングで付与するので、クローズドインペラであっても容易に当該先端に限定して圧縮残留応力を付与できる。 According to the impeller of the present invention, the residual compressive stress layer is provided at the tip of the blade, which is likely to be damaged by fatigue, so that the fatigue strength against continuous operation of the impeller can be improved.
Further, according to the impeller manufacturing method of the present invention, the compressive residual stress is applied by shot peening, so that even if it is a closed impeller, the compressive residual stress can be easily applied only to the tip.
以下、添付図面を参照しながら、本発明の実施形態にかかる回転機械について、遠心圧縮機100を例にして説明する。
[遠心圧縮機100の構成]
図1に示すように、第1実施形態に係る遠心圧縮機100は、ケーシング102と、ケーシング102にジャーナル軸受103及びスラスト軸受104を介して軸支される回転軸101と、を備えている。回転軸101は、軸線Oの回りに回転可能に支持されており、回転軸101には、軸線Oの方向に複数のインペラ1が並んで取り付けられている。 Hereinafter, a rotary machine according to an embodiment of the present invention will be described using acentrifugal compressor 100 as an example with reference to the accompanying drawings.
[Configuration of Centrifugal Compressor 100]
As shown in FIG. 1, thecentrifugal compressor 100 according to the first embodiment includes a casing 102 and a rotating shaft 101 that is pivotally supported on the casing 102 via a journal bearing 103 and a thrust bearing 104. The rotating shaft 101 is supported so as to be rotatable around the axis O, and a plurality of impellers 1 are attached to the rotating shaft 101 side by side in the direction of the axis O.
[遠心圧縮機100の構成]
図1に示すように、第1実施形態に係る遠心圧縮機100は、ケーシング102と、ケーシング102にジャーナル軸受103及びスラスト軸受104を介して軸支される回転軸101と、を備えている。回転軸101は、軸線Oの回りに回転可能に支持されており、回転軸101には、軸線Oの方向に複数のインペラ1が並んで取り付けられている。 Hereinafter, a rotary machine according to an embodiment of the present invention will be described using a
[Configuration of Centrifugal Compressor 100]
As shown in FIG. 1, the
図2に示すように、各インペラ1は、略円盤状をなしている。インペラ1は、その軸線Oの方向の一方側に開口された導入口3より吸入された流体を、インペラ1の内部に形成された流路105を介して径方向の外側の排出口4から放出するように構成されている。
各インペラ1は、回転軸101の回転による遠心力を利用してケーシング102に形成された上流側の流路105から供給されるガスGを下流側の流路105へと段階的に圧縮して流す。 As shown in FIG. 2, eachimpeller 1 has a substantially disk shape. The impeller 1 discharges the fluid sucked from the introduction port 3 opened on one side in the direction of the axis O from the discharge port 4 on the outer side in the radial direction through the flow path 105 formed inside the impeller 1. Is configured to do.
Eachimpeller 1 compresses the gas G supplied from the upstream flow path 105 formed in the casing 102 into the downstream flow path 105 in a stepwise manner using centrifugal force generated by the rotation of the rotary shaft 101. Shed.
各インペラ1は、回転軸101の回転による遠心力を利用してケーシング102に形成された上流側の流路105から供給されるガスGを下流側の流路105へと段階的に圧縮して流す。 As shown in FIG. 2, each
Each
図1に示すように、ケーシング102には、回転軸101の軸線Oの方向の前方側(F)に、外部からガスGを流入させるための吸込口106が形成されている。また、ケーシング102には、軸線Oの方向の後方側(B)に、外部へガスGを流出させるための排出口107が形成されている。
As shown in FIG. 1, the casing 102 is formed with a suction port 106 for allowing the gas G to flow in from the outside on the front side (F) in the direction of the axis O of the rotary shaft 101. Further, the casing 102 is formed with a discharge port 107 for allowing the gas G to flow out to the outside on the rear side (B) in the direction of the axis O.
遠心圧縮機100によれば、回転軸101が回転すると、吸込口106からガスGが流路105に流入して、このガスGがインペラ1によって段階的に圧縮されて排出口107から排出される。図1においては、回転軸101に6個のインペラ1が直列に設けられた例を示しているが、回転軸101に対して少なくとも1個のインペラ1が設けられていれ
ばよい。なお、以下の説明では、説明を簡単化するため、回転軸101にインペラ1が1つだけ設けられている場合を例にして説明する。 According to thecentrifugal compressor 100, when the rotary shaft 101 rotates, the gas G flows into the flow path 105 from the suction port 106, and the gas G is compressed stepwise by the impeller 1 and discharged from the discharge port 107. . Although FIG. 1 shows an example in which six impellers 1 are provided in series on the rotating shaft 101, it is sufficient that at least one impeller 1 is provided on the rotating shaft 101. In the following description, in order to simplify the description, a case where only one impeller 1 is provided on the rotating shaft 101 will be described.
ばよい。なお、以下の説明では、説明を簡単化するため、回転軸101にインペラ1が1つだけ設けられている場合を例にして説明する。 According to the
[インペラ1の構成]
図2、図3に示すように、インペラ1は、ディスク部30と、ブレード部40と、カバー部50と、を備えている。
ディスク部30は、径方向の外側から嵌合されることで回転軸101に取り付けられている。ディスク部30は、図3に示すように、軸線Oに直交する接合層CLにより軸線Oの方向に二分割された第一ディスク部31と第二ディスク部35とを備えている。第一ディスク部31と第二ディスク部35とは、接合層CLで接合されている。この接合層CLは、接着剤、摩擦圧接により構成するのが好ましい。 [Configuration of Impeller 1]
As shown in FIGS. 2 and 3, theimpeller 1 includes a disk unit 30, a blade unit 40, and a cover unit 50.
Thedisk part 30 is attached to the rotating shaft 101 by being fitted from the outside in the radial direction. As shown in FIG. 3, the disk unit 30 includes a first disk unit 31 and a second disk unit 35 that are divided into two in the direction of the axis O by a bonding layer CL orthogonal to the axis O. The first disk part 31 and the second disk part 35 are joined by a joining layer CL. The bonding layer CL is preferably constituted by an adhesive and friction welding.
図2、図3に示すように、インペラ1は、ディスク部30と、ブレード部40と、カバー部50と、を備えている。
ディスク部30は、径方向の外側から嵌合されることで回転軸101に取り付けられている。ディスク部30は、図3に示すように、軸線Oに直交する接合層CLにより軸線Oの方向に二分割された第一ディスク部31と第二ディスク部35とを備えている。第一ディスク部31と第二ディスク部35とは、接合層CLで接合されている。この接合層CLは、接着剤、摩擦圧接により構成するのが好ましい。 [Configuration of Impeller 1]
As shown in FIGS. 2 and 3, the
The
第一ディスク部31は、軸線Oを中心とした略円筒状をなしている。第一ディスク部31は、軸線Oの前方側(F)の前端部33の側に、回転軸101に締め代をもって嵌合されるグリップ部Aを備えている。ここで、グリップ部Aにおいて第一ディスク部31を回転軸101に締め代をもって嵌合させるには、冷やし嵌めや、焼き嵌めを適用できる。この実施形態におけるインペラ1は、グリップ部Aのみで回転軸101に固定されている。
第一ディスク部31は、軸線Oの後方側(B)に向かって漸次拡径する外周面34を備えている。この外周面34は、軸線Oを含む断面において、外側に向かって凹状の曲面となっている。
第一ディスク部31は、軸線Oの後方側(B)の後端面32が摩擦圧接による接合層CLを介して第二ディスク部35に接合されている。 Thefirst disk portion 31 has a substantially cylindrical shape with the axis O as the center. The first disk portion 31 includes a grip portion A that is fitted to the rotating shaft 101 with a tightening margin on the front end portion 33 side on the front side (F) of the axis O. Here, in order to fit the first disk portion 31 to the rotating shaft 101 with the allowance in the grip portion A, cold fitting or shrink fitting can be applied. The impeller 1 in this embodiment is fixed to the rotating shaft 101 only by the grip portion A.
Thefirst disk portion 31 includes an outer peripheral surface 34 that gradually increases in diameter toward the rear side (B) of the axis O. This outer peripheral surface 34 is a concave curved surface toward the outside in a cross section including the axis O.
In thefirst disk portion 31, the rear end surface 32 of the rear side (B) of the axis O is bonded to the second disk portion 35 via a bonding layer CL formed by friction welding.
第一ディスク部31は、軸線Oの後方側(B)に向かって漸次拡径する外周面34を備えている。この外周面34は、軸線Oを含む断面において、外側に向かって凹状の曲面となっている。
第一ディスク部31は、軸線Oの後方側(B)の後端面32が摩擦圧接による接合層CLを介して第二ディスク部35に接合されている。 The
The
In the
第二ディスク部35は、軸線Oの方向で前端部33の側とは反対側となる後端部36側から径方向の外側に向かって延びる円盤状に形成されている。
第二ディスク部35は、その前端面37の内径側領域38が、第一ディスク部31の後端面32と接合層CLを介して接合されている。これら後端面32と前端面37の内径側領域38とは、軸線Oに直交する接合層CLを構成している。 Thesecond disk portion 35 is formed in a disc shape extending from the rear end portion 36 side opposite to the front end portion 33 side in the direction of the axis O toward the radially outer side.
In thesecond disk portion 35, the inner diameter side region 38 of the front end surface 37 is bonded to the rear end surface 32 of the first disk portion 31 via the bonding layer CL. The rear end face 32 and the inner diameter side region 38 of the front end face 37 constitute a bonding layer CL orthogonal to the axis O.
第二ディスク部35は、その前端面37の内径側領域38が、第一ディスク部31の後端面32と接合層CLを介して接合されている。これら後端面32と前端面37の内径側領域38とは、軸線Oに直交する接合層CLを構成している。 The
In the
ブレード部40は、図2に示すように、ディスク部30の周方向に所定間隔をあけて複数配列されている。
ブレード部40は、図3に示すように、略一定の板厚で形成されてディスク部30の前端面37から軸線Oの方向の前方側(F)に向かって突出して形成されている。また、図3に示すように、ブレード部40は、側面視で径方向の外側に向かってやや先細り形状とされている。 As shown in FIG. 2, a plurality ofblade parts 40 are arranged at predetermined intervals in the circumferential direction of the disk part 30.
As shown in FIG. 3, theblade portion 40 is formed with a substantially constant plate thickness and protrudes from the front end surface 37 of the disk portion 30 toward the front side (F) in the direction of the axis O. As shown in FIG. 3, the blade portion 40 has a slightly tapered shape toward the outside in the radial direction in a side view.
ブレード部40は、図3に示すように、略一定の板厚で形成されてディスク部30の前端面37から軸線Oの方向の前方側(F)に向かって突出して形成されている。また、図3に示すように、ブレード部40は、側面視で径方向の外側に向かってやや先細り形状とされている。 As shown in FIG. 2, a plurality of
As shown in FIG. 3, the
図2に示すように、各ブレード部40は、軸線Oの方向から見て、ディスク部30の径方向の外側に向かうにつれてインペラ1の回転方向Rの後側に向かうように形成されている。また、各ブレード部40は、軸線Oの方向から見て回転方向Rの後側に向かって凹状に湾曲して形成されている。ここでは、ブレード部40が軸線Oの方向から見て湾曲して形成される一例について説明したが、ブレード部40は、径方向の外側ほど回転方向Rの後方側に延在されていればよい。例えばブレード部40は軸線Oの方向から見て直線的に形成されていてもよい。
As shown in FIG. 2, each blade portion 40 is formed so as to go to the rear side in the rotation direction R of the impeller 1 as it goes to the outer side in the radial direction of the disk portion 30 when viewed from the direction of the axis O. Each blade portion 40 is formed to be concavely curved toward the rear side in the rotational direction R when viewed from the direction of the axis O. Here, an example in which the blade portion 40 is formed to be curved as viewed from the direction of the axis O has been described. However, the blade portion 40 only needs to extend to the rear side in the rotational direction R toward the outer side in the radial direction. . For example, the blade portion 40 may be formed linearly when viewed from the direction of the axis O.
カバー部50は、図3に示すように、軸線Oの方向における前端部33の側からブレード部40を覆っている。
カバー部50は、軸線Oの方向における後端面52がブレード部40の前側縁41に一体的に形成されている。カバー部50は、互いに対向配置されるディスク部30と同様に、径方向の外側の厚さがやや薄い板状に形成されている。このカバー部50は、ブレード部40の内側端42の位置において軸線Oの方向における前側に向かって屈曲された屈曲部51を有している。 As shown in FIG. 3, thecover portion 50 covers the blade portion 40 from the front end portion 33 side in the direction of the axis O.
Thecover portion 50 has a rear end surface 52 in the direction of the axis O formed integrally with the front edge 41 of the blade portion 40. The cover part 50 is formed in a plate shape having a slightly thinner outer thickness in the radial direction, like the disk parts 30 arranged to face each other. The cover part 50 has a bent part 51 bent toward the front side in the direction of the axis O at the position of the inner end 42 of the blade part 40.
カバー部50は、軸線Oの方向における後端面52がブレード部40の前側縁41に一体的に形成されている。カバー部50は、互いに対向配置されるディスク部30と同様に、径方向の外側の厚さがやや薄い板状に形成されている。このカバー部50は、ブレード部40の内側端42の位置において軸線Oの方向における前側に向かって屈曲された屈曲部51を有している。 As shown in FIG. 3, the
The
以上のように構成されたインペラ1は、ブレード部40の径方向の内側に、接合層CLが配置されている。また、第一ディスク部31の前端部33は、屈曲部51の前端縁53よりも軸線Oの方向の前方側(F)に突出して配置されている。さらに、インペラ1は、第一ディスク部31の外周面34、第二ディスク部35の前端面37、ブレード部40の側面43、及び、カバー部50の後端面52によってガスGが流れる流路105が形成されている。
In the impeller 1 configured as described above, the bonding layer CL is disposed inside the blade portion 40 in the radial direction. Further, the front end portion 33 of the first disk portion 31 is disposed so as to protrude forward (F) in the direction of the axis O from the front end edge 53 of the bent portion 51. Further, the impeller 1 has a flow path 105 through which the gas G flows by the outer peripheral surface 34 of the first disk portion 31, the front end surface 37 of the second disk portion 35, the side surface 43 of the blade portion 40, and the rear end surface 52 of the cover portion 50. Is formed.
以上説明したインペラ1は、流路105の排出口107の側、つまりブレード部40の先端Eにおけるディスク部30(第二ディスク部35)との境界部の表層に圧縮残留応力層が設けられている。また、インペラ1は、ブレード部40の先端Eにおけるカバー部50との境界部分の表層に圧縮残留応力層が設けられている。圧縮残留応力層が設けられる領域には、図3及び図4にCRSとして示されている。
In the impeller 1 described above, a compressive residual stress layer is provided on the surface of the boundary portion with the disk part 30 (second disk part 35) at the discharge port 107 side of the flow path 105, that is, at the tip E of the blade part 40. Yes. In addition, the impeller 1 is provided with a compressive residual stress layer on the surface layer at the boundary portion with the cover portion 50 at the tip E of the blade portion 40. The region where the compressive residual stress layer is provided is shown as CRS in FIGS.
[圧縮残留応力]
本発明者らの検討によると、インペラ1を継続的に運転すると、図2に示すように、この境界部にその先端Eから亀裂Cが生じる。図2は、ブレード部40とディスク部30との境界部に亀裂Cが生じた例を示している。亀裂Cが生じた部位の断面を観察したところ、亀裂Cはインペラ1の運転に伴って先端Eに引張応力が繰り返し作用することによる疲労が原因であることを知見した。そこで、この亀裂Cの発生を防止し又は低減するために、インペラ1の当該部分に圧縮残留応力CRSを付与する。 [Compressive residual stress]
According to the study by the present inventors, when theimpeller 1 is continuously operated, as shown in FIG. FIG. 2 shows an example in which a crack C has occurred at the boundary between the blade portion 40 and the disk portion 30. As a result of observing the cross section of the portion where the crack C was generated, it was found that the crack C was caused by fatigue due to repeated application of tensile stress to the tip E as the impeller 1 was operated. Therefore, in order to prevent or reduce the occurrence of the crack C, a compressive residual stress CRS is applied to the portion of the impeller 1.
本発明者らの検討によると、インペラ1を継続的に運転すると、図2に示すように、この境界部にその先端Eから亀裂Cが生じる。図2は、ブレード部40とディスク部30との境界部に亀裂Cが生じた例を示している。亀裂Cが生じた部位の断面を観察したところ、亀裂Cはインペラ1の運転に伴って先端Eに引張応力が繰り返し作用することによる疲労が原因であることを知見した。そこで、この亀裂Cの発生を防止し又は低減するために、インペラ1の当該部分に圧縮残留応力CRSを付与する。 [Compressive residual stress]
According to the study by the present inventors, when the
疲労による破壊は亀裂の発生過程と進展過程に大別される。残留応力は主として亀裂の進展過程に大きな影響を及ぼす。疲労による亀裂進展の機構は、亀裂端の塑性すべりに伴う亀裂の開口(鈍化)と逆方向の応力による亀裂端の再鋭化、次の繰返し応力による新たな塑性すべり、の繰返しによるものである。したがって、亀裂端に新たな塑性すべりが起こらければ亀裂は進展しないといえる。
圧縮残留応力は、亀裂を閉口させることで、亀裂の進展を抑制して疲労強度を向上させる。 Fracture failure is broadly divided into crack initiation and propagation processes. Residual stress mainly affects the crack growth process. The mechanism of crack growth due to fatigue is due to repeated crack opening due to plastic slip at the crack edge (blunting), resharpening of the crack edge due to reverse stress, and new plastic slip due to the next cyclic stress. . Therefore, if a new plastic slip occurs at the crack edge, it can be said that the crack does not progress.
The compressive residual stress improves the fatigue strength by closing the crack, thereby suppressing the progress of the crack.
圧縮残留応力は、亀裂を閉口させることで、亀裂の進展を抑制して疲労強度を向上させる。 Fracture failure is broadly divided into crack initiation and propagation processes. Residual stress mainly affects the crack growth process. The mechanism of crack growth due to fatigue is due to repeated crack opening due to plastic slip at the crack edge (blunting), resharpening of the crack edge due to reverse stress, and new plastic slip due to the next cyclic stress. . Therefore, if a new plastic slip occurs at the crack edge, it can be said that the crack does not progress.
The compressive residual stress improves the fatigue strength by closing the crack, thereby suppressing the progress of the crack.
圧縮残留応力は、図5(a)に示すように、表層からある深さにおいてピークを示すが、ピークを示す位置よりも深くなると圧縮残留応力の値は小さくなり、ある深さを超えると引張残留応力に転じる。このように、インペラ1は、ブレード部40とディスク部30の境界部、及び、ブレード部40とカバー部50の境界部部分に圧縮応力が残留するので、疲労による亀裂Cの発生を防止又は抑制される。
なお、図4(a)において、残留応力は正の値が引張りを示し、負の値が圧縮を示している。 As shown in FIG. 5 (a), the compressive residual stress shows a peak at a certain depth from the surface layer, but the value of the compressive residual stress decreases when the depth becomes deeper than the position where the peak is shown, and when the depth exceeds a certain depth, the tensile residual stress It turns into residual stress. Thus, since the compressive stress remains in the boundary part of theblade part 40 and the disk part 30, and the boundary part part of the blade part 40 and the cover part 50, the impeller 1 prevents or suppresses the generation | occurrence | production of the crack C by fatigue. Is done.
In FIG. 4A, a positive value of residual stress indicates tension, and a negative value indicates compression.
なお、図4(a)において、残留応力は正の値が引張りを示し、負の値が圧縮を示している。 As shown in FIG. 5 (a), the compressive residual stress shows a peak at a certain depth from the surface layer, but the value of the compressive residual stress decreases when the depth becomes deeper than the position where the peak is shown, and when the depth exceeds a certain depth, the tensile residual stress It turns into residual stress. Thus, since the compressive stress remains in the boundary part of the
In FIG. 4A, a positive value of residual stress indicates tension, and a negative value indicates compression.
[圧縮残留応力の付与方法]
本実施形態は、圧縮残留応力をショットピーニング(Shot Peening)により付与する。圧縮残留応力を付与するには、ショットピーニング以外の手段、例えば焼き入れ、窒化処理といった表面処理を採用できる。しかし、ブレード部40の先端近傍に限定して圧縮残留応力を付与するには、ショットピーニングが有効である。 [Method of applying compressive residual stress]
In the present embodiment, compressive residual stress is applied by shot peening. In order to apply the compressive residual stress, means other than shot peening, for example, surface treatment such as quenching or nitriding can be employed. However, shot peening is effective for applying compressive residual stress only in the vicinity of the tip of theblade portion 40.
本実施形態は、圧縮残留応力をショットピーニング(Shot Peening)により付与する。圧縮残留応力を付与するには、ショットピーニング以外の手段、例えば焼き入れ、窒化処理といった表面処理を採用できる。しかし、ブレード部40の先端近傍に限定して圧縮残留応力を付与するには、ショットピーニングが有効である。 [Method of applying compressive residual stress]
In the present embodiment, compressive residual stress is applied by shot peening. In order to apply the compressive residual stress, means other than shot peening, for example, surface treatment such as quenching or nitriding can be employed. However, shot peening is effective for applying compressive residual stress only in the vicinity of the tip of the
ショットピーニングは、多数の微小な球状粒子、典型的には金属球を高速度で金属表面に衝突させる機械加工の一種であり、この金属球をショットという。一般的にはショットは被加工材よりも固いので、ショットが高速度で被加工材の表面に衝突すると、被加工材の表面がへこみ、丸いくぼみが残る。したがって、ショットピーニングを行った面は梨子地模様となるが、表面に圧縮残留応力が付与されるのに加えて、ショットピーニングする前よりも表面の硬さが増す。本実施形態は、圧縮残留応力層をブレード部40の先端に設けることにより、当該部分における亀裂の発生または進展を防ぐことができる。
Shot peening is a kind of machining that causes a large number of minute spherical particles, typically metal spheres, to collide with a metal surface at high speed, and these metal spheres are called shots. Since shots are generally harder than the workpiece, when the shot collides with the surface of the workpiece at a high speed, the surface of the workpiece is dented and a round recess remains. Therefore, the surface subjected to shot peening has a pear-like pattern, but in addition to the compressive residual stress being applied to the surface, the hardness of the surface is increased more than before shot peening. In the present embodiment, by providing the compressive residual stress layer at the tip of the blade portion 40, it is possible to prevent the occurrence or development of cracks in the portion.
ショットピーニングには、ショットを投射する手段に基づいて、インペラ方式と圧縮エアノズル方式があるが、高い圧縮残留応力を得るには圧縮エアノズル方式が適している。
図4は、圧縮エアノズル方式によりインペラ1にショットピーニングを行う様子を示している。図4に示すように、エアノズル110をインペラ1に向けて配置し、エアノズル110からショットSを投射する。本実施形態におけるショットピーニングは、エアノズル110をブレード部40の先端Eにおけるディスク部30の境界部に向けてショットSを投射する。また、本実施形態におけるショットピーニングは、エアノズル110をブレード部40の先端Eにおけるカバー部50の境界部に向けてショットSを投射する。 Shot peening includes an impeller method and a compressed air nozzle method based on a means for projecting a shot, but a compressed air nozzle method is suitable for obtaining a high compressive residual stress.
FIG. 4 shows how shot peening is performed on theimpeller 1 by the compressed air nozzle method. As shown in FIG. 4, the air nozzle 110 is disposed toward the impeller 1, and a shot S is projected from the air nozzle 110. In shot peening in the present embodiment, the air nozzle 110 is projected toward the boundary portion of the disk portion 30 at the tip E of the blade portion 40. In the shot peening according to the present embodiment, the shot S is projected toward the boundary portion of the cover portion 50 at the tip E of the blade portion 40 with the air nozzle 110.
図4は、圧縮エアノズル方式によりインペラ1にショットピーニングを行う様子を示している。図4に示すように、エアノズル110をインペラ1に向けて配置し、エアノズル110からショットSを投射する。本実施形態におけるショットピーニングは、エアノズル110をブレード部40の先端Eにおけるディスク部30の境界部に向けてショットSを投射する。また、本実施形態におけるショットピーニングは、エアノズル110をブレード部40の先端Eにおけるカバー部50の境界部に向けてショットSを投射する。 Shot peening includes an impeller method and a compressed air nozzle method based on a means for projecting a shot, but a compressed air nozzle method is suitable for obtaining a high compressive residual stress.
FIG. 4 shows how shot peening is performed on the
ショットSとしては、一般的には粒径が0.2mm~1.2mmの範囲のものが用いられるが、より微細な粒径0.04~0.2mmのショットを用いる微粒子ピーニング(Fine Particle Peening)も存在する。なお、この粒径は直径を意味する。本実施形態においては、一般的な粒径によるショットピーニング及び微粒子ピーニングの一方又は双方を適用できる。
The shot S generally has a particle size in the range of 0.2 mm to 1.2 mm, but fine particle peening (Fine ニ ン グ Particle Peening using a finer particle size of 0.04 to 0.2 mm) is used. ) Is also present. In addition, this particle size means a diameter. In the present embodiment, one or both of shot peening and fine particle peening with a general particle size can be applied.
一般的なショットピーニングと微粒子ピーニングの主たる相違は、圧縮残留応力のピークが生じる深さに現れる。つまり、微粒子ピーニングの方が一般的な粒径のショットピーニングに比べて圧縮残留応力のピークが生じる位置が表面に近い。具体的には、微粒子ピーニングの場合、ピークの深さが例えば0.01mm程度であるのに対して、上述した一般的な粒径によるショットピーニングの場合、ピークの深さが例えば0.05mm程度である。つまり、微粒子ピーニングによる圧縮残留応力は表層から相対的に浅い範囲に与えられ、一般的な粒径によるショットピーニングによる圧縮残留応力は表層から相対的に深い範囲に加えられる。
The main difference between general shot peening and fine particle peening appears in the depth at which the peak of compressive residual stress occurs. That is, the position where the peak of compressive residual stress is closer to the surface in fine particle peening than in shot peening having a general particle size. Specifically, in the case of fine particle peening, the peak depth is about 0.01 mm, for example, whereas in the case of shot peening with the general particle size described above, the peak depth is about 0.05 mm, for example. It is. That is, the compressive residual stress due to fine particle peening is given to a relatively shallow range from the surface layer, and the compressive residual stress due to shot peening due to a general particle size is applied to a relatively deep range from the surface layer.
そこで、本実施形態においては、この粒径の異なるショットを二段階に分けて投射する二段階ショットピーニングを適用できる。二段階ショットピーニングを行うことにより、図5(b)に「二段階」と表記するように、一般的な粒径のショットによる圧縮残留応力と微粒子ショットによる圧縮残留応力が重畳された圧縮残留応力が付与される。つまり、圧縮残留応力によるピークが深さ方向の異なる二箇所に生じるので、より広い深さ方向の範囲に圧縮残留応力を付与できる。
Therefore, in this embodiment, it is possible to apply two-stage shot peening in which shots having different particle sizes are projected in two stages. By performing two-stage shot peening, as shown in FIG. 5B as “two-stage”, a compressive residual stress in which a compressive residual stress caused by a shot having a general particle diameter and a compressive residual stress caused by a fine particle shot are superimposed. Is granted. That is, since the peak due to the compressive residual stress occurs at two different locations in the depth direction, the compressive residual stress can be applied to a wider range in the depth direction.
二段階のショットピーニングは、第一ステップとして一般的な粒径(第一の粒径,第一ショット)によるショットピーニングを行い、次いで、第二ステップとして微粒子(第二の粒径,第二ショット)ショットピーニングを行うことが好ましい。
なお、それぞれ異なる粒径のショットを用いて三段階以上のショットピーニングを行うこともできる。 In the two-stage shot peening, shot peening is performed with a general particle size (first particle size, first shot) as the first step, and then fine particles (second particle size, second shot) as the second step. ) It is preferable to perform shot peening.
Note that three or more stages of shot peening can be performed using shots having different particle sizes.
なお、それぞれ異なる粒径のショットを用いて三段階以上のショットピーニングを行うこともできる。 In the two-stage shot peening, shot peening is performed with a general particle size (first particle size, first shot) as the first step, and then fine particles (second particle size, second shot) as the second step. ) It is preferable to perform shot peening.
Note that three or more stages of shot peening can be performed using shots having different particle sizes.
[効 果]
以上説明したインペラ1及びその製造方法により得られる効果について説明する。
本実施形態のインペラ1は、ブレード部40の先端Eであって、第一ディスク部31との境界部及びカバー部50との境界部に圧縮残留応力層が設けられている。したがって、インペラ1によれば、疲労により亀裂が生じやすい当該境界部の疲労強度が向上し、亀裂の発生及び進展を防止できるので、インペラ1を長寿命化できる。また、当該境界部に圧縮残留応力が付与されているので、当該境界部の対応力腐食割れ性を向上できる。
特に、インペラ1は、亀裂が生じやすい当該先端部に限定して圧縮残留応力を付与するので、効率よく亀裂の発生及び進展を防止できる。 [Effect]
The effects obtained by theimpeller 1 described above and the manufacturing method thereof will be described.
Theimpeller 1 of the present embodiment is provided with a compressive residual stress layer at the tip E of the blade part 40 and at the boundary part with the first disk part 31 and the boundary part with the cover part 50. Therefore, according to the impeller 1, since the fatigue strength of the boundary portion where cracks are likely to occur due to fatigue is improved and the occurrence and development of cracks can be prevented, the impeller 1 can have a longer life. Moreover, since the compressive residual stress is given to the said boundary part, the corresponding force corrosion cracking property of the said boundary part can be improved.
In particular, since theimpeller 1 applies compressive residual stress only to the tip portion where cracks are likely to occur, the generation and progress of cracks can be prevented efficiently.
以上説明したインペラ1及びその製造方法により得られる効果について説明する。
本実施形態のインペラ1は、ブレード部40の先端Eであって、第一ディスク部31との境界部及びカバー部50との境界部に圧縮残留応力層が設けられている。したがって、インペラ1によれば、疲労により亀裂が生じやすい当該境界部の疲労強度が向上し、亀裂の発生及び進展を防止できるので、インペラ1を長寿命化できる。また、当該境界部に圧縮残留応力が付与されているので、当該境界部の対応力腐食割れ性を向上できる。
特に、インペラ1は、亀裂が生じやすい当該先端部に限定して圧縮残留応力を付与するので、効率よく亀裂の発生及び進展を防止できる。 [Effect]
The effects obtained by the
The
In particular, since the
また、本実施形態によれば、エアノズル110からブレード部40の先端Eに向けてショットSを投射することで、クローズドインペラであっても容易に当該先端に限定して圧縮残留応力を付与できる。
Further, according to the present embodiment, by projecting the shot S from the air nozzle 110 toward the tip E of the blade portion 40, even if it is a closed impeller, it is possible to easily apply a compressive residual stress to the tip.
上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
例えば、本実施形態におけるインペラ1は、ディスク部30を第一ディスク部31と第二ディスク部35に区分し、かつ、第二ディスク部35とブレード部40、カバー部50を一体に成形された構造を有する。しかし、本発明のインペラはこれに限定されない。例えば、本発明は、一体に形成されたディスク部及びブレード部と、これらとは別体として形成されたカバー部と、を接合するインペラにも適用できる。 In addition to the above, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
For example, theimpeller 1 in the present embodiment has the disk part 30 divided into a first disk part 31 and a second disk part 35, and the second disk part 35, the blade part 40, and the cover part 50 are integrally formed. It has a structure. However, the impeller of the present invention is not limited to this. For example, the present invention can also be applied to an impeller that joins a disk portion and a blade portion that are formed integrally with a cover portion that is formed separately from these.
例えば、本実施形態におけるインペラ1は、ディスク部30を第一ディスク部31と第二ディスク部35に区分し、かつ、第二ディスク部35とブレード部40、カバー部50を一体に成形された構造を有する。しかし、本発明のインペラはこれに限定されない。例えば、本発明は、一体に形成されたディスク部及びブレード部と、これらとは別体として形成されたカバー部と、を接合するインペラにも適用できる。 In addition to the above, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
For example, the
1 インペラ
3 導入口
4 排出口
30 ディスク部
31 第一ディスク部
32 後端面
33 前端部
34 外周面
35 第二ディスク部
36 後端部
37 前端面
38 内径側領域
40 ブレード部
41 前側縁
42 内側端
43 側面
50 カバー部
51 屈曲部
52 後端面
53 前端縁
100 遠心圧縮機
101 回転軸
102 ケーシング
103 ジャーナル軸受
104 スラスト軸受
105 流路
106 吸込口
107 排出口
110 エアノズル
A グリップ部
C 亀裂
CL 接合層
CRS 圧縮残留応力
E 先端
G ガス
S ショット DESCRIPTION OFSYMBOLS 1 Impeller 3 Inlet 4 Outlet 30 Disc part 31 First disk part 32 Rear end surface 33 Front end part 34 Outer peripheral surface 35 Second disk part 36 Rear end part 37 Front end surface 38 Inner diameter side area 40 Blade part 41 Front edge 42 Inner end 43 Side surface 50 Cover portion 51 Bending portion 52 Rear end surface 53 Front end edge 100 Centrifugal compressor 101 Rotating shaft 102 Casing 103 Journal bearing 104 Thrust bearing 105 Channel 106 Suction port 107 Outlet port 110 Air nozzle A Grip portion C Crack CL Bonding layer CRS Compression Residual stress E Tip G Gas S Shot
3 導入口
4 排出口
30 ディスク部
31 第一ディスク部
32 後端面
33 前端部
34 外周面
35 第二ディスク部
36 後端部
37 前端面
38 内径側領域
40 ブレード部
41 前側縁
42 内側端
43 側面
50 カバー部
51 屈曲部
52 後端面
53 前端縁
100 遠心圧縮機
101 回転軸
102 ケーシング
103 ジャーナル軸受
104 スラスト軸受
105 流路
106 吸込口
107 排出口
110 エアノズル
A グリップ部
C 亀裂
CL 接合層
CRS 圧縮残留応力
E 先端
G ガス
S ショット DESCRIPTION OF
Claims (5)
- 軸線の回りに回転する回転軸に固定されるディスク部と、
前記ディスク部に対向配置されるカバー部と、
前記ディスク部と前記カバー部との間に設けられる複数のブレード部と、を備え、
それぞれの前記ブレード部の先端における、前記ディスク部との境界部の表層、及び、前記カバー部との境界部の表層に圧縮残留応力層が設けられる、
ことを特徴とするインペラ。 A disk portion fixed to a rotating shaft that rotates about an axis;
A cover portion disposed opposite to the disk portion;
A plurality of blade portions provided between the disk portion and the cover portion,
A compressive residual stress layer is provided on the surface layer of the boundary part with the disk part and the surface layer of the boundary part with the cover part at the tip of each blade part,
Impeller characterized by that. - 前記ディスク部との前記境界部は、前記ブレード部と前記ディスク部が一体に形成されているか、接合されており、
前記カバー部との前記境界部は、前記ブレード部と前記カバー部が一体に形成されているか、接合されている、
請求項1に記載のインペラ。 The boundary part between the disk part and the blade part and the disk part are integrally formed or joined,
In the boundary portion with the cover portion, the blade portion and the cover portion are integrally formed or joined,
The impeller according to claim 1. - 軸線の回りに回転する回転軸に固定されるディスク部と、
前記ディスク部に対向配置されるカバー部と、
前記ディスク部と前記カバー部との間に設けられる複数のブレード部と、を備えるインペラの製造方法であって、
前記ブレード部の先端における、前記ディスク部との境界部の表層、及び、前記カバー部との境界部の表層に、ショットピーニングにより圧縮残留応力を付与する、
ことを特徴とするインペラの製造方法。 A disk portion fixed to a rotating shaft that rotates about an axis;
A cover portion disposed opposite to the disk portion;
A plurality of blade portions provided between the disk portion and the cover portion, and an impeller manufacturing method comprising:
Applying compressive residual stress by shot peening to the surface layer of the boundary part with the disk part and the surface layer of the boundary part with the cover part at the tip of the blade part,
An impeller manufacturing method characterized by the above. - 前記ショットピーニングによる圧縮残留応力の付与は、
第一の粒径を有する第一ショットを用いる第一ステップと、
前記第一の粒径より小さい第二の粒径を有する第二ショットを用いる第二ステップと、の少なくとも二段階で行われる、
請求項3に記載のインペラの製造方法。 Giving compressive residual stress by shot peening
A first step using a first shot having a first particle size;
A second step using a second shot having a second particle size smaller than the first particle size, and performed in at least two stages,
The manufacturing method of the impeller of Claim 3. - 請求項1又は請求項2に記載のインペラを備えることを特徴とする回転機械。 A rotating machine comprising the impeller according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/487,488 US20200063562A1 (en) | 2017-03-30 | 2018-03-26 | Impeller, impeller manufacturing method, and rotating machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017066763A JP2018168761A (en) | 2017-03-30 | 2017-03-30 | Impeller, impeller manufacturing method, and rotary machine |
JP2017-066763 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181086A1 true WO2018181086A1 (en) | 2018-10-04 |
Family
ID=63677023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011965 WO2018181086A1 (en) | 2017-03-30 | 2018-03-26 | Impeller, impeller manufacturing method, and rotating machine |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200063562A1 (en) |
JP (1) | JP2018168761A (en) |
WO (1) | WO2018181086A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116127653A (en) * | 2023-04-13 | 2023-05-16 | 西北工业大学 | Blade shape optimization design method for improving fatigue strength, blade and centrifugal impeller |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7204585B2 (en) * | 2019-06-17 | 2023-01-16 | 株式会社東芝 | Surface treatment condition derivation device, surface treatment system and surface treatment method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06145785A (en) * | 1992-11-06 | 1994-05-27 | Toyota Motor Corp | Hot peening method for carburized steel |
JPH08299850A (en) * | 1995-05-12 | 1996-11-19 | Hitachi Koki Co Ltd | Manufacturing method of rotor for centrifuge |
JP2000018191A (en) * | 1998-07-03 | 2000-01-18 | Hitachi Ltd | Impeller |
JP2000052248A (en) * | 1998-08-07 | 2000-02-22 | Komatsu Ltd | Shot peening method and device therefor and obtained machine parts |
US6164931A (en) * | 1999-12-15 | 2000-12-26 | Caterpillar Inc. | Compressor wheel assembly for turbochargers |
US20080008595A1 (en) * | 2004-11-13 | 2008-01-10 | Mckenzie David | Compressor wheel |
JP2011122457A (en) * | 2009-12-08 | 2011-06-23 | Yamada Seisakusho Co Ltd | Closed impeller |
US20110200439A1 (en) * | 2008-10-23 | 2011-08-18 | Akihiro Nakaniwa | Impeller, compressor, and method for producing impeller |
JP2014094433A (en) * | 2012-11-09 | 2014-05-22 | Mitsubishi Heavy Ind Ltd | Manufacturing method of impeller for centrifugal rotating machine |
JP2017035712A (en) * | 2015-08-10 | 2017-02-16 | 株式会社東芝 | Peening processing method and turbine rotor wheel |
-
2017
- 2017-03-30 JP JP2017066763A patent/JP2018168761A/en active Pending
-
2018
- 2018-03-26 US US16/487,488 patent/US20200063562A1/en not_active Abandoned
- 2018-03-26 WO PCT/JP2018/011965 patent/WO2018181086A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06145785A (en) * | 1992-11-06 | 1994-05-27 | Toyota Motor Corp | Hot peening method for carburized steel |
JPH08299850A (en) * | 1995-05-12 | 1996-11-19 | Hitachi Koki Co Ltd | Manufacturing method of rotor for centrifuge |
JP2000018191A (en) * | 1998-07-03 | 2000-01-18 | Hitachi Ltd | Impeller |
JP2000052248A (en) * | 1998-08-07 | 2000-02-22 | Komatsu Ltd | Shot peening method and device therefor and obtained machine parts |
US6164931A (en) * | 1999-12-15 | 2000-12-26 | Caterpillar Inc. | Compressor wheel assembly for turbochargers |
US20080008595A1 (en) * | 2004-11-13 | 2008-01-10 | Mckenzie David | Compressor wheel |
US20110200439A1 (en) * | 2008-10-23 | 2011-08-18 | Akihiro Nakaniwa | Impeller, compressor, and method for producing impeller |
JP2011122457A (en) * | 2009-12-08 | 2011-06-23 | Yamada Seisakusho Co Ltd | Closed impeller |
JP2014094433A (en) * | 2012-11-09 | 2014-05-22 | Mitsubishi Heavy Ind Ltd | Manufacturing method of impeller for centrifugal rotating machine |
JP2017035712A (en) * | 2015-08-10 | 2017-02-16 | 株式会社東芝 | Peening processing method and turbine rotor wheel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116127653A (en) * | 2023-04-13 | 2023-05-16 | 西北工业大学 | Blade shape optimization design method for improving fatigue strength, blade and centrifugal impeller |
Also Published As
Publication number | Publication date |
---|---|
US20200063562A1 (en) | 2020-02-27 |
JP2018168761A (en) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8366400B2 (en) | Compressor rotor | |
KR101501477B1 (en) | Centrifugal Compressor | |
WO2014199498A1 (en) | Impeller and fluid machine | |
US7690094B2 (en) | Impeller weld restraining fixture | |
US8581136B2 (en) | Method of manufacturing by electric discharge machining an impeller for centrifugal rotating machine | |
EP2509739B1 (en) | Method of beam welding of an impeller with performance of two passes on a slot ; impeller and turbo machine having such weld configuration | |
JP2005307967A (en) | Manufacturing method of centrifugal compressor and impeller | |
WO2018181086A1 (en) | Impeller, impeller manufacturing method, and rotating machine | |
US8505305B2 (en) | Diffuser with improved erosion resistance | |
US7644599B2 (en) | Method for surface blasting cavities, particularly cavities in gas turbines | |
US20180345457A1 (en) | Peening Method for Turbine Engine Component | |
KR20150063029A (en) | Rotor, and vacuum pump equipped with rotor | |
JP5882804B2 (en) | Impeller and fluid machinery | |
US8943659B2 (en) | Method and device for the surface peening of a partial element of a component of a gas turbine | |
US20170268350A1 (en) | Steam turbine rotor blade, method for manufacturing steam turbine rotor blade, and steam turbine | |
JP6388772B2 (en) | Centrifugal compressor and diffuser manufacturing method | |
US20130216391A1 (en) | Method for the production of a one-piece rotor area and one-piece rotor area | |
JP4047837B2 (en) | Improved holding capacity of blades with asymmetric hammerhead connections | |
WO2018181085A1 (en) | Impeller manufacturing method, impeller, and rotation machine | |
JP2022136620A (en) | turbine rotor blade | |
JP2022057340A (en) | Rotary machine and repair method for rotary machine | |
WO2017159730A1 (en) | Impeller, rotary machine, and impeller manufacturing method | |
JP2019023450A (en) | Compressor | |
EP3800356B1 (en) | Coating for compressor outlet housing | |
JP6708251B2 (en) | Turbine shaft and supercharger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774714 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18774714 Country of ref document: EP Kind code of ref document: A1 |